1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <uapi/linux/limits.h>
79 /* flags stating the success for a syscall */
80 #define AUDITSC_INVALID 0
81 #define AUDITSC_SUCCESS 1
82 #define AUDITSC_FAILURE 2
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
87 /* max length to print of cmdline/proctitle value during audit */
88 #define MAX_PROCTITLE_AUDIT_LEN 128
90 /* number of audit rules */
93 /* determines whether we collect data for signals sent */
96 struct audit_aux_data
{
97 struct audit_aux_data
*next
;
101 #define AUDIT_AUX_IPCPERM 0
103 /* Number of target pids per aux struct. */
104 #define AUDIT_AUX_PIDS 16
106 struct audit_aux_data_pids
{
107 struct audit_aux_data d
;
108 pid_t target_pid
[AUDIT_AUX_PIDS
];
109 kuid_t target_auid
[AUDIT_AUX_PIDS
];
110 kuid_t target_uid
[AUDIT_AUX_PIDS
];
111 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
112 u32 target_sid
[AUDIT_AUX_PIDS
];
113 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
117 struct audit_aux_data_bprm_fcaps
{
118 struct audit_aux_data d
;
119 struct audit_cap_data fcap
;
120 unsigned int fcap_ver
;
121 struct audit_cap_data old_pcap
;
122 struct audit_cap_data new_pcap
;
125 struct audit_tree_refs
{
126 struct audit_tree_refs
*next
;
127 struct audit_chunk
*c
[31];
130 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
137 switch (audit_classify_syscall(ctx
->arch
, n
)) {
139 if ((mask
& AUDIT_PERM_WRITE
) &&
140 audit_match_class(AUDIT_CLASS_WRITE
, n
))
142 if ((mask
& AUDIT_PERM_READ
) &&
143 audit_match_class(AUDIT_CLASS_READ
, n
))
145 if ((mask
& AUDIT_PERM_ATTR
) &&
146 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
149 case 1: /* 32bit on biarch */
150 if ((mask
& AUDIT_PERM_WRITE
) &&
151 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
153 if ((mask
& AUDIT_PERM_READ
) &&
154 audit_match_class(AUDIT_CLASS_READ_32
, n
))
156 if ((mask
& AUDIT_PERM_ATTR
) &&
157 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
161 return mask
& ACC_MODE(ctx
->argv
[1]);
163 return mask
& ACC_MODE(ctx
->argv
[2]);
164 case 4: /* socketcall */
165 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
167 return mask
& AUDIT_PERM_EXEC
;
173 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
175 struct audit_names
*n
;
176 umode_t mode
= (umode_t
)val
;
181 list_for_each_entry(n
, &ctx
->names_list
, list
) {
182 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
183 ((n
->mode
& S_IFMT
) == mode
))
191 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
192 * ->first_trees points to its beginning, ->trees - to the current end of data.
193 * ->tree_count is the number of free entries in array pointed to by ->trees.
194 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
195 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
196 * it's going to remain 1-element for almost any setup) until we free context itself.
197 * References in it _are_ dropped - at the same time we free/drop aux stuff.
200 #ifdef CONFIG_AUDIT_TREE
201 static void audit_set_auditable(struct audit_context
*ctx
)
205 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
209 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
211 struct audit_tree_refs
*p
= ctx
->trees
;
212 int left
= ctx
->tree_count
;
214 p
->c
[--left
] = chunk
;
215 ctx
->tree_count
= left
;
224 ctx
->tree_count
= 30;
230 static int grow_tree_refs(struct audit_context
*ctx
)
232 struct audit_tree_refs
*p
= ctx
->trees
;
233 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
239 p
->next
= ctx
->trees
;
241 ctx
->first_trees
= ctx
->trees
;
242 ctx
->tree_count
= 31;
247 static void unroll_tree_refs(struct audit_context
*ctx
,
248 struct audit_tree_refs
*p
, int count
)
250 #ifdef CONFIG_AUDIT_TREE
251 struct audit_tree_refs
*q
;
254 /* we started with empty chain */
255 p
= ctx
->first_trees
;
257 /* if the very first allocation has failed, nothing to do */
262 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
264 audit_put_chunk(q
->c
[n
]);
268 while (n
-- > ctx
->tree_count
) {
269 audit_put_chunk(q
->c
[n
]);
273 ctx
->tree_count
= count
;
277 static void free_tree_refs(struct audit_context
*ctx
)
279 struct audit_tree_refs
*p
, *q
;
280 for (p
= ctx
->first_trees
; p
; p
= q
) {
286 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
288 #ifdef CONFIG_AUDIT_TREE
289 struct audit_tree_refs
*p
;
294 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
295 for (n
= 0; n
< 31; n
++)
296 if (audit_tree_match(p
->c
[n
], tree
))
301 for (n
= ctx
->tree_count
; n
< 31; n
++)
302 if (audit_tree_match(p
->c
[n
], tree
))
309 static int audit_compare_uid(kuid_t uid
,
310 struct audit_names
*name
,
311 struct audit_field
*f
,
312 struct audit_context
*ctx
)
314 struct audit_names
*n
;
318 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
324 list_for_each_entry(n
, &ctx
->names_list
, list
) {
325 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
333 static int audit_compare_gid(kgid_t gid
,
334 struct audit_names
*name
,
335 struct audit_field
*f
,
336 struct audit_context
*ctx
)
338 struct audit_names
*n
;
342 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
348 list_for_each_entry(n
, &ctx
->names_list
, list
) {
349 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
357 static int audit_field_compare(struct task_struct
*tsk
,
358 const struct cred
*cred
,
359 struct audit_field
*f
,
360 struct audit_context
*ctx
,
361 struct audit_names
*name
)
364 /* process to file object comparisons */
365 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
366 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
367 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
368 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
369 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
370 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
371 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
372 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
373 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
374 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
375 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
376 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
377 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
378 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
379 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
380 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
381 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
382 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
383 /* uid comparisons */
384 case AUDIT_COMPARE_UID_TO_AUID
:
385 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
386 case AUDIT_COMPARE_UID_TO_EUID
:
387 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
388 case AUDIT_COMPARE_UID_TO_SUID
:
389 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
390 case AUDIT_COMPARE_UID_TO_FSUID
:
391 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
392 /* auid comparisons */
393 case AUDIT_COMPARE_AUID_TO_EUID
:
394 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
395 case AUDIT_COMPARE_AUID_TO_SUID
:
396 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
397 case AUDIT_COMPARE_AUID_TO_FSUID
:
398 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
399 /* euid comparisons */
400 case AUDIT_COMPARE_EUID_TO_SUID
:
401 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
402 case AUDIT_COMPARE_EUID_TO_FSUID
:
403 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
404 /* suid comparisons */
405 case AUDIT_COMPARE_SUID_TO_FSUID
:
406 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
407 /* gid comparisons */
408 case AUDIT_COMPARE_GID_TO_EGID
:
409 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
410 case AUDIT_COMPARE_GID_TO_SGID
:
411 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
412 case AUDIT_COMPARE_GID_TO_FSGID
:
413 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
414 /* egid comparisons */
415 case AUDIT_COMPARE_EGID_TO_SGID
:
416 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
417 case AUDIT_COMPARE_EGID_TO_FSGID
:
418 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
419 /* sgid comparison */
420 case AUDIT_COMPARE_SGID_TO_FSGID
:
421 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
423 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
429 /* Determine if any context name data matches a rule's watch data */
430 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * If task_creation is true, this is an explicit indication that we are
434 * filtering a task rule at task creation time. This and tsk == current are
435 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 static int audit_filter_rules(struct task_struct
*tsk
,
438 struct audit_krule
*rule
,
439 struct audit_context
*ctx
,
440 struct audit_names
*name
,
441 enum audit_state
*state
,
444 const struct cred
*cred
;
448 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
450 for (i
= 0; i
< rule
->field_count
; i
++) {
451 struct audit_field
*f
= &rule
->fields
[i
];
452 struct audit_names
*n
;
458 pid
= task_pid_nr(tsk
);
459 result
= audit_comparator(pid
, f
->op
, f
->val
);
464 ctx
->ppid
= task_ppid_nr(tsk
);
465 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
469 result
= audit_exe_compare(tsk
, rule
->exe
);
472 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
475 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
478 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
481 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
484 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
485 if (f
->op
== Audit_equal
) {
487 result
= in_group_p(f
->gid
);
488 } else if (f
->op
== Audit_not_equal
) {
490 result
= !in_group_p(f
->gid
);
494 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
495 if (f
->op
== Audit_equal
) {
497 result
= in_egroup_p(f
->gid
);
498 } else if (f
->op
== Audit_not_equal
) {
500 result
= !in_egroup_p(f
->gid
);
504 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
507 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
510 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
514 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
518 if (ctx
&& ctx
->return_valid
)
519 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
522 if (ctx
&& ctx
->return_valid
) {
524 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
526 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
531 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
532 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
535 list_for_each_entry(n
, &ctx
->names_list
, list
) {
536 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
537 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
546 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
547 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
550 list_for_each_entry(n
, &ctx
->names_list
, list
) {
551 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
552 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
561 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
563 list_for_each_entry(n
, &ctx
->names_list
, list
) {
564 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
573 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
575 list_for_each_entry(n
, &ctx
->names_list
, list
) {
576 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
585 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
587 list_for_each_entry(n
, &ctx
->names_list
, list
) {
588 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
597 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
601 result
= match_tree_refs(ctx
, rule
->tree
);
604 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
606 case AUDIT_LOGINUID_SET
:
607 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
609 case AUDIT_SUBJ_USER
:
610 case AUDIT_SUBJ_ROLE
:
611 case AUDIT_SUBJ_TYPE
:
614 /* NOTE: this may return negative values indicating
615 a temporary error. We simply treat this as a
616 match for now to avoid losing information that
617 may be wanted. An error message will also be
621 security_task_getsecid(tsk
, &sid
);
624 result
= security_audit_rule_match(sid
, f
->type
,
633 case AUDIT_OBJ_LEV_LOW
:
634 case AUDIT_OBJ_LEV_HIGH
:
635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
638 /* Find files that match */
640 result
= security_audit_rule_match(
641 name
->osid
, f
->type
, f
->op
,
644 list_for_each_entry(n
, &ctx
->names_list
, list
) {
645 if (security_audit_rule_match(n
->osid
, f
->type
,
653 /* Find ipc objects that match */
654 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
656 if (security_audit_rule_match(ctx
->ipc
.osid
,
667 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
669 case AUDIT_FILTERKEY
:
670 /* ignore this field for filtering */
674 result
= audit_match_perm(ctx
, f
->val
);
677 result
= audit_match_filetype(ctx
, f
->val
);
679 case AUDIT_FIELD_COMPARE
:
680 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
688 if (rule
->prio
<= ctx
->prio
)
690 if (rule
->filterkey
) {
691 kfree(ctx
->filterkey
);
692 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
694 ctx
->prio
= rule
->prio
;
696 switch (rule
->action
) {
697 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
698 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
703 /* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task. Since we only have the task
705 * structure at this point, we can only check uid and gid.
707 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
709 struct audit_entry
*e
;
710 enum audit_state state
;
713 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
714 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
716 if (state
== AUDIT_RECORD_CONTEXT
)
717 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
723 return AUDIT_BUILD_CONTEXT
;
726 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
730 if (val
> 0xffffffff)
733 word
= AUDIT_WORD(val
);
734 if (word
>= AUDIT_BITMASK_SIZE
)
737 bit
= AUDIT_BIT(val
);
739 return rule
->mask
[word
] & bit
;
742 /* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
744 * also not high enough that we already know we have to write an audit
745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
747 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
748 struct audit_context
*ctx
,
749 struct list_head
*list
)
751 struct audit_entry
*e
;
752 enum audit_state state
;
754 if (audit_pid
&& tsk
->tgid
== audit_pid
)
755 return AUDIT_DISABLED
;
758 if (!list_empty(list
)) {
759 list_for_each_entry_rcu(e
, list
, list
) {
760 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
761 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
764 ctx
->current_state
= state
;
770 return AUDIT_BUILD_CONTEXT
;
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
777 static int audit_filter_inode_name(struct task_struct
*tsk
,
778 struct audit_names
*n
,
779 struct audit_context
*ctx
) {
780 int h
= audit_hash_ino((u32
)n
->ino
);
781 struct list_head
*list
= &audit_inode_hash
[h
];
782 struct audit_entry
*e
;
783 enum audit_state state
;
785 if (list_empty(list
))
788 list_for_each_entry_rcu(e
, list
, list
) {
789 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
790 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
791 ctx
->current_state
= state
;
799 /* At syscall exit time, this filter is called if any audit_names have been
800 * collected during syscall processing. We only check rules in sublists at hash
801 * buckets applicable to the inode numbers in audit_names.
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
804 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
806 struct audit_names
*n
;
808 if (audit_pid
&& tsk
->tgid
== audit_pid
)
813 list_for_each_entry(n
, &ctx
->names_list
, list
) {
814 if (audit_filter_inode_name(tsk
, n
, ctx
))
820 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
825 struct audit_context
*context
= tsk
->audit_context
;
829 context
->return_valid
= return_valid
;
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
840 * but is faster than a bunch of ||
842 if (unlikely(return_code
<= -ERESTARTSYS
) &&
843 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
844 (return_code
!= -ENOIOCTLCMD
))
845 context
->return_code
= -EINTR
;
847 context
->return_code
= return_code
;
849 if (context
->in_syscall
&& !context
->dummy
) {
850 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
851 audit_filter_inodes(tsk
, context
);
854 tsk
->audit_context
= NULL
;
858 static inline void audit_proctitle_free(struct audit_context
*context
)
860 kfree(context
->proctitle
.value
);
861 context
->proctitle
.value
= NULL
;
862 context
->proctitle
.len
= 0;
865 static inline void audit_free_names(struct audit_context
*context
)
867 struct audit_names
*n
, *next
;
869 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
876 context
->name_count
= 0;
877 path_put(&context
->pwd
);
878 context
->pwd
.dentry
= NULL
;
879 context
->pwd
.mnt
= NULL
;
882 static inline void audit_free_aux(struct audit_context
*context
)
884 struct audit_aux_data
*aux
;
886 while ((aux
= context
->aux
)) {
887 context
->aux
= aux
->next
;
890 while ((aux
= context
->aux_pids
)) {
891 context
->aux_pids
= aux
->next
;
896 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
898 struct audit_context
*context
;
900 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
903 context
->state
= state
;
904 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
905 INIT_LIST_HEAD(&context
->killed_trees
);
906 INIT_LIST_HEAD(&context
->names_list
);
911 * audit_alloc - allocate an audit context block for a task
914 * Filter on the task information and allocate a per-task audit context
915 * if necessary. Doing so turns on system call auditing for the
916 * specified task. This is called from copy_process, so no lock is
919 int audit_alloc(struct task_struct
*tsk
)
921 struct audit_context
*context
;
922 enum audit_state state
;
925 if (likely(!audit_ever_enabled
))
926 return 0; /* Return if not auditing. */
928 state
= audit_filter_task(tsk
, &key
);
929 if (state
== AUDIT_DISABLED
) {
930 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
934 if (!(context
= audit_alloc_context(state
))) {
936 audit_log_lost("out of memory in audit_alloc");
939 context
->filterkey
= key
;
941 tsk
->audit_context
= context
;
942 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
946 static inline void audit_free_context(struct audit_context
*context
)
948 audit_free_names(context
);
949 unroll_tree_refs(context
, NULL
, 0);
950 free_tree_refs(context
);
951 audit_free_aux(context
);
952 kfree(context
->filterkey
);
953 kfree(context
->sockaddr
);
954 audit_proctitle_free(context
);
958 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
959 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
962 struct audit_buffer
*ab
;
967 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
971 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
972 from_kuid(&init_user_ns
, auid
),
973 from_kuid(&init_user_ns
, uid
), sessionid
);
975 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
976 audit_log_format(ab
, " obj=(none)");
979 audit_log_format(ab
, " obj=%s", ctx
);
980 security_release_secctx(ctx
, len
);
983 audit_log_format(ab
, " ocomm=");
984 audit_log_untrustedstring(ab
, comm
);
991 * to_send and len_sent accounting are very loose estimates. We aren't
992 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
993 * within about 500 bytes (next page boundary)
995 * why snprintf? an int is up to 12 digits long. if we just assumed when
996 * logging that a[%d]= was going to be 16 characters long we would be wasting
997 * space in every audit message. In one 7500 byte message we can log up to
998 * about 1000 min size arguments. That comes down to about 50% waste of space
999 * if we didn't do the snprintf to find out how long arg_num_len was.
1001 static int audit_log_single_execve_arg(struct audit_context
*context
,
1002 struct audit_buffer
**ab
,
1005 const char __user
*p
,
1008 char arg_num_len_buf
[12];
1009 const char __user
*tmp_p
= p
;
1010 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1011 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1012 size_t len
, len_left
, to_send
;
1013 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1014 unsigned int i
, has_cntl
= 0, too_long
= 0;
1017 /* strnlen_user includes the null we don't want to send */
1018 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1021 * We just created this mm, if we can't find the strings
1022 * we just copied into it something is _very_ wrong. Similar
1023 * for strings that are too long, we should not have created
1026 if (WARN_ON_ONCE(len
< 0 || len
> MAX_ARG_STRLEN
- 1)) {
1027 send_sig(SIGKILL
, current
, 0);
1031 /* walk the whole argument looking for non-ascii chars */
1033 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1034 to_send
= MAX_EXECVE_AUDIT_LEN
;
1037 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1039 * There is no reason for this copy to be short. We just
1040 * copied them here, and the mm hasn't been exposed to user-
1045 send_sig(SIGKILL
, current
, 0);
1048 buf
[to_send
] = '\0';
1049 has_cntl
= audit_string_contains_control(buf
, to_send
);
1052 * hex messages get logged as 2 bytes, so we can only
1053 * send half as much in each message
1055 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1058 len_left
-= to_send
;
1060 } while (len_left
> 0);
1064 if (len
> max_execve_audit_len
)
1067 /* rewalk the argument actually logging the message */
1068 for (i
= 0; len_left
> 0; i
++) {
1071 if (len_left
> max_execve_audit_len
)
1072 to_send
= max_execve_audit_len
;
1076 /* do we have space left to send this argument in this ab? */
1077 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1079 room_left
-= (to_send
* 2);
1081 room_left
-= to_send
;
1082 if (room_left
< 0) {
1085 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1091 * first record needs to say how long the original string was
1092 * so we can be sure nothing was lost.
1094 if ((i
== 0) && (too_long
))
1095 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1096 has_cntl
? 2*len
: len
);
1099 * normally arguments are small enough to fit and we already
1100 * filled buf above when we checked for control characters
1101 * so don't bother with another copy_from_user
1103 if (len
>= max_execve_audit_len
)
1104 ret
= copy_from_user(buf
, p
, to_send
);
1109 send_sig(SIGKILL
, current
, 0);
1112 buf
[to_send
] = '\0';
1114 /* actually log it */
1115 audit_log_format(*ab
, " a%d", arg_num
);
1117 audit_log_format(*ab
, "[%d]", i
);
1118 audit_log_format(*ab
, "=");
1120 audit_log_n_hex(*ab
, buf
, to_send
);
1122 audit_log_string(*ab
, buf
);
1125 len_left
-= to_send
;
1126 *len_sent
+= arg_num_len
;
1128 *len_sent
+= to_send
* 2;
1130 *len_sent
+= to_send
;
1132 /* include the null we didn't log */
1136 static void audit_log_execve_info(struct audit_context
*context
,
1137 struct audit_buffer
**ab
)
1140 size_t len_sent
= 0;
1141 const char __user
*p
;
1144 p
= (const char __user
*)current
->mm
->arg_start
;
1146 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1149 * we need some kernel buffer to hold the userspace args. Just
1150 * allocate one big one rather than allocating one of the right size
1151 * for every single argument inside audit_log_single_execve_arg()
1152 * should be <8k allocation so should be pretty safe.
1154 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1156 audit_panic("out of memory for argv string");
1160 for (i
= 0; i
< context
->execve
.argc
; i
++) {
1161 len
= audit_log_single_execve_arg(context
, ab
, i
,
1170 static void show_special(struct audit_context
*context
, int *call_panic
)
1172 struct audit_buffer
*ab
;
1175 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1179 switch (context
->type
) {
1180 case AUDIT_SOCKETCALL
: {
1181 int nargs
= context
->socketcall
.nargs
;
1182 audit_log_format(ab
, "nargs=%d", nargs
);
1183 for (i
= 0; i
< nargs
; i
++)
1184 audit_log_format(ab
, " a%d=%lx", i
,
1185 context
->socketcall
.args
[i
]);
1188 u32 osid
= context
->ipc
.osid
;
1190 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1191 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1192 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1197 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1198 audit_log_format(ab
, " osid=%u", osid
);
1201 audit_log_format(ab
, " obj=%s", ctx
);
1202 security_release_secctx(ctx
, len
);
1205 if (context
->ipc
.has_perm
) {
1207 ab
= audit_log_start(context
, GFP_KERNEL
,
1208 AUDIT_IPC_SET_PERM
);
1211 audit_log_format(ab
,
1212 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1213 context
->ipc
.qbytes
,
1214 context
->ipc
.perm_uid
,
1215 context
->ipc
.perm_gid
,
1216 context
->ipc
.perm_mode
);
1219 case AUDIT_MQ_OPEN
: {
1220 audit_log_format(ab
,
1221 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1222 "mq_msgsize=%ld mq_curmsgs=%ld",
1223 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1224 context
->mq_open
.attr
.mq_flags
,
1225 context
->mq_open
.attr
.mq_maxmsg
,
1226 context
->mq_open
.attr
.mq_msgsize
,
1227 context
->mq_open
.attr
.mq_curmsgs
);
1229 case AUDIT_MQ_SENDRECV
: {
1230 audit_log_format(ab
,
1231 "mqdes=%d msg_len=%zd msg_prio=%u "
1232 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1233 context
->mq_sendrecv
.mqdes
,
1234 context
->mq_sendrecv
.msg_len
,
1235 context
->mq_sendrecv
.msg_prio
,
1236 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1237 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1239 case AUDIT_MQ_NOTIFY
: {
1240 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1241 context
->mq_notify
.mqdes
,
1242 context
->mq_notify
.sigev_signo
);
1244 case AUDIT_MQ_GETSETATTR
: {
1245 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1246 audit_log_format(ab
,
1247 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1249 context
->mq_getsetattr
.mqdes
,
1250 attr
->mq_flags
, attr
->mq_maxmsg
,
1251 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1253 case AUDIT_CAPSET
: {
1254 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1255 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1256 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1257 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1260 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1261 context
->mmap
.flags
);
1263 case AUDIT_EXECVE
: {
1264 audit_log_execve_info(context
, &ab
);
1270 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1272 char *end
= proctitle
+ len
- 1;
1273 while (end
> proctitle
&& !isprint(*end
))
1276 /* catch the case where proctitle is only 1 non-print character */
1277 len
= end
- proctitle
+ 1;
1278 len
-= isprint(proctitle
[len
-1]) == 0;
1282 static void audit_log_proctitle(struct task_struct
*tsk
,
1283 struct audit_context
*context
)
1287 char *msg
= "(null)";
1288 int len
= strlen(msg
);
1289 struct audit_buffer
*ab
;
1291 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1293 return; /* audit_panic or being filtered */
1295 audit_log_format(ab
, "proctitle=");
1298 if (!context
->proctitle
.value
) {
1299 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1302 /* Historically called this from procfs naming */
1303 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1308 res
= audit_proctitle_rtrim(buf
, res
);
1313 context
->proctitle
.value
= buf
;
1314 context
->proctitle
.len
= res
;
1316 msg
= context
->proctitle
.value
;
1317 len
= context
->proctitle
.len
;
1319 audit_log_n_untrustedstring(ab
, msg
, len
);
1323 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1325 int i
, call_panic
= 0;
1326 struct audit_buffer
*ab
;
1327 struct audit_aux_data
*aux
;
1328 struct audit_names
*n
;
1330 /* tsk == current */
1331 context
->personality
= tsk
->personality
;
1333 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1335 return; /* audit_panic has been called */
1336 audit_log_format(ab
, "arch=%x syscall=%d",
1337 context
->arch
, context
->major
);
1338 if (context
->personality
!= PER_LINUX
)
1339 audit_log_format(ab
, " per=%lx", context
->personality
);
1340 if (context
->return_valid
)
1341 audit_log_format(ab
, " success=%s exit=%ld",
1342 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1343 context
->return_code
);
1345 audit_log_format(ab
,
1346 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1351 context
->name_count
);
1353 audit_log_task_info(ab
, tsk
);
1354 audit_log_key(ab
, context
->filterkey
);
1357 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1359 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1361 continue; /* audit_panic has been called */
1363 switch (aux
->type
) {
1365 case AUDIT_BPRM_FCAPS
: {
1366 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1367 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1368 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1369 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1370 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1371 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1372 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1373 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1374 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1375 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1376 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1384 show_special(context
, &call_panic
);
1386 if (context
->fds
[0] >= 0) {
1387 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1389 audit_log_format(ab
, "fd0=%d fd1=%d",
1390 context
->fds
[0], context
->fds
[1]);
1395 if (context
->sockaddr_len
) {
1396 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1398 audit_log_format(ab
, "saddr=");
1399 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1400 context
->sockaddr_len
);
1405 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1406 struct audit_aux_data_pids
*axs
= (void *)aux
;
1408 for (i
= 0; i
< axs
->pid_count
; i
++)
1409 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1410 axs
->target_auid
[i
],
1412 axs
->target_sessionid
[i
],
1414 axs
->target_comm
[i
]))
1418 if (context
->target_pid
&&
1419 audit_log_pid_context(context
, context
->target_pid
,
1420 context
->target_auid
, context
->target_uid
,
1421 context
->target_sessionid
,
1422 context
->target_sid
, context
->target_comm
))
1425 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1426 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1428 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1434 list_for_each_entry(n
, &context
->names_list
, list
) {
1437 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1440 audit_log_proctitle(tsk
, context
);
1442 /* Send end of event record to help user space know we are finished */
1443 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1447 audit_panic("error converting sid to string");
1451 * audit_free - free a per-task audit context
1452 * @tsk: task whose audit context block to free
1454 * Called from copy_process and do_exit
1456 void __audit_free(struct task_struct
*tsk
)
1458 struct audit_context
*context
;
1460 context
= audit_take_context(tsk
, 0, 0);
1464 /* Check for system calls that do not go through the exit
1465 * function (e.g., exit_group), then free context block.
1466 * We use GFP_ATOMIC here because we might be doing this
1467 * in the context of the idle thread */
1468 /* that can happen only if we are called from do_exit() */
1469 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1470 audit_log_exit(context
, tsk
);
1471 if (!list_empty(&context
->killed_trees
))
1472 audit_kill_trees(&context
->killed_trees
);
1474 audit_free_context(context
);
1478 * audit_syscall_entry - fill in an audit record at syscall entry
1479 * @major: major syscall type (function)
1480 * @a1: additional syscall register 1
1481 * @a2: additional syscall register 2
1482 * @a3: additional syscall register 3
1483 * @a4: additional syscall register 4
1485 * Fill in audit context at syscall entry. This only happens if the
1486 * audit context was created when the task was created and the state or
1487 * filters demand the audit context be built. If the state from the
1488 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1489 * then the record will be written at syscall exit time (otherwise, it
1490 * will only be written if another part of the kernel requests that it
1493 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1494 unsigned long a3
, unsigned long a4
)
1496 struct task_struct
*tsk
= current
;
1497 struct audit_context
*context
= tsk
->audit_context
;
1498 enum audit_state state
;
1503 BUG_ON(context
->in_syscall
|| context
->name_count
);
1508 context
->arch
= syscall_get_arch();
1509 context
->major
= major
;
1510 context
->argv
[0] = a1
;
1511 context
->argv
[1] = a2
;
1512 context
->argv
[2] = a3
;
1513 context
->argv
[3] = a4
;
1515 state
= context
->state
;
1516 context
->dummy
= !audit_n_rules
;
1517 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1519 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1521 if (state
== AUDIT_DISABLED
)
1524 context
->serial
= 0;
1525 context
->ctime
= CURRENT_TIME
;
1526 context
->in_syscall
= 1;
1527 context
->current_state
= state
;
1532 * audit_syscall_exit - deallocate audit context after a system call
1533 * @success: success value of the syscall
1534 * @return_code: return value of the syscall
1536 * Tear down after system call. If the audit context has been marked as
1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1538 * filtering, or because some other part of the kernel wrote an audit
1539 * message), then write out the syscall information. In call cases,
1540 * free the names stored from getname().
1542 void __audit_syscall_exit(int success
, long return_code
)
1544 struct task_struct
*tsk
= current
;
1545 struct audit_context
*context
;
1548 success
= AUDITSC_SUCCESS
;
1550 success
= AUDITSC_FAILURE
;
1552 context
= audit_take_context(tsk
, success
, return_code
);
1556 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1557 audit_log_exit(context
, tsk
);
1559 context
->in_syscall
= 0;
1560 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1562 if (!list_empty(&context
->killed_trees
))
1563 audit_kill_trees(&context
->killed_trees
);
1565 audit_free_names(context
);
1566 unroll_tree_refs(context
, NULL
, 0);
1567 audit_free_aux(context
);
1568 context
->aux
= NULL
;
1569 context
->aux_pids
= NULL
;
1570 context
->target_pid
= 0;
1571 context
->target_sid
= 0;
1572 context
->sockaddr_len
= 0;
1574 context
->fds
[0] = -1;
1575 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1576 kfree(context
->filterkey
);
1577 context
->filterkey
= NULL
;
1579 tsk
->audit_context
= context
;
1582 static inline void handle_one(const struct inode
*inode
)
1584 #ifdef CONFIG_AUDIT_TREE
1585 struct audit_context
*context
;
1586 struct audit_tree_refs
*p
;
1587 struct audit_chunk
*chunk
;
1589 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1591 context
= current
->audit_context
;
1593 count
= context
->tree_count
;
1595 chunk
= audit_tree_lookup(inode
);
1599 if (likely(put_tree_ref(context
, chunk
)))
1601 if (unlikely(!grow_tree_refs(context
))) {
1602 pr_warn("out of memory, audit has lost a tree reference\n");
1603 audit_set_auditable(context
);
1604 audit_put_chunk(chunk
);
1605 unroll_tree_refs(context
, p
, count
);
1608 put_tree_ref(context
, chunk
);
1612 static void handle_path(const struct dentry
*dentry
)
1614 #ifdef CONFIG_AUDIT_TREE
1615 struct audit_context
*context
;
1616 struct audit_tree_refs
*p
;
1617 const struct dentry
*d
, *parent
;
1618 struct audit_chunk
*drop
;
1622 context
= current
->audit_context
;
1624 count
= context
->tree_count
;
1629 seq
= read_seqbegin(&rename_lock
);
1631 struct inode
*inode
= d_backing_inode(d
);
1632 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1633 struct audit_chunk
*chunk
;
1634 chunk
= audit_tree_lookup(inode
);
1636 if (unlikely(!put_tree_ref(context
, chunk
))) {
1642 parent
= d
->d_parent
;
1647 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1650 /* just a race with rename */
1651 unroll_tree_refs(context
, p
, count
);
1654 audit_put_chunk(drop
);
1655 if (grow_tree_refs(context
)) {
1656 /* OK, got more space */
1657 unroll_tree_refs(context
, p
, count
);
1661 pr_warn("out of memory, audit has lost a tree reference\n");
1662 unroll_tree_refs(context
, p
, count
);
1663 audit_set_auditable(context
);
1670 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1673 struct audit_names
*aname
;
1675 if (context
->name_count
< AUDIT_NAMES
) {
1676 aname
= &context
->preallocated_names
[context
->name_count
];
1677 memset(aname
, 0, sizeof(*aname
));
1679 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1682 aname
->should_free
= true;
1685 aname
->ino
= AUDIT_INO_UNSET
;
1687 list_add_tail(&aname
->list
, &context
->names_list
);
1689 context
->name_count
++;
1694 * audit_reusename - fill out filename with info from existing entry
1695 * @uptr: userland ptr to pathname
1697 * Search the audit_names list for the current audit context. If there is an
1698 * existing entry with a matching "uptr" then return the filename
1699 * associated with that audit_name. If not, return NULL.
1702 __audit_reusename(const __user
char *uptr
)
1704 struct audit_context
*context
= current
->audit_context
;
1705 struct audit_names
*n
;
1707 list_for_each_entry(n
, &context
->names_list
, list
) {
1710 if (n
->name
->uptr
== uptr
) {
1719 * audit_getname - add a name to the list
1720 * @name: name to add
1722 * Add a name to the list of audit names for this context.
1723 * Called from fs/namei.c:getname().
1725 void __audit_getname(struct filename
*name
)
1727 struct audit_context
*context
= current
->audit_context
;
1728 struct audit_names
*n
;
1730 if (!context
->in_syscall
)
1733 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1738 n
->name_len
= AUDIT_NAME_FULL
;
1742 if (!context
->pwd
.dentry
)
1743 get_fs_pwd(current
->fs
, &context
->pwd
);
1747 * __audit_inode - store the inode and device from a lookup
1748 * @name: name being audited
1749 * @dentry: dentry being audited
1750 * @flags: attributes for this particular entry
1752 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1755 struct audit_context
*context
= current
->audit_context
;
1756 struct inode
*inode
= d_backing_inode(dentry
);
1757 struct audit_names
*n
;
1758 bool parent
= flags
& AUDIT_INODE_PARENT
;
1760 if (!context
->in_syscall
)
1767 * If we have a pointer to an audit_names entry already, then we can
1768 * just use it directly if the type is correct.
1773 if (n
->type
== AUDIT_TYPE_PARENT
||
1774 n
->type
== AUDIT_TYPE_UNKNOWN
)
1777 if (n
->type
!= AUDIT_TYPE_PARENT
)
1782 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1784 /* valid inode number, use that for the comparison */
1785 if (n
->ino
!= inode
->i_ino
||
1786 n
->dev
!= inode
->i_sb
->s_dev
)
1788 } else if (n
->name
) {
1789 /* inode number has not been set, check the name */
1790 if (strcmp(n
->name
->name
, name
->name
))
1793 /* no inode and no name (?!) ... this is odd ... */
1796 /* match the correct record type */
1798 if (n
->type
== AUDIT_TYPE_PARENT
||
1799 n
->type
== AUDIT_TYPE_UNKNOWN
)
1802 if (n
->type
!= AUDIT_TYPE_PARENT
)
1808 /* unable to find an entry with both a matching name and type */
1809 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1819 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1820 n
->type
= AUDIT_TYPE_PARENT
;
1821 if (flags
& AUDIT_INODE_HIDDEN
)
1824 n
->name_len
= AUDIT_NAME_FULL
;
1825 n
->type
= AUDIT_TYPE_NORMAL
;
1827 handle_path(dentry
);
1828 audit_copy_inode(n
, dentry
, inode
);
1831 void __audit_file(const struct file
*file
)
1833 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
1837 * __audit_inode_child - collect inode info for created/removed objects
1838 * @parent: inode of dentry parent
1839 * @dentry: dentry being audited
1840 * @type: AUDIT_TYPE_* value that we're looking for
1842 * For syscalls that create or remove filesystem objects, audit_inode
1843 * can only collect information for the filesystem object's parent.
1844 * This call updates the audit context with the child's information.
1845 * Syscalls that create a new filesystem object must be hooked after
1846 * the object is created. Syscalls that remove a filesystem object
1847 * must be hooked prior, in order to capture the target inode during
1848 * unsuccessful attempts.
1850 void __audit_inode_child(struct inode
*parent
,
1851 const struct dentry
*dentry
,
1852 const unsigned char type
)
1854 struct audit_context
*context
= current
->audit_context
;
1855 struct inode
*inode
= d_backing_inode(dentry
);
1856 const char *dname
= dentry
->d_name
.name
;
1857 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1859 if (!context
->in_syscall
)
1865 /* look for a parent entry first */
1866 list_for_each_entry(n
, &context
->names_list
, list
) {
1868 (n
->type
!= AUDIT_TYPE_PARENT
&&
1869 n
->type
!= AUDIT_TYPE_UNKNOWN
))
1872 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
1873 !audit_compare_dname_path(dname
,
1874 n
->name
->name
, n
->name_len
)) {
1875 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1876 n
->type
= AUDIT_TYPE_PARENT
;
1882 /* is there a matching child entry? */
1883 list_for_each_entry(n
, &context
->names_list
, list
) {
1884 /* can only match entries that have a name */
1886 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
1889 if (!strcmp(dname
, n
->name
->name
) ||
1890 !audit_compare_dname_path(dname
, n
->name
->name
,
1892 found_parent
->name_len
:
1894 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1901 if (!found_parent
) {
1902 /* create a new, "anonymous" parent record */
1903 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1906 audit_copy_inode(n
, NULL
, parent
);
1910 found_child
= audit_alloc_name(context
, type
);
1914 /* Re-use the name belonging to the slot for a matching parent
1915 * directory. All names for this context are relinquished in
1916 * audit_free_names() */
1918 found_child
->name
= found_parent
->name
;
1919 found_child
->name_len
= AUDIT_NAME_FULL
;
1920 found_child
->name
->refcnt
++;
1925 audit_copy_inode(found_child
, dentry
, inode
);
1927 found_child
->ino
= AUDIT_INO_UNSET
;
1929 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1932 * auditsc_get_stamp - get local copies of audit_context values
1933 * @ctx: audit_context for the task
1934 * @t: timespec to store time recorded in the audit_context
1935 * @serial: serial value that is recorded in the audit_context
1937 * Also sets the context as auditable.
1939 int auditsc_get_stamp(struct audit_context
*ctx
,
1940 struct timespec
*t
, unsigned int *serial
)
1942 if (!ctx
->in_syscall
)
1945 ctx
->serial
= audit_serial();
1946 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1947 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1948 *serial
= ctx
->serial
;
1951 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
1956 /* global counter which is incremented every time something logs in */
1957 static atomic_t session_id
= ATOMIC_INIT(0);
1959 static int audit_set_loginuid_perm(kuid_t loginuid
)
1961 /* if we are unset, we don't need privs */
1962 if (!audit_loginuid_set(current
))
1964 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1965 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
1967 /* it is set, you need permission */
1968 if (!capable(CAP_AUDIT_CONTROL
))
1970 /* reject if this is not an unset and we don't allow that */
1971 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
1976 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
1977 unsigned int oldsessionid
, unsigned int sessionid
,
1980 struct audit_buffer
*ab
;
1981 uid_t uid
, oldloginuid
, loginuid
;
1982 struct tty_struct
*tty
;
1987 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1991 uid
= from_kuid(&init_user_ns
, task_uid(current
));
1992 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
1993 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
1994 tty
= audit_get_tty(current
);
1996 audit_log_format(ab
, "pid=%d uid=%u", task_pid_nr(current
), uid
);
1997 audit_log_task_context(ab
);
1998 audit_log_format(ab
, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
1999 oldloginuid
, loginuid
, tty
? tty_name(tty
) : "(none)",
2000 oldsessionid
, sessionid
, !rc
);
2006 * audit_set_loginuid - set current task's audit_context loginuid
2007 * @loginuid: loginuid value
2011 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2013 int audit_set_loginuid(kuid_t loginuid
)
2015 struct task_struct
*task
= current
;
2016 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2020 oldloginuid
= audit_get_loginuid(current
);
2021 oldsessionid
= audit_get_sessionid(current
);
2023 rc
= audit_set_loginuid_perm(loginuid
);
2027 /* are we setting or clearing? */
2028 if (uid_valid(loginuid
))
2029 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2031 task
->sessionid
= sessionid
;
2032 task
->loginuid
= loginuid
;
2034 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2039 * __audit_mq_open - record audit data for a POSIX MQ open
2042 * @attr: queue attributes
2045 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2047 struct audit_context
*context
= current
->audit_context
;
2050 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2052 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2054 context
->mq_open
.oflag
= oflag
;
2055 context
->mq_open
.mode
= mode
;
2057 context
->type
= AUDIT_MQ_OPEN
;
2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2062 * @mqdes: MQ descriptor
2063 * @msg_len: Message length
2064 * @msg_prio: Message priority
2065 * @abs_timeout: Message timeout in absolute time
2068 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2069 const struct timespec
*abs_timeout
)
2071 struct audit_context
*context
= current
->audit_context
;
2072 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2075 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2077 memset(p
, 0, sizeof(struct timespec
));
2079 context
->mq_sendrecv
.mqdes
= mqdes
;
2080 context
->mq_sendrecv
.msg_len
= msg_len
;
2081 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2083 context
->type
= AUDIT_MQ_SENDRECV
;
2087 * __audit_mq_notify - record audit data for a POSIX MQ notify
2088 * @mqdes: MQ descriptor
2089 * @notification: Notification event
2093 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2095 struct audit_context
*context
= current
->audit_context
;
2098 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2100 context
->mq_notify
.sigev_signo
= 0;
2102 context
->mq_notify
.mqdes
= mqdes
;
2103 context
->type
= AUDIT_MQ_NOTIFY
;
2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2108 * @mqdes: MQ descriptor
2112 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2114 struct audit_context
*context
= current
->audit_context
;
2115 context
->mq_getsetattr
.mqdes
= mqdes
;
2116 context
->mq_getsetattr
.mqstat
= *mqstat
;
2117 context
->type
= AUDIT_MQ_GETSETATTR
;
2121 * audit_ipc_obj - record audit data for ipc object
2122 * @ipcp: ipc permissions
2125 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2127 struct audit_context
*context
= current
->audit_context
;
2128 context
->ipc
.uid
= ipcp
->uid
;
2129 context
->ipc
.gid
= ipcp
->gid
;
2130 context
->ipc
.mode
= ipcp
->mode
;
2131 context
->ipc
.has_perm
= 0;
2132 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2133 context
->type
= AUDIT_IPC
;
2137 * audit_ipc_set_perm - record audit data for new ipc permissions
2138 * @qbytes: msgq bytes
2139 * @uid: msgq user id
2140 * @gid: msgq group id
2141 * @mode: msgq mode (permissions)
2143 * Called only after audit_ipc_obj().
2145 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2147 struct audit_context
*context
= current
->audit_context
;
2149 context
->ipc
.qbytes
= qbytes
;
2150 context
->ipc
.perm_uid
= uid
;
2151 context
->ipc
.perm_gid
= gid
;
2152 context
->ipc
.perm_mode
= mode
;
2153 context
->ipc
.has_perm
= 1;
2156 void __audit_bprm(struct linux_binprm
*bprm
)
2158 struct audit_context
*context
= current
->audit_context
;
2160 context
->type
= AUDIT_EXECVE
;
2161 context
->execve
.argc
= bprm
->argc
;
2166 * audit_socketcall - record audit data for sys_socketcall
2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2171 int __audit_socketcall(int nargs
, unsigned long *args
)
2173 struct audit_context
*context
= current
->audit_context
;
2175 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2177 context
->type
= AUDIT_SOCKETCALL
;
2178 context
->socketcall
.nargs
= nargs
;
2179 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2184 * __audit_fd_pair - record audit data for pipe and socketpair
2185 * @fd1: the first file descriptor
2186 * @fd2: the second file descriptor
2189 void __audit_fd_pair(int fd1
, int fd2
)
2191 struct audit_context
*context
= current
->audit_context
;
2192 context
->fds
[0] = fd1
;
2193 context
->fds
[1] = fd2
;
2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2198 * @len: data length in user space
2199 * @a: data address in kernel space
2201 * Returns 0 for success or NULL context or < 0 on error.
2203 int __audit_sockaddr(int len
, void *a
)
2205 struct audit_context
*context
= current
->audit_context
;
2207 if (!context
->sockaddr
) {
2208 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2211 context
->sockaddr
= p
;
2214 context
->sockaddr_len
= len
;
2215 memcpy(context
->sockaddr
, a
, len
);
2219 void __audit_ptrace(struct task_struct
*t
)
2221 struct audit_context
*context
= current
->audit_context
;
2223 context
->target_pid
= task_pid_nr(t
);
2224 context
->target_auid
= audit_get_loginuid(t
);
2225 context
->target_uid
= task_uid(t
);
2226 context
->target_sessionid
= audit_get_sessionid(t
);
2227 security_task_getsecid(t
, &context
->target_sid
);
2228 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2232 * audit_signal_info - record signal info for shutting down audit subsystem
2233 * @sig: signal value
2234 * @t: task being signaled
2236 * If the audit subsystem is being terminated, record the task (pid)
2237 * and uid that is doing that.
2239 int __audit_signal_info(int sig
, struct task_struct
*t
)
2241 struct audit_aux_data_pids
*axp
;
2242 struct task_struct
*tsk
= current
;
2243 struct audit_context
*ctx
= tsk
->audit_context
;
2244 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2246 if (audit_pid
&& t
->tgid
== audit_pid
) {
2247 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2248 audit_sig_pid
= task_pid_nr(tsk
);
2249 if (uid_valid(tsk
->loginuid
))
2250 audit_sig_uid
= tsk
->loginuid
;
2252 audit_sig_uid
= uid
;
2253 security_task_getsecid(tsk
, &audit_sig_sid
);
2255 if (!audit_signals
|| audit_dummy_context())
2259 /* optimize the common case by putting first signal recipient directly
2260 * in audit_context */
2261 if (!ctx
->target_pid
) {
2262 ctx
->target_pid
= task_tgid_nr(t
);
2263 ctx
->target_auid
= audit_get_loginuid(t
);
2264 ctx
->target_uid
= t_uid
;
2265 ctx
->target_sessionid
= audit_get_sessionid(t
);
2266 security_task_getsecid(t
, &ctx
->target_sid
);
2267 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2271 axp
= (void *)ctx
->aux_pids
;
2272 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2273 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2277 axp
->d
.type
= AUDIT_OBJ_PID
;
2278 axp
->d
.next
= ctx
->aux_pids
;
2279 ctx
->aux_pids
= (void *)axp
;
2281 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2283 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2284 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2285 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2286 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2287 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2288 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2296 * @bprm: pointer to the bprm being processed
2297 * @new: the proposed new credentials
2298 * @old: the old credentials
2300 * Simply check if the proc already has the caps given by the file and if not
2301 * store the priv escalation info for later auditing at the end of the syscall
2305 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2306 const struct cred
*new, const struct cred
*old
)
2308 struct audit_aux_data_bprm_fcaps
*ax
;
2309 struct audit_context
*context
= current
->audit_context
;
2310 struct cpu_vfs_cap_data vcaps
;
2312 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2316 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2317 ax
->d
.next
= context
->aux
;
2318 context
->aux
= (void *)ax
;
2320 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2322 ax
->fcap
.permitted
= vcaps
.permitted
;
2323 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2324 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2325 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2327 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2328 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2329 ax
->old_pcap
.effective
= old
->cap_effective
;
2331 ax
->new_pcap
.permitted
= new->cap_permitted
;
2332 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2333 ax
->new_pcap
.effective
= new->cap_effective
;
2338 * __audit_log_capset - store information about the arguments to the capset syscall
2339 * @new: the new credentials
2340 * @old: the old (current) credentials
2342 * Record the arguments userspace sent to sys_capset for later printing by the
2343 * audit system if applicable
2345 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2347 struct audit_context
*context
= current
->audit_context
;
2348 context
->capset
.pid
= task_pid_nr(current
);
2349 context
->capset
.cap
.effective
= new->cap_effective
;
2350 context
->capset
.cap
.inheritable
= new->cap_effective
;
2351 context
->capset
.cap
.permitted
= new->cap_permitted
;
2352 context
->type
= AUDIT_CAPSET
;
2355 void __audit_mmap_fd(int fd
, int flags
)
2357 struct audit_context
*context
= current
->audit_context
;
2358 context
->mmap
.fd
= fd
;
2359 context
->mmap
.flags
= flags
;
2360 context
->type
= AUDIT_MMAP
;
2363 static void audit_log_task(struct audit_buffer
*ab
)
2367 unsigned int sessionid
;
2368 char comm
[sizeof(current
->comm
)];
2370 auid
= audit_get_loginuid(current
);
2371 sessionid
= audit_get_sessionid(current
);
2372 current_uid_gid(&uid
, &gid
);
2374 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2375 from_kuid(&init_user_ns
, auid
),
2376 from_kuid(&init_user_ns
, uid
),
2377 from_kgid(&init_user_ns
, gid
),
2379 audit_log_task_context(ab
);
2380 audit_log_format(ab
, " pid=%d comm=", task_pid_nr(current
));
2381 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2382 audit_log_d_path_exe(ab
, current
->mm
);
2386 * audit_core_dumps - record information about processes that end abnormally
2387 * @signr: signal value
2389 * If a process ends with a core dump, something fishy is going on and we
2390 * should record the event for investigation.
2392 void audit_core_dumps(long signr
)
2394 struct audit_buffer
*ab
;
2399 if (signr
== SIGQUIT
) /* don't care for those */
2402 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2406 audit_log_format(ab
, " sig=%ld", signr
);
2410 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2412 struct audit_buffer
*ab
;
2414 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2418 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2419 signr
, syscall_get_arch(), syscall
,
2420 in_compat_syscall(), KSTK_EIP(current
), code
);
2424 struct list_head
*audit_killed_trees(void)
2426 struct audit_context
*ctx
= current
->audit_context
;
2427 if (likely(!ctx
|| !ctx
->in_syscall
))
2429 return &ctx
->killed_trees
;