1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
21 #define HPET_MASK CLOCKSOURCE_MASK(32)
25 #define FSEC_PER_NSEC 1000000L
27 #define HPET_DEV_USED_BIT 2
28 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID 0x8
30 #define HPET_DEV_FSB_CAP 0x1000
31 #define HPET_DEV_PERI_CAP 0x2000
33 #define HPET_MIN_CYCLES 128
34 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
39 unsigned long hpet_address
;
40 u8 hpet_blockid
; /* OS timer block num */
41 bool hpet_msi_disable
;
44 static unsigned int hpet_num_timers
;
46 static void __iomem
*hpet_virt_address
;
49 struct clock_event_device evt
;
57 inline struct hpet_dev
*EVT_TO_HPET_DEV(struct clock_event_device
*evtdev
)
59 return container_of(evtdev
, struct hpet_dev
, evt
);
62 inline unsigned int hpet_readl(unsigned int a
)
64 return readl(hpet_virt_address
+ a
);
67 static inline void hpet_writel(unsigned int d
, unsigned int a
)
69 writel(d
, hpet_virt_address
+ a
);
73 #include <asm/pgtable.h>
76 static inline void hpet_set_mapping(void)
78 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
81 static inline void hpet_clear_mapping(void)
83 iounmap(hpet_virt_address
);
84 hpet_virt_address
= NULL
;
88 * HPET command line enable / disable
90 bool boot_hpet_disable
;
92 static bool hpet_verbose
;
94 static int __init
hpet_setup(char *str
)
97 char *next
= strchr(str
, ',');
101 if (!strncmp("disable", str
, 7))
102 boot_hpet_disable
= true;
103 if (!strncmp("force", str
, 5))
104 hpet_force_user
= true;
105 if (!strncmp("verbose", str
, 7))
111 __setup("hpet=", hpet_setup
);
113 static int __init
disable_hpet(char *str
)
115 boot_hpet_disable
= true;
118 __setup("nohpet", disable_hpet
);
120 static inline int is_hpet_capable(void)
122 return !boot_hpet_disable
&& hpet_address
;
126 * HPET timer interrupt enable / disable
128 static bool hpet_legacy_int_enabled
;
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
133 int is_hpet_enabled(void)
135 return is_hpet_capable() && hpet_legacy_int_enabled
;
137 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
139 static void _hpet_print_config(const char *function
, int line
)
142 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
143 l
= hpet_readl(HPET_ID
);
144 h
= hpet_readl(HPET_PERIOD
);
145 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
146 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
147 l
= hpet_readl(HPET_CFG
);
148 h
= hpet_readl(HPET_STATUS
);
149 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
150 l
= hpet_readl(HPET_COUNTER
);
151 h
= hpet_readl(HPET_COUNTER
+4);
152 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
154 for (i
= 0; i
< timers
; i
++) {
155 l
= hpet_readl(HPET_Tn_CFG(i
));
156 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
157 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
159 l
= hpet_readl(HPET_Tn_CMP(i
));
160 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
161 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
163 l
= hpet_readl(HPET_Tn_ROUTE(i
));
164 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
165 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
170 #define hpet_print_config() \
173 _hpet_print_config(__func__, __LINE__); \
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
182 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
184 static void hpet_reserve_platform_timers(unsigned int id
)
186 struct hpet __iomem
*hpet
= hpet_virt_address
;
187 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
188 unsigned int nrtimers
, i
;
191 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
193 memset(&hd
, 0, sizeof(hd
));
194 hd
.hd_phys_address
= hpet_address
;
195 hd
.hd_address
= hpet
;
196 hd
.hd_nirqs
= nrtimers
;
197 hpet_reserve_timer(&hd
, 0);
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd
, 1);
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
208 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
209 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
211 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
212 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
213 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
216 hpet_reserve_msi_timers(&hd
);
222 static void hpet_reserve_platform_timers(unsigned int id
) { }
228 static unsigned long hpet_freq
;
230 static struct clock_event_device hpet_clockevent
;
232 static void hpet_stop_counter(void)
234 u32 cfg
= hpet_readl(HPET_CFG
);
235 cfg
&= ~HPET_CFG_ENABLE
;
236 hpet_writel(cfg
, HPET_CFG
);
239 static void hpet_reset_counter(void)
241 hpet_writel(0, HPET_COUNTER
);
242 hpet_writel(0, HPET_COUNTER
+ 4);
245 static void hpet_start_counter(void)
247 unsigned int cfg
= hpet_readl(HPET_CFG
);
248 cfg
|= HPET_CFG_ENABLE
;
249 hpet_writel(cfg
, HPET_CFG
);
252 static void hpet_restart_counter(void)
255 hpet_reset_counter();
256 hpet_start_counter();
259 static void hpet_resume_device(void)
264 static void hpet_resume_counter(struct clocksource
*cs
)
266 hpet_resume_device();
267 hpet_restart_counter();
270 static void hpet_enable_legacy_int(void)
272 unsigned int cfg
= hpet_readl(HPET_CFG
);
274 cfg
|= HPET_CFG_LEGACY
;
275 hpet_writel(cfg
, HPET_CFG
);
276 hpet_legacy_int_enabled
= true;
279 static void hpet_legacy_clockevent_register(void)
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
288 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
289 clockevents_config_and_register(&hpet_clockevent
, hpet_freq
,
290 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
291 global_clock_event
= &hpet_clockevent
;
292 printk(KERN_DEBUG
"hpet clockevent registered\n");
295 static int hpet_set_periodic(struct clock_event_device
*evt
, int timer
)
297 unsigned int cfg
, cmp
, now
;
301 delta
= ((uint64_t)(NSEC_PER_SEC
/ HZ
)) * evt
->mult
;
302 delta
>>= evt
->shift
;
303 now
= hpet_readl(HPET_COUNTER
);
304 cmp
= now
+ (unsigned int)delta
;
305 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
306 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
| HPET_TN_SETVAL
|
308 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
309 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
318 hpet_writel((unsigned int)delta
, HPET_Tn_CMP(timer
));
319 hpet_start_counter();
325 static int hpet_set_oneshot(struct clock_event_device
*evt
, int timer
)
329 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
330 cfg
&= ~HPET_TN_PERIODIC
;
331 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
332 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
337 static int hpet_shutdown(struct clock_event_device
*evt
, int timer
)
341 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
342 cfg
&= ~HPET_TN_ENABLE
;
343 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
348 static int hpet_resume(struct clock_event_device
*evt
, int timer
)
351 hpet_enable_legacy_int();
353 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
355 irq_domain_activate_irq(irq_get_irq_data(hdev
->irq
));
356 disable_irq(hdev
->irq
);
357 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
358 enable_irq(hdev
->irq
);
365 static int hpet_next_event(unsigned long delta
,
366 struct clock_event_device
*evt
, int timer
)
371 cnt
= hpet_readl(HPET_COUNTER
);
373 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
376 * HPETs are a complete disaster. The compare register is
377 * based on a equal comparison and neither provides a less
378 * than or equal functionality (which would require to take
379 * the wraparound into account) nor a simple count down event
380 * mode. Further the write to the comparator register is
381 * delayed internally up to two HPET clock cycles in certain
382 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
383 * longer delays. We worked around that by reading back the
384 * compare register, but that required another workaround for
385 * ICH9,10 chips where the first readout after write can
386 * return the old stale value. We already had a minimum
387 * programming delta of 5us enforced, but a NMI or SMI hitting
388 * between the counter readout and the comparator write can
389 * move us behind that point easily. Now instead of reading
390 * the compare register back several times, we make the ETIME
391 * decision based on the following: Return ETIME if the
392 * counter value after the write is less than HPET_MIN_CYCLES
393 * away from the event or if the counter is already ahead of
394 * the event. The minimum programming delta for the generic
395 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
399 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
402 static int hpet_legacy_shutdown(struct clock_event_device
*evt
)
404 return hpet_shutdown(evt
, 0);
407 static int hpet_legacy_set_oneshot(struct clock_event_device
*evt
)
409 return hpet_set_oneshot(evt
, 0);
412 static int hpet_legacy_set_periodic(struct clock_event_device
*evt
)
414 return hpet_set_periodic(evt
, 0);
417 static int hpet_legacy_resume(struct clock_event_device
*evt
)
419 return hpet_resume(evt
, 0);
422 static int hpet_legacy_next_event(unsigned long delta
,
423 struct clock_event_device
*evt
)
425 return hpet_next_event(delta
, evt
, 0);
429 * The hpet clock event device
431 static struct clock_event_device hpet_clockevent
= {
433 .features
= CLOCK_EVT_FEAT_PERIODIC
|
434 CLOCK_EVT_FEAT_ONESHOT
,
435 .set_state_periodic
= hpet_legacy_set_periodic
,
436 .set_state_oneshot
= hpet_legacy_set_oneshot
,
437 .set_state_shutdown
= hpet_legacy_shutdown
,
438 .tick_resume
= hpet_legacy_resume
,
439 .set_next_event
= hpet_legacy_next_event
,
447 #ifdef CONFIG_PCI_MSI
449 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
450 static struct hpet_dev
*hpet_devs
;
451 static struct irq_domain
*hpet_domain
;
453 void hpet_msi_unmask(struct irq_data
*data
)
455 struct hpet_dev
*hdev
= irq_data_get_irq_handler_data(data
);
459 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
460 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
461 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
464 void hpet_msi_mask(struct irq_data
*data
)
466 struct hpet_dev
*hdev
= irq_data_get_irq_handler_data(data
);
470 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
471 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
472 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
475 void hpet_msi_write(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
477 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
478 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
481 void hpet_msi_read(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
483 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
484 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
488 static int hpet_msi_shutdown(struct clock_event_device
*evt
)
490 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
492 return hpet_shutdown(evt
, hdev
->num
);
495 static int hpet_msi_set_oneshot(struct clock_event_device
*evt
)
497 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
499 return hpet_set_oneshot(evt
, hdev
->num
);
502 static int hpet_msi_set_periodic(struct clock_event_device
*evt
)
504 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
506 return hpet_set_periodic(evt
, hdev
->num
);
509 static int hpet_msi_resume(struct clock_event_device
*evt
)
511 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
513 return hpet_resume(evt
, hdev
->num
);
516 static int hpet_msi_next_event(unsigned long delta
,
517 struct clock_event_device
*evt
)
519 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
520 return hpet_next_event(delta
, evt
, hdev
->num
);
523 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
525 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
526 struct clock_event_device
*hevt
= &dev
->evt
;
528 if (!hevt
->event_handler
) {
529 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
534 hevt
->event_handler(hevt
);
538 static int hpet_setup_irq(struct hpet_dev
*dev
)
541 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
542 IRQF_TIMER
| IRQF_NOBALANCING
,
546 disable_irq(dev
->irq
);
547 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
548 enable_irq(dev
->irq
);
550 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
551 dev
->name
, dev
->irq
);
556 /* This should be called in specific @cpu */
557 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
559 struct clock_event_device
*evt
= &hdev
->evt
;
561 WARN_ON(cpu
!= smp_processor_id());
562 if (!(hdev
->flags
& HPET_DEV_VALID
))
566 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
567 evt
->name
= hdev
->name
;
568 hpet_setup_irq(hdev
);
569 evt
->irq
= hdev
->irq
;
572 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
573 if (hdev
->flags
& HPET_DEV_PERI_CAP
) {
574 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
575 evt
->set_state_periodic
= hpet_msi_set_periodic
;
578 evt
->set_state_shutdown
= hpet_msi_shutdown
;
579 evt
->set_state_oneshot
= hpet_msi_set_oneshot
;
580 evt
->tick_resume
= hpet_msi_resume
;
581 evt
->set_next_event
= hpet_msi_next_event
;
582 evt
->cpumask
= cpumask_of(hdev
->cpu
);
584 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
589 /* Reserve at least one timer for userspace (/dev/hpet) */
590 #define RESERVE_TIMERS 1
592 #define RESERVE_TIMERS 0
595 static void hpet_msi_capability_lookup(unsigned int start_timer
)
598 unsigned int num_timers
;
599 unsigned int num_timers_used
= 0;
602 if (hpet_msi_disable
)
605 if (boot_cpu_has(X86_FEATURE_ARAT
))
607 id
= hpet_readl(HPET_ID
);
609 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
610 num_timers
++; /* Value read out starts from 0 */
613 hpet_domain
= hpet_create_irq_domain(hpet_blockid
);
617 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
621 hpet_num_timers
= num_timers
;
623 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
624 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
625 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
627 /* Only consider HPET timer with MSI support */
628 if (!(cfg
& HPET_TN_FSB_CAP
))
632 if (cfg
& HPET_TN_PERIODIC_CAP
)
633 hdev
->flags
|= HPET_DEV_PERI_CAP
;
634 sprintf(hdev
->name
, "hpet%d", i
);
637 irq
= hpet_assign_irq(hpet_domain
, hdev
, hdev
->num
);
642 hdev
->flags
|= HPET_DEV_FSB_CAP
;
643 hdev
->flags
|= HPET_DEV_VALID
;
645 if (num_timers_used
== num_possible_cpus())
649 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650 num_timers
, num_timers_used
);
654 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
661 for (i
= 0; i
< hpet_num_timers
; i
++) {
662 struct hpet_dev
*hdev
= &hpet_devs
[i
];
664 if (!(hdev
->flags
& HPET_DEV_VALID
))
667 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
668 hpet_reserve_timer(hd
, hdev
->num
);
673 static struct hpet_dev
*hpet_get_unused_timer(void)
680 for (i
= 0; i
< hpet_num_timers
; i
++) {
681 struct hpet_dev
*hdev
= &hpet_devs
[i
];
683 if (!(hdev
->flags
& HPET_DEV_VALID
))
685 if (test_and_set_bit(HPET_DEV_USED_BIT
,
686 (unsigned long *)&hdev
->flags
))
693 struct hpet_work_struct
{
694 struct delayed_work work
;
695 struct completion complete
;
698 static void hpet_work(struct work_struct
*w
)
700 struct hpet_dev
*hdev
;
701 int cpu
= smp_processor_id();
702 struct hpet_work_struct
*hpet_work
;
704 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
706 hdev
= hpet_get_unused_timer();
708 init_one_hpet_msi_clockevent(hdev
, cpu
);
710 complete(&hpet_work
->complete
);
713 static int hpet_cpuhp_notify(struct notifier_block
*n
,
714 unsigned long action
, void *hcpu
)
716 unsigned long cpu
= (unsigned long)hcpu
;
717 struct hpet_work_struct work
;
718 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
720 switch (action
& ~CPU_TASKS_FROZEN
) {
722 INIT_DELAYED_WORK_ONSTACK(&work
.work
, hpet_work
);
723 init_completion(&work
.complete
);
724 /* FIXME: add schedule_work_on() */
725 schedule_delayed_work_on(cpu
, &work
.work
, 0);
726 wait_for_completion(&work
.complete
);
727 destroy_delayed_work_on_stack(&work
.work
);
731 free_irq(hdev
->irq
, hdev
);
732 hdev
->flags
&= ~HPET_DEV_USED
;
733 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
741 static void hpet_msi_capability_lookup(unsigned int start_timer
)
747 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
753 static int hpet_cpuhp_notify(struct notifier_block
*n
,
754 unsigned long action
, void *hcpu
)
762 * Clock source related code
764 static cycle_t
read_hpet(struct clocksource
*cs
)
766 return (cycle_t
)hpet_readl(HPET_COUNTER
);
769 static struct clocksource clocksource_hpet
= {
774 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
775 .resume
= hpet_resume_counter
,
776 .archdata
= { .vclock_mode
= VCLOCK_HPET
},
779 static int hpet_clocksource_register(void)
784 /* Start the counter */
785 hpet_restart_counter();
787 /* Verify whether hpet counter works */
788 t1
= hpet_readl(HPET_COUNTER
);
792 * We don't know the TSC frequency yet, but waiting for
793 * 200000 TSC cycles is safe:
800 } while ((now
- start
) < 200000UL);
802 if (t1
== hpet_readl(HPET_COUNTER
)) {
804 "HPET counter not counting. HPET disabled\n");
808 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
812 static u32
*hpet_boot_cfg
;
815 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
817 int __init
hpet_enable(void)
819 u32 hpet_period
, cfg
, id
;
821 unsigned int i
, last
;
823 if (!is_hpet_capable())
829 * Read the period and check for a sane value:
831 hpet_period
= hpet_readl(HPET_PERIOD
);
834 * AMD SB700 based systems with spread spectrum enabled use a
835 * SMM based HPET emulation to provide proper frequency
836 * setting. The SMM code is initialized with the first HPET
837 * register access and takes some time to complete. During
838 * this time the config register reads 0xffffffff. We check
839 * for max. 1000 loops whether the config register reads a non
840 * 0xffffffff value to make sure that HPET is up and running
841 * before we go further. A counting loop is safe, as the HPET
842 * access takes thousands of CPU cycles. On non SB700 based
843 * machines this check is only done once and has no side
846 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
849 "HPET config register value = 0xFFFFFFFF. "
855 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
859 * The period is a femto seconds value. Convert it to a
863 do_div(freq
, hpet_period
);
867 * Read the HPET ID register to retrieve the IRQ routing
868 * information and the number of channels
870 id
= hpet_readl(HPET_ID
);
873 last
= (id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
;
875 #ifdef CONFIG_HPET_EMULATE_RTC
877 * The legacy routing mode needs at least two channels, tick timer
878 * and the rtc emulation channel.
884 cfg
= hpet_readl(HPET_CFG
);
885 hpet_boot_cfg
= kmalloc((last
+ 2) * sizeof(*hpet_boot_cfg
),
888 *hpet_boot_cfg
= cfg
;
890 pr_warn("HPET initial state will not be saved\n");
891 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
892 hpet_writel(cfg
, HPET_CFG
);
894 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
897 for (i
= 0; i
<= last
; ++i
) {
898 cfg
= hpet_readl(HPET_Tn_CFG(i
));
900 hpet_boot_cfg
[i
+ 1] = cfg
;
901 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
902 hpet_writel(cfg
, HPET_Tn_CFG(i
));
903 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
904 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
905 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
907 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
912 if (hpet_clocksource_register())
915 if (id
& HPET_ID_LEGSUP
) {
916 hpet_legacy_clockevent_register();
922 hpet_clear_mapping();
928 * Needs to be late, as the reserve_timer code calls kalloc !
930 * Not a problem on i386 as hpet_enable is called from late_time_init,
931 * but on x86_64 it is necessary !
933 static __init
int hpet_late_init(void)
937 if (boot_hpet_disable
)
941 if (!force_hpet_address
)
944 hpet_address
= force_hpet_address
;
948 if (!hpet_virt_address
)
951 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
952 hpet_msi_capability_lookup(2);
954 hpet_msi_capability_lookup(0);
956 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
959 if (hpet_msi_disable
)
962 if (boot_cpu_has(X86_FEATURE_ARAT
))
965 cpu_notifier_register_begin();
966 for_each_online_cpu(cpu
) {
967 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
970 /* This notifier should be called after workqueue is ready */
971 __hotcpu_notifier(hpet_cpuhp_notify
, -20);
972 cpu_notifier_register_done();
976 fs_initcall(hpet_late_init
);
978 void hpet_disable(void)
980 if (is_hpet_capable() && hpet_virt_address
) {
981 unsigned int cfg
= hpet_readl(HPET_CFG
), id
, last
;
984 cfg
= *hpet_boot_cfg
;
985 else if (hpet_legacy_int_enabled
) {
986 cfg
&= ~HPET_CFG_LEGACY
;
987 hpet_legacy_int_enabled
= false;
989 cfg
&= ~HPET_CFG_ENABLE
;
990 hpet_writel(cfg
, HPET_CFG
);
995 id
= hpet_readl(HPET_ID
);
996 last
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
998 for (id
= 0; id
<= last
; ++id
)
999 hpet_writel(hpet_boot_cfg
[id
+ 1], HPET_Tn_CFG(id
));
1001 if (*hpet_boot_cfg
& HPET_CFG_ENABLE
)
1002 hpet_writel(*hpet_boot_cfg
, HPET_CFG
);
1006 #ifdef CONFIG_HPET_EMULATE_RTC
1008 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1009 * is enabled, we support RTC interrupt functionality in software.
1010 * RTC has 3 kinds of interrupts:
1011 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1013 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1014 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1015 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1016 * (1) and (2) above are implemented using polling at a frequency of
1017 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1018 * overhead. (DEFAULT_RTC_INT_FREQ)
1019 * For (3), we use interrupts at 64Hz or user specified periodic
1020 * frequency, whichever is higher.
1022 #include <linux/mc146818rtc.h>
1023 #include <linux/rtc.h>
1024 #include <asm/rtc.h>
1026 #define DEFAULT_RTC_INT_FREQ 64
1027 #define DEFAULT_RTC_SHIFT 6
1028 #define RTC_NUM_INTS 1
1030 static unsigned long hpet_rtc_flags
;
1031 static int hpet_prev_update_sec
;
1032 static struct rtc_time hpet_alarm_time
;
1033 static unsigned long hpet_pie_count
;
1034 static u32 hpet_t1_cmp
;
1035 static u32 hpet_default_delta
;
1036 static u32 hpet_pie_delta
;
1037 static unsigned long hpet_pie_limit
;
1039 static rtc_irq_handler irq_handler
;
1042 * Check that the hpet counter c1 is ahead of the c2
1044 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1046 return (s32
)(c2
- c1
) < 0;
1050 * Registers a IRQ handler.
1052 int hpet_register_irq_handler(rtc_irq_handler handler
)
1054 if (!is_hpet_enabled())
1059 irq_handler
= handler
;
1063 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1066 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1069 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1071 if (!is_hpet_enabled())
1077 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1080 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1081 * is not supported by all HPET implementations for timer 1.
1083 * hpet_rtc_timer_init() is called when the rtc is initialized.
1085 int hpet_rtc_timer_init(void)
1087 unsigned int cfg
, cnt
, delta
;
1088 unsigned long flags
;
1090 if (!is_hpet_enabled())
1093 if (!hpet_default_delta
) {
1096 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1097 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1098 hpet_default_delta
= clc
;
1101 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1102 delta
= hpet_default_delta
;
1104 delta
= hpet_pie_delta
;
1106 local_irq_save(flags
);
1108 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1109 hpet_writel(cnt
, HPET_T1_CMP
);
1112 cfg
= hpet_readl(HPET_T1_CFG
);
1113 cfg
&= ~HPET_TN_PERIODIC
;
1114 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1115 hpet_writel(cfg
, HPET_T1_CFG
);
1117 local_irq_restore(flags
);
1121 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1123 static void hpet_disable_rtc_channel(void)
1125 u32 cfg
= hpet_readl(HPET_T1_CFG
);
1126 cfg
&= ~HPET_TN_ENABLE
;
1127 hpet_writel(cfg
, HPET_T1_CFG
);
1131 * The functions below are called from rtc driver.
1132 * Return 0 if HPET is not being used.
1133 * Otherwise do the necessary changes and return 1.
1135 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1137 if (!is_hpet_enabled())
1140 hpet_rtc_flags
&= ~bit_mask
;
1141 if (unlikely(!hpet_rtc_flags
))
1142 hpet_disable_rtc_channel();
1146 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1148 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1150 unsigned long oldbits
= hpet_rtc_flags
;
1152 if (!is_hpet_enabled())
1155 hpet_rtc_flags
|= bit_mask
;
1157 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1158 hpet_prev_update_sec
= -1;
1161 hpet_rtc_timer_init();
1165 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1167 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1170 if (!is_hpet_enabled())
1173 hpet_alarm_time
.tm_hour
= hrs
;
1174 hpet_alarm_time
.tm_min
= min
;
1175 hpet_alarm_time
.tm_sec
= sec
;
1179 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1181 int hpet_set_periodic_freq(unsigned long freq
)
1185 if (!is_hpet_enabled())
1188 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1189 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1191 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1193 clc
>>= hpet_clockevent
.shift
;
1194 hpet_pie_delta
= clc
;
1199 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1201 int hpet_rtc_dropped_irq(void)
1203 return is_hpet_enabled();
1205 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1207 static void hpet_rtc_timer_reinit(void)
1212 if (unlikely(!hpet_rtc_flags
))
1213 hpet_disable_rtc_channel();
1215 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1216 delta
= hpet_default_delta
;
1218 delta
= hpet_pie_delta
;
1221 * Increment the comparator value until we are ahead of the
1225 hpet_t1_cmp
+= delta
;
1226 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1228 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1231 if (hpet_rtc_flags
& RTC_PIE
)
1232 hpet_pie_count
+= lost_ints
;
1233 if (printk_ratelimit())
1234 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1239 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1241 struct rtc_time curr_time
;
1242 unsigned long rtc_int_flag
= 0;
1244 hpet_rtc_timer_reinit();
1245 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1247 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1248 get_rtc_time(&curr_time
);
1250 if (hpet_rtc_flags
& RTC_UIE
&&
1251 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1252 if (hpet_prev_update_sec
>= 0)
1253 rtc_int_flag
= RTC_UF
;
1254 hpet_prev_update_sec
= curr_time
.tm_sec
;
1257 if (hpet_rtc_flags
& RTC_PIE
&&
1258 ++hpet_pie_count
>= hpet_pie_limit
) {
1259 rtc_int_flag
|= RTC_PF
;
1263 if (hpet_rtc_flags
& RTC_AIE
&&
1264 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1265 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1266 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1267 rtc_int_flag
|= RTC_AF
;
1270 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1272 irq_handler(rtc_int_flag
, dev_id
);
1276 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);