mac80211_hwsim: use GFP_ATOMIC under spin lock
[linux/fpc-iii.git] / mm / migrate.c
blob7160c1556f797fa961b77065e47e57e628ebf3de
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
58 #include "internal.h"
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 int migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
73 lru_add_drain_all();
75 return 0;
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
81 lru_add_drain();
83 return 0;
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
88 struct address_space *mapping;
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
137 return 0;
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
150 struct address_space *mapping;
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
169 void putback_movable_pages(struct list_head *l)
171 struct page *page;
172 struct page *page2;
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
179 list_del(&page->lru);
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_lru(page), -hpage_nr_pages(page));
197 putback_lru_page(page);
203 * Restore a potential migration pte to a working pte entry
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
233 #endif
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
241 * Recheck VMA as permissions can change since migration started
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
249 if (unlikely(is_zone_device_page(new))) {
250 if (is_device_private_page(new)) {
251 entry = make_device_private_entry(new, pte_write(pte));
252 pte = swp_entry_to_pte(entry);
253 if (pte_swp_uffd_wp(*pvmw.pte))
254 pte = pte_mkuffd_wp(pte);
258 #ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268 #endif
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
287 return true;
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
328 page = migration_entry_to_page(entry);
331 * Once page cache replacement of page migration started, page_count
332 * is zero; but we must not call put_and_wait_on_page_locked() without
333 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
335 if (!get_page_unless_zero(page))
336 goto out;
337 pte_unmap_unlock(ptep, ptl);
338 put_and_wait_on_page_locked(page);
339 return;
340 out:
341 pte_unmap_unlock(ptep, ptl);
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 unsigned long address)
347 spinlock_t *ptl = pte_lockptr(mm, pmd);
348 pte_t *ptep = pte_offset_map(pmd, address);
349 __migration_entry_wait(mm, ptep, ptl);
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 struct mm_struct *mm, pte_t *pte)
355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 __migration_entry_wait(mm, pte, ptl);
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 spinlock_t *ptl;
363 struct page *page;
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
367 goto unlock;
368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 if (!get_page_unless_zero(page))
370 goto unlock;
371 spin_unlock(ptl);
372 put_and_wait_on_page_locked(page);
373 return;
374 unlock:
375 spin_unlock(ptl);
377 #endif
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
381 int expected_count = 1;
384 * Device public or private pages have an extra refcount as they are
385 * ZONE_DEVICE pages.
387 expected_count += is_device_private_page(page);
388 if (mapping)
389 expected_count += hpage_nr_pages(page) + page_has_private(page);
391 return expected_count;
395 * Replace the page in the mapping.
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 int migrate_page_move_mapping(struct address_space *mapping,
403 struct page *newpage, struct page *page, int extra_count)
405 XA_STATE(xas, &mapping->i_pages, page_index(page));
406 struct zone *oldzone, *newzone;
407 int dirty;
408 int expected_count = expected_page_refs(mapping, page) + extra_count;
410 if (!mapping) {
411 /* Anonymous page without mapping */
412 if (page_count(page) != expected_count)
413 return -EAGAIN;
415 /* No turning back from here */
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
419 __SetPageSwapBacked(newpage);
421 return MIGRATEPAGE_SUCCESS;
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
427 xas_lock_irq(&xas);
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
430 return -EAGAIN;
433 if (!page_ref_freeze(page, expected_count)) {
434 xas_unlock_irq(&xas);
435 return -EAGAIN;
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
462 xas_store(&xas, newpage);
463 if (PageTransHuge(page)) {
464 int i;
466 for (i = 1; i < HPAGE_PMD_NR; i++) {
467 xas_next(&xas);
468 xas_store(&xas, newpage);
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
475 * We know this isn't the last reference.
477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
479 xas_unlock(&xas);
480 /* Leave irq disabled to prevent preemption while updating stats */
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
488 * Note that anonymous pages are accounted for
489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 * are mapped to swap space.
492 if (newzone != oldzone) {
493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
499 if (dirty && mapping_cap_account_dirty(mapping)) {
500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
506 local_irq_enable();
508 return MIGRATEPAGE_SUCCESS;
510 EXPORT_SYMBOL(migrate_page_move_mapping);
513 * The expected number of remaining references is the same as that
514 * of migrate_page_move_mapping().
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 struct page *newpage, struct page *page)
519 XA_STATE(xas, &mapping->i_pages, page_index(page));
520 int expected_count;
522 xas_lock_irq(&xas);
523 expected_count = 2 + page_has_private(page);
524 if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 xas_unlock_irq(&xas);
526 return -EAGAIN;
529 if (!page_ref_freeze(page, expected_count)) {
530 xas_unlock_irq(&xas);
531 return -EAGAIN;
534 newpage->index = page->index;
535 newpage->mapping = page->mapping;
537 get_page(newpage);
539 xas_store(&xas, newpage);
541 page_ref_unfreeze(page, expected_count - 1);
543 xas_unlock_irq(&xas);
545 return MIGRATEPAGE_SUCCESS;
549 * Gigantic pages are so large that we do not guarantee that page++ pointer
550 * arithmetic will work across the entire page. We need something more
551 * specialized.
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554 int nr_pages)
556 int i;
557 struct page *dst_base = dst;
558 struct page *src_base = src;
560 for (i = 0; i < nr_pages; ) {
561 cond_resched();
562 copy_highpage(dst, src);
564 i++;
565 dst = mem_map_next(dst, dst_base, i);
566 src = mem_map_next(src, src_base, i);
570 static void copy_huge_page(struct page *dst, struct page *src)
572 int i;
573 int nr_pages;
575 if (PageHuge(src)) {
576 /* hugetlbfs page */
577 struct hstate *h = page_hstate(src);
578 nr_pages = pages_per_huge_page(h);
580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 __copy_gigantic_page(dst, src, nr_pages);
582 return;
584 } else {
585 /* thp page */
586 BUG_ON(!PageTransHuge(src));
587 nr_pages = hpage_nr_pages(src);
590 for (i = 0; i < nr_pages; i++) {
591 cond_resched();
592 copy_highpage(dst + i, src + i);
597 * Copy the page to its new location
599 void migrate_page_states(struct page *newpage, struct page *page)
601 int cpupid;
603 if (PageError(page))
604 SetPageError(newpage);
605 if (PageReferenced(page))
606 SetPageReferenced(newpage);
607 if (PageUptodate(page))
608 SetPageUptodate(newpage);
609 if (TestClearPageActive(page)) {
610 VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 SetPageActive(newpage);
612 } else if (TestClearPageUnevictable(page))
613 SetPageUnevictable(newpage);
614 if (PageWorkingset(page))
615 SetPageWorkingset(newpage);
616 if (PageChecked(page))
617 SetPageChecked(newpage);
618 if (PageMappedToDisk(page))
619 SetPageMappedToDisk(newpage);
621 /* Move dirty on pages not done by migrate_page_move_mapping() */
622 if (PageDirty(page))
623 SetPageDirty(newpage);
625 if (page_is_young(page))
626 set_page_young(newpage);
627 if (page_is_idle(page))
628 set_page_idle(newpage);
631 * Copy NUMA information to the new page, to prevent over-eager
632 * future migrations of this same page.
634 cpupid = page_cpupid_xchg_last(page, -1);
635 page_cpupid_xchg_last(newpage, cpupid);
637 ksm_migrate_page(newpage, page);
639 * Please do not reorder this without considering how mm/ksm.c's
640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
642 if (PageSwapCache(page))
643 ClearPageSwapCache(page);
644 ClearPagePrivate(page);
645 set_page_private(page, 0);
648 * If any waiters have accumulated on the new page then
649 * wake them up.
651 if (PageWriteback(newpage))
652 end_page_writeback(newpage);
655 * PG_readahead shares the same bit with PG_reclaim. The above
656 * end_page_writeback() may clear PG_readahead mistakenly, so set the
657 * bit after that.
659 if (PageReadahead(page))
660 SetPageReadahead(newpage);
662 copy_page_owner(page, newpage);
664 mem_cgroup_migrate(page, newpage);
666 EXPORT_SYMBOL(migrate_page_states);
668 void migrate_page_copy(struct page *newpage, struct page *page)
670 if (PageHuge(page) || PageTransHuge(page))
671 copy_huge_page(newpage, page);
672 else
673 copy_highpage(newpage, page);
675 migrate_page_states(newpage, page);
677 EXPORT_SYMBOL(migrate_page_copy);
679 /************************************************************
680 * Migration functions
681 ***********************************************************/
684 * Common logic to directly migrate a single LRU page suitable for
685 * pages that do not use PagePrivate/PagePrivate2.
687 * Pages are locked upon entry and exit.
689 int migrate_page(struct address_space *mapping,
690 struct page *newpage, struct page *page,
691 enum migrate_mode mode)
693 int rc;
695 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
697 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
699 if (rc != MIGRATEPAGE_SUCCESS)
700 return rc;
702 if (mode != MIGRATE_SYNC_NO_COPY)
703 migrate_page_copy(newpage, page);
704 else
705 migrate_page_states(newpage, page);
706 return MIGRATEPAGE_SUCCESS;
708 EXPORT_SYMBOL(migrate_page);
710 #ifdef CONFIG_BLOCK
711 /* Returns true if all buffers are successfully locked */
712 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
713 enum migrate_mode mode)
715 struct buffer_head *bh = head;
717 /* Simple case, sync compaction */
718 if (mode != MIGRATE_ASYNC) {
719 do {
720 lock_buffer(bh);
721 bh = bh->b_this_page;
723 } while (bh != head);
725 return true;
728 /* async case, we cannot block on lock_buffer so use trylock_buffer */
729 do {
730 if (!trylock_buffer(bh)) {
732 * We failed to lock the buffer and cannot stall in
733 * async migration. Release the taken locks
735 struct buffer_head *failed_bh = bh;
736 bh = head;
737 while (bh != failed_bh) {
738 unlock_buffer(bh);
739 bh = bh->b_this_page;
741 return false;
744 bh = bh->b_this_page;
745 } while (bh != head);
746 return true;
749 static int __buffer_migrate_page(struct address_space *mapping,
750 struct page *newpage, struct page *page, enum migrate_mode mode,
751 bool check_refs)
753 struct buffer_head *bh, *head;
754 int rc;
755 int expected_count;
757 if (!page_has_buffers(page))
758 return migrate_page(mapping, newpage, page, mode);
760 /* Check whether page does not have extra refs before we do more work */
761 expected_count = expected_page_refs(mapping, page);
762 if (page_count(page) != expected_count)
763 return -EAGAIN;
765 head = page_buffers(page);
766 if (!buffer_migrate_lock_buffers(head, mode))
767 return -EAGAIN;
769 if (check_refs) {
770 bool busy;
771 bool invalidated = false;
773 recheck_buffers:
774 busy = false;
775 spin_lock(&mapping->private_lock);
776 bh = head;
777 do {
778 if (atomic_read(&bh->b_count)) {
779 busy = true;
780 break;
782 bh = bh->b_this_page;
783 } while (bh != head);
784 if (busy) {
785 if (invalidated) {
786 rc = -EAGAIN;
787 goto unlock_buffers;
789 spin_unlock(&mapping->private_lock);
790 invalidate_bh_lrus();
791 invalidated = true;
792 goto recheck_buffers;
796 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
797 if (rc != MIGRATEPAGE_SUCCESS)
798 goto unlock_buffers;
800 ClearPagePrivate(page);
801 set_page_private(newpage, page_private(page));
802 set_page_private(page, 0);
803 put_page(page);
804 get_page(newpage);
806 bh = head;
807 do {
808 set_bh_page(bh, newpage, bh_offset(bh));
809 bh = bh->b_this_page;
811 } while (bh != head);
813 SetPagePrivate(newpage);
815 if (mode != MIGRATE_SYNC_NO_COPY)
816 migrate_page_copy(newpage, page);
817 else
818 migrate_page_states(newpage, page);
820 rc = MIGRATEPAGE_SUCCESS;
821 unlock_buffers:
822 if (check_refs)
823 spin_unlock(&mapping->private_lock);
824 bh = head;
825 do {
826 unlock_buffer(bh);
827 bh = bh->b_this_page;
829 } while (bh != head);
831 return rc;
835 * Migration function for pages with buffers. This function can only be used
836 * if the underlying filesystem guarantees that no other references to "page"
837 * exist. For example attached buffer heads are accessed only under page lock.
839 int buffer_migrate_page(struct address_space *mapping,
840 struct page *newpage, struct page *page, enum migrate_mode mode)
842 return __buffer_migrate_page(mapping, newpage, page, mode, false);
844 EXPORT_SYMBOL(buffer_migrate_page);
847 * Same as above except that this variant is more careful and checks that there
848 * are also no buffer head references. This function is the right one for
849 * mappings where buffer heads are directly looked up and referenced (such as
850 * block device mappings).
852 int buffer_migrate_page_norefs(struct address_space *mapping,
853 struct page *newpage, struct page *page, enum migrate_mode mode)
855 return __buffer_migrate_page(mapping, newpage, page, mode, true);
857 #endif
860 * Writeback a page to clean the dirty state
862 static int writeout(struct address_space *mapping, struct page *page)
864 struct writeback_control wbc = {
865 .sync_mode = WB_SYNC_NONE,
866 .nr_to_write = 1,
867 .range_start = 0,
868 .range_end = LLONG_MAX,
869 .for_reclaim = 1
871 int rc;
873 if (!mapping->a_ops->writepage)
874 /* No write method for the address space */
875 return -EINVAL;
877 if (!clear_page_dirty_for_io(page))
878 /* Someone else already triggered a write */
879 return -EAGAIN;
882 * A dirty page may imply that the underlying filesystem has
883 * the page on some queue. So the page must be clean for
884 * migration. Writeout may mean we loose the lock and the
885 * page state is no longer what we checked for earlier.
886 * At this point we know that the migration attempt cannot
887 * be successful.
889 remove_migration_ptes(page, page, false);
891 rc = mapping->a_ops->writepage(page, &wbc);
893 if (rc != AOP_WRITEPAGE_ACTIVATE)
894 /* unlocked. Relock */
895 lock_page(page);
897 return (rc < 0) ? -EIO : -EAGAIN;
901 * Default handling if a filesystem does not provide a migration function.
903 static int fallback_migrate_page(struct address_space *mapping,
904 struct page *newpage, struct page *page, enum migrate_mode mode)
906 if (PageDirty(page)) {
907 /* Only writeback pages in full synchronous migration */
908 switch (mode) {
909 case MIGRATE_SYNC:
910 case MIGRATE_SYNC_NO_COPY:
911 break;
912 default:
913 return -EBUSY;
915 return writeout(mapping, page);
919 * Buffers may be managed in a filesystem specific way.
920 * We must have no buffers or drop them.
922 if (page_has_private(page) &&
923 !try_to_release_page(page, GFP_KERNEL))
924 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
926 return migrate_page(mapping, newpage, page, mode);
930 * Move a page to a newly allocated page
931 * The page is locked and all ptes have been successfully removed.
933 * The new page will have replaced the old page if this function
934 * is successful.
936 * Return value:
937 * < 0 - error code
938 * MIGRATEPAGE_SUCCESS - success
940 static int move_to_new_page(struct page *newpage, struct page *page,
941 enum migrate_mode mode)
943 struct address_space *mapping;
944 int rc = -EAGAIN;
945 bool is_lru = !__PageMovable(page);
947 VM_BUG_ON_PAGE(!PageLocked(page), page);
948 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
950 mapping = page_mapping(page);
952 if (likely(is_lru)) {
953 if (!mapping)
954 rc = migrate_page(mapping, newpage, page, mode);
955 else if (mapping->a_ops->migratepage)
957 * Most pages have a mapping and most filesystems
958 * provide a migratepage callback. Anonymous pages
959 * are part of swap space which also has its own
960 * migratepage callback. This is the most common path
961 * for page migration.
963 rc = mapping->a_ops->migratepage(mapping, newpage,
964 page, mode);
965 else
966 rc = fallback_migrate_page(mapping, newpage,
967 page, mode);
968 } else {
970 * In case of non-lru page, it could be released after
971 * isolation step. In that case, we shouldn't try migration.
973 VM_BUG_ON_PAGE(!PageIsolated(page), page);
974 if (!PageMovable(page)) {
975 rc = MIGRATEPAGE_SUCCESS;
976 __ClearPageIsolated(page);
977 goto out;
980 rc = mapping->a_ops->migratepage(mapping, newpage,
981 page, mode);
982 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
983 !PageIsolated(page));
987 * When successful, old pagecache page->mapping must be cleared before
988 * page is freed; but stats require that PageAnon be left as PageAnon.
990 if (rc == MIGRATEPAGE_SUCCESS) {
991 if (__PageMovable(page)) {
992 VM_BUG_ON_PAGE(!PageIsolated(page), page);
995 * We clear PG_movable under page_lock so any compactor
996 * cannot try to migrate this page.
998 __ClearPageIsolated(page);
1002 * Anonymous and movable page->mapping will be cleared by
1003 * free_pages_prepare so don't reset it here for keeping
1004 * the type to work PageAnon, for example.
1006 if (!PageMappingFlags(page))
1007 page->mapping = NULL;
1009 if (likely(!is_zone_device_page(newpage)))
1010 flush_dcache_page(newpage);
1013 out:
1014 return rc;
1017 static int __unmap_and_move(struct page *page, struct page *newpage,
1018 int force, enum migrate_mode mode)
1020 int rc = -EAGAIN;
1021 int page_was_mapped = 0;
1022 struct anon_vma *anon_vma = NULL;
1023 bool is_lru = !__PageMovable(page);
1025 if (!trylock_page(page)) {
1026 if (!force || mode == MIGRATE_ASYNC)
1027 goto out;
1030 * It's not safe for direct compaction to call lock_page.
1031 * For example, during page readahead pages are added locked
1032 * to the LRU. Later, when the IO completes the pages are
1033 * marked uptodate and unlocked. However, the queueing
1034 * could be merging multiple pages for one bio (e.g.
1035 * mpage_readpages). If an allocation happens for the
1036 * second or third page, the process can end up locking
1037 * the same page twice and deadlocking. Rather than
1038 * trying to be clever about what pages can be locked,
1039 * avoid the use of lock_page for direct compaction
1040 * altogether.
1042 if (current->flags & PF_MEMALLOC)
1043 goto out;
1045 lock_page(page);
1048 if (PageWriteback(page)) {
1050 * Only in the case of a full synchronous migration is it
1051 * necessary to wait for PageWriteback. In the async case,
1052 * the retry loop is too short and in the sync-light case,
1053 * the overhead of stalling is too much
1055 switch (mode) {
1056 case MIGRATE_SYNC:
1057 case MIGRATE_SYNC_NO_COPY:
1058 break;
1059 default:
1060 rc = -EBUSY;
1061 goto out_unlock;
1063 if (!force)
1064 goto out_unlock;
1065 wait_on_page_writeback(page);
1069 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1070 * we cannot notice that anon_vma is freed while we migrates a page.
1071 * This get_anon_vma() delays freeing anon_vma pointer until the end
1072 * of migration. File cache pages are no problem because of page_lock()
1073 * File Caches may use write_page() or lock_page() in migration, then,
1074 * just care Anon page here.
1076 * Only page_get_anon_vma() understands the subtleties of
1077 * getting a hold on an anon_vma from outside one of its mms.
1078 * But if we cannot get anon_vma, then we won't need it anyway,
1079 * because that implies that the anon page is no longer mapped
1080 * (and cannot be remapped so long as we hold the page lock).
1082 if (PageAnon(page) && !PageKsm(page))
1083 anon_vma = page_get_anon_vma(page);
1086 * Block others from accessing the new page when we get around to
1087 * establishing additional references. We are usually the only one
1088 * holding a reference to newpage at this point. We used to have a BUG
1089 * here if trylock_page(newpage) fails, but would like to allow for
1090 * cases where there might be a race with the previous use of newpage.
1091 * This is much like races on refcount of oldpage: just don't BUG().
1093 if (unlikely(!trylock_page(newpage)))
1094 goto out_unlock;
1096 if (unlikely(!is_lru)) {
1097 rc = move_to_new_page(newpage, page, mode);
1098 goto out_unlock_both;
1102 * Corner case handling:
1103 * 1. When a new swap-cache page is read into, it is added to the LRU
1104 * and treated as swapcache but it has no rmap yet.
1105 * Calling try_to_unmap() against a page->mapping==NULL page will
1106 * trigger a BUG. So handle it here.
1107 * 2. An orphaned page (see truncate_complete_page) might have
1108 * fs-private metadata. The page can be picked up due to memory
1109 * offlining. Everywhere else except page reclaim, the page is
1110 * invisible to the vm, so the page can not be migrated. So try to
1111 * free the metadata, so the page can be freed.
1113 if (!page->mapping) {
1114 VM_BUG_ON_PAGE(PageAnon(page), page);
1115 if (page_has_private(page)) {
1116 try_to_free_buffers(page);
1117 goto out_unlock_both;
1119 } else if (page_mapped(page)) {
1120 /* Establish migration ptes */
1121 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1122 page);
1123 try_to_unmap(page,
1124 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1125 page_was_mapped = 1;
1128 if (!page_mapped(page))
1129 rc = move_to_new_page(newpage, page, mode);
1131 if (page_was_mapped)
1132 remove_migration_ptes(page,
1133 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135 out_unlock_both:
1136 unlock_page(newpage);
1137 out_unlock:
1138 /* Drop an anon_vma reference if we took one */
1139 if (anon_vma)
1140 put_anon_vma(anon_vma);
1141 unlock_page(page);
1142 out:
1144 * If migration is successful, decrease refcount of the newpage
1145 * which will not free the page because new page owner increased
1146 * refcounter. As well, if it is LRU page, add the page to LRU
1147 * list in here. Use the old state of the isolated source page to
1148 * determine if we migrated a LRU page. newpage was already unlocked
1149 * and possibly modified by its owner - don't rely on the page
1150 * state.
1152 if (rc == MIGRATEPAGE_SUCCESS) {
1153 if (unlikely(!is_lru))
1154 put_page(newpage);
1155 else
1156 putback_lru_page(newpage);
1159 return rc;
1163 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1164 * around it.
1166 #if defined(CONFIG_ARM) && \
1167 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1168 #define ICE_noinline noinline
1169 #else
1170 #define ICE_noinline
1171 #endif
1174 * Obtain the lock on page, remove all ptes and migrate the page
1175 * to the newly allocated page in newpage.
1177 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1178 free_page_t put_new_page,
1179 unsigned long private, struct page *page,
1180 int force, enum migrate_mode mode,
1181 enum migrate_reason reason)
1183 int rc = MIGRATEPAGE_SUCCESS;
1184 struct page *newpage = NULL;
1186 if (!thp_migration_supported() && PageTransHuge(page))
1187 return -ENOMEM;
1189 if (page_count(page) == 1) {
1190 /* page was freed from under us. So we are done. */
1191 ClearPageActive(page);
1192 ClearPageUnevictable(page);
1193 if (unlikely(__PageMovable(page))) {
1194 lock_page(page);
1195 if (!PageMovable(page))
1196 __ClearPageIsolated(page);
1197 unlock_page(page);
1199 goto out;
1202 newpage = get_new_page(page, private);
1203 if (!newpage)
1204 return -ENOMEM;
1206 rc = __unmap_and_move(page, newpage, force, mode);
1207 if (rc == MIGRATEPAGE_SUCCESS)
1208 set_page_owner_migrate_reason(newpage, reason);
1210 out:
1211 if (rc != -EAGAIN) {
1213 * A page that has been migrated has all references
1214 * removed and will be freed. A page that has not been
1215 * migrated will have kept its references and be restored.
1217 list_del(&page->lru);
1220 * Compaction can migrate also non-LRU pages which are
1221 * not accounted to NR_ISOLATED_*. They can be recognized
1222 * as __PageMovable
1224 if (likely(!__PageMovable(page)))
1225 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1226 page_is_file_lru(page), -hpage_nr_pages(page));
1230 * If migration is successful, releases reference grabbed during
1231 * isolation. Otherwise, restore the page to right list unless
1232 * we want to retry.
1234 if (rc == MIGRATEPAGE_SUCCESS) {
1235 put_page(page);
1236 if (reason == MR_MEMORY_FAILURE) {
1238 * Set PG_HWPoison on just freed page
1239 * intentionally. Although it's rather weird,
1240 * it's how HWPoison flag works at the moment.
1242 if (set_hwpoison_free_buddy_page(page))
1243 num_poisoned_pages_inc();
1245 } else {
1246 if (rc != -EAGAIN) {
1247 if (likely(!__PageMovable(page))) {
1248 putback_lru_page(page);
1249 goto put_new;
1252 lock_page(page);
1253 if (PageMovable(page))
1254 putback_movable_page(page);
1255 else
1256 __ClearPageIsolated(page);
1257 unlock_page(page);
1258 put_page(page);
1260 put_new:
1261 if (put_new_page)
1262 put_new_page(newpage, private);
1263 else
1264 put_page(newpage);
1267 return rc;
1271 * Counterpart of unmap_and_move_page() for hugepage migration.
1273 * This function doesn't wait the completion of hugepage I/O
1274 * because there is no race between I/O and migration for hugepage.
1275 * Note that currently hugepage I/O occurs only in direct I/O
1276 * where no lock is held and PG_writeback is irrelevant,
1277 * and writeback status of all subpages are counted in the reference
1278 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1279 * under direct I/O, the reference of the head page is 512 and a bit more.)
1280 * This means that when we try to migrate hugepage whose subpages are
1281 * doing direct I/O, some references remain after try_to_unmap() and
1282 * hugepage migration fails without data corruption.
1284 * There is also no race when direct I/O is issued on the page under migration,
1285 * because then pte is replaced with migration swap entry and direct I/O code
1286 * will wait in the page fault for migration to complete.
1288 static int unmap_and_move_huge_page(new_page_t get_new_page,
1289 free_page_t put_new_page, unsigned long private,
1290 struct page *hpage, int force,
1291 enum migrate_mode mode, int reason)
1293 int rc = -EAGAIN;
1294 int page_was_mapped = 0;
1295 struct page *new_hpage;
1296 struct anon_vma *anon_vma = NULL;
1297 struct address_space *mapping = NULL;
1300 * Migratability of hugepages depends on architectures and their size.
1301 * This check is necessary because some callers of hugepage migration
1302 * like soft offline and memory hotremove don't walk through page
1303 * tables or check whether the hugepage is pmd-based or not before
1304 * kicking migration.
1306 if (!hugepage_migration_supported(page_hstate(hpage))) {
1307 putback_active_hugepage(hpage);
1308 return -ENOSYS;
1311 new_hpage = get_new_page(hpage, private);
1312 if (!new_hpage)
1313 return -ENOMEM;
1315 if (!trylock_page(hpage)) {
1316 if (!force)
1317 goto out;
1318 switch (mode) {
1319 case MIGRATE_SYNC:
1320 case MIGRATE_SYNC_NO_COPY:
1321 break;
1322 default:
1323 goto out;
1325 lock_page(hpage);
1329 * Check for pages which are in the process of being freed. Without
1330 * page_mapping() set, hugetlbfs specific move page routine will not
1331 * be called and we could leak usage counts for subpools.
1333 if (page_private(hpage) && !page_mapping(hpage)) {
1334 rc = -EBUSY;
1335 goto out_unlock;
1338 if (PageAnon(hpage))
1339 anon_vma = page_get_anon_vma(hpage);
1341 if (unlikely(!trylock_page(new_hpage)))
1342 goto put_anon;
1344 if (page_mapped(hpage)) {
1346 * try_to_unmap could potentially call huge_pmd_unshare.
1347 * Because of this, take semaphore in write mode here and
1348 * set TTU_RMAP_LOCKED to let lower levels know we have
1349 * taken the lock.
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (unlikely(!mapping))
1353 goto unlock_put_anon;
1355 try_to_unmap(hpage,
1356 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1357 TTU_RMAP_LOCKED);
1358 page_was_mapped = 1;
1360 * Leave mapping locked until after subsequent call to
1361 * remove_migration_ptes()
1365 if (!page_mapped(hpage))
1366 rc = move_to_new_page(new_hpage, hpage, mode);
1368 if (page_was_mapped) {
1369 remove_migration_ptes(hpage,
1370 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1371 i_mmap_unlock_write(mapping);
1374 unlock_put_anon:
1375 unlock_page(new_hpage);
1377 put_anon:
1378 if (anon_vma)
1379 put_anon_vma(anon_vma);
1381 if (rc == MIGRATEPAGE_SUCCESS) {
1382 move_hugetlb_state(hpage, new_hpage, reason);
1383 put_new_page = NULL;
1386 out_unlock:
1387 unlock_page(hpage);
1388 out:
1389 if (rc != -EAGAIN)
1390 putback_active_hugepage(hpage);
1393 * If migration was not successful and there's a freeing callback, use
1394 * it. Otherwise, put_page() will drop the reference grabbed during
1395 * isolation.
1397 if (put_new_page)
1398 put_new_page(new_hpage, private);
1399 else
1400 putback_active_hugepage(new_hpage);
1402 return rc;
1406 * migrate_pages - migrate the pages specified in a list, to the free pages
1407 * supplied as the target for the page migration
1409 * @from: The list of pages to be migrated.
1410 * @get_new_page: The function used to allocate free pages to be used
1411 * as the target of the page migration.
1412 * @put_new_page: The function used to free target pages if migration
1413 * fails, or NULL if no special handling is necessary.
1414 * @private: Private data to be passed on to get_new_page()
1415 * @mode: The migration mode that specifies the constraints for
1416 * page migration, if any.
1417 * @reason: The reason for page migration.
1419 * The function returns after 10 attempts or if no pages are movable any more
1420 * because the list has become empty or no retryable pages exist any more.
1421 * The caller should call putback_movable_pages() to return pages to the LRU
1422 * or free list only if ret != 0.
1424 * Returns the number of pages that were not migrated, or an error code.
1426 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1427 free_page_t put_new_page, unsigned long private,
1428 enum migrate_mode mode, int reason)
1430 int retry = 1;
1431 int nr_failed = 0;
1432 int nr_succeeded = 0;
1433 int pass = 0;
1434 struct page *page;
1435 struct page *page2;
1436 int swapwrite = current->flags & PF_SWAPWRITE;
1437 int rc;
1439 if (!swapwrite)
1440 current->flags |= PF_SWAPWRITE;
1442 for(pass = 0; pass < 10 && retry; pass++) {
1443 retry = 0;
1445 list_for_each_entry_safe(page, page2, from, lru) {
1446 retry:
1447 cond_resched();
1449 if (PageHuge(page))
1450 rc = unmap_and_move_huge_page(get_new_page,
1451 put_new_page, private, page,
1452 pass > 2, mode, reason);
1453 else
1454 rc = unmap_and_move(get_new_page, put_new_page,
1455 private, page, pass > 2, mode,
1456 reason);
1458 switch(rc) {
1459 case -ENOMEM:
1461 * THP migration might be unsupported or the
1462 * allocation could've failed so we should
1463 * retry on the same page with the THP split
1464 * to base pages.
1466 * Head page is retried immediately and tail
1467 * pages are added to the tail of the list so
1468 * we encounter them after the rest of the list
1469 * is processed.
1471 if (PageTransHuge(page) && !PageHuge(page)) {
1472 lock_page(page);
1473 rc = split_huge_page_to_list(page, from);
1474 unlock_page(page);
1475 if (!rc) {
1476 list_safe_reset_next(page, page2, lru);
1477 goto retry;
1480 nr_failed++;
1481 goto out;
1482 case -EAGAIN:
1483 retry++;
1484 break;
1485 case MIGRATEPAGE_SUCCESS:
1486 nr_succeeded++;
1487 break;
1488 default:
1490 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1491 * unlike -EAGAIN case, the failed page is
1492 * removed from migration page list and not
1493 * retried in the next outer loop.
1495 nr_failed++;
1496 break;
1500 nr_failed += retry;
1501 rc = nr_failed;
1502 out:
1503 if (nr_succeeded)
1504 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1505 if (nr_failed)
1506 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1507 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1509 if (!swapwrite)
1510 current->flags &= ~PF_SWAPWRITE;
1512 return rc;
1515 #ifdef CONFIG_NUMA
1517 static int store_status(int __user *status, int start, int value, int nr)
1519 while (nr-- > 0) {
1520 if (put_user(value, status + start))
1521 return -EFAULT;
1522 start++;
1525 return 0;
1528 static int do_move_pages_to_node(struct mm_struct *mm,
1529 struct list_head *pagelist, int node)
1531 int err;
1533 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1534 MIGRATE_SYNC, MR_SYSCALL);
1535 if (err)
1536 putback_movable_pages(pagelist);
1537 return err;
1541 * Resolves the given address to a struct page, isolates it from the LRU and
1542 * puts it to the given pagelist.
1543 * Returns:
1544 * errno - if the page cannot be found/isolated
1545 * 0 - when it doesn't have to be migrated because it is already on the
1546 * target node
1547 * 1 - when it has been queued
1549 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1550 int node, struct list_head *pagelist, bool migrate_all)
1552 struct vm_area_struct *vma;
1553 struct page *page;
1554 unsigned int follflags;
1555 int err;
1557 down_read(&mm->mmap_sem);
1558 err = -EFAULT;
1559 vma = find_vma(mm, addr);
1560 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1561 goto out;
1563 /* FOLL_DUMP to ignore special (like zero) pages */
1564 follflags = FOLL_GET | FOLL_DUMP;
1565 page = follow_page(vma, addr, follflags);
1567 err = PTR_ERR(page);
1568 if (IS_ERR(page))
1569 goto out;
1571 err = -ENOENT;
1572 if (!page)
1573 goto out;
1575 err = 0;
1576 if (page_to_nid(page) == node)
1577 goto out_putpage;
1579 err = -EACCES;
1580 if (page_mapcount(page) > 1 && !migrate_all)
1581 goto out_putpage;
1583 if (PageHuge(page)) {
1584 if (PageHead(page)) {
1585 isolate_huge_page(page, pagelist);
1586 err = 1;
1588 } else {
1589 struct page *head;
1591 head = compound_head(page);
1592 err = isolate_lru_page(head);
1593 if (err)
1594 goto out_putpage;
1596 err = 1;
1597 list_add_tail(&head->lru, pagelist);
1598 mod_node_page_state(page_pgdat(head),
1599 NR_ISOLATED_ANON + page_is_file_lru(head),
1600 hpage_nr_pages(head));
1602 out_putpage:
1604 * Either remove the duplicate refcount from
1605 * isolate_lru_page() or drop the page ref if it was
1606 * not isolated.
1608 put_page(page);
1609 out:
1610 up_read(&mm->mmap_sem);
1611 return err;
1614 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1615 struct list_head *pagelist, int __user *status,
1616 int start, int i, unsigned long nr_pages)
1618 int err;
1620 if (list_empty(pagelist))
1621 return 0;
1623 err = do_move_pages_to_node(mm, pagelist, node);
1624 if (err) {
1626 * Positive err means the number of failed
1627 * pages to migrate. Since we are going to
1628 * abort and return the number of non-migrated
1629 * pages, so need to incude the rest of the
1630 * nr_pages that have not been attempted as
1631 * well.
1633 if (err > 0)
1634 err += nr_pages - i - 1;
1635 return err;
1637 return store_status(status, start, node, i - start);
1641 * Migrate an array of page address onto an array of nodes and fill
1642 * the corresponding array of status.
1644 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1645 unsigned long nr_pages,
1646 const void __user * __user *pages,
1647 const int __user *nodes,
1648 int __user *status, int flags)
1650 int current_node = NUMA_NO_NODE;
1651 LIST_HEAD(pagelist);
1652 int start, i;
1653 int err = 0, err1;
1655 migrate_prep();
1657 for (i = start = 0; i < nr_pages; i++) {
1658 const void __user *p;
1659 unsigned long addr;
1660 int node;
1662 err = -EFAULT;
1663 if (get_user(p, pages + i))
1664 goto out_flush;
1665 if (get_user(node, nodes + i))
1666 goto out_flush;
1667 addr = (unsigned long)untagged_addr(p);
1669 err = -ENODEV;
1670 if (node < 0 || node >= MAX_NUMNODES)
1671 goto out_flush;
1672 if (!node_state(node, N_MEMORY))
1673 goto out_flush;
1675 err = -EACCES;
1676 if (!node_isset(node, task_nodes))
1677 goto out_flush;
1679 if (current_node == NUMA_NO_NODE) {
1680 current_node = node;
1681 start = i;
1682 } else if (node != current_node) {
1683 err = move_pages_and_store_status(mm, current_node,
1684 &pagelist, status, start, i, nr_pages);
1685 if (err)
1686 goto out;
1687 start = i;
1688 current_node = node;
1692 * Errors in the page lookup or isolation are not fatal and we simply
1693 * report them via status
1695 err = add_page_for_migration(mm, addr, current_node,
1696 &pagelist, flags & MPOL_MF_MOVE_ALL);
1698 if (err > 0) {
1699 /* The page is successfully queued for migration */
1700 continue;
1704 * If the page is already on the target node (!err), store the
1705 * node, otherwise, store the err.
1707 err = store_status(status, i, err ? : current_node, 1);
1708 if (err)
1709 goto out_flush;
1711 err = move_pages_and_store_status(mm, current_node, &pagelist,
1712 status, start, i, nr_pages);
1713 if (err)
1714 goto out;
1715 current_node = NUMA_NO_NODE;
1717 out_flush:
1718 /* Make sure we do not overwrite the existing error */
1719 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1720 status, start, i, nr_pages);
1721 if (err >= 0)
1722 err = err1;
1723 out:
1724 return err;
1728 * Determine the nodes of an array of pages and store it in an array of status.
1730 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1731 const void __user **pages, int *status)
1733 unsigned long i;
1735 down_read(&mm->mmap_sem);
1737 for (i = 0; i < nr_pages; i++) {
1738 unsigned long addr = (unsigned long)(*pages);
1739 struct vm_area_struct *vma;
1740 struct page *page;
1741 int err = -EFAULT;
1743 vma = find_vma(mm, addr);
1744 if (!vma || addr < vma->vm_start)
1745 goto set_status;
1747 /* FOLL_DUMP to ignore special (like zero) pages */
1748 page = follow_page(vma, addr, FOLL_DUMP);
1750 err = PTR_ERR(page);
1751 if (IS_ERR(page))
1752 goto set_status;
1754 err = page ? page_to_nid(page) : -ENOENT;
1755 set_status:
1756 *status = err;
1758 pages++;
1759 status++;
1762 up_read(&mm->mmap_sem);
1766 * Determine the nodes of a user array of pages and store it in
1767 * a user array of status.
1769 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1770 const void __user * __user *pages,
1771 int __user *status)
1773 #define DO_PAGES_STAT_CHUNK_NR 16
1774 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1775 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1777 while (nr_pages) {
1778 unsigned long chunk_nr;
1780 chunk_nr = nr_pages;
1781 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1782 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1784 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1785 break;
1787 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1789 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1790 break;
1792 pages += chunk_nr;
1793 status += chunk_nr;
1794 nr_pages -= chunk_nr;
1796 return nr_pages ? -EFAULT : 0;
1800 * Move a list of pages in the address space of the currently executing
1801 * process.
1803 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1804 const void __user * __user *pages,
1805 const int __user *nodes,
1806 int __user *status, int flags)
1808 struct task_struct *task;
1809 struct mm_struct *mm;
1810 int err;
1811 nodemask_t task_nodes;
1813 /* Check flags */
1814 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1815 return -EINVAL;
1817 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1818 return -EPERM;
1820 /* Find the mm_struct */
1821 rcu_read_lock();
1822 task = pid ? find_task_by_vpid(pid) : current;
1823 if (!task) {
1824 rcu_read_unlock();
1825 return -ESRCH;
1827 get_task_struct(task);
1830 * Check if this process has the right to modify the specified
1831 * process. Use the regular "ptrace_may_access()" checks.
1833 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1834 rcu_read_unlock();
1835 err = -EPERM;
1836 goto out;
1838 rcu_read_unlock();
1840 err = security_task_movememory(task);
1841 if (err)
1842 goto out;
1844 task_nodes = cpuset_mems_allowed(task);
1845 mm = get_task_mm(task);
1846 put_task_struct(task);
1848 if (!mm)
1849 return -EINVAL;
1851 if (nodes)
1852 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1853 nodes, status, flags);
1854 else
1855 err = do_pages_stat(mm, nr_pages, pages, status);
1857 mmput(mm);
1858 return err;
1860 out:
1861 put_task_struct(task);
1862 return err;
1865 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1866 const void __user * __user *, pages,
1867 const int __user *, nodes,
1868 int __user *, status, int, flags)
1870 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1873 #ifdef CONFIG_COMPAT
1874 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1875 compat_uptr_t __user *, pages32,
1876 const int __user *, nodes,
1877 int __user *, status,
1878 int, flags)
1880 const void __user * __user *pages;
1881 int i;
1883 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1884 for (i = 0; i < nr_pages; i++) {
1885 compat_uptr_t p;
1887 if (get_user(p, pages32 + i) ||
1888 put_user(compat_ptr(p), pages + i))
1889 return -EFAULT;
1891 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1893 #endif /* CONFIG_COMPAT */
1895 #ifdef CONFIG_NUMA_BALANCING
1897 * Returns true if this is a safe migration target node for misplaced NUMA
1898 * pages. Currently it only checks the watermarks which crude
1900 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1901 unsigned long nr_migrate_pages)
1903 int z;
1905 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1906 struct zone *zone = pgdat->node_zones + z;
1908 if (!populated_zone(zone))
1909 continue;
1911 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1912 if (!zone_watermark_ok(zone, 0,
1913 high_wmark_pages(zone) +
1914 nr_migrate_pages,
1915 ZONE_MOVABLE, 0))
1916 continue;
1917 return true;
1919 return false;
1922 static struct page *alloc_misplaced_dst_page(struct page *page,
1923 unsigned long data)
1925 int nid = (int) data;
1926 struct page *newpage;
1928 newpage = __alloc_pages_node(nid,
1929 (GFP_HIGHUSER_MOVABLE |
1930 __GFP_THISNODE | __GFP_NOMEMALLOC |
1931 __GFP_NORETRY | __GFP_NOWARN) &
1932 ~__GFP_RECLAIM, 0);
1934 return newpage;
1937 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1939 int page_lru;
1941 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1943 /* Avoid migrating to a node that is nearly full */
1944 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1945 return 0;
1947 if (isolate_lru_page(page))
1948 return 0;
1951 * migrate_misplaced_transhuge_page() skips page migration's usual
1952 * check on page_count(), so we must do it here, now that the page
1953 * has been isolated: a GUP pin, or any other pin, prevents migration.
1954 * The expected page count is 3: 1 for page's mapcount and 1 for the
1955 * caller's pin and 1 for the reference taken by isolate_lru_page().
1957 if (PageTransHuge(page) && page_count(page) != 3) {
1958 putback_lru_page(page);
1959 return 0;
1962 page_lru = page_is_file_lru(page);
1963 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1964 hpage_nr_pages(page));
1967 * Isolating the page has taken another reference, so the
1968 * caller's reference can be safely dropped without the page
1969 * disappearing underneath us during migration.
1971 put_page(page);
1972 return 1;
1975 bool pmd_trans_migrating(pmd_t pmd)
1977 struct page *page = pmd_page(pmd);
1978 return PageLocked(page);
1982 * Attempt to migrate a misplaced page to the specified destination
1983 * node. Caller is expected to have an elevated reference count on
1984 * the page that will be dropped by this function before returning.
1986 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1987 int node)
1989 pg_data_t *pgdat = NODE_DATA(node);
1990 int isolated;
1991 int nr_remaining;
1992 LIST_HEAD(migratepages);
1995 * Don't migrate file pages that are mapped in multiple processes
1996 * with execute permissions as they are probably shared libraries.
1998 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1999 (vma->vm_flags & VM_EXEC))
2000 goto out;
2003 * Also do not migrate dirty pages as not all filesystems can move
2004 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2006 if (page_is_file_lru(page) && PageDirty(page))
2007 goto out;
2009 isolated = numamigrate_isolate_page(pgdat, page);
2010 if (!isolated)
2011 goto out;
2013 list_add(&page->lru, &migratepages);
2014 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2015 NULL, node, MIGRATE_ASYNC,
2016 MR_NUMA_MISPLACED);
2017 if (nr_remaining) {
2018 if (!list_empty(&migratepages)) {
2019 list_del(&page->lru);
2020 dec_node_page_state(page, NR_ISOLATED_ANON +
2021 page_is_file_lru(page));
2022 putback_lru_page(page);
2024 isolated = 0;
2025 } else
2026 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2027 BUG_ON(!list_empty(&migratepages));
2028 return isolated;
2030 out:
2031 put_page(page);
2032 return 0;
2034 #endif /* CONFIG_NUMA_BALANCING */
2036 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2038 * Migrates a THP to a given target node. page must be locked and is unlocked
2039 * before returning.
2041 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2042 struct vm_area_struct *vma,
2043 pmd_t *pmd, pmd_t entry,
2044 unsigned long address,
2045 struct page *page, int node)
2047 spinlock_t *ptl;
2048 pg_data_t *pgdat = NODE_DATA(node);
2049 int isolated = 0;
2050 struct page *new_page = NULL;
2051 int page_lru = page_is_file_lru(page);
2052 unsigned long start = address & HPAGE_PMD_MASK;
2054 new_page = alloc_pages_node(node,
2055 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2056 HPAGE_PMD_ORDER);
2057 if (!new_page)
2058 goto out_fail;
2059 prep_transhuge_page(new_page);
2061 isolated = numamigrate_isolate_page(pgdat, page);
2062 if (!isolated) {
2063 put_page(new_page);
2064 goto out_fail;
2067 /* Prepare a page as a migration target */
2068 __SetPageLocked(new_page);
2069 if (PageSwapBacked(page))
2070 __SetPageSwapBacked(new_page);
2072 /* anon mapping, we can simply copy page->mapping to the new page: */
2073 new_page->mapping = page->mapping;
2074 new_page->index = page->index;
2075 /* flush the cache before copying using the kernel virtual address */
2076 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2077 migrate_page_copy(new_page, page);
2078 WARN_ON(PageLRU(new_page));
2080 /* Recheck the target PMD */
2081 ptl = pmd_lock(mm, pmd);
2082 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2083 spin_unlock(ptl);
2085 /* Reverse changes made by migrate_page_copy() */
2086 if (TestClearPageActive(new_page))
2087 SetPageActive(page);
2088 if (TestClearPageUnevictable(new_page))
2089 SetPageUnevictable(page);
2091 unlock_page(new_page);
2092 put_page(new_page); /* Free it */
2094 /* Retake the callers reference and putback on LRU */
2095 get_page(page);
2096 putback_lru_page(page);
2097 mod_node_page_state(page_pgdat(page),
2098 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2100 goto out_unlock;
2103 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2104 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2107 * Overwrite the old entry under pagetable lock and establish
2108 * the new PTE. Any parallel GUP will either observe the old
2109 * page blocking on the page lock, block on the page table
2110 * lock or observe the new page. The SetPageUptodate on the
2111 * new page and page_add_new_anon_rmap guarantee the copy is
2112 * visible before the pagetable update.
2114 page_add_anon_rmap(new_page, vma, start, true);
2116 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2117 * has already been flushed globally. So no TLB can be currently
2118 * caching this non present pmd mapping. There's no need to clear the
2119 * pmd before doing set_pmd_at(), nor to flush the TLB after
2120 * set_pmd_at(). Clearing the pmd here would introduce a race
2121 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2122 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2123 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2124 * pmd.
2126 set_pmd_at(mm, start, pmd, entry);
2127 update_mmu_cache_pmd(vma, address, &entry);
2129 page_ref_unfreeze(page, 2);
2130 mlock_migrate_page(new_page, page);
2131 page_remove_rmap(page, true);
2132 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2134 spin_unlock(ptl);
2136 /* Take an "isolate" reference and put new page on the LRU. */
2137 get_page(new_page);
2138 putback_lru_page(new_page);
2140 unlock_page(new_page);
2141 unlock_page(page);
2142 put_page(page); /* Drop the rmap reference */
2143 put_page(page); /* Drop the LRU isolation reference */
2145 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2146 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2148 mod_node_page_state(page_pgdat(page),
2149 NR_ISOLATED_ANON + page_lru,
2150 -HPAGE_PMD_NR);
2151 return isolated;
2153 out_fail:
2154 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2155 ptl = pmd_lock(mm, pmd);
2156 if (pmd_same(*pmd, entry)) {
2157 entry = pmd_modify(entry, vma->vm_page_prot);
2158 set_pmd_at(mm, start, pmd, entry);
2159 update_mmu_cache_pmd(vma, address, &entry);
2161 spin_unlock(ptl);
2163 out_unlock:
2164 unlock_page(page);
2165 put_page(page);
2166 return 0;
2168 #endif /* CONFIG_NUMA_BALANCING */
2170 #endif /* CONFIG_NUMA */
2172 #ifdef CONFIG_DEVICE_PRIVATE
2173 static int migrate_vma_collect_hole(unsigned long start,
2174 unsigned long end,
2175 __always_unused int depth,
2176 struct mm_walk *walk)
2178 struct migrate_vma *migrate = walk->private;
2179 unsigned long addr;
2181 for (addr = start; addr < end; addr += PAGE_SIZE) {
2182 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2183 migrate->dst[migrate->npages] = 0;
2184 migrate->npages++;
2185 migrate->cpages++;
2188 return 0;
2191 static int migrate_vma_collect_skip(unsigned long start,
2192 unsigned long end,
2193 struct mm_walk *walk)
2195 struct migrate_vma *migrate = walk->private;
2196 unsigned long addr;
2198 for (addr = start; addr < end; addr += PAGE_SIZE) {
2199 migrate->dst[migrate->npages] = 0;
2200 migrate->src[migrate->npages++] = 0;
2203 return 0;
2206 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2207 unsigned long start,
2208 unsigned long end,
2209 struct mm_walk *walk)
2211 struct migrate_vma *migrate = walk->private;
2212 struct vm_area_struct *vma = walk->vma;
2213 struct mm_struct *mm = vma->vm_mm;
2214 unsigned long addr = start, unmapped = 0;
2215 spinlock_t *ptl;
2216 pte_t *ptep;
2218 again:
2219 if (pmd_none(*pmdp))
2220 return migrate_vma_collect_hole(start, end, -1, walk);
2222 if (pmd_trans_huge(*pmdp)) {
2223 struct page *page;
2225 ptl = pmd_lock(mm, pmdp);
2226 if (unlikely(!pmd_trans_huge(*pmdp))) {
2227 spin_unlock(ptl);
2228 goto again;
2231 page = pmd_page(*pmdp);
2232 if (is_huge_zero_page(page)) {
2233 spin_unlock(ptl);
2234 split_huge_pmd(vma, pmdp, addr);
2235 if (pmd_trans_unstable(pmdp))
2236 return migrate_vma_collect_skip(start, end,
2237 walk);
2238 } else {
2239 int ret;
2241 get_page(page);
2242 spin_unlock(ptl);
2243 if (unlikely(!trylock_page(page)))
2244 return migrate_vma_collect_skip(start, end,
2245 walk);
2246 ret = split_huge_page(page);
2247 unlock_page(page);
2248 put_page(page);
2249 if (ret)
2250 return migrate_vma_collect_skip(start, end,
2251 walk);
2252 if (pmd_none(*pmdp))
2253 return migrate_vma_collect_hole(start, end, -1,
2254 walk);
2258 if (unlikely(pmd_bad(*pmdp)))
2259 return migrate_vma_collect_skip(start, end, walk);
2261 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2262 arch_enter_lazy_mmu_mode();
2264 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2265 unsigned long mpfn = 0, pfn;
2266 struct page *page;
2267 swp_entry_t entry;
2268 pte_t pte;
2270 pte = *ptep;
2272 if (pte_none(pte)) {
2273 mpfn = MIGRATE_PFN_MIGRATE;
2274 migrate->cpages++;
2275 goto next;
2278 if (!pte_present(pte)) {
2280 * Only care about unaddressable device page special
2281 * page table entry. Other special swap entries are not
2282 * migratable, and we ignore regular swapped page.
2284 entry = pte_to_swp_entry(pte);
2285 if (!is_device_private_entry(entry))
2286 goto next;
2288 page = device_private_entry_to_page(entry);
2289 if (page->pgmap->owner != migrate->src_owner)
2290 goto next;
2292 mpfn = migrate_pfn(page_to_pfn(page)) |
2293 MIGRATE_PFN_MIGRATE;
2294 if (is_write_device_private_entry(entry))
2295 mpfn |= MIGRATE_PFN_WRITE;
2296 } else {
2297 if (migrate->src_owner)
2298 goto next;
2299 pfn = pte_pfn(pte);
2300 if (is_zero_pfn(pfn)) {
2301 mpfn = MIGRATE_PFN_MIGRATE;
2302 migrate->cpages++;
2303 goto next;
2305 page = vm_normal_page(migrate->vma, addr, pte);
2306 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2307 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2310 /* FIXME support THP */
2311 if (!page || !page->mapping || PageTransCompound(page)) {
2312 mpfn = 0;
2313 goto next;
2317 * By getting a reference on the page we pin it and that blocks
2318 * any kind of migration. Side effect is that it "freezes" the
2319 * pte.
2321 * We drop this reference after isolating the page from the lru
2322 * for non device page (device page are not on the lru and thus
2323 * can't be dropped from it).
2325 get_page(page);
2326 migrate->cpages++;
2329 * Optimize for the common case where page is only mapped once
2330 * in one process. If we can lock the page, then we can safely
2331 * set up a special migration page table entry now.
2333 if (trylock_page(page)) {
2334 pte_t swp_pte;
2336 mpfn |= MIGRATE_PFN_LOCKED;
2337 ptep_get_and_clear(mm, addr, ptep);
2339 /* Setup special migration page table entry */
2340 entry = make_migration_entry(page, mpfn &
2341 MIGRATE_PFN_WRITE);
2342 swp_pte = swp_entry_to_pte(entry);
2343 if (pte_soft_dirty(pte))
2344 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2345 if (pte_uffd_wp(pte))
2346 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2347 set_pte_at(mm, addr, ptep, swp_pte);
2350 * This is like regular unmap: we remove the rmap and
2351 * drop page refcount. Page won't be freed, as we took
2352 * a reference just above.
2354 page_remove_rmap(page, false);
2355 put_page(page);
2357 if (pte_present(pte))
2358 unmapped++;
2361 next:
2362 migrate->dst[migrate->npages] = 0;
2363 migrate->src[migrate->npages++] = mpfn;
2365 arch_leave_lazy_mmu_mode();
2366 pte_unmap_unlock(ptep - 1, ptl);
2368 /* Only flush the TLB if we actually modified any entries */
2369 if (unmapped)
2370 flush_tlb_range(walk->vma, start, end);
2372 return 0;
2375 static const struct mm_walk_ops migrate_vma_walk_ops = {
2376 .pmd_entry = migrate_vma_collect_pmd,
2377 .pte_hole = migrate_vma_collect_hole,
2381 * migrate_vma_collect() - collect pages over a range of virtual addresses
2382 * @migrate: migrate struct containing all migration information
2384 * This will walk the CPU page table. For each virtual address backed by a
2385 * valid page, it updates the src array and takes a reference on the page, in
2386 * order to pin the page until we lock it and unmap it.
2388 static void migrate_vma_collect(struct migrate_vma *migrate)
2390 struct mmu_notifier_range range;
2392 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2393 migrate->vma->vm_mm, migrate->start, migrate->end);
2394 mmu_notifier_invalidate_range_start(&range);
2396 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2397 &migrate_vma_walk_ops, migrate);
2399 mmu_notifier_invalidate_range_end(&range);
2400 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2404 * migrate_vma_check_page() - check if page is pinned or not
2405 * @page: struct page to check
2407 * Pinned pages cannot be migrated. This is the same test as in
2408 * migrate_page_move_mapping(), except that here we allow migration of a
2409 * ZONE_DEVICE page.
2411 static bool migrate_vma_check_page(struct page *page)
2414 * One extra ref because caller holds an extra reference, either from
2415 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2416 * a device page.
2418 int extra = 1;
2421 * FIXME support THP (transparent huge page), it is bit more complex to
2422 * check them than regular pages, because they can be mapped with a pmd
2423 * or with a pte (split pte mapping).
2425 if (PageCompound(page))
2426 return false;
2428 /* Page from ZONE_DEVICE have one extra reference */
2429 if (is_zone_device_page(page)) {
2431 * Private page can never be pin as they have no valid pte and
2432 * GUP will fail for those. Yet if there is a pending migration
2433 * a thread might try to wait on the pte migration entry and
2434 * will bump the page reference count. Sadly there is no way to
2435 * differentiate a regular pin from migration wait. Hence to
2436 * avoid 2 racing thread trying to migrate back to CPU to enter
2437 * infinite loop (one stoping migration because the other is
2438 * waiting on pte migration entry). We always return true here.
2440 * FIXME proper solution is to rework migration_entry_wait() so
2441 * it does not need to take a reference on page.
2443 return is_device_private_page(page);
2446 /* For file back page */
2447 if (page_mapping(page))
2448 extra += 1 + page_has_private(page);
2450 if ((page_count(page) - extra) > page_mapcount(page))
2451 return false;
2453 return true;
2457 * migrate_vma_prepare() - lock pages and isolate them from the lru
2458 * @migrate: migrate struct containing all migration information
2460 * This locks pages that have been collected by migrate_vma_collect(). Once each
2461 * page is locked it is isolated from the lru (for non-device pages). Finally,
2462 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2463 * migrated by concurrent kernel threads.
2465 static void migrate_vma_prepare(struct migrate_vma *migrate)
2467 const unsigned long npages = migrate->npages;
2468 const unsigned long start = migrate->start;
2469 unsigned long addr, i, restore = 0;
2470 bool allow_drain = true;
2472 lru_add_drain();
2474 for (i = 0; (i < npages) && migrate->cpages; i++) {
2475 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2476 bool remap = true;
2478 if (!page)
2479 continue;
2481 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2483 * Because we are migrating several pages there can be
2484 * a deadlock between 2 concurrent migration where each
2485 * are waiting on each other page lock.
2487 * Make migrate_vma() a best effort thing and backoff
2488 * for any page we can not lock right away.
2490 if (!trylock_page(page)) {
2491 migrate->src[i] = 0;
2492 migrate->cpages--;
2493 put_page(page);
2494 continue;
2496 remap = false;
2497 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2500 /* ZONE_DEVICE pages are not on LRU */
2501 if (!is_zone_device_page(page)) {
2502 if (!PageLRU(page) && allow_drain) {
2503 /* Drain CPU's pagevec */
2504 lru_add_drain_all();
2505 allow_drain = false;
2508 if (isolate_lru_page(page)) {
2509 if (remap) {
2510 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511 migrate->cpages--;
2512 restore++;
2513 } else {
2514 migrate->src[i] = 0;
2515 unlock_page(page);
2516 migrate->cpages--;
2517 put_page(page);
2519 continue;
2522 /* Drop the reference we took in collect */
2523 put_page(page);
2526 if (!migrate_vma_check_page(page)) {
2527 if (remap) {
2528 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2529 migrate->cpages--;
2530 restore++;
2532 if (!is_zone_device_page(page)) {
2533 get_page(page);
2534 putback_lru_page(page);
2536 } else {
2537 migrate->src[i] = 0;
2538 unlock_page(page);
2539 migrate->cpages--;
2541 if (!is_zone_device_page(page))
2542 putback_lru_page(page);
2543 else
2544 put_page(page);
2549 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2550 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2552 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553 continue;
2555 remove_migration_pte(page, migrate->vma, addr, page);
2557 migrate->src[i] = 0;
2558 unlock_page(page);
2559 put_page(page);
2560 restore--;
2565 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2566 * @migrate: migrate struct containing all migration information
2568 * Replace page mapping (CPU page table pte) with a special migration pte entry
2569 * and check again if it has been pinned. Pinned pages are restored because we
2570 * cannot migrate them.
2572 * This is the last step before we call the device driver callback to allocate
2573 * destination memory and copy contents of original page over to new page.
2575 static void migrate_vma_unmap(struct migrate_vma *migrate)
2577 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2578 const unsigned long npages = migrate->npages;
2579 const unsigned long start = migrate->start;
2580 unsigned long addr, i, restore = 0;
2582 for (i = 0; i < npages; i++) {
2583 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2585 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586 continue;
2588 if (page_mapped(page)) {
2589 try_to_unmap(page, flags);
2590 if (page_mapped(page))
2591 goto restore;
2594 if (migrate_vma_check_page(page))
2595 continue;
2597 restore:
2598 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2599 migrate->cpages--;
2600 restore++;
2603 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2604 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2606 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2607 continue;
2609 remove_migration_ptes(page, page, false);
2611 migrate->src[i] = 0;
2612 unlock_page(page);
2613 restore--;
2615 if (is_zone_device_page(page))
2616 put_page(page);
2617 else
2618 putback_lru_page(page);
2623 * migrate_vma_setup() - prepare to migrate a range of memory
2624 * @args: contains the vma, start, and and pfns arrays for the migration
2626 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2627 * without an error.
2629 * Prepare to migrate a range of memory virtual address range by collecting all
2630 * the pages backing each virtual address in the range, saving them inside the
2631 * src array. Then lock those pages and unmap them. Once the pages are locked
2632 * and unmapped, check whether each page is pinned or not. Pages that aren't
2633 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2634 * corresponding src array entry. Then restores any pages that are pinned, by
2635 * remapping and unlocking those pages.
2637 * The caller should then allocate destination memory and copy source memory to
2638 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2639 * flag set). Once these are allocated and copied, the caller must update each
2640 * corresponding entry in the dst array with the pfn value of the destination
2641 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2642 * (destination pages must have their struct pages locked, via lock_page()).
2644 * Note that the caller does not have to migrate all the pages that are marked
2645 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2646 * device memory to system memory. If the caller cannot migrate a device page
2647 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2648 * consequences for the userspace process, so it must be avoided if at all
2649 * possible.
2651 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2652 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2653 * allowing the caller to allocate device memory for those unback virtual
2654 * address. For this the caller simply has to allocate device memory and
2655 * properly set the destination entry like for regular migration. Note that
2656 * this can still fails and thus inside the device driver must check if the
2657 * migration was successful for those entries after calling migrate_vma_pages()
2658 * just like for regular migration.
2660 * After that, the callers must call migrate_vma_pages() to go over each entry
2661 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2662 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2663 * then migrate_vma_pages() to migrate struct page information from the source
2664 * struct page to the destination struct page. If it fails to migrate the
2665 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2666 * src array.
2668 * At this point all successfully migrated pages have an entry in the src
2669 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2670 * array entry with MIGRATE_PFN_VALID flag set.
2672 * Once migrate_vma_pages() returns the caller may inspect which pages were
2673 * successfully migrated, and which were not. Successfully migrated pages will
2674 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2676 * It is safe to update device page table after migrate_vma_pages() because
2677 * both destination and source page are still locked, and the mmap_sem is held
2678 * in read mode (hence no one can unmap the range being migrated).
2680 * Once the caller is done cleaning up things and updating its page table (if it
2681 * chose to do so, this is not an obligation) it finally calls
2682 * migrate_vma_finalize() to update the CPU page table to point to new pages
2683 * for successfully migrated pages or otherwise restore the CPU page table to
2684 * point to the original source pages.
2686 int migrate_vma_setup(struct migrate_vma *args)
2688 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2690 args->start &= PAGE_MASK;
2691 args->end &= PAGE_MASK;
2692 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2693 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2694 return -EINVAL;
2695 if (nr_pages <= 0)
2696 return -EINVAL;
2697 if (args->start < args->vma->vm_start ||
2698 args->start >= args->vma->vm_end)
2699 return -EINVAL;
2700 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2701 return -EINVAL;
2702 if (!args->src || !args->dst)
2703 return -EINVAL;
2705 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2706 args->cpages = 0;
2707 args->npages = 0;
2709 migrate_vma_collect(args);
2711 if (args->cpages)
2712 migrate_vma_prepare(args);
2713 if (args->cpages)
2714 migrate_vma_unmap(args);
2717 * At this point pages are locked and unmapped, and thus they have
2718 * stable content and can safely be copied to destination memory that
2719 * is allocated by the drivers.
2721 return 0;
2724 EXPORT_SYMBOL(migrate_vma_setup);
2727 * This code closely matches the code in:
2728 * __handle_mm_fault()
2729 * handle_pte_fault()
2730 * do_anonymous_page()
2731 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2732 * private page.
2734 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2735 unsigned long addr,
2736 struct page *page,
2737 unsigned long *src,
2738 unsigned long *dst)
2740 struct vm_area_struct *vma = migrate->vma;
2741 struct mm_struct *mm = vma->vm_mm;
2742 struct mem_cgroup *memcg;
2743 bool flush = false;
2744 spinlock_t *ptl;
2745 pte_t entry;
2746 pgd_t *pgdp;
2747 p4d_t *p4dp;
2748 pud_t *pudp;
2749 pmd_t *pmdp;
2750 pte_t *ptep;
2752 /* Only allow populating anonymous memory */
2753 if (!vma_is_anonymous(vma))
2754 goto abort;
2756 pgdp = pgd_offset(mm, addr);
2757 p4dp = p4d_alloc(mm, pgdp, addr);
2758 if (!p4dp)
2759 goto abort;
2760 pudp = pud_alloc(mm, p4dp, addr);
2761 if (!pudp)
2762 goto abort;
2763 pmdp = pmd_alloc(mm, pudp, addr);
2764 if (!pmdp)
2765 goto abort;
2767 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2768 goto abort;
2771 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2772 * pte_offset_map() on pmds where a huge pmd might be created
2773 * from a different thread.
2775 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2776 * parallel threads are excluded by other means.
2778 * Here we only have down_read(mmap_sem).
2780 if (pte_alloc(mm, pmdp))
2781 goto abort;
2783 /* See the comment in pte_alloc_one_map() */
2784 if (unlikely(pmd_trans_unstable(pmdp)))
2785 goto abort;
2787 if (unlikely(anon_vma_prepare(vma)))
2788 goto abort;
2789 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2790 goto abort;
2793 * The memory barrier inside __SetPageUptodate makes sure that
2794 * preceding stores to the page contents become visible before
2795 * the set_pte_at() write.
2797 __SetPageUptodate(page);
2799 if (is_zone_device_page(page)) {
2800 if (is_device_private_page(page)) {
2801 swp_entry_t swp_entry;
2803 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2804 entry = swp_entry_to_pte(swp_entry);
2806 } else {
2807 entry = mk_pte(page, vma->vm_page_prot);
2808 if (vma->vm_flags & VM_WRITE)
2809 entry = pte_mkwrite(pte_mkdirty(entry));
2812 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2814 if (check_stable_address_space(mm))
2815 goto unlock_abort;
2817 if (pte_present(*ptep)) {
2818 unsigned long pfn = pte_pfn(*ptep);
2820 if (!is_zero_pfn(pfn))
2821 goto unlock_abort;
2822 flush = true;
2823 } else if (!pte_none(*ptep))
2824 goto unlock_abort;
2827 * Check for userfaultfd but do not deliver the fault. Instead,
2828 * just back off.
2830 if (userfaultfd_missing(vma))
2831 goto unlock_abort;
2833 inc_mm_counter(mm, MM_ANONPAGES);
2834 page_add_new_anon_rmap(page, vma, addr, false);
2835 mem_cgroup_commit_charge(page, memcg, false, false);
2836 if (!is_zone_device_page(page))
2837 lru_cache_add_active_or_unevictable(page, vma);
2838 get_page(page);
2840 if (flush) {
2841 flush_cache_page(vma, addr, pte_pfn(*ptep));
2842 ptep_clear_flush_notify(vma, addr, ptep);
2843 set_pte_at_notify(mm, addr, ptep, entry);
2844 update_mmu_cache(vma, addr, ptep);
2845 } else {
2846 /* No need to invalidate - it was non-present before */
2847 set_pte_at(mm, addr, ptep, entry);
2848 update_mmu_cache(vma, addr, ptep);
2851 pte_unmap_unlock(ptep, ptl);
2852 *src = MIGRATE_PFN_MIGRATE;
2853 return;
2855 unlock_abort:
2856 pte_unmap_unlock(ptep, ptl);
2857 mem_cgroup_cancel_charge(page, memcg, false);
2858 abort:
2859 *src &= ~MIGRATE_PFN_MIGRATE;
2863 * migrate_vma_pages() - migrate meta-data from src page to dst page
2864 * @migrate: migrate struct containing all migration information
2866 * This migrates struct page meta-data from source struct page to destination
2867 * struct page. This effectively finishes the migration from source page to the
2868 * destination page.
2870 void migrate_vma_pages(struct migrate_vma *migrate)
2872 const unsigned long npages = migrate->npages;
2873 const unsigned long start = migrate->start;
2874 struct mmu_notifier_range range;
2875 unsigned long addr, i;
2876 bool notified = false;
2878 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2879 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2880 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2881 struct address_space *mapping;
2882 int r;
2884 if (!newpage) {
2885 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2886 continue;
2889 if (!page) {
2890 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2891 continue;
2892 if (!notified) {
2893 notified = true;
2895 mmu_notifier_range_init(&range,
2896 MMU_NOTIFY_CLEAR, 0,
2897 NULL,
2898 migrate->vma->vm_mm,
2899 addr, migrate->end);
2900 mmu_notifier_invalidate_range_start(&range);
2902 migrate_vma_insert_page(migrate, addr, newpage,
2903 &migrate->src[i],
2904 &migrate->dst[i]);
2905 continue;
2908 mapping = page_mapping(page);
2910 if (is_zone_device_page(newpage)) {
2911 if (is_device_private_page(newpage)) {
2913 * For now only support private anonymous when
2914 * migrating to un-addressable device memory.
2916 if (mapping) {
2917 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918 continue;
2920 } else {
2922 * Other types of ZONE_DEVICE page are not
2923 * supported.
2925 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2926 continue;
2930 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2931 if (r != MIGRATEPAGE_SUCCESS)
2932 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2936 * No need to double call mmu_notifier->invalidate_range() callback as
2937 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2938 * did already call it.
2940 if (notified)
2941 mmu_notifier_invalidate_range_only_end(&range);
2943 EXPORT_SYMBOL(migrate_vma_pages);
2946 * migrate_vma_finalize() - restore CPU page table entry
2947 * @migrate: migrate struct containing all migration information
2949 * This replaces the special migration pte entry with either a mapping to the
2950 * new page if migration was successful for that page, or to the original page
2951 * otherwise.
2953 * This also unlocks the pages and puts them back on the lru, or drops the extra
2954 * refcount, for device pages.
2956 void migrate_vma_finalize(struct migrate_vma *migrate)
2958 const unsigned long npages = migrate->npages;
2959 unsigned long i;
2961 for (i = 0; i < npages; i++) {
2962 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2963 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2965 if (!page) {
2966 if (newpage) {
2967 unlock_page(newpage);
2968 put_page(newpage);
2970 continue;
2973 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2974 if (newpage) {
2975 unlock_page(newpage);
2976 put_page(newpage);
2978 newpage = page;
2981 remove_migration_ptes(page, newpage, false);
2982 unlock_page(page);
2983 migrate->cpages--;
2985 if (is_zone_device_page(page))
2986 put_page(page);
2987 else
2988 putback_lru_page(page);
2990 if (newpage != page) {
2991 unlock_page(newpage);
2992 if (is_zone_device_page(newpage))
2993 put_page(newpage);
2994 else
2995 putback_lru_page(newpage);
2999 EXPORT_SYMBOL(migrate_vma_finalize);
3000 #endif /* CONFIG_DEVICE_PRIVATE */