2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
10 int sched_rr_timeslice
= RR_TIMESLICE
;
12 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
14 struct rt_bandwidth def_rt_bandwidth
;
16 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
18 struct rt_bandwidth
*rt_b
=
19 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
25 now
= hrtimer_cb_get_time(timer
);
26 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
31 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
34 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
37 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
39 rt_b
->rt_period
= ns_to_ktime(period
);
40 rt_b
->rt_runtime
= runtime
;
42 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
44 hrtimer_init(&rt_b
->rt_period_timer
,
45 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
46 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
49 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
51 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
54 if (hrtimer_active(&rt_b
->rt_period_timer
))
57 raw_spin_lock(&rt_b
->rt_runtime_lock
);
58 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
59 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
62 void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
64 struct rt_prio_array
*array
;
67 array
= &rt_rq
->active
;
68 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
69 INIT_LIST_HEAD(array
->queue
+ i
);
70 __clear_bit(i
, array
->bitmap
);
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
75 #if defined CONFIG_SMP
76 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
77 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
78 rt_rq
->rt_nr_migratory
= 0;
79 rt_rq
->overloaded
= 0;
80 plist_head_init(&rt_rq
->pushable_tasks
);
84 rt_rq
->rt_throttled
= 0;
85 rt_rq
->rt_runtime
= 0;
86 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
92 hrtimer_cancel(&rt_b
->rt_period_timer
);
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
97 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
99 #ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
102 return container_of(rt_se
, struct task_struct
, rt
);
105 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
110 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
115 void free_rt_sched_group(struct task_group
*tg
)
120 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
122 for_each_possible_cpu(i
) {
133 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
134 struct sched_rt_entity
*rt_se
, int cpu
,
135 struct sched_rt_entity
*parent
)
137 struct rq
*rq
= cpu_rq(cpu
);
139 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
140 rt_rq
->rt_nr_boosted
= 0;
144 tg
->rt_rq
[cpu
] = rt_rq
;
145 tg
->rt_se
[cpu
] = rt_se
;
151 rt_se
->rt_rq
= &rq
->rt
;
153 rt_se
->rt_rq
= parent
->my_q
;
156 rt_se
->parent
= parent
;
157 INIT_LIST_HEAD(&rt_se
->run_list
);
160 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
163 struct sched_rt_entity
*rt_se
;
166 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
169 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
173 init_rt_bandwidth(&tg
->rt_bandwidth
,
174 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
176 for_each_possible_cpu(i
) {
177 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
178 GFP_KERNEL
, cpu_to_node(i
));
182 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
183 GFP_KERNEL
, cpu_to_node(i
));
187 init_rt_rq(rt_rq
, cpu_rq(i
));
188 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
189 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
200 #else /* CONFIG_RT_GROUP_SCHED */
202 #define rt_entity_is_task(rt_se) (1)
204 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
206 return container_of(rt_se
, struct task_struct
, rt
);
209 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
211 return container_of(rt_rq
, struct rq
, rt
);
214 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
216 struct task_struct
*p
= rt_task_of(rt_se
);
217 struct rq
*rq
= task_rq(p
);
222 void free_rt_sched_group(struct task_group
*tg
) { }
224 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
228 #endif /* CONFIG_RT_GROUP_SCHED */
232 static inline int rt_overloaded(struct rq
*rq
)
234 return atomic_read(&rq
->rd
->rto_count
);
237 static inline void rt_set_overload(struct rq
*rq
)
242 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
251 atomic_inc(&rq
->rd
->rto_count
);
254 static inline void rt_clear_overload(struct rq
*rq
)
259 /* the order here really doesn't matter */
260 atomic_dec(&rq
->rd
->rto_count
);
261 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
264 static void update_rt_migration(struct rt_rq
*rt_rq
)
266 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
267 if (!rt_rq
->overloaded
) {
268 rt_set_overload(rq_of_rt_rq(rt_rq
));
269 rt_rq
->overloaded
= 1;
271 } else if (rt_rq
->overloaded
) {
272 rt_clear_overload(rq_of_rt_rq(rt_rq
));
273 rt_rq
->overloaded
= 0;
277 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
279 struct task_struct
*p
;
281 if (!rt_entity_is_task(rt_se
))
284 p
= rt_task_of(rt_se
);
285 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
287 rt_rq
->rt_nr_total
++;
288 if (p
->nr_cpus_allowed
> 1)
289 rt_rq
->rt_nr_migratory
++;
291 update_rt_migration(rt_rq
);
294 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
296 struct task_struct
*p
;
298 if (!rt_entity_is_task(rt_se
))
301 p
= rt_task_of(rt_se
);
302 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
304 rt_rq
->rt_nr_total
--;
305 if (p
->nr_cpus_allowed
> 1)
306 rt_rq
->rt_nr_migratory
--;
308 update_rt_migration(rt_rq
);
311 static inline int has_pushable_tasks(struct rq
*rq
)
313 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
316 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
318 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
319 plist_node_init(&p
->pushable_tasks
, p
->prio
);
320 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
322 /* Update the highest prio pushable task */
323 if (p
->prio
< rq
->rt
.highest_prio
.next
)
324 rq
->rt
.highest_prio
.next
= p
->prio
;
327 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
329 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
331 /* Update the new highest prio pushable task */
332 if (has_pushable_tasks(rq
)) {
333 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
334 struct task_struct
, pushable_tasks
);
335 rq
->rt
.highest_prio
.next
= p
->prio
;
337 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
342 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
346 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
351 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
356 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
360 #endif /* CONFIG_SMP */
362 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
364 return !list_empty(&rt_se
->run_list
);
367 #ifdef CONFIG_RT_GROUP_SCHED
369 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
374 return rt_rq
->rt_runtime
;
377 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
379 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
382 typedef struct task_group
*rt_rq_iter_t
;
384 static inline struct task_group
*next_task_group(struct task_group
*tg
)
387 tg
= list_entry_rcu(tg
->list
.next
,
388 typeof(struct task_group
), list
);
389 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
391 if (&tg
->list
== &task_groups
)
397 #define for_each_rt_rq(rt_rq, iter, rq) \
398 for (iter = container_of(&task_groups, typeof(*iter), list); \
399 (iter = next_task_group(iter)) && \
400 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
402 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
404 list_add_rcu(&rt_rq
->leaf_rt_rq_list
,
405 &rq_of_rt_rq(rt_rq
)->leaf_rt_rq_list
);
408 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
410 list_del_rcu(&rt_rq
->leaf_rt_rq_list
);
413 #define for_each_leaf_rt_rq(rt_rq, rq) \
414 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
416 #define for_each_sched_rt_entity(rt_se) \
417 for (; rt_se; rt_se = rt_se->parent)
419 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
424 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
425 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
427 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
429 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
430 struct sched_rt_entity
*rt_se
;
432 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
434 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
436 if (rt_rq
->rt_nr_running
) {
437 if (rt_se
&& !on_rt_rq(rt_se
))
438 enqueue_rt_entity(rt_se
, false);
439 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
444 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
446 struct sched_rt_entity
*rt_se
;
447 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
449 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
451 if (rt_se
&& on_rt_rq(rt_se
))
452 dequeue_rt_entity(rt_se
);
455 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
457 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
460 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
462 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
463 struct task_struct
*p
;
466 return !!rt_rq
->rt_nr_boosted
;
468 p
= rt_task_of(rt_se
);
469 return p
->prio
!= p
->normal_prio
;
473 static inline const struct cpumask
*sched_rt_period_mask(void)
475 return cpu_rq(smp_processor_id())->rd
->span
;
478 static inline const struct cpumask
*sched_rt_period_mask(void)
480 return cpu_online_mask
;
485 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
487 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
490 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
492 return &rt_rq
->tg
->rt_bandwidth
;
495 #else /* !CONFIG_RT_GROUP_SCHED */
497 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
499 return rt_rq
->rt_runtime
;
502 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
504 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
507 typedef struct rt_rq
*rt_rq_iter_t
;
509 #define for_each_rt_rq(rt_rq, iter, rq) \
510 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
512 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
516 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
520 #define for_each_leaf_rt_rq(rt_rq, rq) \
521 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
523 #define for_each_sched_rt_entity(rt_se) \
524 for (; rt_se; rt_se = NULL)
526 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
531 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
533 if (rt_rq
->rt_nr_running
)
534 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
537 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
541 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
543 return rt_rq
->rt_throttled
;
546 static inline const struct cpumask
*sched_rt_period_mask(void)
548 return cpu_online_mask
;
552 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
554 return &cpu_rq(cpu
)->rt
;
557 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
559 return &def_rt_bandwidth
;
562 #endif /* CONFIG_RT_GROUP_SCHED */
566 * We ran out of runtime, see if we can borrow some from our neighbours.
568 static int do_balance_runtime(struct rt_rq
*rt_rq
)
570 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
571 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
572 int i
, weight
, more
= 0;
575 weight
= cpumask_weight(rd
->span
);
577 raw_spin_lock(&rt_b
->rt_runtime_lock
);
578 rt_period
= ktime_to_ns(rt_b
->rt_period
);
579 for_each_cpu(i
, rd
->span
) {
580 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
586 raw_spin_lock(&iter
->rt_runtime_lock
);
588 * Either all rqs have inf runtime and there's nothing to steal
589 * or __disable_runtime() below sets a specific rq to inf to
590 * indicate its been disabled and disalow stealing.
592 if (iter
->rt_runtime
== RUNTIME_INF
)
596 * From runqueues with spare time, take 1/n part of their
597 * spare time, but no more than our period.
599 diff
= iter
->rt_runtime
- iter
->rt_time
;
601 diff
= div_u64((u64
)diff
, weight
);
602 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
603 diff
= rt_period
- rt_rq
->rt_runtime
;
604 iter
->rt_runtime
-= diff
;
605 rt_rq
->rt_runtime
+= diff
;
607 if (rt_rq
->rt_runtime
== rt_period
) {
608 raw_spin_unlock(&iter
->rt_runtime_lock
);
613 raw_spin_unlock(&iter
->rt_runtime_lock
);
615 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
621 * Ensure this RQ takes back all the runtime it lend to its neighbours.
623 static void __disable_runtime(struct rq
*rq
)
625 struct root_domain
*rd
= rq
->rd
;
629 if (unlikely(!scheduler_running
))
632 for_each_rt_rq(rt_rq
, iter
, rq
) {
633 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
637 raw_spin_lock(&rt_b
->rt_runtime_lock
);
638 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
640 * Either we're all inf and nobody needs to borrow, or we're
641 * already disabled and thus have nothing to do, or we have
642 * exactly the right amount of runtime to take out.
644 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
645 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
647 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
650 * Calculate the difference between what we started out with
651 * and what we current have, that's the amount of runtime
652 * we lend and now have to reclaim.
654 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
657 * Greedy reclaim, take back as much as we can.
659 for_each_cpu(i
, rd
->span
) {
660 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
664 * Can't reclaim from ourselves or disabled runqueues.
666 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
669 raw_spin_lock(&iter
->rt_runtime_lock
);
671 diff
= min_t(s64
, iter
->rt_runtime
, want
);
672 iter
->rt_runtime
-= diff
;
675 iter
->rt_runtime
-= want
;
678 raw_spin_unlock(&iter
->rt_runtime_lock
);
684 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
686 * We cannot be left wanting - that would mean some runtime
687 * leaked out of the system.
692 * Disable all the borrow logic by pretending we have inf
693 * runtime - in which case borrowing doesn't make sense.
695 rt_rq
->rt_runtime
= RUNTIME_INF
;
696 rt_rq
->rt_throttled
= 0;
697 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
698 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
702 static void disable_runtime(struct rq
*rq
)
706 raw_spin_lock_irqsave(&rq
->lock
, flags
);
707 __disable_runtime(rq
);
708 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
711 static void __enable_runtime(struct rq
*rq
)
716 if (unlikely(!scheduler_running
))
720 * Reset each runqueue's bandwidth settings
722 for_each_rt_rq(rt_rq
, iter
, rq
) {
723 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
725 raw_spin_lock(&rt_b
->rt_runtime_lock
);
726 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
727 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
729 rt_rq
->rt_throttled
= 0;
730 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
731 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
735 static void enable_runtime(struct rq
*rq
)
739 raw_spin_lock_irqsave(&rq
->lock
, flags
);
740 __enable_runtime(rq
);
741 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
744 int update_runtime(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
746 int cpu
= (int)(long)hcpu
;
749 case CPU_DOWN_PREPARE
:
750 case CPU_DOWN_PREPARE_FROZEN
:
751 disable_runtime(cpu_rq(cpu
));
754 case CPU_DOWN_FAILED
:
755 case CPU_DOWN_FAILED_FROZEN
:
757 case CPU_ONLINE_FROZEN
:
758 enable_runtime(cpu_rq(cpu
));
766 static int balance_runtime(struct rt_rq
*rt_rq
)
770 if (!sched_feat(RT_RUNTIME_SHARE
))
773 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
774 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
775 more
= do_balance_runtime(rt_rq
);
776 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
781 #else /* !CONFIG_SMP */
782 static inline int balance_runtime(struct rt_rq
*rt_rq
)
786 #endif /* CONFIG_SMP */
788 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
790 int i
, idle
= 1, throttled
= 0;
791 const struct cpumask
*span
;
793 span
= sched_rt_period_mask();
794 #ifdef CONFIG_RT_GROUP_SCHED
796 * FIXME: isolated CPUs should really leave the root task group,
797 * whether they are isolcpus or were isolated via cpusets, lest
798 * the timer run on a CPU which does not service all runqueues,
799 * potentially leaving other CPUs indefinitely throttled. If
800 * isolation is really required, the user will turn the throttle
801 * off to kill the perturbations it causes anyway. Meanwhile,
802 * this maintains functionality for boot and/or troubleshooting.
804 if (rt_b
== &root_task_group
.rt_bandwidth
)
805 span
= cpu_online_mask
;
807 for_each_cpu(i
, span
) {
809 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
810 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
812 raw_spin_lock(&rq
->lock
);
813 if (rt_rq
->rt_time
) {
816 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
817 if (rt_rq
->rt_throttled
)
818 balance_runtime(rt_rq
);
819 runtime
= rt_rq
->rt_runtime
;
820 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
821 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
822 rt_rq
->rt_throttled
= 0;
826 * Force a clock update if the CPU was idle,
827 * lest wakeup -> unthrottle time accumulate.
829 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
830 rq
->skip_clock_update
= -1;
832 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
834 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
835 } else if (rt_rq
->rt_nr_running
) {
837 if (!rt_rq_throttled(rt_rq
))
840 if (rt_rq
->rt_throttled
)
844 sched_rt_rq_enqueue(rt_rq
);
845 raw_spin_unlock(&rq
->lock
);
848 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
854 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
856 #ifdef CONFIG_RT_GROUP_SCHED
857 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
860 return rt_rq
->highest_prio
.curr
;
863 return rt_task_of(rt_se
)->prio
;
866 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
868 u64 runtime
= sched_rt_runtime(rt_rq
);
870 if (rt_rq
->rt_throttled
)
871 return rt_rq_throttled(rt_rq
);
873 if (runtime
>= sched_rt_period(rt_rq
))
876 balance_runtime(rt_rq
);
877 runtime
= sched_rt_runtime(rt_rq
);
878 if (runtime
== RUNTIME_INF
)
881 if (rt_rq
->rt_time
> runtime
) {
882 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
885 * Don't actually throttle groups that have no runtime assigned
886 * but accrue some time due to boosting.
888 if (likely(rt_b
->rt_runtime
)) {
889 static bool once
= false;
891 rt_rq
->rt_throttled
= 1;
895 printk_sched("sched: RT throttling activated\n");
899 * In case we did anyway, make it go away,
900 * replenishment is a joke, since it will replenish us
906 if (rt_rq_throttled(rt_rq
)) {
907 sched_rt_rq_dequeue(rt_rq
);
916 * Update the current task's runtime statistics. Skip current tasks that
917 * are not in our scheduling class.
919 static void update_curr_rt(struct rq
*rq
)
921 struct task_struct
*curr
= rq
->curr
;
922 struct sched_rt_entity
*rt_se
= &curr
->rt
;
923 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
926 if (curr
->sched_class
!= &rt_sched_class
)
929 delta_exec
= rq
->clock_task
- curr
->se
.exec_start
;
930 if (unlikely((s64
)delta_exec
<= 0))
933 schedstat_set(curr
->se
.statistics
.exec_max
,
934 max(curr
->se
.statistics
.exec_max
, delta_exec
));
936 curr
->se
.sum_exec_runtime
+= delta_exec
;
937 account_group_exec_runtime(curr
, delta_exec
);
939 curr
->se
.exec_start
= rq
->clock_task
;
940 cpuacct_charge(curr
, delta_exec
);
942 sched_rt_avg_update(rq
, delta_exec
);
944 if (!rt_bandwidth_enabled())
947 for_each_sched_rt_entity(rt_se
) {
948 rt_rq
= rt_rq_of_se(rt_se
);
950 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
951 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
952 rt_rq
->rt_time
+= delta_exec
;
953 if (sched_rt_runtime_exceeded(rt_rq
))
955 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
960 #if defined CONFIG_SMP
963 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
965 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
967 if (rq
->online
&& prio
< prev_prio
)
968 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
972 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
974 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
976 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
977 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
980 #else /* CONFIG_SMP */
983 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
985 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
987 #endif /* CONFIG_SMP */
989 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
991 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
993 int prev_prio
= rt_rq
->highest_prio
.curr
;
995 if (prio
< prev_prio
)
996 rt_rq
->highest_prio
.curr
= prio
;
998 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1002 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
1004 int prev_prio
= rt_rq
->highest_prio
.curr
;
1006 if (rt_rq
->rt_nr_running
) {
1008 WARN_ON(prio
< prev_prio
);
1011 * This may have been our highest task, and therefore
1012 * we may have some recomputation to do
1014 if (prio
== prev_prio
) {
1015 struct rt_prio_array
*array
= &rt_rq
->active
;
1017 rt_rq
->highest_prio
.curr
=
1018 sched_find_first_bit(array
->bitmap
);
1022 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
1024 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
1029 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1030 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
1032 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1034 #ifdef CONFIG_RT_GROUP_SCHED
1037 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1039 if (rt_se_boosted(rt_se
))
1040 rt_rq
->rt_nr_boosted
++;
1043 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
1047 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1049 if (rt_se_boosted(rt_se
))
1050 rt_rq
->rt_nr_boosted
--;
1052 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1055 #else /* CONFIG_RT_GROUP_SCHED */
1058 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1060 start_rt_bandwidth(&def_rt_bandwidth
);
1064 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1066 #endif /* CONFIG_RT_GROUP_SCHED */
1069 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1071 int prio
= rt_se_prio(rt_se
);
1073 WARN_ON(!rt_prio(prio
));
1074 rt_rq
->rt_nr_running
++;
1076 inc_rt_prio(rt_rq
, prio
);
1077 inc_rt_migration(rt_se
, rt_rq
);
1078 inc_rt_group(rt_se
, rt_rq
);
1082 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1084 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1085 WARN_ON(!rt_rq
->rt_nr_running
);
1086 rt_rq
->rt_nr_running
--;
1088 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1089 dec_rt_migration(rt_se
, rt_rq
);
1090 dec_rt_group(rt_se
, rt_rq
);
1093 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1095 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1096 struct rt_prio_array
*array
= &rt_rq
->active
;
1097 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1098 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1101 * Don't enqueue the group if its throttled, or when empty.
1102 * The latter is a consequence of the former when a child group
1103 * get throttled and the current group doesn't have any other
1106 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
1109 if (!rt_rq
->rt_nr_running
)
1110 list_add_leaf_rt_rq(rt_rq
);
1113 list_add(&rt_se
->run_list
, queue
);
1115 list_add_tail(&rt_se
->run_list
, queue
);
1116 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1118 inc_rt_tasks(rt_se
, rt_rq
);
1121 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1123 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1124 struct rt_prio_array
*array
= &rt_rq
->active
;
1126 list_del_init(&rt_se
->run_list
);
1127 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1128 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1130 dec_rt_tasks(rt_se
, rt_rq
);
1131 if (!rt_rq
->rt_nr_running
)
1132 list_del_leaf_rt_rq(rt_rq
);
1136 * Because the prio of an upper entry depends on the lower
1137 * entries, we must remove entries top - down.
1139 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
1141 struct sched_rt_entity
*back
= NULL
;
1143 for_each_sched_rt_entity(rt_se
) {
1148 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1149 if (on_rt_rq(rt_se
))
1150 __dequeue_rt_entity(rt_se
);
1154 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1156 dequeue_rt_stack(rt_se
);
1157 for_each_sched_rt_entity(rt_se
)
1158 __enqueue_rt_entity(rt_se
, head
);
1161 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1163 dequeue_rt_stack(rt_se
);
1165 for_each_sched_rt_entity(rt_se
) {
1166 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1168 if (rt_rq
&& rt_rq
->rt_nr_running
)
1169 __enqueue_rt_entity(rt_se
, false);
1174 * Adding/removing a task to/from a priority array:
1177 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1179 struct sched_rt_entity
*rt_se
= &p
->rt
;
1181 if (flags
& ENQUEUE_WAKEUP
)
1184 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
1186 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1187 enqueue_pushable_task(rq
, p
);
1192 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1194 struct sched_rt_entity
*rt_se
= &p
->rt
;
1197 dequeue_rt_entity(rt_se
);
1199 dequeue_pushable_task(rq
, p
);
1205 * Put task to the head or the end of the run list without the overhead of
1206 * dequeue followed by enqueue.
1209 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1211 if (on_rt_rq(rt_se
)) {
1212 struct rt_prio_array
*array
= &rt_rq
->active
;
1213 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1216 list_move(&rt_se
->run_list
, queue
);
1218 list_move_tail(&rt_se
->run_list
, queue
);
1222 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1224 struct sched_rt_entity
*rt_se
= &p
->rt
;
1225 struct rt_rq
*rt_rq
;
1227 for_each_sched_rt_entity(rt_se
) {
1228 rt_rq
= rt_rq_of_se(rt_se
);
1229 requeue_rt_entity(rt_rq
, rt_se
, head
);
1233 static void yield_task_rt(struct rq
*rq
)
1235 requeue_task_rt(rq
, rq
->curr
, 0);
1239 static int find_lowest_rq(struct task_struct
*task
);
1242 select_task_rq_rt(struct task_struct
*p
, int sd_flag
, int flags
)
1244 struct task_struct
*curr
;
1250 if (p
->nr_cpus_allowed
== 1)
1253 /* For anything but wake ups, just return the task_cpu */
1254 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1260 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1263 * If the current task on @p's runqueue is an RT task, then
1264 * try to see if we can wake this RT task up on another
1265 * runqueue. Otherwise simply start this RT task
1266 * on its current runqueue.
1268 * We want to avoid overloading runqueues. If the woken
1269 * task is a higher priority, then it will stay on this CPU
1270 * and the lower prio task should be moved to another CPU.
1271 * Even though this will probably make the lower prio task
1272 * lose its cache, we do not want to bounce a higher task
1273 * around just because it gave up its CPU, perhaps for a
1276 * For equal prio tasks, we just let the scheduler sort it out.
1278 * Otherwise, just let it ride on the affined RQ and the
1279 * post-schedule router will push the preempted task away
1281 * This test is optimistic, if we get it wrong the load-balancer
1282 * will have to sort it out.
1284 if (curr
&& unlikely(rt_task(curr
)) &&
1285 (curr
->nr_cpus_allowed
< 2 ||
1286 curr
->prio
<= p
->prio
) &&
1287 (p
->nr_cpus_allowed
> 1)) {
1288 int target
= find_lowest_rq(p
);
1299 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1301 if (rq
->curr
->nr_cpus_allowed
== 1)
1304 if (p
->nr_cpus_allowed
!= 1
1305 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1308 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1312 * There appears to be other cpus that can accept
1313 * current and none to run 'p', so lets reschedule
1314 * to try and push current away:
1316 requeue_task_rt(rq
, p
, 1);
1317 resched_task(rq
->curr
);
1320 #endif /* CONFIG_SMP */
1323 * Preempt the current task with a newly woken task if needed:
1325 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1327 if (p
->prio
< rq
->curr
->prio
) {
1328 resched_task(rq
->curr
);
1336 * - the newly woken task is of equal priority to the current task
1337 * - the newly woken task is non-migratable while current is migratable
1338 * - current will be preempted on the next reschedule
1340 * we should check to see if current can readily move to a different
1341 * cpu. If so, we will reschedule to allow the push logic to try
1342 * to move current somewhere else, making room for our non-migratable
1345 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1346 check_preempt_equal_prio(rq
, p
);
1350 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1351 struct rt_rq
*rt_rq
)
1353 struct rt_prio_array
*array
= &rt_rq
->active
;
1354 struct sched_rt_entity
*next
= NULL
;
1355 struct list_head
*queue
;
1358 idx
= sched_find_first_bit(array
->bitmap
);
1359 BUG_ON(idx
>= MAX_RT_PRIO
);
1361 queue
= array
->queue
+ idx
;
1362 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1367 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1369 struct sched_rt_entity
*rt_se
;
1370 struct task_struct
*p
;
1371 struct rt_rq
*rt_rq
;
1375 if (!rt_rq
->rt_nr_running
)
1378 if (rt_rq_throttled(rt_rq
))
1382 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1384 rt_rq
= group_rt_rq(rt_se
);
1387 p
= rt_task_of(rt_se
);
1388 p
->se
.exec_start
= rq
->clock_task
;
1393 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1395 struct task_struct
*p
= _pick_next_task_rt(rq
);
1397 /* The running task is never eligible for pushing */
1399 dequeue_pushable_task(rq
, p
);
1403 * We detect this state here so that we can avoid taking the RQ
1404 * lock again later if there is no need to push
1406 rq
->post_schedule
= has_pushable_tasks(rq
);
1412 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1417 * The previous task needs to be made eligible for pushing
1418 * if it is still active
1420 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1421 enqueue_pushable_task(rq
, p
);
1426 /* Only try algorithms three times */
1427 #define RT_MAX_TRIES 3
1429 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1431 if (!task_running(rq
, p
) &&
1432 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1437 /* Return the second highest RT task, NULL otherwise */
1438 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1440 struct task_struct
*next
= NULL
;
1441 struct sched_rt_entity
*rt_se
;
1442 struct rt_prio_array
*array
;
1443 struct rt_rq
*rt_rq
;
1446 for_each_leaf_rt_rq(rt_rq
, rq
) {
1447 array
= &rt_rq
->active
;
1448 idx
= sched_find_first_bit(array
->bitmap
);
1450 if (idx
>= MAX_RT_PRIO
)
1452 if (next
&& next
->prio
<= idx
)
1454 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1455 struct task_struct
*p
;
1457 if (!rt_entity_is_task(rt_se
))
1460 p
= rt_task_of(rt_se
);
1461 if (pick_rt_task(rq
, p
, cpu
)) {
1467 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1475 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1477 static int find_lowest_rq(struct task_struct
*task
)
1479 struct sched_domain
*sd
;
1480 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1481 int this_cpu
= smp_processor_id();
1482 int cpu
= task_cpu(task
);
1484 /* Make sure the mask is initialized first */
1485 if (unlikely(!lowest_mask
))
1488 if (task
->nr_cpus_allowed
== 1)
1489 return -1; /* No other targets possible */
1491 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1492 return -1; /* No targets found */
1495 * At this point we have built a mask of cpus representing the
1496 * lowest priority tasks in the system. Now we want to elect
1497 * the best one based on our affinity and topology.
1499 * We prioritize the last cpu that the task executed on since
1500 * it is most likely cache-hot in that location.
1502 if (cpumask_test_cpu(cpu
, lowest_mask
))
1506 * Otherwise, we consult the sched_domains span maps to figure
1507 * out which cpu is logically closest to our hot cache data.
1509 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1510 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1513 for_each_domain(cpu
, sd
) {
1514 if (sd
->flags
& SD_WAKE_AFFINE
) {
1518 * "this_cpu" is cheaper to preempt than a
1521 if (this_cpu
!= -1 &&
1522 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1527 best_cpu
= cpumask_first_and(lowest_mask
,
1528 sched_domain_span(sd
));
1529 if (best_cpu
< nr_cpu_ids
) {
1538 * And finally, if there were no matches within the domains
1539 * just give the caller *something* to work with from the compatible
1545 cpu
= cpumask_any(lowest_mask
);
1546 if (cpu
< nr_cpu_ids
)
1551 /* Will lock the rq it finds */
1552 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1554 struct rq
*lowest_rq
= NULL
;
1558 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1559 cpu
= find_lowest_rq(task
);
1561 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1564 lowest_rq
= cpu_rq(cpu
);
1566 /* if the prio of this runqueue changed, try again */
1567 if (double_lock_balance(rq
, lowest_rq
)) {
1569 * We had to unlock the run queue. In
1570 * the mean time, task could have
1571 * migrated already or had its affinity changed.
1572 * Also make sure that it wasn't scheduled on its rq.
1574 if (unlikely(task_rq(task
) != rq
||
1575 !cpumask_test_cpu(lowest_rq
->cpu
,
1576 tsk_cpus_allowed(task
)) ||
1577 task_running(rq
, task
) ||
1580 double_unlock_balance(rq
, lowest_rq
);
1586 /* If this rq is still suitable use it. */
1587 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1591 double_unlock_balance(rq
, lowest_rq
);
1598 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1600 struct task_struct
*p
;
1602 if (!has_pushable_tasks(rq
))
1605 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1606 struct task_struct
, pushable_tasks
);
1608 BUG_ON(rq
->cpu
!= task_cpu(p
));
1609 BUG_ON(task_current(rq
, p
));
1610 BUG_ON(p
->nr_cpus_allowed
<= 1);
1613 BUG_ON(!rt_task(p
));
1619 * If the current CPU has more than one RT task, see if the non
1620 * running task can migrate over to a CPU that is running a task
1621 * of lesser priority.
1623 static int push_rt_task(struct rq
*rq
)
1625 struct task_struct
*next_task
;
1626 struct rq
*lowest_rq
;
1629 if (!rq
->rt
.overloaded
)
1632 next_task
= pick_next_pushable_task(rq
);
1637 if (unlikely(next_task
== rq
->curr
)) {
1643 * It's possible that the next_task slipped in of
1644 * higher priority than current. If that's the case
1645 * just reschedule current.
1647 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1648 resched_task(rq
->curr
);
1652 /* We might release rq lock */
1653 get_task_struct(next_task
);
1655 /* find_lock_lowest_rq locks the rq if found */
1656 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1658 struct task_struct
*task
;
1660 * find_lock_lowest_rq releases rq->lock
1661 * so it is possible that next_task has migrated.
1663 * We need to make sure that the task is still on the same
1664 * run-queue and is also still the next task eligible for
1667 task
= pick_next_pushable_task(rq
);
1668 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1670 * The task hasn't migrated, and is still the next
1671 * eligible task, but we failed to find a run-queue
1672 * to push it to. Do not retry in this case, since
1673 * other cpus will pull from us when ready.
1679 /* No more tasks, just exit */
1683 * Something has shifted, try again.
1685 put_task_struct(next_task
);
1690 deactivate_task(rq
, next_task
, 0);
1691 set_task_cpu(next_task
, lowest_rq
->cpu
);
1692 activate_task(lowest_rq
, next_task
, 0);
1695 resched_task(lowest_rq
->curr
);
1697 double_unlock_balance(rq
, lowest_rq
);
1700 put_task_struct(next_task
);
1705 static void push_rt_tasks(struct rq
*rq
)
1707 /* push_rt_task will return true if it moved an RT */
1708 while (push_rt_task(rq
))
1712 static int pull_rt_task(struct rq
*this_rq
)
1714 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1715 struct task_struct
*p
;
1718 if (likely(!rt_overloaded(this_rq
)))
1721 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1722 if (this_cpu
== cpu
)
1725 src_rq
= cpu_rq(cpu
);
1728 * Don't bother taking the src_rq->lock if the next highest
1729 * task is known to be lower-priority than our current task.
1730 * This may look racy, but if this value is about to go
1731 * logically higher, the src_rq will push this task away.
1732 * And if its going logically lower, we do not care
1734 if (src_rq
->rt
.highest_prio
.next
>=
1735 this_rq
->rt
.highest_prio
.curr
)
1739 * We can potentially drop this_rq's lock in
1740 * double_lock_balance, and another CPU could
1743 double_lock_balance(this_rq
, src_rq
);
1746 * Are there still pullable RT tasks?
1748 if (src_rq
->rt
.rt_nr_running
<= 1)
1751 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1754 * Do we have an RT task that preempts
1755 * the to-be-scheduled task?
1757 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1758 WARN_ON(p
== src_rq
->curr
);
1762 * There's a chance that p is higher in priority
1763 * than what's currently running on its cpu.
1764 * This is just that p is wakeing up and hasn't
1765 * had a chance to schedule. We only pull
1766 * p if it is lower in priority than the
1767 * current task on the run queue
1769 if (p
->prio
< src_rq
->curr
->prio
)
1774 deactivate_task(src_rq
, p
, 0);
1775 set_task_cpu(p
, this_cpu
);
1776 activate_task(this_rq
, p
, 0);
1778 * We continue with the search, just in
1779 * case there's an even higher prio task
1780 * in another runqueue. (low likelihood
1785 double_unlock_balance(this_rq
, src_rq
);
1791 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1793 /* Try to pull RT tasks here if we lower this rq's prio */
1794 if (rq
->rt
.highest_prio
.curr
> prev
->prio
)
1798 static void post_schedule_rt(struct rq
*rq
)
1804 * If we are not running and we are not going to reschedule soon, we should
1805 * try to push tasks away now
1807 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1809 if (!task_running(rq
, p
) &&
1810 !test_tsk_need_resched(rq
->curr
) &&
1811 has_pushable_tasks(rq
) &&
1812 p
->nr_cpus_allowed
> 1 &&
1813 rt_task(rq
->curr
) &&
1814 (rq
->curr
->nr_cpus_allowed
< 2 ||
1815 rq
->curr
->prio
<= p
->prio
))
1819 static void set_cpus_allowed_rt(struct task_struct
*p
,
1820 const struct cpumask
*new_mask
)
1825 BUG_ON(!rt_task(p
));
1830 weight
= cpumask_weight(new_mask
);
1833 * Only update if the process changes its state from whether it
1834 * can migrate or not.
1836 if ((p
->nr_cpus_allowed
> 1) == (weight
> 1))
1842 * The process used to be able to migrate OR it can now migrate
1845 if (!task_current(rq
, p
))
1846 dequeue_pushable_task(rq
, p
);
1847 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1848 rq
->rt
.rt_nr_migratory
--;
1850 if (!task_current(rq
, p
))
1851 enqueue_pushable_task(rq
, p
);
1852 rq
->rt
.rt_nr_migratory
++;
1855 update_rt_migration(&rq
->rt
);
1858 /* Assumes rq->lock is held */
1859 static void rq_online_rt(struct rq
*rq
)
1861 if (rq
->rt
.overloaded
)
1862 rt_set_overload(rq
);
1864 __enable_runtime(rq
);
1866 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1869 /* Assumes rq->lock is held */
1870 static void rq_offline_rt(struct rq
*rq
)
1872 if (rq
->rt
.overloaded
)
1873 rt_clear_overload(rq
);
1875 __disable_runtime(rq
);
1877 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1881 * When switch from the rt queue, we bring ourselves to a position
1882 * that we might want to pull RT tasks from other runqueues.
1884 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1887 * If there are other RT tasks then we will reschedule
1888 * and the scheduling of the other RT tasks will handle
1889 * the balancing. But if we are the last RT task
1890 * we may need to handle the pulling of RT tasks
1893 if (!p
->on_rq
|| rq
->rt
.rt_nr_running
)
1896 if (pull_rt_task(rq
))
1897 resched_task(rq
->curr
);
1900 void init_sched_rt_class(void)
1904 for_each_possible_cpu(i
) {
1905 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1906 GFP_KERNEL
, cpu_to_node(i
));
1909 #endif /* CONFIG_SMP */
1912 * When switching a task to RT, we may overload the runqueue
1913 * with RT tasks. In this case we try to push them off to
1916 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1918 int check_resched
= 1;
1921 * If we are already running, then there's nothing
1922 * that needs to be done. But if we are not running
1923 * we may need to preempt the current running task.
1924 * If that current running task is also an RT task
1925 * then see if we can move to another run queue.
1927 if (p
->on_rq
&& rq
->curr
!= p
) {
1929 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1930 /* Don't resched if we changed runqueues */
1933 #endif /* CONFIG_SMP */
1934 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1935 resched_task(rq
->curr
);
1940 * Priority of the task has changed. This may cause
1941 * us to initiate a push or pull.
1944 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1949 if (rq
->curr
== p
) {
1952 * If our priority decreases while running, we
1953 * may need to pull tasks to this runqueue.
1955 if (oldprio
< p
->prio
)
1958 * If there's a higher priority task waiting to run
1959 * then reschedule. Note, the above pull_rt_task
1960 * can release the rq lock and p could migrate.
1961 * Only reschedule if p is still on the same runqueue.
1963 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1966 /* For UP simply resched on drop of prio */
1967 if (oldprio
< p
->prio
)
1969 #endif /* CONFIG_SMP */
1972 * This task is not running, but if it is
1973 * greater than the current running task
1976 if (p
->prio
< rq
->curr
->prio
)
1977 resched_task(rq
->curr
);
1981 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1983 unsigned long soft
, hard
;
1985 /* max may change after cur was read, this will be fixed next tick */
1986 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1987 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1989 if (soft
!= RLIM_INFINITY
) {
1992 if (p
->rt
.watchdog_stamp
!= jiffies
) {
1994 p
->rt
.watchdog_stamp
= jiffies
;
1997 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1998 if (p
->rt
.timeout
> next
)
1999 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
2003 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
2005 struct sched_rt_entity
*rt_se
= &p
->rt
;
2012 * RR tasks need a special form of timeslice management.
2013 * FIFO tasks have no timeslices.
2015 if (p
->policy
!= SCHED_RR
)
2018 if (--p
->rt
.time_slice
)
2021 p
->rt
.time_slice
= sched_rr_timeslice
;
2024 * Requeue to the end of queue if we (and all of our ancestors) are the
2025 * only element on the queue
2027 for_each_sched_rt_entity(rt_se
) {
2028 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
2029 requeue_task_rt(rq
, p
, 0);
2030 set_tsk_need_resched(p
);
2036 static void set_curr_task_rt(struct rq
*rq
)
2038 struct task_struct
*p
= rq
->curr
;
2040 p
->se
.exec_start
= rq
->clock_task
;
2042 /* The running task is never eligible for pushing */
2043 dequeue_pushable_task(rq
, p
);
2046 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
2049 * Time slice is 0 for SCHED_FIFO tasks
2051 if (task
->policy
== SCHED_RR
)
2052 return sched_rr_timeslice
;
2057 const struct sched_class rt_sched_class
= {
2058 .next
= &fair_sched_class
,
2059 .enqueue_task
= enqueue_task_rt
,
2060 .dequeue_task
= dequeue_task_rt
,
2061 .yield_task
= yield_task_rt
,
2063 .check_preempt_curr
= check_preempt_curr_rt
,
2065 .pick_next_task
= pick_next_task_rt
,
2066 .put_prev_task
= put_prev_task_rt
,
2069 .select_task_rq
= select_task_rq_rt
,
2071 .set_cpus_allowed
= set_cpus_allowed_rt
,
2072 .rq_online
= rq_online_rt
,
2073 .rq_offline
= rq_offline_rt
,
2074 .pre_schedule
= pre_schedule_rt
,
2075 .post_schedule
= post_schedule_rt
,
2076 .task_woken
= task_woken_rt
,
2077 .switched_from
= switched_from_rt
,
2080 .set_curr_task
= set_curr_task_rt
,
2081 .task_tick
= task_tick_rt
,
2083 .get_rr_interval
= get_rr_interval_rt
,
2085 .prio_changed
= prio_changed_rt
,
2086 .switched_to
= switched_to_rt
,
2089 #ifdef CONFIG_SCHED_DEBUG
2090 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2092 void print_rt_stats(struct seq_file
*m
, int cpu
)
2095 struct rt_rq
*rt_rq
;
2098 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2099 print_rt_rq(m
, cpu
, rt_rq
);
2102 #endif /* CONFIG_SCHED_DEBUG */