2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
60 static int use_threaded_interrupts
;
61 module_param(use_threaded_interrupts
, int, 0);
63 static bool use_cmb_sqes
= true;
64 module_param(use_cmb_sqes
, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
67 static struct workqueue_struct
*nvme_workq
;
72 static int nvme_reset(struct nvme_dev
*dev
);
73 static void nvme_process_cq(struct nvme_queue
*nvmeq
);
74 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
80 struct nvme_queue
**queues
;
81 struct blk_mq_tag_set tagset
;
82 struct blk_mq_tag_set admin_tagset
;
85 struct dma_pool
*prp_page_pool
;
86 struct dma_pool
*prp_small_pool
;
88 unsigned online_queues
;
93 struct work_struct reset_work
;
94 struct work_struct remove_work
;
95 struct timer_list watchdog_timer
;
96 struct mutex shutdown_lock
;
99 pci_bus_addr_t cmb_bus_addr
;
103 struct nvme_ctrl ctrl
;
104 struct completion ioq_wait
;
107 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
109 return container_of(ctrl
, struct nvme_dev
, ctrl
);
113 * An NVM Express queue. Each device has at least two (one for admin
114 * commands and one for I/O commands).
117 struct device
*q_dmadev
;
118 struct nvme_dev
*dev
;
119 char irqname
[24]; /* nvme4294967295-65535\0 */
121 struct nvme_command
*sq_cmds
;
122 struct nvme_command __iomem
*sq_cmds_io
;
123 volatile struct nvme_completion
*cqes
;
124 struct blk_mq_tags
**tags
;
125 dma_addr_t sq_dma_addr
;
126 dma_addr_t cq_dma_addr
;
138 * The nvme_iod describes the data in an I/O, including the list of PRP
139 * entries. You can't see it in this data structure because C doesn't let
140 * me express that. Use nvme_init_iod to ensure there's enough space
141 * allocated to store the PRP list.
144 struct nvme_queue
*nvmeq
;
146 int npages
; /* In the PRP list. 0 means small pool in use */
147 int nents
; /* Used in scatterlist */
148 int length
; /* Of data, in bytes */
149 dma_addr_t first_dma
;
150 struct scatterlist meta_sg
; /* metadata requires single contiguous buffer */
151 struct scatterlist
*sg
;
152 struct scatterlist inline_sg
[0];
156 * Check we didin't inadvertently grow the command struct
158 static inline void _nvme_check_size(void)
160 BUILD_BUG_ON(sizeof(struct nvme_rw_command
) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_features
) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_format_cmd
) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd
) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_command
) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl
) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ns
) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type
) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_smart_log
) != 512);
175 * Max size of iod being embedded in the request payload
177 #define NVME_INT_PAGES 2
178 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
181 * Will slightly overestimate the number of pages needed. This is OK
182 * as it only leads to a small amount of wasted memory for the lifetime of
185 static int nvme_npages(unsigned size
, struct nvme_dev
*dev
)
187 unsigned nprps
= DIV_ROUND_UP(size
+ dev
->ctrl
.page_size
,
188 dev
->ctrl
.page_size
);
189 return DIV_ROUND_UP(8 * nprps
, PAGE_SIZE
- 8);
192 static unsigned int nvme_iod_alloc_size(struct nvme_dev
*dev
,
193 unsigned int size
, unsigned int nseg
)
195 return sizeof(__le64
*) * nvme_npages(size
, dev
) +
196 sizeof(struct scatterlist
) * nseg
;
199 static unsigned int nvme_cmd_size(struct nvme_dev
*dev
)
201 return sizeof(struct nvme_iod
) +
202 nvme_iod_alloc_size(dev
, NVME_INT_BYTES(dev
), NVME_INT_PAGES
);
205 static int nvmeq_irq(struct nvme_queue
*nvmeq
)
207 return pci_irq_vector(to_pci_dev(nvmeq
->dev
->dev
), nvmeq
->cq_vector
);
210 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
211 unsigned int hctx_idx
)
213 struct nvme_dev
*dev
= data
;
214 struct nvme_queue
*nvmeq
= dev
->queues
[0];
216 WARN_ON(hctx_idx
!= 0);
217 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
218 WARN_ON(nvmeq
->tags
);
220 hctx
->driver_data
= nvmeq
;
221 nvmeq
->tags
= &dev
->admin_tagset
.tags
[0];
225 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
227 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
232 static int nvme_admin_init_request(void *data
, struct request
*req
,
233 unsigned int hctx_idx
, unsigned int rq_idx
,
234 unsigned int numa_node
)
236 struct nvme_dev
*dev
= data
;
237 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
238 struct nvme_queue
*nvmeq
= dev
->queues
[0];
245 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
246 unsigned int hctx_idx
)
248 struct nvme_dev
*dev
= data
;
249 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
252 nvmeq
->tags
= &dev
->tagset
.tags
[hctx_idx
];
254 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
255 hctx
->driver_data
= nvmeq
;
259 static int nvme_init_request(void *data
, struct request
*req
,
260 unsigned int hctx_idx
, unsigned int rq_idx
,
261 unsigned int numa_node
)
263 struct nvme_dev
*dev
= data
;
264 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
265 struct nvme_queue
*nvmeq
= dev
->queues
[hctx_idx
+ 1];
272 static int nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
274 struct nvme_dev
*dev
= set
->driver_data
;
276 return blk_mq_pci_map_queues(set
, to_pci_dev(dev
->dev
));
280 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
281 * @nvmeq: The queue to use
282 * @cmd: The command to send
284 * Safe to use from interrupt context
286 static void __nvme_submit_cmd(struct nvme_queue
*nvmeq
,
287 struct nvme_command
*cmd
)
289 u16 tail
= nvmeq
->sq_tail
;
291 if (nvmeq
->sq_cmds_io
)
292 memcpy_toio(&nvmeq
->sq_cmds_io
[tail
], cmd
, sizeof(*cmd
));
294 memcpy(&nvmeq
->sq_cmds
[tail
], cmd
, sizeof(*cmd
));
296 if (++tail
== nvmeq
->q_depth
)
298 writel(tail
, nvmeq
->q_db
);
299 nvmeq
->sq_tail
= tail
;
302 static __le64
**iod_list(struct request
*req
)
304 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
305 return (__le64
**)(iod
->sg
+ req
->nr_phys_segments
);
308 static int nvme_init_iod(struct request
*rq
, unsigned size
,
309 struct nvme_dev
*dev
)
311 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(rq
);
312 int nseg
= rq
->nr_phys_segments
;
314 if (nseg
> NVME_INT_PAGES
|| size
> NVME_INT_BYTES(dev
)) {
315 iod
->sg
= kmalloc(nvme_iod_alloc_size(dev
, size
, nseg
), GFP_ATOMIC
);
317 return BLK_MQ_RQ_QUEUE_BUSY
;
319 iod
->sg
= iod
->inline_sg
;
327 if (!(rq
->cmd_flags
& REQ_DONTPREP
)) {
329 rq
->cmd_flags
|= REQ_DONTPREP
;
334 static void nvme_free_iod(struct nvme_dev
*dev
, struct request
*req
)
336 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
337 const int last_prp
= dev
->ctrl
.page_size
/ 8 - 1;
339 __le64
**list
= iod_list(req
);
340 dma_addr_t prp_dma
= iod
->first_dma
;
342 nvme_cleanup_cmd(req
);
344 if (iod
->npages
== 0)
345 dma_pool_free(dev
->prp_small_pool
, list
[0], prp_dma
);
346 for (i
= 0; i
< iod
->npages
; i
++) {
347 __le64
*prp_list
= list
[i
];
348 dma_addr_t next_prp_dma
= le64_to_cpu(prp_list
[last_prp
]);
349 dma_pool_free(dev
->prp_page_pool
, prp_list
, prp_dma
);
350 prp_dma
= next_prp_dma
;
353 if (iod
->sg
!= iod
->inline_sg
)
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
360 if (be32_to_cpu(pi
->ref_tag
) == v
)
361 pi
->ref_tag
= cpu_to_be32(p
);
364 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
366 if (be32_to_cpu(pi
->ref_tag
) == p
)
367 pi
->ref_tag
= cpu_to_be32(v
);
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
380 static void nvme_dif_remap(struct request
*req
,
381 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
383 struct nvme_ns
*ns
= req
->rq_disk
->private_data
;
384 struct bio_integrity_payload
*bip
;
385 struct t10_pi_tuple
*pi
;
387 u32 i
, nlb
, ts
, phys
, virt
;
389 if (!ns
->pi_type
|| ns
->pi_type
== NVME_NS_DPS_PI_TYPE3
)
392 bip
= bio_integrity(req
->bio
);
396 pmap
= kmap_atomic(bip
->bip_vec
->bv_page
) + bip
->bip_vec
->bv_offset
;
399 virt
= bip_get_seed(bip
);
400 phys
= nvme_block_nr(ns
, blk_rq_pos(req
));
401 nlb
= (blk_rq_bytes(req
) >> ns
->lba_shift
);
402 ts
= ns
->disk
->queue
->integrity
.tuple_size
;
404 for (i
= 0; i
< nlb
; i
++, virt
++, phys
++) {
405 pi
= (struct t10_pi_tuple
*)p
;
406 dif_swap(phys
, virt
, pi
);
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request
*req
,
413 void (*dif_swap
)(u32 p
, u32 v
, struct t10_pi_tuple
*pi
))
416 static void nvme_dif_prep(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
419 static void nvme_dif_complete(u32 p
, u32 v
, struct t10_pi_tuple
*pi
)
424 static bool nvme_setup_prps(struct nvme_dev
*dev
, struct request
*req
,
427 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
428 struct dma_pool
*pool
;
429 int length
= total_len
;
430 struct scatterlist
*sg
= iod
->sg
;
431 int dma_len
= sg_dma_len(sg
);
432 u64 dma_addr
= sg_dma_address(sg
);
433 u32 page_size
= dev
->ctrl
.page_size
;
434 int offset
= dma_addr
& (page_size
- 1);
436 __le64
**list
= iod_list(req
);
440 length
-= (page_size
- offset
);
444 dma_len
-= (page_size
- offset
);
446 dma_addr
+= (page_size
- offset
);
449 dma_addr
= sg_dma_address(sg
);
450 dma_len
= sg_dma_len(sg
);
453 if (length
<= page_size
) {
454 iod
->first_dma
= dma_addr
;
458 nprps
= DIV_ROUND_UP(length
, page_size
);
459 if (nprps
<= (256 / 8)) {
460 pool
= dev
->prp_small_pool
;
463 pool
= dev
->prp_page_pool
;
467 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
469 iod
->first_dma
= dma_addr
;
474 iod
->first_dma
= prp_dma
;
477 if (i
== page_size
>> 3) {
478 __le64
*old_prp_list
= prp_list
;
479 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
482 list
[iod
->npages
++] = prp_list
;
483 prp_list
[0] = old_prp_list
[i
- 1];
484 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
487 prp_list
[i
++] = cpu_to_le64(dma_addr
);
488 dma_len
-= page_size
;
489 dma_addr
+= page_size
;
497 dma_addr
= sg_dma_address(sg
);
498 dma_len
= sg_dma_len(sg
);
504 static int nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
505 unsigned size
, struct nvme_command
*cmnd
)
507 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
508 struct request_queue
*q
= req
->q
;
509 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
510 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
511 int ret
= BLK_MQ_RQ_QUEUE_ERROR
;
513 sg_init_table(iod
->sg
, req
->nr_phys_segments
);
514 iod
->nents
= blk_rq_map_sg(q
, req
, iod
->sg
);
518 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
519 if (!dma_map_sg_attrs(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
,
523 if (!nvme_setup_prps(dev
, req
, size
))
526 ret
= BLK_MQ_RQ_QUEUE_ERROR
;
527 if (blk_integrity_rq(req
)) {
528 if (blk_rq_count_integrity_sg(q
, req
->bio
) != 1)
531 sg_init_table(&iod
->meta_sg
, 1);
532 if (blk_rq_map_integrity_sg(q
, req
->bio
, &iod
->meta_sg
) != 1)
535 if (rq_data_dir(req
))
536 nvme_dif_remap(req
, nvme_dif_prep
);
538 if (!dma_map_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
))
542 cmnd
->rw
.dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sg
));
543 cmnd
->rw
.dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
544 if (blk_integrity_rq(req
))
545 cmnd
->rw
.metadata
= cpu_to_le64(sg_dma_address(&iod
->meta_sg
));
546 return BLK_MQ_RQ_QUEUE_OK
;
549 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
554 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
556 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
557 enum dma_data_direction dma_dir
= rq_data_dir(req
) ?
558 DMA_TO_DEVICE
: DMA_FROM_DEVICE
;
561 dma_unmap_sg(dev
->dev
, iod
->sg
, iod
->nents
, dma_dir
);
562 if (blk_integrity_rq(req
)) {
563 if (!rq_data_dir(req
))
564 nvme_dif_remap(req
, nvme_dif_complete
);
565 dma_unmap_sg(dev
->dev
, &iod
->meta_sg
, 1, dma_dir
);
569 nvme_free_iod(dev
, req
);
573 * NOTE: ns is NULL when called on the admin queue.
575 static int nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
576 const struct blk_mq_queue_data
*bd
)
578 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
579 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
580 struct nvme_dev
*dev
= nvmeq
->dev
;
581 struct request
*req
= bd
->rq
;
582 struct nvme_command cmnd
;
584 int ret
= BLK_MQ_RQ_QUEUE_OK
;
587 * If formated with metadata, require the block layer provide a buffer
588 * unless this namespace is formated such that the metadata can be
589 * stripped/generated by the controller with PRACT=1.
591 if (ns
&& ns
->ms
&& !blk_integrity_rq(req
)) {
592 if (!(ns
->pi_type
&& ns
->ms
== 8) &&
593 req
->cmd_type
!= REQ_TYPE_DRV_PRIV
) {
594 blk_mq_end_request(req
, -EFAULT
);
595 return BLK_MQ_RQ_QUEUE_OK
;
599 map_len
= nvme_map_len(req
);
600 ret
= nvme_init_iod(req
, map_len
, dev
);
604 ret
= nvme_setup_cmd(ns
, req
, &cmnd
);
608 if (req
->nr_phys_segments
)
609 ret
= nvme_map_data(dev
, req
, map_len
, &cmnd
);
614 cmnd
.common
.command_id
= req
->tag
;
615 blk_mq_start_request(req
);
617 spin_lock_irq(&nvmeq
->q_lock
);
618 if (unlikely(nvmeq
->cq_vector
< 0)) {
619 if (ns
&& !test_bit(NVME_NS_DEAD
, &ns
->flags
))
620 ret
= BLK_MQ_RQ_QUEUE_BUSY
;
622 ret
= BLK_MQ_RQ_QUEUE_ERROR
;
623 spin_unlock_irq(&nvmeq
->q_lock
);
626 __nvme_submit_cmd(nvmeq
, &cmnd
);
627 nvme_process_cq(nvmeq
);
628 spin_unlock_irq(&nvmeq
->q_lock
);
629 return BLK_MQ_RQ_QUEUE_OK
;
631 nvme_free_iod(dev
, req
);
635 static void nvme_complete_rq(struct request
*req
)
637 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
638 struct nvme_dev
*dev
= iod
->nvmeq
->dev
;
641 nvme_unmap_data(dev
, req
);
643 if (unlikely(req
->errors
)) {
644 if (nvme_req_needs_retry(req
, req
->errors
)) {
646 nvme_requeue_req(req
);
650 if (req
->cmd_type
== REQ_TYPE_DRV_PRIV
)
653 error
= nvme_error_status(req
->errors
);
656 if (unlikely(iod
->aborted
)) {
657 dev_warn(dev
->ctrl
.device
,
658 "completing aborted command with status: %04x\n",
662 blk_mq_end_request(req
, error
);
665 /* We read the CQE phase first to check if the rest of the entry is valid */
666 static inline bool nvme_cqe_valid(struct nvme_queue
*nvmeq
, u16 head
,
669 return (le16_to_cpu(nvmeq
->cqes
[head
].status
) & 1) == phase
;
672 static void __nvme_process_cq(struct nvme_queue
*nvmeq
, unsigned int *tag
)
676 head
= nvmeq
->cq_head
;
677 phase
= nvmeq
->cq_phase
;
679 while (nvme_cqe_valid(nvmeq
, head
, phase
)) {
680 struct nvme_completion cqe
= nvmeq
->cqes
[head
];
683 if (++head
== nvmeq
->q_depth
) {
688 if (tag
&& *tag
== cqe
.command_id
)
691 if (unlikely(cqe
.command_id
>= nvmeq
->q_depth
)) {
692 dev_warn(nvmeq
->dev
->ctrl
.device
,
693 "invalid id %d completed on queue %d\n",
694 cqe
.command_id
, le16_to_cpu(cqe
.sq_id
));
699 * AEN requests are special as they don't time out and can
700 * survive any kind of queue freeze and often don't respond to
701 * aborts. We don't even bother to allocate a struct request
702 * for them but rather special case them here.
704 if (unlikely(nvmeq
->qid
== 0 &&
705 cqe
.command_id
>= NVME_AQ_BLKMQ_DEPTH
)) {
706 nvme_complete_async_event(&nvmeq
->dev
->ctrl
, &cqe
);
710 req
= blk_mq_tag_to_rq(*nvmeq
->tags
, cqe
.command_id
);
711 if (req
->cmd_type
== REQ_TYPE_DRV_PRIV
&& req
->special
)
712 memcpy(req
->special
, &cqe
, sizeof(cqe
));
713 blk_mq_complete_request(req
, le16_to_cpu(cqe
.status
) >> 1);
717 /* If the controller ignores the cq head doorbell and continuously
718 * writes to the queue, it is theoretically possible to wrap around
719 * the queue twice and mistakenly return IRQ_NONE. Linux only
720 * requires that 0.1% of your interrupts are handled, so this isn't
723 if (head
== nvmeq
->cq_head
&& phase
== nvmeq
->cq_phase
)
726 if (likely(nvmeq
->cq_vector
>= 0))
727 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
728 nvmeq
->cq_head
= head
;
729 nvmeq
->cq_phase
= phase
;
734 static void nvme_process_cq(struct nvme_queue
*nvmeq
)
736 __nvme_process_cq(nvmeq
, NULL
);
739 static irqreturn_t
nvme_irq(int irq
, void *data
)
742 struct nvme_queue
*nvmeq
= data
;
743 spin_lock(&nvmeq
->q_lock
);
744 nvme_process_cq(nvmeq
);
745 result
= nvmeq
->cqe_seen
? IRQ_HANDLED
: IRQ_NONE
;
747 spin_unlock(&nvmeq
->q_lock
);
751 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
753 struct nvme_queue
*nvmeq
= data
;
754 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
))
755 return IRQ_WAKE_THREAD
;
759 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
, unsigned int tag
)
761 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
763 if (nvme_cqe_valid(nvmeq
, nvmeq
->cq_head
, nvmeq
->cq_phase
)) {
764 spin_lock_irq(&nvmeq
->q_lock
);
765 __nvme_process_cq(nvmeq
, &tag
);
766 spin_unlock_irq(&nvmeq
->q_lock
);
775 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
, int aer_idx
)
777 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
778 struct nvme_queue
*nvmeq
= dev
->queues
[0];
779 struct nvme_command c
;
781 memset(&c
, 0, sizeof(c
));
782 c
.common
.opcode
= nvme_admin_async_event
;
783 c
.common
.command_id
= NVME_AQ_BLKMQ_DEPTH
+ aer_idx
;
785 spin_lock_irq(&nvmeq
->q_lock
);
786 __nvme_submit_cmd(nvmeq
, &c
);
787 spin_unlock_irq(&nvmeq
->q_lock
);
790 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
792 struct nvme_command c
;
794 memset(&c
, 0, sizeof(c
));
795 c
.delete_queue
.opcode
= opcode
;
796 c
.delete_queue
.qid
= cpu_to_le16(id
);
798 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
801 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
802 struct nvme_queue
*nvmeq
)
804 struct nvme_command c
;
805 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_CQ_IRQ_ENABLED
;
808 * Note: we (ab)use the fact the the prp fields survive if no data
809 * is attached to the request.
811 memset(&c
, 0, sizeof(c
));
812 c
.create_cq
.opcode
= nvme_admin_create_cq
;
813 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
814 c
.create_cq
.cqid
= cpu_to_le16(qid
);
815 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
816 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
817 c
.create_cq
.irq_vector
= cpu_to_le16(nvmeq
->cq_vector
);
819 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
822 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
823 struct nvme_queue
*nvmeq
)
825 struct nvme_command c
;
826 int flags
= NVME_QUEUE_PHYS_CONTIG
| NVME_SQ_PRIO_MEDIUM
;
829 * Note: we (ab)use the fact the the prp fields survive if no data
830 * is attached to the request.
832 memset(&c
, 0, sizeof(c
));
833 c
.create_sq
.opcode
= nvme_admin_create_sq
;
834 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
835 c
.create_sq
.sqid
= cpu_to_le16(qid
);
836 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
837 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
838 c
.create_sq
.cqid
= cpu_to_le16(qid
);
840 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
843 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
845 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
848 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
850 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
853 static void abort_endio(struct request
*req
, int error
)
855 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
856 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
857 u16 status
= req
->errors
;
859 dev_warn(nvmeq
->dev
->ctrl
.device
, "Abort status: 0x%x", status
);
860 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
861 blk_mq_free_request(req
);
864 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
, bool reserved
)
866 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
867 struct nvme_queue
*nvmeq
= iod
->nvmeq
;
868 struct nvme_dev
*dev
= nvmeq
->dev
;
869 struct request
*abort_req
;
870 struct nvme_command cmd
;
873 * Shutdown immediately if controller times out while starting. The
874 * reset work will see the pci device disabled when it gets the forced
875 * cancellation error. All outstanding requests are completed on
876 * shutdown, so we return BLK_EH_HANDLED.
878 if (dev
->ctrl
.state
== NVME_CTRL_RESETTING
) {
879 dev_warn(dev
->ctrl
.device
,
880 "I/O %d QID %d timeout, disable controller\n",
881 req
->tag
, nvmeq
->qid
);
882 nvme_dev_disable(dev
, false);
883 req
->errors
= NVME_SC_CANCELLED
;
884 return BLK_EH_HANDLED
;
888 * Shutdown the controller immediately and schedule a reset if the
889 * command was already aborted once before and still hasn't been
890 * returned to the driver, or if this is the admin queue.
892 if (!nvmeq
->qid
|| iod
->aborted
) {
893 dev_warn(dev
->ctrl
.device
,
894 "I/O %d QID %d timeout, reset controller\n",
895 req
->tag
, nvmeq
->qid
);
896 nvme_dev_disable(dev
, false);
900 * Mark the request as handled, since the inline shutdown
901 * forces all outstanding requests to complete.
903 req
->errors
= NVME_SC_CANCELLED
;
904 return BLK_EH_HANDLED
;
909 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
910 atomic_inc(&dev
->ctrl
.abort_limit
);
911 return BLK_EH_RESET_TIMER
;
914 memset(&cmd
, 0, sizeof(cmd
));
915 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
916 cmd
.abort
.cid
= req
->tag
;
917 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
919 dev_warn(nvmeq
->dev
->ctrl
.device
,
920 "I/O %d QID %d timeout, aborting\n",
921 req
->tag
, nvmeq
->qid
);
923 abort_req
= nvme_alloc_request(dev
->ctrl
.admin_q
, &cmd
,
924 BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
925 if (IS_ERR(abort_req
)) {
926 atomic_inc(&dev
->ctrl
.abort_limit
);
927 return BLK_EH_RESET_TIMER
;
930 abort_req
->timeout
= ADMIN_TIMEOUT
;
931 abort_req
->end_io_data
= NULL
;
932 blk_execute_rq_nowait(abort_req
->q
, NULL
, abort_req
, 0, abort_endio
);
935 * The aborted req will be completed on receiving the abort req.
936 * We enable the timer again. If hit twice, it'll cause a device reset,
937 * as the device then is in a faulty state.
939 return BLK_EH_RESET_TIMER
;
942 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
944 dma_free_coherent(nvmeq
->q_dmadev
, CQ_SIZE(nvmeq
->q_depth
),
945 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
947 dma_free_coherent(nvmeq
->q_dmadev
, SQ_SIZE(nvmeq
->q_depth
),
948 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
952 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
956 for (i
= dev
->queue_count
- 1; i
>= lowest
; i
--) {
957 struct nvme_queue
*nvmeq
= dev
->queues
[i
];
959 dev
->queues
[i
] = NULL
;
960 nvme_free_queue(nvmeq
);
965 * nvme_suspend_queue - put queue into suspended state
966 * @nvmeq - queue to suspend
968 static int nvme_suspend_queue(struct nvme_queue
*nvmeq
)
972 spin_lock_irq(&nvmeq
->q_lock
);
973 if (nvmeq
->cq_vector
== -1) {
974 spin_unlock_irq(&nvmeq
->q_lock
);
977 vector
= nvmeq_irq(nvmeq
);
978 nvmeq
->dev
->online_queues
--;
979 nvmeq
->cq_vector
= -1;
980 spin_unlock_irq(&nvmeq
->q_lock
);
982 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
983 blk_mq_stop_hw_queues(nvmeq
->dev
->ctrl
.admin_q
);
985 free_irq(vector
, nvmeq
);
990 static void nvme_disable_admin_queue(struct nvme_dev
*dev
, bool shutdown
)
992 struct nvme_queue
*nvmeq
= dev
->queues
[0];
996 if (nvme_suspend_queue(nvmeq
))
1000 nvme_shutdown_ctrl(&dev
->ctrl
);
1002 nvme_disable_ctrl(&dev
->ctrl
, lo_hi_readq(
1003 dev
->bar
+ NVME_REG_CAP
));
1005 spin_lock_irq(&nvmeq
->q_lock
);
1006 nvme_process_cq(nvmeq
);
1007 spin_unlock_irq(&nvmeq
->q_lock
);
1010 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1013 int q_depth
= dev
->q_depth
;
1014 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1015 dev
->ctrl
.page_size
);
1017 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1018 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1019 mem_per_q
= round_down(mem_per_q
, dev
->ctrl
.page_size
);
1020 q_depth
= div_u64(mem_per_q
, entry_size
);
1023 * Ensure the reduced q_depth is above some threshold where it
1024 * would be better to map queues in system memory with the
1034 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1038 /* CMB SQEs will be mapped before creation */
1039 if (qid
&& dev
->cmb
&& use_cmb_sqes
&& NVME_CMB_SQS(dev
->cmbsz
))
1042 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(depth
),
1043 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1044 if (!nvmeq
->sq_cmds
)
1050 static struct nvme_queue
*nvme_alloc_queue(struct nvme_dev
*dev
, int qid
,
1053 struct nvme_queue
*nvmeq
= kzalloc(sizeof(*nvmeq
), GFP_KERNEL
);
1057 nvmeq
->cqes
= dma_zalloc_coherent(dev
->dev
, CQ_SIZE(depth
),
1058 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1062 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
, depth
))
1065 nvmeq
->q_dmadev
= dev
->dev
;
1067 snprintf(nvmeq
->irqname
, sizeof(nvmeq
->irqname
), "nvme%dq%d",
1068 dev
->ctrl
.instance
, qid
);
1069 spin_lock_init(&nvmeq
->q_lock
);
1071 nvmeq
->cq_phase
= 1;
1072 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1073 nvmeq
->q_depth
= depth
;
1075 nvmeq
->cq_vector
= -1;
1076 dev
->queues
[qid
] = nvmeq
;
1082 dma_free_coherent(dev
->dev
, CQ_SIZE(depth
), (void *)nvmeq
->cqes
,
1083 nvmeq
->cq_dma_addr
);
1089 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1091 if (use_threaded_interrupts
)
1092 return request_threaded_irq(nvmeq_irq(nvmeq
), nvme_irq_check
,
1093 nvme_irq
, IRQF_SHARED
, nvmeq
->irqname
, nvmeq
);
1095 return request_irq(nvmeq_irq(nvmeq
), nvme_irq
, IRQF_SHARED
,
1096 nvmeq
->irqname
, nvmeq
);
1099 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1101 struct nvme_dev
*dev
= nvmeq
->dev
;
1103 spin_lock_irq(&nvmeq
->q_lock
);
1106 nvmeq
->cq_phase
= 1;
1107 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1108 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
->q_depth
));
1109 dev
->online_queues
++;
1110 spin_unlock_irq(&nvmeq
->q_lock
);
1113 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
)
1115 struct nvme_dev
*dev
= nvmeq
->dev
;
1118 if (qid
&& dev
->cmb
&& use_cmb_sqes
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1119 unsigned offset
= (qid
- 1) * roundup(SQ_SIZE(nvmeq
->q_depth
),
1120 dev
->ctrl
.page_size
);
1121 nvmeq
->sq_dma_addr
= dev
->cmb_bus_addr
+ offset
;
1122 nvmeq
->sq_cmds_io
= dev
->cmb
+ offset
;
1125 nvmeq
->cq_vector
= qid
- 1;
1126 result
= adapter_alloc_cq(dev
, qid
, nvmeq
);
1128 goto release_vector
;
1130 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1134 nvme_init_queue(nvmeq
, qid
);
1135 result
= queue_request_irq(nvmeq
);
1142 dev
->online_queues
--;
1143 adapter_delete_sq(dev
, qid
);
1145 adapter_delete_cq(dev
, qid
);
1147 nvmeq
->cq_vector
= -1;
1151 static struct blk_mq_ops nvme_mq_admin_ops
= {
1152 .queue_rq
= nvme_queue_rq
,
1153 .complete
= nvme_complete_rq
,
1154 .init_hctx
= nvme_admin_init_hctx
,
1155 .exit_hctx
= nvme_admin_exit_hctx
,
1156 .init_request
= nvme_admin_init_request
,
1157 .timeout
= nvme_timeout
,
1160 static struct blk_mq_ops nvme_mq_ops
= {
1161 .queue_rq
= nvme_queue_rq
,
1162 .complete
= nvme_complete_rq
,
1163 .init_hctx
= nvme_init_hctx
,
1164 .init_request
= nvme_init_request
,
1165 .map_queues
= nvme_pci_map_queues
,
1166 .timeout
= nvme_timeout
,
1170 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1172 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1174 * If the controller was reset during removal, it's possible
1175 * user requests may be waiting on a stopped queue. Start the
1176 * queue to flush these to completion.
1178 blk_mq_start_stopped_hw_queues(dev
->ctrl
.admin_q
, true);
1179 blk_cleanup_queue(dev
->ctrl
.admin_q
);
1180 blk_mq_free_tag_set(&dev
->admin_tagset
);
1184 static int nvme_alloc_admin_tags(struct nvme_dev
*dev
)
1186 if (!dev
->ctrl
.admin_q
) {
1187 dev
->admin_tagset
.ops
= &nvme_mq_admin_ops
;
1188 dev
->admin_tagset
.nr_hw_queues
= 1;
1191 * Subtract one to leave an empty queue entry for 'Full Queue'
1192 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1194 dev
->admin_tagset
.queue_depth
= NVME_AQ_BLKMQ_DEPTH
- 1;
1195 dev
->admin_tagset
.timeout
= ADMIN_TIMEOUT
;
1196 dev
->admin_tagset
.numa_node
= dev_to_node(dev
->dev
);
1197 dev
->admin_tagset
.cmd_size
= nvme_cmd_size(dev
);
1198 dev
->admin_tagset
.driver_data
= dev
;
1200 if (blk_mq_alloc_tag_set(&dev
->admin_tagset
))
1203 dev
->ctrl
.admin_q
= blk_mq_init_queue(&dev
->admin_tagset
);
1204 if (IS_ERR(dev
->ctrl
.admin_q
)) {
1205 blk_mq_free_tag_set(&dev
->admin_tagset
);
1208 if (!blk_get_queue(dev
->ctrl
.admin_q
)) {
1209 nvme_dev_remove_admin(dev
);
1210 dev
->ctrl
.admin_q
= NULL
;
1214 blk_mq_start_stopped_hw_queues(dev
->ctrl
.admin_q
, true);
1219 static int nvme_configure_admin_queue(struct nvme_dev
*dev
)
1223 u64 cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
1224 struct nvme_queue
*nvmeq
;
1226 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1227 NVME_CAP_NSSRC(cap
) : 0;
1229 if (dev
->subsystem
&&
1230 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1231 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1233 result
= nvme_disable_ctrl(&dev
->ctrl
, cap
);
1237 nvmeq
= dev
->queues
[0];
1239 nvmeq
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1244 aqa
= nvmeq
->q_depth
- 1;
1247 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1248 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1249 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1251 result
= nvme_enable_ctrl(&dev
->ctrl
, cap
);
1255 nvmeq
->cq_vector
= 0;
1256 nvme_init_queue(nvmeq
, 0);
1257 result
= queue_request_irq(nvmeq
);
1259 nvmeq
->cq_vector
= -1;
1266 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1269 /* If true, indicates loss of adapter communication, possibly by a
1270 * NVMe Subsystem reset.
1272 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1274 /* If there is a reset ongoing, we shouldn't reset again. */
1275 if (dev
->ctrl
.state
== NVME_CTRL_RESETTING
)
1278 /* We shouldn't reset unless the controller is on fatal error state
1279 * _or_ if we lost the communication with it.
1281 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1284 /* If PCI error recovery process is happening, we cannot reset or
1285 * the recovery mechanism will surely fail.
1287 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1293 static void nvme_watchdog_timer(unsigned long data
)
1295 struct nvme_dev
*dev
= (struct nvme_dev
*)data
;
1296 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1298 /* Skip controllers under certain specific conditions. */
1299 if (nvme_should_reset(dev
, csts
)) {
1300 if (!nvme_reset(dev
))
1302 "Failed status: 0x%x, reset controller.\n",
1307 mod_timer(&dev
->watchdog_timer
, round_jiffies(jiffies
+ HZ
));
1310 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1315 for (i
= dev
->queue_count
; i
<= dev
->max_qid
; i
++) {
1316 if (!nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1322 max
= min(dev
->max_qid
, dev
->queue_count
- 1);
1323 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1324 ret
= nvme_create_queue(dev
->queues
[i
], i
);
1330 * Ignore failing Create SQ/CQ commands, we can continue with less
1331 * than the desired aount of queues, and even a controller without
1332 * I/O queues an still be used to issue admin commands. This might
1333 * be useful to upgrade a buggy firmware for example.
1335 return ret
>= 0 ? 0 : ret
;
1338 static ssize_t
nvme_cmb_show(struct device
*dev
,
1339 struct device_attribute
*attr
,
1342 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
1344 return snprintf(buf
, PAGE_SIZE
, "cmbloc : x%08x\ncmbsz : x%08x\n",
1345 ndev
->cmbloc
, ndev
->cmbsz
);
1347 static DEVICE_ATTR(cmb
, S_IRUGO
, nvme_cmb_show
, NULL
);
1349 static void __iomem
*nvme_map_cmb(struct nvme_dev
*dev
)
1351 u64 szu
, size
, offset
;
1352 resource_size_t bar_size
;
1353 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1357 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1358 if (!(NVME_CMB_SZ(dev
->cmbsz
)))
1360 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1365 szu
= (u64
)1 << (12 + 4 * NVME_CMB_SZU(dev
->cmbsz
));
1366 size
= szu
* NVME_CMB_SZ(dev
->cmbsz
);
1367 offset
= szu
* NVME_CMB_OFST(dev
->cmbloc
);
1368 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1369 bar_size
= pci_resource_len(pdev
, bar
);
1371 if (offset
> bar_size
)
1375 * Controllers may support a CMB size larger than their BAR,
1376 * for example, due to being behind a bridge. Reduce the CMB to
1377 * the reported size of the BAR
1379 if (size
> bar_size
- offset
)
1380 size
= bar_size
- offset
;
1382 cmb
= ioremap_wc(pci_resource_start(pdev
, bar
) + offset
, size
);
1386 dev
->cmb_bus_addr
= pci_bus_address(pdev
, bar
) + offset
;
1387 dev
->cmb_size
= size
;
1391 static inline void nvme_release_cmb(struct nvme_dev
*dev
)
1396 sysfs_remove_file_from_group(&dev
->ctrl
.device
->kobj
,
1397 &dev_attr_cmb
.attr
, NULL
);
1402 static size_t db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1404 return 4096 + ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1407 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
1409 struct nvme_queue
*adminq
= dev
->queues
[0];
1410 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1411 int result
, nr_io_queues
, size
;
1413 nr_io_queues
= num_online_cpus();
1414 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
1418 if (nr_io_queues
== 0)
1421 if (dev
->cmb
&& NVME_CMB_SQS(dev
->cmbsz
)) {
1422 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
1423 sizeof(struct nvme_command
));
1425 dev
->q_depth
= result
;
1427 nvme_release_cmb(dev
);
1430 size
= db_bar_size(dev
, nr_io_queues
);
1434 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1437 if (!--nr_io_queues
)
1439 size
= db_bar_size(dev
, nr_io_queues
);
1441 dev
->dbs
= dev
->bar
+ 4096;
1442 adminq
->q_db
= dev
->dbs
;
1445 /* Deregister the admin queue's interrupt */
1446 free_irq(pci_irq_vector(pdev
, 0), adminq
);
1449 * If we enable msix early due to not intx, disable it again before
1450 * setting up the full range we need.
1452 pci_free_irq_vectors(pdev
);
1453 nr_io_queues
= pci_alloc_irq_vectors(pdev
, 1, nr_io_queues
,
1454 PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
);
1455 if (nr_io_queues
<= 0)
1457 dev
->max_qid
= nr_io_queues
;
1460 * Should investigate if there's a performance win from allocating
1461 * more queues than interrupt vectors; it might allow the submission
1462 * path to scale better, even if the receive path is limited by the
1463 * number of interrupts.
1466 result
= queue_request_irq(adminq
);
1468 adminq
->cq_vector
= -1;
1471 return nvme_create_io_queues(dev
);
1474 static void nvme_del_queue_end(struct request
*req
, int error
)
1476 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1478 blk_mq_free_request(req
);
1479 complete(&nvmeq
->dev
->ioq_wait
);
1482 static void nvme_del_cq_end(struct request
*req
, int error
)
1484 struct nvme_queue
*nvmeq
= req
->end_io_data
;
1487 unsigned long flags
;
1490 * We might be called with the AQ q_lock held
1491 * and the I/O queue q_lock should always
1492 * nest inside the AQ one.
1494 spin_lock_irqsave_nested(&nvmeq
->q_lock
, flags
,
1495 SINGLE_DEPTH_NESTING
);
1496 nvme_process_cq(nvmeq
);
1497 spin_unlock_irqrestore(&nvmeq
->q_lock
, flags
);
1500 nvme_del_queue_end(req
, error
);
1503 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
1505 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
1506 struct request
*req
;
1507 struct nvme_command cmd
;
1509 memset(&cmd
, 0, sizeof(cmd
));
1510 cmd
.delete_queue
.opcode
= opcode
;
1511 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
1513 req
= nvme_alloc_request(q
, &cmd
, BLK_MQ_REQ_NOWAIT
, NVME_QID_ANY
);
1515 return PTR_ERR(req
);
1517 req
->timeout
= ADMIN_TIMEOUT
;
1518 req
->end_io_data
= nvmeq
;
1520 blk_execute_rq_nowait(q
, NULL
, req
, false,
1521 opcode
== nvme_admin_delete_cq
?
1522 nvme_del_cq_end
: nvme_del_queue_end
);
1526 static void nvme_disable_io_queues(struct nvme_dev
*dev
, int queues
)
1529 unsigned long timeout
;
1530 u8 opcode
= nvme_admin_delete_sq
;
1532 for (pass
= 0; pass
< 2; pass
++) {
1533 int sent
= 0, i
= queues
;
1535 reinit_completion(&dev
->ioq_wait
);
1537 timeout
= ADMIN_TIMEOUT
;
1538 for (; i
> 0; i
--, sent
++)
1539 if (nvme_delete_queue(dev
->queues
[i
], opcode
))
1543 timeout
= wait_for_completion_io_timeout(&dev
->ioq_wait
, timeout
);
1549 opcode
= nvme_admin_delete_cq
;
1554 * Return: error value if an error occurred setting up the queues or calling
1555 * Identify Device. 0 if these succeeded, even if adding some of the
1556 * namespaces failed. At the moment, these failures are silent. TBD which
1557 * failures should be reported.
1559 static int nvme_dev_add(struct nvme_dev
*dev
)
1561 if (!dev
->ctrl
.tagset
) {
1562 dev
->tagset
.ops
= &nvme_mq_ops
;
1563 dev
->tagset
.nr_hw_queues
= dev
->online_queues
- 1;
1564 dev
->tagset
.timeout
= NVME_IO_TIMEOUT
;
1565 dev
->tagset
.numa_node
= dev_to_node(dev
->dev
);
1566 dev
->tagset
.queue_depth
=
1567 min_t(int, dev
->q_depth
, BLK_MQ_MAX_DEPTH
) - 1;
1568 dev
->tagset
.cmd_size
= nvme_cmd_size(dev
);
1569 dev
->tagset
.flags
= BLK_MQ_F_SHOULD_MERGE
;
1570 dev
->tagset
.driver_data
= dev
;
1572 if (blk_mq_alloc_tag_set(&dev
->tagset
))
1574 dev
->ctrl
.tagset
= &dev
->tagset
;
1576 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
1578 /* Free previously allocated queues that are no longer usable */
1579 nvme_free_queues(dev
, dev
->online_queues
);
1585 static int nvme_pci_enable(struct nvme_dev
*dev
)
1588 int result
= -ENOMEM
;
1589 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1591 if (pci_enable_device_mem(pdev
))
1594 pci_set_master(pdev
);
1596 if (dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(64)) &&
1597 dma_set_mask_and_coherent(dev
->dev
, DMA_BIT_MASK(32)))
1600 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
1606 * Some devices and/or platforms don't advertise or work with INTx
1607 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1608 * adjust this later.
1610 result
= pci_alloc_irq_vectors(pdev
, 1, 1, PCI_IRQ_ALL_TYPES
);
1614 cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
1616 dev
->q_depth
= min_t(int, NVME_CAP_MQES(cap
) + 1, NVME_Q_DEPTH
);
1617 dev
->db_stride
= 1 << NVME_CAP_STRIDE(cap
);
1618 dev
->dbs
= dev
->bar
+ 4096;
1621 * Temporary fix for the Apple controller found in the MacBook8,1 and
1622 * some MacBook7,1 to avoid controller resets and data loss.
1624 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
&& pdev
->device
== 0x2001) {
1626 dev_warn(dev
->dev
, "detected Apple NVMe controller, set "
1627 "queue depth=%u to work around controller resets\n",
1632 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1633 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1634 * has no name we can pass NULL as final argument to
1635 * sysfs_add_file_to_group.
1638 if (readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 2, 0)) {
1639 dev
->cmb
= nvme_map_cmb(dev
);
1641 if (sysfs_add_file_to_group(&dev
->ctrl
.device
->kobj
,
1642 &dev_attr_cmb
.attr
, NULL
))
1644 "failed to add sysfs attribute for CMB\n");
1648 pci_enable_pcie_error_reporting(pdev
);
1649 pci_save_state(pdev
);
1653 pci_disable_device(pdev
);
1657 static void nvme_dev_unmap(struct nvme_dev
*dev
)
1661 pci_release_mem_regions(to_pci_dev(dev
->dev
));
1664 static void nvme_pci_disable(struct nvme_dev
*dev
)
1666 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1668 nvme_release_cmb(dev
);
1669 pci_free_irq_vectors(pdev
);
1671 if (pci_is_enabled(pdev
)) {
1672 pci_disable_pcie_error_reporting(pdev
);
1673 pci_disable_device(pdev
);
1677 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
1682 del_timer_sync(&dev
->watchdog_timer
);
1684 mutex_lock(&dev
->shutdown_lock
);
1685 if (pci_is_enabled(to_pci_dev(dev
->dev
))) {
1686 nvme_stop_queues(&dev
->ctrl
);
1687 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1690 queues
= dev
->online_queues
- 1;
1691 for (i
= dev
->queue_count
- 1; i
> 0; i
--)
1692 nvme_suspend_queue(dev
->queues
[i
]);
1694 if (csts
& NVME_CSTS_CFS
|| !(csts
& NVME_CSTS_RDY
)) {
1695 /* A device might become IO incapable very soon during
1696 * probe, before the admin queue is configured. Thus,
1697 * queue_count can be 0 here.
1699 if (dev
->queue_count
)
1700 nvme_suspend_queue(dev
->queues
[0]);
1702 nvme_disable_io_queues(dev
, queues
);
1703 nvme_disable_admin_queue(dev
, shutdown
);
1705 nvme_pci_disable(dev
);
1707 blk_mq_tagset_busy_iter(&dev
->tagset
, nvme_cancel_request
, &dev
->ctrl
);
1708 blk_mq_tagset_busy_iter(&dev
->admin_tagset
, nvme_cancel_request
, &dev
->ctrl
);
1709 mutex_unlock(&dev
->shutdown_lock
);
1712 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
1714 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
1715 PAGE_SIZE
, PAGE_SIZE
, 0);
1716 if (!dev
->prp_page_pool
)
1719 /* Optimisation for I/Os between 4k and 128k */
1720 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
1722 if (!dev
->prp_small_pool
) {
1723 dma_pool_destroy(dev
->prp_page_pool
);
1729 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
1731 dma_pool_destroy(dev
->prp_page_pool
);
1732 dma_pool_destroy(dev
->prp_small_pool
);
1735 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
1737 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1739 put_device(dev
->dev
);
1740 if (dev
->tagset
.tags
)
1741 blk_mq_free_tag_set(&dev
->tagset
);
1742 if (dev
->ctrl
.admin_q
)
1743 blk_put_queue(dev
->ctrl
.admin_q
);
1748 static void nvme_remove_dead_ctrl(struct nvme_dev
*dev
, int status
)
1750 dev_warn(dev
->ctrl
.device
, "Removing after probe failure status: %d\n", status
);
1752 kref_get(&dev
->ctrl
.kref
);
1753 nvme_dev_disable(dev
, false);
1754 if (!schedule_work(&dev
->remove_work
))
1755 nvme_put_ctrl(&dev
->ctrl
);
1758 static void nvme_reset_work(struct work_struct
*work
)
1760 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, reset_work
);
1761 int result
= -ENODEV
;
1763 if (WARN_ON(dev
->ctrl
.state
!= NVME_CTRL_RESETTING
))
1767 * If we're called to reset a live controller first shut it down before
1770 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
1771 nvme_dev_disable(dev
, false);
1773 result
= nvme_pci_enable(dev
);
1777 result
= nvme_configure_admin_queue(dev
);
1781 result
= nvme_alloc_admin_tags(dev
);
1785 result
= nvme_init_identify(&dev
->ctrl
);
1789 result
= nvme_setup_io_queues(dev
);
1794 * A controller that can not execute IO typically requires user
1795 * intervention to correct. For such degraded controllers, the driver
1796 * should not submit commands the user did not request, so skip
1797 * registering for asynchronous event notification on this condition.
1799 if (dev
->online_queues
> 1)
1800 nvme_queue_async_events(&dev
->ctrl
);
1802 mod_timer(&dev
->watchdog_timer
, round_jiffies(jiffies
+ HZ
));
1805 * Keep the controller around but remove all namespaces if we don't have
1806 * any working I/O queue.
1808 if (dev
->online_queues
< 2) {
1809 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
1810 nvme_kill_queues(&dev
->ctrl
);
1811 nvme_remove_namespaces(&dev
->ctrl
);
1813 nvme_start_queues(&dev
->ctrl
);
1817 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
1818 dev_warn(dev
->ctrl
.device
, "failed to mark controller live\n");
1822 if (dev
->online_queues
> 1)
1823 nvme_queue_scan(&dev
->ctrl
);
1827 nvme_remove_dead_ctrl(dev
, result
);
1830 static void nvme_remove_dead_ctrl_work(struct work_struct
*work
)
1832 struct nvme_dev
*dev
= container_of(work
, struct nvme_dev
, remove_work
);
1833 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1835 nvme_kill_queues(&dev
->ctrl
);
1836 if (pci_get_drvdata(pdev
))
1837 device_release_driver(&pdev
->dev
);
1838 nvme_put_ctrl(&dev
->ctrl
);
1841 static int nvme_reset(struct nvme_dev
*dev
)
1843 if (!dev
->ctrl
.admin_q
|| blk_queue_dying(dev
->ctrl
.admin_q
))
1845 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_RESETTING
))
1847 if (!queue_work(nvme_workq
, &dev
->reset_work
))
1852 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
1854 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
1858 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
1860 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
1864 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
1866 *val
= lo_hi_readq(to_nvme_dev(ctrl
)->bar
+ off
);
1870 static int nvme_pci_reset_ctrl(struct nvme_ctrl
*ctrl
)
1872 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1873 int ret
= nvme_reset(dev
);
1876 flush_work(&dev
->reset_work
);
1880 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
1882 .module
= THIS_MODULE
,
1883 .reg_read32
= nvme_pci_reg_read32
,
1884 .reg_write32
= nvme_pci_reg_write32
,
1885 .reg_read64
= nvme_pci_reg_read64
,
1886 .reset_ctrl
= nvme_pci_reset_ctrl
,
1887 .free_ctrl
= nvme_pci_free_ctrl
,
1888 .submit_async_event
= nvme_pci_submit_async_event
,
1891 static int nvme_dev_map(struct nvme_dev
*dev
)
1893 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1895 if (pci_request_mem_regions(pdev
, "nvme"))
1898 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), 8192);
1904 pci_release_mem_regions(pdev
);
1908 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1910 int node
, result
= -ENOMEM
;
1911 struct nvme_dev
*dev
;
1913 node
= dev_to_node(&pdev
->dev
);
1914 if (node
== NUMA_NO_NODE
)
1915 set_dev_node(&pdev
->dev
, first_memory_node
);
1917 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
1920 dev
->queues
= kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1925 dev
->dev
= get_device(&pdev
->dev
);
1926 pci_set_drvdata(pdev
, dev
);
1928 result
= nvme_dev_map(dev
);
1932 INIT_WORK(&dev
->reset_work
, nvme_reset_work
);
1933 INIT_WORK(&dev
->remove_work
, nvme_remove_dead_ctrl_work
);
1934 setup_timer(&dev
->watchdog_timer
, nvme_watchdog_timer
,
1935 (unsigned long)dev
);
1936 mutex_init(&dev
->shutdown_lock
);
1937 init_completion(&dev
->ioq_wait
);
1939 result
= nvme_setup_prp_pools(dev
);
1943 result
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
1948 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_RESETTING
);
1949 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
1951 queue_work(nvme_workq
, &dev
->reset_work
);
1955 nvme_release_prp_pools(dev
);
1957 put_device(dev
->dev
);
1958 nvme_dev_unmap(dev
);
1965 static void nvme_reset_notify(struct pci_dev
*pdev
, bool prepare
)
1967 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1970 nvme_dev_disable(dev
, false);
1975 static void nvme_shutdown(struct pci_dev
*pdev
)
1977 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1978 nvme_dev_disable(dev
, true);
1982 * The driver's remove may be called on a device in a partially initialized
1983 * state. This function must not have any dependencies on the device state in
1986 static void nvme_remove(struct pci_dev
*pdev
)
1988 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
1990 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
1992 cancel_work_sync(&dev
->reset_work
);
1993 pci_set_drvdata(pdev
, NULL
);
1995 if (!pci_device_is_present(pdev
)) {
1996 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
1997 nvme_dev_disable(dev
, false);
2000 flush_work(&dev
->reset_work
);
2001 nvme_uninit_ctrl(&dev
->ctrl
);
2002 nvme_dev_disable(dev
, true);
2003 nvme_dev_remove_admin(dev
);
2004 nvme_free_queues(dev
, 0);
2005 nvme_release_prp_pools(dev
);
2006 nvme_dev_unmap(dev
);
2007 nvme_put_ctrl(&dev
->ctrl
);
2010 static int nvme_pci_sriov_configure(struct pci_dev
*pdev
, int numvfs
)
2015 if (pci_vfs_assigned(pdev
)) {
2016 dev_warn(&pdev
->dev
,
2017 "Cannot disable SR-IOV VFs while assigned\n");
2020 pci_disable_sriov(pdev
);
2024 ret
= pci_enable_sriov(pdev
, numvfs
);
2025 return ret
? ret
: numvfs
;
2028 #ifdef CONFIG_PM_SLEEP
2029 static int nvme_suspend(struct device
*dev
)
2031 struct pci_dev
*pdev
= to_pci_dev(dev
);
2032 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2034 nvme_dev_disable(ndev
, true);
2038 static int nvme_resume(struct device
*dev
)
2040 struct pci_dev
*pdev
= to_pci_dev(dev
);
2041 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
2048 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops
, nvme_suspend
, nvme_resume
);
2050 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
2051 pci_channel_state_t state
)
2053 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2056 * A frozen channel requires a reset. When detected, this method will
2057 * shutdown the controller to quiesce. The controller will be restarted
2058 * after the slot reset through driver's slot_reset callback.
2061 case pci_channel_io_normal
:
2062 return PCI_ERS_RESULT_CAN_RECOVER
;
2063 case pci_channel_io_frozen
:
2064 dev_warn(dev
->ctrl
.device
,
2065 "frozen state error detected, reset controller\n");
2066 nvme_dev_disable(dev
, false);
2067 return PCI_ERS_RESULT_NEED_RESET
;
2068 case pci_channel_io_perm_failure
:
2069 dev_warn(dev
->ctrl
.device
,
2070 "failure state error detected, request disconnect\n");
2071 return PCI_ERS_RESULT_DISCONNECT
;
2073 return PCI_ERS_RESULT_NEED_RESET
;
2076 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
2078 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
2080 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
2081 pci_restore_state(pdev
);
2083 return PCI_ERS_RESULT_RECOVERED
;
2086 static void nvme_error_resume(struct pci_dev
*pdev
)
2088 pci_cleanup_aer_uncorrect_error_status(pdev
);
2091 static const struct pci_error_handlers nvme_err_handler
= {
2092 .error_detected
= nvme_error_detected
,
2093 .slot_reset
= nvme_slot_reset
,
2094 .resume
= nvme_error_resume
,
2095 .reset_notify
= nvme_reset_notify
,
2098 /* Move to pci_ids.h later */
2099 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2101 static const struct pci_device_id nvme_id_table
[] = {
2102 { PCI_VDEVICE(INTEL
, 0x0953),
2103 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2104 NVME_QUIRK_DISCARD_ZEROES
, },
2105 { PCI_VDEVICE(INTEL
, 0x0a53),
2106 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2107 NVME_QUIRK_DISCARD_ZEROES
, },
2108 { PCI_VDEVICE(INTEL
, 0x0a54),
2109 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
2110 NVME_QUIRK_DISCARD_ZEROES
, },
2111 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
2112 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
, },
2113 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2114 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2115 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2116 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2117 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2118 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
2119 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
2120 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001) },
2123 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
2125 static struct pci_driver nvme_driver
= {
2127 .id_table
= nvme_id_table
,
2128 .probe
= nvme_probe
,
2129 .remove
= nvme_remove
,
2130 .shutdown
= nvme_shutdown
,
2132 .pm
= &nvme_dev_pm_ops
,
2134 .sriov_configure
= nvme_pci_sriov_configure
,
2135 .err_handler
= &nvme_err_handler
,
2138 static int __init
nvme_init(void)
2142 nvme_workq
= alloc_workqueue("nvme", WQ_UNBOUND
| WQ_MEM_RECLAIM
, 0);
2146 result
= pci_register_driver(&nvme_driver
);
2148 destroy_workqueue(nvme_workq
);
2152 static void __exit
nvme_exit(void)
2154 pci_unregister_driver(&nvme_driver
);
2155 destroy_workqueue(nvme_workq
);
2159 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2160 MODULE_LICENSE("GPL");
2161 MODULE_VERSION("1.0");
2162 module_init(nvme_init
);
2163 module_exit(nvme_exit
);