1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized
;
63 static struct kmem_cache
*se_cmd_cache
;
64 static struct kmem_cache
*se_sess_cache
;
65 struct kmem_cache
*se_tmr_req_cache
;
66 struct kmem_cache
*se_ua_cache
;
67 struct kmem_cache
*t10_pr_reg_cache
;
68 struct kmem_cache
*t10_alua_lu_gp_cache
;
69 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
70 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
71 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t
)(struct se_task
*, u32
);
76 static int transport_generic_write_pending(struct se_cmd
*);
77 static int transport_processing_thread(void *param
);
78 static int __transport_execute_tasks(struct se_device
*dev
);
79 static void transport_complete_task_attr(struct se_cmd
*cmd
);
80 static int transport_complete_qf(struct se_cmd
*cmd
);
81 static void transport_handle_queue_full(struct se_cmd
*cmd
,
82 struct se_device
*dev
, int (*qf_callback
)(struct se_cmd
*));
83 static void transport_direct_request_timeout(struct se_cmd
*cmd
);
84 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
85 static u32
transport_allocate_tasks(struct se_cmd
*cmd
,
86 unsigned long long starting_lba
,
87 enum dma_data_direction data_direction
,
88 struct scatterlist
*sgl
, unsigned int nents
);
89 static int transport_generic_get_mem(struct se_cmd
*cmd
);
90 static int transport_generic_remove(struct se_cmd
*cmd
,
91 int session_reinstatement
);
92 static void transport_release_fe_cmd(struct se_cmd
*cmd
);
93 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
94 struct se_queue_obj
*qobj
);
95 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
96 static void transport_stop_all_task_timers(struct se_cmd
*cmd
);
98 int init_se_kmem_caches(void)
100 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
101 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
103 pr_err("kmem_cache_create for struct se_cmd failed\n");
106 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
107 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
109 if (!se_tmr_req_cache
) {
110 pr_err("kmem_cache_create() for struct se_tmr_req"
114 se_sess_cache
= kmem_cache_create("se_sess_cache",
115 sizeof(struct se_session
), __alignof__(struct se_session
),
117 if (!se_sess_cache
) {
118 pr_err("kmem_cache_create() for struct se_session"
122 se_ua_cache
= kmem_cache_create("se_ua_cache",
123 sizeof(struct se_ua
), __alignof__(struct se_ua
),
126 pr_err("kmem_cache_create() for struct se_ua failed\n");
129 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
130 sizeof(struct t10_pr_registration
),
131 __alignof__(struct t10_pr_registration
), 0, NULL
);
132 if (!t10_pr_reg_cache
) {
133 pr_err("kmem_cache_create() for struct t10_pr_registration"
137 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
138 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
140 if (!t10_alua_lu_gp_cache
) {
141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
145 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
146 sizeof(struct t10_alua_lu_gp_member
),
147 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
148 if (!t10_alua_lu_gp_mem_cache
) {
149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
153 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
154 sizeof(struct t10_alua_tg_pt_gp
),
155 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
156 if (!t10_alua_tg_pt_gp_cache
) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
161 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
162 "t10_alua_tg_pt_gp_mem_cache",
163 sizeof(struct t10_alua_tg_pt_gp_member
),
164 __alignof__(struct t10_alua_tg_pt_gp_member
),
166 if (!t10_alua_tg_pt_gp_mem_cache
) {
167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
175 kmem_cache_destroy(se_cmd_cache
);
176 if (se_tmr_req_cache
)
177 kmem_cache_destroy(se_tmr_req_cache
);
179 kmem_cache_destroy(se_sess_cache
);
181 kmem_cache_destroy(se_ua_cache
);
182 if (t10_pr_reg_cache
)
183 kmem_cache_destroy(t10_pr_reg_cache
);
184 if (t10_alua_lu_gp_cache
)
185 kmem_cache_destroy(t10_alua_lu_gp_cache
);
186 if (t10_alua_lu_gp_mem_cache
)
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
188 if (t10_alua_tg_pt_gp_cache
)
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
190 if (t10_alua_tg_pt_gp_mem_cache
)
191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
195 void release_se_kmem_caches(void)
197 kmem_cache_destroy(se_cmd_cache
);
198 kmem_cache_destroy(se_tmr_req_cache
);
199 kmem_cache_destroy(se_sess_cache
);
200 kmem_cache_destroy(se_ua_cache
);
201 kmem_cache_destroy(t10_pr_reg_cache
);
202 kmem_cache_destroy(t10_alua_lu_gp_cache
);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
210 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
213 * Allocate a new row index for the entry type specified
215 u32
scsi_get_new_index(scsi_index_t type
)
219 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
221 spin_lock(&scsi_mib_index_lock
);
222 new_index
= ++scsi_mib_index
[type
];
223 spin_unlock(&scsi_mib_index_lock
);
228 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
230 atomic_set(&qobj
->queue_cnt
, 0);
231 INIT_LIST_HEAD(&qobj
->qobj_list
);
232 init_waitqueue_head(&qobj
->thread_wq
);
233 spin_lock_init(&qobj
->cmd_queue_lock
);
235 EXPORT_SYMBOL(transport_init_queue_obj
);
237 static int transport_subsystem_reqmods(void)
241 ret
= request_module("target_core_iblock");
243 pr_err("Unable to load target_core_iblock\n");
245 ret
= request_module("target_core_file");
247 pr_err("Unable to load target_core_file\n");
249 ret
= request_module("target_core_pscsi");
251 pr_err("Unable to load target_core_pscsi\n");
253 ret
= request_module("target_core_stgt");
255 pr_err("Unable to load target_core_stgt\n");
260 int transport_subsystem_check_init(void)
264 if (sub_api_initialized
)
267 * Request the loading of known TCM subsystem plugins..
269 ret
= transport_subsystem_reqmods();
273 sub_api_initialized
= 1;
277 struct se_session
*transport_init_session(void)
279 struct se_session
*se_sess
;
281 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
283 pr_err("Unable to allocate struct se_session from"
285 return ERR_PTR(-ENOMEM
);
287 INIT_LIST_HEAD(&se_sess
->sess_list
);
288 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
292 EXPORT_SYMBOL(transport_init_session
);
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
297 void __transport_register_session(
298 struct se_portal_group
*se_tpg
,
299 struct se_node_acl
*se_nacl
,
300 struct se_session
*se_sess
,
301 void *fabric_sess_ptr
)
303 unsigned char buf
[PR_REG_ISID_LEN
];
305 se_sess
->se_tpg
= se_tpg
;
306 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
318 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
319 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
320 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
321 &buf
[0], PR_REG_ISID_LEN
);
322 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
324 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
329 se_nacl
->nacl_sess
= se_sess
;
331 list_add_tail(&se_sess
->sess_acl_list
,
332 &se_nacl
->acl_sess_list
);
333 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
335 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
340 EXPORT_SYMBOL(__transport_register_session
);
342 void transport_register_session(
343 struct se_portal_group
*se_tpg
,
344 struct se_node_acl
*se_nacl
,
345 struct se_session
*se_sess
,
346 void *fabric_sess_ptr
)
348 spin_lock_bh(&se_tpg
->session_lock
);
349 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
350 spin_unlock_bh(&se_tpg
->session_lock
);
352 EXPORT_SYMBOL(transport_register_session
);
354 void transport_deregister_session_configfs(struct se_session
*se_sess
)
356 struct se_node_acl
*se_nacl
;
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
361 se_nacl
= se_sess
->se_node_acl
;
363 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
364 list_del(&se_sess
->sess_acl_list
);
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
370 if (list_empty(&se_nacl
->acl_sess_list
))
371 se_nacl
->nacl_sess
= NULL
;
373 se_nacl
->nacl_sess
= container_of(
374 se_nacl
->acl_sess_list
.prev
,
375 struct se_session
, sess_acl_list
);
377 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
380 EXPORT_SYMBOL(transport_deregister_session_configfs
);
382 void transport_free_session(struct se_session
*se_sess
)
384 kmem_cache_free(se_sess_cache
, se_sess
);
386 EXPORT_SYMBOL(transport_free_session
);
388 void transport_deregister_session(struct se_session
*se_sess
)
390 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
391 struct se_node_acl
*se_nacl
;
395 transport_free_session(se_sess
);
399 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
400 list_del(&se_sess
->sess_list
);
401 se_sess
->se_tpg
= NULL
;
402 se_sess
->fabric_sess_ptr
= NULL
;
403 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
406 * Determine if we need to do extra work for this initiator node's
407 * struct se_node_acl if it had been previously dynamically generated.
409 se_nacl
= se_sess
->se_node_acl
;
411 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
412 if (se_nacl
->dynamic_node_acl
) {
413 if (!se_tpg
->se_tpg_tfo
->tpg_check_demo_mode_cache(
415 list_del(&se_nacl
->acl_list
);
416 se_tpg
->num_node_acls
--;
417 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
419 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
420 core_free_device_list_for_node(se_nacl
, se_tpg
);
421 se_tpg
->se_tpg_tfo
->tpg_release_fabric_acl(se_tpg
,
423 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
426 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
429 transport_free_session(se_sess
);
431 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
432 se_tpg
->se_tpg_tfo
->get_fabric_name());
434 EXPORT_SYMBOL(transport_deregister_session
);
437 * Called with cmd->t_state_lock held.
439 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
441 struct se_device
*dev
;
442 struct se_task
*task
;
445 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
450 if (atomic_read(&task
->task_active
))
453 if (!atomic_read(&task
->task_state_active
))
456 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
457 list_del(&task
->t_state_list
);
458 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
459 cmd
->se_tfo
->get_task_tag(cmd
), dev
, task
);
460 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
462 atomic_set(&task
->task_state_active
, 0);
463 atomic_dec(&cmd
->t_task_cdbs_ex_left
);
467 /* transport_cmd_check_stop():
469 * 'transport_off = 1' determines if t_transport_active should be cleared.
470 * 'transport_off = 2' determines if task_dev_state should be removed.
472 * A non-zero u8 t_state sets cmd->t_state.
473 * Returns 1 when command is stopped, else 0.
475 static int transport_cmd_check_stop(
482 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
484 * Determine if IOCTL context caller in requesting the stopping of this
485 * command for LUN shutdown purposes.
487 if (atomic_read(&cmd
->transport_lun_stop
)) {
488 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
489 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
490 cmd
->se_tfo
->get_task_tag(cmd
));
492 cmd
->deferred_t_state
= cmd
->t_state
;
493 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
494 atomic_set(&cmd
->t_transport_active
, 0);
495 if (transport_off
== 2)
496 transport_all_task_dev_remove_state(cmd
);
497 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
499 complete(&cmd
->transport_lun_stop_comp
);
503 * Determine if frontend context caller is requesting the stopping of
504 * this command for frontend exceptions.
506 if (atomic_read(&cmd
->t_transport_stop
)) {
507 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
508 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
509 cmd
->se_tfo
->get_task_tag(cmd
));
511 cmd
->deferred_t_state
= cmd
->t_state
;
512 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
513 if (transport_off
== 2)
514 transport_all_task_dev_remove_state(cmd
);
517 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520 if (transport_off
== 2)
522 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
524 complete(&cmd
->t_transport_stop_comp
);
528 atomic_set(&cmd
->t_transport_active
, 0);
529 if (transport_off
== 2) {
530 transport_all_task_dev_remove_state(cmd
);
532 * Clear struct se_cmd->se_lun before the transport_off == 2
533 * handoff to fabric module.
537 * Some fabric modules like tcm_loop can release
538 * their internally allocated I/O reference now and
541 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
542 spin_unlock_irqrestore(
543 &cmd
->t_state_lock
, flags
);
545 cmd
->se_tfo
->check_stop_free(cmd
);
549 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
553 cmd
->t_state
= t_state
;
554 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
559 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
561 return transport_cmd_check_stop(cmd
, 2, 0);
564 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
566 struct se_lun
*lun
= cmd
->se_lun
;
572 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
573 if (!atomic_read(&cmd
->transport_dev_active
)) {
574 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
577 atomic_set(&cmd
->transport_dev_active
, 0);
578 transport_all_task_dev_remove_state(cmd
);
579 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
583 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
584 if (atomic_read(&cmd
->transport_lun_active
)) {
585 list_del(&cmd
->se_lun_node
);
586 atomic_set(&cmd
->transport_lun_active
, 0);
588 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
589 cmd
->se_tfo
->get_task_tag(cmd
), lun
->unpacked_lun
);
592 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
595 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
597 transport_remove_cmd_from_queue(cmd
, &cmd
->se_dev
->dev_queue_obj
);
598 transport_lun_remove_cmd(cmd
);
600 if (transport_cmd_check_stop_to_fabric(cmd
))
603 transport_generic_remove(cmd
, 0);
606 void transport_cmd_finish_abort_tmr(struct se_cmd
*cmd
)
608 transport_remove_cmd_from_queue(cmd
, &cmd
->se_dev
->dev_queue_obj
);
610 if (transport_cmd_check_stop_to_fabric(cmd
))
613 transport_generic_remove(cmd
, 0);
616 static void transport_add_cmd_to_queue(
620 struct se_device
*dev
= cmd
->se_dev
;
621 struct se_queue_obj
*qobj
= &dev
->dev_queue_obj
;
624 INIT_LIST_HEAD(&cmd
->se_queue_node
);
627 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
628 cmd
->t_state
= t_state
;
629 atomic_set(&cmd
->t_transport_active
, 1);
630 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
633 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
634 if (cmd
->se_cmd_flags
& SCF_EMULATE_QUEUE_FULL
) {
635 cmd
->se_cmd_flags
&= ~SCF_EMULATE_QUEUE_FULL
;
636 list_add(&cmd
->se_queue_node
, &qobj
->qobj_list
);
638 list_add_tail(&cmd
->se_queue_node
, &qobj
->qobj_list
);
639 atomic_inc(&cmd
->t_transport_queue_active
);
640 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
642 atomic_inc(&qobj
->queue_cnt
);
643 wake_up_interruptible(&qobj
->thread_wq
);
646 static struct se_cmd
*
647 transport_get_cmd_from_queue(struct se_queue_obj
*qobj
)
652 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
653 if (list_empty(&qobj
->qobj_list
)) {
654 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
657 cmd
= list_first_entry(&qobj
->qobj_list
, struct se_cmd
, se_queue_node
);
659 atomic_dec(&cmd
->t_transport_queue_active
);
661 list_del(&cmd
->se_queue_node
);
662 atomic_dec(&qobj
->queue_cnt
);
663 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
668 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
669 struct se_queue_obj
*qobj
)
674 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
675 if (!atomic_read(&cmd
->t_transport_queue_active
)) {
676 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
680 list_for_each_entry(t
, &qobj
->qobj_list
, se_queue_node
)
682 atomic_dec(&cmd
->t_transport_queue_active
);
683 atomic_dec(&qobj
->queue_cnt
);
684 list_del(&cmd
->se_queue_node
);
687 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
689 if (atomic_read(&cmd
->t_transport_queue_active
)) {
690 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
691 cmd
->se_tfo
->get_task_tag(cmd
),
692 atomic_read(&cmd
->t_transport_queue_active
));
697 * Completion function used by TCM subsystem plugins (such as FILEIO)
698 * for queueing up response from struct se_subsystem_api->do_task()
700 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
702 struct se_task
*task
= list_entry(cmd
->t_task_list
.next
,
703 struct se_task
, t_list
);
706 cmd
->scsi_status
= SAM_STAT_GOOD
;
707 task
->task_scsi_status
= GOOD
;
709 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
710 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
711 task
->task_se_cmd
->transport_error_status
=
712 PYX_TRANSPORT_ILLEGAL_REQUEST
;
715 transport_complete_task(task
, good
);
717 EXPORT_SYMBOL(transport_complete_sync_cache
);
719 /* transport_complete_task():
721 * Called from interrupt and non interrupt context depending
722 * on the transport plugin.
724 void transport_complete_task(struct se_task
*task
, int success
)
726 struct se_cmd
*cmd
= task
->task_se_cmd
;
727 struct se_device
*dev
= task
->se_dev
;
731 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
732 cmd
->t_task_cdb
[0], dev
);
735 atomic_inc(&dev
->depth_left
);
737 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
738 atomic_set(&task
->task_active
, 0);
741 * See if any sense data exists, if so set the TASK_SENSE flag.
742 * Also check for any other post completion work that needs to be
743 * done by the plugins.
745 if (dev
&& dev
->transport
->transport_complete
) {
746 if (dev
->transport
->transport_complete(task
) != 0) {
747 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
748 task
->task_sense
= 1;
754 * See if we are waiting for outstanding struct se_task
755 * to complete for an exception condition
757 if (atomic_read(&task
->task_stop
)) {
759 * Decrement cmd->t_se_count if this task had
760 * previously thrown its timeout exception handler.
762 if (atomic_read(&task
->task_timeout
)) {
763 atomic_dec(&cmd
->t_se_count
);
764 atomic_set(&task
->task_timeout
, 0);
766 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
768 complete(&task
->task_stop_comp
);
772 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
773 * left counter to determine when the struct se_cmd is ready to be queued to
774 * the processing thread.
776 if (atomic_read(&task
->task_timeout
)) {
777 if (!atomic_dec_and_test(
778 &cmd
->t_task_cdbs_timeout_left
)) {
779 spin_unlock_irqrestore(&cmd
->t_state_lock
,
783 t_state
= TRANSPORT_COMPLETE_TIMEOUT
;
784 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
786 transport_add_cmd_to_queue(cmd
, t_state
);
789 atomic_dec(&cmd
->t_task_cdbs_timeout_left
);
792 * Decrement the outstanding t_task_cdbs_left count. The last
793 * struct se_task from struct se_cmd will complete itself into the
794 * device queue depending upon int success.
796 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
798 cmd
->t_tasks_failed
= 1;
800 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
804 if (!success
|| cmd
->t_tasks_failed
) {
805 t_state
= TRANSPORT_COMPLETE_FAILURE
;
806 if (!task
->task_error_status
) {
807 task
->task_error_status
=
808 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
809 cmd
->transport_error_status
=
810 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
813 atomic_set(&cmd
->t_transport_complete
, 1);
814 t_state
= TRANSPORT_COMPLETE_OK
;
816 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
818 transport_add_cmd_to_queue(cmd
, t_state
);
820 EXPORT_SYMBOL(transport_complete_task
);
823 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
824 * struct se_task list are ready to be added to the active execution list
827 * Called with se_dev_t->execute_task_lock called.
829 static inline int transport_add_task_check_sam_attr(
830 struct se_task
*task
,
831 struct se_task
*task_prev
,
832 struct se_device
*dev
)
835 * No SAM Task attribute emulation enabled, add to tail of
838 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
839 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
843 * HEAD_OF_QUEUE attribute for received CDB, which means
844 * the first task that is associated with a struct se_cmd goes to
845 * head of the struct se_device->execute_task_list, and task_prev
846 * after that for each subsequent task
848 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
849 list_add(&task
->t_execute_list
,
850 (task_prev
!= NULL
) ?
851 &task_prev
->t_execute_list
:
852 &dev
->execute_task_list
);
854 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
855 " in execution queue\n",
856 task
->task_se_cmd
->t_task_cdb
[0]);
860 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
861 * transitioned from Dermant -> Active state, and are added to the end
862 * of the struct se_device->execute_task_list
864 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
868 /* __transport_add_task_to_execute_queue():
870 * Called with se_dev_t->execute_task_lock called.
872 static void __transport_add_task_to_execute_queue(
873 struct se_task
*task
,
874 struct se_task
*task_prev
,
875 struct se_device
*dev
)
879 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
880 atomic_inc(&dev
->execute_tasks
);
882 if (atomic_read(&task
->task_state_active
))
885 * Determine if this task needs to go to HEAD_OF_QUEUE for the
886 * state list as well. Running with SAM Task Attribute emulation
887 * will always return head_of_queue == 0 here
890 list_add(&task
->t_state_list
, (task_prev
) ?
891 &task_prev
->t_state_list
:
892 &dev
->state_task_list
);
894 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
896 atomic_set(&task
->task_state_active
, 1);
898 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
899 task
->task_se_cmd
->se_tfo
->get_task_tag(task
->task_se_cmd
),
903 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
905 struct se_device
*dev
;
906 struct se_task
*task
;
909 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
910 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
913 if (atomic_read(&task
->task_state_active
))
916 spin_lock(&dev
->execute_task_lock
);
917 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
918 atomic_set(&task
->task_state_active
, 1);
920 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
921 task
->task_se_cmd
->se_tfo
->get_task_tag(
922 task
->task_se_cmd
), task
, dev
);
924 spin_unlock(&dev
->execute_task_lock
);
926 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
929 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
931 struct se_device
*dev
= cmd
->se_dev
;
932 struct se_task
*task
, *task_prev
= NULL
;
935 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
936 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
937 if (atomic_read(&task
->task_execute_queue
))
940 * __transport_add_task_to_execute_queue() handles the
941 * SAM Task Attribute emulation if enabled
943 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
944 atomic_set(&task
->task_execute_queue
, 1);
947 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
950 /* transport_remove_task_from_execute_queue():
954 void transport_remove_task_from_execute_queue(
955 struct se_task
*task
,
956 struct se_device
*dev
)
960 if (atomic_read(&task
->task_execute_queue
) == 0) {
965 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
966 list_del(&task
->t_execute_list
);
967 atomic_set(&task
->task_execute_queue
, 0);
968 atomic_dec(&dev
->execute_tasks
);
969 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
973 * Handle QUEUE_FULL / -EAGAIN status
976 static void target_qf_do_work(struct work_struct
*work
)
978 struct se_device
*dev
= container_of(work
, struct se_device
,
980 LIST_HEAD(qf_cmd_list
);
981 struct se_cmd
*cmd
, *cmd_tmp
;
983 spin_lock_irq(&dev
->qf_cmd_lock
);
984 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
985 spin_unlock_irq(&dev
->qf_cmd_lock
);
987 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
988 list_del(&cmd
->se_qf_node
);
989 atomic_dec(&dev
->dev_qf_count
);
990 smp_mb__after_atomic_dec();
992 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
993 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
994 (cmd
->t_state
== TRANSPORT_COMPLETE_OK
) ? "COMPLETE_OK" :
995 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
998 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
999 * has been added to head of queue
1001 transport_add_cmd_to_queue(cmd
, cmd
->t_state
);
1005 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
1007 switch (cmd
->data_direction
) {
1010 case DMA_FROM_DEVICE
:
1014 case DMA_BIDIRECTIONAL
:
1023 void transport_dump_dev_state(
1024 struct se_device
*dev
,
1028 *bl
+= sprintf(b
+ *bl
, "Status: ");
1029 switch (dev
->dev_status
) {
1030 case TRANSPORT_DEVICE_ACTIVATED
:
1031 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
1033 case TRANSPORT_DEVICE_DEACTIVATED
:
1034 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
1036 case TRANSPORT_DEVICE_SHUTDOWN
:
1037 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
1039 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
1040 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
1041 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
1044 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
1048 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
1049 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
1051 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
1052 dev
->se_sub_dev
->se_dev_attrib
.block_size
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
1053 *bl
+= sprintf(b
+ *bl
, " ");
1056 /* transport_release_all_cmds():
1060 static void transport_release_all_cmds(struct se_device
*dev
)
1062 struct se_cmd
*cmd
, *tcmd
;
1063 int bug_out
= 0, t_state
;
1064 unsigned long flags
;
1066 spin_lock_irqsave(&dev
->dev_queue_obj
.cmd_queue_lock
, flags
);
1067 list_for_each_entry_safe(cmd
, tcmd
, &dev
->dev_queue_obj
.qobj_list
,
1069 t_state
= cmd
->t_state
;
1070 list_del(&cmd
->se_queue_node
);
1071 spin_unlock_irqrestore(&dev
->dev_queue_obj
.cmd_queue_lock
,
1074 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1075 " t_state: %u directly\n",
1076 cmd
->se_tfo
->get_task_tag(cmd
),
1077 cmd
->se_tfo
->get_cmd_state(cmd
), t_state
);
1079 transport_release_fe_cmd(cmd
);
1082 spin_lock_irqsave(&dev
->dev_queue_obj
.cmd_queue_lock
, flags
);
1084 spin_unlock_irqrestore(&dev
->dev_queue_obj
.cmd_queue_lock
, flags
);
1091 void transport_dump_vpd_proto_id(
1092 struct t10_vpd
*vpd
,
1093 unsigned char *p_buf
,
1096 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1099 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1100 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1102 switch (vpd
->protocol_identifier
) {
1104 sprintf(buf
+len
, "Fibre Channel\n");
1107 sprintf(buf
+len
, "Parallel SCSI\n");
1110 sprintf(buf
+len
, "SSA\n");
1113 sprintf(buf
+len
, "IEEE 1394\n");
1116 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1120 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1123 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1126 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1130 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1133 sprintf(buf
+len
, "Unknown 0x%02x\n",
1134 vpd
->protocol_identifier
);
1139 strncpy(p_buf
, buf
, p_buf_len
);
1141 pr_debug("%s", buf
);
1145 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1148 * Check if the Protocol Identifier Valid (PIV) bit is set..
1150 * from spc3r23.pdf section 7.5.1
1152 if (page_83
[1] & 0x80) {
1153 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1154 vpd
->protocol_identifier_set
= 1;
1155 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1158 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1160 int transport_dump_vpd_assoc(
1161 struct t10_vpd
*vpd
,
1162 unsigned char *p_buf
,
1165 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1169 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1170 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1172 switch (vpd
->association
) {
1174 sprintf(buf
+len
, "addressed logical unit\n");
1177 sprintf(buf
+len
, "target port\n");
1180 sprintf(buf
+len
, "SCSI target device\n");
1183 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1189 strncpy(p_buf
, buf
, p_buf_len
);
1191 pr_debug("%s", buf
);
1196 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1199 * The VPD identification association..
1201 * from spc3r23.pdf Section 7.6.3.1 Table 297
1203 vpd
->association
= (page_83
[1] & 0x30);
1204 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1206 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1208 int transport_dump_vpd_ident_type(
1209 struct t10_vpd
*vpd
,
1210 unsigned char *p_buf
,
1213 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1217 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1218 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1220 switch (vpd
->device_identifier_type
) {
1222 sprintf(buf
+len
, "Vendor specific\n");
1225 sprintf(buf
+len
, "T10 Vendor ID based\n");
1228 sprintf(buf
+len
, "EUI-64 based\n");
1231 sprintf(buf
+len
, "NAA\n");
1234 sprintf(buf
+len
, "Relative target port identifier\n");
1237 sprintf(buf
+len
, "SCSI name string\n");
1240 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1241 vpd
->device_identifier_type
);
1247 if (p_buf_len
< strlen(buf
)+1)
1249 strncpy(p_buf
, buf
, p_buf_len
);
1251 pr_debug("%s", buf
);
1257 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1260 * The VPD identifier type..
1262 * from spc3r23.pdf Section 7.6.3.1 Table 298
1264 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1265 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1267 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1269 int transport_dump_vpd_ident(
1270 struct t10_vpd
*vpd
,
1271 unsigned char *p_buf
,
1274 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1277 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1279 switch (vpd
->device_identifier_code_set
) {
1280 case 0x01: /* Binary */
1281 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1282 &vpd
->device_identifier
[0]);
1284 case 0x02: /* ASCII */
1285 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1286 &vpd
->device_identifier
[0]);
1288 case 0x03: /* UTF-8 */
1289 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1290 &vpd
->device_identifier
[0]);
1293 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1294 " 0x%02x", vpd
->device_identifier_code_set
);
1300 strncpy(p_buf
, buf
, p_buf_len
);
1302 pr_debug("%s", buf
);
1308 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1310 static const char hex_str
[] = "0123456789abcdef";
1311 int j
= 0, i
= 4; /* offset to start of the identifer */
1314 * The VPD Code Set (encoding)
1316 * from spc3r23.pdf Section 7.6.3.1 Table 296
1318 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1319 switch (vpd
->device_identifier_code_set
) {
1320 case 0x01: /* Binary */
1321 vpd
->device_identifier
[j
++] =
1322 hex_str
[vpd
->device_identifier_type
];
1323 while (i
< (4 + page_83
[3])) {
1324 vpd
->device_identifier
[j
++] =
1325 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1326 vpd
->device_identifier
[j
++] =
1327 hex_str
[page_83
[i
] & 0x0f];
1331 case 0x02: /* ASCII */
1332 case 0x03: /* UTF-8 */
1333 while (i
< (4 + page_83
[3]))
1334 vpd
->device_identifier
[j
++] = page_83
[i
++];
1340 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1342 EXPORT_SYMBOL(transport_set_vpd_ident
);
1344 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1347 * If this device is from Target_Core_Mod/pSCSI, disable the
1348 * SAM Task Attribute emulation.
1350 * This is currently not available in upsream Linux/SCSI Target
1351 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1353 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1354 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1358 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1359 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1360 " device\n", dev
->transport
->name
,
1361 dev
->transport
->get_device_rev(dev
));
1364 static void scsi_dump_inquiry(struct se_device
*dev
)
1366 struct t10_wwn
*wwn
= &dev
->se_sub_dev
->t10_wwn
;
1369 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1371 pr_debug(" Vendor: ");
1372 for (i
= 0; i
< 8; i
++)
1373 if (wwn
->vendor
[i
] >= 0x20)
1374 pr_debug("%c", wwn
->vendor
[i
]);
1378 pr_debug(" Model: ");
1379 for (i
= 0; i
< 16; i
++)
1380 if (wwn
->model
[i
] >= 0x20)
1381 pr_debug("%c", wwn
->model
[i
]);
1385 pr_debug(" Revision: ");
1386 for (i
= 0; i
< 4; i
++)
1387 if (wwn
->revision
[i
] >= 0x20)
1388 pr_debug("%c", wwn
->revision
[i
]);
1394 device_type
= dev
->transport
->get_device_type(dev
);
1395 pr_debug(" Type: %s ", scsi_device_type(device_type
));
1396 pr_debug(" ANSI SCSI revision: %02x\n",
1397 dev
->transport
->get_device_rev(dev
));
1400 struct se_device
*transport_add_device_to_core_hba(
1402 struct se_subsystem_api
*transport
,
1403 struct se_subsystem_dev
*se_dev
,
1405 void *transport_dev
,
1406 struct se_dev_limits
*dev_limits
,
1407 const char *inquiry_prod
,
1408 const char *inquiry_rev
)
1411 struct se_device
*dev
;
1413 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1415 pr_err("Unable to allocate memory for se_dev_t\n");
1419 transport_init_queue_obj(&dev
->dev_queue_obj
);
1420 dev
->dev_flags
= device_flags
;
1421 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1422 dev
->dev_ptr
= transport_dev
;
1424 dev
->se_sub_dev
= se_dev
;
1425 dev
->transport
= transport
;
1426 atomic_set(&dev
->active_cmds
, 0);
1427 INIT_LIST_HEAD(&dev
->dev_list
);
1428 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1429 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1430 INIT_LIST_HEAD(&dev
->execute_task_list
);
1431 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1432 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1433 INIT_LIST_HEAD(&dev
->state_task_list
);
1434 INIT_LIST_HEAD(&dev
->qf_cmd_list
);
1435 spin_lock_init(&dev
->execute_task_lock
);
1436 spin_lock_init(&dev
->delayed_cmd_lock
);
1437 spin_lock_init(&dev
->ordered_cmd_lock
);
1438 spin_lock_init(&dev
->state_task_lock
);
1439 spin_lock_init(&dev
->dev_alua_lock
);
1440 spin_lock_init(&dev
->dev_reservation_lock
);
1441 spin_lock_init(&dev
->dev_status_lock
);
1442 spin_lock_init(&dev
->dev_status_thr_lock
);
1443 spin_lock_init(&dev
->se_port_lock
);
1444 spin_lock_init(&dev
->se_tmr_lock
);
1445 spin_lock_init(&dev
->qf_cmd_lock
);
1447 dev
->queue_depth
= dev_limits
->queue_depth
;
1448 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1449 atomic_set(&dev
->dev_ordered_id
, 0);
1451 se_dev_set_default_attribs(dev
, dev_limits
);
1453 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1454 dev
->creation_time
= get_jiffies_64();
1455 spin_lock_init(&dev
->stats_lock
);
1457 spin_lock(&hba
->device_lock
);
1458 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1460 spin_unlock(&hba
->device_lock
);
1462 * Setup the SAM Task Attribute emulation for struct se_device
1464 core_setup_task_attr_emulation(dev
);
1466 * Force PR and ALUA passthrough emulation with internal object use.
1468 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1470 * Setup the Reservations infrastructure for struct se_device
1472 core_setup_reservations(dev
, force_pt
);
1474 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1476 if (core_setup_alua(dev
, force_pt
) < 0)
1480 * Startup the struct se_device processing thread
1482 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1483 "LIO_%s", dev
->transport
->name
);
1484 if (IS_ERR(dev
->process_thread
)) {
1485 pr_err("Unable to create kthread: LIO_%s\n",
1486 dev
->transport
->name
);
1490 * Setup work_queue for QUEUE_FULL
1492 INIT_WORK(&dev
->qf_work_queue
, target_qf_do_work
);
1494 * Preload the initial INQUIRY const values if we are doing
1495 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1496 * passthrough because this is being provided by the backend LLD.
1497 * This is required so that transport_get_inquiry() copies these
1498 * originals once back into DEV_T10_WWN(dev) for the virtual device
1501 if (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1502 if (!inquiry_prod
|| !inquiry_rev
) {
1503 pr_err("All non TCM/pSCSI plugins require"
1504 " INQUIRY consts\n");
1508 strncpy(&dev
->se_sub_dev
->t10_wwn
.vendor
[0], "LIO-ORG", 8);
1509 strncpy(&dev
->se_sub_dev
->t10_wwn
.model
[0], inquiry_prod
, 16);
1510 strncpy(&dev
->se_sub_dev
->t10_wwn
.revision
[0], inquiry_rev
, 4);
1512 scsi_dump_inquiry(dev
);
1516 kthread_stop(dev
->process_thread
);
1518 spin_lock(&hba
->device_lock
);
1519 list_del(&dev
->dev_list
);
1521 spin_unlock(&hba
->device_lock
);
1523 se_release_vpd_for_dev(dev
);
1529 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1531 /* transport_generic_prepare_cdb():
1533 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1534 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1535 * The point of this is since we are mapping iSCSI LUNs to
1536 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1537 * devices and HBAs for a loop.
1539 static inline void transport_generic_prepare_cdb(
1543 case READ_10
: /* SBC - RDProtect */
1544 case READ_12
: /* SBC - RDProtect */
1545 case READ_16
: /* SBC - RDProtect */
1546 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1547 case VERIFY
: /* SBC - VRProtect */
1548 case VERIFY_16
: /* SBC - VRProtect */
1549 case WRITE_VERIFY
: /* SBC - VRProtect */
1550 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1553 cdb
[1] &= 0x1f; /* clear logical unit number */
1558 static struct se_task
*
1559 transport_generic_get_task(struct se_cmd
*cmd
,
1560 enum dma_data_direction data_direction
)
1562 struct se_task
*task
;
1563 struct se_device
*dev
= cmd
->se_dev
;
1565 task
= dev
->transport
->alloc_task(cmd
->t_task_cdb
);
1567 pr_err("Unable to allocate struct se_task\n");
1571 INIT_LIST_HEAD(&task
->t_list
);
1572 INIT_LIST_HEAD(&task
->t_execute_list
);
1573 INIT_LIST_HEAD(&task
->t_state_list
);
1574 init_completion(&task
->task_stop_comp
);
1575 task
->task_se_cmd
= cmd
;
1577 task
->task_data_direction
= data_direction
;
1582 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1585 * Used by fabric modules containing a local struct se_cmd within their
1586 * fabric dependent per I/O descriptor.
1588 void transport_init_se_cmd(
1590 struct target_core_fabric_ops
*tfo
,
1591 struct se_session
*se_sess
,
1595 unsigned char *sense_buffer
)
1597 INIT_LIST_HEAD(&cmd
->se_lun_node
);
1598 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1599 INIT_LIST_HEAD(&cmd
->se_ordered_node
);
1600 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1602 INIT_LIST_HEAD(&cmd
->t_task_list
);
1603 init_completion(&cmd
->transport_lun_fe_stop_comp
);
1604 init_completion(&cmd
->transport_lun_stop_comp
);
1605 init_completion(&cmd
->t_transport_stop_comp
);
1606 spin_lock_init(&cmd
->t_state_lock
);
1607 atomic_set(&cmd
->transport_dev_active
, 1);
1610 cmd
->se_sess
= se_sess
;
1611 cmd
->data_length
= data_length
;
1612 cmd
->data_direction
= data_direction
;
1613 cmd
->sam_task_attr
= task_attr
;
1614 cmd
->sense_buffer
= sense_buffer
;
1616 EXPORT_SYMBOL(transport_init_se_cmd
);
1618 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1621 * Check if SAM Task Attribute emulation is enabled for this
1622 * struct se_device storage object
1624 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1627 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1628 pr_debug("SAM Task Attribute ACA"
1629 " emulation is not supported\n");
1633 * Used to determine when ORDERED commands should go from
1634 * Dormant to Active status.
1636 cmd
->se_ordered_id
= atomic_inc_return(&cmd
->se_dev
->dev_ordered_id
);
1637 smp_mb__after_atomic_inc();
1638 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1639 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1640 cmd
->se_dev
->transport
->name
);
1644 void transport_free_se_cmd(
1645 struct se_cmd
*se_cmd
)
1647 if (se_cmd
->se_tmr_req
)
1648 core_tmr_release_req(se_cmd
->se_tmr_req
);
1650 * Check and free any extended CDB buffer that was allocated
1652 if (se_cmd
->t_task_cdb
!= se_cmd
->__t_task_cdb
)
1653 kfree(se_cmd
->t_task_cdb
);
1655 EXPORT_SYMBOL(transport_free_se_cmd
);
1657 static void transport_generic_wait_for_tasks(struct se_cmd
*, int, int);
1659 /* transport_generic_allocate_tasks():
1661 * Called from fabric RX Thread.
1663 int transport_generic_allocate_tasks(
1669 transport_generic_prepare_cdb(cdb
);
1672 * This is needed for early exceptions.
1674 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1677 * Ensure that the received CDB is less than the max (252 + 8) bytes
1678 * for VARIABLE_LENGTH_CMD
1680 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1681 pr_err("Received SCSI CDB with command_size: %d that"
1682 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1683 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1687 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1688 * allocate the additional extended CDB buffer now.. Otherwise
1689 * setup the pointer from __t_task_cdb to t_task_cdb.
1691 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1692 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1694 if (!cmd
->t_task_cdb
) {
1695 pr_err("Unable to allocate cmd->t_task_cdb"
1696 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1697 scsi_command_size(cdb
),
1698 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1702 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1704 * Copy the original CDB into cmd->
1706 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1708 * Setup the received CDB based on SCSI defined opcodes and
1709 * perform unit attention, persistent reservations and ALUA
1710 * checks for virtual device backends. The cmd->t_task_cdb
1711 * pointer is expected to be setup before we reach this point.
1713 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1717 * Check for SAM Task Attribute Emulation
1719 if (transport_check_alloc_task_attr(cmd
) < 0) {
1720 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1721 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1724 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1725 if (cmd
->se_lun
->lun_sep
)
1726 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1727 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1730 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1733 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1734 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1736 int transport_generic_handle_cdb(
1741 pr_err("cmd->se_lun is NULL\n");
1745 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD
);
1748 EXPORT_SYMBOL(transport_generic_handle_cdb
);
1750 static void transport_generic_request_failure(struct se_cmd
*,
1751 struct se_device
*, int, int);
1753 * Used by fabric module frontends to queue tasks directly.
1754 * Many only be used from process context only
1756 int transport_handle_cdb_direct(
1763 pr_err("cmd->se_lun is NULL\n");
1766 if (in_interrupt()) {
1768 pr_err("transport_generic_handle_cdb cannot be called"
1769 " from interrupt context\n");
1773 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1774 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1775 * in existing usage to ensure that outstanding descriptors are handled
1776 * correctly during shutdown via transport_generic_wait_for_tasks()
1778 * Also, we don't take cmd->t_state_lock here as we only expect
1779 * this to be called for initial descriptor submission.
1781 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1782 atomic_set(&cmd
->t_transport_active
, 1);
1784 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1785 * so follow TRANSPORT_NEW_CMD processing thread context usage
1786 * and call transport_generic_request_failure() if necessary..
1788 ret
= transport_generic_new_cmd(cmd
);
1792 cmd
->transport_error_status
= ret
;
1793 transport_generic_request_failure(cmd
, NULL
, 0,
1794 (cmd
->data_direction
!= DMA_TO_DEVICE
));
1798 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1801 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1802 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1803 * complete setup in TCM process context w/ TFO->new_cmd_map().
1805 int transport_generic_handle_cdb_map(
1810 pr_err("cmd->se_lun is NULL\n");
1814 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
);
1817 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
1819 /* transport_generic_handle_data():
1823 int transport_generic_handle_data(
1827 * For the software fabric case, then we assume the nexus is being
1828 * failed/shutdown when signals are pending from the kthread context
1829 * caller, so we return a failure. For the HW target mode case running
1830 * in interrupt code, the signal_pending() check is skipped.
1832 if (!in_interrupt() && signal_pending(current
))
1835 * If the received CDB has aleady been ABORTED by the generic
1836 * target engine, we now call transport_check_aborted_status()
1837 * to queue any delated TASK_ABORTED status for the received CDB to the
1838 * fabric module as we are expecting no further incoming DATA OUT
1839 * sequences at this point.
1841 if (transport_check_aborted_status(cmd
, 1) != 0)
1844 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
);
1847 EXPORT_SYMBOL(transport_generic_handle_data
);
1849 /* transport_generic_handle_tmr():
1853 int transport_generic_handle_tmr(
1857 * This is needed for early exceptions.
1859 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1861 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
);
1864 EXPORT_SYMBOL(transport_generic_handle_tmr
);
1866 void transport_generic_free_cmd_intr(
1869 transport_add_cmd_to_queue(cmd
, TRANSPORT_FREE_CMD_INTR
);
1871 EXPORT_SYMBOL(transport_generic_free_cmd_intr
);
1873 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
1875 struct se_task
*task
, *task_tmp
;
1876 unsigned long flags
;
1879 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1880 cmd
->se_tfo
->get_task_tag(cmd
));
1883 * No tasks remain in the execution queue
1885 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1886 list_for_each_entry_safe(task
, task_tmp
,
1887 &cmd
->t_task_list
, t_list
) {
1888 pr_debug("task_no[%d] - Processing task %p\n",
1889 task
->task_no
, task
);
1891 * If the struct se_task has not been sent and is not active,
1892 * remove the struct se_task from the execution queue.
1894 if (!atomic_read(&task
->task_sent
) &&
1895 !atomic_read(&task
->task_active
)) {
1896 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1898 transport_remove_task_from_execute_queue(task
,
1901 pr_debug("task_no[%d] - Removed from execute queue\n",
1903 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1908 * If the struct se_task is active, sleep until it is returned
1911 if (atomic_read(&task
->task_active
)) {
1912 atomic_set(&task
->task_stop
, 1);
1913 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1916 pr_debug("task_no[%d] - Waiting to complete\n",
1918 wait_for_completion(&task
->task_stop_comp
);
1919 pr_debug("task_no[%d] - Stopped successfully\n",
1922 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1923 atomic_dec(&cmd
->t_task_cdbs_left
);
1925 atomic_set(&task
->task_active
, 0);
1926 atomic_set(&task
->task_stop
, 0);
1928 pr_debug("task_no[%d] - Did nothing\n", task
->task_no
);
1932 __transport_stop_task_timer(task
, &flags
);
1934 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
1940 * Handle SAM-esque emulation for generic transport request failures.
1942 static void transport_generic_request_failure(
1944 struct se_device
*dev
,
1950 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1952 cmd
->t_task_cdb
[0]);
1953 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1954 " %d/%d transport_error_status: %d\n",
1955 cmd
->se_tfo
->get_cmd_state(cmd
),
1956 cmd
->t_state
, cmd
->deferred_t_state
,
1957 cmd
->transport_error_status
);
1958 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1959 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1960 " t_transport_active: %d t_transport_stop: %d"
1961 " t_transport_sent: %d\n", cmd
->t_task_list_num
,
1962 atomic_read(&cmd
->t_task_cdbs_left
),
1963 atomic_read(&cmd
->t_task_cdbs_sent
),
1964 atomic_read(&cmd
->t_task_cdbs_ex_left
),
1965 atomic_read(&cmd
->t_transport_active
),
1966 atomic_read(&cmd
->t_transport_stop
),
1967 atomic_read(&cmd
->t_transport_sent
));
1969 transport_stop_all_task_timers(cmd
);
1972 atomic_inc(&dev
->depth_left
);
1974 * For SAM Task Attribute emulation for failed struct se_cmd
1976 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
1977 transport_complete_task_attr(cmd
);
1980 transport_direct_request_timeout(cmd
);
1981 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
1984 switch (cmd
->transport_error_status
) {
1985 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
1986 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1988 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
1989 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
1991 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
1992 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1994 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
1995 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
1997 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
1999 transport_new_cmd_failure(cmd
);
2001 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2002 * we force this session to fall back to session
2005 cmd
->se_tfo
->fall_back_to_erl0(cmd
->se_sess
);
2006 cmd
->se_tfo
->stop_session(cmd
->se_sess
, 0, 0);
2009 case PYX_TRANSPORT_LU_COMM_FAILURE
:
2010 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
2011 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2013 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
2014 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
2016 case PYX_TRANSPORT_WRITE_PROTECTED
:
2017 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
2019 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
2021 * No SENSE Data payload for this case, set SCSI Status
2022 * and queue the response to $FABRIC_MOD.
2024 * Uses linux/include/scsi/scsi.h SAM status codes defs
2026 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2028 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2029 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2032 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2035 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
2036 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
2037 cmd
->orig_fe_lun
, 0x2C,
2038 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2040 ret
= cmd
->se_tfo
->queue_status(cmd
);
2044 case PYX_TRANSPORT_USE_SENSE_REASON
:
2046 * struct se_cmd->scsi_sense_reason already set
2050 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2052 cmd
->transport_error_status
);
2053 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2057 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2058 * make the call to transport_send_check_condition_and_sense()
2059 * directly. Otherwise expect the fabric to make the call to
2060 * transport_send_check_condition_and_sense() after handling
2061 * possible unsoliticied write data payloads.
2063 if (!sc
&& !cmd
->se_tfo
->new_cmd_map
)
2064 transport_new_cmd_failure(cmd
);
2066 ret
= transport_send_check_condition_and_sense(cmd
,
2067 cmd
->scsi_sense_reason
, 0);
2073 transport_lun_remove_cmd(cmd
);
2074 if (!transport_cmd_check_stop_to_fabric(cmd
))
2079 cmd
->t_state
= TRANSPORT_COMPLETE_OK
;
2080 transport_handle_queue_full(cmd
, cmd
->se_dev
, transport_complete_qf
);
2083 static void transport_direct_request_timeout(struct se_cmd
*cmd
)
2085 unsigned long flags
;
2087 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2088 if (!atomic_read(&cmd
->t_transport_timeout
)) {
2089 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2092 if (atomic_read(&cmd
->t_task_cdbs_timeout_left
)) {
2093 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2097 atomic_sub(atomic_read(&cmd
->t_transport_timeout
),
2099 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2102 static void transport_generic_request_timeout(struct se_cmd
*cmd
)
2104 unsigned long flags
;
2107 * Reset cmd->t_se_count to allow transport_generic_remove()
2108 * to allow last call to free memory resources.
2110 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2111 if (atomic_read(&cmd
->t_transport_timeout
) > 1) {
2112 int tmp
= (atomic_read(&cmd
->t_transport_timeout
) - 1);
2114 atomic_sub(tmp
, &cmd
->t_se_count
);
2116 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2118 transport_generic_remove(cmd
, 0);
2121 static inline u32
transport_lba_21(unsigned char *cdb
)
2123 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
2126 static inline u32
transport_lba_32(unsigned char *cdb
)
2128 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2131 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
2133 unsigned int __v1
, __v2
;
2135 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2136 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2138 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2142 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2144 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
2146 unsigned int __v1
, __v2
;
2148 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
2149 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
2151 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2154 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
2156 unsigned long flags
;
2158 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2159 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
2160 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2164 * Called from interrupt context.
2166 static void transport_task_timeout_handler(unsigned long data
)
2168 struct se_task
*task
= (struct se_task
*)data
;
2169 struct se_cmd
*cmd
= task
->task_se_cmd
;
2170 unsigned long flags
;
2172 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task
, cmd
);
2174 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2175 if (task
->task_flags
& TF_STOP
) {
2176 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2179 task
->task_flags
&= ~TF_RUNNING
;
2182 * Determine if transport_complete_task() has already been called.
2184 if (!atomic_read(&task
->task_active
)) {
2185 pr_debug("transport task: %p cmd: %p timeout task_active"
2186 " == 0\n", task
, cmd
);
2187 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2191 atomic_inc(&cmd
->t_se_count
);
2192 atomic_inc(&cmd
->t_transport_timeout
);
2193 cmd
->t_tasks_failed
= 1;
2195 atomic_set(&task
->task_timeout
, 1);
2196 task
->task_error_status
= PYX_TRANSPORT_TASK_TIMEOUT
;
2197 task
->task_scsi_status
= 1;
2199 if (atomic_read(&task
->task_stop
)) {
2200 pr_debug("transport task: %p cmd: %p timeout task_stop"
2201 " == 1\n", task
, cmd
);
2202 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2203 complete(&task
->task_stop_comp
);
2207 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
2208 pr_debug("transport task: %p cmd: %p timeout non zero"
2209 " t_task_cdbs_left\n", task
, cmd
);
2210 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2213 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2216 cmd
->t_state
= TRANSPORT_COMPLETE_FAILURE
;
2217 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2219 transport_add_cmd_to_queue(cmd
, TRANSPORT_COMPLETE_FAILURE
);
2223 * Called with cmd->t_state_lock held.
2225 static void transport_start_task_timer(struct se_task
*task
)
2227 struct se_device
*dev
= task
->se_dev
;
2230 if (task
->task_flags
& TF_RUNNING
)
2233 * If the task_timeout is disabled, exit now.
2235 timeout
= dev
->se_sub_dev
->se_dev_attrib
.task_timeout
;
2239 init_timer(&task
->task_timer
);
2240 task
->task_timer
.expires
= (get_jiffies_64() + timeout
* HZ
);
2241 task
->task_timer
.data
= (unsigned long) task
;
2242 task
->task_timer
.function
= transport_task_timeout_handler
;
2244 task
->task_flags
|= TF_RUNNING
;
2245 add_timer(&task
->task_timer
);
2247 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2248 " %d\n", task
->task_se_cmd
, task
, timeout
);
2253 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2255 void __transport_stop_task_timer(struct se_task
*task
, unsigned long *flags
)
2257 struct se_cmd
*cmd
= task
->task_se_cmd
;
2259 if (!task
->task_flags
& TF_RUNNING
)
2262 task
->task_flags
|= TF_STOP
;
2263 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2265 del_timer_sync(&task
->task_timer
);
2267 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2268 task
->task_flags
&= ~TF_RUNNING
;
2269 task
->task_flags
&= ~TF_STOP
;
2272 static void transport_stop_all_task_timers(struct se_cmd
*cmd
)
2274 struct se_task
*task
= NULL
, *task_tmp
;
2275 unsigned long flags
;
2277 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2278 list_for_each_entry_safe(task
, task_tmp
,
2279 &cmd
->t_task_list
, t_list
)
2280 __transport_stop_task_timer(task
, &flags
);
2281 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2284 static inline int transport_tcq_window_closed(struct se_device
*dev
)
2286 if (dev
->dev_tcq_window_closed
++ <
2287 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
2288 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
2290 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
2292 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
2297 * Called from Fabric Module context from transport_execute_tasks()
2299 * The return of this function determins if the tasks from struct se_cmd
2300 * get added to the execution queue in transport_execute_tasks(),
2301 * or are added to the delayed or ordered lists here.
2303 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
2305 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2308 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2309 * to allow the passed struct se_cmd list of tasks to the front of the list.
2311 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
2312 atomic_inc(&cmd
->se_dev
->dev_hoq_count
);
2313 smp_mb__after_atomic_inc();
2314 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2315 " 0x%02x, se_ordered_id: %u\n",
2317 cmd
->se_ordered_id
);
2319 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
2320 spin_lock(&cmd
->se_dev
->ordered_cmd_lock
);
2321 list_add_tail(&cmd
->se_ordered_node
,
2322 &cmd
->se_dev
->ordered_cmd_list
);
2323 spin_unlock(&cmd
->se_dev
->ordered_cmd_lock
);
2325 atomic_inc(&cmd
->se_dev
->dev_ordered_sync
);
2326 smp_mb__after_atomic_inc();
2328 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2329 " list, se_ordered_id: %u\n",
2331 cmd
->se_ordered_id
);
2333 * Add ORDERED command to tail of execution queue if
2334 * no other older commands exist that need to be
2337 if (!atomic_read(&cmd
->se_dev
->simple_cmds
))
2341 * For SIMPLE and UNTAGGED Task Attribute commands
2343 atomic_inc(&cmd
->se_dev
->simple_cmds
);
2344 smp_mb__after_atomic_inc();
2347 * Otherwise if one or more outstanding ORDERED task attribute exist,
2348 * add the dormant task(s) built for the passed struct se_cmd to the
2349 * execution queue and become in Active state for this struct se_device.
2351 if (atomic_read(&cmd
->se_dev
->dev_ordered_sync
) != 0) {
2353 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2354 * will be drained upon completion of HEAD_OF_QUEUE task.
2356 spin_lock(&cmd
->se_dev
->delayed_cmd_lock
);
2357 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2358 list_add_tail(&cmd
->se_delayed_node
,
2359 &cmd
->se_dev
->delayed_cmd_list
);
2360 spin_unlock(&cmd
->se_dev
->delayed_cmd_lock
);
2362 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2363 " delayed CMD list, se_ordered_id: %u\n",
2364 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
2365 cmd
->se_ordered_id
);
2367 * Return zero to let transport_execute_tasks() know
2368 * not to add the delayed tasks to the execution list.
2373 * Otherwise, no ORDERED task attributes exist..
2379 * Called from fabric module context in transport_generic_new_cmd() and
2380 * transport_generic_process_write()
2382 static int transport_execute_tasks(struct se_cmd
*cmd
)
2386 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2387 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2388 transport_generic_request_failure(cmd
, NULL
, 0, 1);
2393 * Call transport_cmd_check_stop() to see if a fabric exception
2394 * has occurred that prevents execution.
2396 if (!transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
)) {
2398 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2399 * attribute for the tasks of the received struct se_cmd CDB
2401 add_tasks
= transport_execute_task_attr(cmd
);
2405 * This calls transport_add_tasks_from_cmd() to handle
2406 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2407 * (if enabled) in __transport_add_task_to_execute_queue() and
2408 * transport_add_task_check_sam_attr().
2410 transport_add_tasks_from_cmd(cmd
);
2413 * Kick the execution queue for the cmd associated struct se_device
2417 __transport_execute_tasks(cmd
->se_dev
);
2422 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2423 * from struct se_device->execute_task_list and
2425 * Called from transport_processing_thread()
2427 static int __transport_execute_tasks(struct se_device
*dev
)
2430 struct se_cmd
*cmd
= NULL
;
2431 struct se_task
*task
= NULL
;
2432 unsigned long flags
;
2435 * Check if there is enough room in the device and HBA queue to send
2436 * struct se_tasks to the selected transport.
2439 if (!atomic_read(&dev
->depth_left
))
2440 return transport_tcq_window_closed(dev
);
2442 dev
->dev_tcq_window_closed
= 0;
2444 spin_lock_irq(&dev
->execute_task_lock
);
2445 if (list_empty(&dev
->execute_task_list
)) {
2446 spin_unlock_irq(&dev
->execute_task_lock
);
2449 task
= list_first_entry(&dev
->execute_task_list
,
2450 struct se_task
, t_execute_list
);
2451 list_del(&task
->t_execute_list
);
2452 atomic_set(&task
->task_execute_queue
, 0);
2453 atomic_dec(&dev
->execute_tasks
);
2454 spin_unlock_irq(&dev
->execute_task_lock
);
2456 atomic_dec(&dev
->depth_left
);
2458 cmd
= task
->task_se_cmd
;
2460 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2461 atomic_set(&task
->task_active
, 1);
2462 atomic_set(&task
->task_sent
, 1);
2463 atomic_inc(&cmd
->t_task_cdbs_sent
);
2465 if (atomic_read(&cmd
->t_task_cdbs_sent
) ==
2466 cmd
->t_task_list_num
)
2467 atomic_set(&cmd
->transport_sent
, 1);
2469 transport_start_task_timer(task
);
2470 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2472 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2473 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2474 * struct se_subsystem_api->do_task() caller below.
2476 if (cmd
->transport_emulate_cdb
) {
2477 error
= cmd
->transport_emulate_cdb(cmd
);
2479 cmd
->transport_error_status
= error
;
2480 atomic_set(&task
->task_active
, 0);
2481 atomic_set(&cmd
->transport_sent
, 0);
2482 transport_stop_tasks_for_cmd(cmd
);
2483 transport_generic_request_failure(cmd
, dev
, 0, 1);
2487 * Handle the successful completion for transport_emulate_cdb()
2488 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2489 * Otherwise the caller is expected to complete the task with
2492 if (!(cmd
->se_cmd_flags
& SCF_EMULATE_CDB_ASYNC
)) {
2493 cmd
->scsi_status
= SAM_STAT_GOOD
;
2494 task
->task_scsi_status
= GOOD
;
2495 transport_complete_task(task
, 1);
2499 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2500 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2501 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2502 * LUN emulation code.
2504 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2505 * call ->do_task() directly and let the underlying TCM subsystem plugin
2506 * code handle the CDB emulation.
2508 if ((dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) &&
2509 (!(task
->task_se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
2510 error
= transport_emulate_control_cdb(task
);
2512 error
= dev
->transport
->do_task(task
);
2515 cmd
->transport_error_status
= error
;
2516 atomic_set(&task
->task_active
, 0);
2517 atomic_set(&cmd
->transport_sent
, 0);
2518 transport_stop_tasks_for_cmd(cmd
);
2519 transport_generic_request_failure(cmd
, dev
, 0, 1);
2528 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2530 unsigned long flags
;
2532 * Any unsolicited data will get dumped for failed command inside of
2535 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2536 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2537 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2538 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2541 static void transport_nop_wait_for_tasks(struct se_cmd
*, int, int);
2543 static inline u32
transport_get_sectors_6(
2548 struct se_device
*dev
= cmd
->se_dev
;
2551 * Assume TYPE_DISK for non struct se_device objects.
2552 * Use 8-bit sector value.
2558 * Use 24-bit allocation length for TYPE_TAPE.
2560 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2561 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2564 * Everything else assume TYPE_DISK Sector CDB location.
2565 * Use 8-bit sector value.
2571 static inline u32
transport_get_sectors_10(
2576 struct se_device
*dev
= cmd
->se_dev
;
2579 * Assume TYPE_DISK for non struct se_device objects.
2580 * Use 16-bit sector value.
2586 * XXX_10 is not defined in SSC, throw an exception
2588 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2594 * Everything else assume TYPE_DISK Sector CDB location.
2595 * Use 16-bit sector value.
2598 return (u32
)(cdb
[7] << 8) + cdb
[8];
2601 static inline u32
transport_get_sectors_12(
2606 struct se_device
*dev
= cmd
->se_dev
;
2609 * Assume TYPE_DISK for non struct se_device objects.
2610 * Use 32-bit sector value.
2616 * XXX_12 is not defined in SSC, throw an exception
2618 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2624 * Everything else assume TYPE_DISK Sector CDB location.
2625 * Use 32-bit sector value.
2628 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2631 static inline u32
transport_get_sectors_16(
2636 struct se_device
*dev
= cmd
->se_dev
;
2639 * Assume TYPE_DISK for non struct se_device objects.
2640 * Use 32-bit sector value.
2646 * Use 24-bit allocation length for TYPE_TAPE.
2648 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2649 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2652 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2653 (cdb
[12] << 8) + cdb
[13];
2657 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2659 static inline u32
transport_get_sectors_32(
2665 * Assume TYPE_DISK for non struct se_device objects.
2666 * Use 32-bit sector value.
2668 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2669 (cdb
[30] << 8) + cdb
[31];
2673 static inline u32
transport_get_size(
2678 struct se_device
*dev
= cmd
->se_dev
;
2680 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2681 if (cdb
[1] & 1) { /* sectors */
2682 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2687 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2688 " %s object\n", dev
->se_sub_dev
->se_dev_attrib
.block_size
, sectors
,
2689 dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
,
2690 dev
->transport
->name
);
2692 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2695 static void transport_xor_callback(struct se_cmd
*cmd
)
2697 unsigned char *buf
, *addr
;
2698 struct scatterlist
*sg
;
2699 unsigned int offset
;
2703 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2705 * 1) read the specified logical block(s);
2706 * 2) transfer logical blocks from the data-out buffer;
2707 * 3) XOR the logical blocks transferred from the data-out buffer with
2708 * the logical blocks read, storing the resulting XOR data in a buffer;
2709 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2710 * blocks transferred from the data-out buffer; and
2711 * 5) transfer the resulting XOR data to the data-in buffer.
2713 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2715 pr_err("Unable to allocate xor_callback buf\n");
2719 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2720 * into the locally allocated *buf
2722 sg_copy_to_buffer(cmd
->t_data_sg
,
2728 * Now perform the XOR against the BIDI read memory located at
2729 * cmd->t_mem_bidi_list
2733 for_each_sg(cmd
->t_bidi_data_sg
, sg
, cmd
->t_bidi_data_nents
, count
) {
2734 addr
= kmap_atomic(sg_page(sg
), KM_USER0
);
2738 for (i
= 0; i
< sg
->length
; i
++)
2739 *(addr
+ sg
->offset
+ i
) ^= *(buf
+ offset
+ i
);
2741 offset
+= sg
->length
;
2742 kunmap_atomic(addr
, KM_USER0
);
2750 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2752 static int transport_get_sense_data(struct se_cmd
*cmd
)
2754 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2755 struct se_device
*dev
;
2756 struct se_task
*task
= NULL
, *task_tmp
;
2757 unsigned long flags
;
2760 WARN_ON(!cmd
->se_lun
);
2762 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2763 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2764 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2768 list_for_each_entry_safe(task
, task_tmp
,
2769 &cmd
->t_task_list
, t_list
) {
2771 if (!task
->task_sense
)
2778 if (!dev
->transport
->get_sense_buffer
) {
2779 pr_err("dev->transport->get_sense_buffer"
2784 sense_buffer
= dev
->transport
->get_sense_buffer(task
);
2785 if (!sense_buffer
) {
2786 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2787 " sense buffer for task with sense\n",
2788 cmd
->se_tfo
->get_task_tag(cmd
), task
->task_no
);
2791 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2793 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
2794 TRANSPORT_SENSE_BUFFER
);
2796 memcpy(&buffer
[offset
], sense_buffer
,
2797 TRANSPORT_SENSE_BUFFER
);
2798 cmd
->scsi_status
= task
->task_scsi_status
;
2799 /* Automatically padded */
2800 cmd
->scsi_sense_length
=
2801 (TRANSPORT_SENSE_BUFFER
+ offset
);
2803 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2805 dev
->se_hba
->hba_id
, dev
->transport
->name
,
2809 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2815 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
2817 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
2818 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2819 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
2820 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2822 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2823 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2826 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2829 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
2830 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
2831 cmd
->orig_fe_lun
, 0x2C,
2832 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2836 static inline long long transport_dev_end_lba(struct se_device
*dev
)
2838 return dev
->transport
->get_blocks(dev
) + 1;
2841 static int transport_cmd_get_valid_sectors(struct se_cmd
*cmd
)
2843 struct se_device
*dev
= cmd
->se_dev
;
2846 if (dev
->transport
->get_device_type(dev
) != TYPE_DISK
)
2849 sectors
= (cmd
->data_length
/ dev
->se_sub_dev
->se_dev_attrib
.block_size
);
2851 if ((cmd
->t_task_lba
+ sectors
) > transport_dev_end_lba(dev
)) {
2852 pr_err("LBA: %llu Sectors: %u exceeds"
2853 " transport_dev_end_lba(): %llu\n",
2854 cmd
->t_task_lba
, sectors
,
2855 transport_dev_end_lba(dev
));
2862 static int target_check_write_same_discard(unsigned char *flags
, struct se_device
*dev
)
2865 * Determine if the received WRITE_SAME is used to for direct
2866 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2867 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2868 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2870 int passthrough
= (dev
->transport
->transport_type
==
2871 TRANSPORT_PLUGIN_PHBA_PDEV
);
2874 if ((flags
[0] & 0x04) || (flags
[0] & 0x02)) {
2875 pr_err("WRITE_SAME PBDATA and LBDATA"
2876 " bits not supported for Block Discard"
2881 * Currently for the emulated case we only accept
2882 * tpws with the UNMAP=1 bit set.
2884 if (!(flags
[0] & 0x08)) {
2885 pr_err("WRITE_SAME w/o UNMAP bit not"
2886 " supported for Block Discard Emulation\n");
2894 /* transport_generic_cmd_sequencer():
2896 * Generic Command Sequencer that should work for most DAS transport
2899 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2902 * FIXME: Need to support other SCSI OPCODES where as well.
2904 static int transport_generic_cmd_sequencer(
2908 struct se_device
*dev
= cmd
->se_dev
;
2909 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
2910 int ret
= 0, sector_ret
= 0, passthrough
;
2911 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
2915 * Check for an existing UNIT ATTENTION condition
2917 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
2918 cmd
->transport_wait_for_tasks
=
2919 &transport_nop_wait_for_tasks
;
2920 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2921 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
2925 * Check status of Asymmetric Logical Unit Assignment port
2927 ret
= su_dev
->t10_alua
.alua_state_check(cmd
, cdb
, &alua_ascq
);
2929 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
2931 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2932 * The ALUA additional sense code qualifier (ASCQ) is determined
2933 * by the ALUA primary or secondary access state..
2937 pr_debug("[%s]: ALUA TG Port not available,"
2938 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2939 cmd
->se_tfo
->get_fabric_name(), alua_ascq
);
2941 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
2942 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2943 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
2946 goto out_invalid_cdb_field
;
2949 * Check status for SPC-3 Persistent Reservations
2951 if (su_dev
->t10_pr
.pr_ops
.t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
2952 if (su_dev
->t10_pr
.pr_ops
.t10_seq_non_holder(
2953 cmd
, cdb
, pr_reg_type
) != 0)
2954 return transport_handle_reservation_conflict(cmd
);
2956 * This means the CDB is allowed for the SCSI Initiator port
2957 * when said port is *NOT* holding the legacy SPC-2 or
2958 * SPC-3 Persistent Reservation.
2964 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2966 goto out_unsupported_cdb
;
2967 size
= transport_get_size(sectors
, cdb
, cmd
);
2968 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
2969 cmd
->t_task_lba
= transport_lba_21(cdb
);
2970 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2973 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2975 goto out_unsupported_cdb
;
2976 size
= transport_get_size(sectors
, cdb
, cmd
);
2977 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
2978 cmd
->t_task_lba
= transport_lba_32(cdb
);
2979 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2982 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2984 goto out_unsupported_cdb
;
2985 size
= transport_get_size(sectors
, cdb
, cmd
);
2986 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
2987 cmd
->t_task_lba
= transport_lba_32(cdb
);
2988 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2991 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2993 goto out_unsupported_cdb
;
2994 size
= transport_get_size(sectors
, cdb
, cmd
);
2995 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
2996 cmd
->t_task_lba
= transport_lba_64(cdb
);
2997 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3000 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3002 goto out_unsupported_cdb
;
3003 size
= transport_get_size(sectors
, cdb
, cmd
);
3004 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3005 cmd
->t_task_lba
= transport_lba_21(cdb
);
3006 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3009 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3011 goto out_unsupported_cdb
;
3012 size
= transport_get_size(sectors
, cdb
, cmd
);
3013 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3014 cmd
->t_task_lba
= transport_lba_32(cdb
);
3015 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3016 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3019 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3021 goto out_unsupported_cdb
;
3022 size
= transport_get_size(sectors
, cdb
, cmd
);
3023 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3024 cmd
->t_task_lba
= transport_lba_32(cdb
);
3025 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3026 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3029 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3031 goto out_unsupported_cdb
;
3032 size
= transport_get_size(sectors
, cdb
, cmd
);
3033 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3034 cmd
->t_task_lba
= transport_lba_64(cdb
);
3035 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3036 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3038 case XDWRITEREAD_10
:
3039 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
3040 !(cmd
->t_tasks_bidi
))
3041 goto out_invalid_cdb_field
;
3042 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3044 goto out_unsupported_cdb
;
3045 size
= transport_get_size(sectors
, cdb
, cmd
);
3046 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3047 cmd
->t_task_lba
= transport_lba_32(cdb
);
3048 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3049 passthrough
= (dev
->transport
->transport_type
==
3050 TRANSPORT_PLUGIN_PHBA_PDEV
);
3052 * Skip the remaining assignments for TCM/PSCSI passthrough
3057 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3059 cmd
->transport_complete_callback
= &transport_xor_callback
;
3060 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
3062 case VARIABLE_LENGTH_CMD
:
3063 service_action
= get_unaligned_be16(&cdb
[8]);
3065 * Determine if this is TCM/PSCSI device and we should disable
3066 * internal emulation for this CDB.
3068 passthrough
= (dev
->transport
->transport_type
==
3069 TRANSPORT_PLUGIN_PHBA_PDEV
);
3071 switch (service_action
) {
3072 case XDWRITEREAD_32
:
3073 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3075 goto out_unsupported_cdb
;
3076 size
= transport_get_size(sectors
, cdb
, cmd
);
3078 * Use WRITE_32 and READ_32 opcodes for the emulated
3079 * XDWRITE_READ_32 logic.
3081 cmd
->transport_split_cdb
= &split_cdb_XX_32
;
3082 cmd
->t_task_lba
= transport_lba_64_ext(cdb
);
3083 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3086 * Skip the remaining assignments for TCM/PSCSI passthrough
3092 * Setup BIDI XOR callback to be run during
3093 * transport_generic_complete_ok()
3095 cmd
->transport_complete_callback
= &transport_xor_callback
;
3096 cmd
->t_tasks_fua
= (cdb
[10] & 0x8);
3099 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3101 goto out_unsupported_cdb
;
3104 size
= transport_get_size(1, cdb
, cmd
);
3106 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3108 goto out_invalid_cdb_field
;
3111 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[12]);
3112 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3114 if (target_check_write_same_discard(&cdb
[10], dev
) < 0)
3115 goto out_invalid_cdb_field
;
3119 pr_err("VARIABLE_LENGTH_CMD service action"
3120 " 0x%04x not supported\n", service_action
);
3121 goto out_unsupported_cdb
;
3124 case MAINTENANCE_IN
:
3125 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
3126 /* MAINTENANCE_IN from SCC-2 */
3128 * Check for emulated MI_REPORT_TARGET_PGS.
3130 if (cdb
[1] == MI_REPORT_TARGET_PGS
) {
3131 cmd
->transport_emulate_cdb
=
3132 (su_dev
->t10_alua
.alua_type
==
3133 SPC3_ALUA_EMULATED
) ?
3134 core_emulate_report_target_port_groups
:
3137 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3138 (cdb
[8] << 8) | cdb
[9];
3140 /* GPCMD_SEND_KEY from multi media commands */
3141 size
= (cdb
[8] << 8) + cdb
[9];
3143 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3147 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3149 case MODE_SELECT_10
:
3150 size
= (cdb
[7] << 8) + cdb
[8];
3151 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3155 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3158 case GPCMD_READ_BUFFER_CAPACITY
:
3159 case GPCMD_SEND_OPC
:
3162 size
= (cdb
[7] << 8) + cdb
[8];
3163 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3165 case READ_BLOCK_LIMITS
:
3166 size
= READ_BLOCK_LEN
;
3167 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3169 case GPCMD_GET_CONFIGURATION
:
3170 case GPCMD_READ_FORMAT_CAPACITIES
:
3171 case GPCMD_READ_DISC_INFO
:
3172 case GPCMD_READ_TRACK_RZONE_INFO
:
3173 size
= (cdb
[7] << 8) + cdb
[8];
3174 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3176 case PERSISTENT_RESERVE_IN
:
3177 case PERSISTENT_RESERVE_OUT
:
3178 cmd
->transport_emulate_cdb
=
3179 (su_dev
->t10_pr
.res_type
==
3180 SPC3_PERSISTENT_RESERVATIONS
) ?
3181 core_scsi3_emulate_pr
: NULL
;
3182 size
= (cdb
[7] << 8) + cdb
[8];
3183 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3185 case GPCMD_MECHANISM_STATUS
:
3186 case GPCMD_READ_DVD_STRUCTURE
:
3187 size
= (cdb
[8] << 8) + cdb
[9];
3188 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3191 size
= READ_POSITION_LEN
;
3192 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3194 case MAINTENANCE_OUT
:
3195 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
3196 /* MAINTENANCE_OUT from SCC-2
3198 * Check for emulated MO_SET_TARGET_PGS.
3200 if (cdb
[1] == MO_SET_TARGET_PGS
) {
3201 cmd
->transport_emulate_cdb
=
3202 (su_dev
->t10_alua
.alua_type
==
3203 SPC3_ALUA_EMULATED
) ?
3204 core_emulate_set_target_port_groups
:
3208 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3209 (cdb
[8] << 8) | cdb
[9];
3211 /* GPCMD_REPORT_KEY from multi media commands */
3212 size
= (cdb
[8] << 8) + cdb
[9];
3214 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3217 size
= (cdb
[3] << 8) + cdb
[4];
3219 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3220 * See spc4r17 section 5.3
3222 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3223 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3224 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3227 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3228 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3231 size
= READ_CAP_LEN
;
3232 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3234 case READ_MEDIA_SERIAL_NUMBER
:
3235 case SECURITY_PROTOCOL_IN
:
3236 case SECURITY_PROTOCOL_OUT
:
3237 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3238 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3240 case SERVICE_ACTION_IN
:
3241 case ACCESS_CONTROL_IN
:
3242 case ACCESS_CONTROL_OUT
:
3244 case READ_ATTRIBUTE
:
3245 case RECEIVE_COPY_RESULTS
:
3246 case WRITE_ATTRIBUTE
:
3247 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
3248 (cdb
[12] << 8) | cdb
[13];
3249 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3251 case RECEIVE_DIAGNOSTIC
:
3252 case SEND_DIAGNOSTIC
:
3253 size
= (cdb
[3] << 8) | cdb
[4];
3254 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3256 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3259 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3260 size
= (2336 * sectors
);
3261 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3266 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3270 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3272 case READ_ELEMENT_STATUS
:
3273 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
3274 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3277 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3278 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3283 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3284 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3286 if (cdb
[0] == RESERVE_10
)
3287 size
= (cdb
[7] << 8) | cdb
[8];
3289 size
= cmd
->data_length
;
3292 * Setup the legacy emulated handler for SPC-2 and
3293 * >= SPC-3 compatible reservation handling (CRH=1)
3294 * Otherwise, we assume the underlying SCSI logic is
3295 * is running in SPC_PASSTHROUGH, and wants reservations
3296 * emulation disabled.
3298 cmd
->transport_emulate_cdb
=
3299 (su_dev
->t10_pr
.res_type
!=
3301 core_scsi2_emulate_crh
: NULL
;
3302 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3307 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3308 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3310 if (cdb
[0] == RELEASE_10
)
3311 size
= (cdb
[7] << 8) | cdb
[8];
3313 size
= cmd
->data_length
;
3315 cmd
->transport_emulate_cdb
=
3316 (su_dev
->t10_pr
.res_type
!=
3318 core_scsi2_emulate_crh
: NULL
;
3319 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3321 case SYNCHRONIZE_CACHE
:
3322 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3324 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3326 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
3327 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3328 cmd
->t_task_lba
= transport_lba_32(cdb
);
3330 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3331 cmd
->t_task_lba
= transport_lba_64(cdb
);
3334 goto out_unsupported_cdb
;
3336 size
= transport_get_size(sectors
, cdb
, cmd
);
3337 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3340 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3342 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
3345 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3346 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3348 cmd
->se_cmd_flags
|= SCF_EMULATE_CDB_ASYNC
;
3350 * Check to ensure that LBA + Range does not exceed past end of
3351 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3353 if ((cmd
->t_task_lba
!= 0) || (sectors
!= 0)) {
3354 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3355 goto out_invalid_cdb_field
;
3359 size
= get_unaligned_be16(&cdb
[7]);
3360 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3363 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3365 goto out_unsupported_cdb
;
3368 size
= transport_get_size(1, cdb
, cmd
);
3370 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3371 goto out_invalid_cdb_field
;
3374 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[2]);
3375 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3377 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3378 goto out_invalid_cdb_field
;
3381 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3383 goto out_unsupported_cdb
;
3386 size
= transport_get_size(1, cdb
, cmd
);
3388 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3389 goto out_invalid_cdb_field
;
3392 cmd
->t_task_lba
= get_unaligned_be32(&cdb
[2]);
3393 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3395 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3396 * of byte 1 bit 3 UNMAP instead of original reserved field
3398 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3399 goto out_invalid_cdb_field
;
3401 case ALLOW_MEDIUM_REMOVAL
:
3402 case GPCMD_CLOSE_TRACK
:
3404 case INITIALIZE_ELEMENT_STATUS
:
3405 case GPCMD_LOAD_UNLOAD
:
3408 case GPCMD_SET_SPEED
:
3411 case TEST_UNIT_READY
:
3413 case WRITE_FILEMARKS
:
3415 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3418 cmd
->transport_emulate_cdb
=
3419 transport_core_report_lun_response
;
3420 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3422 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3423 * See spc4r17 section 5.3
3425 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3426 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3427 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3430 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3431 " 0x%02x, sending CHECK_CONDITION.\n",
3432 cmd
->se_tfo
->get_fabric_name(), cdb
[0]);
3433 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3434 goto out_unsupported_cdb
;
3437 if (size
!= cmd
->data_length
) {
3438 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3439 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3440 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
3441 cmd
->data_length
, size
, cdb
[0]);
3443 cmd
->cmd_spdtl
= size
;
3445 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3446 pr_err("Rejecting underflow/overflow"
3448 goto out_invalid_cdb_field
;
3451 * Reject READ_* or WRITE_* with overflow/underflow for
3452 * type SCF_SCSI_DATA_SG_IO_CDB.
3454 if (!ret
&& (dev
->se_sub_dev
->se_dev_attrib
.block_size
!= 512)) {
3455 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3456 " CDB on non 512-byte sector setup subsystem"
3457 " plugin: %s\n", dev
->transport
->name
);
3458 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3459 goto out_invalid_cdb_field
;
3462 if (size
> cmd
->data_length
) {
3463 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3464 cmd
->residual_count
= (size
- cmd
->data_length
);
3466 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3467 cmd
->residual_count
= (cmd
->data_length
- size
);
3469 cmd
->data_length
= size
;
3472 /* Let's limit control cdbs to a page, for simplicity's sake. */
3473 if ((cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) &&
3475 goto out_invalid_cdb_field
;
3477 transport_set_supported_SAM_opcode(cmd
);
3480 out_unsupported_cdb
:
3481 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3482 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3484 out_invalid_cdb_field
:
3485 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3486 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3491 * Called from transport_generic_complete_ok() and
3492 * transport_generic_request_failure() to determine which dormant/delayed
3493 * and ordered cmds need to have their tasks added to the execution queue.
3495 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3497 struct se_device
*dev
= cmd
->se_dev
;
3498 struct se_cmd
*cmd_p
, *cmd_tmp
;
3499 int new_active_tasks
= 0;
3501 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3502 atomic_dec(&dev
->simple_cmds
);
3503 smp_mb__after_atomic_dec();
3504 dev
->dev_cur_ordered_id
++;
3505 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3506 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3507 cmd
->se_ordered_id
);
3508 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3509 atomic_dec(&dev
->dev_hoq_count
);
3510 smp_mb__after_atomic_dec();
3511 dev
->dev_cur_ordered_id
++;
3512 pr_debug("Incremented dev_cur_ordered_id: %u for"
3513 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3514 cmd
->se_ordered_id
);
3515 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3516 spin_lock(&dev
->ordered_cmd_lock
);
3517 list_del(&cmd
->se_ordered_node
);
3518 atomic_dec(&dev
->dev_ordered_sync
);
3519 smp_mb__after_atomic_dec();
3520 spin_unlock(&dev
->ordered_cmd_lock
);
3522 dev
->dev_cur_ordered_id
++;
3523 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3524 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3527 * Process all commands up to the last received
3528 * ORDERED task attribute which requires another blocking
3531 spin_lock(&dev
->delayed_cmd_lock
);
3532 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3533 &dev
->delayed_cmd_list
, se_delayed_node
) {
3535 list_del(&cmd_p
->se_delayed_node
);
3536 spin_unlock(&dev
->delayed_cmd_lock
);
3538 pr_debug("Calling add_tasks() for"
3539 " cmd_p: 0x%02x Task Attr: 0x%02x"
3540 " Dormant -> Active, se_ordered_id: %u\n",
3541 cmd_p
->t_task_cdb
[0],
3542 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3544 transport_add_tasks_from_cmd(cmd_p
);
3547 spin_lock(&dev
->delayed_cmd_lock
);
3548 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3551 spin_unlock(&dev
->delayed_cmd_lock
);
3553 * If new tasks have become active, wake up the transport thread
3554 * to do the processing of the Active tasks.
3556 if (new_active_tasks
!= 0)
3557 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
3560 static int transport_complete_qf(struct se_cmd
*cmd
)
3564 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
3565 return cmd
->se_tfo
->queue_status(cmd
);
3567 switch (cmd
->data_direction
) {
3568 case DMA_FROM_DEVICE
:
3569 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3572 if (cmd
->t_bidi_data_sg
) {
3573 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3577 /* Fall through for DMA_TO_DEVICE */
3579 ret
= cmd
->se_tfo
->queue_status(cmd
);
3588 static void transport_handle_queue_full(
3590 struct se_device
*dev
,
3591 int (*qf_callback
)(struct se_cmd
*))
3593 spin_lock_irq(&dev
->qf_cmd_lock
);
3594 cmd
->se_cmd_flags
|= SCF_EMULATE_QUEUE_FULL
;
3595 cmd
->transport_qf_callback
= qf_callback
;
3596 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
3597 atomic_inc(&dev
->dev_qf_count
);
3598 smp_mb__after_atomic_inc();
3599 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
3601 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3604 static void transport_generic_complete_ok(struct se_cmd
*cmd
)
3606 int reason
= 0, ret
;
3608 * Check if we need to move delayed/dormant tasks from cmds on the
3609 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3612 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3613 transport_complete_task_attr(cmd
);
3615 * Check to schedule QUEUE_FULL work, or execute an existing
3616 * cmd->transport_qf_callback()
3618 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
3619 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3621 if (cmd
->transport_qf_callback
) {
3622 ret
= cmd
->transport_qf_callback(cmd
);
3626 cmd
->transport_qf_callback
= NULL
;
3630 * Check if we need to retrieve a sense buffer from
3631 * the struct se_cmd in question.
3633 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3634 if (transport_get_sense_data(cmd
) < 0)
3635 reason
= TCM_NON_EXISTENT_LUN
;
3638 * Only set when an struct se_task->task_scsi_status returned
3639 * a non GOOD status.
3641 if (cmd
->scsi_status
) {
3642 ret
= transport_send_check_condition_and_sense(
3647 transport_lun_remove_cmd(cmd
);
3648 transport_cmd_check_stop_to_fabric(cmd
);
3653 * Check for a callback, used by amongst other things
3654 * XDWRITE_READ_10 emulation.
3656 if (cmd
->transport_complete_callback
)
3657 cmd
->transport_complete_callback(cmd
);
3659 switch (cmd
->data_direction
) {
3660 case DMA_FROM_DEVICE
:
3661 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3662 if (cmd
->se_lun
->lun_sep
) {
3663 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3666 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3668 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3673 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3674 if (cmd
->se_lun
->lun_sep
) {
3675 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
3678 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3680 * Check if we need to send READ payload for BIDI-COMMAND
3682 if (cmd
->t_bidi_data_sg
) {
3683 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3684 if (cmd
->se_lun
->lun_sep
) {
3685 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3688 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3689 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3694 /* Fall through for DMA_TO_DEVICE */
3696 ret
= cmd
->se_tfo
->queue_status(cmd
);
3705 transport_lun_remove_cmd(cmd
);
3706 transport_cmd_check_stop_to_fabric(cmd
);
3710 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3711 " data_direction: %d\n", cmd
, cmd
->data_direction
);
3712 transport_handle_queue_full(cmd
, cmd
->se_dev
, transport_complete_qf
);
3715 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3717 struct se_task
*task
, *task_tmp
;
3718 unsigned long flags
;
3720 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3721 list_for_each_entry_safe(task
, task_tmp
,
3722 &cmd
->t_task_list
, t_list
) {
3723 if (atomic_read(&task
->task_active
))
3726 kfree(task
->task_sg_bidi
);
3727 kfree(task
->task_sg
);
3729 list_del(&task
->t_list
);
3731 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3733 task
->se_dev
->transport
->free_task(task
);
3735 pr_err("task[%u] - task->se_dev is NULL\n",
3737 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3739 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3742 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
3744 struct scatterlist
*sg
;
3747 for_each_sg(sgl
, sg
, nents
, count
)
3748 __free_page(sg_page(sg
));
3753 static inline void transport_free_pages(struct se_cmd
*cmd
)
3755 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3758 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
3759 cmd
->t_data_sg
= NULL
;
3760 cmd
->t_data_nents
= 0;
3762 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
3763 cmd
->t_bidi_data_sg
= NULL
;
3764 cmd
->t_bidi_data_nents
= 0;
3767 static inline void transport_release_tasks(struct se_cmd
*cmd
)
3769 transport_free_dev_tasks(cmd
);
3772 static inline int transport_dec_and_check(struct se_cmd
*cmd
)
3774 unsigned long flags
;
3776 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3777 if (atomic_read(&cmd
->t_fe_count
)) {
3778 if (!atomic_dec_and_test(&cmd
->t_fe_count
)) {
3779 spin_unlock_irqrestore(&cmd
->t_state_lock
,
3785 if (atomic_read(&cmd
->t_se_count
)) {
3786 if (!atomic_dec_and_test(&cmd
->t_se_count
)) {
3787 spin_unlock_irqrestore(&cmd
->t_state_lock
,
3792 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3797 static void transport_release_fe_cmd(struct se_cmd
*cmd
)
3799 unsigned long flags
;
3801 if (transport_dec_and_check(cmd
))
3804 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3805 if (!atomic_read(&cmd
->transport_dev_active
)) {
3806 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3809 atomic_set(&cmd
->transport_dev_active
, 0);
3810 transport_all_task_dev_remove_state(cmd
);
3811 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3813 transport_release_tasks(cmd
);
3815 transport_free_pages(cmd
);
3816 transport_free_se_cmd(cmd
);
3817 cmd
->se_tfo
->release_cmd(cmd
);
3821 transport_generic_remove(struct se_cmd
*cmd
, int session_reinstatement
)
3823 unsigned long flags
;
3825 if (transport_dec_and_check(cmd
)) {
3826 if (session_reinstatement
) {
3827 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3828 transport_all_task_dev_remove_state(cmd
);
3829 spin_unlock_irqrestore(&cmd
->t_state_lock
,
3835 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3836 if (!atomic_read(&cmd
->transport_dev_active
)) {
3837 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3840 atomic_set(&cmd
->transport_dev_active
, 0);
3841 transport_all_task_dev_remove_state(cmd
);
3842 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3844 transport_release_tasks(cmd
);
3847 transport_free_pages(cmd
);
3848 transport_release_cmd(cmd
);
3853 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3854 * allocating in the core.
3855 * @cmd: Associated se_cmd descriptor
3856 * @mem: SGL style memory for TCM WRITE / READ
3857 * @sg_mem_num: Number of SGL elements
3858 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3859 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3861 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3864 int transport_generic_map_mem_to_cmd(
3866 struct scatterlist
*sgl
,
3868 struct scatterlist
*sgl_bidi
,
3871 if (!sgl
|| !sgl_count
)
3874 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3875 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
3877 cmd
->t_data_sg
= sgl
;
3878 cmd
->t_data_nents
= sgl_count
;
3880 if (sgl_bidi
&& sgl_bidi_count
) {
3881 cmd
->t_bidi_data_sg
= sgl_bidi
;
3882 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
3884 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
3889 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
3891 static int transport_new_cmd_obj(struct se_cmd
*cmd
)
3893 struct se_device
*dev
= cmd
->se_dev
;
3894 int set_counts
= 1, rc
, task_cdbs
;
3897 * Setup any BIDI READ tasks and memory from
3898 * cmd->t_mem_bidi_list so the READ struct se_tasks
3899 * are queued first for the non pSCSI passthrough case.
3901 if (cmd
->t_bidi_data_sg
&&
3902 (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
)) {
3903 rc
= transport_allocate_tasks(cmd
,
3906 cmd
->t_bidi_data_sg
,
3907 cmd
->t_bidi_data_nents
);
3909 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3910 cmd
->scsi_sense_reason
=
3911 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
3914 atomic_inc(&cmd
->t_fe_count
);
3915 atomic_inc(&cmd
->t_se_count
);
3919 * Setup the tasks and memory from cmd->t_mem_list
3920 * Note for BIDI transfers this will contain the WRITE payload
3922 task_cdbs
= transport_allocate_tasks(cmd
,
3924 cmd
->data_direction
,
3927 if (task_cdbs
<= 0) {
3928 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3929 cmd
->scsi_sense_reason
=
3930 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
3935 atomic_inc(&cmd
->t_fe_count
);
3936 atomic_inc(&cmd
->t_se_count
);
3939 cmd
->t_task_list_num
= task_cdbs
;
3941 atomic_set(&cmd
->t_task_cdbs_left
, task_cdbs
);
3942 atomic_set(&cmd
->t_task_cdbs_ex_left
, task_cdbs
);
3943 atomic_set(&cmd
->t_task_cdbs_timeout_left
, task_cdbs
);
3947 void *transport_kmap_first_data_page(struct se_cmd
*cmd
)
3949 struct scatterlist
*sg
= cmd
->t_data_sg
;
3953 * We need to take into account a possible offset here for fabrics like
3954 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3955 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3957 return kmap(sg_page(sg
)) + sg
->offset
;
3959 EXPORT_SYMBOL(transport_kmap_first_data_page
);
3961 void transport_kunmap_first_data_page(struct se_cmd
*cmd
)
3963 kunmap(sg_page(cmd
->t_data_sg
));
3965 EXPORT_SYMBOL(transport_kunmap_first_data_page
);
3968 transport_generic_get_mem(struct se_cmd
*cmd
)
3970 u32 length
= cmd
->data_length
;
3975 nents
= DIV_ROUND_UP(length
, PAGE_SIZE
);
3976 cmd
->t_data_sg
= kmalloc(sizeof(struct scatterlist
) * nents
, GFP_KERNEL
);
3977 if (!cmd
->t_data_sg
)
3980 cmd
->t_data_nents
= nents
;
3981 sg_init_table(cmd
->t_data_sg
, nents
);
3984 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
3985 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3989 sg_set_page(&cmd
->t_data_sg
[i
], page
, page_len
, 0);
3997 __free_page(sg_page(&cmd
->t_data_sg
[i
]));
4000 kfree(cmd
->t_data_sg
);
4001 cmd
->t_data_sg
= NULL
;
4005 /* Reduce sectors if they are too long for the device */
4006 static inline sector_t
transport_limit_task_sectors(
4007 struct se_device
*dev
,
4008 unsigned long long lba
,
4011 sectors
= min_t(sector_t
, sectors
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
4013 if (dev
->transport
->get_device_type(dev
) == TYPE_DISK
)
4014 if ((lba
+ sectors
) > transport_dev_end_lba(dev
))
4015 sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
4022 * This function can be used by HW target mode drivers to create a linked
4023 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4024 * This is intended to be called during the completion path by TCM Core
4025 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4027 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
4029 struct scatterlist
*sg_first
= NULL
;
4030 struct scatterlist
*sg_prev
= NULL
;
4031 int sg_prev_nents
= 0;
4032 struct scatterlist
*sg
;
4033 struct se_task
*task
;
4034 u32 chained_nents
= 0;
4037 BUG_ON(!cmd
->se_tfo
->task_sg_chaining
);
4040 * Walk the struct se_task list and setup scatterlist chains
4041 * for each contiguously allocated struct se_task->task_sg[].
4043 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
4048 sg_first
= task
->task_sg
;
4049 chained_nents
= task
->task_sg_nents
;
4051 sg_chain(sg_prev
, sg_prev_nents
, task
->task_sg
);
4052 chained_nents
+= task
->task_sg_nents
;
4055 * For the padded tasks, use the extra SGL vector allocated
4056 * in transport_allocate_data_tasks() for the sg_prev_nents
4057 * offset into sg_chain() above.. The last task of a
4058 * multi-task list, or a single task will not have
4059 * task->task_sg_padded set..
4061 if (task
->task_padded_sg
)
4062 sg_prev_nents
= (task
->task_sg_nents
+ 1);
4064 sg_prev_nents
= task
->task_sg_nents
;
4066 sg_prev
= task
->task_sg
;
4069 * Setup the starting pointer and total t_tasks_sg_linked_no including
4070 * padding SGs for linking and to mark the end.
4072 cmd
->t_tasks_sg_chained
= sg_first
;
4073 cmd
->t_tasks_sg_chained_no
= chained_nents
;
4075 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4076 " t_tasks_sg_chained_no: %u\n", cmd
, cmd
->t_tasks_sg_chained
,
4077 cmd
->t_tasks_sg_chained_no
);
4079 for_each_sg(cmd
->t_tasks_sg_chained
, sg
,
4080 cmd
->t_tasks_sg_chained_no
, i
) {
4082 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4083 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
);
4084 if (sg_is_chain(sg
))
4085 pr_debug("SG: %p sg_is_chain=1\n", sg
);
4087 pr_debug("SG: %p sg_is_last=1\n", sg
);
4090 EXPORT_SYMBOL(transport_do_task_sg_chain
);
4093 * Break up cmd into chunks transport can handle
4095 static int transport_allocate_data_tasks(
4097 unsigned long long lba
,
4098 enum dma_data_direction data_direction
,
4099 struct scatterlist
*sgl
,
4100 unsigned int sgl_nents
)
4102 unsigned char *cdb
= NULL
;
4103 struct se_task
*task
;
4104 struct se_device
*dev
= cmd
->se_dev
;
4105 unsigned long flags
;
4106 int task_count
, i
, ret
;
4107 sector_t sectors
, dev_max_sectors
= dev
->se_sub_dev
->se_dev_attrib
.max_sectors
;
4108 u32 sector_size
= dev
->se_sub_dev
->se_dev_attrib
.block_size
;
4109 struct scatterlist
*sg
;
4110 struct scatterlist
*cmd_sg
;
4112 WARN_ON(cmd
->data_length
% sector_size
);
4113 sectors
= DIV_ROUND_UP(cmd
->data_length
, sector_size
);
4114 task_count
= DIV_ROUND_UP_SECTOR_T(sectors
, dev_max_sectors
);
4117 for (i
= 0; i
< task_count
; i
++) {
4118 unsigned int task_size
, task_sg_nents_padded
;
4121 task
= transport_generic_get_task(cmd
, data_direction
);
4125 task
->task_lba
= lba
;
4126 task
->task_sectors
= min(sectors
, dev_max_sectors
);
4127 task
->task_size
= task
->task_sectors
* sector_size
;
4129 cdb
= dev
->transport
->get_cdb(task
);
4132 memcpy(cdb
, cmd
->t_task_cdb
,
4133 scsi_command_size(cmd
->t_task_cdb
));
4135 /* Update new cdb with updated lba/sectors */
4136 cmd
->transport_split_cdb(task
->task_lba
, task
->task_sectors
, cdb
);
4138 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4139 * in order to calculate the number per task SGL entries
4141 task
->task_sg_nents
= DIV_ROUND_UP(task
->task_size
, PAGE_SIZE
);
4143 * Check if the fabric module driver is requesting that all
4144 * struct se_task->task_sg[] be chained together.. If so,
4145 * then allocate an extra padding SG entry for linking and
4146 * marking the end of the chained SGL for every task except
4147 * the last one for (task_count > 1) operation, or skipping
4148 * the extra padding for the (task_count == 1) case.
4150 if (cmd
->se_tfo
->task_sg_chaining
&& (i
< (task_count
- 1))) {
4151 task_sg_nents_padded
= (task
->task_sg_nents
+ 1);
4152 task
->task_padded_sg
= 1;
4154 task_sg_nents_padded
= task
->task_sg_nents
;
4156 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) *
4157 task_sg_nents_padded
, GFP_KERNEL
);
4158 if (!task
->task_sg
) {
4159 cmd
->se_dev
->transport
->free_task(task
);
4163 sg_init_table(task
->task_sg
, task_sg_nents_padded
);
4165 task_size
= task
->task_size
;
4167 /* Build new sgl, only up to task_size */
4168 for_each_sg(task
->task_sg
, sg
, task
->task_sg_nents
, count
) {
4169 if (cmd_sg
->length
> task_size
)
4173 task_size
-= cmd_sg
->length
;
4174 cmd_sg
= sg_next(cmd_sg
);
4177 lba
+= task
->task_sectors
;
4178 sectors
-= task
->task_sectors
;
4180 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4181 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
4182 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4185 * Now perform the memory map of task->task_sg[] into backend
4186 * subsystem memory..
4188 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
4189 if (atomic_read(&task
->task_sent
))
4191 if (!dev
->transport
->map_data_SG
)
4194 ret
= dev
->transport
->map_data_SG(task
);
4203 transport_allocate_control_task(struct se_cmd
*cmd
)
4205 struct se_device
*dev
= cmd
->se_dev
;
4207 struct se_task
*task
;
4208 unsigned long flags
;
4211 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
4215 cdb
= dev
->transport
->get_cdb(task
);
4217 memcpy(cdb
, cmd
->t_task_cdb
,
4218 scsi_command_size(cmd
->t_task_cdb
));
4220 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) * cmd
->t_data_nents
,
4222 if (!task
->task_sg
) {
4223 cmd
->se_dev
->transport
->free_task(task
);
4227 memcpy(task
->task_sg
, cmd
->t_data_sg
,
4228 sizeof(struct scatterlist
) * cmd
->t_data_nents
);
4229 task
->task_size
= cmd
->data_length
;
4230 task
->task_sg_nents
= cmd
->t_data_nents
;
4232 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4233 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
4234 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4236 if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) {
4237 if (dev
->transport
->map_control_SG
)
4238 ret
= dev
->transport
->map_control_SG(task
);
4239 } else if (cmd
->se_cmd_flags
& SCF_SCSI_NON_DATA_CDB
) {
4240 if (dev
->transport
->cdb_none
)
4241 ret
= dev
->transport
->cdb_none(task
);
4243 pr_err("target: Unknown control cmd type!\n");
4247 /* Success! Return number of tasks allocated */
4253 static u32
transport_allocate_tasks(
4255 unsigned long long lba
,
4256 enum dma_data_direction data_direction
,
4257 struct scatterlist
*sgl
,
4258 unsigned int sgl_nents
)
4260 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
4261 if (transport_cmd_get_valid_sectors(cmd
) < 0)
4264 return transport_allocate_data_tasks(cmd
, lba
, data_direction
,
4267 return transport_allocate_control_task(cmd
);
4272 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4274 * Allocate storage transport resources from a set of values predefined
4275 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4276 * Any non zero return here is treated as an "out of resource' op here.
4279 * Generate struct se_task(s) and/or their payloads for this CDB.
4281 int transport_generic_new_cmd(struct se_cmd
*cmd
)
4286 * Determine is the TCM fabric module has already allocated physical
4287 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4290 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
4292 ret
= transport_generic_get_mem(cmd
);
4297 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4298 * control or data CDB types, and perform the map to backend subsystem
4299 * code from SGL memory allocated here by transport_generic_get_mem(), or
4300 * via pre-existing SGL memory setup explictly by fabric module code with
4301 * transport_generic_map_mem_to_cmd().
4303 ret
= transport_new_cmd_obj(cmd
);
4307 * For WRITEs, let the fabric know its buffer is ready..
4308 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4309 * will be added to the struct se_device execution queue after its WRITE
4310 * data has arrived. (ie: It gets handled by the transport processing
4311 * thread a second time)
4313 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4314 transport_add_tasks_to_state_queue(cmd
);
4315 return transport_generic_write_pending(cmd
);
4318 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4319 * to the execution queue.
4321 transport_execute_tasks(cmd
);
4324 EXPORT_SYMBOL(transport_generic_new_cmd
);
4326 /* transport_generic_process_write():
4330 void transport_generic_process_write(struct se_cmd
*cmd
)
4332 transport_execute_tasks(cmd
);
4334 EXPORT_SYMBOL(transport_generic_process_write
);
4336 static int transport_write_pending_qf(struct se_cmd
*cmd
)
4338 return cmd
->se_tfo
->write_pending(cmd
);
4341 /* transport_generic_write_pending():
4345 static int transport_generic_write_pending(struct se_cmd
*cmd
)
4347 unsigned long flags
;
4350 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4351 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
4352 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4354 if (cmd
->transport_qf_callback
) {
4355 ret
= cmd
->transport_qf_callback(cmd
);
4361 cmd
->transport_qf_callback
= NULL
;
4366 * Clear the se_cmd for WRITE_PENDING status in order to set
4367 * cmd->t_transport_active=0 so that transport_generic_handle_data
4368 * can be called from HW target mode interrupt code. This is safe
4369 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4370 * because the se_cmd->se_lun pointer is not being cleared.
4372 transport_cmd_check_stop(cmd
, 1, 0);
4375 * Call the fabric write_pending function here to let the
4376 * frontend know that WRITE buffers are ready.
4378 ret
= cmd
->se_tfo
->write_pending(cmd
);
4384 return PYX_TRANSPORT_WRITE_PENDING
;
4387 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
4388 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
4389 transport_handle_queue_full(cmd
, cmd
->se_dev
,
4390 transport_write_pending_qf
);
4394 void transport_release_cmd(struct se_cmd
*cmd
)
4396 BUG_ON(!cmd
->se_tfo
);
4398 transport_free_se_cmd(cmd
);
4399 cmd
->se_tfo
->release_cmd(cmd
);
4401 EXPORT_SYMBOL(transport_release_cmd
);
4403 /* transport_generic_free_cmd():
4405 * Called from processing frontend to release storage engine resources
4407 void transport_generic_free_cmd(
4410 int session_reinstatement
)
4412 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
))
4413 transport_release_cmd(cmd
);
4415 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
4419 pr_debug("cmd: %p ITT: 0x%08x contains"
4420 " cmd->se_lun\n", cmd
,
4421 cmd
->se_tfo
->get_task_tag(cmd
));
4423 transport_lun_remove_cmd(cmd
);
4426 if (wait_for_tasks
&& cmd
->transport_wait_for_tasks
)
4427 cmd
->transport_wait_for_tasks(cmd
, 0, 0);
4429 transport_free_dev_tasks(cmd
);
4431 transport_generic_remove(cmd
, session_reinstatement
);
4434 EXPORT_SYMBOL(transport_generic_free_cmd
);
4436 static void transport_nop_wait_for_tasks(
4439 int session_reinstatement
)
4444 /* transport_lun_wait_for_tasks():
4446 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4447 * an struct se_lun to be successfully shutdown.
4449 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
4451 unsigned long flags
;
4454 * If the frontend has already requested this struct se_cmd to
4455 * be stopped, we can safely ignore this struct se_cmd.
4457 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4458 if (atomic_read(&cmd
->t_transport_stop
)) {
4459 atomic_set(&cmd
->transport_lun_stop
, 0);
4460 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4461 " TRUE, skipping\n", cmd
->se_tfo
->get_task_tag(cmd
));
4462 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4463 transport_cmd_check_stop(cmd
, 1, 0);
4466 atomic_set(&cmd
->transport_lun_fe_stop
, 1);
4467 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4469 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4471 ret
= transport_stop_tasks_for_cmd(cmd
);
4473 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4474 " %d\n", cmd
, cmd
->t_task_list_num
, ret
);
4476 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4477 cmd
->se_tfo
->get_task_tag(cmd
));
4478 wait_for_completion(&cmd
->transport_lun_stop_comp
);
4479 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4480 cmd
->se_tfo
->get_task_tag(cmd
));
4482 transport_remove_cmd_from_queue(cmd
, &cmd
->se_dev
->dev_queue_obj
);
4487 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
4489 struct se_cmd
*cmd
= NULL
;
4490 unsigned long lun_flags
, cmd_flags
;
4492 * Do exception processing and return CHECK_CONDITION status to the
4495 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4496 while (!list_empty(&lun
->lun_cmd_list
)) {
4497 cmd
= list_first_entry(&lun
->lun_cmd_list
,
4498 struct se_cmd
, se_lun_node
);
4499 list_del(&cmd
->se_lun_node
);
4501 atomic_set(&cmd
->transport_lun_active
, 0);
4503 * This will notify iscsi_target_transport.c:
4504 * transport_cmd_check_stop() that a LUN shutdown is in
4505 * progress for the iscsi_cmd_t.
4507 spin_lock(&cmd
->t_state_lock
);
4508 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4509 "_lun_stop for ITT: 0x%08x\n",
4510 cmd
->se_lun
->unpacked_lun
,
4511 cmd
->se_tfo
->get_task_tag(cmd
));
4512 atomic_set(&cmd
->transport_lun_stop
, 1);
4513 spin_unlock(&cmd
->t_state_lock
);
4515 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4518 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4519 cmd
->se_tfo
->get_task_tag(cmd
),
4520 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4524 * If the Storage engine still owns the iscsi_cmd_t, determine
4525 * and/or stop its context.
4527 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4528 "_lun_wait_for_tasks()\n", cmd
->se_lun
->unpacked_lun
,
4529 cmd
->se_tfo
->get_task_tag(cmd
));
4531 if (transport_lun_wait_for_tasks(cmd
, cmd
->se_lun
) < 0) {
4532 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4536 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4537 "_wait_for_tasks(): SUCCESS\n",
4538 cmd
->se_lun
->unpacked_lun
,
4539 cmd
->se_tfo
->get_task_tag(cmd
));
4541 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4542 if (!atomic_read(&cmd
->transport_dev_active
)) {
4543 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4546 atomic_set(&cmd
->transport_dev_active
, 0);
4547 transport_all_task_dev_remove_state(cmd
);
4548 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4550 transport_free_dev_tasks(cmd
);
4552 * The Storage engine stopped this struct se_cmd before it was
4553 * send to the fabric frontend for delivery back to the
4554 * Initiator Node. Return this SCSI CDB back with an
4555 * CHECK_CONDITION status.
4558 transport_send_check_condition_and_sense(cmd
,
4559 TCM_NON_EXISTENT_LUN
, 0);
4561 * If the fabric frontend is waiting for this iscsi_cmd_t to
4562 * be released, notify the waiting thread now that LU has
4563 * finished accessing it.
4565 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4566 if (atomic_read(&cmd
->transport_lun_fe_stop
)) {
4567 pr_debug("SE_LUN[%d] - Detected FE stop for"
4568 " struct se_cmd: %p ITT: 0x%08x\n",
4570 cmd
, cmd
->se_tfo
->get_task_tag(cmd
));
4572 spin_unlock_irqrestore(&cmd
->t_state_lock
,
4574 transport_cmd_check_stop(cmd
, 1, 0);
4575 complete(&cmd
->transport_lun_fe_stop_comp
);
4576 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4579 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4580 lun
->unpacked_lun
, cmd
->se_tfo
->get_task_tag(cmd
));
4582 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4583 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4585 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4588 static int transport_clear_lun_thread(void *p
)
4590 struct se_lun
*lun
= (struct se_lun
*)p
;
4592 __transport_clear_lun_from_sessions(lun
);
4593 complete(&lun
->lun_shutdown_comp
);
4598 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
4600 struct task_struct
*kt
;
4602 kt
= kthread_run(transport_clear_lun_thread
, lun
,
4603 "tcm_cl_%u", lun
->unpacked_lun
);
4605 pr_err("Unable to start clear_lun thread\n");
4608 wait_for_completion(&lun
->lun_shutdown_comp
);
4613 /* transport_generic_wait_for_tasks():
4615 * Called from frontend or passthrough context to wait for storage engine
4616 * to pause and/or release frontend generated struct se_cmd.
4618 static void transport_generic_wait_for_tasks(
4621 int session_reinstatement
)
4623 unsigned long flags
;
4625 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
))
4628 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4630 * If we are already stopped due to an external event (ie: LUN shutdown)
4631 * sleep until the connection can have the passed struct se_cmd back.
4632 * The cmd->transport_lun_stopped_sem will be upped by
4633 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4634 * has completed its operation on the struct se_cmd.
4636 if (atomic_read(&cmd
->transport_lun_stop
)) {
4638 pr_debug("wait_for_tasks: Stopping"
4639 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4640 "_stop_comp); for ITT: 0x%08x\n",
4641 cmd
->se_tfo
->get_task_tag(cmd
));
4643 * There is a special case for WRITES where a FE exception +
4644 * LUN shutdown means ConfigFS context is still sleeping on
4645 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4646 * We go ahead and up transport_lun_stop_comp just to be sure
4649 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4650 complete(&cmd
->transport_lun_stop_comp
);
4651 wait_for_completion(&cmd
->transport_lun_fe_stop_comp
);
4652 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4654 transport_all_task_dev_remove_state(cmd
);
4656 * At this point, the frontend who was the originator of this
4657 * struct se_cmd, now owns the structure and can be released through
4658 * normal means below.
4660 pr_debug("wait_for_tasks: Stopped"
4661 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4662 "stop_comp); for ITT: 0x%08x\n",
4663 cmd
->se_tfo
->get_task_tag(cmd
));
4665 atomic_set(&cmd
->transport_lun_stop
, 0);
4667 if (!atomic_read(&cmd
->t_transport_active
) ||
4668 atomic_read(&cmd
->t_transport_aborted
))
4671 atomic_set(&cmd
->t_transport_stop
, 1);
4673 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4674 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4675 " = TRUE\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
4676 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
,
4677 cmd
->deferred_t_state
);
4679 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4681 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4683 wait_for_completion(&cmd
->t_transport_stop_comp
);
4685 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4686 atomic_set(&cmd
->t_transport_active
, 0);
4687 atomic_set(&cmd
->t_transport_stop
, 0);
4689 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4690 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4691 cmd
->se_tfo
->get_task_tag(cmd
));
4693 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4697 transport_generic_free_cmd(cmd
, 0, session_reinstatement
);
4700 static int transport_get_sense_codes(
4705 *asc
= cmd
->scsi_asc
;
4706 *ascq
= cmd
->scsi_ascq
;
4711 static int transport_set_sense_codes(
4716 cmd
->scsi_asc
= asc
;
4717 cmd
->scsi_ascq
= ascq
;
4722 int transport_send_check_condition_and_sense(
4727 unsigned char *buffer
= cmd
->sense_buffer
;
4728 unsigned long flags
;
4730 u8 asc
= 0, ascq
= 0;
4732 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4733 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4734 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4737 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
4738 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4740 if (!reason
&& from_transport
)
4743 if (!from_transport
)
4744 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
4746 * Data Segment and SenseLength of the fabric response PDU.
4748 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4749 * from include/scsi/scsi_cmnd.h
4751 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
4752 TRANSPORT_SENSE_BUFFER
);
4754 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4755 * SENSE KEY values from include/scsi/scsi.h
4758 case TCM_NON_EXISTENT_LUN
:
4760 buffer
[offset
] = 0x70;
4761 /* ILLEGAL REQUEST */
4762 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4763 /* LOGICAL UNIT NOT SUPPORTED */
4764 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x25;
4766 case TCM_UNSUPPORTED_SCSI_OPCODE
:
4767 case TCM_SECTOR_COUNT_TOO_MANY
:
4769 buffer
[offset
] = 0x70;
4770 /* ILLEGAL REQUEST */
4771 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4772 /* INVALID COMMAND OPERATION CODE */
4773 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
4775 case TCM_UNKNOWN_MODE_PAGE
:
4777 buffer
[offset
] = 0x70;
4778 /* ILLEGAL REQUEST */
4779 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4780 /* INVALID FIELD IN CDB */
4781 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4783 case TCM_CHECK_CONDITION_ABORT_CMD
:
4785 buffer
[offset
] = 0x70;
4786 /* ABORTED COMMAND */
4787 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4788 /* BUS DEVICE RESET FUNCTION OCCURRED */
4789 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
4790 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
4792 case TCM_INCORRECT_AMOUNT_OF_DATA
:
4794 buffer
[offset
] = 0x70;
4795 /* ABORTED COMMAND */
4796 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4798 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4799 /* NOT ENOUGH UNSOLICITED DATA */
4800 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
4802 case TCM_INVALID_CDB_FIELD
:
4804 buffer
[offset
] = 0x70;
4805 /* ABORTED COMMAND */
4806 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4807 /* INVALID FIELD IN CDB */
4808 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4810 case TCM_INVALID_PARAMETER_LIST
:
4812 buffer
[offset
] = 0x70;
4813 /* ABORTED COMMAND */
4814 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4815 /* INVALID FIELD IN PARAMETER LIST */
4816 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
4818 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
4820 buffer
[offset
] = 0x70;
4821 /* ABORTED COMMAND */
4822 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4824 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4825 /* UNEXPECTED_UNSOLICITED_DATA */
4826 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
4828 case TCM_SERVICE_CRC_ERROR
:
4830 buffer
[offset
] = 0x70;
4831 /* ABORTED COMMAND */
4832 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4833 /* PROTOCOL SERVICE CRC ERROR */
4834 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
4836 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
4838 case TCM_SNACK_REJECTED
:
4840 buffer
[offset
] = 0x70;
4841 /* ABORTED COMMAND */
4842 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4844 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
4845 /* FAILED RETRANSMISSION REQUEST */
4846 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
4848 case TCM_WRITE_PROTECTED
:
4850 buffer
[offset
] = 0x70;
4852 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
4853 /* WRITE PROTECTED */
4854 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
4856 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
4858 buffer
[offset
] = 0x70;
4859 /* UNIT ATTENTION */
4860 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
4861 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
4862 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4863 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4865 case TCM_CHECK_CONDITION_NOT_READY
:
4867 buffer
[offset
] = 0x70;
4869 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
4870 transport_get_sense_codes(cmd
, &asc
, &ascq
);
4871 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4872 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4874 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
4877 buffer
[offset
] = 0x70;
4878 /* ILLEGAL REQUEST */
4879 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4880 /* LOGICAL UNIT COMMUNICATION FAILURE */
4881 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
4885 * This code uses linux/include/scsi/scsi.h SAM status codes!
4887 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
4889 * Automatically padded, this value is encoded in the fabric's
4890 * data_length response PDU containing the SCSI defined sense data.
4892 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
4895 return cmd
->se_tfo
->queue_status(cmd
);
4897 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
4899 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
4903 if (atomic_read(&cmd
->t_transport_aborted
) != 0) {
4905 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
4908 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4909 " status for CDB: 0x%02x ITT: 0x%08x\n",
4911 cmd
->se_tfo
->get_task_tag(cmd
));
4913 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
4914 cmd
->se_tfo
->queue_status(cmd
);
4919 EXPORT_SYMBOL(transport_check_aborted_status
);
4921 void transport_send_task_abort(struct se_cmd
*cmd
)
4924 * If there are still expected incoming fabric WRITEs, we wait
4925 * until until they have completed before sending a TASK_ABORTED
4926 * response. This response with TASK_ABORTED status will be
4927 * queued back to fabric module by transport_check_aborted_status().
4929 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4930 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
4931 atomic_inc(&cmd
->t_transport_aborted
);
4932 smp_mb__after_atomic_inc();
4933 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4934 transport_new_cmd_failure(cmd
);
4938 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4940 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4941 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
4942 cmd
->se_tfo
->get_task_tag(cmd
));
4944 cmd
->se_tfo
->queue_status(cmd
);
4947 /* transport_generic_do_tmr():
4951 int transport_generic_do_tmr(struct se_cmd
*cmd
)
4953 struct se_device
*dev
= cmd
->se_dev
;
4954 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
4957 switch (tmr
->function
) {
4958 case TMR_ABORT_TASK
:
4959 tmr
->response
= TMR_FUNCTION_REJECTED
;
4961 case TMR_ABORT_TASK_SET
:
4963 case TMR_CLEAR_TASK_SET
:
4964 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
4967 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
4968 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
4969 TMR_FUNCTION_REJECTED
;
4971 case TMR_TARGET_WARM_RESET
:
4972 tmr
->response
= TMR_FUNCTION_REJECTED
;
4974 case TMR_TARGET_COLD_RESET
:
4975 tmr
->response
= TMR_FUNCTION_REJECTED
;
4978 pr_err("Uknown TMR function: 0x%02x.\n",
4980 tmr
->response
= TMR_FUNCTION_REJECTED
;
4984 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
4985 cmd
->se_tfo
->queue_tm_rsp(cmd
);
4987 transport_cmd_check_stop(cmd
, 2, 0);
4992 * Called with spin_lock_irq(&dev->execute_task_lock); held
4995 static struct se_task
*
4996 transport_get_task_from_state_list(struct se_device
*dev
)
4998 struct se_task
*task
;
5000 if (list_empty(&dev
->state_task_list
))
5003 list_for_each_entry(task
, &dev
->state_task_list
, t_state_list
)
5006 list_del(&task
->t_state_list
);
5007 atomic_set(&task
->task_state_active
, 0);
5012 static void transport_processing_shutdown(struct se_device
*dev
)
5015 struct se_task
*task
;
5016 unsigned long flags
;
5018 * Empty the struct se_device's struct se_task state list.
5020 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5021 while ((task
= transport_get_task_from_state_list(dev
))) {
5022 if (!task
->task_se_cmd
) {
5023 pr_err("task->task_se_cmd is NULL!\n");
5026 cmd
= task
->task_se_cmd
;
5028 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5030 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
5032 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
5033 " i_state: %d, t_state/def_t_state:"
5034 " %d/%d cdb: 0x%02x\n", cmd
, task
,
5035 cmd
->se_tfo
->get_task_tag(cmd
),
5036 cmd
->se_tfo
->get_cmd_state(cmd
),
5037 cmd
->t_state
, cmd
->deferred_t_state
,
5038 cmd
->t_task_cdb
[0]);
5039 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5040 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5041 " t_transport_stop: %d t_transport_sent: %d\n",
5042 cmd
->se_tfo
->get_task_tag(cmd
),
5043 cmd
->t_task_list_num
,
5044 atomic_read(&cmd
->t_task_cdbs_left
),
5045 atomic_read(&cmd
->t_task_cdbs_sent
),
5046 atomic_read(&cmd
->t_transport_active
),
5047 atomic_read(&cmd
->t_transport_stop
),
5048 atomic_read(&cmd
->t_transport_sent
));
5050 if (atomic_read(&task
->task_active
)) {
5051 atomic_set(&task
->task_stop
, 1);
5052 spin_unlock_irqrestore(
5053 &cmd
->t_state_lock
, flags
);
5055 pr_debug("Waiting for task: %p to shutdown for dev:"
5056 " %p\n", task
, dev
);
5057 wait_for_completion(&task
->task_stop_comp
);
5058 pr_debug("Completed task: %p shutdown for dev: %p\n",
5061 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
5062 atomic_dec(&cmd
->t_task_cdbs_left
);
5064 atomic_set(&task
->task_active
, 0);
5065 atomic_set(&task
->task_stop
, 0);
5067 if (atomic_read(&task
->task_execute_queue
) != 0)
5068 transport_remove_task_from_execute_queue(task
, dev
);
5070 __transport_stop_task_timer(task
, &flags
);
5072 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_ex_left
)) {
5073 spin_unlock_irqrestore(
5074 &cmd
->t_state_lock
, flags
);
5076 pr_debug("Skipping task: %p, dev: %p for"
5077 " t_task_cdbs_ex_left: %d\n", task
, dev
,
5078 atomic_read(&cmd
->t_task_cdbs_ex_left
));
5080 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5084 if (atomic_read(&cmd
->t_transport_active
)) {
5085 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5086 " %p\n", task
, dev
);
5088 if (atomic_read(&cmd
->t_fe_count
)) {
5089 spin_unlock_irqrestore(
5090 &cmd
->t_state_lock
, flags
);
5091 transport_send_check_condition_and_sense(
5092 cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
,
5094 transport_remove_cmd_from_queue(cmd
,
5095 &cmd
->se_dev
->dev_queue_obj
);
5097 transport_lun_remove_cmd(cmd
);
5098 transport_cmd_check_stop(cmd
, 1, 0);
5100 spin_unlock_irqrestore(
5101 &cmd
->t_state_lock
, flags
);
5103 transport_remove_cmd_from_queue(cmd
,
5104 &cmd
->se_dev
->dev_queue_obj
);
5106 transport_lun_remove_cmd(cmd
);
5108 if (transport_cmd_check_stop(cmd
, 1, 0))
5109 transport_generic_remove(cmd
, 0);
5112 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5115 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5118 if (atomic_read(&cmd
->t_fe_count
)) {
5119 spin_unlock_irqrestore(
5120 &cmd
->t_state_lock
, flags
);
5121 transport_send_check_condition_and_sense(cmd
,
5122 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
5123 transport_remove_cmd_from_queue(cmd
,
5124 &cmd
->se_dev
->dev_queue_obj
);
5126 transport_lun_remove_cmd(cmd
);
5127 transport_cmd_check_stop(cmd
, 1, 0);
5129 spin_unlock_irqrestore(
5130 &cmd
->t_state_lock
, flags
);
5132 transport_remove_cmd_from_queue(cmd
,
5133 &cmd
->se_dev
->dev_queue_obj
);
5134 transport_lun_remove_cmd(cmd
);
5136 if (transport_cmd_check_stop(cmd
, 1, 0))
5137 transport_generic_remove(cmd
, 0);
5140 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5142 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5144 * Empty the struct se_device's struct se_cmd list.
5146 while ((cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
))) {
5148 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5151 if (atomic_read(&cmd
->t_fe_count
)) {
5152 transport_send_check_condition_and_sense(cmd
,
5153 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
5155 transport_lun_remove_cmd(cmd
);
5156 transport_cmd_check_stop(cmd
, 1, 0);
5158 transport_lun_remove_cmd(cmd
);
5159 if (transport_cmd_check_stop(cmd
, 1, 0))
5160 transport_generic_remove(cmd
, 0);
5165 /* transport_processing_thread():
5169 static int transport_processing_thread(void *param
)
5173 struct se_device
*dev
= (struct se_device
*) param
;
5175 set_user_nice(current
, -20);
5177 while (!kthread_should_stop()) {
5178 ret
= wait_event_interruptible(dev
->dev_queue_obj
.thread_wq
,
5179 atomic_read(&dev
->dev_queue_obj
.queue_cnt
) ||
5180 kthread_should_stop());
5184 spin_lock_irq(&dev
->dev_status_lock
);
5185 if (dev
->dev_status
& TRANSPORT_DEVICE_SHUTDOWN
) {
5186 spin_unlock_irq(&dev
->dev_status_lock
);
5187 transport_processing_shutdown(dev
);
5190 spin_unlock_irq(&dev
->dev_status_lock
);
5193 __transport_execute_tasks(dev
);
5195 cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
);
5199 switch (cmd
->t_state
) {
5200 case TRANSPORT_NEW_CMD_MAP
:
5201 if (!cmd
->se_tfo
->new_cmd_map
) {
5202 pr_err("cmd->se_tfo->new_cmd_map is"
5203 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5206 ret
= cmd
->se_tfo
->new_cmd_map(cmd
);
5208 cmd
->transport_error_status
= ret
;
5209 transport_generic_request_failure(cmd
, NULL
,
5210 0, (cmd
->data_direction
!=
5215 case TRANSPORT_NEW_CMD
:
5216 ret
= transport_generic_new_cmd(cmd
);
5220 cmd
->transport_error_status
= ret
;
5221 transport_generic_request_failure(cmd
, NULL
,
5222 0, (cmd
->data_direction
!=
5226 case TRANSPORT_PROCESS_WRITE
:
5227 transport_generic_process_write(cmd
);
5229 case TRANSPORT_COMPLETE_OK
:
5230 transport_stop_all_task_timers(cmd
);
5231 transport_generic_complete_ok(cmd
);
5233 case TRANSPORT_REMOVE
:
5234 transport_generic_remove(cmd
, 0);
5236 case TRANSPORT_FREE_CMD_INTR
:
5237 transport_generic_free_cmd(cmd
, 0, 0);
5239 case TRANSPORT_PROCESS_TMR
:
5240 transport_generic_do_tmr(cmd
);
5242 case TRANSPORT_COMPLETE_FAILURE
:
5243 transport_generic_request_failure(cmd
, NULL
, 1, 1);
5245 case TRANSPORT_COMPLETE_TIMEOUT
:
5246 transport_stop_all_task_timers(cmd
);
5247 transport_generic_request_timeout(cmd
);
5249 case TRANSPORT_COMPLETE_QF_WP
:
5250 transport_generic_write_pending(cmd
);
5253 pr_err("Unknown t_state: %d deferred_t_state:"
5254 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5255 " %u\n", cmd
->t_state
, cmd
->deferred_t_state
,
5256 cmd
->se_tfo
->get_task_tag(cmd
),
5257 cmd
->se_tfo
->get_cmd_state(cmd
),
5258 cmd
->se_lun
->unpacked_lun
);
5266 transport_release_all_cmds(dev
);
5267 dev
->process_thread
= NULL
;