omap3 evm, beagle and overo use the generic twl4030 script
[linux-ginger.git] / arch / ia64 / kernel / process.c
blob3ab8373103ecf9252f1ceeff4f2076e8da471113
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
32 #include <asm/cpu.h>
33 #include <asm/delay.h>
34 #include <asm/elf.h>
35 #include <asm/ia32.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
44 #include <asm/user.h>
46 #include "entry.h"
48 #ifdef CONFIG_PERFMON
49 # include <asm/perfmon.h>
50 #endif
52 #include "sigframe.h"
54 void (*ia64_mark_idle)(int);
56 unsigned long boot_option_idle_override = 0;
57 EXPORT_SYMBOL(boot_option_idle_override);
58 unsigned long idle_halt;
59 EXPORT_SYMBOL(idle_halt);
60 unsigned long idle_nomwait;
61 EXPORT_SYMBOL(idle_nomwait);
63 void
64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
66 unsigned long ip, sp, bsp;
67 char buf[128]; /* don't make it so big that it overflows the stack! */
69 printk("\nCall Trace:\n");
70 do {
71 unw_get_ip(info, &ip);
72 if (ip == 0)
73 break;
75 unw_get_sp(info, &sp);
76 unw_get_bsp(info, &bsp);
77 snprintf(buf, sizeof(buf),
78 " [<%016lx>] %%s\n"
79 " sp=%016lx bsp=%016lx\n",
80 ip, sp, bsp);
81 print_symbol(buf, ip);
82 } while (unw_unwind(info) >= 0);
85 void
86 show_stack (struct task_struct *task, unsigned long *sp)
88 if (!task)
89 unw_init_running(ia64_do_show_stack, NULL);
90 else {
91 struct unw_frame_info info;
93 unw_init_from_blocked_task(&info, task);
94 ia64_do_show_stack(&info, NULL);
98 void
99 dump_stack (void)
101 show_stack(NULL, NULL);
104 EXPORT_SYMBOL(dump_stack);
106 void
107 show_regs (struct pt_regs *regs)
109 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
111 print_modules();
112 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
113 smp_processor_id(), current->comm);
114 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
115 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
116 init_utsname()->release);
117 print_symbol("ip is at %s\n", ip);
118 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
119 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
120 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
121 regs->ar_rnat, regs->ar_bspstore, regs->pr);
122 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
123 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
124 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
125 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
126 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
127 regs->f6.u.bits[1], regs->f6.u.bits[0],
128 regs->f7.u.bits[1], regs->f7.u.bits[0]);
129 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
130 regs->f8.u.bits[1], regs->f8.u.bits[0],
131 regs->f9.u.bits[1], regs->f9.u.bits[0]);
132 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
133 regs->f10.u.bits[1], regs->f10.u.bits[0],
134 regs->f11.u.bits[1], regs->f11.u.bits[0]);
136 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
137 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
138 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
139 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
140 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
141 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
142 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
143 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
144 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
146 if (user_mode(regs)) {
147 /* print the stacked registers */
148 unsigned long val, *bsp, ndirty;
149 int i, sof, is_nat = 0;
151 sof = regs->cr_ifs & 0x7f; /* size of frame */
152 ndirty = (regs->loadrs >> 19);
153 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
154 for (i = 0; i < sof; ++i) {
155 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
156 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
157 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
159 } else
160 show_stack(NULL, NULL);
163 void tsk_clear_notify_resume(struct task_struct *tsk)
165 #ifdef CONFIG_PERFMON
166 if (tsk->thread.pfm_needs_checking)
167 return;
168 #endif
169 if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE))
170 return;
171 clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME);
175 * do_notify_resume_user():
176 * Called from notify_resume_user at entry.S, with interrupts disabled.
178 void
179 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
181 if (fsys_mode(current, &scr->pt)) {
183 * defer signal-handling etc. until we return to
184 * privilege-level 0.
186 if (!ia64_psr(&scr->pt)->lp)
187 ia64_psr(&scr->pt)->lp = 1;
188 return;
191 #ifdef CONFIG_PERFMON
192 if (current->thread.pfm_needs_checking)
194 * Note: pfm_handle_work() allow us to call it with interrupts
195 * disabled, and may enable interrupts within the function.
197 pfm_handle_work();
198 #endif
200 /* deal with pending signal delivery */
201 if (test_thread_flag(TIF_SIGPENDING)) {
202 local_irq_enable(); /* force interrupt enable */
203 ia64_do_signal(scr, in_syscall);
206 /* copy user rbs to kernel rbs */
207 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
208 local_irq_enable(); /* force interrupt enable */
209 ia64_sync_krbs();
212 local_irq_disable(); /* force interrupt disable */
215 static int pal_halt = 1;
216 static int can_do_pal_halt = 1;
218 static int __init nohalt_setup(char * str)
220 pal_halt = can_do_pal_halt = 0;
221 return 1;
223 __setup("nohalt", nohalt_setup);
225 void
226 update_pal_halt_status(int status)
228 can_do_pal_halt = pal_halt && status;
232 * We use this if we don't have any better idle routine..
234 void
235 default_idle (void)
237 local_irq_enable();
238 while (!need_resched()) {
239 if (can_do_pal_halt) {
240 local_irq_disable();
241 if (!need_resched()) {
242 safe_halt();
244 local_irq_enable();
245 } else
246 cpu_relax();
250 #ifdef CONFIG_HOTPLUG_CPU
251 /* We don't actually take CPU down, just spin without interrupts. */
252 static inline void play_dead(void)
254 extern void ia64_cpu_local_tick (void);
255 unsigned int this_cpu = smp_processor_id();
257 /* Ack it */
258 __get_cpu_var(cpu_state) = CPU_DEAD;
260 max_xtp();
261 local_irq_disable();
262 idle_task_exit();
263 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
265 * The above is a point of no-return, the processor is
266 * expected to be in SAL loop now.
268 BUG();
270 #else
271 static inline void play_dead(void)
273 BUG();
275 #endif /* CONFIG_HOTPLUG_CPU */
277 static void do_nothing(void *unused)
282 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
283 * pm_idle and update to new pm_idle value. Required while changing pm_idle
284 * handler on SMP systems.
286 * Caller must have changed pm_idle to the new value before the call. Old
287 * pm_idle value will not be used by any CPU after the return of this function.
289 void cpu_idle_wait(void)
291 smp_mb();
292 /* kick all the CPUs so that they exit out of pm_idle */
293 smp_call_function(do_nothing, NULL, 1);
295 EXPORT_SYMBOL_GPL(cpu_idle_wait);
297 void __attribute__((noreturn))
298 cpu_idle (void)
300 void (*mark_idle)(int) = ia64_mark_idle;
301 int cpu = smp_processor_id();
303 /* endless idle loop with no priority at all */
304 while (1) {
305 if (can_do_pal_halt) {
306 current_thread_info()->status &= ~TS_POLLING;
308 * TS_POLLING-cleared state must be visible before we
309 * test NEED_RESCHED:
311 smp_mb();
312 } else {
313 current_thread_info()->status |= TS_POLLING;
316 if (!need_resched()) {
317 void (*idle)(void);
318 #ifdef CONFIG_SMP
319 min_xtp();
320 #endif
321 rmb();
322 if (mark_idle)
323 (*mark_idle)(1);
325 idle = pm_idle;
326 if (!idle)
327 idle = default_idle;
328 (*idle)();
329 if (mark_idle)
330 (*mark_idle)(0);
331 #ifdef CONFIG_SMP
332 normal_xtp();
333 #endif
335 preempt_enable_no_resched();
336 schedule();
337 preempt_disable();
338 check_pgt_cache();
339 if (cpu_is_offline(cpu))
340 play_dead();
344 void
345 ia64_save_extra (struct task_struct *task)
347 #ifdef CONFIG_PERFMON
348 unsigned long info;
349 #endif
351 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
352 ia64_save_debug_regs(&task->thread.dbr[0]);
354 #ifdef CONFIG_PERFMON
355 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
356 pfm_save_regs(task);
358 info = __get_cpu_var(pfm_syst_info);
359 if (info & PFM_CPUINFO_SYST_WIDE)
360 pfm_syst_wide_update_task(task, info, 0);
361 #endif
363 #ifdef CONFIG_IA32_SUPPORT
364 if (IS_IA32_PROCESS(task_pt_regs(task)))
365 ia32_save_state(task);
366 #endif
369 void
370 ia64_load_extra (struct task_struct *task)
372 #ifdef CONFIG_PERFMON
373 unsigned long info;
374 #endif
376 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
377 ia64_load_debug_regs(&task->thread.dbr[0]);
379 #ifdef CONFIG_PERFMON
380 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
381 pfm_load_regs(task);
383 info = __get_cpu_var(pfm_syst_info);
384 if (info & PFM_CPUINFO_SYST_WIDE)
385 pfm_syst_wide_update_task(task, info, 1);
386 #endif
388 #ifdef CONFIG_IA32_SUPPORT
389 if (IS_IA32_PROCESS(task_pt_regs(task)))
390 ia32_load_state(task);
391 #endif
395 * Copy the state of an ia-64 thread.
397 * We get here through the following call chain:
399 * from user-level: from kernel:
401 * <clone syscall> <some kernel call frames>
402 * sys_clone :
403 * do_fork do_fork
404 * copy_thread copy_thread
406 * This means that the stack layout is as follows:
408 * +---------------------+ (highest addr)
409 * | struct pt_regs |
410 * +---------------------+
411 * | struct switch_stack |
412 * +---------------------+
413 * | |
414 * | memory stack |
415 * | | <-- sp (lowest addr)
416 * +---------------------+
418 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
419 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
420 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
421 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
422 * the stack is page aligned and the page size is at least 4KB, this is always the case,
423 * so there is nothing to worry about.
426 copy_thread (int nr, unsigned long clone_flags,
427 unsigned long user_stack_base, unsigned long user_stack_size,
428 struct task_struct *p, struct pt_regs *regs)
430 extern char ia64_ret_from_clone, ia32_ret_from_clone;
431 struct switch_stack *child_stack, *stack;
432 unsigned long rbs, child_rbs, rbs_size;
433 struct pt_regs *child_ptregs;
434 int retval = 0;
436 #ifdef CONFIG_SMP
438 * For SMP idle threads, fork_by_hand() calls do_fork with
439 * NULL regs.
441 if (!regs)
442 return 0;
443 #endif
445 stack = ((struct switch_stack *) regs) - 1;
447 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
448 child_stack = (struct switch_stack *) child_ptregs - 1;
450 /* copy parent's switch_stack & pt_regs to child: */
451 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
453 rbs = (unsigned long) current + IA64_RBS_OFFSET;
454 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
455 rbs_size = stack->ar_bspstore - rbs;
457 /* copy the parent's register backing store to the child: */
458 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
460 if (likely(user_mode(child_ptregs))) {
461 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
462 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
463 if (user_stack_base) {
464 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
465 child_ptregs->ar_bspstore = user_stack_base;
466 child_ptregs->ar_rnat = 0;
467 child_ptregs->loadrs = 0;
469 } else {
471 * Note: we simply preserve the relative position of
472 * the stack pointer here. There is no need to
473 * allocate a scratch area here, since that will have
474 * been taken care of by the caller of sys_clone()
475 * already.
477 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
478 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
480 child_stack->ar_bspstore = child_rbs + rbs_size;
481 if (IS_IA32_PROCESS(regs))
482 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
483 else
484 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
486 /* copy parts of thread_struct: */
487 p->thread.ksp = (unsigned long) child_stack - 16;
489 /* stop some PSR bits from being inherited.
490 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
491 * therefore we must specify them explicitly here and not include them in
492 * IA64_PSR_BITS_TO_CLEAR.
494 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
495 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
498 * NOTE: The calling convention considers all floating point
499 * registers in the high partition (fph) to be scratch. Since
500 * the only way to get to this point is through a system call,
501 * we know that the values in fph are all dead. Hence, there
502 * is no need to inherit the fph state from the parent to the
503 * child and all we have to do is to make sure that
504 * IA64_THREAD_FPH_VALID is cleared in the child.
506 * XXX We could push this optimization a bit further by
507 * clearing IA64_THREAD_FPH_VALID on ANY system call.
508 * However, it's not clear this is worth doing. Also, it
509 * would be a slight deviation from the normal Linux system
510 * call behavior where scratch registers are preserved across
511 * system calls (unless used by the system call itself).
513 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
514 | IA64_THREAD_PM_VALID)
515 # define THREAD_FLAGS_TO_SET 0
516 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
517 | THREAD_FLAGS_TO_SET);
518 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
519 #ifdef CONFIG_IA32_SUPPORT
521 * If we're cloning an IA32 task then save the IA32 extra
522 * state from the current task to the new task
524 if (IS_IA32_PROCESS(task_pt_regs(current))) {
525 ia32_save_state(p);
526 if (clone_flags & CLONE_SETTLS)
527 retval = ia32_clone_tls(p, child_ptregs);
529 /* Copy partially mapped page list */
530 if (!retval)
531 retval = ia32_copy_ia64_partial_page_list(p,
532 clone_flags);
534 #endif
536 #ifdef CONFIG_PERFMON
537 if (current->thread.pfm_context)
538 pfm_inherit(p, child_ptregs);
539 #endif
540 return retval;
543 static void
544 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
546 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
547 unsigned long uninitialized_var(ip); /* GCC be quiet */
548 elf_greg_t *dst = arg;
549 struct pt_regs *pt;
550 char nat;
551 int i;
553 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
555 if (unw_unwind_to_user(info) < 0)
556 return;
558 unw_get_sp(info, &sp);
559 pt = (struct pt_regs *) (sp + 16);
561 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
563 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
564 return;
566 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
567 &ar_rnat);
570 * coredump format:
571 * r0-r31
572 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
573 * predicate registers (p0-p63)
574 * b0-b7
575 * ip cfm user-mask
576 * ar.rsc ar.bsp ar.bspstore ar.rnat
577 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
580 /* r0 is zero */
581 for (i = 1, mask = (1UL << i); i < 32; ++i) {
582 unw_get_gr(info, i, &dst[i], &nat);
583 if (nat)
584 nat_bits |= mask;
585 mask <<= 1;
587 dst[32] = nat_bits;
588 unw_get_pr(info, &dst[33]);
590 for (i = 0; i < 8; ++i)
591 unw_get_br(info, i, &dst[34 + i]);
593 unw_get_rp(info, &ip);
594 dst[42] = ip + ia64_psr(pt)->ri;
595 dst[43] = cfm;
596 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
598 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
600 * For bsp and bspstore, unw_get_ar() would return the kernel
601 * addresses, but we need the user-level addresses instead:
603 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
604 dst[47] = pt->ar_bspstore;
605 dst[48] = ar_rnat;
606 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
607 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
608 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
609 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
610 unw_get_ar(info, UNW_AR_LC, &dst[53]);
611 unw_get_ar(info, UNW_AR_EC, &dst[54]);
612 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
613 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
616 void
617 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
619 elf_fpreg_t *dst = arg;
620 int i;
622 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
624 if (unw_unwind_to_user(info) < 0)
625 return;
627 /* f0 is 0.0, f1 is 1.0 */
629 for (i = 2; i < 32; ++i)
630 unw_get_fr(info, i, dst + i);
632 ia64_flush_fph(task);
633 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
634 memcpy(dst + 32, task->thread.fph, 96*16);
637 void
638 do_copy_regs (struct unw_frame_info *info, void *arg)
640 do_copy_task_regs(current, info, arg);
643 void
644 do_dump_fpu (struct unw_frame_info *info, void *arg)
646 do_dump_task_fpu(current, info, arg);
649 void
650 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
652 unw_init_running(do_copy_regs, dst);
656 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
658 unw_init_running(do_dump_fpu, dst);
659 return 1; /* f0-f31 are always valid so we always return 1 */
662 long
663 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
664 struct pt_regs *regs)
666 char *fname;
667 int error;
669 fname = getname(filename);
670 error = PTR_ERR(fname);
671 if (IS_ERR(fname))
672 goto out;
673 error = do_execve(fname, argv, envp, regs);
674 putname(fname);
675 out:
676 return error;
679 pid_t
680 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
682 extern void start_kernel_thread (void);
683 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
684 struct {
685 struct switch_stack sw;
686 struct pt_regs pt;
687 } regs;
689 memset(&regs, 0, sizeof(regs));
690 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
691 regs.pt.r1 = helper_fptr[1]; /* set GP */
692 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
693 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
694 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
695 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
696 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
697 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
698 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
699 regs.sw.pr = (1 << PRED_KERNEL_STACK);
700 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
702 EXPORT_SYMBOL(kernel_thread);
704 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
706 kernel_thread_helper (int (*fn)(void *), void *arg)
708 #ifdef CONFIG_IA32_SUPPORT
709 if (IS_IA32_PROCESS(task_pt_regs(current))) {
710 /* A kernel thread is always a 64-bit process. */
711 current->thread.map_base = DEFAULT_MAP_BASE;
712 current->thread.task_size = DEFAULT_TASK_SIZE;
713 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
714 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
716 #endif
717 return (*fn)(arg);
721 * Flush thread state. This is called when a thread does an execve().
723 void
724 flush_thread (void)
726 /* drop floating-point and debug-register state if it exists: */
727 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
728 ia64_drop_fpu(current);
729 #ifdef CONFIG_IA32_SUPPORT
730 if (IS_IA32_PROCESS(task_pt_regs(current))) {
731 ia32_drop_ia64_partial_page_list(current);
732 current->thread.task_size = IA32_PAGE_OFFSET;
733 set_fs(USER_DS);
734 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
736 #endif
740 * Clean up state associated with current thread. This is called when
741 * the thread calls exit().
743 void
744 exit_thread (void)
747 ia64_drop_fpu(current);
748 #ifdef CONFIG_PERFMON
749 /* if needed, stop monitoring and flush state to perfmon context */
750 if (current->thread.pfm_context)
751 pfm_exit_thread(current);
753 /* free debug register resources */
754 if (current->thread.flags & IA64_THREAD_DBG_VALID)
755 pfm_release_debug_registers(current);
756 #endif
757 if (IS_IA32_PROCESS(task_pt_regs(current)))
758 ia32_drop_ia64_partial_page_list(current);
761 unsigned long
762 get_wchan (struct task_struct *p)
764 struct unw_frame_info info;
765 unsigned long ip;
766 int count = 0;
768 if (!p || p == current || p->state == TASK_RUNNING)
769 return 0;
772 * Note: p may not be a blocked task (it could be current or
773 * another process running on some other CPU. Rather than
774 * trying to determine if p is really blocked, we just assume
775 * it's blocked and rely on the unwind routines to fail
776 * gracefully if the process wasn't really blocked after all.
777 * --davidm 99/12/15
779 unw_init_from_blocked_task(&info, p);
780 do {
781 if (p->state == TASK_RUNNING)
782 return 0;
783 if (unw_unwind(&info) < 0)
784 return 0;
785 unw_get_ip(&info, &ip);
786 if (!in_sched_functions(ip))
787 return ip;
788 } while (count++ < 16);
789 return 0;
792 void
793 cpu_halt (void)
795 pal_power_mgmt_info_u_t power_info[8];
796 unsigned long min_power;
797 int i, min_power_state;
799 if (ia64_pal_halt_info(power_info) != 0)
800 return;
802 min_power_state = 0;
803 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
804 for (i = 1; i < 8; ++i)
805 if (power_info[i].pal_power_mgmt_info_s.im
806 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
807 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
808 min_power_state = i;
811 while (1)
812 ia64_pal_halt(min_power_state);
815 void machine_shutdown(void)
817 #ifdef CONFIG_HOTPLUG_CPU
818 int cpu;
820 for_each_online_cpu(cpu) {
821 if (cpu != smp_processor_id())
822 cpu_down(cpu);
824 #endif
825 #ifdef CONFIG_KEXEC
826 kexec_disable_iosapic();
827 #endif
830 void
831 machine_restart (char *restart_cmd)
833 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
834 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
837 void
838 machine_halt (void)
840 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
841 cpu_halt();
844 void
845 machine_power_off (void)
847 if (pm_power_off)
848 pm_power_off();
849 machine_halt();