2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
41 #include <asm/starfire.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
46 #include <asm/hypervisor.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
54 unsigned long kern_linear_pte_xor
[2] __read_mostly
;
56 /* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings.
64 * Space is allocated for this right after the trap table
65 * in arch/sparc64/kernel/head.S
67 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
72 static struct linux_prom64_registers pavail
[MAX_BANKS
] __devinitdata
;
73 static int pavail_ents __devinitdata
;
75 static int cmp_p64(const void *a
, const void *b
)
77 const struct linux_prom64_registers
*x
= a
, *y
= b
;
79 if (x
->phys_addr
> y
->phys_addr
)
81 if (x
->phys_addr
< y
->phys_addr
)
86 static void __init
read_obp_memory(const char *property
,
87 struct linux_prom64_registers
*regs
,
90 phandle node
= prom_finddevice("/memory");
91 int prop_size
= prom_getproplen(node
, property
);
94 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
95 if (ents
> MAX_BANKS
) {
96 prom_printf("The machine has more %s property entries than "
97 "this kernel can support (%d).\n",
102 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
104 prom_printf("Couldn't get %s property from /memory.\n");
108 /* Sanitize what we got from the firmware, by page aligning
111 for (i
= 0; i
< ents
; i
++) {
112 unsigned long base
, size
;
114 base
= regs
[i
].phys_addr
;
115 size
= regs
[i
].reg_size
;
118 if (base
& ~PAGE_MASK
) {
119 unsigned long new_base
= PAGE_ALIGN(base
);
121 size
-= new_base
- base
;
122 if ((long) size
< 0L)
127 /* If it is empty, simply get rid of it.
128 * This simplifies the logic of the other
129 * functions that process these arrays.
131 memmove(®s
[i
], ®s
[i
+ 1],
132 (ents
- i
- 1) * sizeof(regs
[0]));
137 regs
[i
].phys_addr
= base
;
138 regs
[i
].reg_size
= size
;
143 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
147 unsigned long sparc64_valid_addr_bitmap
[VALID_ADDR_BITMAP_BYTES
/
148 sizeof(unsigned long)];
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap
);
151 /* Kernel physical address base and size in bytes. */
152 unsigned long kern_base __read_mostly
;
153 unsigned long kern_size __read_mostly
;
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64
;
157 extern unsigned int sparc_ramdisk_image
;
158 extern unsigned int sparc_ramdisk_size
;
160 struct page
*mem_map_zero __read_mostly
;
161 EXPORT_SYMBOL(mem_map_zero
);
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
165 unsigned long sparc64_kern_pri_context __read_mostly
;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
167 unsigned long sparc64_kern_sec_context __read_mostly
;
169 int num_kernel_image_mappings
;
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
174 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
178 inline void flush_dcache_page_impl(struct page
*page
)
180 BUG_ON(tlb_type
== hypervisor
);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes
);
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page
),
187 ((tlb_type
== spitfire
) &&
188 page_mapping(page
) != NULL
));
190 if (page_mapping(page
) != NULL
&&
191 tlb_type
== spitfire
)
192 __flush_icache_page(__pa(page_address(page
)));
196 #define PG_dcache_dirty PG_arch_1
197 #define PG_dcache_cpu_shift 32UL
198 #define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 #define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
206 unsigned long mask
= this_cpu
;
207 unsigned long non_cpu_bits
;
209 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
210 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
212 __asm__
__volatile__("1:\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
218 "bne,pn %%xcc, 1b\n\t"
221 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
225 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
227 unsigned long mask
= (1UL << PG_dcache_dirty
);
229 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
232 "srlx %%g7, %4, %%g1\n\t"
233 "and %%g1, %3, %%g1\n\t"
235 "bne,pn %%icc, 2f\n\t"
236 " andn %%g7, %1, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
243 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
244 "i" (PG_dcache_cpu_mask
),
245 "i" (PG_dcache_cpu_shift
)
249 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
251 unsigned long tsb_addr
= (unsigned long) ent
;
253 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
254 tsb_addr
= __pa(tsb_addr
);
256 __tsb_insert(tsb_addr
, tag
, pte
);
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
260 unsigned long _PAGE_SZBITS __read_mostly
;
262 static void flush_dcache(unsigned long pfn
)
266 page
= pfn_to_page(pfn
);
268 unsigned long pg_flags
;
270 pg_flags
= page
->flags
;
271 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
272 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
274 int this_cpu
= get_cpu();
276 /* This is just to optimize away some function calls
280 flush_dcache_page_impl(page
);
282 smp_flush_dcache_page_impl(page
, cpu
);
284 clear_dcache_dirty_cpu(page
, cpu
);
291 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
293 struct mm_struct
*mm
;
295 unsigned long tag
, flags
;
296 unsigned long tsb_index
, tsb_hash_shift
;
299 if (tlb_type
!= hypervisor
) {
300 unsigned long pfn
= pte_pfn(pte
);
308 tsb_index
= MM_TSB_BASE
;
309 tsb_hash_shift
= PAGE_SHIFT
;
311 spin_lock_irqsave(&mm
->context
.lock
, flags
);
313 #ifdef CONFIG_HUGETLB_PAGE
314 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
) {
315 if ((tlb_type
== hypervisor
&&
316 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
317 (tlb_type
!= hypervisor
&&
318 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
)) {
319 tsb_index
= MM_TSB_HUGE
;
320 tsb_hash_shift
= HPAGE_SHIFT
;
325 tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
326 tsb
+= ((address
>> tsb_hash_shift
) &
327 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
328 tag
= (address
>> 22UL);
329 tsb_insert(tsb
, tag
, pte_val(pte
));
331 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
334 void flush_dcache_page(struct page
*page
)
336 struct address_space
*mapping
;
339 if (tlb_type
== hypervisor
)
342 /* Do not bother with the expensive D-cache flush if it
343 * is merely the zero page. The 'bigcore' testcase in GDB
344 * causes this case to run millions of times.
346 if (page
== ZERO_PAGE(0))
349 this_cpu
= get_cpu();
351 mapping
= page_mapping(page
);
352 if (mapping
&& !mapping_mapped(mapping
)) {
353 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
355 int dirty_cpu
= dcache_dirty_cpu(page
);
357 if (dirty_cpu
== this_cpu
)
359 smp_flush_dcache_page_impl(page
, dirty_cpu
);
361 set_dcache_dirty(page
, this_cpu
);
363 /* We could delay the flush for the !page_mapping
364 * case too. But that case is for exec env/arg
365 * pages and those are %99 certainly going to get
366 * faulted into the tlb (and thus flushed) anyways.
368 flush_dcache_page_impl(page
);
374 EXPORT_SYMBOL(flush_dcache_page
);
376 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379 if (tlb_type
== spitfire
) {
382 /* This code only runs on Spitfire cpus so this is
383 * why we can assume _PAGE_PADDR_4U.
385 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
386 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
388 if (kaddr
>= PAGE_OFFSET
)
389 paddr
= kaddr
& mask
;
391 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
392 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
393 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
394 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
396 paddr
= pte_val(*ptep
) & mask
;
398 __flush_icache_page(paddr
);
402 EXPORT_SYMBOL(flush_icache_range
);
404 void mmu_info(struct seq_file
*m
)
406 if (tlb_type
== cheetah
)
407 seq_printf(m
, "MMU Type\t: Cheetah\n");
408 else if (tlb_type
== cheetah_plus
)
409 seq_printf(m
, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type
== spitfire
)
411 seq_printf(m
, "MMU Type\t: Spitfire\n");
412 else if (tlb_type
== hypervisor
)
413 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
415 seq_printf(m
, "MMU Type\t: ???\n");
417 #ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m
, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes
));
421 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall
));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
427 struct linux_prom_translation prom_trans
[512] __read_mostly
;
428 unsigned int prom_trans_ents __read_mostly
;
430 unsigned long kern_locked_tte_data
;
432 /* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434 * HI_OBP_ADDRESS range are handled in ktlb.S.
436 static inline int in_obp_range(unsigned long vaddr
)
438 return (vaddr
>= LOW_OBP_ADDRESS
&&
439 vaddr
< HI_OBP_ADDRESS
);
442 static int cmp_ptrans(const void *a
, const void *b
)
444 const struct linux_prom_translation
*x
= a
, *y
= b
;
446 if (x
->virt
> y
->virt
)
448 if (x
->virt
< y
->virt
)
453 /* Read OBP translations property into 'prom_trans[]'. */
454 static void __init
read_obp_translations(void)
456 int n
, node
, ents
, first
, last
, i
;
458 node
= prom_finddevice("/virtual-memory");
459 n
= prom_getproplen(node
, "translations");
460 if (unlikely(n
== 0 || n
== -1)) {
461 prom_printf("prom_mappings: Couldn't get size.\n");
464 if (unlikely(n
> sizeof(prom_trans
))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n
);
469 if ((n
= prom_getproperty(node
, "translations",
470 (char *)&prom_trans
[0],
471 sizeof(prom_trans
))) == -1) {
472 prom_printf("prom_mappings: Couldn't get property.\n");
476 n
= n
/ sizeof(struct linux_prom_translation
);
480 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
483 /* Now kick out all the non-OBP entries. */
484 for (i
= 0; i
< ents
; i
++) {
485 if (in_obp_range(prom_trans
[i
].virt
))
489 for (; i
< ents
; i
++) {
490 if (!in_obp_range(prom_trans
[i
].virt
))
495 for (i
= 0; i
< (last
- first
); i
++) {
496 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
497 struct linux_prom_translation
*dest
= &prom_trans
[i
];
501 for (; i
< ents
; i
++) {
502 struct linux_prom_translation
*dest
= &prom_trans
[i
];
503 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
506 prom_trans_ents
= last
- first
;
508 if (tlb_type
== spitfire
) {
509 /* Clear diag TTE bits. */
510 for (i
= 0; i
< prom_trans_ents
; i
++)
511 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
514 /* Force execute bit on. */
515 for (i
= 0; i
< prom_trans_ents
; i
++)
516 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
517 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
520 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
524 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
527 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
528 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
533 static unsigned long kern_large_tte(unsigned long paddr
);
535 static void __init
remap_kernel(void)
537 unsigned long phys_page
, tte_vaddr
, tte_data
;
538 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
540 tte_vaddr
= (unsigned long) KERNBASE
;
541 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
542 tte_data
= kern_large_tte(phys_page
);
544 kern_locked_tte_data
= tte_data
;
546 /* Now lock us into the TLBs via Hypervisor or OBP. */
547 if (tlb_type
== hypervisor
) {
548 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
549 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
550 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
551 tte_vaddr
+= 0x400000;
552 tte_data
+= 0x400000;
555 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
556 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
557 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
558 tte_vaddr
+= 0x400000;
559 tte_data
+= 0x400000;
561 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
563 if (tlb_type
== cheetah_plus
) {
564 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
565 CTX_CHEETAH_PLUS_NUC
);
566 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
567 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
572 static void __init
inherit_prom_mappings(void)
574 /* Now fixup OBP's idea about where we really are mapped. */
575 printk("Remapping the kernel... ");
580 void prom_world(int enter
)
583 set_fs((mm_segment_t
) { get_thread_current_ds() });
585 __asm__
__volatile__("flushw");
588 void __flush_dcache_range(unsigned long start
, unsigned long end
)
592 if (tlb_type
== spitfire
) {
595 for (va
= start
; va
< end
; va
+= 32) {
596 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
600 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
603 for (va
= start
; va
< end
; va
+= 32)
604 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
608 "i" (ASI_DCACHE_INVALIDATE
));
611 EXPORT_SYMBOL(__flush_dcache_range
);
613 /* get_new_mmu_context() uses "cache + 1". */
614 DEFINE_SPINLOCK(ctx_alloc_lock
);
615 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
616 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
617 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
618 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
620 /* Caller does TLB context flushing on local CPU if necessary.
621 * The caller also ensures that CTX_VALID(mm->context) is false.
623 * We must be careful about boundary cases so that we never
624 * let the user have CTX 0 (nucleus) or we ever use a CTX
625 * version of zero (and thus NO_CONTEXT would not be caught
626 * by version mis-match tests in mmu_context.h).
628 * Always invoked with interrupts disabled.
630 void get_new_mmu_context(struct mm_struct
*mm
)
632 unsigned long ctx
, new_ctx
;
633 unsigned long orig_pgsz_bits
;
637 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
638 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
639 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
640 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
642 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
643 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
644 if (new_ctx
>= ctx
) {
646 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
649 new_ctx
= CTX_FIRST_VERSION
;
651 /* Don't call memset, for 16 entries that's just
654 mmu_context_bmap
[0] = 3;
655 mmu_context_bmap
[1] = 0;
656 mmu_context_bmap
[2] = 0;
657 mmu_context_bmap
[3] = 0;
658 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
659 mmu_context_bmap
[i
+ 0] = 0;
660 mmu_context_bmap
[i
+ 1] = 0;
661 mmu_context_bmap
[i
+ 2] = 0;
662 mmu_context_bmap
[i
+ 3] = 0;
668 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
669 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
671 tlb_context_cache
= new_ctx
;
672 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
673 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);
675 if (unlikely(new_version
))
676 smp_new_mmu_context_version();
679 static int numa_enabled
= 1;
680 static int numa_debug
;
682 static int __init
early_numa(char *p
)
687 if (strstr(p
, "off"))
690 if (strstr(p
, "debug"))
695 early_param("numa", early_numa
);
697 #define numadbg(f, a...) \
698 do { if (numa_debug) \
699 printk(KERN_INFO f, ## a); \
702 static void __init
find_ramdisk(unsigned long phys_base
)
704 #ifdef CONFIG_BLK_DEV_INITRD
705 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
706 unsigned long ramdisk_image
;
708 /* Older versions of the bootloader only supported a
709 * 32-bit physical address for the ramdisk image
710 * location, stored at sparc_ramdisk_image. Newer
711 * SILO versions set sparc_ramdisk_image to zero and
712 * provide a full 64-bit physical address at
713 * sparc_ramdisk_image64.
715 ramdisk_image
= sparc_ramdisk_image
;
717 ramdisk_image
= sparc_ramdisk_image64
;
719 /* Another bootloader quirk. The bootloader normalizes
720 * the physical address to KERNBASE, so we have to
721 * factor that back out and add in the lowest valid
722 * physical page address to get the true physical address.
724 ramdisk_image
-= KERNBASE
;
725 ramdisk_image
+= phys_base
;
727 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
728 ramdisk_image
, sparc_ramdisk_size
);
730 initrd_start
= ramdisk_image
;
731 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
733 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
735 initrd_start
+= PAGE_OFFSET
;
736 initrd_end
+= PAGE_OFFSET
;
741 struct node_mem_mask
{
745 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
746 static int num_node_masks
;
748 int numa_cpu_lookup_table
[NR_CPUS
];
749 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
751 #ifdef CONFIG_NEED_MULTIPLE_NODES
753 struct mdesc_mblock
{
756 u64 offset
; /* RA-to-PA */
758 static struct mdesc_mblock
*mblocks
;
759 static int num_mblocks
;
761 static unsigned long ra_to_pa(unsigned long addr
)
765 for (i
= 0; i
< num_mblocks
; i
++) {
766 struct mdesc_mblock
*m
= &mblocks
[i
];
768 if (addr
>= m
->base
&&
769 addr
< (m
->base
+ m
->size
)) {
777 static int find_node(unsigned long addr
)
781 addr
= ra_to_pa(addr
);
782 for (i
= 0; i
< num_node_masks
; i
++) {
783 struct node_mem_mask
*p
= &node_masks
[i
];
785 if ((addr
& p
->mask
) == p
->val
)
791 static u64
memblock_nid_range(u64 start
, u64 end
, int *nid
)
793 *nid
= find_node(start
);
795 while (start
< end
) {
796 int n
= find_node(start
);
810 /* This must be invoked after performing all of the necessary
811 * memblock_set_node() calls for 'nid'. We need to be able to get
812 * correct data from get_pfn_range_for_nid().
814 static void __init
allocate_node_data(int nid
)
816 struct pglist_data
*p
;
817 unsigned long start_pfn
, end_pfn
;
818 #ifdef CONFIG_NEED_MULTIPLE_NODES
821 paddr
= memblock_alloc_try_nid(sizeof(struct pglist_data
), SMP_CACHE_BYTES
, nid
);
823 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
826 NODE_DATA(nid
) = __va(paddr
);
827 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
829 NODE_DATA(nid
)->node_id
= nid
;
834 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
835 p
->node_start_pfn
= start_pfn
;
836 p
->node_spanned_pages
= end_pfn
- start_pfn
;
839 static void init_node_masks_nonnuma(void)
843 numadbg("Initializing tables for non-numa.\n");
845 node_masks
[0].mask
= node_masks
[0].val
= 0;
848 for (i
= 0; i
< NR_CPUS
; i
++)
849 numa_cpu_lookup_table
[i
] = 0;
851 cpumask_setall(&numa_cpumask_lookup_table
[0]);
854 #ifdef CONFIG_NEED_MULTIPLE_NODES
855 struct pglist_data
*node_data
[MAX_NUMNODES
];
857 EXPORT_SYMBOL(numa_cpu_lookup_table
);
858 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
859 EXPORT_SYMBOL(node_data
);
861 struct mdesc_mlgroup
{
867 static struct mdesc_mlgroup
*mlgroups
;
868 static int num_mlgroups
;
870 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
875 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
876 u64 target
= mdesc_arc_target(md
, arc
);
879 val
= mdesc_get_property(md
, target
,
881 if (val
&& *val
== cfg_handle
)
887 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
890 u64 arc
, candidate
, best_latency
= ~(u64
)0;
892 candidate
= MDESC_NODE_NULL
;
893 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
894 u64 target
= mdesc_arc_target(md
, arc
);
895 const char *name
= mdesc_node_name(md
, target
);
898 if (strcmp(name
, "pio-latency-group"))
901 val
= mdesc_get_property(md
, target
, "latency", NULL
);
905 if (*val
< best_latency
) {
911 if (candidate
== MDESC_NODE_NULL
)
914 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
917 int of_node_to_nid(struct device_node
*dp
)
919 const struct linux_prom64_registers
*regs
;
920 struct mdesc_handle
*md
;
925 /* This is the right thing to do on currently supported
926 * SUN4U NUMA platforms as well, as the PCI controller does
927 * not sit behind any particular memory controller.
932 regs
= of_get_property(dp
, "reg", NULL
);
936 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
942 mdesc_for_each_node_by_name(md
, grp
, "group") {
943 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
955 static void __init
add_node_ranges(void)
957 struct memblock_region
*reg
;
959 for_each_memblock(memory
, reg
) {
960 unsigned long size
= reg
->size
;
961 unsigned long start
, end
;
965 while (start
< end
) {
966 unsigned long this_end
;
969 this_end
= memblock_nid_range(start
, end
, &nid
);
971 numadbg("Setting memblock NUMA node nid[%d] "
972 "start[%lx] end[%lx]\n",
973 nid
, start
, this_end
);
975 memblock_set_node(start
, this_end
- start
, nid
);
981 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
987 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
992 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mlgroup
),
997 mlgroups
= __va(paddr
);
998 num_mlgroups
= count
;
1001 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1002 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1007 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1009 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1011 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1014 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1015 "match[%llx] mask[%llx]\n",
1016 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1022 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1024 unsigned long paddr
;
1028 mdesc_for_each_node_by_name(md
, node
, "mblock")
1033 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mblock
),
1038 mblocks
= __va(paddr
);
1039 num_mblocks
= count
;
1042 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1043 struct mdesc_mblock
*m
= &mblocks
[count
++];
1046 val
= mdesc_get_property(md
, node
, "base", NULL
);
1048 val
= mdesc_get_property(md
, node
, "size", NULL
);
1050 val
= mdesc_get_property(md
, node
,
1051 "address-congruence-offset", NULL
);
1054 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1055 count
- 1, m
->base
, m
->size
, m
->offset
);
1061 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1062 u64 grp
, cpumask_t
*mask
)
1066 cpumask_clear(mask
);
1068 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1069 u64 target
= mdesc_arc_target(md
, arc
);
1070 const char *name
= mdesc_node_name(md
, target
);
1073 if (strcmp(name
, "cpu"))
1075 id
= mdesc_get_property(md
, target
, "id", NULL
);
1076 if (*id
< nr_cpu_ids
)
1077 cpumask_set_cpu(*id
, mask
);
1081 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1085 for (i
= 0; i
< num_mlgroups
; i
++) {
1086 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1087 if (m
->node
== node
)
1093 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1096 struct mdesc_mlgroup
*candidate
= NULL
;
1097 u64 arc
, best_latency
= ~(u64
)0;
1098 struct node_mem_mask
*n
;
1100 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1101 u64 target
= mdesc_arc_target(md
, arc
);
1102 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1105 if (m
->latency
< best_latency
) {
1107 best_latency
= m
->latency
;
1113 if (num_node_masks
!= index
) {
1114 printk(KERN_ERR
"Inconsistent NUMA state, "
1115 "index[%d] != num_node_masks[%d]\n",
1116 index
, num_node_masks
);
1120 n
= &node_masks
[num_node_masks
++];
1122 n
->mask
= candidate
->mask
;
1123 n
->val
= candidate
->match
;
1125 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1126 index
, n
->mask
, n
->val
, candidate
->latency
);
1131 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1137 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1139 for_each_cpu(cpu
, &mask
)
1140 numa_cpu_lookup_table
[cpu
] = index
;
1141 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1144 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1145 for_each_cpu(cpu
, &mask
)
1150 return numa_attach_mlgroup(md
, grp
, index
);
1153 static int __init
numa_parse_mdesc(void)
1155 struct mdesc_handle
*md
= mdesc_grab();
1159 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1160 if (node
== MDESC_NODE_NULL
) {
1165 err
= grab_mblocks(md
);
1169 err
= grab_mlgroups(md
);
1174 mdesc_for_each_node_by_name(md
, node
, "group") {
1175 err
= numa_parse_mdesc_group(md
, node
, count
);
1183 for (i
= 0; i
< num_node_masks
; i
++) {
1184 allocate_node_data(i
);
1194 static int __init
numa_parse_jbus(void)
1196 unsigned long cpu
, index
;
1198 /* NUMA node id is encoded in bits 36 and higher, and there is
1199 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1202 for_each_present_cpu(cpu
) {
1203 numa_cpu_lookup_table
[cpu
] = index
;
1204 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1205 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1206 node_masks
[index
].val
= cpu
<< 36UL;
1210 num_node_masks
= index
;
1214 for (index
= 0; index
< num_node_masks
; index
++) {
1215 allocate_node_data(index
);
1216 node_set_online(index
);
1222 static int __init
numa_parse_sun4u(void)
1224 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1227 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1228 if ((ver
>> 32UL) == __JALAPENO_ID
||
1229 (ver
>> 32UL) == __SERRANO_ID
)
1230 return numa_parse_jbus();
1235 static int __init
bootmem_init_numa(void)
1239 numadbg("bootmem_init_numa()\n");
1242 if (tlb_type
== hypervisor
)
1243 err
= numa_parse_mdesc();
1245 err
= numa_parse_sun4u();
1252 static int bootmem_init_numa(void)
1259 static void __init
bootmem_init_nonnuma(void)
1261 unsigned long top_of_ram
= memblock_end_of_DRAM();
1262 unsigned long total_ram
= memblock_phys_mem_size();
1264 numadbg("bootmem_init_nonnuma()\n");
1266 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1267 top_of_ram
, total_ram
);
1268 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1269 (top_of_ram
- total_ram
) >> 20);
1271 init_node_masks_nonnuma();
1272 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, 0);
1273 allocate_node_data(0);
1277 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1279 unsigned long end_pfn
;
1281 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1282 max_pfn
= max_low_pfn
= end_pfn
;
1283 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1285 if (bootmem_init_numa() < 0)
1286 bootmem_init_nonnuma();
1288 /* Dump memblock with node info. */
1289 memblock_dump_all();
1291 /* XXX cpu notifier XXX */
1293 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1299 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1300 static int pall_ents __initdata
;
1302 #ifdef CONFIG_DEBUG_PAGEALLOC
1303 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1304 unsigned long pend
, pgprot_t prot
)
1306 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1307 unsigned long vend
= PAGE_OFFSET
+ pend
;
1308 unsigned long alloc_bytes
= 0UL;
1310 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1311 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1316 while (vstart
< vend
) {
1317 unsigned long this_end
, paddr
= __pa(vstart
);
1318 pgd_t
*pgd
= pgd_offset_k(vstart
);
1323 pud
= pud_offset(pgd
, vstart
);
1324 if (pud_none(*pud
)) {
1327 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1328 alloc_bytes
+= PAGE_SIZE
;
1329 pud_populate(&init_mm
, pud
, new);
1332 pmd
= pmd_offset(pud
, vstart
);
1333 if (!pmd_present(*pmd
)) {
1336 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1337 alloc_bytes
+= PAGE_SIZE
;
1338 pmd_populate_kernel(&init_mm
, pmd
, new);
1341 pte
= pte_offset_kernel(pmd
, vstart
);
1342 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1343 if (this_end
> vend
)
1346 while (vstart
< this_end
) {
1347 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1349 vstart
+= PAGE_SIZE
;
1358 extern unsigned int kvmap_linear_patch
[1];
1359 #endif /* CONFIG_DEBUG_PAGEALLOC */
1361 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1363 const unsigned long shift_256MB
= 28;
1364 const unsigned long mask_256MB
= ((1UL << shift_256MB
) - 1UL);
1365 const unsigned long size_256MB
= (1UL << shift_256MB
);
1367 while (start
< end
) {
1370 remains
= end
- start
;
1371 if (remains
< size_256MB
)
1374 if (start
& mask_256MB
) {
1375 start
= (start
+ size_256MB
) & ~mask_256MB
;
1379 while (remains
>= size_256MB
) {
1380 unsigned long index
= start
>> shift_256MB
;
1382 __set_bit(index
, kpte_linear_bitmap
);
1384 start
+= size_256MB
;
1385 remains
-= size_256MB
;
1390 static void __init
init_kpte_bitmap(void)
1394 for (i
= 0; i
< pall_ents
; i
++) {
1395 unsigned long phys_start
, phys_end
;
1397 phys_start
= pall
[i
].phys_addr
;
1398 phys_end
= phys_start
+ pall
[i
].reg_size
;
1400 mark_kpte_bitmap(phys_start
, phys_end
);
1404 static void __init
kernel_physical_mapping_init(void)
1406 #ifdef CONFIG_DEBUG_PAGEALLOC
1407 unsigned long i
, mem_alloced
= 0UL;
1409 for (i
= 0; i
< pall_ents
; i
++) {
1410 unsigned long phys_start
, phys_end
;
1412 phys_start
= pall
[i
].phys_addr
;
1413 phys_end
= phys_start
+ pall
[i
].reg_size
;
1415 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1419 printk("Allocated %ld bytes for kernel page tables.\n",
1422 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1423 flushi(&kvmap_linear_patch
[0]);
1429 #ifdef CONFIG_DEBUG_PAGEALLOC
1430 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1432 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1433 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1435 kernel_map_range(phys_start
, phys_end
,
1436 (enable
? PAGE_KERNEL
: __pgprot(0)));
1438 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1439 PAGE_OFFSET
+ phys_end
);
1441 /* we should perform an IPI and flush all tlbs,
1442 * but that can deadlock->flush only current cpu.
1444 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1445 PAGE_OFFSET
+ phys_end
);
1449 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1453 for (i
= 0; i
< pavail_ents
; i
++) {
1454 if (pavail
[i
].reg_size
>= size
)
1455 return pavail
[i
].phys_addr
;
1461 static void __init
tsb_phys_patch(void)
1463 struct tsb_ldquad_phys_patch_entry
*pquad
;
1464 struct tsb_phys_patch_entry
*p
;
1466 pquad
= &__tsb_ldquad_phys_patch
;
1467 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1468 unsigned long addr
= pquad
->addr
;
1470 if (tlb_type
== hypervisor
)
1471 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1473 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1475 __asm__
__volatile__("flush %0"
1482 p
= &__tsb_phys_patch
;
1483 while (p
< &__tsb_phys_patch_end
) {
1484 unsigned long addr
= p
->addr
;
1486 *(unsigned int *) addr
= p
->insn
;
1488 __asm__
__volatile__("flush %0"
1496 /* Don't mark as init, we give this to the Hypervisor. */
1497 #ifndef CONFIG_DEBUG_PAGEALLOC
1498 #define NUM_KTSB_DESCR 2
1500 #define NUM_KTSB_DESCR 1
1502 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1503 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1505 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
1507 pa
>>= KTSB_PHYS_SHIFT
;
1509 while (start
< end
) {
1510 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
1512 ia
[0] = (ia
[0] & ~0x3fffff) | (pa
>> 10);
1513 __asm__
__volatile__("flush %0" : : "r" (ia
));
1515 ia
[1] = (ia
[1] & ~0x3ff) | (pa
& 0x3ff);
1516 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
1522 static void ktsb_phys_patch(void)
1524 extern unsigned int __swapper_tsb_phys_patch
;
1525 extern unsigned int __swapper_tsb_phys_patch_end
;
1526 unsigned long ktsb_pa
;
1528 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1529 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
1530 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
1531 #ifndef CONFIG_DEBUG_PAGEALLOC
1533 extern unsigned int __swapper_4m_tsb_phys_patch
;
1534 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
1535 ktsb_pa
= (kern_base
+
1536 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1537 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
1538 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
1543 static void __init
sun4v_ktsb_init(void)
1545 unsigned long ktsb_pa
;
1547 /* First KTSB for PAGE_SIZE mappings. */
1548 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1550 switch (PAGE_SIZE
) {
1553 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1554 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1558 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1559 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1563 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1564 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1567 case 4 * 1024 * 1024:
1568 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1569 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1573 ktsb_descr
[0].assoc
= 1;
1574 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1575 ktsb_descr
[0].ctx_idx
= 0;
1576 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1577 ktsb_descr
[0].resv
= 0;
1579 #ifndef CONFIG_DEBUG_PAGEALLOC
1580 /* Second KTSB for 4MB/256MB mappings. */
1581 ktsb_pa
= (kern_base
+
1582 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1584 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1585 ktsb_descr
[1].pgsz_mask
= (HV_PGSZ_MASK_4MB
|
1586 HV_PGSZ_MASK_256MB
);
1587 ktsb_descr
[1].assoc
= 1;
1588 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1589 ktsb_descr
[1].ctx_idx
= 0;
1590 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1591 ktsb_descr
[1].resv
= 0;
1595 void __cpuinit
sun4v_ktsb_register(void)
1597 unsigned long pa
, ret
;
1599 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1601 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1603 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1604 "errors with %lx\n", pa
, ret
);
1609 /* paging_init() sets up the page tables */
1611 static unsigned long last_valid_pfn
;
1612 pgd_t swapper_pg_dir
[2048];
1614 static void sun4u_pgprot_init(void);
1615 static void sun4v_pgprot_init(void);
1617 void __init
paging_init(void)
1619 unsigned long end_pfn
, shift
, phys_base
;
1620 unsigned long real_end
, i
;
1623 /* These build time checkes make sure that the dcache_dirty_cpu()
1624 * page->flags usage will work.
1626 * When a page gets marked as dcache-dirty, we store the
1627 * cpu number starting at bit 32 in the page->flags. Also,
1628 * functions like clear_dcache_dirty_cpu use the cpu mask
1629 * in 13-bit signed-immediate instruction fields.
1633 * Page flags must not reach into upper 32 bits that are used
1634 * for the cpu number
1636 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
1639 * The bit fields placed in the high range must not reach below
1640 * the 32 bit boundary. Otherwise we cannot place the cpu field
1641 * at the 32 bit boundary.
1643 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1644 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
1646 BUILD_BUG_ON(NR_CPUS
> 4096);
1648 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1649 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1651 /* Invalidate both kernel TSBs. */
1652 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1653 #ifndef CONFIG_DEBUG_PAGEALLOC
1654 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1657 if (tlb_type
== hypervisor
)
1658 sun4v_pgprot_init();
1660 sun4u_pgprot_init();
1662 if (tlb_type
== cheetah_plus
||
1663 tlb_type
== hypervisor
) {
1668 if (tlb_type
== hypervisor
) {
1669 sun4v_patch_tlb_handlers();
1673 /* Find available physical memory...
1675 * Read it twice in order to work around a bug in openfirmware.
1676 * The call to grab this table itself can cause openfirmware to
1677 * allocate memory, which in turn can take away some space from
1678 * the list of available memory. Reading it twice makes sure
1679 * we really do get the final value.
1681 read_obp_translations();
1682 read_obp_memory("reg", &pall
[0], &pall_ents
);
1683 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1684 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1686 phys_base
= 0xffffffffffffffffUL
;
1687 for (i
= 0; i
< pavail_ents
; i
++) {
1688 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1689 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1692 memblock_reserve(kern_base
, kern_size
);
1694 find_ramdisk(phys_base
);
1696 memblock_enforce_memory_limit(cmdline_memory_size
);
1698 memblock_allow_resize();
1699 memblock_dump_all();
1701 set_bit(0, mmu_context_bmap
);
1703 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1705 real_end
= (unsigned long)_end
;
1706 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << 22);
1707 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1708 num_kernel_image_mappings
);
1710 /* Set kernel pgd to upper alias so physical page computations
1713 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1715 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1717 /* Now can init the kernel/bad page tables. */
1718 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1719 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1721 inherit_prom_mappings();
1725 /* Ok, we can use our TLB miss and window trap handlers safely. */
1730 if (tlb_type
== hypervisor
)
1731 sun4v_ktsb_register();
1733 prom_build_devicetree();
1734 of_populate_present_mask();
1736 of_fill_in_cpu_data();
1739 if (tlb_type
== hypervisor
) {
1741 mdesc_populate_present_mask(cpu_all_mask
);
1743 mdesc_fill_in_cpu_data(cpu_all_mask
);
1747 /* Setup bootmem... */
1748 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
1750 /* Once the OF device tree and MDESC have been setup, we know
1751 * the list of possible cpus. Therefore we can allocate the
1754 for_each_possible_cpu(i
) {
1755 node
= cpu_to_node(i
);
1757 softirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
1760 hardirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
1765 kernel_physical_mapping_init();
1768 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1770 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1772 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
1774 free_area_init_nodes(max_zone_pfns
);
1777 printk("Booting Linux...\n");
1780 int __devinit
page_in_phys_avail(unsigned long paddr
)
1786 for (i
= 0; i
< pavail_ents
; i
++) {
1787 unsigned long start
, end
;
1789 start
= pavail
[i
].phys_addr
;
1790 end
= start
+ pavail
[i
].reg_size
;
1792 if (paddr
>= start
&& paddr
< end
)
1795 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1797 #ifdef CONFIG_BLK_DEV_INITRD
1798 if (paddr
>= __pa(initrd_start
) &&
1799 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1806 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
1807 static int pavail_rescan_ents __initdata
;
1809 /* Certain OBP calls, such as fetching "available" properties, can
1810 * claim physical memory. So, along with initializing the valid
1811 * address bitmap, what we do here is refetch the physical available
1812 * memory list again, and make sure it provides at least as much
1813 * memory as 'pavail' does.
1815 static void __init
setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap
)
1819 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1821 for (i
= 0; i
< pavail_ents
; i
++) {
1822 unsigned long old_start
, old_end
;
1824 old_start
= pavail
[i
].phys_addr
;
1825 old_end
= old_start
+ pavail
[i
].reg_size
;
1826 while (old_start
< old_end
) {
1829 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
1830 unsigned long new_start
, new_end
;
1832 new_start
= pavail_rescan
[n
].phys_addr
;
1833 new_end
= new_start
+
1834 pavail_rescan
[n
].reg_size
;
1836 if (new_start
<= old_start
&&
1837 new_end
>= (old_start
+ PAGE_SIZE
)) {
1838 set_bit(old_start
>> 22, bitmap
);
1843 prom_printf("mem_init: Lost memory in pavail\n");
1844 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1845 pavail
[i
].phys_addr
,
1846 pavail
[i
].reg_size
);
1847 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1848 pavail_rescan
[i
].phys_addr
,
1849 pavail_rescan
[i
].reg_size
);
1850 prom_printf("mem_init: Cannot continue, aborting.\n");
1854 old_start
+= PAGE_SIZE
;
1859 static void __init
patch_tlb_miss_handler_bitmap(void)
1861 extern unsigned int valid_addr_bitmap_insn
[];
1862 extern unsigned int valid_addr_bitmap_patch
[];
1864 valid_addr_bitmap_insn
[1] = valid_addr_bitmap_patch
[1];
1866 valid_addr_bitmap_insn
[0] = valid_addr_bitmap_patch
[0];
1867 flushi(&valid_addr_bitmap_insn
[0]);
1870 void __init
mem_init(void)
1872 unsigned long codepages
, datapages
, initpages
;
1873 unsigned long addr
, last
;
1875 addr
= PAGE_OFFSET
+ kern_base
;
1876 last
= PAGE_ALIGN(kern_size
) + addr
;
1877 while (addr
< last
) {
1878 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
1882 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap
);
1883 patch_tlb_miss_handler_bitmap();
1885 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
1887 #ifdef CONFIG_NEED_MULTIPLE_NODES
1890 for_each_online_node(i
) {
1891 if (NODE_DATA(i
)->node_spanned_pages
!= 0) {
1893 free_all_bootmem_node(NODE_DATA(i
));
1896 totalram_pages
+= free_low_memory_core_early(MAX_NUMNODES
);
1899 totalram_pages
= free_all_bootmem();
1902 /* We subtract one to account for the mem_map_zero page
1905 totalram_pages
-= 1;
1906 num_physpages
= totalram_pages
;
1909 * Set up the zero page, mark it reserved, so that page count
1910 * is not manipulated when freeing the page from user ptes.
1912 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
1913 if (mem_map_zero
== NULL
) {
1914 prom_printf("paging_init: Cannot alloc zero page.\n");
1917 SetPageReserved(mem_map_zero
);
1919 codepages
= (((unsigned long) _etext
) - ((unsigned long) _start
));
1920 codepages
= PAGE_ALIGN(codepages
) >> PAGE_SHIFT
;
1921 datapages
= (((unsigned long) _edata
) - ((unsigned long) _etext
));
1922 datapages
= PAGE_ALIGN(datapages
) >> PAGE_SHIFT
;
1923 initpages
= (((unsigned long) __init_end
) - ((unsigned long) __init_begin
));
1924 initpages
= PAGE_ALIGN(initpages
) >> PAGE_SHIFT
;
1926 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1927 nr_free_pages() << (PAGE_SHIFT
-10),
1928 codepages
<< (PAGE_SHIFT
-10),
1929 datapages
<< (PAGE_SHIFT
-10),
1930 initpages
<< (PAGE_SHIFT
-10),
1931 PAGE_OFFSET
, (last_valid_pfn
<< PAGE_SHIFT
));
1933 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
1934 cheetah_ecache_flush_init();
1937 void free_initmem(void)
1939 unsigned long addr
, initend
;
1942 /* If the physical memory maps were trimmed by kernel command
1943 * line options, don't even try freeing this initmem stuff up.
1944 * The kernel image could have been in the trimmed out region
1945 * and if so the freeing below will free invalid page structs.
1947 if (cmdline_memory_size
)
1951 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1953 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
1954 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
1955 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
1960 ((unsigned long) __va(kern_base
)) -
1961 ((unsigned long) KERNBASE
));
1962 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
1965 p
= virt_to_page(page
);
1967 ClearPageReserved(p
);
1976 #ifdef CONFIG_BLK_DEV_INITRD
1977 void free_initrd_mem(unsigned long start
, unsigned long end
)
1980 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
1981 for (; start
< end
; start
+= PAGE_SIZE
) {
1982 struct page
*p
= virt_to_page(start
);
1984 ClearPageReserved(p
);
1993 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1994 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1995 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1996 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1997 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1998 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2000 pgprot_t PAGE_KERNEL __read_mostly
;
2001 EXPORT_SYMBOL(PAGE_KERNEL
);
2003 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2004 pgprot_t PAGE_COPY __read_mostly
;
2006 pgprot_t PAGE_SHARED __read_mostly
;
2007 EXPORT_SYMBOL(PAGE_SHARED
);
2009 unsigned long pg_iobits __read_mostly
;
2011 unsigned long _PAGE_IE __read_mostly
;
2012 EXPORT_SYMBOL(_PAGE_IE
);
2014 unsigned long _PAGE_E __read_mostly
;
2015 EXPORT_SYMBOL(_PAGE_E
);
2017 unsigned long _PAGE_CACHE __read_mostly
;
2018 EXPORT_SYMBOL(_PAGE_CACHE
);
2020 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2021 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
2023 static long __meminitdata addr_start
, addr_end
;
2024 static int __meminitdata node_start
;
2026 int __meminit
vmemmap_populate(struct page
*start
, unsigned long nr
, int node
)
2028 unsigned long vstart
= (unsigned long) start
;
2029 unsigned long vend
= (unsigned long) (start
+ nr
);
2030 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
2031 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
2032 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
2033 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
2034 unsigned long pte_base
;
2036 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2037 _PAGE_CP_4U
| _PAGE_CV_4U
|
2038 _PAGE_P_4U
| _PAGE_W_4U
);
2039 if (tlb_type
== hypervisor
)
2040 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2041 _PAGE_CP_4V
| _PAGE_CV_4V
|
2042 _PAGE_P_4V
| _PAGE_W_4V
);
2044 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
2045 unsigned long *vmem_pp
=
2046 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
2049 if (!(*vmem_pp
& _PAGE_VALID
)) {
2050 block
= vmemmap_alloc_block(1UL << 22, node
);
2054 *vmem_pp
= pte_base
| __pa(block
);
2056 /* check to see if we have contiguous blocks */
2057 if (addr_end
!= addr
|| node_start
!= node
) {
2059 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2060 addr_start
, addr_end
-1, node_start
);
2064 addr_end
= addr
+ VMEMMAP_CHUNK
;
2070 void __meminit
vmemmap_populate_print_last(void)
2073 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2074 addr_start
, addr_end
-1, node_start
);
2080 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2082 static void prot_init_common(unsigned long page_none
,
2083 unsigned long page_shared
,
2084 unsigned long page_copy
,
2085 unsigned long page_readonly
,
2086 unsigned long page_exec_bit
)
2088 PAGE_COPY
= __pgprot(page_copy
);
2089 PAGE_SHARED
= __pgprot(page_shared
);
2091 protection_map
[0x0] = __pgprot(page_none
);
2092 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2093 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2094 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2095 protection_map
[0x4] = __pgprot(page_readonly
);
2096 protection_map
[0x5] = __pgprot(page_readonly
);
2097 protection_map
[0x6] = __pgprot(page_copy
);
2098 protection_map
[0x7] = __pgprot(page_copy
);
2099 protection_map
[0x8] = __pgprot(page_none
);
2100 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2101 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2102 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2103 protection_map
[0xc] = __pgprot(page_readonly
);
2104 protection_map
[0xd] = __pgprot(page_readonly
);
2105 protection_map
[0xe] = __pgprot(page_shared
);
2106 protection_map
[0xf] = __pgprot(page_shared
);
2109 static void __init
sun4u_pgprot_init(void)
2111 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2112 unsigned long page_exec_bit
;
2114 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2115 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2116 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2118 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2119 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2120 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2121 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2123 _PAGE_IE
= _PAGE_IE_4U
;
2124 _PAGE_E
= _PAGE_E_4U
;
2125 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2127 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2128 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2130 #ifdef CONFIG_DEBUG_PAGEALLOC
2131 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4U
) ^
2132 0xfffff80000000000UL
;
2134 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2135 0xfffff80000000000UL
;
2137 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2138 _PAGE_P_4U
| _PAGE_W_4U
);
2140 /* XXX Should use 256MB on Panther. XXX */
2141 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2143 _PAGE_SZBITS
= _PAGE_SZBITS_4U
;
2144 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2145 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2146 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2149 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2150 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2151 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2152 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2153 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2154 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2155 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2157 page_exec_bit
= _PAGE_EXEC_4U
;
2159 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2163 static void __init
sun4v_pgprot_init(void)
2165 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2166 unsigned long page_exec_bit
;
2168 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2169 _PAGE_CACHE_4V
| _PAGE_P_4V
|
2170 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2172 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2174 _PAGE_IE
= _PAGE_IE_4V
;
2175 _PAGE_E
= _PAGE_E_4V
;
2176 _PAGE_CACHE
= _PAGE_CACHE_4V
;
2178 #ifdef CONFIG_DEBUG_PAGEALLOC
2179 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2180 0xfffff80000000000UL
;
2182 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2183 0xfffff80000000000UL
;
2185 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2186 _PAGE_P_4V
| _PAGE_W_4V
);
2188 #ifdef CONFIG_DEBUG_PAGEALLOC
2189 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2190 0xfffff80000000000UL
;
2192 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2193 0xfffff80000000000UL
;
2195 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2196 _PAGE_P_4V
| _PAGE_W_4V
);
2198 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2199 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2201 _PAGE_SZBITS
= _PAGE_SZBITS_4V
;
2202 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2203 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2204 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2205 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2207 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
2208 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2209 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2210 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2211 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2212 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2213 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2215 page_exec_bit
= _PAGE_EXEC_4V
;
2217 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2221 unsigned long pte_sz_bits(unsigned long sz
)
2223 if (tlb_type
== hypervisor
) {
2227 return _PAGE_SZ8K_4V
;
2229 return _PAGE_SZ64K_4V
;
2231 return _PAGE_SZ512K_4V
;
2232 case 4 * 1024 * 1024:
2233 return _PAGE_SZ4MB_4V
;
2239 return _PAGE_SZ8K_4U
;
2241 return _PAGE_SZ64K_4U
;
2243 return _PAGE_SZ512K_4U
;
2244 case 4 * 1024 * 1024:
2245 return _PAGE_SZ4MB_4U
;
2250 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2254 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2255 pte_val(pte
) |= (((unsigned long)space
) << 32);
2256 pte_val(pte
) |= pte_sz_bits(page_size
);
2261 static unsigned long kern_large_tte(unsigned long paddr
)
2265 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2266 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2267 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2268 if (tlb_type
== hypervisor
)
2269 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2270 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
2271 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2276 /* If not locked, zap it. */
2277 void __flush_tlb_all(void)
2279 unsigned long pstate
;
2282 __asm__
__volatile__("flushw\n\t"
2283 "rdpr %%pstate, %0\n\t"
2284 "wrpr %0, %1, %%pstate"
2287 if (tlb_type
== hypervisor
) {
2288 sun4v_mmu_demap_all();
2289 } else if (tlb_type
== spitfire
) {
2290 for (i
= 0; i
< 64; i
++) {
2291 /* Spitfire Errata #32 workaround */
2292 /* NOTE: Always runs on spitfire, so no
2293 * cheetah+ page size encodings.
2295 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2299 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2301 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2302 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2305 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2306 spitfire_put_dtlb_data(i
, 0x0UL
);
2309 /* Spitfire Errata #32 workaround */
2310 /* NOTE: Always runs on spitfire, so no
2311 * cheetah+ page size encodings.
2313 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2317 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2319 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2320 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2323 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2324 spitfire_put_itlb_data(i
, 0x0UL
);
2327 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2328 cheetah_flush_dtlb_all();
2329 cheetah_flush_itlb_all();
2331 __asm__
__volatile__("wrpr %0, 0, %%pstate"