Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-btrfs-devel.git] / drivers / spi / spi-pl022.c
blob730b4a37b82370805bb6da7c380952178f71cd1a
1 /*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
38 #include <linux/io.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
58 #define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
61 #define DRIVE_TX 0
62 #define DO_NOT_DRIVE_TX 1
64 #define DO_NOT_QUEUE_DMA 0
65 #define QUEUE_DMA 1
67 #define RX_TRANSFER 1
68 #define TX_TRANSFER 2
71 * Macros to access SSP Registers with their offsets
73 #define SSP_CR0(r) (r + 0x000)
74 #define SSP_CR1(r) (r + 0x004)
75 #define SSP_DR(r) (r + 0x008)
76 #define SSP_SR(r) (r + 0x00C)
77 #define SSP_CPSR(r) (r + 0x010)
78 #define SSP_IMSC(r) (r + 0x014)
79 #define SSP_RIS(r) (r + 0x018)
80 #define SSP_MIS(r) (r + 0x01C)
81 #define SSP_ICR(r) (r + 0x020)
82 #define SSP_DMACR(r) (r + 0x024)
83 #define SSP_ITCR(r) (r + 0x080)
84 #define SSP_ITIP(r) (r + 0x084)
85 #define SSP_ITOP(r) (r + 0x088)
86 #define SSP_TDR(r) (r + 0x08C)
88 #define SSP_PID0(r) (r + 0xFE0)
89 #define SSP_PID1(r) (r + 0xFE4)
90 #define SSP_PID2(r) (r + 0xFE8)
91 #define SSP_PID3(r) (r + 0xFEC)
93 #define SSP_CID0(r) (r + 0xFF0)
94 #define SSP_CID1(r) (r + 0xFF4)
95 #define SSP_CID2(r) (r + 0xFF8)
96 #define SSP_CID3(r) (r + 0xFFC)
99 * SSP Control Register 0 - SSP_CR0
101 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF (0x3UL << 4)
103 #define SSP_CR0_MASK_SPO (0x1UL << 6)
104 #define SSP_CR0_MASK_SPH (0x1UL << 7)
105 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
111 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
118 * SSP Control Register 0 - SSP_CR1
120 #define SSP_CR1_MASK_LBM (0x1UL << 0)
121 #define SSP_CR1_MASK_SSE (0x1UL << 1)
122 #define SSP_CR1_MASK_MS (0x1UL << 2)
123 #define SSP_CR1_MASK_SOD (0x1UL << 3)
126 * The ST version of this block adds some bits
127 * in SSP_CR1
129 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
130 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
131 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
132 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
133 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
134 /* This one is only in the PL023 variant */
135 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
138 * SSP Status Register - SSP_SR
140 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
141 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
142 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
143 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
144 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
147 * SSP Clock Prescale Register - SSP_CPSR
149 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
152 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
155 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
156 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
157 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
160 * SSP Raw Interrupt Status Register - SSP_RIS
162 /* Receive Overrun Raw Interrupt status */
163 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
164 /* Receive Timeout Raw Interrupt status */
165 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
166 /* Receive FIFO Raw Interrupt status */
167 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
168 /* Transmit FIFO Raw Interrupt status */
169 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
172 * SSP Masked Interrupt Status Register - SSP_MIS
174 /* Receive Overrun Masked Interrupt status */
175 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
176 /* Receive Timeout Masked Interrupt status */
177 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
178 /* Receive FIFO Masked Interrupt status */
179 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
180 /* Transmit FIFO Masked Interrupt status */
181 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
184 * SSP Interrupt Clear Register - SSP_ICR
186 /* Receive Overrun Raw Clear Interrupt bit */
187 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
188 /* Receive Timeout Clear Interrupt bit */
189 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
192 * SSP DMA Control Register - SSP_DMACR
194 /* Receive DMA Enable bit */
195 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
196 /* Transmit DMA Enable bit */
197 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
200 * SSP Integration Test control Register - SSP_ITCR
202 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
203 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
206 * SSP Integration Test Input Register - SSP_ITIP
208 #define ITIP_MASK_SSPRXD (0x1UL << 0)
209 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
210 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
211 #define ITIP_MASK_RXDMAC (0x1UL << 3)
212 #define ITIP_MASK_TXDMAC (0x1UL << 4)
213 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
216 * SSP Integration Test output Register - SSP_ITOP
218 #define ITOP_MASK_SSPTXD (0x1UL << 0)
219 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
220 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
221 #define ITOP_MASK_SSPOEn (0x1UL << 3)
222 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
223 #define ITOP_MASK_RORINTR (0x1UL << 5)
224 #define ITOP_MASK_RTINTR (0x1UL << 6)
225 #define ITOP_MASK_RXINTR (0x1UL << 7)
226 #define ITOP_MASK_TXINTR (0x1UL << 8)
227 #define ITOP_MASK_INTR (0x1UL << 9)
228 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
229 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
230 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
231 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
234 * SSP Test Data Register - SSP_TDR
236 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
239 * Message State
240 * we use the spi_message.state (void *) pointer to
241 * hold a single state value, that's why all this
242 * (void *) casting is done here.
244 #define STATE_START ((void *) 0)
245 #define STATE_RUNNING ((void *) 1)
246 #define STATE_DONE ((void *) 2)
247 #define STATE_ERROR ((void *) -1)
250 * SSP State - Whether Enabled or Disabled
252 #define SSP_DISABLED (0)
253 #define SSP_ENABLED (1)
256 * SSP DMA State - Whether DMA Enabled or Disabled
258 #define SSP_DMA_DISABLED (0)
259 #define SSP_DMA_ENABLED (1)
262 * SSP Clock Defaults
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
268 * SSP Clock Parameter ranges
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
276 * SSP Interrupt related Macros
278 #define DEFAULT_SSP_REG_IMSC 0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282 #define CLEAR_ALL_INTERRUPTS 0x3
284 #define SPI_POLLING_TIMEOUT 1000
288 * The type of reading going on on this chip
290 enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
298 * The type of writing going on on this chip
300 enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
317 struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
321 bool extended_cr;
322 bool pl023;
323 bool loopback;
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @workqueue: a workqueue on which any spi_message request is queued
336 * @pump_messages: work struct for scheduling work to the workqueue
337 * @queue_lock: spinlock to syncronise access to message queue
338 * @queue: message queue
339 * @busy: workqueue is busy
340 * @running: workqueue is running
341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
342 * @cur_msg: Pointer to current spi_message being processed
343 * @cur_transfer: Pointer to current spi_transfer
344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
345 * @tx: current position in TX buffer to be read
346 * @tx_end: end position in TX buffer to be read
347 * @rx: current position in RX buffer to be written
348 * @rx_end: end position in RX buffer to be written
349 * @read: the type of read currently going on
350 * @write: the type of write currently going on
351 * @exp_fifo_level: expected FIFO level
352 * @dma_rx_channel: optional channel for RX DMA
353 * @dma_tx_channel: optional channel for TX DMA
354 * @sgt_rx: scattertable for the RX transfer
355 * @sgt_tx: scattertable for the TX transfer
356 * @dummypage: a dummy page used for driving data on the bus with DMA
358 struct pl022 {
359 struct amba_device *adev;
360 struct vendor_data *vendor;
361 resource_size_t phybase;
362 void __iomem *virtbase;
363 struct clk *clk;
364 struct spi_master *master;
365 struct pl022_ssp_controller *master_info;
366 /* Driver message queue */
367 struct workqueue_struct *workqueue;
368 struct work_struct pump_messages;
369 spinlock_t queue_lock;
370 struct list_head queue;
371 bool busy;
372 bool running;
373 /* Message transfer pump */
374 struct tasklet_struct pump_transfers;
375 struct spi_message *cur_msg;
376 struct spi_transfer *cur_transfer;
377 struct chip_data *cur_chip;
378 void *tx;
379 void *tx_end;
380 void *rx;
381 void *rx_end;
382 enum ssp_reading read;
383 enum ssp_writing write;
384 u32 exp_fifo_level;
385 enum ssp_rx_level_trig rx_lev_trig;
386 enum ssp_tx_level_trig tx_lev_trig;
387 /* DMA settings */
388 #ifdef CONFIG_DMA_ENGINE
389 struct dma_chan *dma_rx_channel;
390 struct dma_chan *dma_tx_channel;
391 struct sg_table sgt_rx;
392 struct sg_table sgt_tx;
393 char *dummypage;
394 #endif
398 * struct chip_data - To maintain runtime state of SSP for each client chip
399 * @cr0: Value of control register CR0 of SSP - on later ST variants this
400 * register is 32 bits wide rather than just 16
401 * @cr1: Value of control register CR1 of SSP
402 * @dmacr: Value of DMA control Register of SSP
403 * @cpsr: Value of Clock prescale register
404 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
405 * @enable_dma: Whether to enable DMA or not
406 * @read: function ptr to be used to read when doing xfer for this chip
407 * @write: function ptr to be used to write when doing xfer for this chip
408 * @cs_control: chip select callback provided by chip
409 * @xfer_type: polling/interrupt/DMA
411 * Runtime state of the SSP controller, maintained per chip,
412 * This would be set according to the current message that would be served
414 struct chip_data {
415 u32 cr0;
416 u16 cr1;
417 u16 dmacr;
418 u16 cpsr;
419 u8 n_bytes;
420 bool enable_dma;
421 enum ssp_reading read;
422 enum ssp_writing write;
423 void (*cs_control) (u32 command);
424 int xfer_type;
428 * null_cs_control - Dummy chip select function
429 * @command: select/delect the chip
431 * If no chip select function is provided by client this is used as dummy
432 * chip select
434 static void null_cs_control(u32 command)
436 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
440 * giveback - current spi_message is over, schedule next message and call
441 * callback of this message. Assumes that caller already
442 * set message->status; dma and pio irqs are blocked
443 * @pl022: SSP driver private data structure
445 static void giveback(struct pl022 *pl022)
447 struct spi_transfer *last_transfer;
448 unsigned long flags;
449 struct spi_message *msg;
450 void (*curr_cs_control) (u32 command);
453 * This local reference to the chip select function
454 * is needed because we set curr_chip to NULL
455 * as a step toward termininating the message.
457 curr_cs_control = pl022->cur_chip->cs_control;
458 spin_lock_irqsave(&pl022->queue_lock, flags);
459 msg = pl022->cur_msg;
460 pl022->cur_msg = NULL;
461 pl022->cur_transfer = NULL;
462 pl022->cur_chip = NULL;
463 queue_work(pl022->workqueue, &pl022->pump_messages);
464 spin_unlock_irqrestore(&pl022->queue_lock, flags);
466 last_transfer = list_entry(msg->transfers.prev,
467 struct spi_transfer,
468 transfer_list);
470 /* Delay if requested before any change in chip select */
471 if (last_transfer->delay_usecs)
473 * FIXME: This runs in interrupt context.
474 * Is this really smart?
476 udelay(last_transfer->delay_usecs);
479 * Drop chip select UNLESS cs_change is true or we are returning
480 * a message with an error, or next message is for another chip
482 if (!last_transfer->cs_change)
483 curr_cs_control(SSP_CHIP_DESELECT);
484 else {
485 struct spi_message *next_msg;
487 /* Holding of cs was hinted, but we need to make sure
488 * the next message is for the same chip. Don't waste
489 * time with the following tests unless this was hinted.
491 * We cannot postpone this until pump_messages, because
492 * after calling msg->complete (below) the driver that
493 * sent the current message could be unloaded, which
494 * could invalidate the cs_control() callback...
497 /* get a pointer to the next message, if any */
498 spin_lock_irqsave(&pl022->queue_lock, flags);
499 if (list_empty(&pl022->queue))
500 next_msg = NULL;
501 else
502 next_msg = list_entry(pl022->queue.next,
503 struct spi_message, queue);
504 spin_unlock_irqrestore(&pl022->queue_lock, flags);
506 /* see if the next and current messages point
507 * to the same chip
509 if (next_msg && next_msg->spi != msg->spi)
510 next_msg = NULL;
511 if (!next_msg || msg->state == STATE_ERROR)
512 curr_cs_control(SSP_CHIP_DESELECT);
514 msg->state = NULL;
515 if (msg->complete)
516 msg->complete(msg->context);
517 /* This message is completed, so let's turn off the clocks & power */
518 clk_disable(pl022->clk);
519 amba_pclk_disable(pl022->adev);
520 amba_vcore_disable(pl022->adev);
521 pm_runtime_put(&pl022->adev->dev);
525 * flush - flush the FIFO to reach a clean state
526 * @pl022: SSP driver private data structure
528 static int flush(struct pl022 *pl022)
530 unsigned long limit = loops_per_jiffy << 1;
532 dev_dbg(&pl022->adev->dev, "flush\n");
533 do {
534 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
535 readw(SSP_DR(pl022->virtbase));
536 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
538 pl022->exp_fifo_level = 0;
540 return limit;
544 * restore_state - Load configuration of current chip
545 * @pl022: SSP driver private data structure
547 static void restore_state(struct pl022 *pl022)
549 struct chip_data *chip = pl022->cur_chip;
551 if (pl022->vendor->extended_cr)
552 writel(chip->cr0, SSP_CR0(pl022->virtbase));
553 else
554 writew(chip->cr0, SSP_CR0(pl022->virtbase));
555 writew(chip->cr1, SSP_CR1(pl022->virtbase));
556 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
557 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
558 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
559 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
563 * Default SSP Register Values
565 #define DEFAULT_SSP_REG_CR0 ( \
566 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
567 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
568 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
569 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
570 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
573 /* ST versions have slightly different bit layout */
574 #define DEFAULT_SSP_REG_CR0_ST ( \
575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
576 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
577 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
578 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
579 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
580 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
581 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
584 /* The PL023 version is slightly different again */
585 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
586 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
587 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
588 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
589 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
592 #define DEFAULT_SSP_REG_CR1 ( \
593 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
594 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
595 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
596 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
599 /* ST versions extend this register to use all 16 bits */
600 #define DEFAULT_SSP_REG_CR1_ST ( \
601 DEFAULT_SSP_REG_CR1 | \
602 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
603 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
604 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
605 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
606 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
610 * The PL023 variant has further differences: no loopback mode, no microwire
611 * support, and a new clock feedback delay setting.
613 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
614 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
615 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
616 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
617 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
618 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
619 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
620 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
621 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
624 #define DEFAULT_SSP_REG_CPSR ( \
625 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
628 #define DEFAULT_SSP_REG_DMACR (\
629 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
630 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
634 * load_ssp_default_config - Load default configuration for SSP
635 * @pl022: SSP driver private data structure
637 static void load_ssp_default_config(struct pl022 *pl022)
639 if (pl022->vendor->pl023) {
640 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
641 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
642 } else if (pl022->vendor->extended_cr) {
643 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
644 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
645 } else {
646 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
647 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
649 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
650 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
651 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
652 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
656 * This will write to TX and read from RX according to the parameters
657 * set in pl022.
659 static void readwriter(struct pl022 *pl022)
663 * The FIFO depth is different between primecell variants.
664 * I believe filling in too much in the FIFO might cause
665 * errons in 8bit wide transfers on ARM variants (just 8 words
666 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
668 * To prevent this issue, the TX FIFO is only filled to the
669 * unused RX FIFO fill length, regardless of what the TX
670 * FIFO status flag indicates.
672 dev_dbg(&pl022->adev->dev,
673 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
674 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
676 /* Read as much as you can */
677 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
678 && (pl022->rx < pl022->rx_end)) {
679 switch (pl022->read) {
680 case READING_NULL:
681 readw(SSP_DR(pl022->virtbase));
682 break;
683 case READING_U8:
684 *(u8 *) (pl022->rx) =
685 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
686 break;
687 case READING_U16:
688 *(u16 *) (pl022->rx) =
689 (u16) readw(SSP_DR(pl022->virtbase));
690 break;
691 case READING_U32:
692 *(u32 *) (pl022->rx) =
693 readl(SSP_DR(pl022->virtbase));
694 break;
696 pl022->rx += (pl022->cur_chip->n_bytes);
697 pl022->exp_fifo_level--;
700 * Write as much as possible up to the RX FIFO size
702 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
703 && (pl022->tx < pl022->tx_end)) {
704 switch (pl022->write) {
705 case WRITING_NULL:
706 writew(0x0, SSP_DR(pl022->virtbase));
707 break;
708 case WRITING_U8:
709 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 break;
711 case WRITING_U16:
712 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
713 break;
714 case WRITING_U32:
715 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
716 break;
718 pl022->tx += (pl022->cur_chip->n_bytes);
719 pl022->exp_fifo_level++;
721 * This inner reader takes care of things appearing in the RX
722 * FIFO as we're transmitting. This will happen a lot since the
723 * clock starts running when you put things into the TX FIFO,
724 * and then things are continuously clocked into the RX FIFO.
726 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
727 && (pl022->rx < pl022->rx_end)) {
728 switch (pl022->read) {
729 case READING_NULL:
730 readw(SSP_DR(pl022->virtbase));
731 break;
732 case READING_U8:
733 *(u8 *) (pl022->rx) =
734 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
735 break;
736 case READING_U16:
737 *(u16 *) (pl022->rx) =
738 (u16) readw(SSP_DR(pl022->virtbase));
739 break;
740 case READING_U32:
741 *(u32 *) (pl022->rx) =
742 readl(SSP_DR(pl022->virtbase));
743 break;
745 pl022->rx += (pl022->cur_chip->n_bytes);
746 pl022->exp_fifo_level--;
750 * When we exit here the TX FIFO should be full and the RX FIFO
751 * should be empty
757 * next_transfer - Move to the Next transfer in the current spi message
758 * @pl022: SSP driver private data structure
760 * This function moves though the linked list of spi transfers in the
761 * current spi message and returns with the state of current spi
762 * message i.e whether its last transfer is done(STATE_DONE) or
763 * Next transfer is ready(STATE_RUNNING)
765 static void *next_transfer(struct pl022 *pl022)
767 struct spi_message *msg = pl022->cur_msg;
768 struct spi_transfer *trans = pl022->cur_transfer;
770 /* Move to next transfer */
771 if (trans->transfer_list.next != &msg->transfers) {
772 pl022->cur_transfer =
773 list_entry(trans->transfer_list.next,
774 struct spi_transfer, transfer_list);
775 return STATE_RUNNING;
777 return STATE_DONE;
781 * This DMA functionality is only compiled in if we have
782 * access to the generic DMA devices/DMA engine.
784 #ifdef CONFIG_DMA_ENGINE
785 static void unmap_free_dma_scatter(struct pl022 *pl022)
787 /* Unmap and free the SG tables */
788 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
789 pl022->sgt_tx.nents, DMA_TO_DEVICE);
790 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
791 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
792 sg_free_table(&pl022->sgt_rx);
793 sg_free_table(&pl022->sgt_tx);
796 static void dma_callback(void *data)
798 struct pl022 *pl022 = data;
799 struct spi_message *msg = pl022->cur_msg;
801 BUG_ON(!pl022->sgt_rx.sgl);
803 #ifdef VERBOSE_DEBUG
805 * Optionally dump out buffers to inspect contents, this is
806 * good if you want to convince yourself that the loopback
807 * read/write contents are the same, when adopting to a new
808 * DMA engine.
811 struct scatterlist *sg;
812 unsigned int i;
814 dma_sync_sg_for_cpu(&pl022->adev->dev,
815 pl022->sgt_rx.sgl,
816 pl022->sgt_rx.nents,
817 DMA_FROM_DEVICE);
819 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
820 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
821 print_hex_dump(KERN_ERR, "SPI RX: ",
822 DUMP_PREFIX_OFFSET,
825 sg_virt(sg),
826 sg_dma_len(sg),
829 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
830 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
831 print_hex_dump(KERN_ERR, "SPI TX: ",
832 DUMP_PREFIX_OFFSET,
835 sg_virt(sg),
836 sg_dma_len(sg),
840 #endif
842 unmap_free_dma_scatter(pl022);
844 /* Update total bytes transferred */
845 msg->actual_length += pl022->cur_transfer->len;
846 if (pl022->cur_transfer->cs_change)
847 pl022->cur_chip->
848 cs_control(SSP_CHIP_DESELECT);
850 /* Move to next transfer */
851 msg->state = next_transfer(pl022);
852 tasklet_schedule(&pl022->pump_transfers);
855 static void setup_dma_scatter(struct pl022 *pl022,
856 void *buffer,
857 unsigned int length,
858 struct sg_table *sgtab)
860 struct scatterlist *sg;
861 int bytesleft = length;
862 void *bufp = buffer;
863 int mapbytes;
864 int i;
866 if (buffer) {
867 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
869 * If there are less bytes left than what fits
870 * in the current page (plus page alignment offset)
871 * we just feed in this, else we stuff in as much
872 * as we can.
874 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
875 mapbytes = bytesleft;
876 else
877 mapbytes = PAGE_SIZE - offset_in_page(bufp);
878 sg_set_page(sg, virt_to_page(bufp),
879 mapbytes, offset_in_page(bufp));
880 bufp += mapbytes;
881 bytesleft -= mapbytes;
882 dev_dbg(&pl022->adev->dev,
883 "set RX/TX target page @ %p, %d bytes, %d left\n",
884 bufp, mapbytes, bytesleft);
886 } else {
887 /* Map the dummy buffer on every page */
888 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
889 if (bytesleft < PAGE_SIZE)
890 mapbytes = bytesleft;
891 else
892 mapbytes = PAGE_SIZE;
893 sg_set_page(sg, virt_to_page(pl022->dummypage),
894 mapbytes, 0);
895 bytesleft -= mapbytes;
896 dev_dbg(&pl022->adev->dev,
897 "set RX/TX to dummy page %d bytes, %d left\n",
898 mapbytes, bytesleft);
902 BUG_ON(bytesleft);
906 * configure_dma - configures the channels for the next transfer
907 * @pl022: SSP driver's private data structure
909 static int configure_dma(struct pl022 *pl022)
911 struct dma_slave_config rx_conf = {
912 .src_addr = SSP_DR(pl022->phybase),
913 .direction = DMA_FROM_DEVICE,
915 struct dma_slave_config tx_conf = {
916 .dst_addr = SSP_DR(pl022->phybase),
917 .direction = DMA_TO_DEVICE,
919 unsigned int pages;
920 int ret;
921 int rx_sglen, tx_sglen;
922 struct dma_chan *rxchan = pl022->dma_rx_channel;
923 struct dma_chan *txchan = pl022->dma_tx_channel;
924 struct dma_async_tx_descriptor *rxdesc;
925 struct dma_async_tx_descriptor *txdesc;
927 /* Check that the channels are available */
928 if (!rxchan || !txchan)
929 return -ENODEV;
932 * If supplied, the DMA burstsize should equal the FIFO trigger level.
933 * Notice that the DMA engine uses one-to-one mapping. Since we can
934 * not trigger on 2 elements this needs explicit mapping rather than
935 * calculation.
937 switch (pl022->rx_lev_trig) {
938 case SSP_RX_1_OR_MORE_ELEM:
939 rx_conf.src_maxburst = 1;
940 break;
941 case SSP_RX_4_OR_MORE_ELEM:
942 rx_conf.src_maxburst = 4;
943 break;
944 case SSP_RX_8_OR_MORE_ELEM:
945 rx_conf.src_maxburst = 8;
946 break;
947 case SSP_RX_16_OR_MORE_ELEM:
948 rx_conf.src_maxburst = 16;
949 break;
950 case SSP_RX_32_OR_MORE_ELEM:
951 rx_conf.src_maxburst = 32;
952 break;
953 default:
954 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
955 break;
958 switch (pl022->tx_lev_trig) {
959 case SSP_TX_1_OR_MORE_EMPTY_LOC:
960 tx_conf.dst_maxburst = 1;
961 break;
962 case SSP_TX_4_OR_MORE_EMPTY_LOC:
963 tx_conf.dst_maxburst = 4;
964 break;
965 case SSP_TX_8_OR_MORE_EMPTY_LOC:
966 tx_conf.dst_maxburst = 8;
967 break;
968 case SSP_TX_16_OR_MORE_EMPTY_LOC:
969 tx_conf.dst_maxburst = 16;
970 break;
971 case SSP_TX_32_OR_MORE_EMPTY_LOC:
972 tx_conf.dst_maxburst = 32;
973 break;
974 default:
975 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
976 break;
979 switch (pl022->read) {
980 case READING_NULL:
981 /* Use the same as for writing */
982 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
983 break;
984 case READING_U8:
985 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
986 break;
987 case READING_U16:
988 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
989 break;
990 case READING_U32:
991 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
992 break;
995 switch (pl022->write) {
996 case WRITING_NULL:
997 /* Use the same as for reading */
998 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
999 break;
1000 case WRITING_U8:
1001 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1002 break;
1003 case WRITING_U16:
1004 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1005 break;
1006 case WRITING_U32:
1007 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1008 break;
1011 /* SPI pecularity: we need to read and write the same width */
1012 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1013 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1014 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1015 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1016 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1018 dmaengine_slave_config(rxchan, &rx_conf);
1019 dmaengine_slave_config(txchan, &tx_conf);
1021 /* Create sglists for the transfers */
1022 pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
1023 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1025 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
1026 if (ret)
1027 goto err_alloc_rx_sg;
1029 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
1030 if (ret)
1031 goto err_alloc_tx_sg;
1033 /* Fill in the scatterlists for the RX+TX buffers */
1034 setup_dma_scatter(pl022, pl022->rx,
1035 pl022->cur_transfer->len, &pl022->sgt_rx);
1036 setup_dma_scatter(pl022, pl022->tx,
1037 pl022->cur_transfer->len, &pl022->sgt_tx);
1039 /* Map DMA buffers */
1040 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1041 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1042 if (!rx_sglen)
1043 goto err_rx_sgmap;
1045 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1046 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1047 if (!tx_sglen)
1048 goto err_tx_sgmap;
1050 /* Send both scatterlists */
1051 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1052 pl022->sgt_rx.sgl,
1053 rx_sglen,
1054 DMA_FROM_DEVICE,
1055 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1056 if (!rxdesc)
1057 goto err_rxdesc;
1059 txdesc = txchan->device->device_prep_slave_sg(txchan,
1060 pl022->sgt_tx.sgl,
1061 tx_sglen,
1062 DMA_TO_DEVICE,
1063 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1064 if (!txdesc)
1065 goto err_txdesc;
1067 /* Put the callback on the RX transfer only, that should finish last */
1068 rxdesc->callback = dma_callback;
1069 rxdesc->callback_param = pl022;
1071 /* Submit and fire RX and TX with TX last so we're ready to read! */
1072 dmaengine_submit(rxdesc);
1073 dmaengine_submit(txdesc);
1074 dma_async_issue_pending(rxchan);
1075 dma_async_issue_pending(txchan);
1077 return 0;
1079 err_txdesc:
1080 dmaengine_terminate_all(txchan);
1081 err_rxdesc:
1082 dmaengine_terminate_all(rxchan);
1083 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1084 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1085 err_tx_sgmap:
1086 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1087 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1088 err_rx_sgmap:
1089 sg_free_table(&pl022->sgt_tx);
1090 err_alloc_tx_sg:
1091 sg_free_table(&pl022->sgt_rx);
1092 err_alloc_rx_sg:
1093 return -ENOMEM;
1096 static int __init pl022_dma_probe(struct pl022 *pl022)
1098 dma_cap_mask_t mask;
1100 /* Try to acquire a generic DMA engine slave channel */
1101 dma_cap_zero(mask);
1102 dma_cap_set(DMA_SLAVE, mask);
1104 * We need both RX and TX channels to do DMA, else do none
1105 * of them.
1107 pl022->dma_rx_channel = dma_request_channel(mask,
1108 pl022->master_info->dma_filter,
1109 pl022->master_info->dma_rx_param);
1110 if (!pl022->dma_rx_channel) {
1111 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1112 goto err_no_rxchan;
1115 pl022->dma_tx_channel = dma_request_channel(mask,
1116 pl022->master_info->dma_filter,
1117 pl022->master_info->dma_tx_param);
1118 if (!pl022->dma_tx_channel) {
1119 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1120 goto err_no_txchan;
1123 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1124 if (!pl022->dummypage) {
1125 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1126 goto err_no_dummypage;
1129 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1130 dma_chan_name(pl022->dma_rx_channel),
1131 dma_chan_name(pl022->dma_tx_channel));
1133 return 0;
1135 err_no_dummypage:
1136 dma_release_channel(pl022->dma_tx_channel);
1137 err_no_txchan:
1138 dma_release_channel(pl022->dma_rx_channel);
1139 pl022->dma_rx_channel = NULL;
1140 err_no_rxchan:
1141 dev_err(&pl022->adev->dev,
1142 "Failed to work in dma mode, work without dma!\n");
1143 return -ENODEV;
1146 static void terminate_dma(struct pl022 *pl022)
1148 struct dma_chan *rxchan = pl022->dma_rx_channel;
1149 struct dma_chan *txchan = pl022->dma_tx_channel;
1151 dmaengine_terminate_all(rxchan);
1152 dmaengine_terminate_all(txchan);
1153 unmap_free_dma_scatter(pl022);
1156 static void pl022_dma_remove(struct pl022 *pl022)
1158 if (pl022->busy)
1159 terminate_dma(pl022);
1160 if (pl022->dma_tx_channel)
1161 dma_release_channel(pl022->dma_tx_channel);
1162 if (pl022->dma_rx_channel)
1163 dma_release_channel(pl022->dma_rx_channel);
1164 kfree(pl022->dummypage);
1167 #else
1168 static inline int configure_dma(struct pl022 *pl022)
1170 return -ENODEV;
1173 static inline int pl022_dma_probe(struct pl022 *pl022)
1175 return 0;
1178 static inline void pl022_dma_remove(struct pl022 *pl022)
1181 #endif
1184 * pl022_interrupt_handler - Interrupt handler for SSP controller
1186 * This function handles interrupts generated for an interrupt based transfer.
1187 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1188 * current message's state as STATE_ERROR and schedule the tasklet
1189 * pump_transfers which will do the postprocessing of the current message by
1190 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1191 * more data, and writes data in TX FIFO till it is not full. If we complete
1192 * the transfer we move to the next transfer and schedule the tasklet.
1194 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1196 struct pl022 *pl022 = dev_id;
1197 struct spi_message *msg = pl022->cur_msg;
1198 u16 irq_status = 0;
1199 u16 flag = 0;
1201 if (unlikely(!msg)) {
1202 dev_err(&pl022->adev->dev,
1203 "bad message state in interrupt handler");
1204 /* Never fail */
1205 return IRQ_HANDLED;
1208 /* Read the Interrupt Status Register */
1209 irq_status = readw(SSP_MIS(pl022->virtbase));
1211 if (unlikely(!irq_status))
1212 return IRQ_NONE;
1215 * This handles the FIFO interrupts, the timeout
1216 * interrupts are flatly ignored, they cannot be
1217 * trusted.
1219 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1221 * Overrun interrupt - bail out since our Data has been
1222 * corrupted
1224 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1225 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1226 dev_err(&pl022->adev->dev,
1227 "RXFIFO is full\n");
1228 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1229 dev_err(&pl022->adev->dev,
1230 "TXFIFO is full\n");
1233 * Disable and clear interrupts, disable SSP,
1234 * mark message with bad status so it can be
1235 * retried.
1237 writew(DISABLE_ALL_INTERRUPTS,
1238 SSP_IMSC(pl022->virtbase));
1239 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1240 writew((readw(SSP_CR1(pl022->virtbase)) &
1241 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1242 msg->state = STATE_ERROR;
1244 /* Schedule message queue handler */
1245 tasklet_schedule(&pl022->pump_transfers);
1246 return IRQ_HANDLED;
1249 readwriter(pl022);
1251 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1252 flag = 1;
1253 /* Disable Transmit interrupt */
1254 writew(readw(SSP_IMSC(pl022->virtbase)) &
1255 (~SSP_IMSC_MASK_TXIM),
1256 SSP_IMSC(pl022->virtbase));
1260 * Since all transactions must write as much as shall be read,
1261 * we can conclude the entire transaction once RX is complete.
1262 * At this point, all TX will always be finished.
1264 if (pl022->rx >= pl022->rx_end) {
1265 writew(DISABLE_ALL_INTERRUPTS,
1266 SSP_IMSC(pl022->virtbase));
1267 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1268 if (unlikely(pl022->rx > pl022->rx_end)) {
1269 dev_warn(&pl022->adev->dev, "read %u surplus "
1270 "bytes (did you request an odd "
1271 "number of bytes on a 16bit bus?)\n",
1272 (u32) (pl022->rx - pl022->rx_end));
1274 /* Update total bytes transferred */
1275 msg->actual_length += pl022->cur_transfer->len;
1276 if (pl022->cur_transfer->cs_change)
1277 pl022->cur_chip->
1278 cs_control(SSP_CHIP_DESELECT);
1279 /* Move to next transfer */
1280 msg->state = next_transfer(pl022);
1281 tasklet_schedule(&pl022->pump_transfers);
1282 return IRQ_HANDLED;
1285 return IRQ_HANDLED;
1289 * This sets up the pointers to memory for the next message to
1290 * send out on the SPI bus.
1292 static int set_up_next_transfer(struct pl022 *pl022,
1293 struct spi_transfer *transfer)
1295 int residue;
1297 /* Sanity check the message for this bus width */
1298 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1299 if (unlikely(residue != 0)) {
1300 dev_err(&pl022->adev->dev,
1301 "message of %u bytes to transmit but the current "
1302 "chip bus has a data width of %u bytes!\n",
1303 pl022->cur_transfer->len,
1304 pl022->cur_chip->n_bytes);
1305 dev_err(&pl022->adev->dev, "skipping this message\n");
1306 return -EIO;
1308 pl022->tx = (void *)transfer->tx_buf;
1309 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1310 pl022->rx = (void *)transfer->rx_buf;
1311 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1312 pl022->write =
1313 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1314 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1315 return 0;
1319 * pump_transfers - Tasklet function which schedules next transfer
1320 * when running in interrupt or DMA transfer mode.
1321 * @data: SSP driver private data structure
1324 static void pump_transfers(unsigned long data)
1326 struct pl022 *pl022 = (struct pl022 *) data;
1327 struct spi_message *message = NULL;
1328 struct spi_transfer *transfer = NULL;
1329 struct spi_transfer *previous = NULL;
1331 /* Get current state information */
1332 message = pl022->cur_msg;
1333 transfer = pl022->cur_transfer;
1335 /* Handle for abort */
1336 if (message->state == STATE_ERROR) {
1337 message->status = -EIO;
1338 giveback(pl022);
1339 return;
1342 /* Handle end of message */
1343 if (message->state == STATE_DONE) {
1344 message->status = 0;
1345 giveback(pl022);
1346 return;
1349 /* Delay if requested at end of transfer before CS change */
1350 if (message->state == STATE_RUNNING) {
1351 previous = list_entry(transfer->transfer_list.prev,
1352 struct spi_transfer,
1353 transfer_list);
1354 if (previous->delay_usecs)
1356 * FIXME: This runs in interrupt context.
1357 * Is this really smart?
1359 udelay(previous->delay_usecs);
1361 /* Drop chip select only if cs_change is requested */
1362 if (previous->cs_change)
1363 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1364 } else {
1365 /* STATE_START */
1366 message->state = STATE_RUNNING;
1369 if (set_up_next_transfer(pl022, transfer)) {
1370 message->state = STATE_ERROR;
1371 message->status = -EIO;
1372 giveback(pl022);
1373 return;
1375 /* Flush the FIFOs and let's go! */
1376 flush(pl022);
1378 if (pl022->cur_chip->enable_dma) {
1379 if (configure_dma(pl022)) {
1380 dev_dbg(&pl022->adev->dev,
1381 "configuration of DMA failed, fall back to interrupt mode\n");
1382 goto err_config_dma;
1384 return;
1387 err_config_dma:
1388 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1391 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1393 u32 irqflags = ENABLE_ALL_INTERRUPTS;
1395 /* Enable target chip */
1396 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1397 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1398 /* Error path */
1399 pl022->cur_msg->state = STATE_ERROR;
1400 pl022->cur_msg->status = -EIO;
1401 giveback(pl022);
1402 return;
1404 /* If we're using DMA, set up DMA here */
1405 if (pl022->cur_chip->enable_dma) {
1406 /* Configure DMA transfer */
1407 if (configure_dma(pl022)) {
1408 dev_dbg(&pl022->adev->dev,
1409 "configuration of DMA failed, fall back to interrupt mode\n");
1410 goto err_config_dma;
1412 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1413 irqflags = DISABLE_ALL_INTERRUPTS;
1415 err_config_dma:
1416 /* Enable SSP, turn on interrupts */
1417 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1418 SSP_CR1(pl022->virtbase));
1419 writew(irqflags, SSP_IMSC(pl022->virtbase));
1422 static void do_polling_transfer(struct pl022 *pl022)
1424 struct spi_message *message = NULL;
1425 struct spi_transfer *transfer = NULL;
1426 struct spi_transfer *previous = NULL;
1427 struct chip_data *chip;
1428 unsigned long time, timeout;
1430 chip = pl022->cur_chip;
1431 message = pl022->cur_msg;
1433 while (message->state != STATE_DONE) {
1434 /* Handle for abort */
1435 if (message->state == STATE_ERROR)
1436 break;
1437 transfer = pl022->cur_transfer;
1439 /* Delay if requested at end of transfer */
1440 if (message->state == STATE_RUNNING) {
1441 previous =
1442 list_entry(transfer->transfer_list.prev,
1443 struct spi_transfer, transfer_list);
1444 if (previous->delay_usecs)
1445 udelay(previous->delay_usecs);
1446 if (previous->cs_change)
1447 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1448 } else {
1449 /* STATE_START */
1450 message->state = STATE_RUNNING;
1451 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1454 /* Configuration Changing Per Transfer */
1455 if (set_up_next_transfer(pl022, transfer)) {
1456 /* Error path */
1457 message->state = STATE_ERROR;
1458 break;
1460 /* Flush FIFOs and enable SSP */
1461 flush(pl022);
1462 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1463 SSP_CR1(pl022->virtbase));
1465 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1467 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1468 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1469 time = jiffies;
1470 readwriter(pl022);
1471 if (time_after(time, timeout)) {
1472 dev_warn(&pl022->adev->dev,
1473 "%s: timeout!\n", __func__);
1474 message->state = STATE_ERROR;
1475 goto out;
1477 cpu_relax();
1480 /* Update total byte transferred */
1481 message->actual_length += pl022->cur_transfer->len;
1482 if (pl022->cur_transfer->cs_change)
1483 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1484 /* Move to next transfer */
1485 message->state = next_transfer(pl022);
1487 out:
1488 /* Handle end of message */
1489 if (message->state == STATE_DONE)
1490 message->status = 0;
1491 else
1492 message->status = -EIO;
1494 giveback(pl022);
1495 return;
1499 * pump_messages - Workqueue function which processes spi message queue
1500 * @data: pointer to private data of SSP driver
1502 * This function checks if there is any spi message in the queue that
1503 * needs processing and delegate control to appropriate function
1504 * do_polling_transfer()/do_interrupt_dma_transfer()
1505 * based on the kind of the transfer
1508 static void pump_messages(struct work_struct *work)
1510 struct pl022 *pl022 =
1511 container_of(work, struct pl022, pump_messages);
1512 unsigned long flags;
1514 /* Lock queue and check for queue work */
1515 spin_lock_irqsave(&pl022->queue_lock, flags);
1516 if (list_empty(&pl022->queue) || !pl022->running) {
1517 pl022->busy = false;
1518 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1519 return;
1521 /* Make sure we are not already running a message */
1522 if (pl022->cur_msg) {
1523 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1524 return;
1526 /* Extract head of queue */
1527 pl022->cur_msg =
1528 list_entry(pl022->queue.next, struct spi_message, queue);
1530 list_del_init(&pl022->cur_msg->queue);
1531 pl022->busy = true;
1532 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1534 /* Initial message state */
1535 pl022->cur_msg->state = STATE_START;
1536 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1537 struct spi_transfer,
1538 transfer_list);
1540 /* Setup the SPI using the per chip configuration */
1541 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1543 * We enable the core voltage and clocks here, then the clocks
1544 * and core will be disabled when giveback() is called in each method
1545 * (poll/interrupt/DMA)
1547 pm_runtime_get_sync(&pl022->adev->dev);
1548 amba_vcore_enable(pl022->adev);
1549 amba_pclk_enable(pl022->adev);
1550 clk_enable(pl022->clk);
1551 restore_state(pl022);
1552 flush(pl022);
1554 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1555 do_polling_transfer(pl022);
1556 else
1557 do_interrupt_dma_transfer(pl022);
1561 static int __init init_queue(struct pl022 *pl022)
1563 INIT_LIST_HEAD(&pl022->queue);
1564 spin_lock_init(&pl022->queue_lock);
1566 pl022->running = false;
1567 pl022->busy = false;
1569 tasklet_init(&pl022->pump_transfers,
1570 pump_transfers, (unsigned long)pl022);
1572 INIT_WORK(&pl022->pump_messages, pump_messages);
1573 pl022->workqueue = create_singlethread_workqueue(
1574 dev_name(pl022->master->dev.parent));
1575 if (pl022->workqueue == NULL)
1576 return -EBUSY;
1578 return 0;
1582 static int start_queue(struct pl022 *pl022)
1584 unsigned long flags;
1586 spin_lock_irqsave(&pl022->queue_lock, flags);
1588 if (pl022->running || pl022->busy) {
1589 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1590 return -EBUSY;
1593 pl022->running = true;
1594 pl022->cur_msg = NULL;
1595 pl022->cur_transfer = NULL;
1596 pl022->cur_chip = NULL;
1597 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1599 queue_work(pl022->workqueue, &pl022->pump_messages);
1601 return 0;
1605 static int stop_queue(struct pl022 *pl022)
1607 unsigned long flags;
1608 unsigned limit = 500;
1609 int status = 0;
1611 spin_lock_irqsave(&pl022->queue_lock, flags);
1613 /* This is a bit lame, but is optimized for the common execution path.
1614 * A wait_queue on the pl022->busy could be used, but then the common
1615 * execution path (pump_messages) would be required to call wake_up or
1616 * friends on every SPI message. Do this instead */
1617 while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1618 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1619 msleep(10);
1620 spin_lock_irqsave(&pl022->queue_lock, flags);
1623 if (!list_empty(&pl022->queue) || pl022->busy)
1624 status = -EBUSY;
1625 else
1626 pl022->running = false;
1628 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1630 return status;
1633 static int destroy_queue(struct pl022 *pl022)
1635 int status;
1637 status = stop_queue(pl022);
1638 /* we are unloading the module or failing to load (only two calls
1639 * to this routine), and neither call can handle a return value.
1640 * However, destroy_workqueue calls flush_workqueue, and that will
1641 * block until all work is done. If the reason that stop_queue
1642 * timed out is that the work will never finish, then it does no
1643 * good to call destroy_workqueue, so return anyway. */
1644 if (status != 0)
1645 return status;
1647 destroy_workqueue(pl022->workqueue);
1649 return 0;
1652 static int verify_controller_parameters(struct pl022 *pl022,
1653 struct pl022_config_chip const *chip_info)
1655 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1656 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1657 dev_err(&pl022->adev->dev,
1658 "interface is configured incorrectly\n");
1659 return -EINVAL;
1661 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1662 (!pl022->vendor->unidir)) {
1663 dev_err(&pl022->adev->dev,
1664 "unidirectional mode not supported in this "
1665 "hardware version\n");
1666 return -EINVAL;
1668 if ((chip_info->hierarchy != SSP_MASTER)
1669 && (chip_info->hierarchy != SSP_SLAVE)) {
1670 dev_err(&pl022->adev->dev,
1671 "hierarchy is configured incorrectly\n");
1672 return -EINVAL;
1674 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1675 && (chip_info->com_mode != DMA_TRANSFER)
1676 && (chip_info->com_mode != POLLING_TRANSFER)) {
1677 dev_err(&pl022->adev->dev,
1678 "Communication mode is configured incorrectly\n");
1679 return -EINVAL;
1681 switch (chip_info->rx_lev_trig) {
1682 case SSP_RX_1_OR_MORE_ELEM:
1683 case SSP_RX_4_OR_MORE_ELEM:
1684 case SSP_RX_8_OR_MORE_ELEM:
1685 /* These are always OK, all variants can handle this */
1686 break;
1687 case SSP_RX_16_OR_MORE_ELEM:
1688 if (pl022->vendor->fifodepth < 16) {
1689 dev_err(&pl022->adev->dev,
1690 "RX FIFO Trigger Level is configured incorrectly\n");
1691 return -EINVAL;
1693 break;
1694 case SSP_RX_32_OR_MORE_ELEM:
1695 if (pl022->vendor->fifodepth < 32) {
1696 dev_err(&pl022->adev->dev,
1697 "RX FIFO Trigger Level is configured incorrectly\n");
1698 return -EINVAL;
1700 break;
1701 default:
1702 dev_err(&pl022->adev->dev,
1703 "RX FIFO Trigger Level is configured incorrectly\n");
1704 return -EINVAL;
1705 break;
1707 switch (chip_info->tx_lev_trig) {
1708 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1709 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1710 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1711 /* These are always OK, all variants can handle this */
1712 break;
1713 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1714 if (pl022->vendor->fifodepth < 16) {
1715 dev_err(&pl022->adev->dev,
1716 "TX FIFO Trigger Level is configured incorrectly\n");
1717 return -EINVAL;
1719 break;
1720 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1721 if (pl022->vendor->fifodepth < 32) {
1722 dev_err(&pl022->adev->dev,
1723 "TX FIFO Trigger Level is configured incorrectly\n");
1724 return -EINVAL;
1726 break;
1727 default:
1728 dev_err(&pl022->adev->dev,
1729 "TX FIFO Trigger Level is configured incorrectly\n");
1730 return -EINVAL;
1731 break;
1733 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1734 if ((chip_info->ctrl_len < SSP_BITS_4)
1735 || (chip_info->ctrl_len > SSP_BITS_32)) {
1736 dev_err(&pl022->adev->dev,
1737 "CTRL LEN is configured incorrectly\n");
1738 return -EINVAL;
1740 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1741 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1742 dev_err(&pl022->adev->dev,
1743 "Wait State is configured incorrectly\n");
1744 return -EINVAL;
1746 /* Half duplex is only available in the ST Micro version */
1747 if (pl022->vendor->extended_cr) {
1748 if ((chip_info->duplex !=
1749 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1750 && (chip_info->duplex !=
1751 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1752 dev_err(&pl022->adev->dev,
1753 "Microwire duplex mode is configured incorrectly\n");
1754 return -EINVAL;
1756 } else {
1757 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1758 dev_err(&pl022->adev->dev,
1759 "Microwire half duplex mode requested,"
1760 " but this is only available in the"
1761 " ST version of PL022\n");
1762 return -EINVAL;
1765 return 0;
1769 * pl022_transfer - transfer function registered to SPI master framework
1770 * @spi: spi device which is requesting transfer
1771 * @msg: spi message which is to handled is queued to driver queue
1773 * This function is registered to the SPI framework for this SPI master
1774 * controller. It will queue the spi_message in the queue of driver if
1775 * the queue is not stopped and return.
1777 static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1779 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1780 unsigned long flags;
1782 spin_lock_irqsave(&pl022->queue_lock, flags);
1784 if (!pl022->running) {
1785 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1786 return -ESHUTDOWN;
1788 msg->actual_length = 0;
1789 msg->status = -EINPROGRESS;
1790 msg->state = STATE_START;
1792 list_add_tail(&msg->queue, &pl022->queue);
1793 if (pl022->running && !pl022->busy)
1794 queue_work(pl022->workqueue, &pl022->pump_messages);
1796 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1797 return 0;
1800 static int calculate_effective_freq(struct pl022 *pl022,
1801 int freq,
1802 struct ssp_clock_params *clk_freq)
1804 /* Lets calculate the frequency parameters */
1805 u16 cpsdvsr = 2;
1806 u16 scr = 0;
1807 bool freq_found = false;
1808 u32 rate;
1809 u32 max_tclk;
1810 u32 min_tclk;
1812 rate = clk_get_rate(pl022->clk);
1813 /* cpsdvscr = 2 & scr 0 */
1814 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1815 /* cpsdvsr = 254 & scr = 255 */
1816 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1818 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1819 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1820 while (scr <= SCR_MAX && !freq_found) {
1821 if ((rate /
1822 (cpsdvsr * (1 + scr))) > freq)
1823 scr += 1;
1824 else {
1826 * This bool is made true when
1827 * effective frequency >=
1828 * target frequency is found
1830 freq_found = true;
1831 if ((rate /
1832 (cpsdvsr * (1 + scr))) != freq) {
1833 if (scr == SCR_MIN) {
1834 cpsdvsr -= 2;
1835 scr = SCR_MAX;
1836 } else
1837 scr -= 1;
1841 if (!freq_found) {
1842 cpsdvsr += 2;
1843 scr = SCR_MIN;
1846 if (cpsdvsr != 0) {
1847 dev_dbg(&pl022->adev->dev,
1848 "SSP Effective Frequency is %u\n",
1849 (rate / (cpsdvsr * (1 + scr))));
1850 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1851 clk_freq->scr = (u8) (scr & 0xFF);
1852 dev_dbg(&pl022->adev->dev,
1853 "SSP cpsdvsr = %d, scr = %d\n",
1854 clk_freq->cpsdvsr, clk_freq->scr);
1856 } else {
1857 dev_err(&pl022->adev->dev,
1858 "controller data is incorrect: out of range frequency");
1859 return -EINVAL;
1861 return 0;
1866 * A piece of default chip info unless the platform
1867 * supplies it.
1869 static const struct pl022_config_chip pl022_default_chip_info = {
1870 .com_mode = POLLING_TRANSFER,
1871 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1872 .hierarchy = SSP_SLAVE,
1873 .slave_tx_disable = DO_NOT_DRIVE_TX,
1874 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1875 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1876 .ctrl_len = SSP_BITS_8,
1877 .wait_state = SSP_MWIRE_WAIT_ZERO,
1878 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1879 .cs_control = null_cs_control,
1884 * pl022_setup - setup function registered to SPI master framework
1885 * @spi: spi device which is requesting setup
1887 * This function is registered to the SPI framework for this SPI master
1888 * controller. If it is the first time when setup is called by this device,
1889 * this function will initialize the runtime state for this chip and save
1890 * the same in the device structure. Else it will update the runtime info
1891 * with the updated chip info. Nothing is really being written to the
1892 * controller hardware here, that is not done until the actual transfer
1893 * commence.
1895 static int pl022_setup(struct spi_device *spi)
1897 struct pl022_config_chip const *chip_info;
1898 struct chip_data *chip;
1899 struct ssp_clock_params clk_freq = {0, };
1900 int status = 0;
1901 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1902 unsigned int bits = spi->bits_per_word;
1903 u32 tmp;
1905 if (!spi->max_speed_hz)
1906 return -EINVAL;
1908 /* Get controller_state if one is supplied */
1909 chip = spi_get_ctldata(spi);
1911 if (chip == NULL) {
1912 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1913 if (!chip) {
1914 dev_err(&spi->dev,
1915 "cannot allocate controller state\n");
1916 return -ENOMEM;
1918 dev_dbg(&spi->dev,
1919 "allocated memory for controller's runtime state\n");
1922 /* Get controller data if one is supplied */
1923 chip_info = spi->controller_data;
1925 if (chip_info == NULL) {
1926 chip_info = &pl022_default_chip_info;
1927 /* spi_board_info.controller_data not is supplied */
1928 dev_dbg(&spi->dev,
1929 "using default controller_data settings\n");
1930 } else
1931 dev_dbg(&spi->dev,
1932 "using user supplied controller_data settings\n");
1935 * We can override with custom divisors, else we use the board
1936 * frequency setting
1938 if ((0 == chip_info->clk_freq.cpsdvsr)
1939 && (0 == chip_info->clk_freq.scr)) {
1940 status = calculate_effective_freq(pl022,
1941 spi->max_speed_hz,
1942 &clk_freq);
1943 if (status < 0)
1944 goto err_config_params;
1945 } else {
1946 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1947 if ((clk_freq.cpsdvsr % 2) != 0)
1948 clk_freq.cpsdvsr =
1949 clk_freq.cpsdvsr - 1;
1951 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1952 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1953 status = -EINVAL;
1954 dev_err(&spi->dev,
1955 "cpsdvsr is configured incorrectly\n");
1956 goto err_config_params;
1960 status = verify_controller_parameters(pl022, chip_info);
1961 if (status) {
1962 dev_err(&spi->dev, "controller data is incorrect");
1963 goto err_config_params;
1966 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1967 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1969 /* Now set controller state based on controller data */
1970 chip->xfer_type = chip_info->com_mode;
1971 if (!chip_info->cs_control) {
1972 chip->cs_control = null_cs_control;
1973 dev_warn(&spi->dev,
1974 "chip select function is NULL for this chip\n");
1975 } else
1976 chip->cs_control = chip_info->cs_control;
1978 if (bits <= 3) {
1979 /* PL022 doesn't support less than 4-bits */
1980 status = -ENOTSUPP;
1981 goto err_config_params;
1982 } else if (bits <= 8) {
1983 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1984 chip->n_bytes = 1;
1985 chip->read = READING_U8;
1986 chip->write = WRITING_U8;
1987 } else if (bits <= 16) {
1988 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1989 chip->n_bytes = 2;
1990 chip->read = READING_U16;
1991 chip->write = WRITING_U16;
1992 } else {
1993 if (pl022->vendor->max_bpw >= 32) {
1994 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1995 chip->n_bytes = 4;
1996 chip->read = READING_U32;
1997 chip->write = WRITING_U32;
1998 } else {
1999 dev_err(&spi->dev,
2000 "illegal data size for this controller!\n");
2001 dev_err(&spi->dev,
2002 "a standard pl022 can only handle "
2003 "1 <= n <= 16 bit words\n");
2004 status = -ENOTSUPP;
2005 goto err_config_params;
2009 /* Now Initialize all register settings required for this chip */
2010 chip->cr0 = 0;
2011 chip->cr1 = 0;
2012 chip->dmacr = 0;
2013 chip->cpsr = 0;
2014 if ((chip_info->com_mode == DMA_TRANSFER)
2015 && ((pl022->master_info)->enable_dma)) {
2016 chip->enable_dma = true;
2017 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
2018 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2019 SSP_DMACR_MASK_RXDMAE, 0);
2020 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2021 SSP_DMACR_MASK_TXDMAE, 1);
2022 } else {
2023 chip->enable_dma = false;
2024 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2025 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2026 SSP_DMACR_MASK_RXDMAE, 0);
2027 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2028 SSP_DMACR_MASK_TXDMAE, 1);
2031 chip->cpsr = clk_freq.cpsdvsr;
2033 /* Special setup for the ST micro extended control registers */
2034 if (pl022->vendor->extended_cr) {
2035 u32 etx;
2037 if (pl022->vendor->pl023) {
2038 /* These bits are only in the PL023 */
2039 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2040 SSP_CR1_MASK_FBCLKDEL_ST, 13);
2041 } else {
2042 /* These bits are in the PL022 but not PL023 */
2043 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2044 SSP_CR0_MASK_HALFDUP_ST, 5);
2045 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2046 SSP_CR0_MASK_CSS_ST, 16);
2047 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2048 SSP_CR0_MASK_FRF_ST, 21);
2049 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2050 SSP_CR1_MASK_MWAIT_ST, 6);
2052 SSP_WRITE_BITS(chip->cr0, bits - 1,
2053 SSP_CR0_MASK_DSS_ST, 0);
2055 if (spi->mode & SPI_LSB_FIRST) {
2056 tmp = SSP_RX_LSB;
2057 etx = SSP_TX_LSB;
2058 } else {
2059 tmp = SSP_RX_MSB;
2060 etx = SSP_TX_MSB;
2062 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2063 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2064 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2065 SSP_CR1_MASK_RXIFLSEL_ST, 7);
2066 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2067 SSP_CR1_MASK_TXIFLSEL_ST, 10);
2068 } else {
2069 SSP_WRITE_BITS(chip->cr0, bits - 1,
2070 SSP_CR0_MASK_DSS, 0);
2071 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2072 SSP_CR0_MASK_FRF, 4);
2075 /* Stuff that is common for all versions */
2076 if (spi->mode & SPI_CPOL)
2077 tmp = SSP_CLK_POL_IDLE_HIGH;
2078 else
2079 tmp = SSP_CLK_POL_IDLE_LOW;
2080 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2082 if (spi->mode & SPI_CPHA)
2083 tmp = SSP_CLK_SECOND_EDGE;
2084 else
2085 tmp = SSP_CLK_FIRST_EDGE;
2086 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2088 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2089 /* Loopback is available on all versions except PL023 */
2090 if (pl022->vendor->loopback) {
2091 if (spi->mode & SPI_LOOP)
2092 tmp = LOOPBACK_ENABLED;
2093 else
2094 tmp = LOOPBACK_DISABLED;
2095 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2097 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2098 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2099 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
2101 /* Save controller_state */
2102 spi_set_ctldata(spi, chip);
2103 return status;
2104 err_config_params:
2105 spi_set_ctldata(spi, NULL);
2106 kfree(chip);
2107 return status;
2111 * pl022_cleanup - cleanup function registered to SPI master framework
2112 * @spi: spi device which is requesting cleanup
2114 * This function is registered to the SPI framework for this SPI master
2115 * controller. It will free the runtime state of chip.
2117 static void pl022_cleanup(struct spi_device *spi)
2119 struct chip_data *chip = spi_get_ctldata(spi);
2121 spi_set_ctldata(spi, NULL);
2122 kfree(chip);
2126 static int __devinit
2127 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2129 struct device *dev = &adev->dev;
2130 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2131 struct spi_master *master;
2132 struct pl022 *pl022 = NULL; /*Data for this driver */
2133 int status = 0;
2135 dev_info(&adev->dev,
2136 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2137 if (platform_info == NULL) {
2138 dev_err(&adev->dev, "probe - no platform data supplied\n");
2139 status = -ENODEV;
2140 goto err_no_pdata;
2143 /* Allocate master with space for data */
2144 master = spi_alloc_master(dev, sizeof(struct pl022));
2145 if (master == NULL) {
2146 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2147 status = -ENOMEM;
2148 goto err_no_master;
2151 pl022 = spi_master_get_devdata(master);
2152 pl022->master = master;
2153 pl022->master_info = platform_info;
2154 pl022->adev = adev;
2155 pl022->vendor = id->data;
2158 * Bus Number Which has been Assigned to this SSP controller
2159 * on this board
2161 master->bus_num = platform_info->bus_id;
2162 master->num_chipselect = platform_info->num_chipselect;
2163 master->cleanup = pl022_cleanup;
2164 master->setup = pl022_setup;
2165 master->transfer = pl022_transfer;
2168 * Supports mode 0-3, loopback, and active low CS. Transfers are
2169 * always MS bit first on the original pl022.
2171 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2172 if (pl022->vendor->extended_cr)
2173 master->mode_bits |= SPI_LSB_FIRST;
2175 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2177 status = amba_request_regions(adev, NULL);
2178 if (status)
2179 goto err_no_ioregion;
2181 pl022->phybase = adev->res.start;
2182 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2183 if (pl022->virtbase == NULL) {
2184 status = -ENOMEM;
2185 goto err_no_ioremap;
2187 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2188 adev->res.start, pl022->virtbase);
2189 pm_runtime_enable(dev);
2190 pm_runtime_resume(dev);
2192 pl022->clk = clk_get(&adev->dev, NULL);
2193 if (IS_ERR(pl022->clk)) {
2194 status = PTR_ERR(pl022->clk);
2195 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2196 goto err_no_clk;
2199 /* Disable SSP */
2200 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2201 SSP_CR1(pl022->virtbase));
2202 load_ssp_default_config(pl022);
2204 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2205 pl022);
2206 if (status < 0) {
2207 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2208 goto err_no_irq;
2211 /* Get DMA channels */
2212 if (platform_info->enable_dma) {
2213 status = pl022_dma_probe(pl022);
2214 if (status != 0)
2215 platform_info->enable_dma = 0;
2218 /* Initialize and start queue */
2219 status = init_queue(pl022);
2220 if (status != 0) {
2221 dev_err(&adev->dev, "probe - problem initializing queue\n");
2222 goto err_init_queue;
2224 status = start_queue(pl022);
2225 if (status != 0) {
2226 dev_err(&adev->dev, "probe - problem starting queue\n");
2227 goto err_start_queue;
2229 /* Register with the SPI framework */
2230 amba_set_drvdata(adev, pl022);
2231 status = spi_register_master(master);
2232 if (status != 0) {
2233 dev_err(&adev->dev,
2234 "probe - problem registering spi master\n");
2235 goto err_spi_register;
2237 dev_dbg(dev, "probe succeeded\n");
2239 * Disable the silicon block pclk and any voltage domain and just
2240 * power it up and clock it when it's needed
2242 amba_pclk_disable(adev);
2243 amba_vcore_disable(adev);
2244 return 0;
2246 err_spi_register:
2247 err_start_queue:
2248 err_init_queue:
2249 destroy_queue(pl022);
2250 pl022_dma_remove(pl022);
2251 free_irq(adev->irq[0], pl022);
2252 pm_runtime_disable(&adev->dev);
2253 err_no_irq:
2254 clk_put(pl022->clk);
2255 err_no_clk:
2256 iounmap(pl022->virtbase);
2257 err_no_ioremap:
2258 amba_release_regions(adev);
2259 err_no_ioregion:
2260 spi_master_put(master);
2261 err_no_master:
2262 err_no_pdata:
2263 return status;
2266 static int __devexit
2267 pl022_remove(struct amba_device *adev)
2269 struct pl022 *pl022 = amba_get_drvdata(adev);
2271 if (!pl022)
2272 return 0;
2274 /* Remove the queue */
2275 if (destroy_queue(pl022) != 0)
2276 dev_err(&adev->dev, "queue remove failed\n");
2277 load_ssp_default_config(pl022);
2278 pl022_dma_remove(pl022);
2279 free_irq(adev->irq[0], pl022);
2280 clk_disable(pl022->clk);
2281 clk_put(pl022->clk);
2282 iounmap(pl022->virtbase);
2283 amba_release_regions(adev);
2284 tasklet_disable(&pl022->pump_transfers);
2285 spi_unregister_master(pl022->master);
2286 spi_master_put(pl022->master);
2287 amba_set_drvdata(adev, NULL);
2288 return 0;
2291 #ifdef CONFIG_PM
2292 static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2294 struct pl022 *pl022 = amba_get_drvdata(adev);
2295 int status = 0;
2297 status = stop_queue(pl022);
2298 if (status) {
2299 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2300 return status;
2303 amba_vcore_enable(adev);
2304 amba_pclk_enable(adev);
2305 load_ssp_default_config(pl022);
2306 amba_pclk_disable(adev);
2307 amba_vcore_disable(adev);
2308 dev_dbg(&adev->dev, "suspended\n");
2309 return 0;
2312 static int pl022_resume(struct amba_device *adev)
2314 struct pl022 *pl022 = amba_get_drvdata(adev);
2315 int status = 0;
2317 /* Start the queue running */
2318 status = start_queue(pl022);
2319 if (status)
2320 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2321 else
2322 dev_dbg(&adev->dev, "resumed\n");
2324 return status;
2326 #else
2327 #define pl022_suspend NULL
2328 #define pl022_resume NULL
2329 #endif /* CONFIG_PM */
2331 static struct vendor_data vendor_arm = {
2332 .fifodepth = 8,
2333 .max_bpw = 16,
2334 .unidir = false,
2335 .extended_cr = false,
2336 .pl023 = false,
2337 .loopback = true,
2341 static struct vendor_data vendor_st = {
2342 .fifodepth = 32,
2343 .max_bpw = 32,
2344 .unidir = false,
2345 .extended_cr = true,
2346 .pl023 = false,
2347 .loopback = true,
2350 static struct vendor_data vendor_st_pl023 = {
2351 .fifodepth = 32,
2352 .max_bpw = 32,
2353 .unidir = false,
2354 .extended_cr = true,
2355 .pl023 = true,
2356 .loopback = false,
2359 static struct vendor_data vendor_db5500_pl023 = {
2360 .fifodepth = 32,
2361 .max_bpw = 32,
2362 .unidir = false,
2363 .extended_cr = true,
2364 .pl023 = true,
2365 .loopback = true,
2368 static struct amba_id pl022_ids[] = {
2371 * ARM PL022 variant, this has a 16bit wide
2372 * and 8 locations deep TX/RX FIFO
2374 .id = 0x00041022,
2375 .mask = 0x000fffff,
2376 .data = &vendor_arm,
2380 * ST Micro derivative, this has 32bit wide
2381 * and 32 locations deep TX/RX FIFO
2383 .id = 0x01080022,
2384 .mask = 0xffffffff,
2385 .data = &vendor_st,
2389 * ST-Ericsson derivative "PL023" (this is not
2390 * an official ARM number), this is a PL022 SSP block
2391 * stripped to SPI mode only, it has 32bit wide
2392 * and 32 locations deep TX/RX FIFO but no extended
2393 * CR0/CR1 register
2395 .id = 0x00080023,
2396 .mask = 0xffffffff,
2397 .data = &vendor_st_pl023,
2400 .id = 0x10080023,
2401 .mask = 0xffffffff,
2402 .data = &vendor_db5500_pl023,
2404 { 0, 0 },
2407 static struct amba_driver pl022_driver = {
2408 .drv = {
2409 .name = "ssp-pl022",
2411 .id_table = pl022_ids,
2412 .probe = pl022_probe,
2413 .remove = __devexit_p(pl022_remove),
2414 .suspend = pl022_suspend,
2415 .resume = pl022_resume,
2419 static int __init pl022_init(void)
2421 return amba_driver_register(&pl022_driver);
2424 subsys_initcall(pl022_init);
2426 static void __exit pl022_exit(void)
2428 amba_driver_unregister(&pl022_driver);
2431 module_exit(pl022_exit);
2433 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2434 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2435 MODULE_LICENSE("GPL");