powercap: restrict energy meter to root access
[linux/fpc-iii.git] / drivers / nvme / host / pci.c
blobe2bce9385eda6f35c9894f56bf481ab6e32568bc
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
47 #include "nvme.h"
49 #define NVME_Q_DEPTH 1024
50 #define NVME_AQ_DEPTH 256
51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55 * We handle AEN commands ourselves and don't even let the
56 * block layer know about them.
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67 static struct workqueue_struct *nvme_workq;
69 struct nvme_dev;
70 struct nvme_queue;
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 pci_bus_addr_t cmb_bus_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 u32 cmbloc;
103 struct nvme_ctrl ctrl;
104 struct completion ioq_wait;
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109 return container_of(ctrl, struct nvme_dev, ctrl);
113 * An NVM Express queue. Each device has at least two (one for admin
114 * commands and one for I/O commands).
116 struct nvme_queue {
117 struct device *q_dmadev;
118 struct nvme_dev *dev;
119 char irqname[24]; /* nvme4294967295-65535\0 */
120 spinlock_t q_lock;
121 struct nvme_command *sq_cmds;
122 struct nvme_command __iomem *sq_cmds_io;
123 volatile struct nvme_completion *cqes;
124 struct blk_mq_tags **tags;
125 dma_addr_t sq_dma_addr;
126 dma_addr_t cq_dma_addr;
127 u32 __iomem *q_db;
128 u16 q_depth;
129 s16 cq_vector;
130 u16 sq_tail;
131 u16 cq_head;
132 u16 qid;
133 u8 cq_phase;
134 u8 cqe_seen;
138 * The nvme_iod describes the data in an I/O, including the list of PRP
139 * entries. You can't see it in this data structure because C doesn't let
140 * me express that. Use nvme_init_iod to ensure there's enough space
141 * allocated to store the PRP list.
143 struct nvme_iod {
144 struct nvme_queue *nvmeq;
145 int aborted;
146 int npages; /* In the PRP list. 0 means small pool in use */
147 int nents; /* Used in scatterlist */
148 int length; /* Of data, in bytes */
149 dma_addr_t first_dma;
150 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
151 struct scatterlist *sg;
152 struct scatterlist inline_sg[0];
156 * Check we didin't inadvertently grow the command struct
158 static inline void _nvme_check_size(void)
160 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
170 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
175 * Max size of iod being embedded in the request payload
177 #define NVME_INT_PAGES 2
178 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
181 * Will slightly overestimate the number of pages needed. This is OK
182 * as it only leads to a small amount of wasted memory for the lifetime of
183 * the I/O.
185 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
188 dev->ctrl.page_size);
189 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
193 unsigned int size, unsigned int nseg)
195 return sizeof(__le64 *) * nvme_npages(size, dev) +
196 sizeof(struct scatterlist) * nseg;
199 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 return sizeof(struct nvme_iod) +
202 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
205 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211 unsigned int hctx_idx)
213 struct nvme_dev *dev = data;
214 struct nvme_queue *nvmeq = dev->queues[0];
216 WARN_ON(hctx_idx != 0);
217 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
218 WARN_ON(nvmeq->tags);
220 hctx->driver_data = nvmeq;
221 nvmeq->tags = &dev->admin_tagset.tags[0];
222 return 0;
225 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 struct nvme_queue *nvmeq = hctx->driver_data;
229 nvmeq->tags = NULL;
232 static int nvme_admin_init_request(void *data, struct request *req,
233 unsigned int hctx_idx, unsigned int rq_idx,
234 unsigned int numa_node)
236 struct nvme_dev *dev = data;
237 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
238 struct nvme_queue *nvmeq = dev->queues[0];
240 BUG_ON(!nvmeq);
241 iod->nvmeq = nvmeq;
242 return 0;
245 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
246 unsigned int hctx_idx)
248 struct nvme_dev *dev = data;
249 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251 if (!nvmeq->tags)
252 nvmeq->tags = &dev->tagset.tags[hctx_idx];
254 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
255 hctx->driver_data = nvmeq;
256 return 0;
259 static int nvme_init_request(void *data, struct request *req,
260 unsigned int hctx_idx, unsigned int rq_idx,
261 unsigned int numa_node)
263 struct nvme_dev *dev = data;
264 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
265 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267 BUG_ON(!nvmeq);
268 iod->nvmeq = nvmeq;
269 return 0;
272 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 struct nvme_dev *dev = set->driver_data;
276 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
280 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
281 * @nvmeq: The queue to use
282 * @cmd: The command to send
284 * Safe to use from interrupt context
286 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
287 struct nvme_command *cmd)
289 u16 tail = nvmeq->sq_tail;
291 if (nvmeq->sq_cmds_io)
292 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
293 else
294 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296 if (++tail == nvmeq->q_depth)
297 tail = 0;
298 writel(tail, nvmeq->q_db);
299 nvmeq->sq_tail = tail;
302 static __le64 **iod_list(struct request *req)
304 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
305 return (__le64 **)(iod->sg + req->nr_phys_segments);
308 static int nvme_init_iod(struct request *rq, unsigned size,
309 struct nvme_dev *dev)
311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312 int nseg = rq->nr_phys_segments;
314 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
315 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
316 if (!iod->sg)
317 return BLK_MQ_RQ_QUEUE_BUSY;
318 } else {
319 iod->sg = iod->inline_sg;
322 iod->aborted = 0;
323 iod->npages = -1;
324 iod->nents = 0;
325 iod->length = size;
327 if (!(rq->cmd_flags & REQ_DONTPREP)) {
328 rq->retries = 0;
329 rq->cmd_flags |= REQ_DONTPREP;
331 return 0;
334 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
337 const int last_prp = dev->ctrl.page_size / 8 - 1;
338 int i;
339 __le64 **list = iod_list(req);
340 dma_addr_t prp_dma = iod->first_dma;
342 nvme_cleanup_cmd(req);
344 if (iod->npages == 0)
345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 for (i = 0; i < iod->npages; i++) {
347 __le64 *prp_list = list[i];
348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 prp_dma = next_prp_dma;
353 if (iod->sg != iod->inline_sg)
354 kfree(iod->sg);
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
360 if (be32_to_cpu(pi->ref_tag) == v)
361 pi->ref_tag = cpu_to_be32(p);
364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
366 if (be32_to_cpu(pi->ref_tag) == p)
367 pi->ref_tag = cpu_to_be32(v);
371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
373 * The virtual start sector is the one that was originally submitted by the
374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
375 * start sector may be different. Remap protection information to match the
376 * physical LBA on writes, and back to the original seed on reads.
378 * Type 0 and 3 do not have a ref tag, so no remapping required.
380 static void nvme_dif_remap(struct request *req,
381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
383 struct nvme_ns *ns = req->rq_disk->private_data;
384 struct bio_integrity_payload *bip;
385 struct t10_pi_tuple *pi;
386 void *p, *pmap;
387 u32 i, nlb, ts, phys, virt;
389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 return;
392 bip = bio_integrity(req->bio);
393 if (!bip)
394 return;
396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
398 p = pmap;
399 virt = bip_get_seed(bip);
400 phys = nvme_block_nr(ns, blk_rq_pos(req));
401 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402 ts = ns->disk->queue->integrity.tuple_size;
404 for (i = 0; i < nlb; i++, virt++, phys++) {
405 pi = (struct t10_pi_tuple *)p;
406 dif_swap(phys, virt, pi);
407 p += ts;
409 kunmap_atomic(pmap);
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request *req,
413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
422 #endif
424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
425 int total_len)
427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 struct dma_pool *pool;
429 int length = total_len;
430 struct scatterlist *sg = iod->sg;
431 int dma_len = sg_dma_len(sg);
432 u64 dma_addr = sg_dma_address(sg);
433 u32 page_size = dev->ctrl.page_size;
434 int offset = dma_addr & (page_size - 1);
435 __le64 *prp_list;
436 __le64 **list = iod_list(req);
437 dma_addr_t prp_dma;
438 int nprps, i;
440 length -= (page_size - offset);
441 if (length <= 0)
442 return true;
444 dma_len -= (page_size - offset);
445 if (dma_len) {
446 dma_addr += (page_size - offset);
447 } else {
448 sg = sg_next(sg);
449 dma_addr = sg_dma_address(sg);
450 dma_len = sg_dma_len(sg);
453 if (length <= page_size) {
454 iod->first_dma = dma_addr;
455 return true;
458 nprps = DIV_ROUND_UP(length, page_size);
459 if (nprps <= (256 / 8)) {
460 pool = dev->prp_small_pool;
461 iod->npages = 0;
462 } else {
463 pool = dev->prp_page_pool;
464 iod->npages = 1;
467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
468 if (!prp_list) {
469 iod->first_dma = dma_addr;
470 iod->npages = -1;
471 return false;
473 list[0] = prp_list;
474 iod->first_dma = prp_dma;
475 i = 0;
476 for (;;) {
477 if (i == page_size >> 3) {
478 __le64 *old_prp_list = prp_list;
479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
480 if (!prp_list)
481 return false;
482 list[iod->npages++] = prp_list;
483 prp_list[0] = old_prp_list[i - 1];
484 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
485 i = 1;
487 prp_list[i++] = cpu_to_le64(dma_addr);
488 dma_len -= page_size;
489 dma_addr += page_size;
490 length -= page_size;
491 if (length <= 0)
492 break;
493 if (dma_len > 0)
494 continue;
495 BUG_ON(dma_len < 0);
496 sg = sg_next(sg);
497 dma_addr = sg_dma_address(sg);
498 dma_len = sg_dma_len(sg);
501 return true;
504 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
505 unsigned size, struct nvme_command *cmnd)
507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508 struct request_queue *q = req->q;
509 enum dma_data_direction dma_dir = rq_data_dir(req) ?
510 DMA_TO_DEVICE : DMA_FROM_DEVICE;
511 int ret = BLK_MQ_RQ_QUEUE_ERROR;
513 sg_init_table(iod->sg, req->nr_phys_segments);
514 iod->nents = blk_rq_map_sg(q, req, iod->sg);
515 if (!iod->nents)
516 goto out;
518 ret = BLK_MQ_RQ_QUEUE_BUSY;
519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
520 DMA_ATTR_NO_WARN))
521 goto out;
523 if (!nvme_setup_prps(dev, req, size))
524 goto out_unmap;
526 ret = BLK_MQ_RQ_QUEUE_ERROR;
527 if (blk_integrity_rq(req)) {
528 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
529 goto out_unmap;
531 sg_init_table(&iod->meta_sg, 1);
532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
533 goto out_unmap;
535 if (rq_data_dir(req))
536 nvme_dif_remap(req, nvme_dif_prep);
538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
539 goto out_unmap;
542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
544 if (blk_integrity_rq(req))
545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
546 return BLK_MQ_RQ_QUEUE_OK;
548 out_unmap:
549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
550 out:
551 return ret;
554 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
557 enum dma_data_direction dma_dir = rq_data_dir(req) ?
558 DMA_TO_DEVICE : DMA_FROM_DEVICE;
560 if (iod->nents) {
561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562 if (blk_integrity_rq(req)) {
563 if (!rq_data_dir(req))
564 nvme_dif_remap(req, nvme_dif_complete);
565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
569 nvme_free_iod(dev, req);
573 * NOTE: ns is NULL when called on the admin queue.
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 const struct blk_mq_queue_data *bd)
578 struct nvme_ns *ns = hctx->queue->queuedata;
579 struct nvme_queue *nvmeq = hctx->driver_data;
580 struct nvme_dev *dev = nvmeq->dev;
581 struct request *req = bd->rq;
582 struct nvme_command cmnd;
583 unsigned map_len;
584 int ret = BLK_MQ_RQ_QUEUE_OK;
587 * If formated with metadata, require the block layer provide a buffer
588 * unless this namespace is formated such that the metadata can be
589 * stripped/generated by the controller with PRACT=1.
591 if (ns && ns->ms && !blk_integrity_rq(req)) {
592 if (!(ns->pi_type && ns->ms == 8) &&
593 req->cmd_type != REQ_TYPE_DRV_PRIV) {
594 blk_mq_end_request(req, -EFAULT);
595 return BLK_MQ_RQ_QUEUE_OK;
599 map_len = nvme_map_len(req);
600 ret = nvme_init_iod(req, map_len, dev);
601 if (ret)
602 return ret;
604 ret = nvme_setup_cmd(ns, req, &cmnd);
605 if (ret)
606 goto out;
608 if (req->nr_phys_segments)
609 ret = nvme_map_data(dev, req, map_len, &cmnd);
611 if (ret)
612 goto out;
614 cmnd.common.command_id = req->tag;
615 blk_mq_start_request(req);
617 spin_lock_irq(&nvmeq->q_lock);
618 if (unlikely(nvmeq->cq_vector < 0)) {
619 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
620 ret = BLK_MQ_RQ_QUEUE_BUSY;
621 else
622 ret = BLK_MQ_RQ_QUEUE_ERROR;
623 spin_unlock_irq(&nvmeq->q_lock);
624 goto out;
626 __nvme_submit_cmd(nvmeq, &cmnd);
627 nvme_process_cq(nvmeq);
628 spin_unlock_irq(&nvmeq->q_lock);
629 return BLK_MQ_RQ_QUEUE_OK;
630 out:
631 nvme_free_iod(dev, req);
632 return ret;
635 static void nvme_complete_rq(struct request *req)
637 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
638 struct nvme_dev *dev = iod->nvmeq->dev;
639 int error = 0;
641 nvme_unmap_data(dev, req);
643 if (unlikely(req->errors)) {
644 if (nvme_req_needs_retry(req, req->errors)) {
645 req->retries++;
646 nvme_requeue_req(req);
647 return;
650 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
651 error = req->errors;
652 else
653 error = nvme_error_status(req->errors);
656 if (unlikely(iod->aborted)) {
657 dev_warn(dev->ctrl.device,
658 "completing aborted command with status: %04x\n",
659 req->errors);
662 blk_mq_end_request(req, error);
665 /* We read the CQE phase first to check if the rest of the entry is valid */
666 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
667 u16 phase)
669 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
672 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
674 u16 head, phase;
676 head = nvmeq->cq_head;
677 phase = nvmeq->cq_phase;
679 while (nvme_cqe_valid(nvmeq, head, phase)) {
680 struct nvme_completion cqe = nvmeq->cqes[head];
681 struct request *req;
683 if (++head == nvmeq->q_depth) {
684 head = 0;
685 phase = !phase;
688 if (tag && *tag == cqe.command_id)
689 *tag = -1;
691 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
692 dev_warn(nvmeq->dev->ctrl.device,
693 "invalid id %d completed on queue %d\n",
694 cqe.command_id, le16_to_cpu(cqe.sq_id));
695 continue;
699 * AEN requests are special as they don't time out and can
700 * survive any kind of queue freeze and often don't respond to
701 * aborts. We don't even bother to allocate a struct request
702 * for them but rather special case them here.
704 if (unlikely(nvmeq->qid == 0 &&
705 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
706 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
707 continue;
710 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
711 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
712 memcpy(req->special, &cqe, sizeof(cqe));
713 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
717 /* If the controller ignores the cq head doorbell and continuously
718 * writes to the queue, it is theoretically possible to wrap around
719 * the queue twice and mistakenly return IRQ_NONE. Linux only
720 * requires that 0.1% of your interrupts are handled, so this isn't
721 * a big problem.
723 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
724 return;
726 if (likely(nvmeq->cq_vector >= 0))
727 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
728 nvmeq->cq_head = head;
729 nvmeq->cq_phase = phase;
731 nvmeq->cqe_seen = 1;
734 static void nvme_process_cq(struct nvme_queue *nvmeq)
736 __nvme_process_cq(nvmeq, NULL);
739 static irqreturn_t nvme_irq(int irq, void *data)
741 irqreturn_t result;
742 struct nvme_queue *nvmeq = data;
743 spin_lock(&nvmeq->q_lock);
744 nvme_process_cq(nvmeq);
745 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
746 nvmeq->cqe_seen = 0;
747 spin_unlock(&nvmeq->q_lock);
748 return result;
751 static irqreturn_t nvme_irq_check(int irq, void *data)
753 struct nvme_queue *nvmeq = data;
754 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
755 return IRQ_WAKE_THREAD;
756 return IRQ_NONE;
759 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
761 struct nvme_queue *nvmeq = hctx->driver_data;
763 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
764 spin_lock_irq(&nvmeq->q_lock);
765 __nvme_process_cq(nvmeq, &tag);
766 spin_unlock_irq(&nvmeq->q_lock);
768 if (tag == -1)
769 return 1;
772 return 0;
775 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
777 struct nvme_dev *dev = to_nvme_dev(ctrl);
778 struct nvme_queue *nvmeq = dev->queues[0];
779 struct nvme_command c;
781 memset(&c, 0, sizeof(c));
782 c.common.opcode = nvme_admin_async_event;
783 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
785 spin_lock_irq(&nvmeq->q_lock);
786 __nvme_submit_cmd(nvmeq, &c);
787 spin_unlock_irq(&nvmeq->q_lock);
790 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
792 struct nvme_command c;
794 memset(&c, 0, sizeof(c));
795 c.delete_queue.opcode = opcode;
796 c.delete_queue.qid = cpu_to_le16(id);
798 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
801 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
802 struct nvme_queue *nvmeq)
804 struct nvme_command c;
805 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
808 * Note: we (ab)use the fact the the prp fields survive if no data
809 * is attached to the request.
811 memset(&c, 0, sizeof(c));
812 c.create_cq.opcode = nvme_admin_create_cq;
813 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
814 c.create_cq.cqid = cpu_to_le16(qid);
815 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
816 c.create_cq.cq_flags = cpu_to_le16(flags);
817 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
819 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
822 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
823 struct nvme_queue *nvmeq)
825 struct nvme_command c;
826 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
829 * Note: we (ab)use the fact the the prp fields survive if no data
830 * is attached to the request.
832 memset(&c, 0, sizeof(c));
833 c.create_sq.opcode = nvme_admin_create_sq;
834 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
835 c.create_sq.sqid = cpu_to_le16(qid);
836 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
837 c.create_sq.sq_flags = cpu_to_le16(flags);
838 c.create_sq.cqid = cpu_to_le16(qid);
840 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
843 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
845 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
848 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
850 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
853 static void abort_endio(struct request *req, int error)
855 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
856 struct nvme_queue *nvmeq = iod->nvmeq;
857 u16 status = req->errors;
859 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
860 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
861 blk_mq_free_request(req);
864 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
866 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
867 struct nvme_queue *nvmeq = iod->nvmeq;
868 struct nvme_dev *dev = nvmeq->dev;
869 struct request *abort_req;
870 struct nvme_command cmd;
873 * Shutdown immediately if controller times out while starting. The
874 * reset work will see the pci device disabled when it gets the forced
875 * cancellation error. All outstanding requests are completed on
876 * shutdown, so we return BLK_EH_HANDLED.
878 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
879 dev_warn(dev->ctrl.device,
880 "I/O %d QID %d timeout, disable controller\n",
881 req->tag, nvmeq->qid);
882 nvme_dev_disable(dev, false);
883 req->errors = NVME_SC_CANCELLED;
884 return BLK_EH_HANDLED;
888 * Shutdown the controller immediately and schedule a reset if the
889 * command was already aborted once before and still hasn't been
890 * returned to the driver, or if this is the admin queue.
892 if (!nvmeq->qid || iod->aborted) {
893 dev_warn(dev->ctrl.device,
894 "I/O %d QID %d timeout, reset controller\n",
895 req->tag, nvmeq->qid);
896 nvme_dev_disable(dev, false);
897 nvme_reset(dev);
900 * Mark the request as handled, since the inline shutdown
901 * forces all outstanding requests to complete.
903 req->errors = NVME_SC_CANCELLED;
904 return BLK_EH_HANDLED;
907 iod->aborted = 1;
909 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
910 atomic_inc(&dev->ctrl.abort_limit);
911 return BLK_EH_RESET_TIMER;
914 memset(&cmd, 0, sizeof(cmd));
915 cmd.abort.opcode = nvme_admin_abort_cmd;
916 cmd.abort.cid = req->tag;
917 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
919 dev_warn(nvmeq->dev->ctrl.device,
920 "I/O %d QID %d timeout, aborting\n",
921 req->tag, nvmeq->qid);
923 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
924 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
925 if (IS_ERR(abort_req)) {
926 atomic_inc(&dev->ctrl.abort_limit);
927 return BLK_EH_RESET_TIMER;
930 abort_req->timeout = ADMIN_TIMEOUT;
931 abort_req->end_io_data = NULL;
932 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
935 * The aborted req will be completed on receiving the abort req.
936 * We enable the timer again. If hit twice, it'll cause a device reset,
937 * as the device then is in a faulty state.
939 return BLK_EH_RESET_TIMER;
942 static void nvme_free_queue(struct nvme_queue *nvmeq)
944 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
945 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
946 if (nvmeq->sq_cmds)
947 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
948 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
949 kfree(nvmeq);
952 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
954 int i;
956 for (i = dev->queue_count - 1; i >= lowest; i--) {
957 struct nvme_queue *nvmeq = dev->queues[i];
958 dev->queue_count--;
959 dev->queues[i] = NULL;
960 nvme_free_queue(nvmeq);
965 * nvme_suspend_queue - put queue into suspended state
966 * @nvmeq - queue to suspend
968 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
970 int vector;
972 spin_lock_irq(&nvmeq->q_lock);
973 if (nvmeq->cq_vector == -1) {
974 spin_unlock_irq(&nvmeq->q_lock);
975 return 1;
977 vector = nvmeq_irq(nvmeq);
978 nvmeq->dev->online_queues--;
979 nvmeq->cq_vector = -1;
980 spin_unlock_irq(&nvmeq->q_lock);
982 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
983 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
985 free_irq(vector, nvmeq);
987 return 0;
990 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
992 struct nvme_queue *nvmeq = dev->queues[0];
994 if (!nvmeq)
995 return;
996 if (nvme_suspend_queue(nvmeq))
997 return;
999 if (shutdown)
1000 nvme_shutdown_ctrl(&dev->ctrl);
1001 else
1002 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1003 dev->bar + NVME_REG_CAP));
1005 spin_lock_irq(&nvmeq->q_lock);
1006 nvme_process_cq(nvmeq);
1007 spin_unlock_irq(&nvmeq->q_lock);
1010 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1011 int entry_size)
1013 int q_depth = dev->q_depth;
1014 unsigned q_size_aligned = roundup(q_depth * entry_size,
1015 dev->ctrl.page_size);
1017 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1018 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1019 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1020 q_depth = div_u64(mem_per_q, entry_size);
1023 * Ensure the reduced q_depth is above some threshold where it
1024 * would be better to map queues in system memory with the
1025 * original depth
1027 if (q_depth < 64)
1028 return -ENOMEM;
1031 return q_depth;
1034 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1035 int qid, int depth)
1038 /* CMB SQEs will be mapped before creation */
1039 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz))
1040 return 0;
1042 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1043 &nvmeq->sq_dma_addr, GFP_KERNEL);
1044 if (!nvmeq->sq_cmds)
1045 return -ENOMEM;
1047 return 0;
1050 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1051 int depth)
1053 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1054 if (!nvmeq)
1055 return NULL;
1057 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1058 &nvmeq->cq_dma_addr, GFP_KERNEL);
1059 if (!nvmeq->cqes)
1060 goto free_nvmeq;
1062 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1063 goto free_cqdma;
1065 nvmeq->q_dmadev = dev->dev;
1066 nvmeq->dev = dev;
1067 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1068 dev->ctrl.instance, qid);
1069 spin_lock_init(&nvmeq->q_lock);
1070 nvmeq->cq_head = 0;
1071 nvmeq->cq_phase = 1;
1072 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1073 nvmeq->q_depth = depth;
1074 nvmeq->qid = qid;
1075 nvmeq->cq_vector = -1;
1076 dev->queues[qid] = nvmeq;
1077 dev->queue_count++;
1079 return nvmeq;
1081 free_cqdma:
1082 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1083 nvmeq->cq_dma_addr);
1084 free_nvmeq:
1085 kfree(nvmeq);
1086 return NULL;
1089 static int queue_request_irq(struct nvme_queue *nvmeq)
1091 if (use_threaded_interrupts)
1092 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1093 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1094 else
1095 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1096 nvmeq->irqname, nvmeq);
1099 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1101 struct nvme_dev *dev = nvmeq->dev;
1103 spin_lock_irq(&nvmeq->q_lock);
1104 nvmeq->sq_tail = 0;
1105 nvmeq->cq_head = 0;
1106 nvmeq->cq_phase = 1;
1107 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109 dev->online_queues++;
1110 spin_unlock_irq(&nvmeq->q_lock);
1113 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1115 struct nvme_dev *dev = nvmeq->dev;
1116 int result;
1118 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1119 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1120 dev->ctrl.page_size);
1121 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1122 nvmeq->sq_cmds_io = dev->cmb + offset;
1125 nvmeq->cq_vector = qid - 1;
1126 result = adapter_alloc_cq(dev, qid, nvmeq);
1127 if (result < 0)
1128 goto release_vector;
1130 result = adapter_alloc_sq(dev, qid, nvmeq);
1131 if (result < 0)
1132 goto release_cq;
1134 nvme_init_queue(nvmeq, qid);
1135 result = queue_request_irq(nvmeq);
1136 if (result < 0)
1137 goto release_sq;
1139 return result;
1141 release_sq:
1142 dev->online_queues--;
1143 adapter_delete_sq(dev, qid);
1144 release_cq:
1145 adapter_delete_cq(dev, qid);
1146 release_vector:
1147 nvmeq->cq_vector = -1;
1148 return result;
1151 static struct blk_mq_ops nvme_mq_admin_ops = {
1152 .queue_rq = nvme_queue_rq,
1153 .complete = nvme_complete_rq,
1154 .init_hctx = nvme_admin_init_hctx,
1155 .exit_hctx = nvme_admin_exit_hctx,
1156 .init_request = nvme_admin_init_request,
1157 .timeout = nvme_timeout,
1160 static struct blk_mq_ops nvme_mq_ops = {
1161 .queue_rq = nvme_queue_rq,
1162 .complete = nvme_complete_rq,
1163 .init_hctx = nvme_init_hctx,
1164 .init_request = nvme_init_request,
1165 .map_queues = nvme_pci_map_queues,
1166 .timeout = nvme_timeout,
1167 .poll = nvme_poll,
1170 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1172 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1174 * If the controller was reset during removal, it's possible
1175 * user requests may be waiting on a stopped queue. Start the
1176 * queue to flush these to completion.
1178 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1179 blk_cleanup_queue(dev->ctrl.admin_q);
1180 blk_mq_free_tag_set(&dev->admin_tagset);
1184 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1186 if (!dev->ctrl.admin_q) {
1187 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1188 dev->admin_tagset.nr_hw_queues = 1;
1191 * Subtract one to leave an empty queue entry for 'Full Queue'
1192 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1194 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1195 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1196 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1197 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1198 dev->admin_tagset.driver_data = dev;
1200 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1201 return -ENOMEM;
1203 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1204 if (IS_ERR(dev->ctrl.admin_q)) {
1205 blk_mq_free_tag_set(&dev->admin_tagset);
1206 return -ENOMEM;
1208 if (!blk_get_queue(dev->ctrl.admin_q)) {
1209 nvme_dev_remove_admin(dev);
1210 dev->ctrl.admin_q = NULL;
1211 return -ENODEV;
1213 } else
1214 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1216 return 0;
1219 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1221 int result;
1222 u32 aqa;
1223 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1224 struct nvme_queue *nvmeq;
1226 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1227 NVME_CAP_NSSRC(cap) : 0;
1229 if (dev->subsystem &&
1230 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1231 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1233 result = nvme_disable_ctrl(&dev->ctrl, cap);
1234 if (result < 0)
1235 return result;
1237 nvmeq = dev->queues[0];
1238 if (!nvmeq) {
1239 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1240 if (!nvmeq)
1241 return -ENOMEM;
1244 aqa = nvmeq->q_depth - 1;
1245 aqa |= aqa << 16;
1247 writel(aqa, dev->bar + NVME_REG_AQA);
1248 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1249 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1251 result = nvme_enable_ctrl(&dev->ctrl, cap);
1252 if (result)
1253 return result;
1255 nvmeq->cq_vector = 0;
1256 nvme_init_queue(nvmeq, 0);
1257 result = queue_request_irq(nvmeq);
1258 if (result) {
1259 nvmeq->cq_vector = -1;
1260 return result;
1263 return result;
1266 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1269 /* If true, indicates loss of adapter communication, possibly by a
1270 * NVMe Subsystem reset.
1272 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1274 /* If there is a reset ongoing, we shouldn't reset again. */
1275 if (dev->ctrl.state == NVME_CTRL_RESETTING)
1276 return false;
1278 /* We shouldn't reset unless the controller is on fatal error state
1279 * _or_ if we lost the communication with it.
1281 if (!(csts & NVME_CSTS_CFS) && !nssro)
1282 return false;
1284 /* If PCI error recovery process is happening, we cannot reset or
1285 * the recovery mechanism will surely fail.
1287 if (pci_channel_offline(to_pci_dev(dev->dev)))
1288 return false;
1290 return true;
1293 static void nvme_watchdog_timer(unsigned long data)
1295 struct nvme_dev *dev = (struct nvme_dev *)data;
1296 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1298 /* Skip controllers under certain specific conditions. */
1299 if (nvme_should_reset(dev, csts)) {
1300 if (!nvme_reset(dev))
1301 dev_warn(dev->dev,
1302 "Failed status: 0x%x, reset controller.\n",
1303 csts);
1304 return;
1307 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1310 static int nvme_create_io_queues(struct nvme_dev *dev)
1312 unsigned i, max;
1313 int ret = 0;
1315 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1316 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1317 ret = -ENOMEM;
1318 break;
1322 max = min(dev->max_qid, dev->queue_count - 1);
1323 for (i = dev->online_queues; i <= max; i++) {
1324 ret = nvme_create_queue(dev->queues[i], i);
1325 if (ret)
1326 break;
1330 * Ignore failing Create SQ/CQ commands, we can continue with less
1331 * than the desired aount of queues, and even a controller without
1332 * I/O queues an still be used to issue admin commands. This might
1333 * be useful to upgrade a buggy firmware for example.
1335 return ret >= 0 ? 0 : ret;
1338 static ssize_t nvme_cmb_show(struct device *dev,
1339 struct device_attribute *attr,
1340 char *buf)
1342 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1344 return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1345 ndev->cmbloc, ndev->cmbsz);
1347 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1349 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1351 u64 szu, size, offset;
1352 resource_size_t bar_size;
1353 struct pci_dev *pdev = to_pci_dev(dev->dev);
1354 void __iomem *cmb;
1355 int bar;
1357 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1358 if (!(NVME_CMB_SZ(dev->cmbsz)))
1359 return NULL;
1360 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1362 if (!use_cmb_sqes)
1363 return NULL;
1365 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1366 size = szu * NVME_CMB_SZ(dev->cmbsz);
1367 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1368 bar = NVME_CMB_BIR(dev->cmbloc);
1369 bar_size = pci_resource_len(pdev, bar);
1371 if (offset > bar_size)
1372 return NULL;
1375 * Controllers may support a CMB size larger than their BAR,
1376 * for example, due to being behind a bridge. Reduce the CMB to
1377 * the reported size of the BAR
1379 if (size > bar_size - offset)
1380 size = bar_size - offset;
1382 cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1383 if (!cmb)
1384 return NULL;
1386 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1387 dev->cmb_size = size;
1388 return cmb;
1391 static inline void nvme_release_cmb(struct nvme_dev *dev)
1393 if (dev->cmb) {
1394 iounmap(dev->cmb);
1395 dev->cmb = NULL;
1396 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1397 &dev_attr_cmb.attr, NULL);
1398 dev->cmbsz = 0;
1402 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1404 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1407 static int nvme_setup_io_queues(struct nvme_dev *dev)
1409 struct nvme_queue *adminq = dev->queues[0];
1410 struct pci_dev *pdev = to_pci_dev(dev->dev);
1411 int result, nr_io_queues, size;
1413 nr_io_queues = num_online_cpus();
1414 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1415 if (result < 0)
1416 return result;
1418 if (nr_io_queues == 0)
1419 return 0;
1421 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1422 result = nvme_cmb_qdepth(dev, nr_io_queues,
1423 sizeof(struct nvme_command));
1424 if (result > 0)
1425 dev->q_depth = result;
1426 else
1427 nvme_release_cmb(dev);
1430 size = db_bar_size(dev, nr_io_queues);
1431 if (size > 8192) {
1432 iounmap(dev->bar);
1433 do {
1434 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1435 if (dev->bar)
1436 break;
1437 if (!--nr_io_queues)
1438 return -ENOMEM;
1439 size = db_bar_size(dev, nr_io_queues);
1440 } while (1);
1441 dev->dbs = dev->bar + 4096;
1442 adminq->q_db = dev->dbs;
1445 /* Deregister the admin queue's interrupt */
1446 free_irq(pci_irq_vector(pdev, 0), adminq);
1449 * If we enable msix early due to not intx, disable it again before
1450 * setting up the full range we need.
1452 pci_free_irq_vectors(pdev);
1453 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1454 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1455 if (nr_io_queues <= 0)
1456 return -EIO;
1457 dev->max_qid = nr_io_queues;
1460 * Should investigate if there's a performance win from allocating
1461 * more queues than interrupt vectors; it might allow the submission
1462 * path to scale better, even if the receive path is limited by the
1463 * number of interrupts.
1466 result = queue_request_irq(adminq);
1467 if (result) {
1468 adminq->cq_vector = -1;
1469 return result;
1471 return nvme_create_io_queues(dev);
1474 static void nvme_del_queue_end(struct request *req, int error)
1476 struct nvme_queue *nvmeq = req->end_io_data;
1478 blk_mq_free_request(req);
1479 complete(&nvmeq->dev->ioq_wait);
1482 static void nvme_del_cq_end(struct request *req, int error)
1484 struct nvme_queue *nvmeq = req->end_io_data;
1486 if (!error) {
1487 unsigned long flags;
1490 * We might be called with the AQ q_lock held
1491 * and the I/O queue q_lock should always
1492 * nest inside the AQ one.
1494 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1495 SINGLE_DEPTH_NESTING);
1496 nvme_process_cq(nvmeq);
1497 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1500 nvme_del_queue_end(req, error);
1503 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1505 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1506 struct request *req;
1507 struct nvme_command cmd;
1509 memset(&cmd, 0, sizeof(cmd));
1510 cmd.delete_queue.opcode = opcode;
1511 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1513 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1514 if (IS_ERR(req))
1515 return PTR_ERR(req);
1517 req->timeout = ADMIN_TIMEOUT;
1518 req->end_io_data = nvmeq;
1520 blk_execute_rq_nowait(q, NULL, req, false,
1521 opcode == nvme_admin_delete_cq ?
1522 nvme_del_cq_end : nvme_del_queue_end);
1523 return 0;
1526 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1528 int pass;
1529 unsigned long timeout;
1530 u8 opcode = nvme_admin_delete_sq;
1532 for (pass = 0; pass < 2; pass++) {
1533 int sent = 0, i = queues;
1535 reinit_completion(&dev->ioq_wait);
1536 retry:
1537 timeout = ADMIN_TIMEOUT;
1538 for (; i > 0; i--, sent++)
1539 if (nvme_delete_queue(dev->queues[i], opcode))
1540 break;
1542 while (sent--) {
1543 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1544 if (timeout == 0)
1545 return;
1546 if (i)
1547 goto retry;
1549 opcode = nvme_admin_delete_cq;
1554 * Return: error value if an error occurred setting up the queues or calling
1555 * Identify Device. 0 if these succeeded, even if adding some of the
1556 * namespaces failed. At the moment, these failures are silent. TBD which
1557 * failures should be reported.
1559 static int nvme_dev_add(struct nvme_dev *dev)
1561 if (!dev->ctrl.tagset) {
1562 dev->tagset.ops = &nvme_mq_ops;
1563 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1564 dev->tagset.timeout = NVME_IO_TIMEOUT;
1565 dev->tagset.numa_node = dev_to_node(dev->dev);
1566 dev->tagset.queue_depth =
1567 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1568 dev->tagset.cmd_size = nvme_cmd_size(dev);
1569 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1570 dev->tagset.driver_data = dev;
1572 if (blk_mq_alloc_tag_set(&dev->tagset))
1573 return 0;
1574 dev->ctrl.tagset = &dev->tagset;
1575 } else {
1576 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1578 /* Free previously allocated queues that are no longer usable */
1579 nvme_free_queues(dev, dev->online_queues);
1582 return 0;
1585 static int nvme_pci_enable(struct nvme_dev *dev)
1587 u64 cap;
1588 int result = -ENOMEM;
1589 struct pci_dev *pdev = to_pci_dev(dev->dev);
1591 if (pci_enable_device_mem(pdev))
1592 return result;
1594 pci_set_master(pdev);
1596 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1597 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1598 goto disable;
1600 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1601 result = -ENODEV;
1602 goto disable;
1606 * Some devices and/or platforms don't advertise or work with INTx
1607 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1608 * adjust this later.
1610 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1611 if (result < 0)
1612 return result;
1614 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1616 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1617 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1618 dev->dbs = dev->bar + 4096;
1621 * Temporary fix for the Apple controller found in the MacBook8,1 and
1622 * some MacBook7,1 to avoid controller resets and data loss.
1624 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1625 dev->q_depth = 2;
1626 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1627 "queue depth=%u to work around controller resets\n",
1628 dev->q_depth);
1632 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1633 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1634 * has no name we can pass NULL as final argument to
1635 * sysfs_add_file_to_group.
1638 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1639 dev->cmb = nvme_map_cmb(dev);
1640 if (dev->cmb) {
1641 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1642 &dev_attr_cmb.attr, NULL))
1643 dev_warn(dev->dev,
1644 "failed to add sysfs attribute for CMB\n");
1648 pci_enable_pcie_error_reporting(pdev);
1649 pci_save_state(pdev);
1650 return 0;
1652 disable:
1653 pci_disable_device(pdev);
1654 return result;
1657 static void nvme_dev_unmap(struct nvme_dev *dev)
1659 if (dev->bar)
1660 iounmap(dev->bar);
1661 pci_release_mem_regions(to_pci_dev(dev->dev));
1664 static void nvme_pci_disable(struct nvme_dev *dev)
1666 struct pci_dev *pdev = to_pci_dev(dev->dev);
1668 nvme_release_cmb(dev);
1669 pci_free_irq_vectors(pdev);
1671 if (pci_is_enabled(pdev)) {
1672 pci_disable_pcie_error_reporting(pdev);
1673 pci_disable_device(pdev);
1677 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1679 int i, queues;
1680 u32 csts = -1;
1682 del_timer_sync(&dev->watchdog_timer);
1684 mutex_lock(&dev->shutdown_lock);
1685 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1686 nvme_stop_queues(&dev->ctrl);
1687 csts = readl(dev->bar + NVME_REG_CSTS);
1690 queues = dev->online_queues - 1;
1691 for (i = dev->queue_count - 1; i > 0; i--)
1692 nvme_suspend_queue(dev->queues[i]);
1694 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1695 /* A device might become IO incapable very soon during
1696 * probe, before the admin queue is configured. Thus,
1697 * queue_count can be 0 here.
1699 if (dev->queue_count)
1700 nvme_suspend_queue(dev->queues[0]);
1701 } else {
1702 nvme_disable_io_queues(dev, queues);
1703 nvme_disable_admin_queue(dev, shutdown);
1705 nvme_pci_disable(dev);
1707 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1708 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1709 mutex_unlock(&dev->shutdown_lock);
1712 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1714 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1715 PAGE_SIZE, PAGE_SIZE, 0);
1716 if (!dev->prp_page_pool)
1717 return -ENOMEM;
1719 /* Optimisation for I/Os between 4k and 128k */
1720 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1721 256, 256, 0);
1722 if (!dev->prp_small_pool) {
1723 dma_pool_destroy(dev->prp_page_pool);
1724 return -ENOMEM;
1726 return 0;
1729 static void nvme_release_prp_pools(struct nvme_dev *dev)
1731 dma_pool_destroy(dev->prp_page_pool);
1732 dma_pool_destroy(dev->prp_small_pool);
1735 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1737 struct nvme_dev *dev = to_nvme_dev(ctrl);
1739 put_device(dev->dev);
1740 if (dev->tagset.tags)
1741 blk_mq_free_tag_set(&dev->tagset);
1742 if (dev->ctrl.admin_q)
1743 blk_put_queue(dev->ctrl.admin_q);
1744 kfree(dev->queues);
1745 kfree(dev);
1748 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1750 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1752 kref_get(&dev->ctrl.kref);
1753 nvme_dev_disable(dev, false);
1754 if (!schedule_work(&dev->remove_work))
1755 nvme_put_ctrl(&dev->ctrl);
1758 static void nvme_reset_work(struct work_struct *work)
1760 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1761 int result = -ENODEV;
1763 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
1764 goto out;
1767 * If we're called to reset a live controller first shut it down before
1768 * moving on.
1770 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1771 nvme_dev_disable(dev, false);
1773 result = nvme_pci_enable(dev);
1774 if (result)
1775 goto out;
1777 result = nvme_configure_admin_queue(dev);
1778 if (result)
1779 goto out;
1781 result = nvme_alloc_admin_tags(dev);
1782 if (result)
1783 goto out;
1785 result = nvme_init_identify(&dev->ctrl);
1786 if (result)
1787 goto out;
1789 result = nvme_setup_io_queues(dev);
1790 if (result)
1791 goto out;
1794 * A controller that can not execute IO typically requires user
1795 * intervention to correct. For such degraded controllers, the driver
1796 * should not submit commands the user did not request, so skip
1797 * registering for asynchronous event notification on this condition.
1799 if (dev->online_queues > 1)
1800 nvme_queue_async_events(&dev->ctrl);
1802 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1805 * Keep the controller around but remove all namespaces if we don't have
1806 * any working I/O queue.
1808 if (dev->online_queues < 2) {
1809 dev_warn(dev->ctrl.device, "IO queues not created\n");
1810 nvme_kill_queues(&dev->ctrl);
1811 nvme_remove_namespaces(&dev->ctrl);
1812 } else {
1813 nvme_start_queues(&dev->ctrl);
1814 nvme_dev_add(dev);
1817 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1818 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1819 goto out;
1822 if (dev->online_queues > 1)
1823 nvme_queue_scan(&dev->ctrl);
1824 return;
1826 out:
1827 nvme_remove_dead_ctrl(dev, result);
1830 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1832 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1833 struct pci_dev *pdev = to_pci_dev(dev->dev);
1835 nvme_kill_queues(&dev->ctrl);
1836 if (pci_get_drvdata(pdev))
1837 device_release_driver(&pdev->dev);
1838 nvme_put_ctrl(&dev->ctrl);
1841 static int nvme_reset(struct nvme_dev *dev)
1843 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1844 return -ENODEV;
1845 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1846 return -EBUSY;
1847 if (!queue_work(nvme_workq, &dev->reset_work))
1848 return -EBUSY;
1849 return 0;
1852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1854 *val = readl(to_nvme_dev(ctrl)->bar + off);
1855 return 0;
1858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1860 writel(val, to_nvme_dev(ctrl)->bar + off);
1861 return 0;
1864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1866 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
1867 return 0;
1870 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1872 struct nvme_dev *dev = to_nvme_dev(ctrl);
1873 int ret = nvme_reset(dev);
1875 if (!ret)
1876 flush_work(&dev->reset_work);
1877 return ret;
1880 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1881 .name = "pcie",
1882 .module = THIS_MODULE,
1883 .reg_read32 = nvme_pci_reg_read32,
1884 .reg_write32 = nvme_pci_reg_write32,
1885 .reg_read64 = nvme_pci_reg_read64,
1886 .reset_ctrl = nvme_pci_reset_ctrl,
1887 .free_ctrl = nvme_pci_free_ctrl,
1888 .submit_async_event = nvme_pci_submit_async_event,
1891 static int nvme_dev_map(struct nvme_dev *dev)
1893 struct pci_dev *pdev = to_pci_dev(dev->dev);
1895 if (pci_request_mem_regions(pdev, "nvme"))
1896 return -ENODEV;
1898 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1899 if (!dev->bar)
1900 goto release;
1902 return 0;
1903 release:
1904 pci_release_mem_regions(pdev);
1905 return -ENODEV;
1908 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1910 int node, result = -ENOMEM;
1911 struct nvme_dev *dev;
1913 node = dev_to_node(&pdev->dev);
1914 if (node == NUMA_NO_NODE)
1915 set_dev_node(&pdev->dev, first_memory_node);
1917 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1918 if (!dev)
1919 return -ENOMEM;
1920 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1921 GFP_KERNEL, node);
1922 if (!dev->queues)
1923 goto free;
1925 dev->dev = get_device(&pdev->dev);
1926 pci_set_drvdata(pdev, dev);
1928 result = nvme_dev_map(dev);
1929 if (result)
1930 goto free;
1932 INIT_WORK(&dev->reset_work, nvme_reset_work);
1933 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1934 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1935 (unsigned long)dev);
1936 mutex_init(&dev->shutdown_lock);
1937 init_completion(&dev->ioq_wait);
1939 result = nvme_setup_prp_pools(dev);
1940 if (result)
1941 goto put_pci;
1943 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1944 id->driver_data);
1945 if (result)
1946 goto release_pools;
1948 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1949 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1951 queue_work(nvme_workq, &dev->reset_work);
1952 return 0;
1954 release_pools:
1955 nvme_release_prp_pools(dev);
1956 put_pci:
1957 put_device(dev->dev);
1958 nvme_dev_unmap(dev);
1959 free:
1960 kfree(dev->queues);
1961 kfree(dev);
1962 return result;
1965 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1967 struct nvme_dev *dev = pci_get_drvdata(pdev);
1969 if (prepare)
1970 nvme_dev_disable(dev, false);
1971 else
1972 nvme_reset(dev);
1975 static void nvme_shutdown(struct pci_dev *pdev)
1977 struct nvme_dev *dev = pci_get_drvdata(pdev);
1978 nvme_dev_disable(dev, true);
1982 * The driver's remove may be called on a device in a partially initialized
1983 * state. This function must not have any dependencies on the device state in
1984 * order to proceed.
1986 static void nvme_remove(struct pci_dev *pdev)
1988 struct nvme_dev *dev = pci_get_drvdata(pdev);
1990 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1992 cancel_work_sync(&dev->reset_work);
1993 pci_set_drvdata(pdev, NULL);
1995 if (!pci_device_is_present(pdev)) {
1996 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1997 nvme_dev_disable(dev, false);
2000 flush_work(&dev->reset_work);
2001 nvme_uninit_ctrl(&dev->ctrl);
2002 nvme_dev_disable(dev, true);
2003 nvme_dev_remove_admin(dev);
2004 nvme_free_queues(dev, 0);
2005 nvme_release_prp_pools(dev);
2006 nvme_dev_unmap(dev);
2007 nvme_put_ctrl(&dev->ctrl);
2010 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2012 int ret = 0;
2014 if (numvfs == 0) {
2015 if (pci_vfs_assigned(pdev)) {
2016 dev_warn(&pdev->dev,
2017 "Cannot disable SR-IOV VFs while assigned\n");
2018 return -EPERM;
2020 pci_disable_sriov(pdev);
2021 return 0;
2024 ret = pci_enable_sriov(pdev, numvfs);
2025 return ret ? ret : numvfs;
2028 #ifdef CONFIG_PM_SLEEP
2029 static int nvme_suspend(struct device *dev)
2031 struct pci_dev *pdev = to_pci_dev(dev);
2032 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2034 nvme_dev_disable(ndev, true);
2035 return 0;
2038 static int nvme_resume(struct device *dev)
2040 struct pci_dev *pdev = to_pci_dev(dev);
2041 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2043 nvme_reset(ndev);
2044 return 0;
2046 #endif
2048 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2050 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2051 pci_channel_state_t state)
2053 struct nvme_dev *dev = pci_get_drvdata(pdev);
2056 * A frozen channel requires a reset. When detected, this method will
2057 * shutdown the controller to quiesce. The controller will be restarted
2058 * after the slot reset through driver's slot_reset callback.
2060 switch (state) {
2061 case pci_channel_io_normal:
2062 return PCI_ERS_RESULT_CAN_RECOVER;
2063 case pci_channel_io_frozen:
2064 dev_warn(dev->ctrl.device,
2065 "frozen state error detected, reset controller\n");
2066 nvme_dev_disable(dev, false);
2067 return PCI_ERS_RESULT_NEED_RESET;
2068 case pci_channel_io_perm_failure:
2069 dev_warn(dev->ctrl.device,
2070 "failure state error detected, request disconnect\n");
2071 return PCI_ERS_RESULT_DISCONNECT;
2073 return PCI_ERS_RESULT_NEED_RESET;
2076 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2078 struct nvme_dev *dev = pci_get_drvdata(pdev);
2080 dev_info(dev->ctrl.device, "restart after slot reset\n");
2081 pci_restore_state(pdev);
2082 nvme_reset(dev);
2083 return PCI_ERS_RESULT_RECOVERED;
2086 static void nvme_error_resume(struct pci_dev *pdev)
2088 pci_cleanup_aer_uncorrect_error_status(pdev);
2091 static const struct pci_error_handlers nvme_err_handler = {
2092 .error_detected = nvme_error_detected,
2093 .slot_reset = nvme_slot_reset,
2094 .resume = nvme_error_resume,
2095 .reset_notify = nvme_reset_notify,
2098 /* Move to pci_ids.h later */
2099 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2101 static const struct pci_device_id nvme_id_table[] = {
2102 { PCI_VDEVICE(INTEL, 0x0953),
2103 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2104 NVME_QUIRK_DISCARD_ZEROES, },
2105 { PCI_VDEVICE(INTEL, 0x0a53),
2106 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2107 NVME_QUIRK_DISCARD_ZEROES, },
2108 { PCI_VDEVICE(INTEL, 0x0a54),
2109 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2110 NVME_QUIRK_DISCARD_ZEROES, },
2111 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2112 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2113 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2114 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2115 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2116 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2117 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2118 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2119 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2120 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2121 { 0, }
2123 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2125 static struct pci_driver nvme_driver = {
2126 .name = "nvme",
2127 .id_table = nvme_id_table,
2128 .probe = nvme_probe,
2129 .remove = nvme_remove,
2130 .shutdown = nvme_shutdown,
2131 .driver = {
2132 .pm = &nvme_dev_pm_ops,
2134 .sriov_configure = nvme_pci_sriov_configure,
2135 .err_handler = &nvme_err_handler,
2138 static int __init nvme_init(void)
2140 int result;
2142 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2143 if (!nvme_workq)
2144 return -ENOMEM;
2146 result = pci_register_driver(&nvme_driver);
2147 if (result)
2148 destroy_workqueue(nvme_workq);
2149 return result;
2152 static void __exit nvme_exit(void)
2154 pci_unregister_driver(&nvme_driver);
2155 destroy_workqueue(nvme_workq);
2156 _nvme_check_size();
2159 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2160 MODULE_LICENSE("GPL");
2161 MODULE_VERSION("1.0");
2162 module_init(nvme_init);
2163 module_exit(nvme_exit);