2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
86 static int hpsa_simple_mode
;
87 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
88 MODULE_PARM_DESC(hpsa_simple_mode
,
89 "Use 'simple mode' rather than 'performant mode'");
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id
[] = {
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
147 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
149 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
153 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
155 /* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
159 static struct board_type products
[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access
},
161 {0x40800E11, "Smart Array 5i", &SA5B_access
},
162 {0x40820E11, "Smart Array 532", &SA5B_access
},
163 {0x40830E11, "Smart Array 5312", &SA5B_access
},
164 {0x409A0E11, "Smart Array 641", &SA5A_access
},
165 {0x409B0E11, "Smart Array 642", &SA5A_access
},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access
},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access
},
168 {0x40910E11, "Smart Array 6i", &SA5A_access
},
169 {0x3225103C, "Smart Array P600", &SA5A_access
},
170 {0x3223103C, "Smart Array P800", &SA5A_access
},
171 {0x3234103C, "Smart Array P400", &SA5A_access
},
172 {0x3235103C, "Smart Array P400i", &SA5A_access
},
173 {0x3211103C, "Smart Array E200i", &SA5A_access
},
174 {0x3212103C, "Smart Array E200", &SA5A_access
},
175 {0x3213103C, "Smart Array E200i", &SA5A_access
},
176 {0x3214103C, "Smart Array E200i", &SA5A_access
},
177 {0x3215103C, "Smart Array E200i", &SA5A_access
},
178 {0x3237103C, "Smart Array E500", &SA5A_access
},
179 {0x323D103C, "Smart Array P700m", &SA5A_access
},
180 {0x3241103C, "Smart Array P212", &SA5_access
},
181 {0x3243103C, "Smart Array P410", &SA5_access
},
182 {0x3245103C, "Smart Array P410i", &SA5_access
},
183 {0x3247103C, "Smart Array P411", &SA5_access
},
184 {0x3249103C, "Smart Array P812", &SA5_access
},
185 {0x324A103C, "Smart Array P712m", &SA5_access
},
186 {0x324B103C, "Smart Array P711m", &SA5_access
},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access
},
189 {0x3351103C, "Smart Array P420", &SA5_access
},
190 {0x3352103C, "Smart Array P421", &SA5_access
},
191 {0x3353103C, "Smart Array P822", &SA5_access
},
192 {0x3354103C, "Smart Array P420i", &SA5_access
},
193 {0x3355103C, "Smart Array P220i", &SA5_access
},
194 {0x3356103C, "Smart Array P721m", &SA5_access
},
195 {0x1920103C, "Smart Array P430i", &SA5_access
},
196 {0x1921103C, "Smart Array P830i", &SA5_access
},
197 {0x1922103C, "Smart Array P430", &SA5_access
},
198 {0x1923103C, "Smart Array P431", &SA5_access
},
199 {0x1924103C, "Smart Array P830", &SA5_access
},
200 {0x1925103C, "Smart Array P831", &SA5_access
},
201 {0x1926103C, "Smart Array P731m", &SA5_access
},
202 {0x1928103C, "Smart Array P230i", &SA5_access
},
203 {0x1929103C, "Smart Array P530", &SA5_access
},
204 {0x21BD103C, "Smart Array P244br", &SA5_access
},
205 {0x21BE103C, "Smart Array P741m", &SA5_access
},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
209 {0x21C2103C, "Smart Array P440", &SA5_access
},
210 {0x21C3103C, "Smart Array P441", &SA5_access
},
211 {0x21C4103C, "Smart Array", &SA5_access
},
212 {0x21C5103C, "Smart Array P841", &SA5_access
},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
214 {0x21C7103C, "Smart HBA H240", &SA5_access
},
215 {0x21C8103C, "Smart HBA H241", &SA5_access
},
216 {0x21C9103C, "Smart Array", &SA5_access
},
217 {0x21CA103C, "Smart Array P246br", &SA5_access
},
218 {0x21CB103C, "Smart Array P840", &SA5_access
},
219 {0x21CC103C, "Smart Array", &SA5_access
},
220 {0x21CD103C, "Smart Array", &SA5_access
},
221 {0x21CE103C, "Smart HBA", &SA5_access
},
222 {0x05809005, "SmartHBA-SA", &SA5_access
},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
236 static struct scsi_transport_template
*hpsa_sas_transport_template
;
237 static int hpsa_add_sas_host(struct ctlr_info
*h
);
238 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
239 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
240 struct hpsa_scsi_dev_t
*device
);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
242 static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
244 struct sas_rphy
*rphy
);
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy
;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle
;
250 static int number_of_controllers
;
252 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
253 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
254 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
257 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
261 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
262 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
263 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
264 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
265 struct scsi_cmnd
*scmd
);
266 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
267 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
269 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
273 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
274 static void hpsa_scan_start(struct Scsi_Host
*);
275 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
276 unsigned long elapsed_time
);
277 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
280 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
281 static int hpsa_slave_configure(struct scsi_device
*sdev
);
282 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
284 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
285 static int check_for_unit_attention(struct ctlr_info
*h
,
286 struct CommandList
*c
);
287 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
288 struct CommandList
*c
);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket
, int num_buckets
,
291 int nsgs
, int min_blocks
, u32
*bucket_map
);
292 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
294 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
295 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
296 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
298 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
299 unsigned long *memory_bar
);
300 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
302 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
303 unsigned char lunaddr
[],
305 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
307 static inline void finish_cmd(struct CommandList
*c
);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
312 static void hpsa_flush_cache(struct ctlr_info
*h
);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
314 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
315 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
316 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
317 static u32
lockup_detected(struct ctlr_info
*h
);
318 static int detect_controller_lockup(struct ctlr_info
*h
);
319 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
321 struct ReportExtendedLUNdata
*buf
, int bufsize
);
322 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
323 unsigned char scsi3addr
[], u8 page
);
324 static int hpsa_luns_changed(struct ctlr_info
*h
);
325 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
326 struct hpsa_scsi_dev_t
*dev
,
327 unsigned char *scsi3addr
);
329 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
331 unsigned long *priv
= shost_priv(sdev
->host
);
332 return (struct ctlr_info
*) *priv
;
335 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
337 unsigned long *priv
= shost_priv(sh
);
338 return (struct ctlr_info
*) *priv
;
341 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
343 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
346 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
348 return c
->reset_pending
;
351 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
352 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
353 u8
*sense_key
, u8
*asc
, u8
*ascq
)
355 struct scsi_sense_hdr sshdr
;
362 if (sense_data_len
< 1)
365 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
367 *sense_key
= sshdr
.sense_key
;
373 static int check_for_unit_attention(struct ctlr_info
*h
,
374 struct CommandList
*c
)
376 u8 sense_key
, asc
, ascq
;
379 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
380 sense_len
= sizeof(c
->err_info
->SenseInfo
);
382 sense_len
= c
->err_info
->SenseLen
;
384 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
385 &sense_key
, &asc
, &ascq
);
386 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
391 dev_warn(&h
->pdev
->dev
,
392 "%s: a state change detected, command retried\n",
396 dev_warn(&h
->pdev
->dev
,
397 "%s: LUN failure detected\n", h
->devname
);
399 case REPORT_LUNS_CHANGED
:
400 dev_warn(&h
->pdev
->dev
,
401 "%s: report LUN data changed\n", h
->devname
);
403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 * target (array) devices.
408 dev_warn(&h
->pdev
->dev
,
409 "%s: a power on or device reset detected\n",
412 case UNIT_ATTENTION_CLEARED
:
413 dev_warn(&h
->pdev
->dev
,
414 "%s: unit attention cleared by another initiator\n",
418 dev_warn(&h
->pdev
->dev
,
419 "%s: unknown unit attention detected\n",
426 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
428 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
429 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
430 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
432 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
436 static u32
lockup_detected(struct ctlr_info
*h
);
437 static ssize_t
host_show_lockup_detected(struct device
*dev
,
438 struct device_attribute
*attr
, char *buf
)
442 struct Scsi_Host
*shost
= class_to_shost(dev
);
444 h
= shost_to_hba(shost
);
445 ld
= lockup_detected(h
);
447 return sprintf(buf
, "ld=%d\n", ld
);
450 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
451 struct device_attribute
*attr
,
452 const char *buf
, size_t count
)
456 struct Scsi_Host
*shost
= class_to_shost(dev
);
459 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
461 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
462 strncpy(tmpbuf
, buf
, len
);
464 if (sscanf(tmpbuf
, "%d", &status
) != 1)
466 h
= shost_to_hba(shost
);
467 h
->acciopath_status
= !!status
;
468 dev_warn(&h
->pdev
->dev
,
469 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 h
->acciopath_status
? "enabled" : "disabled");
474 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
475 struct device_attribute
*attr
,
476 const char *buf
, size_t count
)
478 int debug_level
, len
;
480 struct Scsi_Host
*shost
= class_to_shost(dev
);
483 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
485 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
486 strncpy(tmpbuf
, buf
, len
);
488 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
492 h
= shost_to_hba(shost
);
493 h
->raid_offload_debug
= debug_level
;
494 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
495 h
->raid_offload_debug
);
499 static ssize_t
host_store_rescan(struct device
*dev
,
500 struct device_attribute
*attr
,
501 const char *buf
, size_t count
)
504 struct Scsi_Host
*shost
= class_to_shost(dev
);
505 h
= shost_to_hba(shost
);
506 hpsa_scan_start(h
->scsi_host
);
510 static ssize_t
host_show_firmware_revision(struct device
*dev
,
511 struct device_attribute
*attr
, char *buf
)
514 struct Scsi_Host
*shost
= class_to_shost(dev
);
515 unsigned char *fwrev
;
517 h
= shost_to_hba(shost
);
518 if (!h
->hba_inquiry_data
)
520 fwrev
= &h
->hba_inquiry_data
[32];
521 return snprintf(buf
, 20, "%c%c%c%c\n",
522 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
525 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
526 struct device_attribute
*attr
, char *buf
)
528 struct Scsi_Host
*shost
= class_to_shost(dev
);
529 struct ctlr_info
*h
= shost_to_hba(shost
);
531 return snprintf(buf
, 20, "%d\n",
532 atomic_read(&h
->commands_outstanding
));
535 static ssize_t
host_show_transport_mode(struct device
*dev
,
536 struct device_attribute
*attr
, char *buf
)
539 struct Scsi_Host
*shost
= class_to_shost(dev
);
541 h
= shost_to_hba(shost
);
542 return snprintf(buf
, 20, "%s\n",
543 h
->transMethod
& CFGTBL_Trans_Performant
?
544 "performant" : "simple");
547 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
548 struct device_attribute
*attr
, char *buf
)
551 struct Scsi_Host
*shost
= class_to_shost(dev
);
553 h
= shost_to_hba(shost
);
554 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
555 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller
[] = {
560 0x324a103C, /* Smart Array P712m */
561 0x324b103C, /* Smart Array P711m */
562 0x3223103C, /* Smart Array P800 */
563 0x3234103C, /* Smart Array P400 */
564 0x3235103C, /* Smart Array P400i */
565 0x3211103C, /* Smart Array E200i */
566 0x3212103C, /* Smart Array E200 */
567 0x3213103C, /* Smart Array E200i */
568 0x3214103C, /* Smart Array E200i */
569 0x3215103C, /* Smart Array E200i */
570 0x3237103C, /* Smart Array E500 */
571 0x323D103C, /* Smart Array P700m */
572 0x40800E11, /* Smart Array 5i */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
575 0x40700E11, /* Smart Array 5300 */
576 0x40820E11, /* Smart Array 532 */
577 0x40830E11, /* Smart Array 5312 */
578 0x409A0E11, /* Smart Array 641 */
579 0x409B0E11, /* Smart Array 642 */
580 0x40910E11, /* Smart Array 6i */
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller
[] = {
585 0x40800E11, /* Smart Array 5i */
586 0x40700E11, /* Smart Array 5300 */
587 0x40820E11, /* Smart Array 532 */
588 0x40830E11, /* Smart Array 5312 */
589 0x409A0E11, /* Smart Array 641 */
590 0x409B0E11, /* Smart Array 642 */
591 0x40910E11, /* Smart Array 6i */
592 /* Exclude 640x boards. These are two pci devices in one slot
593 * which share a battery backed cache module. One controls the
594 * cache, the other accesses the cache through the one that controls
595 * it. If we reset the one controlling the cache, the other will
596 * likely not be happy. Just forbid resetting this conjoined mess.
597 * The 640x isn't really supported by hpsa anyway.
599 0x409C0E11, /* Smart Array 6400 */
600 0x409D0E11, /* Smart Array 6400 EM */
603 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
607 for (i
= 0; i
< nelems
; i
++)
608 if (a
[i
] == board_id
)
613 static int ctlr_is_hard_resettable(u32 board_id
)
615 return !board_id_in_array(unresettable_controller
,
616 ARRAY_SIZE(unresettable_controller
), board_id
);
619 static int ctlr_is_soft_resettable(u32 board_id
)
621 return !board_id_in_array(soft_unresettable_controller
,
622 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
625 static int ctlr_is_resettable(u32 board_id
)
627 return ctlr_is_hard_resettable(board_id
) ||
628 ctlr_is_soft_resettable(board_id
);
631 static ssize_t
host_show_resettable(struct device
*dev
,
632 struct device_attribute
*attr
, char *buf
)
635 struct Scsi_Host
*shost
= class_to_shost(dev
);
637 h
= shost_to_hba(shost
);
638 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
643 return (scsi3addr
[3] & 0xC0) == 0x40;
646 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
649 #define HPSA_RAID_0 0
650 #define HPSA_RAID_4 1
651 #define HPSA_RAID_1 2 /* also used for RAID 10 */
652 #define HPSA_RAID_5 3 /* also used for RAID 50 */
653 #define HPSA_RAID_51 4
654 #define HPSA_RAID_6 5 /* also used for RAID 60 */
655 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
661 return !device
->physical_device
;
664 static ssize_t
raid_level_show(struct device
*dev
,
665 struct device_attribute
*attr
, char *buf
)
668 unsigned char rlevel
;
670 struct scsi_device
*sdev
;
671 struct hpsa_scsi_dev_t
*hdev
;
674 sdev
= to_scsi_device(dev
);
675 h
= sdev_to_hba(sdev
);
676 spin_lock_irqsave(&h
->lock
, flags
);
677 hdev
= sdev
->hostdata
;
679 spin_unlock_irqrestore(&h
->lock
, flags
);
683 /* Is this even a logical drive? */
684 if (!is_logical_device(hdev
)) {
685 spin_unlock_irqrestore(&h
->lock
, flags
);
686 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
690 rlevel
= hdev
->raid_level
;
691 spin_unlock_irqrestore(&h
->lock
, flags
);
692 if (rlevel
> RAID_UNKNOWN
)
693 rlevel
= RAID_UNKNOWN
;
694 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
698 static ssize_t
lunid_show(struct device
*dev
,
699 struct device_attribute
*attr
, char *buf
)
702 struct scsi_device
*sdev
;
703 struct hpsa_scsi_dev_t
*hdev
;
705 unsigned char lunid
[8];
707 sdev
= to_scsi_device(dev
);
708 h
= sdev_to_hba(sdev
);
709 spin_lock_irqsave(&h
->lock
, flags
);
710 hdev
= sdev
->hostdata
;
712 spin_unlock_irqrestore(&h
->lock
, flags
);
715 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
716 spin_unlock_irqrestore(&h
->lock
, flags
);
717 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
720 static ssize_t
unique_id_show(struct device
*dev
,
721 struct device_attribute
*attr
, char *buf
)
724 struct scsi_device
*sdev
;
725 struct hpsa_scsi_dev_t
*hdev
;
727 unsigned char sn
[16];
729 sdev
= to_scsi_device(dev
);
730 h
= sdev_to_hba(sdev
);
731 spin_lock_irqsave(&h
->lock
, flags
);
732 hdev
= sdev
->hostdata
;
734 spin_unlock_irqrestore(&h
->lock
, flags
);
737 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
738 spin_unlock_irqrestore(&h
->lock
, flags
);
739 return snprintf(buf
, 16 * 2 + 2,
740 "%02X%02X%02X%02X%02X%02X%02X%02X"
741 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 sn
[0], sn
[1], sn
[2], sn
[3],
743 sn
[4], sn
[5], sn
[6], sn
[7],
744 sn
[8], sn
[9], sn
[10], sn
[11],
745 sn
[12], sn
[13], sn
[14], sn
[15]);
748 static ssize_t
sas_address_show(struct device
*dev
,
749 struct device_attribute
*attr
, char *buf
)
752 struct scsi_device
*sdev
;
753 struct hpsa_scsi_dev_t
*hdev
;
757 sdev
= to_scsi_device(dev
);
758 h
= sdev_to_hba(sdev
);
759 spin_lock_irqsave(&h
->lock
, flags
);
760 hdev
= sdev
->hostdata
;
761 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
762 spin_unlock_irqrestore(&h
->lock
, flags
);
765 sas_address
= hdev
->sas_address
;
766 spin_unlock_irqrestore(&h
->lock
, flags
);
768 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
771 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
772 struct device_attribute
*attr
, char *buf
)
775 struct scsi_device
*sdev
;
776 struct hpsa_scsi_dev_t
*hdev
;
780 sdev
= to_scsi_device(dev
);
781 h
= sdev_to_hba(sdev
);
782 spin_lock_irqsave(&h
->lock
, flags
);
783 hdev
= sdev
->hostdata
;
785 spin_unlock_irqrestore(&h
->lock
, flags
);
788 offload_enabled
= hdev
->offload_enabled
;
789 spin_unlock_irqrestore(&h
->lock
, flags
);
791 if (hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
)
792 return snprintf(buf
, 20, "%d\n", offload_enabled
);
794 return snprintf(buf
, 40, "%s\n",
795 "Not applicable for a controller");
799 static ssize_t
path_info_show(struct device
*dev
,
800 struct device_attribute
*attr
, char *buf
)
803 struct scsi_device
*sdev
;
804 struct hpsa_scsi_dev_t
*hdev
;
810 u8 path_map_index
= 0;
812 unsigned char phys_connector
[2];
814 sdev
= to_scsi_device(dev
);
815 h
= sdev_to_hba(sdev
);
816 spin_lock_irqsave(&h
->devlock
, flags
);
817 hdev
= sdev
->hostdata
;
819 spin_unlock_irqrestore(&h
->devlock
, flags
);
824 for (i
= 0; i
< MAX_PATHS
; i
++) {
825 path_map_index
= 1<<i
;
826 if (i
== hdev
->active_path_index
)
828 else if (hdev
->path_map
& path_map_index
)
833 output_len
+= scnprintf(buf
+ output_len
,
834 PAGE_SIZE
- output_len
,
835 "[%d:%d:%d:%d] %20.20s ",
836 h
->scsi_host
->host_no
,
837 hdev
->bus
, hdev
->target
, hdev
->lun
,
838 scsi_device_type(hdev
->devtype
));
840 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
841 output_len
+= scnprintf(buf
+ output_len
,
842 PAGE_SIZE
- output_len
,
848 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
849 sizeof(phys_connector
));
850 if (phys_connector
[0] < '0')
851 phys_connector
[0] = '0';
852 if (phys_connector
[1] < '0')
853 phys_connector
[1] = '0';
854 output_len
+= scnprintf(buf
+ output_len
,
855 PAGE_SIZE
- output_len
,
858 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
859 hdev
->expose_device
) {
860 if (box
== 0 || box
== 0xFF) {
861 output_len
+= scnprintf(buf
+ output_len
,
862 PAGE_SIZE
- output_len
,
866 output_len
+= scnprintf(buf
+ output_len
,
867 PAGE_SIZE
- output_len
,
868 "BOX: %hhu BAY: %hhu %s\n",
871 } else if (box
!= 0 && box
!= 0xFF) {
872 output_len
+= scnprintf(buf
+ output_len
,
873 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
876 output_len
+= scnprintf(buf
+ output_len
,
877 PAGE_SIZE
- output_len
, "%s\n", active
);
880 spin_unlock_irqrestore(&h
->devlock
, flags
);
884 static ssize_t
host_show_ctlr_num(struct device
*dev
,
885 struct device_attribute
*attr
, char *buf
)
888 struct Scsi_Host
*shost
= class_to_shost(dev
);
890 h
= shost_to_hba(shost
);
891 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
894 static ssize_t
host_show_legacy_board(struct device
*dev
,
895 struct device_attribute
*attr
, char *buf
)
898 struct Scsi_Host
*shost
= class_to_shost(dev
);
900 h
= shost_to_hba(shost
);
901 return snprintf(buf
, 20, "%d\n", h
->legacy_board
? 1 : 0);
904 static DEVICE_ATTR_RO(raid_level
);
905 static DEVICE_ATTR_RO(lunid
);
906 static DEVICE_ATTR_RO(unique_id
);
907 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
908 static DEVICE_ATTR_RO(sas_address
);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
910 host_show_hp_ssd_smart_path_enabled
, NULL
);
911 static DEVICE_ATTR_RO(path_info
);
912 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
913 host_show_hp_ssd_smart_path_status
,
914 host_store_hp_ssd_smart_path_status
);
915 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
916 host_store_raid_offload_debug
);
917 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
918 host_show_firmware_revision
, NULL
);
919 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
920 host_show_commands_outstanding
, NULL
);
921 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
922 host_show_transport_mode
, NULL
);
923 static DEVICE_ATTR(resettable
, S_IRUGO
,
924 host_show_resettable
, NULL
);
925 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
926 host_show_lockup_detected
, NULL
);
927 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
928 host_show_ctlr_num
, NULL
);
929 static DEVICE_ATTR(legacy_board
, S_IRUGO
,
930 host_show_legacy_board
, NULL
);
932 static struct device_attribute
*hpsa_sdev_attrs
[] = {
933 &dev_attr_raid_level
,
936 &dev_attr_hp_ssd_smart_path_enabled
,
938 &dev_attr_sas_address
,
942 static struct device_attribute
*hpsa_shost_attrs
[] = {
944 &dev_attr_firmware_revision
,
945 &dev_attr_commands_outstanding
,
946 &dev_attr_transport_mode
,
947 &dev_attr_resettable
,
948 &dev_attr_hp_ssd_smart_path_status
,
949 &dev_attr_raid_offload_debug
,
950 &dev_attr_lockup_detected
,
952 &dev_attr_legacy_board
,
956 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957 HPSA_MAX_CONCURRENT_PASSTHRUS)
959 static struct scsi_host_template hpsa_driver_template
= {
960 .module
= THIS_MODULE
,
963 .queuecommand
= hpsa_scsi_queue_command
,
964 .scan_start
= hpsa_scan_start
,
965 .scan_finished
= hpsa_scan_finished
,
966 .change_queue_depth
= hpsa_change_queue_depth
,
968 .use_clustering
= ENABLE_CLUSTERING
,
969 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
971 .slave_alloc
= hpsa_slave_alloc
,
972 .slave_configure
= hpsa_slave_configure
,
973 .slave_destroy
= hpsa_slave_destroy
,
975 .compat_ioctl
= hpsa_compat_ioctl
,
977 .sdev_attrs
= hpsa_sdev_attrs
,
978 .shost_attrs
= hpsa_shost_attrs
,
983 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
986 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
988 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
989 return h
->access
.command_completed(h
, q
);
991 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
992 return h
->access
.command_completed(h
, q
);
994 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
995 a
= rq
->head
[rq
->current_entry
];
997 atomic_dec(&h
->commands_outstanding
);
1001 /* Check for wraparound */
1002 if (rq
->current_entry
== h
->max_commands
) {
1003 rq
->current_entry
= 0;
1004 rq
->wraparound
^= 1;
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1044 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1045 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1046 if (unlikely(!h
->msix_vectors
))
1048 c
->Header
.ReplyQueue
= reply_queue
;
1052 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1053 struct CommandList
*c
,
1056 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1059 * Tell the controller to post the reply to the queue for this
1060 * processor. This seems to give the best I/O throughput.
1062 cp
->ReplyQueue
= reply_queue
;
1064 * Set the bits in the address sent down to include:
1065 * - performant mode bit (bit 0)
1066 * - pull count (bits 1-3)
1067 * - command type (bits 4-6)
1069 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1070 IOACCEL1_BUSADDR_CMDTYPE
;
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1074 struct CommandList
*c
,
1077 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1078 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1080 /* Tell the controller to post the reply to the queue for this
1081 * processor. This seems to give the best I/O throughput.
1083 cp
->reply_queue
= reply_queue
;
1084 /* Set the bits in the address sent down to include:
1085 * - performant mode bit not used in ioaccel mode 2
1086 * - pull count (bits 0-3)
1087 * - command type isn't needed for ioaccel2
1089 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1092 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1093 struct CommandList
*c
,
1096 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1099 * Tell the controller to post the reply to the queue for this
1100 * processor. This seems to give the best I/O throughput.
1102 cp
->reply_queue
= reply_queue
;
1104 * Set the bits in the address sent down to include:
1105 * - performant mode bit not used in ioaccel mode 2
1106 * - pull count (bits 0-3)
1107 * - command type isn't needed for ioaccel2
1109 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1112 static int is_firmware_flash_cmd(u8
*cdb
)
1114 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should. So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1126 struct CommandList
*c
)
1128 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1130 atomic_inc(&h
->firmware_flash_in_progress
);
1131 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1135 struct CommandList
*c
)
1137 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1138 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1139 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1143 struct CommandList
*c
, int reply_queue
)
1145 dial_down_lockup_detection_during_fw_flash(h
, c
);
1146 atomic_inc(&h
->commands_outstanding
);
1148 reply_queue
= h
->reply_map
[raw_smp_processor_id()];
1149 switch (c
->cmd_type
) {
1151 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1152 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1155 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1156 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1159 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1160 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1163 set_performant_mode(h
, c
, reply_queue
);
1164 h
->access
.submit_command(h
, c
);
1168 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1170 if (unlikely(hpsa_is_pending_event(c
)))
1171 return finish_cmd(c
);
1173 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1176 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1178 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1181 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1183 if (!h
->hba_inquiry_data
)
1185 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1190 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1191 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1193 /* finds an unused bus, target, lun for a new physical device
1194 * assumes h->devlock is held
1197 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1199 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1201 for (i
= 0; i
< h
->ndevices
; i
++) {
1202 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1203 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1206 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1207 if (i
< HPSA_MAX_DEVICES
) {
1216 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1217 struct hpsa_scsi_dev_t
*dev
, char *description
)
1219 #define LABEL_SIZE 25
1220 char label
[LABEL_SIZE
];
1222 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1225 switch (dev
->devtype
) {
1227 snprintf(label
, LABEL_SIZE
, "controller");
1229 case TYPE_ENCLOSURE
:
1230 snprintf(label
, LABEL_SIZE
, "enclosure");
1235 snprintf(label
, LABEL_SIZE
, "external");
1236 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1237 snprintf(label
, LABEL_SIZE
, "%s",
1238 raid_label
[PHYSICAL_DRIVE
]);
1240 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1241 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1242 raid_label
[dev
->raid_level
]);
1245 snprintf(label
, LABEL_SIZE
, "rom");
1248 snprintf(label
, LABEL_SIZE
, "tape");
1250 case TYPE_MEDIUM_CHANGER
:
1251 snprintf(label
, LABEL_SIZE
, "changer");
1254 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1258 dev_printk(level
, &h
->pdev
->dev
,
1259 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1262 scsi_device_type(dev
->devtype
),
1266 dev
->offload_config
? '+' : '-',
1267 dev
->offload_to_be_enabled
? '+' : '-',
1268 dev
->expose_device
);
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1273 struct hpsa_scsi_dev_t
*device
,
1274 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1276 /* assumes h->devlock is held */
1277 int n
= h
->ndevices
;
1279 unsigned char addr1
[8], addr2
[8];
1280 struct hpsa_scsi_dev_t
*sd
;
1282 if (n
>= HPSA_MAX_DEVICES
) {
1283 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1288 /* physical devices do not have lun or target assigned until now. */
1289 if (device
->lun
!= -1)
1290 /* Logical device, lun is already assigned. */
1293 /* If this device a non-zero lun of a multi-lun device
1294 * byte 4 of the 8-byte LUN addr will contain the logical
1295 * unit no, zero otherwise.
1297 if (device
->scsi3addr
[4] == 0) {
1298 /* This is not a non-zero lun of a multi-lun device */
1299 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1300 device
->bus
, &device
->target
, &device
->lun
) != 0)
1305 /* This is a non-zero lun of a multi-lun device.
1306 * Search through our list and find the device which
1307 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308 * Assign the same bus and target for this new LUN.
1309 * Use the logical unit number from the firmware.
1311 memcpy(addr1
, device
->scsi3addr
, 8);
1314 for (i
= 0; i
< n
; i
++) {
1316 memcpy(addr2
, sd
->scsi3addr
, 8);
1319 /* differ only in byte 4 and 5? */
1320 if (memcmp(addr1
, addr2
, 8) == 0) {
1321 device
->bus
= sd
->bus
;
1322 device
->target
= sd
->target
;
1323 device
->lun
= device
->scsi3addr
[4];
1327 if (device
->lun
== -1) {
1328 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1329 " suspect firmware bug or unsupported hardware "
1330 "configuration.\n");
1338 added
[*nadded
] = device
;
1340 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1341 device
->expose_device
? "added" : "masked");
1346 * Called during a scan operation.
1348 * Update an entry in h->dev[] array.
1350 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1351 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1353 /* assumes h->devlock is held */
1354 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1356 /* Raid level changed. */
1357 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1360 * ioacccel_handle may have changed for a dual domain disk
1362 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1364 /* Raid offload parameters changed. Careful about the ordering. */
1365 if (new_entry
->offload_config
&& new_entry
->offload_to_be_enabled
) {
1367 * if drive is newly offload_enabled, we want to copy the
1368 * raid map data first. If previously offload_enabled and
1369 * offload_config were set, raid map data had better be
1370 * the same as it was before. If raid map data has changed
1371 * then it had better be the case that
1372 * h->dev[entry]->offload_enabled is currently 0.
1374 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1375 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1377 if (new_entry
->offload_to_be_enabled
) {
1378 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1379 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1381 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1382 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1383 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1384 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1387 * We can turn off ioaccel offload now, but need to delay turning
1388 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389 * can't do that until all the devices are updated.
1391 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_to_be_enabled
;
1394 * turn ioaccel off immediately if told to do so.
1396 if (!new_entry
->offload_to_be_enabled
)
1397 h
->dev
[entry
]->offload_enabled
= 0;
1399 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1404 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1405 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1406 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1408 /* assumes h->devlock is held */
1409 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1410 removed
[*nremoved
] = h
->dev
[entry
];
1414 * New physical devices won't have target/lun assigned yet
1415 * so we need to preserve the values in the slot we are replacing.
1417 if (new_entry
->target
== -1) {
1418 new_entry
->target
= h
->dev
[entry
]->target
;
1419 new_entry
->lun
= h
->dev
[entry
]->lun
;
1422 h
->dev
[entry
] = new_entry
;
1423 added
[*nadded
] = new_entry
;
1426 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1431 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1433 /* assumes h->devlock is held */
1435 struct hpsa_scsi_dev_t
*sd
;
1437 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1440 removed
[*nremoved
] = h
->dev
[entry
];
1443 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1444 h
->dev
[i
] = h
->dev
[i
+1];
1446 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 (a)[7] == (b)[7] && \
1451 (a)[6] == (b)[6] && \
1452 (a)[5] == (b)[5] && \
1453 (a)[4] == (b)[4] && \
1454 (a)[3] == (b)[3] && \
1455 (a)[2] == (b)[2] && \
1456 (a)[1] == (b)[1] && \
1459 static void fixup_botched_add(struct ctlr_info
*h
,
1460 struct hpsa_scsi_dev_t
*added
)
1462 /* called when scsi_add_device fails in order to re-adjust
1463 * h->dev[] to match the mid layer's view.
1465 unsigned long flags
;
1468 spin_lock_irqsave(&h
->lock
, flags
);
1469 for (i
= 0; i
< h
->ndevices
; i
++) {
1470 if (h
->dev
[i
] == added
) {
1471 for (j
= i
; j
< h
->ndevices
-1; j
++)
1472 h
->dev
[j
] = h
->dev
[j
+1];
1477 spin_unlock_irqrestore(&h
->lock
, flags
);
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1482 struct hpsa_scsi_dev_t
*dev2
)
1484 /* we compare everything except lun and target as these
1485 * are not yet assigned. Compare parts likely
1488 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1489 sizeof(dev1
->scsi3addr
)) != 0)
1491 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1492 sizeof(dev1
->device_id
)) != 0)
1494 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1496 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1498 if (dev1
->devtype
!= dev2
->devtype
)
1500 if (dev1
->bus
!= dev2
->bus
)
1505 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1506 struct hpsa_scsi_dev_t
*dev2
)
1508 /* Device attributes that can change, but don't mean
1509 * that the device is a different device, nor that the OS
1510 * needs to be told anything about the change.
1512 if (dev1
->raid_level
!= dev2
->raid_level
)
1514 if (dev1
->offload_config
!= dev2
->offload_config
)
1516 if (dev1
->offload_to_be_enabled
!= dev2
->offload_to_be_enabled
)
1518 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1519 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1522 * This can happen for dual domain devices. An active
1523 * path change causes the ioaccel handle to change
1525 * for example note the handle differences between p0 and p1
1526 * Device WWN ,WWN hash,Handle
1527 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1530 if (dev1
->ioaccel_handle
!= dev2
->ioaccel_handle
)
1535 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index. If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1544 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1553 return DEVICE_NOT_FOUND
;
1555 for (i
= 0; i
< haystack_size
; i
++) {
1556 if (haystack
[i
] == NULL
) /* previously removed. */
1558 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1560 if (device_is_the_same(needle
, haystack
[i
])) {
1561 if (device_updated(needle
, haystack
[i
]))
1562 return DEVICE_UPDATED
;
1565 /* Keep offline devices offline */
1566 if (needle
->volume_offline
)
1567 return DEVICE_NOT_FOUND
;
1568 return DEVICE_CHANGED
;
1573 return DEVICE_NOT_FOUND
;
1576 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1577 unsigned char scsi3addr
[])
1579 struct offline_device_entry
*device
;
1580 unsigned long flags
;
1582 /* Check to see if device is already on the list */
1583 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1584 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1585 if (memcmp(device
->scsi3addr
, scsi3addr
,
1586 sizeof(device
->scsi3addr
)) == 0) {
1587 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1591 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1593 /* Device is not on the list, add it. */
1594 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1598 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1599 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1600 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1601 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1606 struct hpsa_scsi_dev_t
*sd
)
1608 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1609 dev_info(&h
->pdev
->dev
,
1610 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611 h
->scsi_host
->host_no
,
1612 sd
->bus
, sd
->target
, sd
->lun
);
1613 switch (sd
->volume_offline
) {
1616 case HPSA_LV_UNDERGOING_ERASE
:
1617 dev_info(&h
->pdev
->dev
,
1618 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619 h
->scsi_host
->host_no
,
1620 sd
->bus
, sd
->target
, sd
->lun
);
1622 case HPSA_LV_NOT_AVAILABLE
:
1623 dev_info(&h
->pdev
->dev
,
1624 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625 h
->scsi_host
->host_no
,
1626 sd
->bus
, sd
->target
, sd
->lun
);
1628 case HPSA_LV_UNDERGOING_RPI
:
1629 dev_info(&h
->pdev
->dev
,
1630 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631 h
->scsi_host
->host_no
,
1632 sd
->bus
, sd
->target
, sd
->lun
);
1634 case HPSA_LV_PENDING_RPI
:
1635 dev_info(&h
->pdev
->dev
,
1636 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637 h
->scsi_host
->host_no
,
1638 sd
->bus
, sd
->target
, sd
->lun
);
1640 case HPSA_LV_ENCRYPTED_NO_KEY
:
1641 dev_info(&h
->pdev
->dev
,
1642 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643 h
->scsi_host
->host_no
,
1644 sd
->bus
, sd
->target
, sd
->lun
);
1646 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1647 dev_info(&h
->pdev
->dev
,
1648 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649 h
->scsi_host
->host_no
,
1650 sd
->bus
, sd
->target
, sd
->lun
);
1652 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1653 dev_info(&h
->pdev
->dev
,
1654 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655 h
->scsi_host
->host_no
,
1656 sd
->bus
, sd
->target
, sd
->lun
);
1658 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1659 dev_info(&h
->pdev
->dev
,
1660 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661 h
->scsi_host
->host_no
,
1662 sd
->bus
, sd
->target
, sd
->lun
);
1664 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1665 dev_info(&h
->pdev
->dev
,
1666 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667 h
->scsi_host
->host_no
,
1668 sd
->bus
, sd
->target
, sd
->lun
);
1670 case HPSA_LV_PENDING_ENCRYPTION
:
1671 dev_info(&h
->pdev
->dev
,
1672 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673 h
->scsi_host
->host_no
,
1674 sd
->bus
, sd
->target
, sd
->lun
);
1676 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1677 dev_info(&h
->pdev
->dev
,
1678 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679 h
->scsi_host
->host_no
,
1680 sd
->bus
, sd
->target
, sd
->lun
);
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1690 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1691 struct hpsa_scsi_dev_t
*logical_drive
)
1693 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1694 struct raid_map_disk_data
*dd
= &map
->data
[0];
1696 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1697 le16_to_cpu(map
->metadata_disks_per_row
);
1698 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1699 le16_to_cpu(map
->layout_map_count
) *
1700 total_disks_per_row
;
1701 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1702 total_disks_per_row
;
1705 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1706 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1708 logical_drive
->nphysical_disks
= nraid_map_entries
;
1711 for (i
= 0; i
< nraid_map_entries
; i
++) {
1712 logical_drive
->phys_disk
[i
] = NULL
;
1713 if (!logical_drive
->offload_config
)
1715 for (j
= 0; j
< ndevices
; j
++) {
1718 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1719 dev
[j
]->devtype
!= TYPE_ZBC
)
1721 if (is_logical_device(dev
[j
]))
1723 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1726 logical_drive
->phys_disk
[i
] = dev
[j
];
1728 qdepth
= min(h
->nr_cmds
, qdepth
+
1729 logical_drive
->phys_disk
[i
]->queue_depth
);
1734 * This can happen if a physical drive is removed and
1735 * the logical drive is degraded. In that case, the RAID
1736 * map data will refer to a physical disk which isn't actually
1737 * present. And in that case offload_enabled should already
1738 * be 0, but we'll turn it off here just in case
1740 if (!logical_drive
->phys_disk
[i
]) {
1741 dev_warn(&h
->pdev
->dev
,
1742 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1744 h
->scsi_host
->host_no
, logical_drive
->bus
,
1745 logical_drive
->target
, logical_drive
->lun
);
1746 logical_drive
->offload_enabled
= 0;
1747 logical_drive
->offload_to_be_enabled
= 0;
1748 logical_drive
->queue_depth
= 8;
1751 if (nraid_map_entries
)
1753 * This is correct for reads, too high for full stripe writes,
1754 * way too high for partial stripe writes
1756 logical_drive
->queue_depth
= qdepth
;
1758 if (logical_drive
->external
)
1759 logical_drive
->queue_depth
= EXTERNAL_QD
;
1761 logical_drive
->queue_depth
= h
->nr_cmds
;
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1766 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1770 for (i
= 0; i
< ndevices
; i
++) {
1773 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1774 dev
[i
]->devtype
!= TYPE_ZBC
)
1776 if (!is_logical_device(dev
[i
]))
1780 * If offload is currently enabled, the RAID map and
1781 * phys_disk[] assignment *better* not be changing
1782 * because we would be changing ioaccel phsy_disk[] pointers
1783 * on a ioaccel volume processing I/O requests.
1785 * If an ioaccel volume status changed, initially because it was
1786 * re-configured and thus underwent a transformation, or
1787 * a drive failed, we would have received a state change
1788 * request and ioaccel should have been turned off. When the
1789 * transformation completes, we get another state change
1790 * request to turn ioaccel back on. In this case, we need
1791 * to update the ioaccel information.
1793 * Thus: If it is not currently enabled, but will be after
1794 * the scan completes, make sure the ioaccel pointers
1798 if (!dev
[i
]->offload_enabled
&& dev
[i
]->offload_to_be_enabled
)
1799 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1803 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1810 if (is_logical_device(device
)) /* RAID */
1811 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1812 device
->target
, device
->lun
);
1814 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1820 struct hpsa_scsi_dev_t
*dev
)
1825 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1826 struct CommandList
*c
= h
->cmd_pool
+ i
;
1827 int refcount
= atomic_inc_return(&c
->refcount
);
1829 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1831 unsigned long flags
;
1833 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1834 if (!hpsa_is_cmd_idle(c
))
1836 spin_unlock_irqrestore(&h
->lock
, flags
);
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1846 struct hpsa_scsi_dev_t
*device
)
1852 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1861 dev_warn(&h
->pdev
->dev
,
1862 "%s: removing device with %d outstanding commands!\n",
1866 static void hpsa_remove_device(struct ctlr_info
*h
,
1867 struct hpsa_scsi_dev_t
*device
)
1869 struct scsi_device
*sdev
= NULL
;
1875 * Allow for commands to drain
1877 device
->removed
= 1;
1878 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1880 if (is_logical_device(device
)) { /* RAID */
1881 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1882 device
->target
, device
->lun
);
1884 scsi_remove_device(sdev
);
1885 scsi_device_put(sdev
);
1888 * We don't expect to get here. Future commands
1889 * to this device will get a selection timeout as
1890 * if the device were gone.
1892 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1893 "didn't find device for removal.");
1897 hpsa_remove_sas_device(device
);
1901 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1902 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1904 /* sd contains scsi3 addresses and devtypes, and inquiry
1905 * data. This function takes what's in sd to be the current
1906 * reality and updates h->dev[] to reflect that reality.
1908 int i
, entry
, device_change
, changes
= 0;
1909 struct hpsa_scsi_dev_t
*csd
;
1910 unsigned long flags
;
1911 struct hpsa_scsi_dev_t
**added
, **removed
;
1912 int nadded
, nremoved
;
1915 * A reset can cause a device status to change
1916 * re-schedule the scan to see what happened.
1918 spin_lock_irqsave(&h
->reset_lock
, flags
);
1919 if (h
->reset_in_progress
) {
1920 h
->drv_req_rescan
= 1;
1921 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1924 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1926 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1927 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1929 if (!added
|| !removed
) {
1930 dev_warn(&h
->pdev
->dev
, "out of memory in "
1931 "adjust_hpsa_scsi_table\n");
1935 spin_lock_irqsave(&h
->devlock
, flags
);
1937 /* find any devices in h->dev[] that are not in
1938 * sd[] and remove them from h->dev[], and for any
1939 * devices which have changed, remove the old device
1940 * info and add the new device info.
1941 * If minor device attributes change, just update
1942 * the existing device structure.
1947 while (i
< h
->ndevices
) {
1949 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1950 if (device_change
== DEVICE_NOT_FOUND
) {
1952 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1953 continue; /* remove ^^^, hence i not incremented */
1954 } else if (device_change
== DEVICE_CHANGED
) {
1956 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1957 added
, &nadded
, removed
, &nremoved
);
1958 /* Set it to NULL to prevent it from being freed
1959 * at the bottom of hpsa_update_scsi_devices()
1962 } else if (device_change
== DEVICE_UPDATED
) {
1963 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1968 /* Now, make sure every device listed in sd[] is also
1969 * listed in h->dev[], adding them if they aren't found
1972 for (i
= 0; i
< nsds
; i
++) {
1973 if (!sd
[i
]) /* if already added above. */
1976 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977 * as the SCSI mid-layer does not handle such devices well.
1978 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979 * at 160Hz, and prevents the system from coming up.
1981 if (sd
[i
]->volume_offline
) {
1982 hpsa_show_volume_status(h
, sd
[i
]);
1983 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1987 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1988 h
->ndevices
, &entry
);
1989 if (device_change
== DEVICE_NOT_FOUND
) {
1991 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1993 sd
[i
] = NULL
; /* prevent from being freed later. */
1994 } else if (device_change
== DEVICE_CHANGED
) {
1995 /* should never happen... */
1997 dev_warn(&h
->pdev
->dev
,
1998 "device unexpectedly changed.\n");
1999 /* but if it does happen, we just ignore that device */
2002 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
2005 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006 * any logical drives that need it enabled.
2008 * The raid map should be current by now.
2010 * We are updating the device list used for I/O requests.
2012 for (i
= 0; i
< h
->ndevices
; i
++) {
2013 if (h
->dev
[i
] == NULL
)
2015 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
2018 spin_unlock_irqrestore(&h
->devlock
, flags
);
2020 /* Monitor devices which are in one of several NOT READY states to be
2021 * brought online later. This must be done without holding h->devlock,
2022 * so don't touch h->dev[]
2024 for (i
= 0; i
< nsds
; i
++) {
2025 if (!sd
[i
]) /* if already added above. */
2027 if (sd
[i
]->volume_offline
)
2028 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
2031 /* Don't notify scsi mid layer of any changes the first time through
2032 * (or if there are no changes) scsi_scan_host will do it later the
2033 * first time through.
2038 /* Notify scsi mid layer of any removed devices */
2039 for (i
= 0; i
< nremoved
; i
++) {
2040 if (removed
[i
] == NULL
)
2042 if (removed
[i
]->expose_device
)
2043 hpsa_remove_device(h
, removed
[i
]);
2048 /* Notify scsi mid layer of any added devices */
2049 for (i
= 0; i
< nadded
; i
++) {
2052 if (added
[i
] == NULL
)
2054 if (!(added
[i
]->expose_device
))
2056 rc
= hpsa_add_device(h
, added
[i
]);
2059 dev_warn(&h
->pdev
->dev
,
2060 "addition failed %d, device not added.", rc
);
2061 /* now we have to remove it from h->dev,
2062 * since it didn't get added to scsi mid layer
2064 fixup_botched_add(h
, added
[i
]);
2065 h
->drv_req_rescan
= 1;
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2077 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2078 int bus
, int target
, int lun
)
2081 struct hpsa_scsi_dev_t
*sd
;
2083 for (i
= 0; i
< h
->ndevices
; i
++) {
2085 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2091 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2093 struct hpsa_scsi_dev_t
*sd
= NULL
;
2094 unsigned long flags
;
2095 struct ctlr_info
*h
;
2097 h
= sdev_to_hba(sdev
);
2098 spin_lock_irqsave(&h
->devlock
, flags
);
2099 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2100 struct scsi_target
*starget
;
2101 struct sas_rphy
*rphy
;
2103 starget
= scsi_target(sdev
);
2104 rphy
= target_to_rphy(starget
);
2105 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2107 sd
->target
= sdev_id(sdev
);
2108 sd
->lun
= sdev
->lun
;
2112 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2113 sdev_id(sdev
), sdev
->lun
);
2115 if (sd
&& sd
->expose_device
) {
2116 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2117 sdev
->hostdata
= sd
;
2119 sdev
->hostdata
= NULL
;
2120 spin_unlock_irqrestore(&h
->devlock
, flags
);
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2127 struct hpsa_scsi_dev_t
*sd
;
2130 sd
= sdev
->hostdata
;
2131 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2135 queue_depth
= EXTERNAL_QD
;
2137 queue_depth
= sd
->queue_depth
!= 0 ?
2138 sd
->queue_depth
: sdev
->host
->can_queue
;
2140 queue_depth
= sdev
->host
->can_queue
;
2142 scsi_change_queue_depth(sdev
, queue_depth
);
2147 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2149 /* nothing to do. */
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2156 if (!h
->ioaccel2_cmd_sg_list
)
2158 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2159 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2160 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2162 kfree(h
->ioaccel2_cmd_sg_list
);
2163 h
->ioaccel2_cmd_sg_list
= NULL
;
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2170 if (h
->chainsize
<= 0)
2173 h
->ioaccel2_cmd_sg_list
=
2174 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2176 if (!h
->ioaccel2_cmd_sg_list
)
2178 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2179 h
->ioaccel2_cmd_sg_list
[i
] =
2180 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2181 h
->maxsgentries
, GFP_KERNEL
);
2182 if (!h
->ioaccel2_cmd_sg_list
[i
])
2188 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2192 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2196 if (!h
->cmd_sg_list
)
2198 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2199 kfree(h
->cmd_sg_list
[i
]);
2200 h
->cmd_sg_list
[i
] = NULL
;
2202 kfree(h
->cmd_sg_list
);
2203 h
->cmd_sg_list
= NULL
;
2206 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2210 if (h
->chainsize
<= 0)
2213 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2215 if (!h
->cmd_sg_list
)
2218 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2219 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2220 h
->chainsize
, GFP_KERNEL
);
2221 if (!h
->cmd_sg_list
[i
])
2228 hpsa_free_sg_chain_blocks(h
);
2232 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2233 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2235 struct ioaccel2_sg_element
*chain_block
;
2239 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2240 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2241 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2243 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2244 /* prevent subsequent unmapping */
2245 cp
->sg
->address
= 0;
2248 cp
->sg
->address
= cpu_to_le64(temp64
);
2252 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2253 struct io_accel2_cmd
*cp
)
2255 struct ioaccel2_sg_element
*chain_sg
;
2260 temp64
= le64_to_cpu(chain_sg
->address
);
2261 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2262 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2265 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2266 struct CommandList
*c
)
2268 struct SGDescriptor
*chain_sg
, *chain_block
;
2272 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2273 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2274 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2275 chain_len
= sizeof(*chain_sg
) *
2276 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2277 chain_sg
->Len
= cpu_to_le32(chain_len
);
2278 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2280 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2281 /* prevent subsequent unmapping */
2282 chain_sg
->Addr
= cpu_to_le64(0);
2285 chain_sg
->Addr
= cpu_to_le64(temp64
);
2289 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2290 struct CommandList
*c
)
2292 struct SGDescriptor
*chain_sg
;
2294 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2297 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2298 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2299 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2303 /* Decode the various types of errors on ioaccel2 path.
2304 * Return 1 for any error that should generate a RAID path retry.
2305 * Return 0 for errors that don't require a RAID path retry.
2307 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2308 struct CommandList
*c
,
2309 struct scsi_cmnd
*cmd
,
2310 struct io_accel2_cmd
*c2
,
2311 struct hpsa_scsi_dev_t
*dev
)
2315 u32 ioaccel2_resid
= 0;
2317 switch (c2
->error_data
.serv_response
) {
2318 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2319 switch (c2
->error_data
.status
) {
2320 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2322 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2323 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2324 if (c2
->error_data
.data_present
!=
2325 IOACCEL2_SENSE_DATA_PRESENT
) {
2326 memset(cmd
->sense_buffer
, 0,
2327 SCSI_SENSE_BUFFERSIZE
);
2330 /* copy the sense data */
2331 data_len
= c2
->error_data
.sense_data_len
;
2332 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2333 data_len
= SCSI_SENSE_BUFFERSIZE
;
2334 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2336 sizeof(c2
->error_data
.sense_data_buff
);
2337 memcpy(cmd
->sense_buffer
,
2338 c2
->error_data
.sense_data_buff
, data_len
);
2341 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2344 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2347 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2350 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2358 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2359 switch (c2
->error_data
.status
) {
2360 case IOACCEL2_STATUS_SR_IO_ERROR
:
2361 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2362 case IOACCEL2_STATUS_SR_OVERRUN
:
2365 case IOACCEL2_STATUS_SR_UNDERRUN
:
2366 cmd
->result
= (DID_OK
<< 16); /* host byte */
2367 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2368 ioaccel2_resid
= get_unaligned_le32(
2369 &c2
->error_data
.resid_cnt
[0]);
2370 scsi_set_resid(cmd
, ioaccel2_resid
);
2372 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2373 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2374 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2376 * Did an HBA disk disappear? We will eventually
2377 * get a state change event from the controller but
2378 * in the meantime, we need to tell the OS that the
2379 * HBA disk is no longer there and stop I/O
2380 * from going down. This allows the potential re-insert
2381 * of the disk to get the same device node.
2383 if (dev
->physical_device
&& dev
->expose_device
) {
2384 cmd
->result
= DID_NO_CONNECT
<< 16;
2386 h
->drv_req_rescan
= 1;
2387 dev_warn(&h
->pdev
->dev
,
2388 "%s: device is gone!\n", __func__
);
2391 * Retry by sending down the RAID path.
2392 * We will get an event from ctlr to
2393 * trigger rescan regardless.
2401 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2403 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2405 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2408 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2415 return retry
; /* retry on raid path? */
2418 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2419 struct CommandList
*c
)
2421 bool do_wake
= false;
2424 * Reset c->scsi_cmd here so that the reset handler will know
2425 * this command has completed. Then, check to see if the handler is
2426 * waiting for this command, and, if so, wake it.
2428 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2429 mb(); /* Declare command idle before checking for pending events. */
2430 if (c
->reset_pending
) {
2431 unsigned long flags
;
2432 struct hpsa_scsi_dev_t
*dev
;
2435 * There appears to be a reset pending; lock the lock and
2436 * reconfirm. If so, then decrement the count of outstanding
2437 * commands and wake the reset command if this is the last one.
2439 spin_lock_irqsave(&h
->lock
, flags
);
2440 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2441 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2443 c
->reset_pending
= NULL
;
2444 spin_unlock_irqrestore(&h
->lock
, flags
);
2448 wake_up_all(&h
->event_sync_wait_queue
);
2451 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2452 struct CommandList
*c
)
2454 hpsa_cmd_resolve_events(h
, c
);
2455 cmd_tagged_free(h
, c
);
2458 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2459 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2461 hpsa_cmd_resolve_and_free(h
, c
);
2462 if (cmd
&& cmd
->scsi_done
)
2463 cmd
->scsi_done(cmd
);
2466 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2468 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2469 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2472 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2473 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2474 struct hpsa_scsi_dev_t
*dev
)
2476 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2478 /* check for good status */
2479 if (likely(c2
->error_data
.serv_response
== 0 &&
2480 c2
->error_data
.status
== 0))
2481 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2484 * Any RAID offload error results in retry which will use
2485 * the normal I/O path so the controller can handle whatever is
2488 if (is_logical_device(dev
) &&
2489 c2
->error_data
.serv_response
==
2490 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2491 if (c2
->error_data
.status
==
2492 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2493 dev
->offload_enabled
= 0;
2494 dev
->offload_to_be_enabled
= 0;
2497 return hpsa_retry_cmd(h
, c
);
2500 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2501 return hpsa_retry_cmd(h
, c
);
2503 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2506 /* Returns 0 on success, < 0 otherwise. */
2507 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2508 struct CommandList
*cp
)
2510 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2512 switch (tmf_status
) {
2513 case CISS_TMF_COMPLETE
:
2515 * CISS_TMF_COMPLETE never happens, instead,
2516 * ei->CommandStatus == 0 for this case.
2518 case CISS_TMF_SUCCESS
:
2520 case CISS_TMF_INVALID_FRAME
:
2521 case CISS_TMF_NOT_SUPPORTED
:
2522 case CISS_TMF_FAILED
:
2523 case CISS_TMF_WRONG_LUN
:
2524 case CISS_TMF_OVERLAPPED_TAG
:
2527 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2534 static void complete_scsi_command(struct CommandList
*cp
)
2536 struct scsi_cmnd
*cmd
;
2537 struct ctlr_info
*h
;
2538 struct ErrorInfo
*ei
;
2539 struct hpsa_scsi_dev_t
*dev
;
2540 struct io_accel2_cmd
*c2
;
2543 u8 asc
; /* additional sense code */
2544 u8 ascq
; /* additional sense code qualifier */
2545 unsigned long sense_data_size
;
2552 cmd
->result
= DID_NO_CONNECT
<< 16;
2553 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2556 dev
= cmd
->device
->hostdata
;
2558 cmd
->result
= DID_NO_CONNECT
<< 16;
2559 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2561 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2563 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2564 if ((cp
->cmd_type
== CMD_SCSI
) &&
2565 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2566 hpsa_unmap_sg_chain_block(h
, cp
);
2568 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2569 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2570 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2572 cmd
->result
= (DID_OK
<< 16); /* host byte */
2573 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2575 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2576 if (dev
->physical_device
&& dev
->expose_device
&&
2578 cmd
->result
= DID_NO_CONNECT
<< 16;
2579 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2581 if (likely(cp
->phys_disk
!= NULL
))
2582 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2586 * We check for lockup status here as it may be set for
2587 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2588 * fail_all_oustanding_cmds()
2590 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2591 /* DID_NO_CONNECT will prevent a retry */
2592 cmd
->result
= DID_NO_CONNECT
<< 16;
2593 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2596 if ((unlikely(hpsa_is_pending_event(cp
))))
2597 if (cp
->reset_pending
)
2598 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2600 if (cp
->cmd_type
== CMD_IOACCEL2
)
2601 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2603 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2604 if (ei
->CommandStatus
== 0)
2605 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2607 /* For I/O accelerator commands, copy over some fields to the normal
2608 * CISS header used below for error handling.
2610 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2611 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2612 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2613 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2614 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2615 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2616 cp
->Header
.tag
= c
->tag
;
2617 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2618 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2620 /* Any RAID offload error results in retry which will use
2621 * the normal I/O path so the controller can handle whatever's
2624 if (is_logical_device(dev
)) {
2625 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2626 dev
->offload_enabled
= 0;
2627 return hpsa_retry_cmd(h
, cp
);
2631 /* an error has occurred */
2632 switch (ei
->CommandStatus
) {
2634 case CMD_TARGET_STATUS
:
2635 cmd
->result
|= ei
->ScsiStatus
;
2636 /* copy the sense data */
2637 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2638 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2640 sense_data_size
= sizeof(ei
->SenseInfo
);
2641 if (ei
->SenseLen
< sense_data_size
)
2642 sense_data_size
= ei
->SenseLen
;
2643 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2645 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2646 &sense_key
, &asc
, &ascq
);
2647 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2648 if (sense_key
== ABORTED_COMMAND
) {
2649 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2654 /* Problem was not a check condition
2655 * Pass it up to the upper layers...
2657 if (ei
->ScsiStatus
) {
2658 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2659 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2660 "Returning result: 0x%x\n",
2662 sense_key
, asc
, ascq
,
2664 } else { /* scsi status is zero??? How??? */
2665 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2666 "Returning no connection.\n", cp
),
2668 /* Ordinarily, this case should never happen,
2669 * but there is a bug in some released firmware
2670 * revisions that allows it to happen if, for
2671 * example, a 4100 backplane loses power and
2672 * the tape drive is in it. We assume that
2673 * it's a fatal error of some kind because we
2674 * can't show that it wasn't. We will make it
2675 * look like selection timeout since that is
2676 * the most common reason for this to occur,
2677 * and it's severe enough.
2680 cmd
->result
= DID_NO_CONNECT
<< 16;
2684 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2686 case CMD_DATA_OVERRUN
:
2687 dev_warn(&h
->pdev
->dev
,
2688 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2691 /* print_bytes(cp, sizeof(*cp), 1, 0);
2693 /* We get CMD_INVALID if you address a non-existent device
2694 * instead of a selection timeout (no response). You will
2695 * see this if you yank out a drive, then try to access it.
2696 * This is kind of a shame because it means that any other
2697 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2698 * missing target. */
2699 cmd
->result
= DID_NO_CONNECT
<< 16;
2702 case CMD_PROTOCOL_ERR
:
2703 cmd
->result
= DID_ERROR
<< 16;
2704 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2707 case CMD_HARDWARE_ERR
:
2708 cmd
->result
= DID_ERROR
<< 16;
2709 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2712 case CMD_CONNECTION_LOST
:
2713 cmd
->result
= DID_ERROR
<< 16;
2714 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2718 cmd
->result
= DID_ABORT
<< 16;
2720 case CMD_ABORT_FAILED
:
2721 cmd
->result
= DID_ERROR
<< 16;
2722 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2725 case CMD_UNSOLICITED_ABORT
:
2726 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2727 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2731 cmd
->result
= DID_TIME_OUT
<< 16;
2732 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2735 case CMD_UNABORTABLE
:
2736 cmd
->result
= DID_ERROR
<< 16;
2737 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2739 case CMD_TMF_STATUS
:
2740 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2741 cmd
->result
= DID_ERROR
<< 16;
2743 case CMD_IOACCEL_DISABLED
:
2744 /* This only handles the direct pass-through case since RAID
2745 * offload is handled above. Just attempt a retry.
2747 cmd
->result
= DID_SOFT_ERROR
<< 16;
2748 dev_warn(&h
->pdev
->dev
,
2749 "cp %p had HP SSD Smart Path error\n", cp
);
2752 cmd
->result
= DID_ERROR
<< 16;
2753 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2754 cp
, ei
->CommandStatus
);
2757 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2760 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2761 struct CommandList
*c
, int sg_used
, int data_direction
)
2765 for (i
= 0; i
< sg_used
; i
++)
2766 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2767 le32_to_cpu(c
->SG
[i
].Len
),
2771 static int hpsa_map_one(struct pci_dev
*pdev
,
2772 struct CommandList
*cp
,
2779 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2780 cp
->Header
.SGList
= 0;
2781 cp
->Header
.SGTotal
= cpu_to_le16(0);
2785 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2786 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2787 /* Prevent subsequent unmap of something never mapped */
2788 cp
->Header
.SGList
= 0;
2789 cp
->Header
.SGTotal
= cpu_to_le16(0);
2792 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2793 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2794 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2795 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2796 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2800 #define NO_TIMEOUT ((unsigned long) -1)
2801 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2802 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2803 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2805 DECLARE_COMPLETION_ONSTACK(wait
);
2808 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2809 if (timeout_msecs
== NO_TIMEOUT
) {
2810 /* TODO: get rid of this no-timeout thing */
2811 wait_for_completion_io(&wait
);
2814 if (!wait_for_completion_io_timeout(&wait
,
2815 msecs_to_jiffies(timeout_msecs
))) {
2816 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2822 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2823 int reply_queue
, unsigned long timeout_msecs
)
2825 if (unlikely(lockup_detected(h
))) {
2826 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2829 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2832 static u32
lockup_detected(struct ctlr_info
*h
)
2835 u32 rc
, *lockup_detected
;
2838 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2839 rc
= *lockup_detected
;
2844 #define MAX_DRIVER_CMD_RETRIES 25
2845 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2846 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2848 int backoff_time
= 10, retry_count
= 0;
2852 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2853 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2858 if (retry_count
> 3) {
2859 msleep(backoff_time
);
2860 if (backoff_time
< 1000)
2863 } while ((check_for_unit_attention(h
, c
) ||
2864 check_for_busy(h
, c
)) &&
2865 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2866 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2867 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2872 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2873 struct CommandList
*c
)
2875 const u8
*cdb
= c
->Request
.CDB
;
2876 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2878 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2882 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2883 struct CommandList
*cp
)
2885 const struct ErrorInfo
*ei
= cp
->err_info
;
2886 struct device
*d
= &cp
->h
->pdev
->dev
;
2887 u8 sense_key
, asc
, ascq
;
2890 switch (ei
->CommandStatus
) {
2891 case CMD_TARGET_STATUS
:
2892 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2893 sense_len
= sizeof(ei
->SenseInfo
);
2895 sense_len
= ei
->SenseLen
;
2896 decode_sense_data(ei
->SenseInfo
, sense_len
,
2897 &sense_key
, &asc
, &ascq
);
2898 hpsa_print_cmd(h
, "SCSI status", cp
);
2899 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2900 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2901 sense_key
, asc
, ascq
);
2903 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2904 if (ei
->ScsiStatus
== 0)
2905 dev_warn(d
, "SCSI status is abnormally zero. "
2906 "(probably indicates selection timeout "
2907 "reported incorrectly due to a known "
2908 "firmware bug, circa July, 2001.)\n");
2910 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2912 case CMD_DATA_OVERRUN
:
2913 hpsa_print_cmd(h
, "overrun condition", cp
);
2916 /* controller unfortunately reports SCSI passthru's
2917 * to non-existent targets as invalid commands.
2919 hpsa_print_cmd(h
, "invalid command", cp
);
2920 dev_warn(d
, "probably means device no longer present\n");
2923 case CMD_PROTOCOL_ERR
:
2924 hpsa_print_cmd(h
, "protocol error", cp
);
2926 case CMD_HARDWARE_ERR
:
2927 hpsa_print_cmd(h
, "hardware error", cp
);
2929 case CMD_CONNECTION_LOST
:
2930 hpsa_print_cmd(h
, "connection lost", cp
);
2933 hpsa_print_cmd(h
, "aborted", cp
);
2935 case CMD_ABORT_FAILED
:
2936 hpsa_print_cmd(h
, "abort failed", cp
);
2938 case CMD_UNSOLICITED_ABORT
:
2939 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2942 hpsa_print_cmd(h
, "timed out", cp
);
2944 case CMD_UNABORTABLE
:
2945 hpsa_print_cmd(h
, "unabortable", cp
);
2947 case CMD_CTLR_LOCKUP
:
2948 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2951 hpsa_print_cmd(h
, "unknown status", cp
);
2952 dev_warn(d
, "Unknown command status %x\n",
2957 static int hpsa_do_receive_diagnostic(struct ctlr_info
*h
, u8
*scsi3addr
,
2958 u8 page
, u8
*buf
, size_t bufsize
)
2961 struct CommandList
*c
;
2962 struct ErrorInfo
*ei
;
2965 if (fill_cmd(c
, RECEIVE_DIAGNOSTIC
, h
, buf
, bufsize
,
2966 page
, scsi3addr
, TYPE_CMD
)) {
2970 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2971 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2975 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2976 hpsa_scsi_interpret_error(h
, c
);
2984 static u64
hpsa_get_enclosure_logical_identifier(struct ctlr_info
*h
,
2991 buf
= kzalloc(1024, GFP_KERNEL
);
2995 rc
= hpsa_do_receive_diagnostic(h
, scsi3addr
, RECEIVE_DIAGNOSTIC
,
3001 sa
= get_unaligned_be64(buf
+12);
3008 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3009 u16 page
, unsigned char *buf
,
3010 unsigned char bufsize
)
3013 struct CommandList
*c
;
3014 struct ErrorInfo
*ei
;
3018 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
3019 page
, scsi3addr
, TYPE_CMD
)) {
3023 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3024 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3028 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3029 hpsa_scsi_interpret_error(h
, c
);
3037 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3038 u8 reset_type
, int reply_queue
)
3041 struct CommandList
*c
;
3042 struct ErrorInfo
*ei
;
3047 /* fill_cmd can't fail here, no data buffer to map. */
3048 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
3049 scsi3addr
, TYPE_MSG
);
3050 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
3052 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
3055 /* no unmap needed here because no data xfer. */
3058 if (ei
->CommandStatus
!= 0) {
3059 hpsa_scsi_interpret_error(h
, c
);
3067 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
3068 struct hpsa_scsi_dev_t
*dev
,
3069 unsigned char *scsi3addr
)
3073 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3074 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
3076 if (hpsa_is_cmd_idle(c
))
3079 switch (c
->cmd_type
) {
3081 case CMD_IOCTL_PEND
:
3082 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
3083 sizeof(c
->Header
.LUN
.LunAddrBytes
));
3088 if (c
->phys_disk
== dev
) {
3089 /* HBA mode match */
3092 /* Possible RAID mode -- check each phys dev. */
3093 /* FIXME: Do we need to take out a lock here? If
3094 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3096 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3097 /* FIXME: an alternate test might be
3099 * match = dev->phys_disk[i]->ioaccel_handle
3100 * == c2->scsi_nexus; */
3101 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3107 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3108 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3109 le32_to_cpu(ac
->it_nexus
);
3113 case 0: /* The command is in the middle of being initialized. */
3118 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3126 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3127 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3132 /* We can really only handle one reset at a time */
3133 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3134 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3138 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3140 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3141 struct CommandList
*c
= h
->cmd_pool
+ i
;
3142 int refcount
= atomic_inc_return(&c
->refcount
);
3144 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3145 unsigned long flags
;
3148 * Mark the target command as having a reset pending,
3149 * then lock a lock so that the command cannot complete
3150 * while we're considering it. If the command is not
3151 * idle then count it; otherwise revoke the event.
3153 c
->reset_pending
= dev
;
3154 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3155 if (!hpsa_is_cmd_idle(c
))
3156 atomic_inc(&dev
->reset_cmds_out
);
3158 c
->reset_pending
= NULL
;
3159 spin_unlock_irqrestore(&h
->lock
, flags
);
3165 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3167 wait_event(h
->event_sync_wait_queue
,
3168 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3169 lockup_detected(h
));
3171 if (unlikely(lockup_detected(h
))) {
3172 dev_warn(&h
->pdev
->dev
,
3173 "Controller lockup detected during reset wait\n");
3178 atomic_set(&dev
->reset_cmds_out
, 0);
3180 rc
= wait_for_device_to_become_ready(h
, scsi3addr
, 0);
3182 mutex_unlock(&h
->reset_mutex
);
3186 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3187 unsigned char *scsi3addr
, unsigned char *raid_level
)
3192 *raid_level
= RAID_UNKNOWN
;
3193 buf
= kzalloc(64, GFP_KERNEL
);
3197 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3198 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3201 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3202 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3205 *raid_level
= buf
[8];
3206 if (*raid_level
> RAID_UNKNOWN
)
3207 *raid_level
= RAID_UNKNOWN
;
3213 #define HPSA_MAP_DEBUG
3214 #ifdef HPSA_MAP_DEBUG
3215 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3216 struct raid_map_data
*map_buff
)
3218 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3220 u16 map_cnt
, row_cnt
, disks_per_row
;
3225 /* Show details only if debugging has been activated. */
3226 if (h
->raid_offload_debug
< 2)
3229 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3230 le32_to_cpu(map_buff
->structure_size
));
3231 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3232 le32_to_cpu(map_buff
->volume_blk_size
));
3233 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3234 le64_to_cpu(map_buff
->volume_blk_cnt
));
3235 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3236 map_buff
->phys_blk_shift
);
3237 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3238 map_buff
->parity_rotation_shift
);
3239 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3240 le16_to_cpu(map_buff
->strip_size
));
3241 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3242 le64_to_cpu(map_buff
->disk_starting_blk
));
3243 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3244 le64_to_cpu(map_buff
->disk_blk_cnt
));
3245 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3246 le16_to_cpu(map_buff
->data_disks_per_row
));
3247 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3248 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3249 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3250 le16_to_cpu(map_buff
->row_cnt
));
3251 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3252 le16_to_cpu(map_buff
->layout_map_count
));
3253 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3254 le16_to_cpu(map_buff
->flags
));
3255 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3256 le16_to_cpu(map_buff
->flags
) &
3257 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3258 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3259 le16_to_cpu(map_buff
->dekindex
));
3260 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3261 for (map
= 0; map
< map_cnt
; map
++) {
3262 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3263 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3264 for (row
= 0; row
< row_cnt
; row
++) {
3265 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3267 le16_to_cpu(map_buff
->data_disks_per_row
);
3268 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3269 dev_info(&h
->pdev
->dev
,
3270 " D%02u: h=0x%04x xor=%u,%u\n",
3271 col
, dd
->ioaccel_handle
,
3272 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3274 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3275 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3276 dev_info(&h
->pdev
->dev
,
3277 " M%02u: h=0x%04x xor=%u,%u\n",
3278 col
, dd
->ioaccel_handle
,
3279 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3284 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3285 __attribute__((unused
)) int rc
,
3286 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3291 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3292 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3295 struct CommandList
*c
;
3296 struct ErrorInfo
*ei
;
3300 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3301 sizeof(this_device
->raid_map
), 0,
3302 scsi3addr
, TYPE_CMD
)) {
3303 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3307 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3308 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3312 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3313 hpsa_scsi_interpret_error(h
, c
);
3319 /* @todo in the future, dynamically allocate RAID map memory */
3320 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3321 sizeof(this_device
->raid_map
)) {
3322 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3325 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3332 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3333 unsigned char scsi3addr
[], u16 bmic_device_index
,
3334 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3337 struct CommandList
*c
;
3338 struct ErrorInfo
*ei
;
3342 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3343 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3347 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3348 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3350 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3351 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3355 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3356 hpsa_scsi_interpret_error(h
, c
);
3364 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3365 struct bmic_identify_controller
*buf
, size_t bufsize
)
3368 struct CommandList
*c
;
3369 struct ErrorInfo
*ei
;
3373 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3374 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3378 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3379 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3383 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3384 hpsa_scsi_interpret_error(h
, c
);
3392 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3393 unsigned char scsi3addr
[], u16 bmic_device_index
,
3394 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3397 struct CommandList
*c
;
3398 struct ErrorInfo
*ei
;
3401 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3402 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3406 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3407 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3409 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3412 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3413 hpsa_scsi_interpret_error(h
, c
);
3423 * get enclosure information
3424 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426 * Uses id_physical_device to determine the box_index.
3428 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3429 unsigned char *scsi3addr
,
3430 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3431 struct hpsa_scsi_dev_t
*encl_dev
)
3434 struct CommandList
*c
= NULL
;
3435 struct ErrorInfo
*ei
= NULL
;
3436 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3437 struct bmic_identify_physical_device
*id_phys
= NULL
;
3438 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3439 u16 bmic_device_index
= 0;
3441 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3443 encl_dev
->sas_address
=
3444 hpsa_get_enclosure_logical_identifier(h
, scsi3addr
);
3446 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3451 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3456 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3460 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3464 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3465 id_phys
, sizeof(*id_phys
));
3467 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3468 __func__
, encl_dev
->external
, bmic_device_index
);
3474 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3475 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3480 if (id_phys
->phys_connector
[1] == 'E')
3481 c
->Request
.CDB
[5] = id_phys
->box_index
;
3483 c
->Request
.CDB
[5] = 0;
3485 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3491 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3496 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3497 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3498 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3509 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3510 "Error, could not get enclosure information");
3513 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3514 unsigned char *scsi3addr
)
3516 struct ReportExtendedLUNdata
*physdev
;
3521 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3525 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3526 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3530 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3532 for (i
= 0; i
< nphysicals
; i
++)
3533 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3534 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3543 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3544 struct hpsa_scsi_dev_t
*dev
)
3549 if (is_hba_lunid(scsi3addr
)) {
3550 struct bmic_sense_subsystem_info
*ssi
;
3552 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3556 rc
= hpsa_bmic_sense_subsystem_information(h
,
3557 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3559 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3560 h
->sas_address
= sa
;
3565 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3567 dev
->sas_address
= sa
;
3570 static void hpsa_ext_ctrl_present(struct ctlr_info
*h
,
3571 struct ReportExtendedLUNdata
*physdev
)
3576 if (h
->discovery_polling
)
3579 nphysicals
= (get_unaligned_be32(physdev
->LUNListLength
) / 24) + 1;
3581 for (i
= 0; i
< nphysicals
; i
++) {
3582 if (physdev
->LUN
[i
].device_type
==
3583 BMIC_DEVICE_TYPE_CONTROLLER
3584 && !is_hba_lunid(physdev
->LUN
[i
].lunid
)) {
3585 dev_info(&h
->pdev
->dev
,
3586 "External controller present, activate discovery polling and disable rld caching\n");
3587 hpsa_disable_rld_caching(h
);
3588 h
->discovery_polling
= 1;
3594 /* Get a device id from inquiry page 0x83 */
3595 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3596 unsigned char scsi3addr
[], u8 page
)
3601 unsigned char *buf
, bufsize
;
3603 buf
= kzalloc(256, GFP_KERNEL
);
3607 /* Get the size of the page list first */
3608 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3609 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3610 buf
, HPSA_VPD_HEADER_SZ
);
3612 goto exit_unsupported
;
3614 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3615 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3619 /* Get the whole VPD page list */
3620 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3621 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3624 goto exit_unsupported
;
3627 for (i
= 1; i
<= pages
; i
++)
3628 if (buf
[3 + i
] == page
)
3629 goto exit_supported
;
3639 * Called during a scan operation.
3640 * Sets ioaccel status on the new device list, not the existing device list
3642 * The device list used during I/O will be updated later in
3643 * adjust_hpsa_scsi_table.
3645 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3646 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3652 this_device
->offload_config
= 0;
3653 this_device
->offload_enabled
= 0;
3654 this_device
->offload_to_be_enabled
= 0;
3656 buf
= kzalloc(64, GFP_KERNEL
);
3659 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3661 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3662 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3666 #define IOACCEL_STATUS_BYTE 4
3667 #define OFFLOAD_CONFIGURED_BIT 0x01
3668 #define OFFLOAD_ENABLED_BIT 0x02
3669 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3670 this_device
->offload_config
=
3671 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3672 if (this_device
->offload_config
) {
3673 this_device
->offload_to_be_enabled
=
3674 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3675 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3676 this_device
->offload_to_be_enabled
= 0;
3684 /* Get the device id from inquiry page 0x83 */
3685 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3686 unsigned char *device_id
, int index
, int buflen
)
3691 /* Does controller have VPD for device id? */
3692 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3693 return 1; /* not supported */
3695 buf
= kzalloc(64, GFP_KERNEL
);
3699 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3700 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3704 memcpy(device_id
, &buf
[8], buflen
);
3709 return rc
; /*0 - got id, otherwise, didn't */
3712 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3713 void *buf
, int bufsize
,
3714 int extended_response
)
3717 struct CommandList
*c
;
3718 unsigned char scsi3addr
[8];
3719 struct ErrorInfo
*ei
;
3723 /* address the controller */
3724 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3725 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3726 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3730 if (extended_response
)
3731 c
->Request
.CDB
[1] = extended_response
;
3732 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3733 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3737 if (ei
->CommandStatus
!= 0 &&
3738 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3739 hpsa_scsi_interpret_error(h
, c
);
3742 struct ReportLUNdata
*rld
= buf
;
3744 if (rld
->extended_response_flag
!= extended_response
) {
3745 if (!h
->legacy_board
) {
3746 dev_err(&h
->pdev
->dev
,
3747 "report luns requested format %u, got %u\n",
3749 rld
->extended_response_flag
);
3760 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3761 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3764 struct ReportLUNdata
*lbuf
;
3766 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3767 HPSA_REPORT_PHYS_EXTENDED
);
3768 if (!rc
|| rc
!= -EOPNOTSUPP
)
3771 /* REPORT PHYS EXTENDED is not supported */
3772 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3776 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3781 /* Copy ReportLUNdata header */
3782 memcpy(buf
, lbuf
, 8);
3783 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3784 for (i
= 0; i
< nphys
; i
++)
3785 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3791 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3792 struct ReportLUNdata
*buf
, int bufsize
)
3794 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3797 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3798 int bus
, int target
, int lun
)
3801 device
->target
= target
;
3805 /* Use VPD inquiry to get details of volume status */
3806 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3807 unsigned char scsi3addr
[])
3814 buf
= kzalloc(64, GFP_KERNEL
);
3816 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3818 /* Does controller have VPD for logical volume status? */
3819 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3822 /* Get the size of the VPD return buffer */
3823 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3824 buf
, HPSA_VPD_HEADER_SZ
);
3829 /* Now get the whole VPD buffer */
3830 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3831 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3834 status
= buf
[4]; /* status byte */
3840 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3843 /* Determine offline status of a volume.
3846 * 0xff (offline for unknown reasons)
3847 * # (integer code indicating one of several NOT READY states
3848 * describing why a volume is to be kept offline)
3850 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3851 unsigned char scsi3addr
[])
3853 struct CommandList
*c
;
3854 unsigned char *sense
;
3855 u8 sense_key
, asc
, ascq
;
3860 #define ASC_LUN_NOT_READY 0x04
3861 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3866 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3867 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3871 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3873 sense
= c
->err_info
->SenseInfo
;
3874 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3875 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3877 sense_len
= c
->err_info
->SenseLen
;
3878 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3879 cmd_status
= c
->err_info
->CommandStatus
;
3880 scsi_status
= c
->err_info
->ScsiStatus
;
3883 /* Determine the reason for not ready state */
3884 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3886 /* Keep volume offline in certain cases: */
3888 case HPSA_LV_FAILED
:
3889 case HPSA_LV_UNDERGOING_ERASE
:
3890 case HPSA_LV_NOT_AVAILABLE
:
3891 case HPSA_LV_UNDERGOING_RPI
:
3892 case HPSA_LV_PENDING_RPI
:
3893 case HPSA_LV_ENCRYPTED_NO_KEY
:
3894 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3895 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3896 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3897 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3899 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3900 /* If VPD status page isn't available,
3901 * use ASC/ASCQ to determine state
3903 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3904 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3913 static int hpsa_update_device_info(struct ctlr_info
*h
,
3914 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3915 unsigned char *is_OBDR_device
)
3918 #define OBDR_SIG_OFFSET 43
3919 #define OBDR_TAPE_SIG "$DR-10"
3920 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3923 unsigned char *inq_buff
;
3924 unsigned char *obdr_sig
;
3927 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3933 /* Do an inquiry to the device to see what it is. */
3934 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3935 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3936 dev_err(&h
->pdev
->dev
,
3937 "%s: inquiry failed, device will be skipped.\n",
3939 rc
= HPSA_INQUIRY_FAILED
;
3943 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3944 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3946 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3947 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3948 memcpy(this_device
->vendor
, &inq_buff
[8],
3949 sizeof(this_device
->vendor
));
3950 memcpy(this_device
->model
, &inq_buff
[16],
3951 sizeof(this_device
->model
));
3952 this_device
->rev
= inq_buff
[2];
3953 memset(this_device
->device_id
, 0,
3954 sizeof(this_device
->device_id
));
3955 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3956 sizeof(this_device
->device_id
)) < 0)
3957 dev_err(&h
->pdev
->dev
,
3958 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3960 h
->scsi_host
->host_no
,
3961 this_device
->target
, this_device
->lun
,
3962 scsi_device_type(this_device
->devtype
),
3963 this_device
->model
);
3965 if ((this_device
->devtype
== TYPE_DISK
||
3966 this_device
->devtype
== TYPE_ZBC
) &&
3967 is_logical_dev_addr_mode(scsi3addr
)) {
3968 unsigned char volume_offline
;
3970 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3971 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3972 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3973 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3974 if (volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
&&
3977 * Legacy boards might not support volume status
3979 dev_info(&h
->pdev
->dev
,
3980 "C0:T%d:L%d Volume status not available, assuming online.\n",
3981 this_device
->target
, this_device
->lun
);
3984 this_device
->volume_offline
= volume_offline
;
3985 if (volume_offline
== HPSA_LV_FAILED
) {
3986 rc
= HPSA_LV_FAILED
;
3987 dev_err(&h
->pdev
->dev
,
3988 "%s: LV failed, device will be skipped.\n",
3993 this_device
->raid_level
= RAID_UNKNOWN
;
3994 this_device
->offload_config
= 0;
3995 this_device
->offload_enabled
= 0;
3996 this_device
->offload_to_be_enabled
= 0;
3997 this_device
->hba_ioaccel_enabled
= 0;
3998 this_device
->volume_offline
= 0;
3999 this_device
->queue_depth
= h
->nr_cmds
;
4002 if (this_device
->external
)
4003 this_device
->queue_depth
= EXTERNAL_QD
;
4005 if (is_OBDR_device
) {
4006 /* See if this is a One-Button-Disaster-Recovery device
4007 * by looking for "$DR-10" at offset 43 in inquiry data.
4009 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
4010 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
4011 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
4012 OBDR_SIG_LEN
) == 0);
4023 * Helper function to assign bus, target, lun mapping of devices.
4024 * Logical drive target and lun are assigned at this time, but
4025 * physical device lun and target assignment are deferred (assigned
4026 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4028 static void figure_bus_target_lun(struct ctlr_info
*h
,
4029 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
4031 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
4033 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
4034 /* physical device, target and lun filled in later */
4035 if (is_hba_lunid(lunaddrbytes
)) {
4036 int bus
= HPSA_HBA_BUS
;
4039 bus
= HPSA_LEGACY_HBA_BUS
;
4040 hpsa_set_bus_target_lun(device
,
4041 bus
, 0, lunid
& 0x3fff);
4043 /* defer target, lun assignment for physical devices */
4044 hpsa_set_bus_target_lun(device
,
4045 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
4048 /* It's a logical device */
4049 if (device
->external
) {
4050 hpsa_set_bus_target_lun(device
,
4051 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
4055 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
4059 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
4060 int i
, int nphysicals
, int nlocal_logicals
)
4062 /* In report logicals, local logicals are listed first,
4063 * then any externals.
4065 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4067 if (i
== raid_ctlr_position
)
4070 if (i
< logicals_start
)
4073 /* i is in logicals range, but still within local logicals */
4074 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4077 return 1; /* it's an external lun */
4081 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4082 * logdev. The number of luns in physdev and logdev are returned in
4083 * *nphysicals and *nlogicals, respectively.
4084 * Returns 0 on success, -1 otherwise.
4086 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4087 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4088 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4090 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4091 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4094 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4095 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4096 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4097 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4098 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4100 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4101 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4104 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4105 /* Reject Logicals in excess of our max capability. */
4106 if (*nlogicals
> HPSA_MAX_LUN
) {
4107 dev_warn(&h
->pdev
->dev
,
4108 "maximum logical LUNs (%d) exceeded. "
4109 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4110 *nlogicals
- HPSA_MAX_LUN
);
4111 *nlogicals
= HPSA_MAX_LUN
;
4113 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4114 dev_warn(&h
->pdev
->dev
,
4115 "maximum logical + physical LUNs (%d) exceeded. "
4116 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4117 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4118 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4123 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4124 int i
, int nphysicals
, int nlogicals
,
4125 struct ReportExtendedLUNdata
*physdev_list
,
4126 struct ReportLUNdata
*logdev_list
)
4128 /* Helper function, figure out where the LUN ID info is coming from
4129 * given index i, lists of physical and logical devices, where in
4130 * the list the raid controller is supposed to appear (first or last)
4133 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4134 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4136 if (i
== raid_ctlr_position
)
4137 return RAID_CTLR_LUNID
;
4139 if (i
< logicals_start
)
4140 return &physdev_list
->LUN
[i
-
4141 (raid_ctlr_position
== 0)].lunid
[0];
4143 if (i
< last_device
)
4144 return &logdev_list
->LUN
[i
- nphysicals
-
4145 (raid_ctlr_position
== 0)][0];
4150 /* get physical drive ioaccel handle and queue depth */
4151 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4152 struct hpsa_scsi_dev_t
*dev
,
4153 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4154 struct bmic_identify_physical_device
*id_phys
)
4157 struct ext_report_lun_entry
*rle
;
4159 rle
= &rlep
->LUN
[rle_index
];
4161 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4162 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4163 dev
->hba_ioaccel_enabled
= 1;
4164 memset(id_phys
, 0, sizeof(*id_phys
));
4165 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4166 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4169 /* Reserve space for FW operations */
4170 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4171 #define DRIVE_QUEUE_DEPTH 7
4173 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4174 DRIVE_CMDS_RESERVED_FOR_FW
;
4176 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4179 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4180 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4181 struct bmic_identify_physical_device
*id_phys
)
4183 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4185 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4186 this_device
->hba_ioaccel_enabled
= 1;
4188 memcpy(&this_device
->active_path_index
,
4189 &id_phys
->active_path_number
,
4190 sizeof(this_device
->active_path_index
));
4191 memcpy(&this_device
->path_map
,
4192 &id_phys
->redundant_path_present_map
,
4193 sizeof(this_device
->path_map
));
4194 memcpy(&this_device
->box
,
4195 &id_phys
->alternate_paths_phys_box_on_port
,
4196 sizeof(this_device
->box
));
4197 memcpy(&this_device
->phys_connector
,
4198 &id_phys
->alternate_paths_phys_connector
,
4199 sizeof(this_device
->phys_connector
));
4200 memcpy(&this_device
->bay
,
4201 &id_phys
->phys_bay_in_box
,
4202 sizeof(this_device
->bay
));
4205 /* get number of local logical disks. */
4206 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4207 struct bmic_identify_controller
*id_ctlr
,
4213 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4217 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4218 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4220 if (id_ctlr
->configured_logical_drive_count
< 255)
4221 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4223 *nlocals
= le16_to_cpu(
4224 id_ctlr
->extended_logical_unit_count
);
4230 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4232 struct bmic_identify_physical_device
*id_phys
;
4233 bool is_spare
= false;
4236 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4240 rc
= hpsa_bmic_id_physical_device(h
,
4242 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4243 id_phys
, sizeof(*id_phys
));
4245 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4251 #define RPL_DEV_FLAG_NON_DISK 0x1
4252 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4253 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4255 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4257 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4258 struct ext_report_lun_entry
*rle
)
4263 if (!MASKED_DEVICE(lunaddrbytes
))
4266 device_flags
= rle
->device_flags
;
4267 device_type
= rle
->device_type
;
4269 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4270 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4275 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4278 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4282 * Spares may be spun down, we do not want to
4283 * do an Inquiry to a RAID set spare drive as
4284 * that would have them spun up, that is a
4285 * performance hit because I/O to the RAID device
4286 * stops while the spin up occurs which can take
4289 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4295 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4297 /* the idea here is we could get notified
4298 * that some devices have changed, so we do a report
4299 * physical luns and report logical luns cmd, and adjust
4300 * our list of devices accordingly.
4302 * The scsi3addr's of devices won't change so long as the
4303 * adapter is not reset. That means we can rescan and
4304 * tell which devices we already know about, vs. new
4305 * devices, vs. disappearing devices.
4307 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4308 struct ReportLUNdata
*logdev_list
= NULL
;
4309 struct bmic_identify_physical_device
*id_phys
= NULL
;
4310 struct bmic_identify_controller
*id_ctlr
= NULL
;
4313 u32 nlocal_logicals
= 0;
4314 u32 ndev_allocated
= 0;
4315 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4317 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4318 int raid_ctlr_position
;
4319 bool physical_device
;
4320 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4322 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4323 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4324 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4325 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4326 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4327 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4329 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4330 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4331 dev_err(&h
->pdev
->dev
, "out of memory\n");
4334 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4336 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4338 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4339 logdev_list
, &nlogicals
)) {
4340 h
->drv_req_rescan
= 1;
4344 /* Set number of local logicals (non PTRAID) */
4345 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4346 dev_warn(&h
->pdev
->dev
,
4347 "%s: Can't determine number of local logical devices.\n",
4351 /* We might see up to the maximum number of logical and physical disks
4352 * plus external target devices, and a device for the local RAID
4355 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4357 hpsa_ext_ctrl_present(h
, physdev_list
);
4359 /* Allocate the per device structures */
4360 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4361 if (i
>= HPSA_MAX_DEVICES
) {
4362 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4363 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4364 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4368 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4369 if (!currentsd
[i
]) {
4370 h
->drv_req_rescan
= 1;
4376 if (is_scsi_rev_5(h
))
4377 raid_ctlr_position
= 0;
4379 raid_ctlr_position
= nphysicals
+ nlogicals
;
4381 /* adjust our table of devices */
4382 n_ext_target_devs
= 0;
4383 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4384 u8
*lunaddrbytes
, is_OBDR
= 0;
4386 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4387 bool skip_device
= false;
4389 memset(tmpdevice
, 0, sizeof(*tmpdevice
));
4391 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4393 /* Figure out where the LUN ID info is coming from */
4394 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4395 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4397 /* Determine if this is a lun from an external target array */
4398 tmpdevice
->external
=
4399 figure_external_status(h
, raid_ctlr_position
, i
,
4400 nphysicals
, nlocal_logicals
);
4403 * Skip over some devices such as a spare.
4405 if (!tmpdevice
->external
&& physical_device
) {
4406 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4407 &physdev_list
->LUN
[phys_dev_index
]);
4412 /* Get device type, vendor, model, device id, raid_map */
4413 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4415 if (rc
== -ENOMEM
) {
4416 dev_warn(&h
->pdev
->dev
,
4417 "Out of memory, rescan deferred.\n");
4418 h
->drv_req_rescan
= 1;
4422 h
->drv_req_rescan
= 1;
4426 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4427 this_device
= currentsd
[ncurrent
];
4429 *this_device
= *tmpdevice
;
4430 this_device
->physical_device
= physical_device
;
4433 * Expose all devices except for physical devices that
4436 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4437 this_device
->expose_device
= 0;
4439 this_device
->expose_device
= 1;
4443 * Get the SAS address for physical devices that are exposed.
4445 if (this_device
->physical_device
&& this_device
->expose_device
)
4446 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4448 switch (this_device
->devtype
) {
4450 /* We don't *really* support actual CD-ROM devices,
4451 * just "One Button Disaster Recovery" tape drive
4452 * which temporarily pretends to be a CD-ROM drive.
4453 * So we check that the device is really an OBDR tape
4454 * device by checking for "$DR-10" in bytes 43-48 of
4462 if (this_device
->physical_device
) {
4463 /* The disk is in HBA mode. */
4464 /* Never use RAID mapper in HBA mode. */
4465 this_device
->offload_enabled
= 0;
4466 hpsa_get_ioaccel_drive_info(h
, this_device
,
4467 physdev_list
, phys_dev_index
, id_phys
);
4468 hpsa_get_path_info(this_device
,
4469 physdev_list
, phys_dev_index
, id_phys
);
4474 case TYPE_MEDIUM_CHANGER
:
4477 case TYPE_ENCLOSURE
:
4478 if (!this_device
->external
)
4479 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4480 physdev_list
, phys_dev_index
,
4485 /* Only present the Smartarray HBA as a RAID controller.
4486 * If it's a RAID controller other than the HBA itself
4487 * (an external RAID controller, MSA500 or similar)
4490 if (!is_hba_lunid(lunaddrbytes
))
4497 if (ncurrent
>= HPSA_MAX_DEVICES
)
4501 if (h
->sas_host
== NULL
) {
4504 rc
= hpsa_add_sas_host(h
);
4506 dev_warn(&h
->pdev
->dev
,
4507 "Could not add sas host %d\n", rc
);
4512 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4515 for (i
= 0; i
< ndev_allocated
; i
++)
4516 kfree(currentsd
[i
]);
4518 kfree(physdev_list
);
4524 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4525 struct scatterlist
*sg
)
4527 u64 addr64
= (u64
) sg_dma_address(sg
);
4528 unsigned int len
= sg_dma_len(sg
);
4530 desc
->Addr
= cpu_to_le64(addr64
);
4531 desc
->Len
= cpu_to_le32(len
);
4536 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4537 * dma mapping and fills in the scatter gather entries of the
4540 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4541 struct CommandList
*cp
,
4542 struct scsi_cmnd
*cmd
)
4544 struct scatterlist
*sg
;
4545 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4546 struct SGDescriptor
*curr_sg
;
4548 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4550 use_sg
= scsi_dma_map(cmd
);
4555 goto sglist_finished
;
4558 * If the number of entries is greater than the max for a single list,
4559 * then we have a chained list; we will set up all but one entry in the
4560 * first list (the last entry is saved for link information);
4561 * otherwise, we don't have a chained list and we'll set up at each of
4562 * the entries in the one list.
4565 chained
= use_sg
> h
->max_cmd_sg_entries
;
4566 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4567 last_sg
= scsi_sg_count(cmd
) - 1;
4568 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4569 hpsa_set_sg_descriptor(curr_sg
, sg
);
4575 * Continue with the chained list. Set curr_sg to the chained
4576 * list. Modify the limit to the total count less the entries
4577 * we've already set up. Resume the scan at the list entry
4578 * where the previous loop left off.
4580 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4581 sg_limit
= use_sg
- sg_limit
;
4582 for_each_sg(sg
, sg
, sg_limit
, i
) {
4583 hpsa_set_sg_descriptor(curr_sg
, sg
);
4588 /* Back the pointer up to the last entry and mark it as "last". */
4589 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4591 if (use_sg
+ chained
> h
->maxSG
)
4592 h
->maxSG
= use_sg
+ chained
;
4595 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4596 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4597 if (hpsa_map_sg_chain_block(h
, cp
)) {
4598 scsi_dma_unmap(cmd
);
4606 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4607 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4611 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4612 u8
*cdb
, int cdb_len
,
4615 dev_warn(&h
->pdev
->dev
,
4616 "%s: Blocking zero-length request: CDB:%*phN\n",
4617 func
, cdb_len
, cdb
);
4620 #define IO_ACCEL_INELIGIBLE 1
4621 /* zero-length transfers trigger hardware errors. */
4622 static bool is_zero_length_transfer(u8
*cdb
)
4626 /* Block zero-length transfer sizes on certain commands. */
4630 case VERIFY
: /* 0x2F */
4631 case WRITE_VERIFY
: /* 0x2E */
4632 block_cnt
= get_unaligned_be16(&cdb
[7]);
4636 case VERIFY_12
: /* 0xAF */
4637 case WRITE_VERIFY_12
: /* 0xAE */
4638 block_cnt
= get_unaligned_be32(&cdb
[6]);
4642 case VERIFY_16
: /* 0x8F */
4643 block_cnt
= get_unaligned_be32(&cdb
[10]);
4649 return block_cnt
== 0;
4652 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4658 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4665 if (*cdb_len
== 6) {
4666 block
= (((cdb
[1] & 0x1F) << 16) |
4673 BUG_ON(*cdb_len
!= 12);
4674 block
= get_unaligned_be32(&cdb
[2]);
4675 block_cnt
= get_unaligned_be32(&cdb
[6]);
4677 if (block_cnt
> 0xffff)
4678 return IO_ACCEL_INELIGIBLE
;
4680 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4682 cdb
[2] = (u8
) (block
>> 24);
4683 cdb
[3] = (u8
) (block
>> 16);
4684 cdb
[4] = (u8
) (block
>> 8);
4685 cdb
[5] = (u8
) (block
);
4687 cdb
[7] = (u8
) (block_cnt
>> 8);
4688 cdb
[8] = (u8
) (block_cnt
);
4696 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4697 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4698 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4700 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4701 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4703 unsigned int total_len
= 0;
4704 struct scatterlist
*sg
;
4707 struct SGDescriptor
*curr_sg
;
4708 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4710 /* TODO: implement chaining support */
4711 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4712 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4713 return IO_ACCEL_INELIGIBLE
;
4716 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4718 if (is_zero_length_transfer(cdb
)) {
4719 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4720 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4721 return IO_ACCEL_INELIGIBLE
;
4724 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4725 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4726 return IO_ACCEL_INELIGIBLE
;
4729 c
->cmd_type
= CMD_IOACCEL1
;
4731 /* Adjust the DMA address to point to the accelerated command buffer */
4732 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4733 (c
->cmdindex
* sizeof(*cp
));
4734 BUG_ON(c
->busaddr
& 0x0000007F);
4736 use_sg
= scsi_dma_map(cmd
);
4738 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4744 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4745 addr64
= (u64
) sg_dma_address(sg
);
4746 len
= sg_dma_len(sg
);
4748 curr_sg
->Addr
= cpu_to_le64(addr64
);
4749 curr_sg
->Len
= cpu_to_le32(len
);
4750 curr_sg
->Ext
= cpu_to_le32(0);
4753 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4755 switch (cmd
->sc_data_direction
) {
4757 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4759 case DMA_FROM_DEVICE
:
4760 control
|= IOACCEL1_CONTROL_DATA_IN
;
4763 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4766 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4767 cmd
->sc_data_direction
);
4772 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4775 c
->Header
.SGList
= use_sg
;
4776 /* Fill out the command structure to submit */
4777 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4778 cp
->transfer_len
= cpu_to_le32(total_len
);
4779 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4780 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4781 cp
->control
= cpu_to_le32(control
);
4782 memcpy(cp
->CDB
, cdb
, cdb_len
);
4783 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4784 /* Tag was already set at init time. */
4785 enqueue_cmd_and_start_io(h
, c
);
4790 * Queue a command directly to a device behind the controller using the
4791 * I/O accelerator path.
4793 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4794 struct CommandList
*c
)
4796 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4797 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4804 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4805 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4809 * Set encryption parameters for the ioaccel2 request
4811 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4812 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4814 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4815 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4816 struct raid_map_data
*map
= &dev
->raid_map
;
4819 /* Are we doing encryption on this device */
4820 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4822 /* Set the data encryption key index. */
4823 cp
->dekindex
= map
->dekindex
;
4825 /* Set the encryption enable flag, encoded into direction field. */
4826 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4828 /* Set encryption tweak values based on logical block address
4829 * If block size is 512, tweak value is LBA.
4830 * For other block sizes, tweak is (LBA * block size)/ 512)
4832 switch (cmd
->cmnd
[0]) {
4833 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4836 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4837 (cmd
->cmnd
[2] << 8) |
4842 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4845 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4849 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4852 dev_err(&h
->pdev
->dev
,
4853 "ERROR: %s: size (0x%x) not supported for encryption\n",
4854 __func__
, cmd
->cmnd
[0]);
4859 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4860 first_block
= first_block
*
4861 le32_to_cpu(map
->volume_blk_size
)/512;
4863 cp
->tweak_lower
= cpu_to_le32(first_block
);
4864 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4867 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4868 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4869 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4871 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4872 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4873 struct ioaccel2_sg_element
*curr_sg
;
4875 struct scatterlist
*sg
;
4883 if (!cmd
->device
->hostdata
)
4886 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4888 if (is_zero_length_transfer(cdb
)) {
4889 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4890 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4891 return IO_ACCEL_INELIGIBLE
;
4894 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4895 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4896 return IO_ACCEL_INELIGIBLE
;
4899 c
->cmd_type
= CMD_IOACCEL2
;
4900 /* Adjust the DMA address to point to the accelerated command buffer */
4901 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4902 (c
->cmdindex
* sizeof(*cp
));
4903 BUG_ON(c
->busaddr
& 0x0000007F);
4905 memset(cp
, 0, sizeof(*cp
));
4906 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4908 use_sg
= scsi_dma_map(cmd
);
4910 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4916 if (use_sg
> h
->ioaccel_maxsg
) {
4917 addr64
= le64_to_cpu(
4918 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4919 curr_sg
->address
= cpu_to_le64(addr64
);
4920 curr_sg
->length
= 0;
4921 curr_sg
->reserved
[0] = 0;
4922 curr_sg
->reserved
[1] = 0;
4923 curr_sg
->reserved
[2] = 0;
4924 curr_sg
->chain_indicator
= 0x80;
4926 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4928 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4929 addr64
= (u64
) sg_dma_address(sg
);
4930 len
= sg_dma_len(sg
);
4932 curr_sg
->address
= cpu_to_le64(addr64
);
4933 curr_sg
->length
= cpu_to_le32(len
);
4934 curr_sg
->reserved
[0] = 0;
4935 curr_sg
->reserved
[1] = 0;
4936 curr_sg
->reserved
[2] = 0;
4937 curr_sg
->chain_indicator
= 0;
4941 switch (cmd
->sc_data_direction
) {
4943 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4944 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4946 case DMA_FROM_DEVICE
:
4947 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4948 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4951 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4952 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4955 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4956 cmd
->sc_data_direction
);
4961 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4962 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4965 /* Set encryption parameters, if necessary */
4966 set_encrypt_ioaccel2(h
, c
, cp
);
4968 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4969 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4970 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4972 cp
->data_len
= cpu_to_le32(total_len
);
4973 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4974 offsetof(struct io_accel2_cmd
, error_data
));
4975 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4977 /* fill in sg elements */
4978 if (use_sg
> h
->ioaccel_maxsg
) {
4980 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4981 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4982 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4983 scsi_dma_unmap(cmd
);
4987 cp
->sg_count
= (u8
) use_sg
;
4989 enqueue_cmd_and_start_io(h
, c
);
4994 * Queue a command to the correct I/O accelerator path.
4996 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4997 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4998 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
5000 if (!c
->scsi_cmd
->device
)
5003 if (!c
->scsi_cmd
->device
->hostdata
)
5006 /* Try to honor the device's queue depth */
5007 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
5008 phys_disk
->queue_depth
) {
5009 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5010 return IO_ACCEL_INELIGIBLE
;
5012 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
5013 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
5014 cdb
, cdb_len
, scsi3addr
,
5017 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
5018 cdb
, cdb_len
, scsi3addr
,
5022 static void raid_map_helper(struct raid_map_data
*map
,
5023 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
5025 if (offload_to_mirror
== 0) {
5026 /* use physical disk in the first mirrored group. */
5027 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5031 /* determine mirror group that *map_index indicates */
5032 *current_group
= *map_index
/
5033 le16_to_cpu(map
->data_disks_per_row
);
5034 if (offload_to_mirror
== *current_group
)
5036 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
5037 /* select map index from next group */
5038 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5041 /* select map index from first group */
5042 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5045 } while (offload_to_mirror
!= *current_group
);
5049 * Attempt to perform offload RAID mapping for a logical volume I/O.
5051 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
5052 struct CommandList
*c
)
5054 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
5055 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5056 struct raid_map_data
*map
= &dev
->raid_map
;
5057 struct raid_map_disk_data
*dd
= &map
->data
[0];
5060 u64 first_block
, last_block
;
5063 u64 first_row
, last_row
;
5064 u32 first_row_offset
, last_row_offset
;
5065 u32 first_column
, last_column
;
5066 u64 r0_first_row
, r0_last_row
;
5067 u32 r5or6_blocks_per_row
;
5068 u64 r5or6_first_row
, r5or6_last_row
;
5069 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
5070 u32 r5or6_first_column
, r5or6_last_column
;
5071 u32 total_disks_per_row
;
5073 u32 first_group
, last_group
, current_group
;
5081 #if BITS_PER_LONG == 32
5084 int offload_to_mirror
;
5089 /* check for valid opcode, get LBA and block count */
5090 switch (cmd
->cmnd
[0]) {
5094 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
5095 (cmd
->cmnd
[2] << 8) |
5097 block_cnt
= cmd
->cmnd
[4];
5105 (((u64
) cmd
->cmnd
[2]) << 24) |
5106 (((u64
) cmd
->cmnd
[3]) << 16) |
5107 (((u64
) cmd
->cmnd
[4]) << 8) |
5110 (((u32
) cmd
->cmnd
[7]) << 8) |
5117 (((u64
) cmd
->cmnd
[2]) << 24) |
5118 (((u64
) cmd
->cmnd
[3]) << 16) |
5119 (((u64
) cmd
->cmnd
[4]) << 8) |
5122 (((u32
) cmd
->cmnd
[6]) << 24) |
5123 (((u32
) cmd
->cmnd
[7]) << 16) |
5124 (((u32
) cmd
->cmnd
[8]) << 8) |
5131 (((u64
) cmd
->cmnd
[2]) << 56) |
5132 (((u64
) cmd
->cmnd
[3]) << 48) |
5133 (((u64
) cmd
->cmnd
[4]) << 40) |
5134 (((u64
) cmd
->cmnd
[5]) << 32) |
5135 (((u64
) cmd
->cmnd
[6]) << 24) |
5136 (((u64
) cmd
->cmnd
[7]) << 16) |
5137 (((u64
) cmd
->cmnd
[8]) << 8) |
5140 (((u32
) cmd
->cmnd
[10]) << 24) |
5141 (((u32
) cmd
->cmnd
[11]) << 16) |
5142 (((u32
) cmd
->cmnd
[12]) << 8) |
5146 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5148 last_block
= first_block
+ block_cnt
- 1;
5150 /* check for write to non-RAID-0 */
5151 if (is_write
&& dev
->raid_level
!= 0)
5152 return IO_ACCEL_INELIGIBLE
;
5154 /* check for invalid block or wraparound */
5155 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5156 last_block
< first_block
)
5157 return IO_ACCEL_INELIGIBLE
;
5159 /* calculate stripe information for the request */
5160 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5161 le16_to_cpu(map
->strip_size
);
5162 strip_size
= le16_to_cpu(map
->strip_size
);
5163 #if BITS_PER_LONG == 32
5164 tmpdiv
= first_block
;
5165 (void) do_div(tmpdiv
, blocks_per_row
);
5167 tmpdiv
= last_block
;
5168 (void) do_div(tmpdiv
, blocks_per_row
);
5170 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5171 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5172 tmpdiv
= first_row_offset
;
5173 (void) do_div(tmpdiv
, strip_size
);
5174 first_column
= tmpdiv
;
5175 tmpdiv
= last_row_offset
;
5176 (void) do_div(tmpdiv
, strip_size
);
5177 last_column
= tmpdiv
;
5179 first_row
= first_block
/ blocks_per_row
;
5180 last_row
= last_block
/ blocks_per_row
;
5181 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5182 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5183 first_column
= first_row_offset
/ strip_size
;
5184 last_column
= last_row_offset
/ strip_size
;
5187 /* if this isn't a single row/column then give to the controller */
5188 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5189 return IO_ACCEL_INELIGIBLE
;
5191 /* proceeding with driver mapping */
5192 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5193 le16_to_cpu(map
->metadata_disks_per_row
);
5194 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5195 le16_to_cpu(map
->row_cnt
);
5196 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5198 switch (dev
->raid_level
) {
5200 break; /* nothing special to do */
5202 /* Handles load balance across RAID 1 members.
5203 * (2-drive R1 and R10 with even # of drives.)
5204 * Appropriate for SSDs, not optimal for HDDs
5206 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5207 if (dev
->offload_to_mirror
)
5208 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5209 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5212 /* Handles N-way mirrors (R1-ADM)
5213 * and R10 with # of drives divisible by 3.)
5215 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5217 offload_to_mirror
= dev
->offload_to_mirror
;
5218 raid_map_helper(map
, offload_to_mirror
,
5219 &map_index
, ¤t_group
);
5220 /* set mirror group to use next time */
5222 (offload_to_mirror
>=
5223 le16_to_cpu(map
->layout_map_count
) - 1)
5224 ? 0 : offload_to_mirror
+ 1;
5225 dev
->offload_to_mirror
= offload_to_mirror
;
5226 /* Avoid direct use of dev->offload_to_mirror within this
5227 * function since multiple threads might simultaneously
5228 * increment it beyond the range of dev->layout_map_count -1.
5233 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5236 /* Verify first and last block are in same RAID group */
5237 r5or6_blocks_per_row
=
5238 le16_to_cpu(map
->strip_size
) *
5239 le16_to_cpu(map
->data_disks_per_row
);
5240 BUG_ON(r5or6_blocks_per_row
== 0);
5241 stripesize
= r5or6_blocks_per_row
*
5242 le16_to_cpu(map
->layout_map_count
);
5243 #if BITS_PER_LONG == 32
5244 tmpdiv
= first_block
;
5245 first_group
= do_div(tmpdiv
, stripesize
);
5246 tmpdiv
= first_group
;
5247 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5248 first_group
= tmpdiv
;
5249 tmpdiv
= last_block
;
5250 last_group
= do_div(tmpdiv
, stripesize
);
5251 tmpdiv
= last_group
;
5252 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5253 last_group
= tmpdiv
;
5255 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5256 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5258 if (first_group
!= last_group
)
5259 return IO_ACCEL_INELIGIBLE
;
5261 /* Verify request is in a single row of RAID 5/6 */
5262 #if BITS_PER_LONG == 32
5263 tmpdiv
= first_block
;
5264 (void) do_div(tmpdiv
, stripesize
);
5265 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5266 tmpdiv
= last_block
;
5267 (void) do_div(tmpdiv
, stripesize
);
5268 r5or6_last_row
= r0_last_row
= tmpdiv
;
5270 first_row
= r5or6_first_row
= r0_first_row
=
5271 first_block
/ stripesize
;
5272 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5274 if (r5or6_first_row
!= r5or6_last_row
)
5275 return IO_ACCEL_INELIGIBLE
;
5278 /* Verify request is in a single column */
5279 #if BITS_PER_LONG == 32
5280 tmpdiv
= first_block
;
5281 first_row_offset
= do_div(tmpdiv
, stripesize
);
5282 tmpdiv
= first_row_offset
;
5283 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5284 r5or6_first_row_offset
= first_row_offset
;
5285 tmpdiv
= last_block
;
5286 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5287 tmpdiv
= r5or6_last_row_offset
;
5288 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5289 tmpdiv
= r5or6_first_row_offset
;
5290 (void) do_div(tmpdiv
, map
->strip_size
);
5291 first_column
= r5or6_first_column
= tmpdiv
;
5292 tmpdiv
= r5or6_last_row_offset
;
5293 (void) do_div(tmpdiv
, map
->strip_size
);
5294 r5or6_last_column
= tmpdiv
;
5296 first_row_offset
= r5or6_first_row_offset
=
5297 (u32
)((first_block
% stripesize
) %
5298 r5or6_blocks_per_row
);
5300 r5or6_last_row_offset
=
5301 (u32
)((last_block
% stripesize
) %
5302 r5or6_blocks_per_row
);
5304 first_column
= r5or6_first_column
=
5305 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5307 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5309 if (r5or6_first_column
!= r5or6_last_column
)
5310 return IO_ACCEL_INELIGIBLE
;
5312 /* Request is eligible */
5313 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5314 le16_to_cpu(map
->row_cnt
);
5316 map_index
= (first_group
*
5317 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5318 (map_row
* total_disks_per_row
) + first_column
;
5321 return IO_ACCEL_INELIGIBLE
;
5324 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5325 return IO_ACCEL_INELIGIBLE
;
5327 c
->phys_disk
= dev
->phys_disk
[map_index
];
5329 return IO_ACCEL_INELIGIBLE
;
5331 disk_handle
= dd
[map_index
].ioaccel_handle
;
5332 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5333 first_row
* le16_to_cpu(map
->strip_size
) +
5334 (first_row_offset
- first_column
*
5335 le16_to_cpu(map
->strip_size
));
5336 disk_block_cnt
= block_cnt
;
5338 /* handle differing logical/physical block sizes */
5339 if (map
->phys_blk_shift
) {
5340 disk_block
<<= map
->phys_blk_shift
;
5341 disk_block_cnt
<<= map
->phys_blk_shift
;
5343 BUG_ON(disk_block_cnt
> 0xffff);
5345 /* build the new CDB for the physical disk I/O */
5346 if (disk_block
> 0xffffffff) {
5347 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5349 cdb
[2] = (u8
) (disk_block
>> 56);
5350 cdb
[3] = (u8
) (disk_block
>> 48);
5351 cdb
[4] = (u8
) (disk_block
>> 40);
5352 cdb
[5] = (u8
) (disk_block
>> 32);
5353 cdb
[6] = (u8
) (disk_block
>> 24);
5354 cdb
[7] = (u8
) (disk_block
>> 16);
5355 cdb
[8] = (u8
) (disk_block
>> 8);
5356 cdb
[9] = (u8
) (disk_block
);
5357 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5358 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5359 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5360 cdb
[13] = (u8
) (disk_block_cnt
);
5365 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5367 cdb
[2] = (u8
) (disk_block
>> 24);
5368 cdb
[3] = (u8
) (disk_block
>> 16);
5369 cdb
[4] = (u8
) (disk_block
>> 8);
5370 cdb
[5] = (u8
) (disk_block
);
5372 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5373 cdb
[8] = (u8
) (disk_block_cnt
);
5377 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5379 dev
->phys_disk
[map_index
]);
5383 * Submit commands down the "normal" RAID stack path
5384 * All callers to hpsa_ciss_submit must check lockup_detected
5385 * beforehand, before (opt.) and after calling cmd_alloc
5387 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5388 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5389 unsigned char scsi3addr
[])
5391 cmd
->host_scribble
= (unsigned char *) c
;
5392 c
->cmd_type
= CMD_SCSI
;
5394 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5395 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5396 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5398 /* Fill in the request block... */
5400 c
->Request
.Timeout
= 0;
5401 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5402 c
->Request
.CDBLen
= cmd
->cmd_len
;
5403 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5404 switch (cmd
->sc_data_direction
) {
5406 c
->Request
.type_attr_dir
=
5407 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5409 case DMA_FROM_DEVICE
:
5410 c
->Request
.type_attr_dir
=
5411 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5414 c
->Request
.type_attr_dir
=
5415 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5417 case DMA_BIDIRECTIONAL
:
5418 /* This can happen if a buggy application does a scsi passthru
5419 * and sets both inlen and outlen to non-zero. ( see
5420 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5423 c
->Request
.type_attr_dir
=
5424 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5425 /* This is technically wrong, and hpsa controllers should
5426 * reject it with CMD_INVALID, which is the most correct
5427 * response, but non-fibre backends appear to let it
5428 * slide by, and give the same results as if this field
5429 * were set correctly. Either way is acceptable for
5430 * our purposes here.
5436 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5437 cmd
->sc_data_direction
);
5442 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5443 hpsa_cmd_resolve_and_free(h
, c
);
5444 return SCSI_MLQUEUE_HOST_BUSY
;
5446 enqueue_cmd_and_start_io(h
, c
);
5447 /* the cmd'll come back via intr handler in complete_scsi_command() */
5451 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5452 struct CommandList
*c
)
5454 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5456 /* Zero out all of commandlist except the last field, refcount */
5457 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5458 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5459 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5460 c
->err_info
= h
->errinfo_pool
+ index
;
5461 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5462 err_dma_handle
= h
->errinfo_pool_dhandle
5463 + index
* sizeof(*c
->err_info
);
5464 c
->cmdindex
= index
;
5465 c
->busaddr
= (u32
) cmd_dma_handle
;
5466 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5467 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5469 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5472 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5476 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5477 struct CommandList
*c
= h
->cmd_pool
+ i
;
5479 hpsa_cmd_init(h
, i
, c
);
5480 atomic_set(&c
->refcount
, 0);
5484 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5485 struct CommandList
*c
)
5487 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5489 BUG_ON(c
->cmdindex
!= index
);
5491 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5492 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5493 c
->busaddr
= (u32
) cmd_dma_handle
;
5496 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5497 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5498 unsigned char *scsi3addr
)
5500 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5501 int rc
= IO_ACCEL_INELIGIBLE
;
5504 return SCSI_MLQUEUE_HOST_BUSY
;
5506 cmd
->host_scribble
= (unsigned char *) c
;
5508 if (dev
->offload_enabled
) {
5509 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5510 c
->cmd_type
= CMD_SCSI
;
5512 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5513 if (rc
< 0) /* scsi_dma_map failed. */
5514 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5515 } else if (dev
->hba_ioaccel_enabled
) {
5516 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5517 c
->cmd_type
= CMD_SCSI
;
5519 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5520 if (rc
< 0) /* scsi_dma_map failed. */
5521 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5526 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5528 struct scsi_cmnd
*cmd
;
5529 struct hpsa_scsi_dev_t
*dev
;
5530 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5533 dev
= cmd
->device
->hostdata
;
5535 cmd
->result
= DID_NO_CONNECT
<< 16;
5536 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5538 if (c
->reset_pending
)
5539 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5540 if (c
->cmd_type
== CMD_IOACCEL2
) {
5541 struct ctlr_info
*h
= c
->h
;
5542 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5545 if (c2
->error_data
.serv_response
==
5546 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5547 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5550 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5552 * If we get here, it means dma mapping failed.
5553 * Try again via scsi mid layer, which will
5554 * then get SCSI_MLQUEUE_HOST_BUSY.
5556 cmd
->result
= DID_IMM_RETRY
<< 16;
5557 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5559 /* else, fall thru and resubmit down CISS path */
5562 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5563 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5565 * If we get here, it means dma mapping failed. Try
5566 * again via scsi mid layer, which will then get
5567 * SCSI_MLQUEUE_HOST_BUSY.
5569 * hpsa_ciss_submit will have already freed c
5570 * if it encountered a dma mapping failure.
5572 cmd
->result
= DID_IMM_RETRY
<< 16;
5573 cmd
->scsi_done(cmd
);
5577 /* Running in struct Scsi_Host->host_lock less mode */
5578 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5580 struct ctlr_info
*h
;
5581 struct hpsa_scsi_dev_t
*dev
;
5582 unsigned char scsi3addr
[8];
5583 struct CommandList
*c
;
5586 /* Get the ptr to our adapter structure out of cmd->host. */
5587 h
= sdev_to_hba(cmd
->device
);
5589 BUG_ON(cmd
->request
->tag
< 0);
5591 dev
= cmd
->device
->hostdata
;
5593 cmd
->result
= DID_NO_CONNECT
<< 16;
5594 cmd
->scsi_done(cmd
);
5599 cmd
->result
= DID_NO_CONNECT
<< 16;
5600 cmd
->scsi_done(cmd
);
5604 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5606 if (unlikely(lockup_detected(h
))) {
5607 cmd
->result
= DID_NO_CONNECT
<< 16;
5608 cmd
->scsi_done(cmd
);
5611 c
= cmd_tagged_alloc(h
, cmd
);
5614 * Call alternate submit routine for I/O accelerated commands.
5615 * Retries always go down the normal I/O path.
5617 if (likely(cmd
->retries
== 0 &&
5618 !blk_rq_is_passthrough(cmd
->request
) &&
5619 h
->acciopath_status
)) {
5620 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5623 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5624 hpsa_cmd_resolve_and_free(h
, c
);
5625 return SCSI_MLQUEUE_HOST_BUSY
;
5628 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5631 static void hpsa_scan_complete(struct ctlr_info
*h
)
5633 unsigned long flags
;
5635 spin_lock_irqsave(&h
->scan_lock
, flags
);
5636 h
->scan_finished
= 1;
5637 wake_up(&h
->scan_wait_queue
);
5638 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5641 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5643 struct ctlr_info
*h
= shost_to_hba(sh
);
5644 unsigned long flags
;
5647 * Don't let rescans be initiated on a controller known to be locked
5648 * up. If the controller locks up *during* a rescan, that thread is
5649 * probably hosed, but at least we can prevent new rescan threads from
5650 * piling up on a locked up controller.
5652 if (unlikely(lockup_detected(h
)))
5653 return hpsa_scan_complete(h
);
5656 * If a scan is already waiting to run, no need to add another
5658 spin_lock_irqsave(&h
->scan_lock
, flags
);
5659 if (h
->scan_waiting
) {
5660 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5664 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5666 /* wait until any scan already in progress is finished. */
5668 spin_lock_irqsave(&h
->scan_lock
, flags
);
5669 if (h
->scan_finished
)
5671 h
->scan_waiting
= 1;
5672 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5673 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5674 /* Note: We don't need to worry about a race between this
5675 * thread and driver unload because the midlayer will
5676 * have incremented the reference count, so unload won't
5677 * happen if we're in here.
5680 h
->scan_finished
= 0; /* mark scan as in progress */
5681 h
->scan_waiting
= 0;
5682 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5684 if (unlikely(lockup_detected(h
)))
5685 return hpsa_scan_complete(h
);
5688 * Do the scan after a reset completion
5690 spin_lock_irqsave(&h
->reset_lock
, flags
);
5691 if (h
->reset_in_progress
) {
5692 h
->drv_req_rescan
= 1;
5693 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5694 hpsa_scan_complete(h
);
5697 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5699 hpsa_update_scsi_devices(h
);
5701 hpsa_scan_complete(h
);
5704 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5706 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5713 else if (qdepth
> logical_drive
->queue_depth
)
5714 qdepth
= logical_drive
->queue_depth
;
5716 return scsi_change_queue_depth(sdev
, qdepth
);
5719 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5720 unsigned long elapsed_time
)
5722 struct ctlr_info
*h
= shost_to_hba(sh
);
5723 unsigned long flags
;
5726 spin_lock_irqsave(&h
->scan_lock
, flags
);
5727 finished
= h
->scan_finished
;
5728 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5732 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5734 struct Scsi_Host
*sh
;
5736 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5738 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5745 sh
->max_channel
= 3;
5746 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5747 sh
->max_lun
= HPSA_MAX_LUN
;
5748 sh
->max_id
= HPSA_MAX_LUN
;
5749 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5750 sh
->cmd_per_lun
= sh
->can_queue
;
5751 sh
->sg_tablesize
= h
->maxsgentries
;
5752 sh
->transportt
= hpsa_sas_transport_template
;
5753 sh
->hostdata
[0] = (unsigned long) h
;
5754 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5755 sh
->unique_id
= sh
->irq
;
5761 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5765 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5767 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5770 scsi_scan_host(h
->scsi_host
);
5775 * The block layer has already gone to the trouble of picking out a unique,
5776 * small-integer tag for this request. We use an offset from that value as
5777 * an index to select our command block. (The offset allows us to reserve the
5778 * low-numbered entries for our own uses.)
5780 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5782 int idx
= scmd
->request
->tag
;
5787 /* Offset to leave space for internal cmds. */
5788 return idx
+= HPSA_NRESERVED_CMDS
;
5792 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5793 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5795 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5796 struct CommandList
*c
, unsigned char lunaddr
[],
5801 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5802 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5803 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5804 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5807 /* no unmap needed here because no data xfer. */
5809 /* Check if the unit is already ready. */
5810 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5814 * The first command sent after reset will receive "unit attention" to
5815 * indicate that the LUN has been reset...this is actually what we're
5816 * looking for (but, success is good too).
5818 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5819 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5820 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5821 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5828 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5829 * returns zero when the unit is ready, and non-zero when giving up.
5831 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5832 struct CommandList
*c
,
5833 unsigned char lunaddr
[], int reply_queue
)
5837 int waittime
= 1; /* seconds */
5839 /* Send test unit ready until device ready, or give up. */
5840 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5843 * Wait for a bit. do this first, because if we send
5844 * the TUR right away, the reset will just abort it.
5846 msleep(1000 * waittime
);
5848 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5852 /* Increase wait time with each try, up to a point. */
5853 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5856 dev_warn(&h
->pdev
->dev
,
5857 "waiting %d secs for device to become ready.\n",
5864 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5865 unsigned char lunaddr
[],
5872 struct CommandList
*c
;
5877 * If no specific reply queue was requested, then send the TUR
5878 * repeatedly, requesting a reply on each reply queue; otherwise execute
5879 * the loop exactly once using only the specified queue.
5881 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5883 last_queue
= h
->nreply_queues
- 1;
5885 first_queue
= reply_queue
;
5886 last_queue
= reply_queue
;
5889 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5890 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5896 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5898 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5904 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5905 * complaining. Doing a host- or bus-reset can't do anything good here.
5907 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5910 struct ctlr_info
*h
;
5911 struct hpsa_scsi_dev_t
*dev
;
5914 unsigned long flags
;
5916 /* find the controller to which the command to be aborted was sent */
5917 h
= sdev_to_hba(scsicmd
->device
);
5918 if (h
== NULL
) /* paranoia */
5921 spin_lock_irqsave(&h
->reset_lock
, flags
);
5922 h
->reset_in_progress
= 1;
5923 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5925 if (lockup_detected(h
)) {
5927 goto return_reset_status
;
5930 dev
= scsicmd
->device
->hostdata
;
5932 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5934 goto return_reset_status
;
5937 if (dev
->devtype
== TYPE_ENCLOSURE
) {
5939 goto return_reset_status
;
5942 /* if controller locked up, we can guarantee command won't complete */
5943 if (lockup_detected(h
)) {
5944 snprintf(msg
, sizeof(msg
),
5945 "cmd %d RESET FAILED, lockup detected",
5946 hpsa_get_cmd_index(scsicmd
));
5947 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5949 goto return_reset_status
;
5952 /* this reset request might be the result of a lockup; check */
5953 if (detect_controller_lockup(h
)) {
5954 snprintf(msg
, sizeof(msg
),
5955 "cmd %d RESET FAILED, new lockup detected",
5956 hpsa_get_cmd_index(scsicmd
));
5957 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5959 goto return_reset_status
;
5962 /* Do not attempt on controller */
5963 if (is_hba_lunid(dev
->scsi3addr
)) {
5965 goto return_reset_status
;
5968 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5969 reset_type
= HPSA_DEVICE_RESET_MSG
;
5971 reset_type
= HPSA_PHYS_TARGET_RESET
;
5973 sprintf(msg
, "resetting %s",
5974 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5975 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5977 /* send a reset to the SCSI LUN which the command was sent to */
5978 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5979 DEFAULT_REPLY_QUEUE
);
5985 sprintf(msg
, "reset %s %s",
5986 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5987 rc
== SUCCESS
? "completed successfully" : "failed");
5988 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5990 return_reset_status
:
5991 spin_lock_irqsave(&h
->reset_lock
, flags
);
5992 h
->reset_in_progress
= 0;
5993 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5998 * For operations with an associated SCSI command, a command block is allocated
5999 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6000 * block request tag as an index into a table of entries. cmd_tagged_free() is
6001 * the complement, although cmd_free() may be called instead.
6003 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6004 struct scsi_cmnd
*scmd
)
6006 int idx
= hpsa_get_cmd_index(scmd
);
6007 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6009 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6010 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6011 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6012 /* The index value comes from the block layer, so if it's out of
6013 * bounds, it's probably not our bug.
6018 atomic_inc(&c
->refcount
);
6019 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6021 * We expect that the SCSI layer will hand us a unique tag
6022 * value. Thus, there should never be a collision here between
6023 * two requests...because if the selected command isn't idle
6024 * then someone is going to be very disappointed.
6026 dev_err(&h
->pdev
->dev
,
6027 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6029 if (c
->scsi_cmd
!= NULL
)
6030 scsi_print_command(c
->scsi_cmd
);
6031 scsi_print_command(scmd
);
6034 hpsa_cmd_partial_init(h
, idx
, c
);
6038 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6041 * Release our reference to the block. We don't need to do anything
6042 * else to free it, because it is accessed by index.
6044 (void)atomic_dec(&c
->refcount
);
6048 * For operations that cannot sleep, a command block is allocated at init,
6049 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6050 * which ones are free or in use. Lock must be held when calling this.
6051 * cmd_free() is the complement.
6052 * This function never gives up and returns NULL. If it hangs,
6053 * another thread must call cmd_free() to free some tags.
6056 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6058 struct CommandList
*c
;
6063 * There is some *extremely* small but non-zero chance that that
6064 * multiple threads could get in here, and one thread could
6065 * be scanning through the list of bits looking for a free
6066 * one, but the free ones are always behind him, and other
6067 * threads sneak in behind him and eat them before he can
6068 * get to them, so that while there is always a free one, a
6069 * very unlucky thread might be starved anyway, never able to
6070 * beat the other threads. In reality, this happens so
6071 * infrequently as to be indistinguishable from never.
6073 * Note that we start allocating commands before the SCSI host structure
6074 * is initialized. Since the search starts at bit zero, this
6075 * all works, since we have at least one command structure available;
6076 * however, it means that the structures with the low indexes have to be
6077 * reserved for driver-initiated requests, while requests from the block
6078 * layer will use the higher indexes.
6082 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6083 HPSA_NRESERVED_CMDS
,
6085 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6089 c
= h
->cmd_pool
+ i
;
6090 refcount
= atomic_inc_return(&c
->refcount
);
6091 if (unlikely(refcount
> 1)) {
6092 cmd_free(h
, c
); /* already in use */
6093 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6096 set_bit(i
& (BITS_PER_LONG
- 1),
6097 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6098 break; /* it's ours now. */
6100 hpsa_cmd_partial_init(h
, i
, c
);
6105 * This is the complementary operation to cmd_alloc(). Note, however, in some
6106 * corner cases it may also be used to free blocks allocated by
6107 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6108 * the clear-bit is harmless.
6110 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6112 if (atomic_dec_and_test(&c
->refcount
)) {
6115 i
= c
- h
->cmd_pool
;
6116 clear_bit(i
& (BITS_PER_LONG
- 1),
6117 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6121 #ifdef CONFIG_COMPAT
6123 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6126 IOCTL32_Command_struct __user
*arg32
=
6127 (IOCTL32_Command_struct __user
*) arg
;
6128 IOCTL_Command_struct arg64
;
6129 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6133 memset(&arg64
, 0, sizeof(arg64
));
6135 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6136 sizeof(arg64
.LUN_info
));
6137 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6138 sizeof(arg64
.Request
));
6139 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6140 sizeof(arg64
.error_info
));
6141 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6142 err
|= get_user(cp
, &arg32
->buf
);
6143 arg64
.buf
= compat_ptr(cp
);
6144 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6149 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6152 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6153 sizeof(arg32
->error_info
));
6159 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6160 int cmd
, void __user
*arg
)
6162 BIG_IOCTL32_Command_struct __user
*arg32
=
6163 (BIG_IOCTL32_Command_struct __user
*) arg
;
6164 BIG_IOCTL_Command_struct arg64
;
6165 BIG_IOCTL_Command_struct __user
*p
=
6166 compat_alloc_user_space(sizeof(arg64
));
6170 memset(&arg64
, 0, sizeof(arg64
));
6172 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6173 sizeof(arg64
.LUN_info
));
6174 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6175 sizeof(arg64
.Request
));
6176 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6177 sizeof(arg64
.error_info
));
6178 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6179 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6180 err
|= get_user(cp
, &arg32
->buf
);
6181 arg64
.buf
= compat_ptr(cp
);
6182 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6187 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6190 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6191 sizeof(arg32
->error_info
));
6197 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6200 case CCISS_GETPCIINFO
:
6201 case CCISS_GETINTINFO
:
6202 case CCISS_SETINTINFO
:
6203 case CCISS_GETNODENAME
:
6204 case CCISS_SETNODENAME
:
6205 case CCISS_GETHEARTBEAT
:
6206 case CCISS_GETBUSTYPES
:
6207 case CCISS_GETFIRMVER
:
6208 case CCISS_GETDRIVVER
:
6209 case CCISS_REVALIDVOLS
:
6210 case CCISS_DEREGDISK
:
6211 case CCISS_REGNEWDISK
:
6213 case CCISS_RESCANDISK
:
6214 case CCISS_GETLUNINFO
:
6215 return hpsa_ioctl(dev
, cmd
, arg
);
6217 case CCISS_PASSTHRU32
:
6218 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6219 case CCISS_BIG_PASSTHRU32
:
6220 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6223 return -ENOIOCTLCMD
;
6228 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6230 struct hpsa_pci_info pciinfo
;
6234 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6235 pciinfo
.bus
= h
->pdev
->bus
->number
;
6236 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6237 pciinfo
.board_id
= h
->board_id
;
6238 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6243 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6245 DriverVer_type DriverVer
;
6246 unsigned char vmaj
, vmin
, vsubmin
;
6249 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6250 &vmaj
, &vmin
, &vsubmin
);
6252 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6253 "unrecognized.", HPSA_DRIVER_VERSION
);
6258 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6261 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6266 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6268 IOCTL_Command_struct iocommand
;
6269 struct CommandList
*c
;
6276 if (!capable(CAP_SYS_RAWIO
))
6278 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6280 if ((iocommand
.buf_size
< 1) &&
6281 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6284 if (iocommand
.buf_size
> 0) {
6285 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6288 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6289 /* Copy the data into the buffer we created */
6290 if (copy_from_user(buff
, iocommand
.buf
,
6291 iocommand
.buf_size
)) {
6296 memset(buff
, 0, iocommand
.buf_size
);
6301 /* Fill in the command type */
6302 c
->cmd_type
= CMD_IOCTL_PEND
;
6303 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6304 /* Fill in Command Header */
6305 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6306 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6307 c
->Header
.SGList
= 1;
6308 c
->Header
.SGTotal
= cpu_to_le16(1);
6309 } else { /* no buffers to fill */
6310 c
->Header
.SGList
= 0;
6311 c
->Header
.SGTotal
= cpu_to_le16(0);
6313 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6315 /* Fill in Request block */
6316 memcpy(&c
->Request
, &iocommand
.Request
,
6317 sizeof(c
->Request
));
6319 /* Fill in the scatter gather information */
6320 if (iocommand
.buf_size
> 0) {
6321 temp64
= pci_map_single(h
->pdev
, buff
,
6322 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6323 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6324 c
->SG
[0].Addr
= cpu_to_le64(0);
6325 c
->SG
[0].Len
= cpu_to_le32(0);
6329 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6330 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6331 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6333 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6335 if (iocommand
.buf_size
> 0)
6336 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6337 check_ioctl_unit_attention(h
, c
);
6343 /* Copy the error information out */
6344 memcpy(&iocommand
.error_info
, c
->err_info
,
6345 sizeof(iocommand
.error_info
));
6346 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6350 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6351 iocommand
.buf_size
> 0) {
6352 /* Copy the data out of the buffer we created */
6353 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6365 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6367 BIG_IOCTL_Command_struct
*ioc
;
6368 struct CommandList
*c
;
6369 unsigned char **buff
= NULL
;
6370 int *buff_size
= NULL
;
6376 BYTE __user
*data_ptr
;
6380 if (!capable(CAP_SYS_RAWIO
))
6382 ioc
= kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6387 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6391 if ((ioc
->buf_size
< 1) &&
6392 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6396 /* Check kmalloc limits using all SGs */
6397 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6401 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6405 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6410 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6415 left
= ioc
->buf_size
;
6416 data_ptr
= ioc
->buf
;
6418 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6419 buff_size
[sg_used
] = sz
;
6420 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6421 if (buff
[sg_used
] == NULL
) {
6425 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6426 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6431 memset(buff
[sg_used
], 0, sz
);
6438 c
->cmd_type
= CMD_IOCTL_PEND
;
6439 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6440 c
->Header
.ReplyQueue
= 0;
6441 c
->Header
.SGList
= (u8
) sg_used
;
6442 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6443 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6444 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6445 if (ioc
->buf_size
> 0) {
6447 for (i
= 0; i
< sg_used
; i
++) {
6448 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6449 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6450 if (dma_mapping_error(&h
->pdev
->dev
,
6451 (dma_addr_t
) temp64
)) {
6452 c
->SG
[i
].Addr
= cpu_to_le64(0);
6453 c
->SG
[i
].Len
= cpu_to_le32(0);
6454 hpsa_pci_unmap(h
->pdev
, c
, i
,
6455 PCI_DMA_BIDIRECTIONAL
);
6459 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6460 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6461 c
->SG
[i
].Ext
= cpu_to_le32(0);
6463 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6465 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6468 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6469 check_ioctl_unit_attention(h
, c
);
6475 /* Copy the error information out */
6476 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6477 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6481 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6484 /* Copy the data out of the buffer we created */
6485 BYTE __user
*ptr
= ioc
->buf
;
6486 for (i
= 0; i
< sg_used
; i
++) {
6487 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6491 ptr
+= buff_size
[i
];
6501 for (i
= 0; i
< sg_used
; i
++)
6510 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6511 struct CommandList
*c
)
6513 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6514 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6515 (void) check_for_unit_attention(h
, c
);
6521 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6523 struct ctlr_info
*h
;
6524 void __user
*argp
= (void __user
*)arg
;
6527 h
= sdev_to_hba(dev
);
6530 case CCISS_DEREGDISK
:
6531 case CCISS_REGNEWDISK
:
6533 hpsa_scan_start(h
->scsi_host
);
6535 case CCISS_GETPCIINFO
:
6536 return hpsa_getpciinfo_ioctl(h
, argp
);
6537 case CCISS_GETDRIVVER
:
6538 return hpsa_getdrivver_ioctl(h
, argp
);
6539 case CCISS_PASSTHRU
:
6540 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6542 rc
= hpsa_passthru_ioctl(h
, argp
);
6543 atomic_inc(&h
->passthru_cmds_avail
);
6545 case CCISS_BIG_PASSTHRU
:
6546 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6548 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6549 atomic_inc(&h
->passthru_cmds_avail
);
6556 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6559 struct CommandList
*c
;
6563 /* fill_cmd can't fail here, no data buffer to map */
6564 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6565 RAID_CTLR_LUNID
, TYPE_MSG
);
6566 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6568 enqueue_cmd_and_start_io(h
, c
);
6569 /* Don't wait for completion, the reset won't complete. Don't free
6570 * the command either. This is the last command we will send before
6571 * re-initializing everything, so it doesn't matter and won't leak.
6576 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6577 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6580 int pci_dir
= XFER_NONE
;
6582 c
->cmd_type
= CMD_IOCTL_PEND
;
6583 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6584 c
->Header
.ReplyQueue
= 0;
6585 if (buff
!= NULL
&& size
> 0) {
6586 c
->Header
.SGList
= 1;
6587 c
->Header
.SGTotal
= cpu_to_le16(1);
6589 c
->Header
.SGList
= 0;
6590 c
->Header
.SGTotal
= cpu_to_le16(0);
6592 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6594 if (cmd_type
== TYPE_CMD
) {
6597 /* are we trying to read a vital product page */
6598 if (page_code
& VPD_PAGE
) {
6599 c
->Request
.CDB
[1] = 0x01;
6600 c
->Request
.CDB
[2] = (page_code
& 0xff);
6602 c
->Request
.CDBLen
= 6;
6603 c
->Request
.type_attr_dir
=
6604 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6605 c
->Request
.Timeout
= 0;
6606 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6607 c
->Request
.CDB
[4] = size
& 0xFF;
6609 case RECEIVE_DIAGNOSTIC
:
6610 c
->Request
.CDBLen
= 6;
6611 c
->Request
.type_attr_dir
=
6612 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6613 c
->Request
.Timeout
= 0;
6614 c
->Request
.CDB
[0] = cmd
;
6615 c
->Request
.CDB
[1] = 1;
6616 c
->Request
.CDB
[2] = 1;
6617 c
->Request
.CDB
[3] = (size
>> 8) & 0xFF;
6618 c
->Request
.CDB
[4] = size
& 0xFF;
6620 case HPSA_REPORT_LOG
:
6621 case HPSA_REPORT_PHYS
:
6622 /* Talking to controller so It's a physical command
6623 mode = 00 target = 0. Nothing to write.
6625 c
->Request
.CDBLen
= 12;
6626 c
->Request
.type_attr_dir
=
6627 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6628 c
->Request
.Timeout
= 0;
6629 c
->Request
.CDB
[0] = cmd
;
6630 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6631 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6632 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6633 c
->Request
.CDB
[9] = size
& 0xFF;
6635 case BMIC_SENSE_DIAG_OPTIONS
:
6636 c
->Request
.CDBLen
= 16;
6637 c
->Request
.type_attr_dir
=
6638 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6639 c
->Request
.Timeout
= 0;
6640 /* Spec says this should be BMIC_WRITE */
6641 c
->Request
.CDB
[0] = BMIC_READ
;
6642 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6644 case BMIC_SET_DIAG_OPTIONS
:
6645 c
->Request
.CDBLen
= 16;
6646 c
->Request
.type_attr_dir
=
6647 TYPE_ATTR_DIR(cmd_type
,
6648 ATTR_SIMPLE
, XFER_WRITE
);
6649 c
->Request
.Timeout
= 0;
6650 c
->Request
.CDB
[0] = BMIC_WRITE
;
6651 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6653 case HPSA_CACHE_FLUSH
:
6654 c
->Request
.CDBLen
= 12;
6655 c
->Request
.type_attr_dir
=
6656 TYPE_ATTR_DIR(cmd_type
,
6657 ATTR_SIMPLE
, XFER_WRITE
);
6658 c
->Request
.Timeout
= 0;
6659 c
->Request
.CDB
[0] = BMIC_WRITE
;
6660 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6661 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6662 c
->Request
.CDB
[8] = size
& 0xFF;
6664 case TEST_UNIT_READY
:
6665 c
->Request
.CDBLen
= 6;
6666 c
->Request
.type_attr_dir
=
6667 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6668 c
->Request
.Timeout
= 0;
6670 case HPSA_GET_RAID_MAP
:
6671 c
->Request
.CDBLen
= 12;
6672 c
->Request
.type_attr_dir
=
6673 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6674 c
->Request
.Timeout
= 0;
6675 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6676 c
->Request
.CDB
[1] = cmd
;
6677 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6678 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6679 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6680 c
->Request
.CDB
[9] = size
& 0xFF;
6682 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6683 c
->Request
.CDBLen
= 10;
6684 c
->Request
.type_attr_dir
=
6685 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6686 c
->Request
.Timeout
= 0;
6687 c
->Request
.CDB
[0] = BMIC_READ
;
6688 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6689 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6690 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6692 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6693 c
->Request
.CDBLen
= 10;
6694 c
->Request
.type_attr_dir
=
6695 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6696 c
->Request
.Timeout
= 0;
6697 c
->Request
.CDB
[0] = BMIC_READ
;
6698 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6699 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6700 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6702 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6703 c
->Request
.CDBLen
= 10;
6704 c
->Request
.type_attr_dir
=
6705 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6706 c
->Request
.Timeout
= 0;
6707 c
->Request
.CDB
[0] = BMIC_READ
;
6708 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6709 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6710 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6712 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6713 c
->Request
.CDBLen
= 10;
6714 c
->Request
.type_attr_dir
=
6715 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6716 c
->Request
.Timeout
= 0;
6717 c
->Request
.CDB
[0] = BMIC_READ
;
6718 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6719 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6720 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6722 case BMIC_IDENTIFY_CONTROLLER
:
6723 c
->Request
.CDBLen
= 10;
6724 c
->Request
.type_attr_dir
=
6725 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6726 c
->Request
.Timeout
= 0;
6727 c
->Request
.CDB
[0] = BMIC_READ
;
6728 c
->Request
.CDB
[1] = 0;
6729 c
->Request
.CDB
[2] = 0;
6730 c
->Request
.CDB
[3] = 0;
6731 c
->Request
.CDB
[4] = 0;
6732 c
->Request
.CDB
[5] = 0;
6733 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6734 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6735 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6736 c
->Request
.CDB
[9] = 0;
6739 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6742 } else if (cmd_type
== TYPE_MSG
) {
6745 case HPSA_PHYS_TARGET_RESET
:
6746 c
->Request
.CDBLen
= 16;
6747 c
->Request
.type_attr_dir
=
6748 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6749 c
->Request
.Timeout
= 0; /* Don't time out */
6750 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6751 c
->Request
.CDB
[0] = HPSA_RESET
;
6752 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6753 /* Physical target reset needs no control bytes 4-7*/
6754 c
->Request
.CDB
[4] = 0x00;
6755 c
->Request
.CDB
[5] = 0x00;
6756 c
->Request
.CDB
[6] = 0x00;
6757 c
->Request
.CDB
[7] = 0x00;
6759 case HPSA_DEVICE_RESET_MSG
:
6760 c
->Request
.CDBLen
= 16;
6761 c
->Request
.type_attr_dir
=
6762 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6763 c
->Request
.Timeout
= 0; /* Don't time out */
6764 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6765 c
->Request
.CDB
[0] = cmd
;
6766 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6767 /* If bytes 4-7 are zero, it means reset the */
6769 c
->Request
.CDB
[4] = 0x00;
6770 c
->Request
.CDB
[5] = 0x00;
6771 c
->Request
.CDB
[6] = 0x00;
6772 c
->Request
.CDB
[7] = 0x00;
6775 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6780 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6784 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6786 pci_dir
= PCI_DMA_FROMDEVICE
;
6789 pci_dir
= PCI_DMA_TODEVICE
;
6792 pci_dir
= PCI_DMA_NONE
;
6795 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6797 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6803 * Map (physical) PCI mem into (virtual) kernel space
6805 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6807 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6808 ulong page_offs
= ((ulong
) base
) - page_base
;
6809 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6812 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6815 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6817 return h
->access
.command_completed(h
, q
);
6820 static inline bool interrupt_pending(struct ctlr_info
*h
)
6822 return h
->access
.intr_pending(h
);
6825 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6827 return (h
->access
.intr_pending(h
) == 0) ||
6828 (h
->interrupts_enabled
== 0);
6831 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6834 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6835 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6841 static inline void finish_cmd(struct CommandList
*c
)
6843 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6844 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6845 || c
->cmd_type
== CMD_IOACCEL2
))
6846 complete_scsi_command(c
);
6847 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6848 complete(c
->waiting
);
6851 /* process completion of an indexed ("direct lookup") command */
6852 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6856 struct CommandList
*c
;
6858 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6859 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6860 c
= h
->cmd_pool
+ tag_index
;
6865 /* Some controllers, like p400, will give us one interrupt
6866 * after a soft reset, even if we turned interrupts off.
6867 * Only need to check for this in the hpsa_xxx_discard_completions
6870 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6872 if (likely(!reset_devices
))
6875 if (likely(h
->interrupts_enabled
))
6878 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6879 "(known firmware bug.) Ignoring.\n");
6885 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6886 * Relies on (h-q[x] == x) being true for x such that
6887 * 0 <= x < MAX_REPLY_QUEUES.
6889 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6891 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6894 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6896 struct ctlr_info
*h
= queue_to_hba(queue
);
6897 u8 q
= *(u8
*) queue
;
6900 if (ignore_bogus_interrupt(h
))
6903 if (interrupt_not_for_us(h
))
6905 h
->last_intr_timestamp
= get_jiffies_64();
6906 while (interrupt_pending(h
)) {
6907 raw_tag
= get_next_completion(h
, q
);
6908 while (raw_tag
!= FIFO_EMPTY
)
6909 raw_tag
= next_command(h
, q
);
6914 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6916 struct ctlr_info
*h
= queue_to_hba(queue
);
6918 u8 q
= *(u8
*) queue
;
6920 if (ignore_bogus_interrupt(h
))
6923 h
->last_intr_timestamp
= get_jiffies_64();
6924 raw_tag
= get_next_completion(h
, q
);
6925 while (raw_tag
!= FIFO_EMPTY
)
6926 raw_tag
= next_command(h
, q
);
6930 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6932 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6934 u8 q
= *(u8
*) queue
;
6936 if (interrupt_not_for_us(h
))
6938 h
->last_intr_timestamp
= get_jiffies_64();
6939 while (interrupt_pending(h
)) {
6940 raw_tag
= get_next_completion(h
, q
);
6941 while (raw_tag
!= FIFO_EMPTY
) {
6942 process_indexed_cmd(h
, raw_tag
);
6943 raw_tag
= next_command(h
, q
);
6949 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6951 struct ctlr_info
*h
= queue_to_hba(queue
);
6953 u8 q
= *(u8
*) queue
;
6955 h
->last_intr_timestamp
= get_jiffies_64();
6956 raw_tag
= get_next_completion(h
, q
);
6957 while (raw_tag
!= FIFO_EMPTY
) {
6958 process_indexed_cmd(h
, raw_tag
);
6959 raw_tag
= next_command(h
, q
);
6964 /* Send a message CDB to the firmware. Careful, this only works
6965 * in simple mode, not performant mode due to the tag lookup.
6966 * We only ever use this immediately after a controller reset.
6968 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6972 struct CommandListHeader CommandHeader
;
6973 struct RequestBlock Request
;
6974 struct ErrDescriptor ErrorDescriptor
;
6976 struct Command
*cmd
;
6977 static const size_t cmd_sz
= sizeof(*cmd
) +
6978 sizeof(cmd
->ErrorDescriptor
);
6982 void __iomem
*vaddr
;
6985 vaddr
= pci_ioremap_bar(pdev
, 0);
6989 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6990 * CCISS commands, so they must be allocated from the lower 4GiB of
6993 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
6999 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7005 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7006 * although there's no guarantee, we assume that the address is at
7007 * least 4-byte aligned (most likely, it's page-aligned).
7009 paddr32
= cpu_to_le32(paddr64
);
7011 cmd
->CommandHeader
.ReplyQueue
= 0;
7012 cmd
->CommandHeader
.SGList
= 0;
7013 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7014 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7015 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7017 cmd
->Request
.CDBLen
= 16;
7018 cmd
->Request
.type_attr_dir
=
7019 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7020 cmd
->Request
.Timeout
= 0; /* Don't time out */
7021 cmd
->Request
.CDB
[0] = opcode
;
7022 cmd
->Request
.CDB
[1] = type
;
7023 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7024 cmd
->ErrorDescriptor
.Addr
=
7025 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7026 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7028 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7030 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7031 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7032 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7034 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7039 /* we leak the DMA buffer here ... no choice since the controller could
7040 * still complete the command.
7042 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7043 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7048 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7050 if (tag
& HPSA_ERROR_BIT
) {
7051 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7056 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7061 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7063 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7064 void __iomem
*vaddr
, u32 use_doorbell
)
7068 /* For everything after the P600, the PCI power state method
7069 * of resetting the controller doesn't work, so we have this
7070 * other way using the doorbell register.
7072 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7073 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7075 /* PMC hardware guys tell us we need a 10 second delay after
7076 * doorbell reset and before any attempt to talk to the board
7077 * at all to ensure that this actually works and doesn't fall
7078 * over in some weird corner cases.
7081 } else { /* Try to do it the PCI power state way */
7083 /* Quoting from the Open CISS Specification: "The Power
7084 * Management Control/Status Register (CSR) controls the power
7085 * state of the device. The normal operating state is D0,
7086 * CSR=00h. The software off state is D3, CSR=03h. To reset
7087 * the controller, place the interface device in D3 then to D0,
7088 * this causes a secondary PCI reset which will reset the
7093 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7095 /* enter the D3hot power management state */
7096 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7102 /* enter the D0 power management state */
7103 rc
= pci_set_power_state(pdev
, PCI_D0
);
7108 * The P600 requires a small delay when changing states.
7109 * Otherwise we may think the board did not reset and we bail.
7110 * This for kdump only and is particular to the P600.
7117 static void init_driver_version(char *driver_version
, int len
)
7119 memset(driver_version
, 0, len
);
7120 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7123 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7125 char *driver_version
;
7126 int i
, size
= sizeof(cfgtable
->driver_version
);
7128 driver_version
= kmalloc(size
, GFP_KERNEL
);
7129 if (!driver_version
)
7132 init_driver_version(driver_version
, size
);
7133 for (i
= 0; i
< size
; i
++)
7134 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7135 kfree(driver_version
);
7139 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7140 unsigned char *driver_ver
)
7144 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7145 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7148 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7151 char *driver_ver
, *old_driver_ver
;
7152 int rc
, size
= sizeof(cfgtable
->driver_version
);
7154 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7155 if (!old_driver_ver
)
7157 driver_ver
= old_driver_ver
+ size
;
7159 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7160 * should have been changed, otherwise we know the reset failed.
7162 init_driver_version(old_driver_ver
, size
);
7163 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7164 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7165 kfree(old_driver_ver
);
7168 /* This does a hard reset of the controller using PCI power management
7169 * states or the using the doorbell register.
7171 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7175 u64 cfg_base_addr_index
;
7176 void __iomem
*vaddr
;
7177 unsigned long paddr
;
7178 u32 misc_fw_support
;
7180 struct CfgTable __iomem
*cfgtable
;
7182 u16 command_register
;
7184 /* For controllers as old as the P600, this is very nearly
7187 * pci_save_state(pci_dev);
7188 * pci_set_power_state(pci_dev, PCI_D3hot);
7189 * pci_set_power_state(pci_dev, PCI_D0);
7190 * pci_restore_state(pci_dev);
7192 * For controllers newer than the P600, the pci power state
7193 * method of resetting doesn't work so we have another way
7194 * using the doorbell register.
7197 if (!ctlr_is_resettable(board_id
)) {
7198 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7202 /* if controller is soft- but not hard resettable... */
7203 if (!ctlr_is_hard_resettable(board_id
))
7204 return -ENOTSUPP
; /* try soft reset later. */
7206 /* Save the PCI command register */
7207 pci_read_config_word(pdev
, 4, &command_register
);
7208 pci_save_state(pdev
);
7210 /* find the first memory BAR, so we can find the cfg table */
7211 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7214 vaddr
= remap_pci_mem(paddr
, 0x250);
7218 /* find cfgtable in order to check if reset via doorbell is supported */
7219 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7220 &cfg_base_addr_index
, &cfg_offset
);
7223 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7224 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7229 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7231 goto unmap_cfgtable
;
7233 /* If reset via doorbell register is supported, use that.
7234 * There are two such methods. Favor the newest method.
7236 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7237 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7239 use_doorbell
= DOORBELL_CTLR_RESET2
;
7241 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7243 dev_warn(&pdev
->dev
,
7244 "Soft reset not supported. Firmware update is required.\n");
7245 rc
= -ENOTSUPP
; /* try soft reset */
7246 goto unmap_cfgtable
;
7250 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7252 goto unmap_cfgtable
;
7254 pci_restore_state(pdev
);
7255 pci_write_config_word(pdev
, 4, command_register
);
7257 /* Some devices (notably the HP Smart Array 5i Controller)
7258 need a little pause here */
7259 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7261 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7263 dev_warn(&pdev
->dev
,
7264 "Failed waiting for board to become ready after hard reset\n");
7265 goto unmap_cfgtable
;
7268 rc
= controller_reset_failed(vaddr
);
7270 goto unmap_cfgtable
;
7272 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7273 "controller. Will try soft reset.\n");
7276 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7288 * We cannot read the structure directly, for portability we must use
7290 * This is for debug only.
7292 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7298 dev_info(dev
, "Controller Configuration information\n");
7299 dev_info(dev
, "------------------------------------\n");
7300 for (i
= 0; i
< 4; i
++)
7301 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7302 temp_name
[4] = '\0';
7303 dev_info(dev
, " Signature = %s\n", temp_name
);
7304 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7305 dev_info(dev
, " Transport methods supported = 0x%x\n",
7306 readl(&(tb
->TransportSupport
)));
7307 dev_info(dev
, " Transport methods active = 0x%x\n",
7308 readl(&(tb
->TransportActive
)));
7309 dev_info(dev
, " Requested transport Method = 0x%x\n",
7310 readl(&(tb
->HostWrite
.TransportRequest
)));
7311 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7312 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7313 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7314 readl(&(tb
->HostWrite
.CoalIntCount
)));
7315 dev_info(dev
, " Max outstanding commands = %d\n",
7316 readl(&(tb
->CmdsOutMax
)));
7317 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7318 for (i
= 0; i
< 16; i
++)
7319 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7320 temp_name
[16] = '\0';
7321 dev_info(dev
, " Server Name = %s\n", temp_name
);
7322 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7323 readl(&(tb
->HeartBeat
)));
7324 #endif /* HPSA_DEBUG */
7327 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7329 int i
, offset
, mem_type
, bar_type
;
7331 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7334 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7335 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7336 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7339 mem_type
= pci_resource_flags(pdev
, i
) &
7340 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7342 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7343 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7344 offset
+= 4; /* 32 bit */
7346 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7349 default: /* reserved in PCI 2.2 */
7350 dev_warn(&pdev
->dev
,
7351 "base address is invalid\n");
7356 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7362 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7364 pci_free_irq_vectors(h
->pdev
);
7365 h
->msix_vectors
= 0;
7368 static void hpsa_setup_reply_map(struct ctlr_info
*h
)
7370 const struct cpumask
*mask
;
7371 unsigned int queue
, cpu
;
7373 for (queue
= 0; queue
< h
->msix_vectors
; queue
++) {
7374 mask
= pci_irq_get_affinity(h
->pdev
, queue
);
7378 for_each_cpu(cpu
, mask
)
7379 h
->reply_map
[cpu
] = queue
;
7384 for_each_possible_cpu(cpu
)
7385 h
->reply_map
[cpu
] = 0;
7388 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7389 * controllers that are capable. If not, we use legacy INTx mode.
7391 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7393 unsigned int flags
= PCI_IRQ_LEGACY
;
7396 /* Some boards advertise MSI but don't really support it */
7397 switch (h
->board_id
) {
7404 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7405 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7407 h
->msix_vectors
= ret
;
7411 flags
|= PCI_IRQ_MSI
;
7415 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7421 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
7425 u32 subsystem_vendor_id
, subsystem_device_id
;
7427 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7428 subsystem_device_id
= pdev
->subsystem_device
;
7429 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7430 subsystem_vendor_id
;
7433 *legacy_board
= false;
7434 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7435 if (*board_id
== products
[i
].board_id
) {
7436 if (products
[i
].access
!= &SA5A_access
&&
7437 products
[i
].access
!= &SA5B_access
)
7439 dev_warn(&pdev
->dev
,
7440 "legacy board ID: 0x%08x\n",
7443 *legacy_board
= true;
7447 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x\n", *board_id
);
7449 *legacy_board
= true;
7450 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7453 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7454 unsigned long *memory_bar
)
7458 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7459 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7460 /* addressing mode bits already removed */
7461 *memory_bar
= pci_resource_start(pdev
, i
);
7462 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7466 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7470 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7476 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7478 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7480 for (i
= 0; i
< iterations
; i
++) {
7481 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7482 if (wait_for_ready
) {
7483 if (scratchpad
== HPSA_FIRMWARE_READY
)
7486 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7489 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7491 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7495 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7496 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7499 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7500 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7501 *cfg_base_addr
&= (u32
) 0x0000ffff;
7502 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7503 if (*cfg_base_addr_index
== -1) {
7504 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7510 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7512 if (h
->transtable
) {
7513 iounmap(h
->transtable
);
7514 h
->transtable
= NULL
;
7517 iounmap(h
->cfgtable
);
7522 /* Find and map CISS config table and transfer table
7523 + * several items must be unmapped (freed) later
7525 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7529 u64 cfg_base_addr_index
;
7533 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7534 &cfg_base_addr_index
, &cfg_offset
);
7537 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7538 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7540 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7543 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7546 /* Find performant mode table. */
7547 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7548 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7549 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7550 sizeof(*h
->transtable
));
7551 if (!h
->transtable
) {
7552 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7553 hpsa_free_cfgtables(h
);
7559 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7561 #define MIN_MAX_COMMANDS 16
7562 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7564 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7566 /* Limit commands in memory limited kdump scenario. */
7567 if (reset_devices
&& h
->max_commands
> 32)
7568 h
->max_commands
= 32;
7570 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7571 dev_warn(&h
->pdev
->dev
,
7572 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7575 h
->max_commands
= MIN_MAX_COMMANDS
;
7579 /* If the controller reports that the total max sg entries is greater than 512,
7580 * then we know that chained SG blocks work. (Original smart arrays did not
7581 * support chained SG blocks and would return zero for max sg entries.)
7583 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7585 return h
->maxsgentries
> 512;
7588 /* Interrogate the hardware for some limits:
7589 * max commands, max SG elements without chaining, and with chaining,
7590 * SG chain block size, etc.
7592 static void hpsa_find_board_params(struct ctlr_info
*h
)
7594 hpsa_get_max_perf_mode_cmds(h
);
7595 h
->nr_cmds
= h
->max_commands
;
7596 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7597 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7598 if (hpsa_supports_chained_sg_blocks(h
)) {
7599 /* Limit in-command s/g elements to 32 save dma'able memory. */
7600 h
->max_cmd_sg_entries
= 32;
7601 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7602 h
->maxsgentries
--; /* save one for chain pointer */
7605 * Original smart arrays supported at most 31 s/g entries
7606 * embedded inline in the command (trying to use more
7607 * would lock up the controller)
7609 h
->max_cmd_sg_entries
= 31;
7610 h
->maxsgentries
= 31; /* default to traditional values */
7614 /* Find out what task management functions are supported and cache */
7615 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7616 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7617 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7618 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7619 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7620 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7621 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7624 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7626 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7627 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7633 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7637 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7638 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7640 driver_support
|= ENABLE_SCSI_PREFETCH
;
7642 driver_support
|= ENABLE_UNIT_ATTN
;
7643 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7646 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7647 * in a prefetch beyond physical memory.
7649 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7653 if (h
->board_id
!= 0x3225103C)
7655 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7656 dma_prefetch
|= 0x8000;
7657 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7660 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7664 unsigned long flags
;
7665 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7666 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7667 spin_lock_irqsave(&h
->lock
, flags
);
7668 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7669 spin_unlock_irqrestore(&h
->lock
, flags
);
7670 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7672 /* delay and try again */
7673 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7680 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7684 unsigned long flags
;
7686 /* under certain very rare conditions, this can take awhile.
7687 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7688 * as we enter this code.)
7690 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7691 if (h
->remove_in_progress
)
7693 spin_lock_irqsave(&h
->lock
, flags
);
7694 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7695 spin_unlock_irqrestore(&h
->lock
, flags
);
7696 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7698 /* delay and try again */
7699 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7706 /* return -ENODEV or other reason on error, 0 on success */
7707 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7711 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7712 if (!(trans_support
& SIMPLE_MODE
))
7715 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7717 /* Update the field, and then ring the doorbell */
7718 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7719 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7720 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7721 if (hpsa_wait_for_mode_change_ack(h
))
7723 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7724 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7726 h
->transMethod
= CFGTBL_Trans_Simple
;
7729 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7733 /* free items allocated or mapped by hpsa_pci_init */
7734 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7736 hpsa_free_cfgtables(h
); /* pci_init 4 */
7737 iounmap(h
->vaddr
); /* pci_init 3 */
7739 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7741 * call pci_disable_device before pci_release_regions per
7742 * Documentation/PCI/pci.txt
7744 pci_disable_device(h
->pdev
); /* pci_init 1 */
7745 pci_release_regions(h
->pdev
); /* pci_init 2 */
7748 /* several items must be freed later */
7749 static int hpsa_pci_init(struct ctlr_info
*h
)
7751 int prod_index
, err
;
7754 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
, &legacy_board
);
7757 h
->product_name
= products
[prod_index
].product_name
;
7758 h
->access
= *(products
[prod_index
].access
);
7759 h
->legacy_board
= legacy_board
;
7760 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7761 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7763 err
= pci_enable_device(h
->pdev
);
7765 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7766 pci_disable_device(h
->pdev
);
7770 err
= pci_request_regions(h
->pdev
, HPSA
);
7772 dev_err(&h
->pdev
->dev
,
7773 "failed to obtain PCI resources\n");
7774 pci_disable_device(h
->pdev
);
7778 pci_set_master(h
->pdev
);
7780 err
= hpsa_interrupt_mode(h
);
7784 /* setup mapping between CPU and reply queue */
7785 hpsa_setup_reply_map(h
);
7787 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7789 goto clean2
; /* intmode+region, pci */
7790 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7792 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7794 goto clean2
; /* intmode+region, pci */
7796 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7798 goto clean3
; /* vaddr, intmode+region, pci */
7799 err
= hpsa_find_cfgtables(h
);
7801 goto clean3
; /* vaddr, intmode+region, pci */
7802 hpsa_find_board_params(h
);
7804 if (!hpsa_CISS_signature_present(h
)) {
7806 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7808 hpsa_set_driver_support_bits(h
);
7809 hpsa_p600_dma_prefetch_quirk(h
);
7810 err
= hpsa_enter_simple_mode(h
);
7812 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7815 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7816 hpsa_free_cfgtables(h
);
7817 clean3
: /* vaddr, intmode+region, pci */
7820 clean2
: /* intmode+region, pci */
7821 hpsa_disable_interrupt_mode(h
);
7824 * call pci_disable_device before pci_release_regions per
7825 * Documentation/PCI/pci.txt
7827 pci_disable_device(h
->pdev
);
7828 pci_release_regions(h
->pdev
);
7832 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7836 #define HBA_INQUIRY_BYTE_COUNT 64
7837 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7838 if (!h
->hba_inquiry_data
)
7840 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7841 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7843 kfree(h
->hba_inquiry_data
);
7844 h
->hba_inquiry_data
= NULL
;
7848 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7851 void __iomem
*vaddr
;
7856 /* kdump kernel is loading, we don't know in which state is
7857 * the pci interface. The dev->enable_cnt is equal zero
7858 * so we call enable+disable, wait a while and switch it on.
7860 rc
= pci_enable_device(pdev
);
7862 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7865 pci_disable_device(pdev
);
7866 msleep(260); /* a randomly chosen number */
7867 rc
= pci_enable_device(pdev
);
7869 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7873 pci_set_master(pdev
);
7875 vaddr
= pci_ioremap_bar(pdev
, 0);
7876 if (vaddr
== NULL
) {
7880 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7883 /* Reset the controller with a PCI power-cycle or via doorbell */
7884 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7886 /* -ENOTSUPP here means we cannot reset the controller
7887 * but it's already (and still) up and running in
7888 * "performant mode". Or, it might be 640x, which can't reset
7889 * due to concerns about shared bbwc between 6402/6404 pair.
7894 /* Now try to get the controller to respond to a no-op */
7895 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7896 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7897 if (hpsa_noop(pdev
) == 0)
7900 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7901 (i
< 11 ? "; re-trying" : ""));
7906 pci_disable_device(pdev
);
7910 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7912 kfree(h
->cmd_pool_bits
);
7913 h
->cmd_pool_bits
= NULL
;
7915 pci_free_consistent(h
->pdev
,
7916 h
->nr_cmds
* sizeof(struct CommandList
),
7918 h
->cmd_pool_dhandle
);
7920 h
->cmd_pool_dhandle
= 0;
7922 if (h
->errinfo_pool
) {
7923 pci_free_consistent(h
->pdev
,
7924 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7926 h
->errinfo_pool_dhandle
);
7927 h
->errinfo_pool
= NULL
;
7928 h
->errinfo_pool_dhandle
= 0;
7932 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7934 h
->cmd_pool_bits
= kzalloc(
7935 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7936 sizeof(unsigned long), GFP_KERNEL
);
7937 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7938 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7939 &(h
->cmd_pool_dhandle
));
7940 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7941 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7942 &(h
->errinfo_pool_dhandle
));
7943 if ((h
->cmd_pool_bits
== NULL
)
7944 || (h
->cmd_pool
== NULL
)
7945 || (h
->errinfo_pool
== NULL
)) {
7946 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7949 hpsa_preinitialize_commands(h
);
7952 hpsa_free_cmd_pool(h
);
7956 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7957 static void hpsa_free_irqs(struct ctlr_info
*h
)
7961 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
7962 /* Single reply queue, only one irq to free */
7963 free_irq(pci_irq_vector(h
->pdev
, 0), &h
->q
[h
->intr_mode
]);
7964 h
->q
[h
->intr_mode
] = 0;
7968 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7969 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
7972 for (; i
< MAX_REPLY_QUEUES
; i
++)
7976 /* returns 0 on success; cleans up and returns -Enn on error */
7977 static int hpsa_request_irqs(struct ctlr_info
*h
,
7978 irqreturn_t (*msixhandler
)(int, void *),
7979 irqreturn_t (*intxhandler
)(int, void *))
7984 * initialize h->q[x] = x so that interrupt handlers know which
7987 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7990 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
7991 /* If performant mode and MSI-X, use multiple reply queues */
7992 for (i
= 0; i
< h
->msix_vectors
; i
++) {
7993 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7994 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
8000 dev_err(&h
->pdev
->dev
,
8001 "failed to get irq %d for %s\n",
8002 pci_irq_vector(h
->pdev
, i
), h
->devname
);
8003 for (j
= 0; j
< i
; j
++) {
8004 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
8007 for (; j
< MAX_REPLY_QUEUES
; j
++)
8013 /* Use single reply pool */
8014 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
8015 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
8016 h
->msix_vectors
? "x" : "");
8017 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8020 &h
->q
[h
->intr_mode
]);
8022 sprintf(h
->intrname
[h
->intr_mode
],
8023 "%s-intx", h
->devname
);
8024 rc
= request_irq(pci_irq_vector(h
->pdev
, 0),
8025 intxhandler
, IRQF_SHARED
,
8027 &h
->q
[h
->intr_mode
]);
8031 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8032 pci_irq_vector(h
->pdev
, 0), h
->devname
);
8039 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8042 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8044 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8045 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8047 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8051 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8052 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8054 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8055 "after soft reset.\n");
8062 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8066 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8067 if (!h
->reply_queue
[i
].head
)
8069 pci_free_consistent(h
->pdev
,
8070 h
->reply_queue_size
,
8071 h
->reply_queue
[i
].head
,
8072 h
->reply_queue
[i
].busaddr
);
8073 h
->reply_queue
[i
].head
= NULL
;
8074 h
->reply_queue
[i
].busaddr
= 0;
8076 h
->reply_queue_size
= 0;
8079 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8081 hpsa_free_performant_mode(h
); /* init_one 7 */
8082 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8083 hpsa_free_cmd_pool(h
); /* init_one 5 */
8084 hpsa_free_irqs(h
); /* init_one 4 */
8085 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8086 h
->scsi_host
= NULL
; /* init_one 3 */
8087 hpsa_free_pci_init(h
); /* init_one 2_5 */
8088 free_percpu(h
->lockup_detected
); /* init_one 2 */
8089 h
->lockup_detected
= NULL
; /* init_one 2 */
8090 if (h
->resubmit_wq
) {
8091 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8092 h
->resubmit_wq
= NULL
;
8094 if (h
->rescan_ctlr_wq
) {
8095 destroy_workqueue(h
->rescan_ctlr_wq
);
8096 h
->rescan_ctlr_wq
= NULL
;
8098 kfree(h
); /* init_one 1 */
8101 /* Called when controller lockup detected. */
8102 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8105 struct CommandList
*c
;
8108 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8109 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8110 c
= h
->cmd_pool
+ i
;
8111 refcount
= atomic_inc_return(&c
->refcount
);
8113 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8115 atomic_dec(&h
->commands_outstanding
);
8120 dev_warn(&h
->pdev
->dev
,
8121 "failed %d commands in fail_all\n", failcount
);
8124 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8128 for_each_online_cpu(cpu
) {
8129 u32
*lockup_detected
;
8130 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8131 *lockup_detected
= value
;
8133 wmb(); /* be sure the per-cpu variables are out to memory */
8136 static void controller_lockup_detected(struct ctlr_info
*h
)
8138 unsigned long flags
;
8139 u32 lockup_detected
;
8141 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8142 spin_lock_irqsave(&h
->lock
, flags
);
8143 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8144 if (!lockup_detected
) {
8145 /* no heartbeat, but controller gave us a zero. */
8146 dev_warn(&h
->pdev
->dev
,
8147 "lockup detected after %d but scratchpad register is zero\n",
8148 h
->heartbeat_sample_interval
/ HZ
);
8149 lockup_detected
= 0xffffffff;
8151 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8152 spin_unlock_irqrestore(&h
->lock
, flags
);
8153 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8154 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8155 if (lockup_detected
== 0xffff0000) {
8156 dev_warn(&h
->pdev
->dev
, "Telling controller to do a CHKPT\n");
8157 writel(DOORBELL_GENERATE_CHKPT
, h
->vaddr
+ SA5_DOORBELL
);
8159 pci_disable_device(h
->pdev
);
8160 fail_all_outstanding_cmds(h
);
8163 static int detect_controller_lockup(struct ctlr_info
*h
)
8167 unsigned long flags
;
8169 now
= get_jiffies_64();
8170 /* If we've received an interrupt recently, we're ok. */
8171 if (time_after64(h
->last_intr_timestamp
+
8172 (h
->heartbeat_sample_interval
), now
))
8176 * If we've already checked the heartbeat recently, we're ok.
8177 * This could happen if someone sends us a signal. We
8178 * otherwise don't care about signals in this thread.
8180 if (time_after64(h
->last_heartbeat_timestamp
+
8181 (h
->heartbeat_sample_interval
), now
))
8184 /* If heartbeat has not changed since we last looked, we're not ok. */
8185 spin_lock_irqsave(&h
->lock
, flags
);
8186 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8187 spin_unlock_irqrestore(&h
->lock
, flags
);
8188 if (h
->last_heartbeat
== heartbeat
) {
8189 controller_lockup_detected(h
);
8194 h
->last_heartbeat
= heartbeat
;
8195 h
->last_heartbeat_timestamp
= now
;
8200 * Set ioaccel status for all ioaccel volumes.
8202 * Called from monitor controller worker (hpsa_event_monitor_worker)
8204 * A Volume (or Volumes that comprise an Array set may be undergoing a
8205 * transformation, so we will be turning off ioaccel for all volumes that
8206 * make up the Array.
8208 static void hpsa_set_ioaccel_status(struct ctlr_info
*h
)
8214 struct hpsa_scsi_dev_t
*device
;
8219 buf
= kmalloc(64, GFP_KERNEL
);
8224 * Run through current device list used during I/O requests.
8226 for (i
= 0; i
< h
->ndevices
; i
++) {
8231 if (!hpsa_vpd_page_supported(h
, device
->scsi3addr
,
8232 HPSA_VPD_LV_IOACCEL_STATUS
))
8237 rc
= hpsa_scsi_do_inquiry(h
, device
->scsi3addr
,
8238 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
,
8243 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
8244 device
->offload_config
=
8245 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
8246 if (device
->offload_config
)
8247 device
->offload_to_be_enabled
=
8248 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
8251 * Immediately turn off ioaccel for any volume the
8252 * controller tells us to. Some of the reasons could be:
8253 * transformation - change to the LVs of an Array.
8254 * degraded volume - component failure
8256 * If ioaccel is to be re-enabled, re-enable later during the
8257 * scan operation so the driver can get a fresh raidmap
8258 * before turning ioaccel back on.
8261 if (!device
->offload_to_be_enabled
)
8262 device
->offload_enabled
= 0;
8268 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8272 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8275 /* Ask the controller to clear the events we're handling. */
8276 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8277 | CFGTBL_Trans_io_accel2
)) &&
8278 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8279 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8281 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8282 event_type
= "state change";
8283 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8284 event_type
= "configuration change";
8285 /* Stop sending new RAID offload reqs via the IO accelerator */
8286 scsi_block_requests(h
->scsi_host
);
8287 hpsa_set_ioaccel_status(h
);
8288 hpsa_drain_accel_commands(h
);
8289 /* Set 'accelerator path config change' bit */
8290 dev_warn(&h
->pdev
->dev
,
8291 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8292 h
->events
, event_type
);
8293 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8294 /* Set the "clear event notify field update" bit 6 */
8295 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8296 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8297 hpsa_wait_for_clear_event_notify_ack(h
);
8298 scsi_unblock_requests(h
->scsi_host
);
8300 /* Acknowledge controller notification events. */
8301 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8302 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8303 hpsa_wait_for_clear_event_notify_ack(h
);
8308 /* Check a register on the controller to see if there are configuration
8309 * changes (added/changed/removed logical drives, etc.) which mean that
8310 * we should rescan the controller for devices.
8311 * Also check flag for driver-initiated rescan.
8313 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8315 if (h
->drv_req_rescan
) {
8316 h
->drv_req_rescan
= 0;
8320 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8323 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8324 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8328 * Check if any of the offline devices have become ready
8330 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8332 unsigned long flags
;
8333 struct offline_device_entry
*d
;
8334 struct list_head
*this, *tmp
;
8336 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8337 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8338 d
= list_entry(this, struct offline_device_entry
,
8340 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8341 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8342 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8343 list_del(&d
->offline_list
);
8344 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8347 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8349 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8353 static int hpsa_luns_changed(struct ctlr_info
*h
)
8355 int rc
= 1; /* assume there are changes */
8356 struct ReportLUNdata
*logdev
= NULL
;
8358 /* if we can't find out if lun data has changed,
8359 * assume that it has.
8362 if (!h
->lastlogicals
)
8365 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8369 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8370 dev_warn(&h
->pdev
->dev
,
8371 "report luns failed, can't track lun changes.\n");
8374 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8375 dev_info(&h
->pdev
->dev
,
8376 "Lun changes detected.\n");
8377 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8380 rc
= 0; /* no changes detected. */
8386 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8388 struct Scsi_Host
*sh
= NULL
;
8389 unsigned long flags
;
8392 * Do the scan after the reset
8394 spin_lock_irqsave(&h
->reset_lock
, flags
);
8395 if (h
->reset_in_progress
) {
8396 h
->drv_req_rescan
= 1;
8397 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8400 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8402 sh
= scsi_host_get(h
->scsi_host
);
8404 hpsa_scan_start(sh
);
8406 h
->drv_req_rescan
= 0;
8411 * watch for controller events
8413 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8415 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8416 struct ctlr_info
, event_monitor_work
);
8417 unsigned long flags
;
8419 spin_lock_irqsave(&h
->lock
, flags
);
8420 if (h
->remove_in_progress
) {
8421 spin_unlock_irqrestore(&h
->lock
, flags
);
8424 spin_unlock_irqrestore(&h
->lock
, flags
);
8426 if (hpsa_ctlr_needs_rescan(h
)) {
8427 hpsa_ack_ctlr_events(h
);
8428 hpsa_perform_rescan(h
);
8431 spin_lock_irqsave(&h
->lock
, flags
);
8432 if (!h
->remove_in_progress
)
8433 schedule_delayed_work(&h
->event_monitor_work
,
8434 HPSA_EVENT_MONITOR_INTERVAL
);
8435 spin_unlock_irqrestore(&h
->lock
, flags
);
8438 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8440 unsigned long flags
;
8441 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8442 struct ctlr_info
, rescan_ctlr_work
);
8444 spin_lock_irqsave(&h
->lock
, flags
);
8445 if (h
->remove_in_progress
) {
8446 spin_unlock_irqrestore(&h
->lock
, flags
);
8449 spin_unlock_irqrestore(&h
->lock
, flags
);
8451 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8452 hpsa_perform_rescan(h
);
8453 } else if (h
->discovery_polling
) {
8454 if (hpsa_luns_changed(h
)) {
8455 dev_info(&h
->pdev
->dev
,
8456 "driver discovery polling rescan.\n");
8457 hpsa_perform_rescan(h
);
8460 spin_lock_irqsave(&h
->lock
, flags
);
8461 if (!h
->remove_in_progress
)
8462 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8463 h
->heartbeat_sample_interval
);
8464 spin_unlock_irqrestore(&h
->lock
, flags
);
8467 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8469 unsigned long flags
;
8470 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8471 struct ctlr_info
, monitor_ctlr_work
);
8473 detect_controller_lockup(h
);
8474 if (lockup_detected(h
))
8477 spin_lock_irqsave(&h
->lock
, flags
);
8478 if (!h
->remove_in_progress
)
8479 schedule_delayed_work(&h
->monitor_ctlr_work
,
8480 h
->heartbeat_sample_interval
);
8481 spin_unlock_irqrestore(&h
->lock
, flags
);
8484 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8487 struct workqueue_struct
*wq
= NULL
;
8489 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8491 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8496 static void hpda_free_ctlr_info(struct ctlr_info
*h
)
8498 kfree(h
->reply_map
);
8502 static struct ctlr_info
*hpda_alloc_ctlr_info(void)
8504 struct ctlr_info
*h
;
8506 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8510 h
->reply_map
= kzalloc(sizeof(*h
->reply_map
) * nr_cpu_ids
, GFP_KERNEL
);
8511 if (!h
->reply_map
) {
8518 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8521 struct ctlr_info
*h
;
8522 int try_soft_reset
= 0;
8523 unsigned long flags
;
8526 if (number_of_controllers
== 0)
8527 printk(KERN_INFO DRIVER_NAME
"\n");
8529 rc
= hpsa_lookup_board_id(pdev
, &board_id
, NULL
);
8531 dev_warn(&pdev
->dev
, "Board ID not found\n");
8535 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8537 if (rc
!= -ENOTSUPP
)
8539 /* If the reset fails in a particular way (it has no way to do
8540 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8541 * a soft reset once we get the controller configured up to the
8542 * point that it can accept a command.
8548 reinit_after_soft_reset
:
8550 /* Command structures must be aligned on a 32-byte boundary because
8551 * the 5 lower bits of the address are used by the hardware. and by
8552 * the driver. See comments in hpsa.h for more info.
8554 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8555 h
= hpda_alloc_ctlr_info();
8557 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8563 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8564 INIT_LIST_HEAD(&h
->offline_device_list
);
8565 spin_lock_init(&h
->lock
);
8566 spin_lock_init(&h
->offline_device_lock
);
8567 spin_lock_init(&h
->scan_lock
);
8568 spin_lock_init(&h
->reset_lock
);
8569 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8571 /* Allocate and clear per-cpu variable lockup_detected */
8572 h
->lockup_detected
= alloc_percpu(u32
);
8573 if (!h
->lockup_detected
) {
8574 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8576 goto clean1
; /* aer/h */
8578 set_lockup_detected_for_all_cpus(h
, 0);
8580 rc
= hpsa_pci_init(h
);
8582 goto clean2
; /* lu, aer/h */
8584 /* relies on h-> settings made by hpsa_pci_init, including
8585 * interrupt_mode h->intr */
8586 rc
= hpsa_scsi_host_alloc(h
);
8588 goto clean2_5
; /* pci, lu, aer/h */
8590 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8591 h
->ctlr
= number_of_controllers
;
8592 number_of_controllers
++;
8594 /* configure PCI DMA stuff */
8595 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8599 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8603 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8604 goto clean3
; /* shost, pci, lu, aer/h */
8608 /* make sure the board interrupts are off */
8609 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8611 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8613 goto clean3
; /* shost, pci, lu, aer/h */
8614 rc
= hpsa_alloc_cmd_pool(h
);
8616 goto clean4
; /* irq, shost, pci, lu, aer/h */
8617 rc
= hpsa_alloc_sg_chain_blocks(h
);
8619 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8620 init_waitqueue_head(&h
->scan_wait_queue
);
8621 init_waitqueue_head(&h
->event_sync_wait_queue
);
8622 mutex_init(&h
->reset_mutex
);
8623 h
->scan_finished
= 1; /* no scan currently in progress */
8624 h
->scan_waiting
= 0;
8626 pci_set_drvdata(pdev
, h
);
8629 spin_lock_init(&h
->devlock
);
8630 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8632 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8634 /* create the resubmit workqueue */
8635 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8636 if (!h
->rescan_ctlr_wq
) {
8641 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8642 if (!h
->resubmit_wq
) {
8644 goto clean7
; /* aer/h */
8648 * At this point, the controller is ready to take commands.
8649 * Now, if reset_devices and the hard reset didn't work, try
8650 * the soft reset and see if that works.
8652 if (try_soft_reset
) {
8654 /* This is kind of gross. We may or may not get a completion
8655 * from the soft reset command, and if we do, then the value
8656 * from the fifo may or may not be valid. So, we wait 10 secs
8657 * after the reset throwing away any completions we get during
8658 * that time. Unregister the interrupt handler and register
8659 * fake ones to scoop up any residual completions.
8661 spin_lock_irqsave(&h
->lock
, flags
);
8662 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8663 spin_unlock_irqrestore(&h
->lock
, flags
);
8665 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8666 hpsa_intx_discard_completions
);
8668 dev_warn(&h
->pdev
->dev
,
8669 "Failed to request_irq after soft reset.\n");
8671 * cannot goto clean7 or free_irqs will be called
8672 * again. Instead, do its work
8674 hpsa_free_performant_mode(h
); /* clean7 */
8675 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8676 hpsa_free_cmd_pool(h
); /* clean5 */
8678 * skip hpsa_free_irqs(h) clean4 since that
8679 * was just called before request_irqs failed
8684 rc
= hpsa_kdump_soft_reset(h
);
8686 /* Neither hard nor soft reset worked, we're hosed. */
8689 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8690 dev_info(&h
->pdev
->dev
,
8691 "Waiting for stale completions to drain.\n");
8692 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8694 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8696 rc
= controller_reset_failed(h
->cfgtable
);
8698 dev_info(&h
->pdev
->dev
,
8699 "Soft reset appears to have failed.\n");
8701 /* since the controller's reset, we have to go back and re-init
8702 * everything. Easiest to just forget what we've done and do it
8705 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8708 /* don't goto clean, we already unallocated */
8711 goto reinit_after_soft_reset
;
8714 /* Enable Accelerated IO path at driver layer */
8715 h
->acciopath_status
= 1;
8716 /* Disable discovery polling.*/
8717 h
->discovery_polling
= 0;
8720 /* Turn the interrupts on so we can service requests */
8721 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8723 hpsa_hba_inquiry(h
);
8725 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8726 if (!h
->lastlogicals
)
8727 dev_info(&h
->pdev
->dev
,
8728 "Can't track change to report lun data\n");
8730 /* hook into SCSI subsystem */
8731 rc
= hpsa_scsi_add_host(h
);
8733 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8735 /* Monitor the controller for firmware lockups */
8736 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8737 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8738 schedule_delayed_work(&h
->monitor_ctlr_work
,
8739 h
->heartbeat_sample_interval
);
8740 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8741 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8742 h
->heartbeat_sample_interval
);
8743 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8744 schedule_delayed_work(&h
->event_monitor_work
,
8745 HPSA_EVENT_MONITOR_INTERVAL
);
8748 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8749 hpsa_free_performant_mode(h
);
8750 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8751 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8752 hpsa_free_sg_chain_blocks(h
);
8753 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8754 hpsa_free_cmd_pool(h
);
8755 clean4
: /* irq, shost, pci, lu, aer/h */
8757 clean3
: /* shost, pci, lu, aer/h */
8758 scsi_host_put(h
->scsi_host
);
8759 h
->scsi_host
= NULL
;
8760 clean2_5
: /* pci, lu, aer/h */
8761 hpsa_free_pci_init(h
);
8762 clean2
: /* lu, aer/h */
8763 if (h
->lockup_detected
) {
8764 free_percpu(h
->lockup_detected
);
8765 h
->lockup_detected
= NULL
;
8767 clean1
: /* wq/aer/h */
8768 if (h
->resubmit_wq
) {
8769 destroy_workqueue(h
->resubmit_wq
);
8770 h
->resubmit_wq
= NULL
;
8772 if (h
->rescan_ctlr_wq
) {
8773 destroy_workqueue(h
->rescan_ctlr_wq
);
8774 h
->rescan_ctlr_wq
= NULL
;
8780 static void hpsa_flush_cache(struct ctlr_info
*h
)
8783 struct CommandList
*c
;
8786 if (unlikely(lockup_detected(h
)))
8788 flush_buf
= kzalloc(4, GFP_KERNEL
);
8794 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8795 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8798 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8799 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8802 if (c
->err_info
->CommandStatus
!= 0)
8804 dev_warn(&h
->pdev
->dev
,
8805 "error flushing cache on controller\n");
8810 /* Make controller gather fresh report lun data each time we
8811 * send down a report luns request
8813 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8816 struct CommandList
*c
;
8819 /* Don't bother trying to set diag options if locked up */
8820 if (unlikely(h
->lockup_detected
))
8823 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8829 /* first, get the current diag options settings */
8830 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8831 RAID_CTLR_LUNID
, TYPE_CMD
))
8834 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8835 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8836 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8839 /* Now, set the bit for disabling the RLD caching */
8840 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8842 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8843 RAID_CTLR_LUNID
, TYPE_CMD
))
8846 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8847 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8848 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8851 /* Now verify that it got set: */
8852 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8853 RAID_CTLR_LUNID
, TYPE_CMD
))
8856 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8857 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8858 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8861 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8865 dev_err(&h
->pdev
->dev
,
8866 "Error: failed to disable report lun data caching.\n");
8872 static void hpsa_shutdown(struct pci_dev
*pdev
)
8874 struct ctlr_info
*h
;
8876 h
= pci_get_drvdata(pdev
);
8877 /* Turn board interrupts off and send the flush cache command
8878 * sendcmd will turn off interrupt, and send the flush...
8879 * To write all data in the battery backed cache to disks
8881 hpsa_flush_cache(h
);
8882 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8883 hpsa_free_irqs(h
); /* init_one 4 */
8884 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8887 static void hpsa_free_device_info(struct ctlr_info
*h
)
8891 for (i
= 0; i
< h
->ndevices
; i
++) {
8897 static void hpsa_remove_one(struct pci_dev
*pdev
)
8899 struct ctlr_info
*h
;
8900 unsigned long flags
;
8902 if (pci_get_drvdata(pdev
) == NULL
) {
8903 dev_err(&pdev
->dev
, "unable to remove device\n");
8906 h
= pci_get_drvdata(pdev
);
8908 /* Get rid of any controller monitoring work items */
8909 spin_lock_irqsave(&h
->lock
, flags
);
8910 h
->remove_in_progress
= 1;
8911 spin_unlock_irqrestore(&h
->lock
, flags
);
8912 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8913 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8914 cancel_delayed_work_sync(&h
->event_monitor_work
);
8915 destroy_workqueue(h
->rescan_ctlr_wq
);
8916 destroy_workqueue(h
->resubmit_wq
);
8918 hpsa_delete_sas_host(h
);
8921 * Call before disabling interrupts.
8922 * scsi_remove_host can trigger I/O operations especially
8923 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8924 * operations which cannot complete and will hang the system.
8927 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8928 /* includes hpsa_free_irqs - init_one 4 */
8929 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8930 hpsa_shutdown(pdev
);
8932 hpsa_free_device_info(h
); /* scan */
8934 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8935 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8936 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8937 hpsa_free_performant_mode(h
); /* init_one 7 */
8938 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8939 hpsa_free_cmd_pool(h
); /* init_one 5 */
8940 kfree(h
->lastlogicals
);
8942 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8944 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8945 h
->scsi_host
= NULL
; /* init_one 3 */
8947 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8948 hpsa_free_pci_init(h
); /* init_one 2.5 */
8950 free_percpu(h
->lockup_detected
); /* init_one 2 */
8951 h
->lockup_detected
= NULL
; /* init_one 2 */
8952 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8954 hpda_free_ctlr_info(h
); /* init_one 1 */
8957 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8958 __attribute__((unused
)) pm_message_t state
)
8963 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8968 static struct pci_driver hpsa_pci_driver
= {
8970 .probe
= hpsa_init_one
,
8971 .remove
= hpsa_remove_one
,
8972 .id_table
= hpsa_pci_device_id
, /* id_table */
8973 .shutdown
= hpsa_shutdown
,
8974 .suspend
= hpsa_suspend
,
8975 .resume
= hpsa_resume
,
8978 /* Fill in bucket_map[], given nsgs (the max number of
8979 * scatter gather elements supported) and bucket[],
8980 * which is an array of 8 integers. The bucket[] array
8981 * contains 8 different DMA transfer sizes (in 16
8982 * byte increments) which the controller uses to fetch
8983 * commands. This function fills in bucket_map[], which
8984 * maps a given number of scatter gather elements to one of
8985 * the 8 DMA transfer sizes. The point of it is to allow the
8986 * controller to only do as much DMA as needed to fetch the
8987 * command, with the DMA transfer size encoded in the lower
8988 * bits of the command address.
8990 static void calc_bucket_map(int bucket
[], int num_buckets
,
8991 int nsgs
, int min_blocks
, u32
*bucket_map
)
8995 /* Note, bucket_map must have nsgs+1 entries. */
8996 for (i
= 0; i
<= nsgs
; i
++) {
8997 /* Compute size of a command with i SG entries */
8998 size
= i
+ min_blocks
;
8999 b
= num_buckets
; /* Assume the biggest bucket */
9000 /* Find the bucket that is just big enough */
9001 for (j
= 0; j
< num_buckets
; j
++) {
9002 if (bucket
[j
] >= size
) {
9007 /* for a command with i SG entries, use bucket b. */
9013 * return -ENODEV on err, 0 on success (or no action)
9014 * allocates numerous items that must be freed later
9016 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9019 unsigned long register_value
;
9020 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9021 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9022 CFGTBL_Trans_enable_directed_msix
|
9023 (trans_support
& (CFGTBL_Trans_io_accel1
|
9024 CFGTBL_Trans_io_accel2
));
9025 struct access_method access
= SA5_performant_access
;
9027 /* This is a bit complicated. There are 8 registers on
9028 * the controller which we write to to tell it 8 different
9029 * sizes of commands which there may be. It's a way of
9030 * reducing the DMA done to fetch each command. Encoded into
9031 * each command's tag are 3 bits which communicate to the controller
9032 * which of the eight sizes that command fits within. The size of
9033 * each command depends on how many scatter gather entries there are.
9034 * Each SG entry requires 16 bytes. The eight registers are programmed
9035 * with the number of 16-byte blocks a command of that size requires.
9036 * The smallest command possible requires 5 such 16 byte blocks.
9037 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9038 * blocks. Note, this only extends to the SG entries contained
9039 * within the command block, and does not extend to chained blocks
9040 * of SG elements. bft[] contains the eight values we write to
9041 * the registers. They are not evenly distributed, but have more
9042 * sizes for small commands, and fewer sizes for larger commands.
9044 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9045 #define MIN_IOACCEL2_BFT_ENTRY 5
9046 #define HPSA_IOACCEL2_HEADER_SZ 4
9047 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9048 13, 14, 15, 16, 17, 18, 19,
9049 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9050 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9051 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9052 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9053 16 * MIN_IOACCEL2_BFT_ENTRY
);
9054 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9055 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9056 /* 5 = 1 s/g entry or 4k
9057 * 6 = 2 s/g entry or 8k
9058 * 8 = 4 s/g entry or 16k
9059 * 10 = 6 s/g entry or 24k
9062 /* If the controller supports either ioaccel method then
9063 * we can also use the RAID stack submit path that does not
9064 * perform the superfluous readl() after each command submission.
9066 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9067 access
= SA5_performant_access_no_read
;
9069 /* Controller spec: zero out this buffer. */
9070 for (i
= 0; i
< h
->nreply_queues
; i
++)
9071 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9073 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9074 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9075 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9076 for (i
= 0; i
< 8; i
++)
9077 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9079 /* size of controller ring buffer */
9080 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9081 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9082 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9083 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9085 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9086 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9087 writel(h
->reply_queue
[i
].busaddr
,
9088 &h
->transtable
->RepQAddr
[i
].lower
);
9091 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9092 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9094 * enable outbound interrupt coalescing in accelerator mode;
9096 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9097 access
= SA5_ioaccel_mode1_access
;
9098 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9099 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9101 if (trans_support
& CFGTBL_Trans_io_accel2
)
9102 access
= SA5_ioaccel_mode2_access
;
9103 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9104 if (hpsa_wait_for_mode_change_ack(h
)) {
9105 dev_err(&h
->pdev
->dev
,
9106 "performant mode problem - doorbell timeout\n");
9109 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9110 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9111 dev_err(&h
->pdev
->dev
,
9112 "performant mode problem - transport not active\n");
9115 /* Change the access methods to the performant access methods */
9117 h
->transMethod
= transMethod
;
9119 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9120 (trans_support
& CFGTBL_Trans_io_accel2
)))
9123 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9124 /* Set up I/O accelerator mode */
9125 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9126 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9127 h
->reply_queue
[i
].current_entry
=
9128 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9130 bft
[7] = h
->ioaccel_maxsg
+ 8;
9131 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9132 h
->ioaccel1_blockFetchTable
);
9134 /* initialize all reply queue entries to unused */
9135 for (i
= 0; i
< h
->nreply_queues
; i
++)
9136 memset(h
->reply_queue
[i
].head
,
9137 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9138 h
->reply_queue_size
);
9140 /* set all the constant fields in the accelerator command
9141 * frames once at init time to save CPU cycles later.
9143 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9144 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9146 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9147 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9148 (i
* sizeof(struct ErrorInfo
)));
9149 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9150 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9151 cp
->host_context_flags
=
9152 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9153 cp
->timeout_sec
= 0;
9156 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9158 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9159 (i
* sizeof(struct io_accel1_cmd
)));
9161 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9162 u64 cfg_offset
, cfg_base_addr_index
;
9163 u32 bft2_offset
, cfg_base_addr
;
9166 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9167 &cfg_base_addr_index
, &cfg_offset
);
9168 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9169 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9170 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9171 4, h
->ioaccel2_blockFetchTable
);
9172 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9173 BUILD_BUG_ON(offsetof(struct CfgTable
,
9174 io_accel_request_size_offset
) != 0xb8);
9175 h
->ioaccel2_bft2_regs
=
9176 remap_pci_mem(pci_resource_start(h
->pdev
,
9177 cfg_base_addr_index
) +
9178 cfg_offset
+ bft2_offset
,
9180 sizeof(*h
->ioaccel2_bft2_regs
));
9181 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9182 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9184 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9185 if (hpsa_wait_for_mode_change_ack(h
)) {
9186 dev_err(&h
->pdev
->dev
,
9187 "performant mode problem - enabling ioaccel mode\n");
9193 /* Free ioaccel1 mode command blocks and block fetch table */
9194 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9196 if (h
->ioaccel_cmd_pool
) {
9197 pci_free_consistent(h
->pdev
,
9198 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9199 h
->ioaccel_cmd_pool
,
9200 h
->ioaccel_cmd_pool_dhandle
);
9201 h
->ioaccel_cmd_pool
= NULL
;
9202 h
->ioaccel_cmd_pool_dhandle
= 0;
9204 kfree(h
->ioaccel1_blockFetchTable
);
9205 h
->ioaccel1_blockFetchTable
= NULL
;
9208 /* Allocate ioaccel1 mode command blocks and block fetch table */
9209 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9212 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9213 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9214 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9216 /* Command structures must be aligned on a 128-byte boundary
9217 * because the 7 lower bits of the address are used by the
9220 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9221 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9222 h
->ioaccel_cmd_pool
=
9223 pci_alloc_consistent(h
->pdev
,
9224 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9225 &(h
->ioaccel_cmd_pool_dhandle
));
9227 h
->ioaccel1_blockFetchTable
=
9228 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9229 sizeof(u32
)), GFP_KERNEL
);
9231 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9232 (h
->ioaccel1_blockFetchTable
== NULL
))
9235 memset(h
->ioaccel_cmd_pool
, 0,
9236 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9240 hpsa_free_ioaccel1_cmd_and_bft(h
);
9244 /* Free ioaccel2 mode command blocks and block fetch table */
9245 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9247 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9249 if (h
->ioaccel2_cmd_pool
) {
9250 pci_free_consistent(h
->pdev
,
9251 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9252 h
->ioaccel2_cmd_pool
,
9253 h
->ioaccel2_cmd_pool_dhandle
);
9254 h
->ioaccel2_cmd_pool
= NULL
;
9255 h
->ioaccel2_cmd_pool_dhandle
= 0;
9257 kfree(h
->ioaccel2_blockFetchTable
);
9258 h
->ioaccel2_blockFetchTable
= NULL
;
9261 /* Allocate ioaccel2 mode command blocks and block fetch table */
9262 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9266 /* Allocate ioaccel2 mode command blocks and block fetch table */
9269 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9270 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9271 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9273 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9274 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9275 h
->ioaccel2_cmd_pool
=
9276 pci_alloc_consistent(h
->pdev
,
9277 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9278 &(h
->ioaccel2_cmd_pool_dhandle
));
9280 h
->ioaccel2_blockFetchTable
=
9281 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9282 sizeof(u32
)), GFP_KERNEL
);
9284 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9285 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9290 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9294 memset(h
->ioaccel2_cmd_pool
, 0,
9295 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9299 hpsa_free_ioaccel2_cmd_and_bft(h
);
9303 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9304 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9306 kfree(h
->blockFetchTable
);
9307 h
->blockFetchTable
= NULL
;
9308 hpsa_free_reply_queues(h
);
9309 hpsa_free_ioaccel1_cmd_and_bft(h
);
9310 hpsa_free_ioaccel2_cmd_and_bft(h
);
9313 /* return -ENODEV on error, 0 on success (or no action)
9314 * allocates numerous items that must be freed later
9316 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9319 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9320 CFGTBL_Trans_use_short_tags
;
9323 if (hpsa_simple_mode
)
9326 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9327 if (!(trans_support
& PERFORMANT_MODE
))
9330 /* Check for I/O accelerator mode support */
9331 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9332 transMethod
|= CFGTBL_Trans_io_accel1
|
9333 CFGTBL_Trans_enable_directed_msix
;
9334 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9337 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9338 transMethod
|= CFGTBL_Trans_io_accel2
|
9339 CFGTBL_Trans_enable_directed_msix
;
9340 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9345 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9346 hpsa_get_max_perf_mode_cmds(h
);
9347 /* Performant mode ring buffer and supporting data structures */
9348 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9350 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9351 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9352 h
->reply_queue_size
,
9353 &(h
->reply_queue
[i
].busaddr
));
9354 if (!h
->reply_queue
[i
].head
) {
9356 goto clean1
; /* rq, ioaccel */
9358 h
->reply_queue
[i
].size
= h
->max_commands
;
9359 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9360 h
->reply_queue
[i
].current_entry
= 0;
9363 /* Need a block fetch table for performant mode */
9364 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9365 sizeof(u32
)), GFP_KERNEL
);
9366 if (!h
->blockFetchTable
) {
9368 goto clean1
; /* rq, ioaccel */
9371 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9373 goto clean2
; /* bft, rq, ioaccel */
9376 clean2
: /* bft, rq, ioaccel */
9377 kfree(h
->blockFetchTable
);
9378 h
->blockFetchTable
= NULL
;
9379 clean1
: /* rq, ioaccel */
9380 hpsa_free_reply_queues(h
);
9381 hpsa_free_ioaccel1_cmd_and_bft(h
);
9382 hpsa_free_ioaccel2_cmd_and_bft(h
);
9386 static int is_accelerated_cmd(struct CommandList
*c
)
9388 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9391 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9393 struct CommandList
*c
= NULL
;
9394 int i
, accel_cmds_out
;
9397 do { /* wait for all outstanding ioaccel commands to drain out */
9399 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9400 c
= h
->cmd_pool
+ i
;
9401 refcount
= atomic_inc_return(&c
->refcount
);
9402 if (refcount
> 1) /* Command is allocated */
9403 accel_cmds_out
+= is_accelerated_cmd(c
);
9406 if (accel_cmds_out
<= 0)
9412 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9413 struct hpsa_sas_port
*hpsa_sas_port
)
9415 struct hpsa_sas_phy
*hpsa_sas_phy
;
9416 struct sas_phy
*phy
;
9418 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9422 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9423 hpsa_sas_port
->next_phy_index
);
9425 kfree(hpsa_sas_phy
);
9429 hpsa_sas_port
->next_phy_index
++;
9430 hpsa_sas_phy
->phy
= phy
;
9431 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9433 return hpsa_sas_phy
;
9436 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9438 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9440 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9441 if (hpsa_sas_phy
->added_to_port
)
9442 list_del(&hpsa_sas_phy
->phy_list_entry
);
9443 sas_phy_delete(phy
);
9444 kfree(hpsa_sas_phy
);
9447 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9450 struct hpsa_sas_port
*hpsa_sas_port
;
9451 struct sas_phy
*phy
;
9452 struct sas_identify
*identify
;
9454 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9455 phy
= hpsa_sas_phy
->phy
;
9457 identify
= &phy
->identify
;
9458 memset(identify
, 0, sizeof(*identify
));
9459 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9460 identify
->device_type
= SAS_END_DEVICE
;
9461 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9462 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9463 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9464 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9465 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9466 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9467 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9469 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9473 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9474 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9475 &hpsa_sas_port
->phy_list_head
);
9476 hpsa_sas_phy
->added_to_port
= true;
9482 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9483 struct sas_rphy
*rphy
)
9485 struct sas_identify
*identify
;
9487 identify
= &rphy
->identify
;
9488 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9489 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9490 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9492 return sas_rphy_add(rphy
);
9495 static struct hpsa_sas_port
9496 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9500 struct hpsa_sas_port
*hpsa_sas_port
;
9501 struct sas_port
*port
;
9503 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9507 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9508 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9510 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9512 goto free_hpsa_port
;
9514 rc
= sas_port_add(port
);
9518 hpsa_sas_port
->port
= port
;
9519 hpsa_sas_port
->sas_address
= sas_address
;
9520 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9521 &hpsa_sas_node
->port_list_head
);
9523 return hpsa_sas_port
;
9526 sas_port_free(port
);
9528 kfree(hpsa_sas_port
);
9533 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9535 struct hpsa_sas_phy
*hpsa_sas_phy
;
9536 struct hpsa_sas_phy
*next
;
9538 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9539 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9540 hpsa_free_sas_phy(hpsa_sas_phy
);
9542 sas_port_delete(hpsa_sas_port
->port
);
9543 list_del(&hpsa_sas_port
->port_list_entry
);
9544 kfree(hpsa_sas_port
);
9547 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9549 struct hpsa_sas_node
*hpsa_sas_node
;
9551 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9552 if (hpsa_sas_node
) {
9553 hpsa_sas_node
->parent_dev
= parent_dev
;
9554 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9557 return hpsa_sas_node
;
9560 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9562 struct hpsa_sas_port
*hpsa_sas_port
;
9563 struct hpsa_sas_port
*next
;
9568 list_for_each_entry_safe(hpsa_sas_port
, next
,
9569 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9570 hpsa_free_sas_port(hpsa_sas_port
);
9572 kfree(hpsa_sas_node
);
9575 static struct hpsa_scsi_dev_t
9576 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9577 struct sas_rphy
*rphy
)
9580 struct hpsa_scsi_dev_t
*device
;
9582 for (i
= 0; i
< h
->ndevices
; i
++) {
9584 if (!device
->sas_port
)
9586 if (device
->sas_port
->rphy
== rphy
)
9593 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9596 struct device
*parent_dev
;
9597 struct hpsa_sas_node
*hpsa_sas_node
;
9598 struct hpsa_sas_port
*hpsa_sas_port
;
9599 struct hpsa_sas_phy
*hpsa_sas_phy
;
9601 parent_dev
= &h
->scsi_host
->shost_dev
;
9603 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9607 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9608 if (!hpsa_sas_port
) {
9613 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9614 if (!hpsa_sas_phy
) {
9619 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9623 h
->sas_host
= hpsa_sas_node
;
9628 hpsa_free_sas_phy(hpsa_sas_phy
);
9630 hpsa_free_sas_port(hpsa_sas_port
);
9632 hpsa_free_sas_node(hpsa_sas_node
);
9637 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9639 hpsa_free_sas_node(h
->sas_host
);
9642 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9643 struct hpsa_scsi_dev_t
*device
)
9646 struct hpsa_sas_port
*hpsa_sas_port
;
9647 struct sas_rphy
*rphy
;
9649 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9653 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9659 hpsa_sas_port
->rphy
= rphy
;
9660 device
->sas_port
= hpsa_sas_port
;
9662 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9669 hpsa_free_sas_port(hpsa_sas_port
);
9670 device
->sas_port
= NULL
;
9675 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9677 if (device
->sas_port
) {
9678 hpsa_free_sas_port(device
->sas_port
);
9679 device
->sas_port
= NULL
;
9684 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9690 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9692 *identifier
= rphy
->identify
.sas_address
;
9697 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9703 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9709 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9715 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9721 hpsa_sas_phy_release(struct sas_phy
*phy
)
9726 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9731 static struct sas_function_template hpsa_sas_transport_functions
= {
9732 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9733 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9734 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9735 .phy_reset
= hpsa_sas_phy_reset
,
9736 .phy_enable
= hpsa_sas_phy_enable
,
9737 .phy_setup
= hpsa_sas_phy_setup
,
9738 .phy_release
= hpsa_sas_phy_release
,
9739 .set_phy_speed
= hpsa_sas_phy_speed
,
9743 * This is it. Register the PCI driver information for the cards we control
9744 * the OS will call our registered routines when it finds one of our cards.
9746 static int __init
hpsa_init(void)
9750 hpsa_sas_transport_template
=
9751 sas_attach_transport(&hpsa_sas_transport_functions
);
9752 if (!hpsa_sas_transport_template
)
9755 rc
= pci_register_driver(&hpsa_pci_driver
);
9758 sas_release_transport(hpsa_sas_transport_template
);
9763 static void __exit
hpsa_cleanup(void)
9765 pci_unregister_driver(&hpsa_pci_driver
);
9766 sas_release_transport(hpsa_sas_transport_template
);
9769 static void __attribute__((unused
)) verify_offsets(void)
9771 #define VERIFY_OFFSET(member, offset) \
9772 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9774 VERIFY_OFFSET(structure_size
, 0);
9775 VERIFY_OFFSET(volume_blk_size
, 4);
9776 VERIFY_OFFSET(volume_blk_cnt
, 8);
9777 VERIFY_OFFSET(phys_blk_shift
, 16);
9778 VERIFY_OFFSET(parity_rotation_shift
, 17);
9779 VERIFY_OFFSET(strip_size
, 18);
9780 VERIFY_OFFSET(disk_starting_blk
, 20);
9781 VERIFY_OFFSET(disk_blk_cnt
, 28);
9782 VERIFY_OFFSET(data_disks_per_row
, 36);
9783 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9784 VERIFY_OFFSET(row_cnt
, 40);
9785 VERIFY_OFFSET(layout_map_count
, 42);
9786 VERIFY_OFFSET(flags
, 44);
9787 VERIFY_OFFSET(dekindex
, 46);
9788 /* VERIFY_OFFSET(reserved, 48 */
9789 VERIFY_OFFSET(data
, 64);
9791 #undef VERIFY_OFFSET
9793 #define VERIFY_OFFSET(member, offset) \
9794 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9796 VERIFY_OFFSET(IU_type
, 0);
9797 VERIFY_OFFSET(direction
, 1);
9798 VERIFY_OFFSET(reply_queue
, 2);
9799 /* VERIFY_OFFSET(reserved1, 3); */
9800 VERIFY_OFFSET(scsi_nexus
, 4);
9801 VERIFY_OFFSET(Tag
, 8);
9802 VERIFY_OFFSET(cdb
, 16);
9803 VERIFY_OFFSET(cciss_lun
, 32);
9804 VERIFY_OFFSET(data_len
, 40);
9805 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9806 VERIFY_OFFSET(sg_count
, 45);
9807 /* VERIFY_OFFSET(reserved3 */
9808 VERIFY_OFFSET(err_ptr
, 48);
9809 VERIFY_OFFSET(err_len
, 56);
9810 /* VERIFY_OFFSET(reserved4 */
9811 VERIFY_OFFSET(sg
, 64);
9813 #undef VERIFY_OFFSET
9815 #define VERIFY_OFFSET(member, offset) \
9816 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9818 VERIFY_OFFSET(dev_handle
, 0x00);
9819 VERIFY_OFFSET(reserved1
, 0x02);
9820 VERIFY_OFFSET(function
, 0x03);
9821 VERIFY_OFFSET(reserved2
, 0x04);
9822 VERIFY_OFFSET(err_info
, 0x0C);
9823 VERIFY_OFFSET(reserved3
, 0x10);
9824 VERIFY_OFFSET(err_info_len
, 0x12);
9825 VERIFY_OFFSET(reserved4
, 0x13);
9826 VERIFY_OFFSET(sgl_offset
, 0x14);
9827 VERIFY_OFFSET(reserved5
, 0x15);
9828 VERIFY_OFFSET(transfer_len
, 0x1C);
9829 VERIFY_OFFSET(reserved6
, 0x20);
9830 VERIFY_OFFSET(io_flags
, 0x24);
9831 VERIFY_OFFSET(reserved7
, 0x26);
9832 VERIFY_OFFSET(LUN
, 0x34);
9833 VERIFY_OFFSET(control
, 0x3C);
9834 VERIFY_OFFSET(CDB
, 0x40);
9835 VERIFY_OFFSET(reserved8
, 0x50);
9836 VERIFY_OFFSET(host_context_flags
, 0x60);
9837 VERIFY_OFFSET(timeout_sec
, 0x62);
9838 VERIFY_OFFSET(ReplyQueue
, 0x64);
9839 VERIFY_OFFSET(reserved9
, 0x65);
9840 VERIFY_OFFSET(tag
, 0x68);
9841 VERIFY_OFFSET(host_addr
, 0x70);
9842 VERIFY_OFFSET(CISS_LUN
, 0x78);
9843 VERIFY_OFFSET(SG
, 0x78 + 8);
9844 #undef VERIFY_OFFSET
9847 module_init(hpsa_init
);
9848 module_exit(hpsa_cleanup
);