1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
30 struct follow_page_context
{
31 struct dev_pagemap
*pgmap
;
32 unsigned int page_mask
;
35 static inline void sanity_check_pinned_pages(struct page
**pages
,
38 if (!IS_ENABLED(CONFIG_DEBUG_VM
))
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
53 for (; npages
; npages
--, pages
++) {
54 struct page
*page
= *pages
;
60 folio
= page_folio(page
);
62 if (is_zero_page(page
) ||
63 !folio_test_anon(folio
))
65 if (!folio_test_large(folio
) || folio_test_hugetlb(folio
))
66 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio
->page
), page
);
68 /* Either a PTE-mapped or a PMD-mapped THP. */
69 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio
->page
) &&
70 !PageAnonExclusive(page
), page
);
75 * Return the folio with ref appropriately incremented,
76 * or NULL if that failed.
78 static inline struct folio
*try_get_folio(struct page
*page
, int refs
)
83 folio
= page_folio(page
);
84 if (WARN_ON_ONCE(folio_ref_count(folio
) < 0))
86 if (unlikely(!folio_ref_try_add(folio
, refs
)))
90 * At this point we have a stable reference to the folio; but it
91 * could be that between calling page_folio() and the refcount
92 * increment, the folio was split, in which case we'd end up
93 * holding a reference on a folio that has nothing to do with the page
94 * we were given anymore.
95 * So now that the folio is stable, recheck that the page still
96 * belongs to this folio.
98 if (unlikely(page_folio(page
) != folio
)) {
99 if (!put_devmap_managed_folio_refs(folio
, refs
))
100 folio_put_refs(folio
, refs
);
107 static void gup_put_folio(struct folio
*folio
, int refs
, unsigned int flags
)
109 if (flags
& FOLL_PIN
) {
110 if (is_zero_folio(folio
))
112 node_stat_mod_folio(folio
, NR_FOLL_PIN_RELEASED
, refs
);
113 if (folio_test_large(folio
))
114 atomic_sub(refs
, &folio
->_pincount
);
116 refs
*= GUP_PIN_COUNTING_BIAS
;
119 if (!put_devmap_managed_folio_refs(folio
, refs
))
120 folio_put_refs(folio
, refs
);
124 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
125 * @folio: pointer to folio to be grabbed
126 * @refs: the value to (effectively) add to the folio's refcount
127 * @flags: gup flags: these are the FOLL_* flag values
129 * This might not do anything at all, depending on the flags argument.
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
134 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
137 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
138 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
140 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
143 * It is called when we have a stable reference for the folio, typically in
146 int __must_check
try_grab_folio(struct folio
*folio
, int refs
,
149 if (WARN_ON_ONCE(folio_ref_count(folio
) <= 0))
152 if (unlikely(!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(&folio
->page
)))
155 if (flags
& FOLL_GET
)
156 folio_ref_add(folio
, refs
);
157 else if (flags
& FOLL_PIN
) {
159 * Don't take a pin on the zero page - it's not going anywhere
160 * and it is used in a *lot* of places.
162 if (is_zero_folio(folio
))
166 * Increment the normal page refcount field at least once,
167 * so that the page really is pinned.
169 if (folio_test_large(folio
)) {
170 folio_ref_add(folio
, refs
);
171 atomic_add(refs
, &folio
->_pincount
);
173 folio_ref_add(folio
, refs
* GUP_PIN_COUNTING_BIAS
);
176 node_stat_mod_folio(folio
, NR_FOLL_PIN_ACQUIRED
, refs
);
183 * unpin_user_page() - release a dma-pinned page
184 * @page: pointer to page to be released
186 * Pages that were pinned via pin_user_pages*() must be released via either
187 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
188 * that such pages can be separately tracked and uniquely handled. In
189 * particular, interactions with RDMA and filesystems need special handling.
191 void unpin_user_page(struct page
*page
)
193 sanity_check_pinned_pages(&page
, 1);
194 gup_put_folio(page_folio(page
), 1, FOLL_PIN
);
196 EXPORT_SYMBOL(unpin_user_page
);
199 * unpin_folio() - release a dma-pinned folio
200 * @folio: pointer to folio to be released
202 * Folios that were pinned via memfd_pin_folios() or other similar routines
203 * must be released either using unpin_folio() or unpin_folios().
205 void unpin_folio(struct folio
*folio
)
207 gup_put_folio(folio
, 1, FOLL_PIN
);
209 EXPORT_SYMBOL_GPL(unpin_folio
);
212 * folio_add_pin - Try to get an additional pin on a pinned folio
213 * @folio: The folio to be pinned
215 * Get an additional pin on a folio we already have a pin on. Makes no change
216 * if the folio is a zero_page.
218 void folio_add_pin(struct folio
*folio
)
220 if (is_zero_folio(folio
))
224 * Similar to try_grab_folio(): be sure to *also* increment the normal
225 * page refcount field at least once, so that the page really is
228 if (folio_test_large(folio
)) {
229 WARN_ON_ONCE(atomic_read(&folio
->_pincount
) < 1);
230 folio_ref_inc(folio
);
231 atomic_inc(&folio
->_pincount
);
233 WARN_ON_ONCE(folio_ref_count(folio
) < GUP_PIN_COUNTING_BIAS
);
234 folio_ref_add(folio
, GUP_PIN_COUNTING_BIAS
);
238 static inline struct folio
*gup_folio_range_next(struct page
*start
,
239 unsigned long npages
, unsigned long i
, unsigned int *ntails
)
241 struct page
*next
= nth_page(start
, i
);
242 struct folio
*folio
= page_folio(next
);
245 if (folio_test_large(folio
))
246 nr
= min_t(unsigned int, npages
- i
,
247 folio_nr_pages(folio
) - folio_page_idx(folio
, next
));
253 static inline struct folio
*gup_folio_next(struct page
**list
,
254 unsigned long npages
, unsigned long i
, unsigned int *ntails
)
256 struct folio
*folio
= page_folio(list
[i
]);
259 for (nr
= i
+ 1; nr
< npages
; nr
++) {
260 if (page_folio(list
[nr
]) != folio
)
269 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
270 * @pages: array of pages to be maybe marked dirty, and definitely released.
271 * @npages: number of pages in the @pages array.
272 * @make_dirty: whether to mark the pages dirty
274 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275 * variants called on that page.
277 * For each page in the @pages array, make that page (or its head page, if a
278 * compound page) dirty, if @make_dirty is true, and if the page was previously
279 * listed as clean. In any case, releases all pages using unpin_user_page(),
280 * possibly via unpin_user_pages(), for the non-dirty case.
282 * Please see the unpin_user_page() documentation for details.
284 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285 * required, then the caller should a) verify that this is really correct,
286 * because _lock() is usually required, and b) hand code it:
287 * set_page_dirty_lock(), unpin_user_page().
290 void unpin_user_pages_dirty_lock(struct page
**pages
, unsigned long npages
,
298 unpin_user_pages(pages
, npages
);
302 sanity_check_pinned_pages(pages
, npages
);
303 for (i
= 0; i
< npages
; i
+= nr
) {
304 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
306 * Checking PageDirty at this point may race with
307 * clear_page_dirty_for_io(), but that's OK. Two key
310 * 1) This code sees the page as already dirty, so it
311 * skips the call to set_page_dirty(). That could happen
312 * because clear_page_dirty_for_io() called
313 * folio_mkclean(), followed by set_page_dirty().
314 * However, now the page is going to get written back,
315 * which meets the original intention of setting it
316 * dirty, so all is well: clear_page_dirty_for_io() goes
317 * on to call TestClearPageDirty(), and write the page
320 * 2) This code sees the page as clean, so it calls
321 * set_page_dirty(). The page stays dirty, despite being
322 * written back, so it gets written back again in the
323 * next writeback cycle. This is harmless.
325 if (!folio_test_dirty(folio
)) {
327 folio_mark_dirty(folio
);
330 gup_put_folio(folio
, nr
, FOLL_PIN
);
333 EXPORT_SYMBOL(unpin_user_pages_dirty_lock
);
336 * unpin_user_page_range_dirty_lock() - release and optionally dirty
337 * gup-pinned page range
339 * @page: the starting page of a range maybe marked dirty, and definitely released.
340 * @npages: number of consecutive pages to release.
341 * @make_dirty: whether to mark the pages dirty
343 * "gup-pinned page range" refers to a range of pages that has had one of the
344 * pin_user_pages() variants called on that page.
346 * For the page ranges defined by [page .. page+npages], make that range (or
347 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
348 * page range was previously listed as clean.
350 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
351 * required, then the caller should a) verify that this is really correct,
352 * because _lock() is usually required, and b) hand code it:
353 * set_page_dirty_lock(), unpin_user_page().
356 void unpin_user_page_range_dirty_lock(struct page
*page
, unsigned long npages
,
363 for (i
= 0; i
< npages
; i
+= nr
) {
364 folio
= gup_folio_range_next(page
, npages
, i
, &nr
);
365 if (make_dirty
&& !folio_test_dirty(folio
)) {
367 folio_mark_dirty(folio
);
370 gup_put_folio(folio
, nr
, FOLL_PIN
);
373 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock
);
375 static void gup_fast_unpin_user_pages(struct page
**pages
, unsigned long npages
)
382 * Don't perform any sanity checks because we might have raced with
383 * fork() and some anonymous pages might now actually be shared --
384 * which is why we're unpinning after all.
386 for (i
= 0; i
< npages
; i
+= nr
) {
387 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
388 gup_put_folio(folio
, nr
, FOLL_PIN
);
393 * unpin_user_pages() - release an array of gup-pinned pages.
394 * @pages: array of pages to be marked dirty and released.
395 * @npages: number of pages in the @pages array.
397 * For each page in the @pages array, release the page using unpin_user_page().
399 * Please see the unpin_user_page() documentation for details.
401 void unpin_user_pages(struct page
**pages
, unsigned long npages
)
408 * If this WARN_ON() fires, then the system *might* be leaking pages (by
409 * leaving them pinned), but probably not. More likely, gup/pup returned
410 * a hard -ERRNO error to the caller, who erroneously passed it here.
412 if (WARN_ON(IS_ERR_VALUE(npages
)))
415 sanity_check_pinned_pages(pages
, npages
);
416 for (i
= 0; i
< npages
; i
+= nr
) {
421 folio
= gup_folio_next(pages
, npages
, i
, &nr
);
422 gup_put_folio(folio
, nr
, FOLL_PIN
);
425 EXPORT_SYMBOL(unpin_user_pages
);
428 * unpin_user_folio() - release pages of a folio
429 * @folio: pointer to folio to be released
430 * @npages: number of pages of same folio
432 * Release npages of the folio
434 void unpin_user_folio(struct folio
*folio
, unsigned long npages
)
436 gup_put_folio(folio
, npages
, FOLL_PIN
);
438 EXPORT_SYMBOL(unpin_user_folio
);
441 * unpin_folios() - release an array of gup-pinned folios.
442 * @folios: array of folios to be marked dirty and released.
443 * @nfolios: number of folios in the @folios array.
445 * For each folio in the @folios array, release the folio using gup_put_folio.
447 * Please see the unpin_folio() documentation for details.
449 void unpin_folios(struct folio
**folios
, unsigned long nfolios
)
451 unsigned long i
= 0, j
;
454 * If this WARN_ON() fires, then the system *might* be leaking folios
455 * (by leaving them pinned), but probably not. More likely, gup/pup
456 * returned a hard -ERRNO error to the caller, who erroneously passed
459 if (WARN_ON(IS_ERR_VALUE(nfolios
)))
462 while (i
< nfolios
) {
463 for (j
= i
+ 1; j
< nfolios
; j
++)
464 if (folios
[i
] != folios
[j
])
468 gup_put_folio(folios
[i
], j
- i
, FOLL_PIN
);
472 EXPORT_SYMBOL_GPL(unpin_folios
);
475 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
476 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
477 * cache bouncing on large SMP machines for concurrent pinned gups.
479 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags
)
481 if (!test_bit(MMF_HAS_PINNED
, mm_flags
))
482 set_bit(MMF_HAS_PINNED
, mm_flags
);
487 #ifdef CONFIG_HAVE_GUP_FAST
488 static int record_subpages(struct page
*page
, unsigned long sz
,
489 unsigned long addr
, unsigned long end
,
492 struct page
*start_page
;
495 start_page
= nth_page(page
, (addr
& (sz
- 1)) >> PAGE_SHIFT
);
496 for (nr
= 0; addr
!= end
; nr
++, addr
+= PAGE_SIZE
)
497 pages
[nr
] = nth_page(start_page
, nr
);
503 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
504 * @page: pointer to page to be grabbed
505 * @refs: the value to (effectively) add to the folio's refcount
506 * @flags: gup flags: these are the FOLL_* flag values.
508 * "grab" names in this file mean, "look at flags to decide whether to use
509 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
511 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
512 * same time. (That's true throughout the get_user_pages*() and
513 * pin_user_pages*() APIs.) Cases:
515 * FOLL_GET: folio's refcount will be incremented by @refs.
517 * FOLL_PIN on large folios: folio's refcount will be incremented by
518 * @refs, and its pincount will be incremented by @refs.
520 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
521 * @refs * GUP_PIN_COUNTING_BIAS.
523 * Return: The folio containing @page (with refcount appropriately
524 * incremented) for success, or NULL upon failure. If neither FOLL_GET
525 * nor FOLL_PIN was set, that's considered failure, and furthermore,
526 * a likely bug in the caller, so a warning is also emitted.
528 * It uses add ref unless zero to elevate the folio refcount and must be called
531 static struct folio
*try_grab_folio_fast(struct page
*page
, int refs
,
536 /* Raise warn if it is not called in fast GUP */
537 VM_WARN_ON_ONCE(!irqs_disabled());
539 if (WARN_ON_ONCE((flags
& (FOLL_GET
| FOLL_PIN
)) == 0))
542 if (unlikely(!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(page
)))
545 if (flags
& FOLL_GET
)
546 return try_get_folio(page
, refs
);
548 /* FOLL_PIN is set */
551 * Don't take a pin on the zero page - it's not going anywhere
552 * and it is used in a *lot* of places.
554 if (is_zero_page(page
))
555 return page_folio(page
);
557 folio
= try_get_folio(page
, refs
);
562 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
563 * right zone, so fail and let the caller fall back to the slow
566 if (unlikely((flags
& FOLL_LONGTERM
) &&
567 !folio_is_longterm_pinnable(folio
))) {
568 if (!put_devmap_managed_folio_refs(folio
, refs
))
569 folio_put_refs(folio
, refs
);
574 * When pinning a large folio, use an exact count to track it.
576 * However, be sure to *also* increment the normal folio
577 * refcount field at least once, so that the folio really
578 * is pinned. That's why the refcount from the earlier
579 * try_get_folio() is left intact.
581 if (folio_test_large(folio
))
582 atomic_add(refs
, &folio
->_pincount
);
585 refs
* (GUP_PIN_COUNTING_BIAS
- 1));
587 * Adjust the pincount before re-checking the PTE for changes.
588 * This is essentially a smp_mb() and is paired with a memory
589 * barrier in folio_try_share_anon_rmap_*().
591 smp_mb__after_atomic();
593 node_stat_mod_folio(folio
, NR_FOLL_PIN_ACQUIRED
, refs
);
597 #endif /* CONFIG_HAVE_GUP_FAST */
599 static struct page
*no_page_table(struct vm_area_struct
*vma
,
600 unsigned int flags
, unsigned long address
)
602 if (!(flags
& FOLL_DUMP
))
606 * When core dumping, we don't want to allocate unnecessary pages or
607 * page tables. Return error instead of NULL to skip handle_mm_fault,
608 * then get_dump_page() will return NULL to leave a hole in the dump.
609 * But we can only make this optimization where a hole would surely
610 * be zero-filled if handle_mm_fault() actually did handle it.
612 if (is_vm_hugetlb_page(vma
)) {
613 struct hstate
*h
= hstate_vma(vma
);
615 if (!hugetlbfs_pagecache_present(h
, vma
, address
))
616 return ERR_PTR(-EFAULT
);
617 } else if ((vma_is_anonymous(vma
) || !vma
->vm_ops
->fault
)) {
618 return ERR_PTR(-EFAULT
);
624 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
625 static struct page
*follow_huge_pud(struct vm_area_struct
*vma
,
626 unsigned long addr
, pud_t
*pudp
,
627 int flags
, struct follow_page_context
*ctx
)
629 struct mm_struct
*mm
= vma
->vm_mm
;
632 unsigned long pfn
= pud_pfn(pud
);
635 assert_spin_locked(pud_lockptr(mm
, pudp
));
637 if ((flags
& FOLL_WRITE
) && !pud_write(pud
))
640 if (!pud_present(pud
))
643 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
645 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
) &&
648 * device mapped pages can only be returned if the caller
649 * will manage the page reference count.
651 * At least one of FOLL_GET | FOLL_PIN must be set, so
654 if (!(flags
& (FOLL_GET
| FOLL_PIN
)))
655 return ERR_PTR(-EEXIST
);
657 if (flags
& FOLL_TOUCH
)
658 touch_pud(vma
, addr
, pudp
, flags
& FOLL_WRITE
);
660 ctx
->pgmap
= get_dev_pagemap(pfn
, ctx
->pgmap
);
662 return ERR_PTR(-EFAULT
);
665 page
= pfn_to_page(pfn
);
667 if (!pud_devmap(pud
) && !pud_write(pud
) &&
668 gup_must_unshare(vma
, flags
, page
))
669 return ERR_PTR(-EMLINK
);
671 ret
= try_grab_folio(page_folio(page
), 1, flags
);
675 ctx
->page_mask
= HPAGE_PUD_NR
- 1;
680 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
681 static inline bool can_follow_write_pmd(pmd_t pmd
, struct page
*page
,
682 struct vm_area_struct
*vma
,
685 /* If the pmd is writable, we can write to the page. */
689 /* Maybe FOLL_FORCE is set to override it? */
690 if (!(flags
& FOLL_FORCE
))
693 /* But FOLL_FORCE has no effect on shared mappings */
694 if (vma
->vm_flags
& (VM_MAYSHARE
| VM_SHARED
))
697 /* ... or read-only private ones */
698 if (!(vma
->vm_flags
& VM_MAYWRITE
))
701 /* ... or already writable ones that just need to take a write fault */
702 if (vma
->vm_flags
& VM_WRITE
)
706 * See can_change_pte_writable(): we broke COW and could map the page
707 * writable if we have an exclusive anonymous page ...
709 if (!page
|| !PageAnon(page
) || !PageAnonExclusive(page
))
712 /* ... and a write-fault isn't required for other reasons. */
713 if (pmd_needs_soft_dirty_wp(vma
, pmd
))
715 return !userfaultfd_huge_pmd_wp(vma
, pmd
);
718 static struct page
*follow_huge_pmd(struct vm_area_struct
*vma
,
719 unsigned long addr
, pmd_t
*pmd
,
721 struct follow_page_context
*ctx
)
723 struct mm_struct
*mm
= vma
->vm_mm
;
728 assert_spin_locked(pmd_lockptr(mm
, pmd
));
730 page
= pmd_page(pmdval
);
731 if ((flags
& FOLL_WRITE
) &&
732 !can_follow_write_pmd(pmdval
, page
, vma
, flags
))
735 /* Avoid dumping huge zero page */
736 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(pmdval
))
737 return ERR_PTR(-EFAULT
);
739 if (pmd_protnone(*pmd
) && !gup_can_follow_protnone(vma
, flags
))
742 if (!pmd_write(pmdval
) && gup_must_unshare(vma
, flags
, page
))
743 return ERR_PTR(-EMLINK
);
745 VM_BUG_ON_PAGE((flags
& FOLL_PIN
) && PageAnon(page
) &&
746 !PageAnonExclusive(page
), page
);
748 ret
= try_grab_folio(page_folio(page
), 1, flags
);
752 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
753 if (pmd_trans_huge(pmdval
) && (flags
& FOLL_TOUCH
))
754 touch_pmd(vma
, addr
, pmd
, flags
& FOLL_WRITE
);
755 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
758 ctx
->page_mask
= HPAGE_PMD_NR
- 1;
763 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
764 static struct page
*follow_huge_pud(struct vm_area_struct
*vma
,
765 unsigned long addr
, pud_t
*pudp
,
766 int flags
, struct follow_page_context
*ctx
)
771 static struct page
*follow_huge_pmd(struct vm_area_struct
*vma
,
772 unsigned long addr
, pmd_t
*pmd
,
774 struct follow_page_context
*ctx
)
778 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
780 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
781 pte_t
*pte
, unsigned int flags
)
783 if (flags
& FOLL_TOUCH
) {
784 pte_t orig_entry
= ptep_get(pte
);
785 pte_t entry
= orig_entry
;
787 if (flags
& FOLL_WRITE
)
788 entry
= pte_mkdirty(entry
);
789 entry
= pte_mkyoung(entry
);
791 if (!pte_same(orig_entry
, entry
)) {
792 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
793 update_mmu_cache(vma
, address
, pte
);
797 /* Proper page table entry exists, but no corresponding struct page */
801 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
802 static inline bool can_follow_write_pte(pte_t pte
, struct page
*page
,
803 struct vm_area_struct
*vma
,
806 /* If the pte is writable, we can write to the page. */
810 /* Maybe FOLL_FORCE is set to override it? */
811 if (!(flags
& FOLL_FORCE
))
814 /* But FOLL_FORCE has no effect on shared mappings */
815 if (vma
->vm_flags
& (VM_MAYSHARE
| VM_SHARED
))
818 /* ... or read-only private ones */
819 if (!(vma
->vm_flags
& VM_MAYWRITE
))
822 /* ... or already writable ones that just need to take a write fault */
823 if (vma
->vm_flags
& VM_WRITE
)
827 * See can_change_pte_writable(): we broke COW and could map the page
828 * writable if we have an exclusive anonymous page ...
830 if (!page
|| !PageAnon(page
) || !PageAnonExclusive(page
))
833 /* ... and a write-fault isn't required for other reasons. */
834 if (pte_needs_soft_dirty_wp(vma
, pte
))
836 return !userfaultfd_pte_wp(vma
, pte
);
839 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
840 unsigned long address
, pmd_t
*pmd
, unsigned int flags
,
841 struct dev_pagemap
**pgmap
)
843 struct mm_struct
*mm
= vma
->vm_mm
;
850 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
851 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
852 (FOLL_PIN
| FOLL_GET
)))
853 return ERR_PTR(-EINVAL
);
855 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
857 return no_page_table(vma
, flags
, address
);
858 pte
= ptep_get(ptep
);
859 if (!pte_present(pte
))
861 if (pte_protnone(pte
) && !gup_can_follow_protnone(vma
, flags
))
864 page
= vm_normal_page(vma
, address
, pte
);
867 * We only care about anon pages in can_follow_write_pte() and don't
868 * have to worry about pte_devmap() because they are never anon.
870 if ((flags
& FOLL_WRITE
) &&
871 !can_follow_write_pte(pte
, page
, vma
, flags
)) {
876 if (!page
&& pte_devmap(pte
) && (flags
& (FOLL_GET
| FOLL_PIN
))) {
878 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
879 * case since they are only valid while holding the pgmap
882 *pgmap
= get_dev_pagemap(pte_pfn(pte
), *pgmap
);
884 page
= pte_page(pte
);
887 } else if (unlikely(!page
)) {
888 if (flags
& FOLL_DUMP
) {
889 /* Avoid special (like zero) pages in core dumps */
890 page
= ERR_PTR(-EFAULT
);
894 if (is_zero_pfn(pte_pfn(pte
))) {
895 page
= pte_page(pte
);
897 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
902 folio
= page_folio(page
);
904 if (!pte_write(pte
) && gup_must_unshare(vma
, flags
, page
)) {
905 page
= ERR_PTR(-EMLINK
);
909 VM_BUG_ON_PAGE((flags
& FOLL_PIN
) && PageAnon(page
) &&
910 !PageAnonExclusive(page
), page
);
912 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
913 ret
= try_grab_folio(folio
, 1, flags
);
920 * We need to make the page accessible if and only if we are going
921 * to access its content (the FOLL_PIN case). Please see
922 * Documentation/core-api/pin_user_pages.rst for details.
924 if (flags
& FOLL_PIN
) {
925 ret
= arch_make_folio_accessible(folio
);
927 unpin_user_page(page
);
932 if (flags
& FOLL_TOUCH
) {
933 if ((flags
& FOLL_WRITE
) &&
934 !pte_dirty(pte
) && !folio_test_dirty(folio
))
935 folio_mark_dirty(folio
);
937 * pte_mkyoung() would be more correct here, but atomic care
938 * is needed to avoid losing the dirty bit: it is easier to use
939 * folio_mark_accessed().
941 folio_mark_accessed(folio
);
944 pte_unmap_unlock(ptep
, ptl
);
947 pte_unmap_unlock(ptep
, ptl
);
950 return no_page_table(vma
, flags
, address
);
953 static struct page
*follow_pmd_mask(struct vm_area_struct
*vma
,
954 unsigned long address
, pud_t
*pudp
,
956 struct follow_page_context
*ctx
)
961 struct mm_struct
*mm
= vma
->vm_mm
;
963 pmd
= pmd_offset(pudp
, address
);
964 pmdval
= pmdp_get_lockless(pmd
);
965 if (pmd_none(pmdval
))
966 return no_page_table(vma
, flags
, address
);
967 if (!pmd_present(pmdval
))
968 return no_page_table(vma
, flags
, address
);
969 if (pmd_devmap(pmdval
)) {
970 ptl
= pmd_lock(mm
, pmd
);
971 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
975 return no_page_table(vma
, flags
, address
);
977 if (likely(!pmd_leaf(pmdval
)))
978 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
980 if (pmd_protnone(pmdval
) && !gup_can_follow_protnone(vma
, flags
))
981 return no_page_table(vma
, flags
, address
);
983 ptl
= pmd_lock(mm
, pmd
);
985 if (unlikely(!pmd_present(pmdval
))) {
987 return no_page_table(vma
, flags
, address
);
989 if (unlikely(!pmd_leaf(pmdval
))) {
991 return follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
993 if (pmd_trans_huge(pmdval
) && (flags
& FOLL_SPLIT_PMD
)) {
995 split_huge_pmd(vma
, pmd
, address
);
996 /* If pmd was left empty, stuff a page table in there quickly */
997 return pte_alloc(mm
, pmd
) ? ERR_PTR(-ENOMEM
) :
998 follow_page_pte(vma
, address
, pmd
, flags
, &ctx
->pgmap
);
1000 page
= follow_huge_pmd(vma
, address
, pmd
, flags
, ctx
);
1005 static struct page
*follow_pud_mask(struct vm_area_struct
*vma
,
1006 unsigned long address
, p4d_t
*p4dp
,
1008 struct follow_page_context
*ctx
)
1013 struct mm_struct
*mm
= vma
->vm_mm
;
1015 pudp
= pud_offset(p4dp
, address
);
1016 pud
= READ_ONCE(*pudp
);
1017 if (!pud_present(pud
))
1018 return no_page_table(vma
, flags
, address
);
1019 if (pud_leaf(pud
)) {
1020 ptl
= pud_lock(mm
, pudp
);
1021 page
= follow_huge_pud(vma
, address
, pudp
, flags
, ctx
);
1025 return no_page_table(vma
, flags
, address
);
1027 if (unlikely(pud_bad(pud
)))
1028 return no_page_table(vma
, flags
, address
);
1030 return follow_pmd_mask(vma
, address
, pudp
, flags
, ctx
);
1033 static struct page
*follow_p4d_mask(struct vm_area_struct
*vma
,
1034 unsigned long address
, pgd_t
*pgdp
,
1036 struct follow_page_context
*ctx
)
1040 p4dp
= p4d_offset(pgdp
, address
);
1041 p4d
= READ_ONCE(*p4dp
);
1042 BUILD_BUG_ON(p4d_leaf(p4d
));
1044 if (!p4d_present(p4d
) || p4d_bad(p4d
))
1045 return no_page_table(vma
, flags
, address
);
1047 return follow_pud_mask(vma
, address
, p4dp
, flags
, ctx
);
1051 * follow_page_mask - look up a page descriptor from a user-virtual address
1052 * @vma: vm_area_struct mapping @address
1053 * @address: virtual address to look up
1054 * @flags: flags modifying lookup behaviour
1055 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1056 * pointer to output page_mask
1058 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1060 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1061 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1063 * When getting an anonymous page and the caller has to trigger unsharing
1064 * of a shared anonymous page first, -EMLINK is returned. The caller should
1065 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1066 * relevant with FOLL_PIN and !FOLL_WRITE.
1068 * On output, the @ctx->page_mask is set according to the size of the page.
1070 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1071 * an error pointer if there is a mapping to something not represented
1072 * by a page descriptor (see also vm_normal_page()).
1074 static struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1075 unsigned long address
, unsigned int flags
,
1076 struct follow_page_context
*ctx
)
1079 struct mm_struct
*mm
= vma
->vm_mm
;
1082 vma_pgtable_walk_begin(vma
);
1085 pgd
= pgd_offset(mm
, address
);
1087 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1088 page
= no_page_table(vma
, flags
, address
);
1090 page
= follow_p4d_mask(vma
, address
, pgd
, flags
, ctx
);
1092 vma_pgtable_walk_end(vma
);
1097 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
1098 unsigned int gup_flags
, struct vm_area_struct
**vma
,
1109 /* user gate pages are read-only */
1110 if (gup_flags
& FOLL_WRITE
)
1112 if (address
> TASK_SIZE
)
1113 pgd
= pgd_offset_k(address
);
1115 pgd
= pgd_offset_gate(mm
, address
);
1118 p4d
= p4d_offset(pgd
, address
);
1121 pud
= pud_offset(p4d
, address
);
1124 pmd
= pmd_offset(pud
, address
);
1125 if (!pmd_present(*pmd
))
1127 pte
= pte_offset_map(pmd
, address
);
1130 entry
= ptep_get(pte
);
1131 if (pte_none(entry
))
1133 *vma
= get_gate_vma(mm
);
1136 *page
= vm_normal_page(*vma
, address
, entry
);
1138 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(entry
)))
1140 *page
= pte_page(entry
);
1142 ret
= try_grab_folio(page_folio(*page
), 1, gup_flags
);
1153 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1154 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1155 * to 0 and -EBUSY returned.
1157 static int faultin_page(struct vm_area_struct
*vma
,
1158 unsigned long address
, unsigned int flags
, bool unshare
,
1161 unsigned int fault_flags
= 0;
1164 if (flags
& FOLL_NOFAULT
)
1166 if (flags
& FOLL_WRITE
)
1167 fault_flags
|= FAULT_FLAG_WRITE
;
1168 if (flags
& FOLL_REMOTE
)
1169 fault_flags
|= FAULT_FLAG_REMOTE
;
1170 if (flags
& FOLL_UNLOCKABLE
) {
1171 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1173 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1174 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1175 * That's because some callers may not be prepared to
1176 * handle early exits caused by non-fatal signals.
1178 if (flags
& FOLL_INTERRUPTIBLE
)
1179 fault_flags
|= FAULT_FLAG_INTERRUPTIBLE
;
1181 if (flags
& FOLL_NOWAIT
)
1182 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
1183 if (flags
& FOLL_TRIED
) {
1185 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1188 fault_flags
|= FAULT_FLAG_TRIED
;
1191 fault_flags
|= FAULT_FLAG_UNSHARE
;
1192 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1193 VM_BUG_ON(fault_flags
& FAULT_FLAG_WRITE
);
1196 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
1198 if (ret
& VM_FAULT_COMPLETED
) {
1200 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1201 * mmap lock in the page fault handler. Sanity check this.
1203 WARN_ON_ONCE(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
);
1207 * We should do the same as VM_FAULT_RETRY, but let's not
1208 * return -EBUSY since that's not reflecting the reality of
1209 * what has happened - we've just fully completed a page
1210 * fault, with the mmap lock released. Use -EAGAIN to show
1211 * that we want to take the mmap lock _again_.
1216 if (ret
& VM_FAULT_ERROR
) {
1217 int err
= vm_fault_to_errno(ret
, flags
);
1224 if (ret
& VM_FAULT_RETRY
) {
1225 if (!(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
1234 * Writing to file-backed mappings which require folio dirty tracking using GUP
1235 * is a fundamentally broken operation, as kernel write access to GUP mappings
1236 * do not adhere to the semantics expected by a file system.
1238 * Consider the following scenario:-
1240 * 1. A folio is written to via GUP which write-faults the memory, notifying
1241 * the file system and dirtying the folio.
1242 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1243 * the PTE being marked read-only.
1244 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1246 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1247 * (though it does not have to).
1249 * This results in both data being written to a folio without writenotify, and
1250 * the folio being dirtied unexpectedly (if the caller decides to do so).
1252 static bool writable_file_mapping_allowed(struct vm_area_struct
*vma
,
1253 unsigned long gup_flags
)
1256 * If we aren't pinning then no problematic write can occur. A long term
1257 * pin is the most egregious case so this is the case we disallow.
1259 if ((gup_flags
& (FOLL_PIN
| FOLL_LONGTERM
)) !=
1260 (FOLL_PIN
| FOLL_LONGTERM
))
1264 * If the VMA does not require dirty tracking then no problematic write
1267 return !vma_needs_dirty_tracking(vma
);
1270 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
1272 vm_flags_t vm_flags
= vma
->vm_flags
;
1273 int write
= (gup_flags
& FOLL_WRITE
);
1274 int foreign
= (gup_flags
& FOLL_REMOTE
);
1275 bool vma_anon
= vma_is_anonymous(vma
);
1277 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
1280 if ((gup_flags
& FOLL_ANON
) && !vma_anon
)
1283 if ((gup_flags
& FOLL_LONGTERM
) && vma_is_fsdax(vma
))
1286 if (vma_is_secretmem(vma
))
1291 !writable_file_mapping_allowed(vma
, gup_flags
))
1294 if (!(vm_flags
& VM_WRITE
) || (vm_flags
& VM_SHADOW_STACK
)) {
1295 if (!(gup_flags
& FOLL_FORCE
))
1297 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1298 if (is_vm_hugetlb_page(vma
))
1301 * We used to let the write,force case do COW in a
1302 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1303 * set a breakpoint in a read-only mapping of an
1304 * executable, without corrupting the file (yet only
1305 * when that file had been opened for writing!).
1306 * Anon pages in shared mappings are surprising: now
1309 if (!is_cow_mapping(vm_flags
))
1312 } else if (!(vm_flags
& VM_READ
)) {
1313 if (!(gup_flags
& FOLL_FORCE
))
1316 * Is there actually any vma we can reach here which does not
1317 * have VM_MAYREAD set?
1319 if (!(vm_flags
& VM_MAYREAD
))
1323 * gups are always data accesses, not instruction
1324 * fetches, so execute=false here
1326 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1332 * This is "vma_lookup()", but with a warning if we would have
1333 * historically expanded the stack in the GUP code.
1335 static struct vm_area_struct
*gup_vma_lookup(struct mm_struct
*mm
,
1338 #ifdef CONFIG_STACK_GROWSUP
1339 return vma_lookup(mm
, addr
);
1341 static volatile unsigned long next_warn
;
1342 struct vm_area_struct
*vma
;
1343 unsigned long now
, next
;
1345 vma
= find_vma(mm
, addr
);
1346 if (!vma
|| (addr
>= vma
->vm_start
))
1349 /* Only warn for half-way relevant accesses */
1350 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1352 if (vma
->vm_start
- addr
> 65536)
1355 /* Let's not warn more than once an hour.. */
1356 now
= jiffies
; next
= next_warn
;
1357 if (next
&& time_before(now
, next
))
1359 next_warn
= now
+ 60*60*HZ
;
1361 /* Let people know things may have changed. */
1362 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1363 current
->comm
, task_pid_nr(current
),
1364 vma
->vm_start
, vma
->vm_end
, addr
);
1371 * __get_user_pages() - pin user pages in memory
1372 * @mm: mm_struct of target mm
1373 * @start: starting user address
1374 * @nr_pages: number of pages from start to pin
1375 * @gup_flags: flags modifying pin behaviour
1376 * @pages: array that receives pointers to the pages pinned.
1377 * Should be at least nr_pages long. Or NULL, if caller
1378 * only intends to ensure the pages are faulted in.
1379 * @locked: whether we're still with the mmap_lock held
1381 * Returns either number of pages pinned (which may be less than the
1382 * number requested), or an error. Details about the return value:
1384 * -- If nr_pages is 0, returns 0.
1385 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1386 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1387 * pages pinned. Again, this may be less than nr_pages.
1388 * -- 0 return value is possible when the fault would need to be retried.
1390 * The caller is responsible for releasing returned @pages, via put_page().
1392 * Must be called with mmap_lock held. It may be released. See below.
1394 * __get_user_pages walks a process's page tables and takes a reference to
1395 * each struct page that each user address corresponds to at a given
1396 * instant. That is, it takes the page that would be accessed if a user
1397 * thread accesses the given user virtual address at that instant.
1399 * This does not guarantee that the page exists in the user mappings when
1400 * __get_user_pages returns, and there may even be a completely different
1401 * page there in some cases (eg. if mmapped pagecache has been invalidated
1402 * and subsequently re-faulted). However it does guarantee that the page
1403 * won't be freed completely. And mostly callers simply care that the page
1404 * contains data that was valid *at some point in time*. Typically, an IO
1405 * or similar operation cannot guarantee anything stronger anyway because
1406 * locks can't be held over the syscall boundary.
1408 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1409 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1410 * appropriate) must be called after the page is finished with, and
1411 * before put_page is called.
1413 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1414 * be released. If this happens *@locked will be set to 0 on return.
1416 * A caller using such a combination of @gup_flags must therefore hold the
1417 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1418 * it must be held for either reading or writing and will not be released.
1420 * In most cases, get_user_pages or get_user_pages_fast should be used
1421 * instead of __get_user_pages. __get_user_pages should be used only if
1422 * you need some special @gup_flags.
1424 static long __get_user_pages(struct mm_struct
*mm
,
1425 unsigned long start
, unsigned long nr_pages
,
1426 unsigned int gup_flags
, struct page
**pages
,
1429 long ret
= 0, i
= 0;
1430 struct vm_area_struct
*vma
= NULL
;
1431 struct follow_page_context ctx
= { NULL
};
1436 start
= untagged_addr_remote(mm
, start
);
1438 VM_BUG_ON(!!pages
!= !!(gup_flags
& (FOLL_GET
| FOLL_PIN
)));
1442 unsigned int page_increm
;
1444 /* first iteration or cross vma bound */
1445 if (!vma
|| start
>= vma
->vm_end
) {
1447 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1448 * lookups+error reporting differently.
1450 if (gup_flags
& FOLL_MADV_POPULATE
) {
1451 vma
= vma_lookup(mm
, start
);
1456 if (check_vma_flags(vma
, gup_flags
)) {
1462 vma
= gup_vma_lookup(mm
, start
);
1463 if (!vma
&& in_gate_area(mm
, start
)) {
1464 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
1466 pages
? &page
: NULL
);
1477 ret
= check_vma_flags(vma
, gup_flags
);
1483 * If we have a pending SIGKILL, don't keep faulting pages and
1484 * potentially allocating memory.
1486 if (fatal_signal_pending(current
)) {
1492 page
= follow_page_mask(vma
, start
, gup_flags
, &ctx
);
1493 if (!page
|| PTR_ERR(page
) == -EMLINK
) {
1494 ret
= faultin_page(vma
, start
, gup_flags
,
1495 PTR_ERR(page
) == -EMLINK
, locked
);
1509 } else if (PTR_ERR(page
) == -EEXIST
) {
1511 * Proper page table entry exists, but no corresponding
1512 * struct page. If the caller expects **pages to be
1513 * filled in, bail out now, because that can't be done
1517 ret
= PTR_ERR(page
);
1520 } else if (IS_ERR(page
)) {
1521 ret
= PTR_ERR(page
);
1525 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & ctx
.page_mask
);
1526 if (page_increm
> nr_pages
)
1527 page_increm
= nr_pages
;
1530 struct page
*subpage
;
1534 * This must be a large folio (and doesn't need to
1535 * be the whole folio; it can be part of it), do
1536 * the refcount work for all the subpages too.
1538 * NOTE: here the page may not be the head page
1539 * e.g. when start addr is not thp-size aligned.
1540 * try_grab_folio() should have taken care of tail
1543 if (page_increm
> 1) {
1544 struct folio
*folio
= page_folio(page
);
1547 * Since we already hold refcount on the
1548 * large folio, this should never fail.
1550 if (try_grab_folio(folio
, page_increm
- 1,
1553 * Release the 1st page ref if the
1554 * folio is problematic, fail hard.
1556 gup_put_folio(folio
, 1, gup_flags
);
1562 for (j
= 0; j
< page_increm
; j
++) {
1563 subpage
= nth_page(page
, j
);
1564 pages
[i
+ j
] = subpage
;
1565 flush_anon_page(vma
, subpage
, start
+ j
* PAGE_SIZE
);
1566 flush_dcache_page(subpage
);
1571 start
+= page_increm
* PAGE_SIZE
;
1572 nr_pages
-= page_increm
;
1576 put_dev_pagemap(ctx
.pgmap
);
1580 static bool vma_permits_fault(struct vm_area_struct
*vma
,
1581 unsigned int fault_flags
)
1583 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
1584 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
1585 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
1587 if (!(vm_flags
& vma
->vm_flags
))
1591 * The architecture might have a hardware protection
1592 * mechanism other than read/write that can deny access.
1594 * gup always represents data access, not instruction
1595 * fetches, so execute=false here:
1597 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
1604 * fixup_user_fault() - manually resolve a user page fault
1605 * @mm: mm_struct of target mm
1606 * @address: user address
1607 * @fault_flags:flags to pass down to handle_mm_fault()
1608 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1609 * does not allow retry. If NULL, the caller must guarantee
1610 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1612 * This is meant to be called in the specific scenario where for locking reasons
1613 * we try to access user memory in atomic context (within a pagefault_disable()
1614 * section), this returns -EFAULT, and we want to resolve the user fault before
1617 * Typically this is meant to be used by the futex code.
1619 * The main difference with get_user_pages() is that this function will
1620 * unconditionally call handle_mm_fault() which will in turn perform all the
1621 * necessary SW fixup of the dirty and young bits in the PTE, while
1622 * get_user_pages() only guarantees to update these in the struct page.
1624 * This is important for some architectures where those bits also gate the
1625 * access permission to the page because they are maintained in software. On
1626 * such architectures, gup() will not be enough to make a subsequent access
1629 * This function will not return with an unlocked mmap_lock. So it has not the
1630 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1632 int fixup_user_fault(struct mm_struct
*mm
,
1633 unsigned long address
, unsigned int fault_flags
,
1636 struct vm_area_struct
*vma
;
1639 address
= untagged_addr_remote(mm
, address
);
1642 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1645 vma
= gup_vma_lookup(mm
, address
);
1649 if (!vma_permits_fault(vma
, fault_flags
))
1652 if ((fault_flags
& FAULT_FLAG_KILLABLE
) &&
1653 fatal_signal_pending(current
))
1656 ret
= handle_mm_fault(vma
, address
, fault_flags
, NULL
);
1658 if (ret
& VM_FAULT_COMPLETED
) {
1660 * NOTE: it's a pity that we need to retake the lock here
1661 * to pair with the unlock() in the callers. Ideally we
1662 * could tell the callers so they do not need to unlock.
1669 if (ret
& VM_FAULT_ERROR
) {
1670 int err
= vm_fault_to_errno(ret
, 0);
1677 if (ret
& VM_FAULT_RETRY
) {
1680 fault_flags
|= FAULT_FLAG_TRIED
;
1686 EXPORT_SYMBOL_GPL(fixup_user_fault
);
1689 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1690 * specified, it'll also respond to generic signals. The caller of GUP
1691 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1693 static bool gup_signal_pending(unsigned int flags
)
1695 if (fatal_signal_pending(current
))
1698 if (!(flags
& FOLL_INTERRUPTIBLE
))
1701 return signal_pending(current
);
1705 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1706 * the caller. This function may drop the mmap_lock. If it does so, then it will
1707 * set (*locked = 0).
1709 * (*locked == 0) means that the caller expects this function to acquire and
1710 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1711 * the function returns, even though it may have changed temporarily during
1712 * function execution.
1714 * Please note that this function, unlike __get_user_pages(), will not return 0
1715 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1717 static __always_inline
long __get_user_pages_locked(struct mm_struct
*mm
,
1718 unsigned long start
,
1719 unsigned long nr_pages
,
1720 struct page
**pages
,
1724 long ret
, pages_done
;
1725 bool must_unlock
= false;
1731 * The internal caller expects GUP to manage the lock internally and the
1732 * lock must be released when this returns.
1735 if (mmap_read_lock_killable(mm
))
1741 mmap_assert_locked(mm
);
1743 if (flags
& FOLL_PIN
)
1744 mm_set_has_pinned_flag(&mm
->flags
);
1747 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1748 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1749 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1750 * for FOLL_GET, not for the newer FOLL_PIN.
1752 * FOLL_PIN always expects pages to be non-null, but no need to assert
1753 * that here, as any failures will be obvious enough.
1755 if (pages
&& !(flags
& FOLL_PIN
))
1760 ret
= __get_user_pages(mm
, start
, nr_pages
, flags
, pages
,
1762 if (!(flags
& FOLL_UNLOCKABLE
)) {
1763 /* VM_FAULT_RETRY couldn't trigger, bypass */
1768 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1771 BUG_ON(ret
>= nr_pages
);
1782 * VM_FAULT_RETRY didn't trigger or it was a
1790 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1791 * For the prefault case (!pages) we only update counts.
1795 start
+= ret
<< PAGE_SHIFT
;
1797 /* The lock was temporarily dropped, so we must unlock later */
1802 * Repeat on the address that fired VM_FAULT_RETRY
1803 * with both FAULT_FLAG_ALLOW_RETRY and
1804 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1805 * by fatal signals of even common signals, depending on
1806 * the caller's request. So we need to check it before we
1807 * start trying again otherwise it can loop forever.
1809 if (gup_signal_pending(flags
)) {
1811 pages_done
= -EINTR
;
1815 ret
= mmap_read_lock_killable(mm
);
1824 ret
= __get_user_pages(mm
, start
, 1, flags
| FOLL_TRIED
,
1827 /* Continue to retry until we succeeded */
1845 if (must_unlock
&& *locked
) {
1847 * We either temporarily dropped the lock, or the caller
1848 * requested that we both acquire and drop the lock. Either way,
1849 * we must now unlock, and notify the caller of that state.
1851 mmap_read_unlock(mm
);
1856 * Failing to pin anything implies something has gone wrong (except when
1857 * FOLL_NOWAIT is specified).
1859 if (WARN_ON_ONCE(pages_done
== 0 && !(flags
& FOLL_NOWAIT
)))
1866 * populate_vma_page_range() - populate a range of pages in the vma.
1868 * @start: start address
1870 * @locked: whether the mmap_lock is still held
1872 * This takes care of mlocking the pages too if VM_LOCKED is set.
1874 * Return either number of pages pinned in the vma, or a negative error
1877 * vma->vm_mm->mmap_lock must be held.
1879 * If @locked is NULL, it may be held for read or write and will
1882 * If @locked is non-NULL, it must held for read only and may be
1883 * released. If it's released, *@locked will be set to 0.
1885 long populate_vma_page_range(struct vm_area_struct
*vma
,
1886 unsigned long start
, unsigned long end
, int *locked
)
1888 struct mm_struct
*mm
= vma
->vm_mm
;
1889 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1890 int local_locked
= 1;
1894 VM_BUG_ON(!PAGE_ALIGNED(start
));
1895 VM_BUG_ON(!PAGE_ALIGNED(end
));
1896 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1897 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1898 mmap_assert_locked(mm
);
1901 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1902 * faultin_page() to break COW, so it has no work to do here.
1904 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1907 /* ... similarly, we've never faulted in PROT_NONE pages */
1908 if (!vma_is_accessible(vma
))
1911 gup_flags
= FOLL_TOUCH
;
1913 * We want to touch writable mappings with a write fault in order
1914 * to break COW, except for shared mappings because these don't COW
1915 * and we would not want to dirty them for nothing.
1917 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1918 * readable (ie write-only or executable).
1920 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1921 gup_flags
|= FOLL_WRITE
;
1923 gup_flags
|= FOLL_FORCE
;
1926 gup_flags
|= FOLL_UNLOCKABLE
;
1929 * We made sure addr is within a VMA, so the following will
1930 * not result in a stack expansion that recurses back here.
1932 ret
= __get_user_pages(mm
, start
, nr_pages
, gup_flags
,
1933 NULL
, locked
? locked
: &local_locked
);
1939 * faultin_page_range() - populate (prefault) page tables inside the
1940 * given range readable/writable
1942 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1944 * @mm: the mm to populate page tables in
1945 * @start: start address
1947 * @write: whether to prefault readable or writable
1948 * @locked: whether the mmap_lock is still held
1950 * Returns either number of processed pages in the MM, or a negative error
1951 * code on error (see __get_user_pages()). Note that this function reports
1952 * errors related to VMAs, such as incompatible mappings, as expected by
1953 * MADV_POPULATE_(READ|WRITE).
1955 * The range must be page-aligned.
1957 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1959 long faultin_page_range(struct mm_struct
*mm
, unsigned long start
,
1960 unsigned long end
, bool write
, int *locked
)
1962 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1966 VM_BUG_ON(!PAGE_ALIGNED(start
));
1967 VM_BUG_ON(!PAGE_ALIGNED(end
));
1968 mmap_assert_locked(mm
);
1971 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1972 * the page dirty with FOLL_WRITE -- which doesn't make a
1973 * difference with !FOLL_FORCE, because the page is writable
1974 * in the page table.
1975 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1977 * !FOLL_FORCE: Require proper access permissions.
1979 gup_flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_UNLOCKABLE
|
1982 gup_flags
|= FOLL_WRITE
;
1984 ret
= __get_user_pages_locked(mm
, start
, nr_pages
, NULL
, locked
,
1991 * __mm_populate - populate and/or mlock pages within a range of address space.
1993 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1994 * flags. VMAs must be already marked with the desired vm_flags, and
1995 * mmap_lock must not be held.
1997 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1999 struct mm_struct
*mm
= current
->mm
;
2000 unsigned long end
, nstart
, nend
;
2001 struct vm_area_struct
*vma
= NULL
;
2007 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
2009 * We want to fault in pages for [nstart; end) address range.
2010 * Find first corresponding VMA.
2015 vma
= find_vma_intersection(mm
, nstart
, end
);
2016 } else if (nstart
>= vma
->vm_end
)
2017 vma
= find_vma_intersection(mm
, vma
->vm_end
, end
);
2022 * Set [nstart; nend) to intersection of desired address
2023 * range with the first VMA. Also, skip undesirable VMA types.
2025 nend
= min(end
, vma
->vm_end
);
2026 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
2028 if (nstart
< vma
->vm_start
)
2029 nstart
= vma
->vm_start
;
2031 * Now fault in a range of pages. populate_vma_page_range()
2032 * double checks the vma flags, so that it won't mlock pages
2033 * if the vma was already munlocked.
2035 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
2037 if (ignore_errors
) {
2039 continue; /* continue at next VMA */
2043 nend
= nstart
+ ret
* PAGE_SIZE
;
2047 mmap_read_unlock(mm
);
2048 return ret
; /* 0 or negative error code */
2050 #else /* CONFIG_MMU */
2051 static long __get_user_pages_locked(struct mm_struct
*mm
, unsigned long start
,
2052 unsigned long nr_pages
, struct page
**pages
,
2053 int *locked
, unsigned int foll_flags
)
2055 struct vm_area_struct
*vma
;
2056 bool must_unlock
= false;
2057 unsigned long vm_flags
;
2064 * The internal caller expects GUP to manage the lock internally and the
2065 * lock must be released when this returns.
2068 if (mmap_read_lock_killable(mm
))
2074 /* calculate required read or write permissions.
2075 * If FOLL_FORCE is set, we only require the "MAY" flags.
2077 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
2078 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
2079 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
2080 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
2082 for (i
= 0; i
< nr_pages
; i
++) {
2083 vma
= find_vma(mm
, start
);
2087 /* protect what we can, including chardevs */
2088 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
2089 !(vm_flags
& vma
->vm_flags
))
2093 pages
[i
] = virt_to_page((void *)start
);
2098 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
2101 if (must_unlock
&& *locked
) {
2102 mmap_read_unlock(mm
);
2106 return i
? : -EFAULT
;
2108 #endif /* !CONFIG_MMU */
2111 * fault_in_writeable - fault in userspace address range for writing
2112 * @uaddr: start of address range
2113 * @size: size of address range
2115 * Returns the number of bytes not faulted in (like copy_to_user() and
2116 * copy_from_user()).
2118 size_t fault_in_writeable(char __user
*uaddr
, size_t size
)
2120 char __user
*start
= uaddr
, *end
;
2122 if (unlikely(size
== 0))
2124 if (!user_write_access_begin(uaddr
, size
))
2126 if (!PAGE_ALIGNED(uaddr
)) {
2127 unsafe_put_user(0, uaddr
, out
);
2128 uaddr
= (char __user
*)PAGE_ALIGN((unsigned long)uaddr
);
2130 end
= (char __user
*)PAGE_ALIGN((unsigned long)start
+ size
);
2131 if (unlikely(end
< start
))
2133 while (uaddr
!= end
) {
2134 unsafe_put_user(0, uaddr
, out
);
2139 user_write_access_end();
2140 if (size
> uaddr
- start
)
2141 return size
- (uaddr
- start
);
2144 EXPORT_SYMBOL(fault_in_writeable
);
2147 * fault_in_subpage_writeable - fault in an address range for writing
2148 * @uaddr: start of address range
2149 * @size: size of address range
2151 * Fault in a user address range for writing while checking for permissions at
2152 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2153 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2155 * Returns the number of bytes not faulted in (like copy_to_user() and
2156 * copy_from_user()).
2158 size_t fault_in_subpage_writeable(char __user
*uaddr
, size_t size
)
2163 * Attempt faulting in at page granularity first for page table
2164 * permission checking. The arch-specific probe_subpage_writeable()
2165 * functions may not check for this.
2167 faulted_in
= size
- fault_in_writeable(uaddr
, size
);
2169 faulted_in
-= probe_subpage_writeable(uaddr
, faulted_in
);
2171 return size
- faulted_in
;
2173 EXPORT_SYMBOL(fault_in_subpage_writeable
);
2176 * fault_in_safe_writeable - fault in an address range for writing
2177 * @uaddr: start of address range
2178 * @size: length of address range
2180 * Faults in an address range for writing. This is primarily useful when we
2181 * already know that some or all of the pages in the address range aren't in
2184 * Unlike fault_in_writeable(), this function is non-destructive.
2186 * Note that we don't pin or otherwise hold the pages referenced that we fault
2187 * in. There's no guarantee that they'll stay in memory for any duration of
2190 * Returns the number of bytes not faulted in, like copy_to_user() and
2193 size_t fault_in_safe_writeable(const char __user
*uaddr
, size_t size
)
2195 unsigned long start
= (unsigned long)uaddr
, end
;
2196 struct mm_struct
*mm
= current
->mm
;
2197 bool unlocked
= false;
2199 if (unlikely(size
== 0))
2201 end
= PAGE_ALIGN(start
+ size
);
2207 if (fixup_user_fault(mm
, start
, FAULT_FLAG_WRITE
, &unlocked
))
2209 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
2210 } while (start
!= end
);
2211 mmap_read_unlock(mm
);
2213 if (size
> (unsigned long)uaddr
- start
)
2214 return size
- ((unsigned long)uaddr
- start
);
2217 EXPORT_SYMBOL(fault_in_safe_writeable
);
2220 * fault_in_readable - fault in userspace address range for reading
2221 * @uaddr: start of user address range
2222 * @size: size of user address range
2224 * Returns the number of bytes not faulted in (like copy_to_user() and
2225 * copy_from_user()).
2227 size_t fault_in_readable(const char __user
*uaddr
, size_t size
)
2229 const char __user
*start
= uaddr
, *end
;
2232 if (unlikely(size
== 0))
2234 if (!user_read_access_begin(uaddr
, size
))
2236 if (!PAGE_ALIGNED(uaddr
)) {
2237 unsafe_get_user(c
, uaddr
, out
);
2238 uaddr
= (const char __user
*)PAGE_ALIGN((unsigned long)uaddr
);
2240 end
= (const char __user
*)PAGE_ALIGN((unsigned long)start
+ size
);
2241 if (unlikely(end
< start
))
2243 while (uaddr
!= end
) {
2244 unsafe_get_user(c
, uaddr
, out
);
2249 user_read_access_end();
2251 if (size
> uaddr
- start
)
2252 return size
- (uaddr
- start
);
2255 EXPORT_SYMBOL(fault_in_readable
);
2258 * get_dump_page() - pin user page in memory while writing it to core dump
2259 * @addr: user address
2261 * Returns struct page pointer of user page pinned for dump,
2262 * to be freed afterwards by put_page().
2264 * Returns NULL on any kind of failure - a hole must then be inserted into
2265 * the corefile, to preserve alignment with its headers; and also returns
2266 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2267 * allowing a hole to be left in the corefile to save disk space.
2269 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2271 #ifdef CONFIG_ELF_CORE
2272 struct page
*get_dump_page(unsigned long addr
)
2278 ret
= __get_user_pages_locked(current
->mm
, addr
, 1, &page
, &locked
,
2279 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
);
2280 return (ret
== 1) ? page
: NULL
;
2282 #endif /* CONFIG_ELF_CORE */
2284 #ifdef CONFIG_MIGRATION
2287 * An array of either pages or folios ("pofs"). Although it may seem tempting to
2288 * avoid this complication, by simply interpreting a list of folios as a list of
2289 * pages, that approach won't work in the longer term, because eventually the
2290 * layouts of struct page and struct folio will become completely different.
2291 * Furthermore, this pof approach avoids excessive page_folio() calls.
2293 struct pages_or_folios
{
2295 struct page
**pages
;
2296 struct folio
**folios
;
2303 static struct folio
*pofs_get_folio(struct pages_or_folios
*pofs
, long i
)
2305 if (pofs
->has_folios
)
2306 return pofs
->folios
[i
];
2307 return page_folio(pofs
->pages
[i
]);
2310 static void pofs_clear_entry(struct pages_or_folios
*pofs
, long i
)
2312 pofs
->entries
[i
] = NULL
;
2315 static void pofs_unpin(struct pages_or_folios
*pofs
)
2317 if (pofs
->has_folios
)
2318 unpin_folios(pofs
->folios
, pofs
->nr_entries
);
2320 unpin_user_pages(pofs
->pages
, pofs
->nr_entries
);
2324 * Returns the number of collected folios. Return value is always >= 0.
2326 static unsigned long collect_longterm_unpinnable_folios(
2327 struct list_head
*movable_folio_list
,
2328 struct pages_or_folios
*pofs
)
2330 unsigned long i
, collected
= 0;
2331 struct folio
*prev_folio
= NULL
;
2332 bool drain_allow
= true;
2334 for (i
= 0; i
< pofs
->nr_entries
; i
++) {
2335 struct folio
*folio
= pofs_get_folio(pofs
, i
);
2337 if (folio
== prev_folio
)
2341 if (folio_is_longterm_pinnable(folio
))
2346 if (folio_is_device_coherent(folio
))
2349 if (folio_test_hugetlb(folio
)) {
2350 isolate_hugetlb(folio
, movable_folio_list
);
2354 if (!folio_test_lru(folio
) && drain_allow
) {
2355 lru_add_drain_all();
2356 drain_allow
= false;
2359 if (!folio_isolate_lru(folio
))
2362 list_add_tail(&folio
->lru
, movable_folio_list
);
2363 node_stat_mod_folio(folio
,
2364 NR_ISOLATED_ANON
+ folio_is_file_lru(folio
),
2365 folio_nr_pages(folio
));
2372 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2373 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2374 * failure (or partial success).
2377 migrate_longterm_unpinnable_folios(struct list_head
*movable_folio_list
,
2378 struct pages_or_folios
*pofs
)
2383 for (i
= 0; i
< pofs
->nr_entries
; i
++) {
2384 struct folio
*folio
= pofs_get_folio(pofs
, i
);
2386 if (folio_is_device_coherent(folio
)) {
2388 * Migration will fail if the folio is pinned, so
2389 * convert the pin on the source folio to a normal
2392 pofs_clear_entry(pofs
, i
);
2394 gup_put_folio(folio
, 1, FOLL_PIN
);
2396 if (migrate_device_coherent_folio(folio
)) {
2405 * We can't migrate folios with unexpected references, so drop
2406 * the reference obtained by __get_user_pages_locked().
2407 * Migrating folios have been added to movable_folio_list after
2408 * calling folio_isolate_lru() which takes a reference so the
2409 * folio won't be freed if it's migrating.
2412 pofs_clear_entry(pofs
, i
);
2415 if (!list_empty(movable_folio_list
)) {
2416 struct migration_target_control mtc
= {
2417 .nid
= NUMA_NO_NODE
,
2418 .gfp_mask
= GFP_USER
| __GFP_NOWARN
,
2419 .reason
= MR_LONGTERM_PIN
,
2422 if (migrate_pages(movable_folio_list
, alloc_migration_target
,
2423 NULL
, (unsigned long)&mtc
, MIGRATE_SYNC
,
2424 MR_LONGTERM_PIN
, NULL
)) {
2430 putback_movable_pages(movable_folio_list
);
2436 putback_movable_pages(movable_folio_list
);
2442 check_and_migrate_movable_pages_or_folios(struct pages_or_folios
*pofs
)
2444 LIST_HEAD(movable_folio_list
);
2445 unsigned long collected
;
2447 collected
= collect_longterm_unpinnable_folios(&movable_folio_list
,
2452 return migrate_longterm_unpinnable_folios(&movable_folio_list
, pofs
);
2456 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2457 * Rather confusingly, all folios in the range are required to be pinned via
2458 * FOLL_PIN, before calling this routine.
2462 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2463 * then this routine leaves all folios pinned and returns zero for success.
2465 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2466 * routine will migrate those folios away, unpin all the folios in the range. If
2467 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2468 * caller should re-pin the entire range with FOLL_PIN and then call this
2471 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2472 * indicates a migration failure. The caller should give up, and propagate the
2473 * error back up the call stack. The caller does not need to unpin any folios in
2474 * that case, because this routine will do the unpinning.
2476 static long check_and_migrate_movable_folios(unsigned long nr_folios
,
2477 struct folio
**folios
)
2479 struct pages_or_folios pofs
= {
2482 .nr_entries
= nr_folios
,
2485 return check_and_migrate_movable_pages_or_folios(&pofs
);
2489 * Return values and behavior are the same as those for
2490 * check_and_migrate_movable_folios().
2492 static long check_and_migrate_movable_pages(unsigned long nr_pages
,
2493 struct page
**pages
)
2495 struct pages_or_folios pofs
= {
2497 .has_folios
= false,
2498 .nr_entries
= nr_pages
,
2501 return check_and_migrate_movable_pages_or_folios(&pofs
);
2504 static long check_and_migrate_movable_pages(unsigned long nr_pages
,
2505 struct page
**pages
)
2510 static long check_and_migrate_movable_folios(unsigned long nr_folios
,
2511 struct folio
**folios
)
2515 #endif /* CONFIG_MIGRATION */
2518 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2519 * allows us to process the FOLL_LONGTERM flag.
2521 static long __gup_longterm_locked(struct mm_struct
*mm
,
2522 unsigned long start
,
2523 unsigned long nr_pages
,
2524 struct page
**pages
,
2526 unsigned int gup_flags
)
2529 long rc
, nr_pinned_pages
;
2531 if (!(gup_flags
& FOLL_LONGTERM
))
2532 return __get_user_pages_locked(mm
, start
, nr_pages
, pages
,
2535 flags
= memalloc_pin_save();
2537 nr_pinned_pages
= __get_user_pages_locked(mm
, start
, nr_pages
,
2540 if (nr_pinned_pages
<= 0) {
2541 rc
= nr_pinned_pages
;
2545 /* FOLL_LONGTERM implies FOLL_PIN */
2546 rc
= check_and_migrate_movable_pages(nr_pinned_pages
, pages
);
2547 } while (rc
== -EAGAIN
);
2548 memalloc_pin_restore(flags
);
2549 return rc
? rc
: nr_pinned_pages
;
2553 * Check that the given flags are valid for the exported gup/pup interface, and
2554 * update them with the required flags that the caller must have set.
2556 static bool is_valid_gup_args(struct page
**pages
, int *locked
,
2557 unsigned int *gup_flags_p
, unsigned int to_set
)
2559 unsigned int gup_flags
= *gup_flags_p
;
2562 * These flags not allowed to be specified externally to the gup
2564 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2565 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2566 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2568 if (WARN_ON_ONCE(gup_flags
& INTERNAL_GUP_FLAGS
))
2571 gup_flags
|= to_set
;
2573 /* At the external interface locked must be set */
2574 if (WARN_ON_ONCE(*locked
!= 1))
2577 gup_flags
|= FOLL_UNLOCKABLE
;
2580 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2581 if (WARN_ON_ONCE((gup_flags
& (FOLL_PIN
| FOLL_GET
)) ==
2582 (FOLL_PIN
| FOLL_GET
)))
2585 /* LONGTERM can only be specified when pinning */
2586 if (WARN_ON_ONCE(!(gup_flags
& FOLL_PIN
) && (gup_flags
& FOLL_LONGTERM
)))
2589 /* Pages input must be given if using GET/PIN */
2590 if (WARN_ON_ONCE((gup_flags
& (FOLL_GET
| FOLL_PIN
)) && !pages
))
2593 /* We want to allow the pgmap to be hot-unplugged at all times */
2594 if (WARN_ON_ONCE((gup_flags
& FOLL_LONGTERM
) &&
2595 (gup_flags
& FOLL_PCI_P2PDMA
)))
2598 *gup_flags_p
= gup_flags
;
2604 * get_user_pages_remote() - pin user pages in memory
2605 * @mm: mm_struct of target mm
2606 * @start: starting user address
2607 * @nr_pages: number of pages from start to pin
2608 * @gup_flags: flags modifying lookup behaviour
2609 * @pages: array that receives pointers to the pages pinned.
2610 * Should be at least nr_pages long. Or NULL, if caller
2611 * only intends to ensure the pages are faulted in.
2612 * @locked: pointer to lock flag indicating whether lock is held and
2613 * subsequently whether VM_FAULT_RETRY functionality can be
2614 * utilised. Lock must initially be held.
2616 * Returns either number of pages pinned (which may be less than the
2617 * number requested), or an error. Details about the return value:
2619 * -- If nr_pages is 0, returns 0.
2620 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2621 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2622 * pages pinned. Again, this may be less than nr_pages.
2624 * The caller is responsible for releasing returned @pages, via put_page().
2626 * Must be called with mmap_lock held for read or write.
2628 * get_user_pages_remote walks a process's page tables and takes a reference
2629 * to each struct page that each user address corresponds to at a given
2630 * instant. That is, it takes the page that would be accessed if a user
2631 * thread accesses the given user virtual address at that instant.
2633 * This does not guarantee that the page exists in the user mappings when
2634 * get_user_pages_remote returns, and there may even be a completely different
2635 * page there in some cases (eg. if mmapped pagecache has been invalidated
2636 * and subsequently re-faulted). However it does guarantee that the page
2637 * won't be freed completely. And mostly callers simply care that the page
2638 * contains data that was valid *at some point in time*. Typically, an IO
2639 * or similar operation cannot guarantee anything stronger anyway because
2640 * locks can't be held over the syscall boundary.
2642 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2643 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2644 * be called after the page is finished with, and before put_page is called.
2646 * get_user_pages_remote is typically used for fewer-copy IO operations,
2647 * to get a handle on the memory by some means other than accesses
2648 * via the user virtual addresses. The pages may be submitted for
2649 * DMA to devices or accessed via their kernel linear mapping (via the
2650 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2652 * See also get_user_pages_fast, for performance critical applications.
2654 * get_user_pages_remote should be phased out in favor of
2655 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2656 * should use get_user_pages_remote because it cannot pass
2657 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2659 long get_user_pages_remote(struct mm_struct
*mm
,
2660 unsigned long start
, unsigned long nr_pages
,
2661 unsigned int gup_flags
, struct page
**pages
,
2664 int local_locked
= 1;
2666 if (!is_valid_gup_args(pages
, locked
, &gup_flags
,
2667 FOLL_TOUCH
| FOLL_REMOTE
))
2670 return __get_user_pages_locked(mm
, start
, nr_pages
, pages
,
2671 locked
? locked
: &local_locked
,
2674 EXPORT_SYMBOL(get_user_pages_remote
);
2676 #else /* CONFIG_MMU */
2677 long get_user_pages_remote(struct mm_struct
*mm
,
2678 unsigned long start
, unsigned long nr_pages
,
2679 unsigned int gup_flags
, struct page
**pages
,
2684 #endif /* !CONFIG_MMU */
2687 * get_user_pages() - pin user pages in memory
2688 * @start: starting user address
2689 * @nr_pages: number of pages from start to pin
2690 * @gup_flags: flags modifying lookup behaviour
2691 * @pages: array that receives pointers to the pages pinned.
2692 * Should be at least nr_pages long. Or NULL, if caller
2693 * only intends to ensure the pages are faulted in.
2695 * This is the same as get_user_pages_remote(), just with a less-flexible
2696 * calling convention where we assume that the mm being operated on belongs to
2697 * the current task, and doesn't allow passing of a locked parameter. We also
2698 * obviously don't pass FOLL_REMOTE in here.
2700 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
2701 unsigned int gup_flags
, struct page
**pages
)
2705 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_TOUCH
))
2708 return __get_user_pages_locked(current
->mm
, start
, nr_pages
, pages
,
2709 &locked
, gup_flags
);
2711 EXPORT_SYMBOL(get_user_pages
);
2714 * get_user_pages_unlocked() is suitable to replace the form:
2716 * mmap_read_lock(mm);
2717 * get_user_pages(mm, ..., pages, NULL);
2718 * mmap_read_unlock(mm);
2722 * get_user_pages_unlocked(mm, ..., pages);
2724 * It is functionally equivalent to get_user_pages_fast so
2725 * get_user_pages_fast should be used instead if specific gup_flags
2726 * (e.g. FOLL_FORCE) are not required.
2728 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
2729 struct page
**pages
, unsigned int gup_flags
)
2733 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
2734 FOLL_TOUCH
| FOLL_UNLOCKABLE
))
2737 return __get_user_pages_locked(current
->mm
, start
, nr_pages
, pages
,
2738 &locked
, gup_flags
);
2740 EXPORT_SYMBOL(get_user_pages_unlocked
);
2745 * get_user_pages_fast attempts to pin user pages by walking the page
2746 * tables directly and avoids taking locks. Thus the walker needs to be
2747 * protected from page table pages being freed from under it, and should
2748 * block any THP splits.
2750 * One way to achieve this is to have the walker disable interrupts, and
2751 * rely on IPIs from the TLB flushing code blocking before the page table
2752 * pages are freed. This is unsuitable for architectures that do not need
2753 * to broadcast an IPI when invalidating TLBs.
2755 * Another way to achieve this is to batch up page table containing pages
2756 * belonging to more than one mm_user, then rcu_sched a callback to free those
2757 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2758 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2759 * (which is a relatively rare event). The code below adopts this strategy.
2761 * Before activating this code, please be aware that the following assumptions
2762 * are currently made:
2764 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2765 * free pages containing page tables or TLB flushing requires IPI broadcast.
2767 * *) ptes can be read atomically by the architecture.
2769 * *) access_ok is sufficient to validate userspace address ranges.
2771 * The last two assumptions can be relaxed by the addition of helper functions.
2773 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2775 #ifdef CONFIG_HAVE_GUP_FAST
2777 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2780 * This call assumes the caller has pinned the folio, that the lowest page table
2781 * level still points to this folio, and that interrupts have been disabled.
2783 * GUP-fast must reject all secretmem folios.
2785 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2786 * (see comment describing the writable_file_mapping_allowed() function). We
2787 * therefore try to avoid the most egregious case of a long-term mapping doing
2790 * This function cannot be as thorough as that one as the VMA is not available
2791 * in the fast path, so instead we whitelist known good cases and if in doubt,
2792 * fall back to the slow path.
2794 static bool gup_fast_folio_allowed(struct folio
*folio
, unsigned int flags
)
2796 bool reject_file_backed
= false;
2797 struct address_space
*mapping
;
2798 bool check_secretmem
= false;
2799 unsigned long mapping_flags
;
2802 * If we aren't pinning then no problematic write can occur. A long term
2803 * pin is the most egregious case so this is the one we disallow.
2805 if ((flags
& (FOLL_PIN
| FOLL_LONGTERM
| FOLL_WRITE
)) ==
2806 (FOLL_PIN
| FOLL_LONGTERM
| FOLL_WRITE
))
2807 reject_file_backed
= true;
2809 /* We hold a folio reference, so we can safely access folio fields. */
2811 /* secretmem folios are always order-0 folios. */
2812 if (IS_ENABLED(CONFIG_SECRETMEM
) && !folio_test_large(folio
))
2813 check_secretmem
= true;
2815 if (!reject_file_backed
&& !check_secretmem
)
2818 if (WARN_ON_ONCE(folio_test_slab(folio
)))
2821 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2822 if (folio_test_hugetlb(folio
))
2826 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2827 * cannot proceed, which means no actions performed under RCU can
2830 * inodes and thus their mappings are freed under RCU, which means the
2831 * mapping cannot be freed beneath us and thus we can safely dereference
2834 lockdep_assert_irqs_disabled();
2837 * However, there may be operations which _alter_ the mapping, so ensure
2838 * we read it once and only once.
2840 mapping
= READ_ONCE(folio
->mapping
);
2843 * The mapping may have been truncated, in any case we cannot determine
2844 * if this mapping is safe - fall back to slow path to determine how to
2850 /* Anonymous folios pose no problem. */
2851 mapping_flags
= (unsigned long)mapping
& PAGE_MAPPING_FLAGS
;
2853 return mapping_flags
& PAGE_MAPPING_ANON
;
2856 * At this point, we know the mapping is non-null and points to an
2857 * address_space object.
2859 if (check_secretmem
&& secretmem_mapping(mapping
))
2861 /* The only remaining allowed file system is shmem. */
2862 return !reject_file_backed
|| shmem_mapping(mapping
);
2865 static void __maybe_unused
gup_fast_undo_dev_pagemap(int *nr
, int nr_start
,
2866 unsigned int flags
, struct page
**pages
)
2868 while ((*nr
) - nr_start
) {
2869 struct folio
*folio
= page_folio(pages
[--(*nr
)]);
2871 folio_clear_referenced(folio
);
2872 gup_put_folio(folio
, 1, flags
);
2876 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2878 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2881 * To pin the page, GUP-fast needs to do below in order:
2882 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2884 * For the rest of pgtable operations where pgtable updates can be racy
2885 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2888 * Above will work for all pte-level operations, including THP split.
2890 * For THP collapse, it's a bit more complicated because GUP-fast may be
2891 * walking a pgtable page that is being freed (pte is still valid but pmd
2892 * can be cleared already). To avoid race in such condition, we need to
2893 * also check pmd here to make sure pmd doesn't change (corresponds to
2894 * pmdp_collapse_flush() in the THP collapse code path).
2896 static int gup_fast_pte_range(pmd_t pmd
, pmd_t
*pmdp
, unsigned long addr
,
2897 unsigned long end
, unsigned int flags
, struct page
**pages
,
2900 struct dev_pagemap
*pgmap
= NULL
;
2901 int nr_start
= *nr
, ret
= 0;
2904 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
2908 pte_t pte
= ptep_get_lockless(ptep
);
2910 struct folio
*folio
;
2913 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2914 * pte_access_permitted() better should reject these pages
2915 * either way: otherwise, GUP-fast might succeed in
2916 * cases where ordinary GUP would fail due to VMA access
2919 if (pte_protnone(pte
))
2922 if (!pte_access_permitted(pte
, flags
& FOLL_WRITE
))
2925 if (pte_devmap(pte
)) {
2926 if (unlikely(flags
& FOLL_LONGTERM
))
2929 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
2930 if (unlikely(!pgmap
)) {
2931 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
2934 } else if (pte_special(pte
))
2937 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
2938 page
= pte_page(pte
);
2940 folio
= try_grab_folio_fast(page
, 1, flags
);
2944 if (unlikely(pmd_val(pmd
) != pmd_val(*pmdp
)) ||
2945 unlikely(pte_val(pte
) != pte_val(ptep_get(ptep
)))) {
2946 gup_put_folio(folio
, 1, flags
);
2950 if (!gup_fast_folio_allowed(folio
, flags
)) {
2951 gup_put_folio(folio
, 1, flags
);
2955 if (!pte_write(pte
) && gup_must_unshare(NULL
, flags
, page
)) {
2956 gup_put_folio(folio
, 1, flags
);
2961 * We need to make the page accessible if and only if we are
2962 * going to access its content (the FOLL_PIN case). Please
2963 * see Documentation/core-api/pin_user_pages.rst for
2966 if (flags
& FOLL_PIN
) {
2967 ret
= arch_make_folio_accessible(folio
);
2969 gup_put_folio(folio
, 1, flags
);
2973 folio_set_referenced(folio
);
2976 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
2982 put_dev_pagemap(pgmap
);
2989 * If we can't determine whether or not a pte is special, then fail immediately
2990 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2993 * For a futex to be placed on a THP tail page, get_futex_key requires a
2994 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2995 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2997 static int gup_fast_pte_range(pmd_t pmd
, pmd_t
*pmdp
, unsigned long addr
,
2998 unsigned long end
, unsigned int flags
, struct page
**pages
,
3003 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
3005 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
3006 static int gup_fast_devmap_leaf(unsigned long pfn
, unsigned long addr
,
3007 unsigned long end
, unsigned int flags
, struct page
**pages
, int *nr
)
3010 struct dev_pagemap
*pgmap
= NULL
;
3013 struct folio
*folio
;
3014 struct page
*page
= pfn_to_page(pfn
);
3016 pgmap
= get_dev_pagemap(pfn
, pgmap
);
3017 if (unlikely(!pgmap
)) {
3018 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3022 if (!(flags
& FOLL_PCI_P2PDMA
) && is_pci_p2pdma_page(page
)) {
3023 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3027 folio
= try_grab_folio_fast(page
, 1, flags
);
3029 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3032 folio_set_referenced(folio
);
3036 } while (addr
+= PAGE_SIZE
, addr
!= end
);
3038 put_dev_pagemap(pgmap
);
3042 static int gup_fast_devmap_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3043 unsigned long end
, unsigned int flags
, struct page
**pages
,
3046 unsigned long fault_pfn
;
3049 fault_pfn
= pmd_pfn(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
3050 if (!gup_fast_devmap_leaf(fault_pfn
, addr
, end
, flags
, pages
, nr
))
3053 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
3054 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3060 static int gup_fast_devmap_pud_leaf(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
3061 unsigned long end
, unsigned int flags
, struct page
**pages
,
3064 unsigned long fault_pfn
;
3067 fault_pfn
= pud_pfn(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
3068 if (!gup_fast_devmap_leaf(fault_pfn
, addr
, end
, flags
, pages
, nr
))
3071 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
3072 gup_fast_undo_dev_pagemap(nr
, nr_start
, flags
, pages
);
3078 static int gup_fast_devmap_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3079 unsigned long end
, unsigned int flags
, struct page
**pages
,
3086 static int gup_fast_devmap_pud_leaf(pud_t pud
, pud_t
*pudp
, unsigned long addr
,
3087 unsigned long end
, unsigned int flags
, struct page
**pages
,
3095 static int gup_fast_pmd_leaf(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
3096 unsigned long end
, unsigned int flags
, struct page
**pages
,
3100 struct folio
*folio
;
3103 if (!pmd_access_permitted(orig
, flags
& FOLL_WRITE
))
3106 if (pmd_special(orig
))
3109 if (pmd_devmap(orig
)) {
3110 if (unlikely(flags
& FOLL_LONGTERM
))
3112 return gup_fast_devmap_pmd_leaf(orig
, pmdp
, addr
, end
, flags
,
3116 page
= pmd_page(orig
);
3117 refs
= record_subpages(page
, PMD_SIZE
, addr
, end
, pages
+ *nr
);
3119 folio
= try_grab_folio_fast(page
, refs
, flags
);
3123 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
3124 gup_put_folio(folio
, refs
, flags
);
3128 if (!gup_fast_folio_allowed(folio
, flags
)) {
3129 gup_put_folio(folio
, refs
, flags
);
3132 if (!pmd_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3133 gup_put_folio(folio
, refs
, flags
);
3138 folio_set_referenced(folio
);
3142 static int gup_fast_pud_leaf(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
3143 unsigned long end
, unsigned int flags
, struct page
**pages
,
3147 struct folio
*folio
;
3150 if (!pud_access_permitted(orig
, flags
& FOLL_WRITE
))
3153 if (pud_special(orig
))
3156 if (pud_devmap(orig
)) {
3157 if (unlikely(flags
& FOLL_LONGTERM
))
3159 return gup_fast_devmap_pud_leaf(orig
, pudp
, addr
, end
, flags
,
3163 page
= pud_page(orig
);
3164 refs
= record_subpages(page
, PUD_SIZE
, addr
, end
, pages
+ *nr
);
3166 folio
= try_grab_folio_fast(page
, refs
, flags
);
3170 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
3171 gup_put_folio(folio
, refs
, flags
);
3175 if (!gup_fast_folio_allowed(folio
, flags
)) {
3176 gup_put_folio(folio
, refs
, flags
);
3180 if (!pud_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3181 gup_put_folio(folio
, refs
, flags
);
3186 folio_set_referenced(folio
);
3190 static int gup_fast_pgd_leaf(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
3191 unsigned long end
, unsigned int flags
, struct page
**pages
,
3196 struct folio
*folio
;
3198 if (!pgd_access_permitted(orig
, flags
& FOLL_WRITE
))
3201 BUILD_BUG_ON(pgd_devmap(orig
));
3203 page
= pgd_page(orig
);
3204 refs
= record_subpages(page
, PGDIR_SIZE
, addr
, end
, pages
+ *nr
);
3206 folio
= try_grab_folio_fast(page
, refs
, flags
);
3210 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
3211 gup_put_folio(folio
, refs
, flags
);
3215 if (!pgd_write(orig
) && gup_must_unshare(NULL
, flags
, &folio
->page
)) {
3216 gup_put_folio(folio
, refs
, flags
);
3220 if (!gup_fast_folio_allowed(folio
, flags
)) {
3221 gup_put_folio(folio
, refs
, flags
);
3226 folio_set_referenced(folio
);
3230 static int gup_fast_pmd_range(pud_t
*pudp
, pud_t pud
, unsigned long addr
,
3231 unsigned long end
, unsigned int flags
, struct page
**pages
,
3237 pmdp
= pmd_offset_lockless(pudp
, pud
, addr
);
3239 pmd_t pmd
= pmdp_get_lockless(pmdp
);
3241 next
= pmd_addr_end(addr
, end
);
3242 if (!pmd_present(pmd
))
3245 if (unlikely(pmd_leaf(pmd
))) {
3246 /* See gup_fast_pte_range() */
3247 if (pmd_protnone(pmd
))
3250 if (!gup_fast_pmd_leaf(pmd
, pmdp
, addr
, next
, flags
,
3254 } else if (!gup_fast_pte_range(pmd
, pmdp
, addr
, next
, flags
,
3257 } while (pmdp
++, addr
= next
, addr
!= end
);
3262 static int gup_fast_pud_range(p4d_t
*p4dp
, p4d_t p4d
, unsigned long addr
,
3263 unsigned long end
, unsigned int flags
, struct page
**pages
,
3269 pudp
= pud_offset_lockless(p4dp
, p4d
, addr
);
3271 pud_t pud
= READ_ONCE(*pudp
);
3273 next
= pud_addr_end(addr
, end
);
3274 if (unlikely(!pud_present(pud
)))
3276 if (unlikely(pud_leaf(pud
))) {
3277 if (!gup_fast_pud_leaf(pud
, pudp
, addr
, next
, flags
,
3280 } else if (!gup_fast_pmd_range(pudp
, pud
, addr
, next
, flags
,
3283 } while (pudp
++, addr
= next
, addr
!= end
);
3288 static int gup_fast_p4d_range(pgd_t
*pgdp
, pgd_t pgd
, unsigned long addr
,
3289 unsigned long end
, unsigned int flags
, struct page
**pages
,
3295 p4dp
= p4d_offset_lockless(pgdp
, pgd
, addr
);
3297 p4d_t p4d
= READ_ONCE(*p4dp
);
3299 next
= p4d_addr_end(addr
, end
);
3300 if (!p4d_present(p4d
))
3302 BUILD_BUG_ON(p4d_leaf(p4d
));
3303 if (!gup_fast_pud_range(p4dp
, p4d
, addr
, next
, flags
,
3306 } while (p4dp
++, addr
= next
, addr
!= end
);
3311 static void gup_fast_pgd_range(unsigned long addr
, unsigned long end
,
3312 unsigned int flags
, struct page
**pages
, int *nr
)
3317 pgdp
= pgd_offset(current
->mm
, addr
);
3319 pgd_t pgd
= READ_ONCE(*pgdp
);
3321 next
= pgd_addr_end(addr
, end
);
3324 if (unlikely(pgd_leaf(pgd
))) {
3325 if (!gup_fast_pgd_leaf(pgd
, pgdp
, addr
, next
, flags
,
3328 } else if (!gup_fast_p4d_range(pgdp
, pgd
, addr
, next
, flags
,
3331 } while (pgdp
++, addr
= next
, addr
!= end
);
3334 static inline void gup_fast_pgd_range(unsigned long addr
, unsigned long end
,
3335 unsigned int flags
, struct page
**pages
, int *nr
)
3338 #endif /* CONFIG_HAVE_GUP_FAST */
3340 #ifndef gup_fast_permitted
3342 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3343 * we need to fall back to the slow version:
3345 static bool gup_fast_permitted(unsigned long start
, unsigned long end
)
3351 static unsigned long gup_fast(unsigned long start
, unsigned long end
,
3352 unsigned int gup_flags
, struct page
**pages
)
3354 unsigned long flags
;
3358 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST
) ||
3359 !gup_fast_permitted(start
, end
))
3362 if (gup_flags
& FOLL_PIN
) {
3363 seq
= raw_read_seqcount(¤t
->mm
->write_protect_seq
);
3369 * Disable interrupts. The nested form is used, in order to allow full,
3370 * general purpose use of this routine.
3372 * With interrupts disabled, we block page table pages from being freed
3373 * from under us. See struct mmu_table_batch comments in
3374 * include/asm-generic/tlb.h for more details.
3376 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3377 * that come from THPs splitting.
3379 local_irq_save(flags
);
3380 gup_fast_pgd_range(start
, end
, gup_flags
, pages
, &nr_pinned
);
3381 local_irq_restore(flags
);
3384 * When pinning pages for DMA there could be a concurrent write protect
3385 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3387 if (gup_flags
& FOLL_PIN
) {
3388 if (read_seqcount_retry(¤t
->mm
->write_protect_seq
, seq
)) {
3389 gup_fast_unpin_user_pages(pages
, nr_pinned
);
3392 sanity_check_pinned_pages(pages
, nr_pinned
);
3398 static int gup_fast_fallback(unsigned long start
, unsigned long nr_pages
,
3399 unsigned int gup_flags
, struct page
**pages
)
3401 unsigned long len
, end
;
3402 unsigned long nr_pinned
;
3406 if (WARN_ON_ONCE(gup_flags
& ~(FOLL_WRITE
| FOLL_LONGTERM
|
3407 FOLL_FORCE
| FOLL_PIN
| FOLL_GET
|
3408 FOLL_FAST_ONLY
| FOLL_NOFAULT
|
3409 FOLL_PCI_P2PDMA
| FOLL_HONOR_NUMA_FAULT
)))
3412 if (gup_flags
& FOLL_PIN
)
3413 mm_set_has_pinned_flag(¤t
->mm
->flags
);
3415 if (!(gup_flags
& FOLL_FAST_ONLY
))
3416 might_lock_read(¤t
->mm
->mmap_lock
);
3418 start
= untagged_addr(start
) & PAGE_MASK
;
3419 len
= nr_pages
<< PAGE_SHIFT
;
3420 if (check_add_overflow(start
, len
, &end
))
3422 if (end
> TASK_SIZE_MAX
)
3424 if (unlikely(!access_ok((void __user
*)start
, len
)))
3427 nr_pinned
= gup_fast(start
, end
, gup_flags
, pages
);
3428 if (nr_pinned
== nr_pages
|| gup_flags
& FOLL_FAST_ONLY
)
3431 /* Slow path: try to get the remaining pages with get_user_pages */
3432 start
+= nr_pinned
<< PAGE_SHIFT
;
3434 ret
= __gup_longterm_locked(current
->mm
, start
, nr_pages
- nr_pinned
,
3436 gup_flags
| FOLL_TOUCH
| FOLL_UNLOCKABLE
);
3439 * The caller has to unpin the pages we already pinned so
3440 * returning -errno is not an option
3446 return ret
+ nr_pinned
;
3450 * get_user_pages_fast_only() - pin user pages in memory
3451 * @start: starting user address
3452 * @nr_pages: number of pages from start to pin
3453 * @gup_flags: flags modifying pin behaviour
3454 * @pages: array that receives pointers to the pages pinned.
3455 * Should be at least nr_pages long.
3457 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3460 * If the architecture does not support this function, simply return with no
3463 * Careful, careful! COW breaking can go either way, so a non-write
3464 * access can get ambiguous page results. If you call this function without
3465 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3467 int get_user_pages_fast_only(unsigned long start
, int nr_pages
,
3468 unsigned int gup_flags
, struct page
**pages
)
3471 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3472 * because gup fast is always a "pin with a +1 page refcount" request.
3474 * FOLL_FAST_ONLY is required in order to match the API description of
3475 * this routine: no fall back to regular ("slow") GUP.
3477 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
3478 FOLL_GET
| FOLL_FAST_ONLY
))
3481 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3483 EXPORT_SYMBOL_GPL(get_user_pages_fast_only
);
3486 * get_user_pages_fast() - pin user pages in memory
3487 * @start: starting user address
3488 * @nr_pages: number of pages from start to pin
3489 * @gup_flags: flags modifying pin behaviour
3490 * @pages: array that receives pointers to the pages pinned.
3491 * Should be at least nr_pages long.
3493 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3494 * If not successful, it will fall back to taking the lock and
3495 * calling get_user_pages().
3497 * Returns number of pages pinned. This may be fewer than the number requested.
3498 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3501 int get_user_pages_fast(unsigned long start
, int nr_pages
,
3502 unsigned int gup_flags
, struct page
**pages
)
3505 * The caller may or may not have explicitly set FOLL_GET; either way is
3506 * OK. However, internally (within mm/gup.c), gup fast variants must set
3507 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3510 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_GET
))
3512 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3514 EXPORT_SYMBOL_GPL(get_user_pages_fast
);
3517 * pin_user_pages_fast() - pin user pages in memory without taking locks
3519 * @start: starting user address
3520 * @nr_pages: number of pages from start to pin
3521 * @gup_flags: flags modifying pin behaviour
3522 * @pages: array that receives pointers to the pages pinned.
3523 * Should be at least nr_pages long.
3525 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3526 * get_user_pages_fast() for documentation on the function arguments, because
3527 * the arguments here are identical.
3529 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3530 * see Documentation/core-api/pin_user_pages.rst for further details.
3532 * Note that if a zero_page is amongst the returned pages, it will not have
3533 * pins in it and unpin_user_page() will not remove pins from it.
3535 int pin_user_pages_fast(unsigned long start
, int nr_pages
,
3536 unsigned int gup_flags
, struct page
**pages
)
3538 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_PIN
))
3540 return gup_fast_fallback(start
, nr_pages
, gup_flags
, pages
);
3542 EXPORT_SYMBOL_GPL(pin_user_pages_fast
);
3545 * pin_user_pages_remote() - pin pages of a remote process
3547 * @mm: mm_struct of target mm
3548 * @start: starting user address
3549 * @nr_pages: number of pages from start to pin
3550 * @gup_flags: flags modifying lookup behaviour
3551 * @pages: array that receives pointers to the pages pinned.
3552 * Should be at least nr_pages long.
3553 * @locked: pointer to lock flag indicating whether lock is held and
3554 * subsequently whether VM_FAULT_RETRY functionality can be
3555 * utilised. Lock must initially be held.
3557 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3558 * get_user_pages_remote() for documentation on the function arguments, because
3559 * the arguments here are identical.
3561 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3562 * see Documentation/core-api/pin_user_pages.rst for details.
3564 * Note that if a zero_page is amongst the returned pages, it will not have
3565 * pins in it and unpin_user_page*() will not remove pins from it.
3567 long pin_user_pages_remote(struct mm_struct
*mm
,
3568 unsigned long start
, unsigned long nr_pages
,
3569 unsigned int gup_flags
, struct page
**pages
,
3572 int local_locked
= 1;
3574 if (!is_valid_gup_args(pages
, locked
, &gup_flags
,
3575 FOLL_PIN
| FOLL_TOUCH
| FOLL_REMOTE
))
3577 return __gup_longterm_locked(mm
, start
, nr_pages
, pages
,
3578 locked
? locked
: &local_locked
,
3581 EXPORT_SYMBOL(pin_user_pages_remote
);
3584 * pin_user_pages() - pin user pages in memory for use by other devices
3586 * @start: starting user address
3587 * @nr_pages: number of pages from start to pin
3588 * @gup_flags: flags modifying lookup behaviour
3589 * @pages: array that receives pointers to the pages pinned.
3590 * Should be at least nr_pages long.
3592 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3595 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3596 * see Documentation/core-api/pin_user_pages.rst for details.
3598 * Note that if a zero_page is amongst the returned pages, it will not have
3599 * pins in it and unpin_user_page*() will not remove pins from it.
3601 long pin_user_pages(unsigned long start
, unsigned long nr_pages
,
3602 unsigned int gup_flags
, struct page
**pages
)
3606 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
, FOLL_PIN
))
3608 return __gup_longterm_locked(current
->mm
, start
, nr_pages
,
3609 pages
, &locked
, gup_flags
);
3611 EXPORT_SYMBOL(pin_user_pages
);
3614 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3615 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3616 * FOLL_PIN and rejects FOLL_GET.
3618 * Note that if a zero_page is amongst the returned pages, it will not have
3619 * pins in it and unpin_user_page*() will not remove pins from it.
3621 long pin_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
3622 struct page
**pages
, unsigned int gup_flags
)
3626 if (!is_valid_gup_args(pages
, NULL
, &gup_flags
,
3627 FOLL_PIN
| FOLL_TOUCH
| FOLL_UNLOCKABLE
))
3630 return __gup_longterm_locked(current
->mm
, start
, nr_pages
, pages
,
3631 &locked
, gup_flags
);
3633 EXPORT_SYMBOL(pin_user_pages_unlocked
);
3636 * memfd_pin_folios() - pin folios associated with a memfd
3637 * @memfd: the memfd whose folios are to be pinned
3638 * @start: the first memfd offset
3639 * @end: the last memfd offset (inclusive)
3640 * @folios: array that receives pointers to the folios pinned
3641 * @max_folios: maximum number of entries in @folios
3642 * @offset: the offset into the first folio
3644 * Attempt to pin folios associated with a memfd in the contiguous range
3645 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3646 * the folios can either be found in the page cache or need to be allocated
3647 * if necessary. Once the folios are located, they are all pinned via
3648 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3649 * And, eventually, these pinned folios must be released either using
3650 * unpin_folios() or unpin_folio().
3652 * It must be noted that the folios may be pinned for an indefinite amount
3653 * of time. And, in most cases, the duration of time they may stay pinned
3654 * would be controlled by the userspace. This behavior is effectively the
3655 * same as using FOLL_LONGTERM with other GUP APIs.
3657 * Returns number of folios pinned, which could be less than @max_folios
3658 * as it depends on the folio sizes that cover the range [start, end].
3659 * If no folios were pinned, it returns -errno.
3661 long memfd_pin_folios(struct file
*memfd
, loff_t start
, loff_t end
,
3662 struct folio
**folios
, unsigned int max_folios
,
3665 unsigned int flags
, nr_folios
, nr_found
;
3666 unsigned int i
, pgshift
= PAGE_SHIFT
;
3667 pgoff_t start_idx
, end_idx
, next_idx
;
3668 struct folio
*folio
= NULL
;
3669 struct folio_batch fbatch
;
3673 if (start
< 0 || start
> end
|| !max_folios
)
3679 if (!shmem_file(memfd
) && !is_file_hugepages(memfd
))
3682 if (end
>= i_size_read(file_inode(memfd
)))
3685 if (is_file_hugepages(memfd
)) {
3686 h
= hstate_file(memfd
);
3687 pgshift
= huge_page_shift(h
);
3690 flags
= memalloc_pin_save();
3693 start_idx
= start
>> pgshift
;
3694 end_idx
= end
>> pgshift
;
3695 if (is_file_hugepages(memfd
)) {
3696 start_idx
<<= huge_page_order(h
);
3697 end_idx
<<= huge_page_order(h
);
3700 folio_batch_init(&fbatch
);
3701 while (start_idx
<= end_idx
&& nr_folios
< max_folios
) {
3703 * In most cases, we should be able to find the folios
3704 * in the page cache. If we cannot find them for some
3705 * reason, we try to allocate them and add them to the
3708 nr_found
= filemap_get_folios_contig(memfd
->f_mapping
,
3718 for (i
= 0; i
< nr_found
; i
++) {
3720 * As there can be multiple entries for a
3721 * given folio in the batch returned by
3722 * filemap_get_folios_contig(), the below
3723 * check is to ensure that we pin and return a
3724 * unique set of folios between start and end.
3727 next_idx
!= folio_index(fbatch
.folios
[i
]))
3730 folio
= page_folio(&fbatch
.folios
[i
]->page
);
3732 if (try_grab_folio(folio
, 1, FOLL_PIN
)) {
3733 folio_batch_release(&fbatch
);
3739 *offset
= offset_in_folio(folio
, start
);
3741 folios
[nr_folios
] = folio
;
3742 next_idx
= folio_next_index(folio
);
3743 if (++nr_folios
== max_folios
)
3748 folio_batch_release(&fbatch
);
3750 folio
= memfd_alloc_folio(memfd
, start_idx
);
3751 if (IS_ERR(folio
)) {
3752 ret
= PTR_ERR(folio
);
3760 ret
= check_and_migrate_movable_folios(nr_folios
, folios
);
3761 } while (ret
== -EAGAIN
);
3763 memalloc_pin_restore(flags
);
3764 return ret
? ret
: nr_folios
;
3766 memalloc_pin_restore(flags
);
3767 unpin_folios(folios
, nr_folios
);
3771 EXPORT_SYMBOL_GPL(memfd_pin_folios
);
3774 * folio_add_pins() - add pins to an already-pinned folio
3775 * @folio: the folio to add more pins to
3776 * @pins: number of pins to add
3778 * Try to add more pins to an already-pinned folio. The semantics
3779 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot
3782 * This function is helpful when having obtained a pin on a large folio
3783 * using memfd_pin_folios(), but wanting to logically unpin parts
3784 * (e.g., individual pages) of the folio later, for example, using
3785 * unpin_user_page_range_dirty_lock().
3787 * This is not the right interface to initially pin a folio.
3789 int folio_add_pins(struct folio
*folio
, unsigned int pins
)
3791 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio
));
3793 return try_grab_folio(folio
, pins
, FOLL_PIN
);
3795 EXPORT_SYMBOL_GPL(folio_add_pins
);