f81232: switch to ->get_serial()
[linux/fpc-iii.git] / drivers / nvme / target / core.c
blobebf3e7a6c49ee27003c1e667501eb9d5441791d0
1 /*
2 * Common code for the NVMe target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/rculist.h>
19 #include "nvmet.h"
21 struct workqueue_struct *buffered_io_wq;
22 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
23 static DEFINE_IDA(cntlid_ida);
26 * This read/write semaphore is used to synchronize access to configuration
27 * information on a target system that will result in discovery log page
28 * information change for at least one host.
29 * The full list of resources to protected by this semaphore is:
31 * - subsystems list
32 * - per-subsystem allowed hosts list
33 * - allow_any_host subsystem attribute
34 * - nvmet_genctr
35 * - the nvmet_transports array
37 * When updating any of those lists/structures write lock should be obtained,
38 * while when reading (popolating discovery log page or checking host-subsystem
39 * link) read lock is obtained to allow concurrent reads.
41 DECLARE_RWSEM(nvmet_config_sem);
43 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
44 u64 nvmet_ana_chgcnt;
45 DECLARE_RWSEM(nvmet_ana_sem);
47 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
48 const char *subsysnqn);
50 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
51 size_t len)
53 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
54 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
55 return 0;
58 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
60 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len)
61 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
62 return 0;
65 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
67 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len)
68 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
69 return 0;
72 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
74 struct nvmet_ns *ns;
76 if (list_empty(&subsys->namespaces))
77 return 0;
79 ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
80 return ns->nsid;
83 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
85 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
88 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
90 struct nvmet_req *req;
92 while (1) {
93 mutex_lock(&ctrl->lock);
94 if (!ctrl->nr_async_event_cmds) {
95 mutex_unlock(&ctrl->lock);
96 return;
99 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
100 mutex_unlock(&ctrl->lock);
101 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
105 static void nvmet_async_event_work(struct work_struct *work)
107 struct nvmet_ctrl *ctrl =
108 container_of(work, struct nvmet_ctrl, async_event_work);
109 struct nvmet_async_event *aen;
110 struct nvmet_req *req;
112 while (1) {
113 mutex_lock(&ctrl->lock);
114 aen = list_first_entry_or_null(&ctrl->async_events,
115 struct nvmet_async_event, entry);
116 if (!aen || !ctrl->nr_async_event_cmds) {
117 mutex_unlock(&ctrl->lock);
118 return;
121 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
122 nvmet_set_result(req, nvmet_async_event_result(aen));
124 list_del(&aen->entry);
125 kfree(aen);
127 mutex_unlock(&ctrl->lock);
128 nvmet_req_complete(req, 0);
132 static void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
133 u8 event_info, u8 log_page)
135 struct nvmet_async_event *aen;
137 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
138 if (!aen)
139 return;
141 aen->event_type = event_type;
142 aen->event_info = event_info;
143 aen->log_page = log_page;
145 mutex_lock(&ctrl->lock);
146 list_add_tail(&aen->entry, &ctrl->async_events);
147 mutex_unlock(&ctrl->lock);
149 schedule_work(&ctrl->async_event_work);
152 static bool nvmet_aen_disabled(struct nvmet_ctrl *ctrl, u32 aen)
154 if (!(READ_ONCE(ctrl->aen_enabled) & aen))
155 return true;
156 return test_and_set_bit(aen, &ctrl->aen_masked);
159 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
161 u32 i;
163 mutex_lock(&ctrl->lock);
164 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
165 goto out_unlock;
167 for (i = 0; i < ctrl->nr_changed_ns; i++) {
168 if (ctrl->changed_ns_list[i] == nsid)
169 goto out_unlock;
172 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
173 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
174 ctrl->nr_changed_ns = U32_MAX;
175 goto out_unlock;
178 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
179 out_unlock:
180 mutex_unlock(&ctrl->lock);
183 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
185 struct nvmet_ctrl *ctrl;
187 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
188 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
189 if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_NS_ATTR))
190 continue;
191 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
192 NVME_AER_NOTICE_NS_CHANGED,
193 NVME_LOG_CHANGED_NS);
197 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
198 struct nvmet_port *port)
200 struct nvmet_ctrl *ctrl;
202 mutex_lock(&subsys->lock);
203 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
204 if (port && ctrl->port != port)
205 continue;
206 if (nvmet_aen_disabled(ctrl, NVME_AEN_CFG_ANA_CHANGE))
207 continue;
208 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
209 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
211 mutex_unlock(&subsys->lock);
214 void nvmet_port_send_ana_event(struct nvmet_port *port)
216 struct nvmet_subsys_link *p;
218 down_read(&nvmet_config_sem);
219 list_for_each_entry(p, &port->subsystems, entry)
220 nvmet_send_ana_event(p->subsys, port);
221 up_read(&nvmet_config_sem);
224 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
226 int ret = 0;
228 down_write(&nvmet_config_sem);
229 if (nvmet_transports[ops->type])
230 ret = -EINVAL;
231 else
232 nvmet_transports[ops->type] = ops;
233 up_write(&nvmet_config_sem);
235 return ret;
237 EXPORT_SYMBOL_GPL(nvmet_register_transport);
239 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
241 down_write(&nvmet_config_sem);
242 nvmet_transports[ops->type] = NULL;
243 up_write(&nvmet_config_sem);
245 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
247 int nvmet_enable_port(struct nvmet_port *port)
249 const struct nvmet_fabrics_ops *ops;
250 int ret;
252 lockdep_assert_held(&nvmet_config_sem);
254 ops = nvmet_transports[port->disc_addr.trtype];
255 if (!ops) {
256 up_write(&nvmet_config_sem);
257 request_module("nvmet-transport-%d", port->disc_addr.trtype);
258 down_write(&nvmet_config_sem);
259 ops = nvmet_transports[port->disc_addr.trtype];
260 if (!ops) {
261 pr_err("transport type %d not supported\n",
262 port->disc_addr.trtype);
263 return -EINVAL;
267 if (!try_module_get(ops->owner))
268 return -EINVAL;
270 ret = ops->add_port(port);
271 if (ret) {
272 module_put(ops->owner);
273 return ret;
276 /* If the transport didn't set inline_data_size, then disable it. */
277 if (port->inline_data_size < 0)
278 port->inline_data_size = 0;
280 port->enabled = true;
281 return 0;
284 void nvmet_disable_port(struct nvmet_port *port)
286 const struct nvmet_fabrics_ops *ops;
288 lockdep_assert_held(&nvmet_config_sem);
290 port->enabled = false;
292 ops = nvmet_transports[port->disc_addr.trtype];
293 ops->remove_port(port);
294 module_put(ops->owner);
297 static void nvmet_keep_alive_timer(struct work_struct *work)
299 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
300 struct nvmet_ctrl, ka_work);
302 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
303 ctrl->cntlid, ctrl->kato);
305 nvmet_ctrl_fatal_error(ctrl);
308 static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
310 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
311 ctrl->cntlid, ctrl->kato);
313 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
314 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
317 static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
319 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
321 cancel_delayed_work_sync(&ctrl->ka_work);
324 static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
325 __le32 nsid)
327 struct nvmet_ns *ns;
329 list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
330 if (ns->nsid == le32_to_cpu(nsid))
331 return ns;
334 return NULL;
337 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
339 struct nvmet_ns *ns;
341 rcu_read_lock();
342 ns = __nvmet_find_namespace(ctrl, nsid);
343 if (ns)
344 percpu_ref_get(&ns->ref);
345 rcu_read_unlock();
347 return ns;
350 static void nvmet_destroy_namespace(struct percpu_ref *ref)
352 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
354 complete(&ns->disable_done);
357 void nvmet_put_namespace(struct nvmet_ns *ns)
359 percpu_ref_put(&ns->ref);
362 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
364 nvmet_bdev_ns_disable(ns);
365 nvmet_file_ns_disable(ns);
368 int nvmet_ns_enable(struct nvmet_ns *ns)
370 struct nvmet_subsys *subsys = ns->subsys;
371 int ret;
373 mutex_lock(&subsys->lock);
374 ret = -EMFILE;
375 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
376 goto out_unlock;
377 ret = 0;
378 if (ns->enabled)
379 goto out_unlock;
381 ret = nvmet_bdev_ns_enable(ns);
382 if (ret == -ENOTBLK)
383 ret = nvmet_file_ns_enable(ns);
384 if (ret)
385 goto out_unlock;
387 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
388 0, GFP_KERNEL);
389 if (ret)
390 goto out_dev_put;
392 if (ns->nsid > subsys->max_nsid)
393 subsys->max_nsid = ns->nsid;
396 * The namespaces list needs to be sorted to simplify the implementation
397 * of the Identify Namepace List subcommand.
399 if (list_empty(&subsys->namespaces)) {
400 list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
401 } else {
402 struct nvmet_ns *old;
404 list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
405 BUG_ON(ns->nsid == old->nsid);
406 if (ns->nsid < old->nsid)
407 break;
410 list_add_tail_rcu(&ns->dev_link, &old->dev_link);
412 subsys->nr_namespaces++;
414 nvmet_ns_changed(subsys, ns->nsid);
415 ns->enabled = true;
416 ret = 0;
417 out_unlock:
418 mutex_unlock(&subsys->lock);
419 return ret;
420 out_dev_put:
421 nvmet_ns_dev_disable(ns);
422 goto out_unlock;
425 void nvmet_ns_disable(struct nvmet_ns *ns)
427 struct nvmet_subsys *subsys = ns->subsys;
429 mutex_lock(&subsys->lock);
430 if (!ns->enabled)
431 goto out_unlock;
433 ns->enabled = false;
434 list_del_rcu(&ns->dev_link);
435 if (ns->nsid == subsys->max_nsid)
436 subsys->max_nsid = nvmet_max_nsid(subsys);
437 mutex_unlock(&subsys->lock);
440 * Now that we removed the namespaces from the lookup list, we
441 * can kill the per_cpu ref and wait for any remaining references
442 * to be dropped, as well as a RCU grace period for anyone only
443 * using the namepace under rcu_read_lock(). Note that we can't
444 * use call_rcu here as we need to ensure the namespaces have
445 * been fully destroyed before unloading the module.
447 percpu_ref_kill(&ns->ref);
448 synchronize_rcu();
449 wait_for_completion(&ns->disable_done);
450 percpu_ref_exit(&ns->ref);
452 mutex_lock(&subsys->lock);
453 subsys->nr_namespaces--;
454 nvmet_ns_changed(subsys, ns->nsid);
455 nvmet_ns_dev_disable(ns);
456 out_unlock:
457 mutex_unlock(&subsys->lock);
460 void nvmet_ns_free(struct nvmet_ns *ns)
462 nvmet_ns_disable(ns);
464 down_write(&nvmet_ana_sem);
465 nvmet_ana_group_enabled[ns->anagrpid]--;
466 up_write(&nvmet_ana_sem);
468 kfree(ns->device_path);
469 kfree(ns);
472 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
474 struct nvmet_ns *ns;
476 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
477 if (!ns)
478 return NULL;
480 INIT_LIST_HEAD(&ns->dev_link);
481 init_completion(&ns->disable_done);
483 ns->nsid = nsid;
484 ns->subsys = subsys;
486 down_write(&nvmet_ana_sem);
487 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
488 nvmet_ana_group_enabled[ns->anagrpid]++;
489 up_write(&nvmet_ana_sem);
491 uuid_gen(&ns->uuid);
492 ns->buffered_io = false;
494 return ns;
497 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
499 u32 old_sqhd, new_sqhd;
500 u16 sqhd;
502 if (status)
503 nvmet_set_status(req, status);
505 if (req->sq->size) {
506 do {
507 old_sqhd = req->sq->sqhd;
508 new_sqhd = (old_sqhd + 1) % req->sq->size;
509 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
510 old_sqhd);
512 sqhd = req->sq->sqhd & 0x0000FFFF;
513 req->rsp->sq_head = cpu_to_le16(sqhd);
514 req->rsp->sq_id = cpu_to_le16(req->sq->qid);
515 req->rsp->command_id = req->cmd->common.command_id;
517 if (req->ns)
518 nvmet_put_namespace(req->ns);
519 req->ops->queue_response(req);
522 void nvmet_req_complete(struct nvmet_req *req, u16 status)
524 __nvmet_req_complete(req, status);
525 percpu_ref_put(&req->sq->ref);
527 EXPORT_SYMBOL_GPL(nvmet_req_complete);
529 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
530 u16 qid, u16 size)
532 cq->qid = qid;
533 cq->size = size;
535 ctrl->cqs[qid] = cq;
538 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
539 u16 qid, u16 size)
541 sq->sqhd = 0;
542 sq->qid = qid;
543 sq->size = size;
545 ctrl->sqs[qid] = sq;
548 static void nvmet_confirm_sq(struct percpu_ref *ref)
550 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
552 complete(&sq->confirm_done);
555 void nvmet_sq_destroy(struct nvmet_sq *sq)
558 * If this is the admin queue, complete all AERs so that our
559 * queue doesn't have outstanding requests on it.
561 if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
562 nvmet_async_events_free(sq->ctrl);
563 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
564 wait_for_completion(&sq->confirm_done);
565 wait_for_completion(&sq->free_done);
566 percpu_ref_exit(&sq->ref);
568 if (sq->ctrl) {
569 nvmet_ctrl_put(sq->ctrl);
570 sq->ctrl = NULL; /* allows reusing the queue later */
573 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
575 static void nvmet_sq_free(struct percpu_ref *ref)
577 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
579 complete(&sq->free_done);
582 int nvmet_sq_init(struct nvmet_sq *sq)
584 int ret;
586 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
587 if (ret) {
588 pr_err("percpu_ref init failed!\n");
589 return ret;
591 init_completion(&sq->free_done);
592 init_completion(&sq->confirm_done);
594 return 0;
596 EXPORT_SYMBOL_GPL(nvmet_sq_init);
598 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
599 struct nvmet_ns *ns)
601 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
603 if (unlikely(state == NVME_ANA_INACCESSIBLE))
604 return NVME_SC_ANA_INACCESSIBLE;
605 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
606 return NVME_SC_ANA_PERSISTENT_LOSS;
607 if (unlikely(state == NVME_ANA_CHANGE))
608 return NVME_SC_ANA_TRANSITION;
609 return 0;
612 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
614 if (unlikely(req->ns->readonly)) {
615 switch (req->cmd->common.opcode) {
616 case nvme_cmd_read:
617 case nvme_cmd_flush:
618 break;
619 default:
620 return NVME_SC_NS_WRITE_PROTECTED;
624 return 0;
627 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
629 struct nvme_command *cmd = req->cmd;
630 u16 ret;
632 ret = nvmet_check_ctrl_status(req, cmd);
633 if (unlikely(ret))
634 return ret;
636 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
637 if (unlikely(!req->ns))
638 return NVME_SC_INVALID_NS | NVME_SC_DNR;
639 ret = nvmet_check_ana_state(req->port, req->ns);
640 if (unlikely(ret))
641 return ret;
642 ret = nvmet_io_cmd_check_access(req);
643 if (unlikely(ret))
644 return ret;
646 if (req->ns->file)
647 return nvmet_file_parse_io_cmd(req);
648 else
649 return nvmet_bdev_parse_io_cmd(req);
652 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
653 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
655 u8 flags = req->cmd->common.flags;
656 u16 status;
658 req->cq = cq;
659 req->sq = sq;
660 req->ops = ops;
661 req->sg = NULL;
662 req->sg_cnt = 0;
663 req->transfer_len = 0;
664 req->rsp->status = 0;
665 req->ns = NULL;
667 /* no support for fused commands yet */
668 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
669 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
670 goto fail;
674 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
675 * contains an address of a single contiguous physical buffer that is
676 * byte aligned.
678 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
679 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
680 goto fail;
683 if (unlikely(!req->sq->ctrl))
684 /* will return an error for any Non-connect command: */
685 status = nvmet_parse_connect_cmd(req);
686 else if (likely(req->sq->qid != 0))
687 status = nvmet_parse_io_cmd(req);
688 else if (req->cmd->common.opcode == nvme_fabrics_command)
689 status = nvmet_parse_fabrics_cmd(req);
690 else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
691 status = nvmet_parse_discovery_cmd(req);
692 else
693 status = nvmet_parse_admin_cmd(req);
695 if (status)
696 goto fail;
698 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
699 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
700 goto fail;
703 return true;
705 fail:
706 __nvmet_req_complete(req, status);
707 return false;
709 EXPORT_SYMBOL_GPL(nvmet_req_init);
711 void nvmet_req_uninit(struct nvmet_req *req)
713 percpu_ref_put(&req->sq->ref);
714 if (req->ns)
715 nvmet_put_namespace(req->ns);
717 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
719 void nvmet_req_execute(struct nvmet_req *req)
721 if (unlikely(req->data_len != req->transfer_len))
722 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
723 else
724 req->execute(req);
726 EXPORT_SYMBOL_GPL(nvmet_req_execute);
728 static inline bool nvmet_cc_en(u32 cc)
730 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
733 static inline u8 nvmet_cc_css(u32 cc)
735 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
738 static inline u8 nvmet_cc_mps(u32 cc)
740 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
743 static inline u8 nvmet_cc_ams(u32 cc)
745 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
748 static inline u8 nvmet_cc_shn(u32 cc)
750 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
753 static inline u8 nvmet_cc_iosqes(u32 cc)
755 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
758 static inline u8 nvmet_cc_iocqes(u32 cc)
760 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
763 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
765 lockdep_assert_held(&ctrl->lock);
767 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
768 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
769 nvmet_cc_mps(ctrl->cc) != 0 ||
770 nvmet_cc_ams(ctrl->cc) != 0 ||
771 nvmet_cc_css(ctrl->cc) != 0) {
772 ctrl->csts = NVME_CSTS_CFS;
773 return;
776 ctrl->csts = NVME_CSTS_RDY;
779 * Controllers that are not yet enabled should not really enforce the
780 * keep alive timeout, but we still want to track a timeout and cleanup
781 * in case a host died before it enabled the controller. Hence, simply
782 * reset the keep alive timer when the controller is enabled.
784 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
787 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
789 lockdep_assert_held(&ctrl->lock);
791 /* XXX: tear down queues? */
792 ctrl->csts &= ~NVME_CSTS_RDY;
793 ctrl->cc = 0;
796 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
798 u32 old;
800 mutex_lock(&ctrl->lock);
801 old = ctrl->cc;
802 ctrl->cc = new;
804 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
805 nvmet_start_ctrl(ctrl);
806 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
807 nvmet_clear_ctrl(ctrl);
808 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
809 nvmet_clear_ctrl(ctrl);
810 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
812 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
813 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
814 mutex_unlock(&ctrl->lock);
817 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
819 /* command sets supported: NVMe command set: */
820 ctrl->cap = (1ULL << 37);
821 /* CC.EN timeout in 500msec units: */
822 ctrl->cap |= (15ULL << 24);
823 /* maximum queue entries supported: */
824 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
827 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
828 struct nvmet_req *req, struct nvmet_ctrl **ret)
830 struct nvmet_subsys *subsys;
831 struct nvmet_ctrl *ctrl;
832 u16 status = 0;
834 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
835 if (!subsys) {
836 pr_warn("connect request for invalid subsystem %s!\n",
837 subsysnqn);
838 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
839 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
842 mutex_lock(&subsys->lock);
843 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
844 if (ctrl->cntlid == cntlid) {
845 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
846 pr_warn("hostnqn mismatch.\n");
847 continue;
849 if (!kref_get_unless_zero(&ctrl->ref))
850 continue;
852 *ret = ctrl;
853 goto out;
857 pr_warn("could not find controller %d for subsys %s / host %s\n",
858 cntlid, subsysnqn, hostnqn);
859 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
860 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
862 out:
863 mutex_unlock(&subsys->lock);
864 nvmet_subsys_put(subsys);
865 return status;
868 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
870 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
871 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
872 cmd->common.opcode, req->sq->qid);
873 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
876 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
877 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
878 cmd->common.opcode, req->sq->qid);
879 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
881 return 0;
884 static bool __nvmet_host_allowed(struct nvmet_subsys *subsys,
885 const char *hostnqn)
887 struct nvmet_host_link *p;
889 if (subsys->allow_any_host)
890 return true;
892 list_for_each_entry(p, &subsys->hosts, entry) {
893 if (!strcmp(nvmet_host_name(p->host), hostnqn))
894 return true;
897 return false;
900 static bool nvmet_host_discovery_allowed(struct nvmet_req *req,
901 const char *hostnqn)
903 struct nvmet_subsys_link *s;
905 list_for_each_entry(s, &req->port->subsystems, entry) {
906 if (__nvmet_host_allowed(s->subsys, hostnqn))
907 return true;
910 return false;
913 bool nvmet_host_allowed(struct nvmet_req *req, struct nvmet_subsys *subsys,
914 const char *hostnqn)
916 lockdep_assert_held(&nvmet_config_sem);
918 if (subsys->type == NVME_NQN_DISC)
919 return nvmet_host_discovery_allowed(req, hostnqn);
920 else
921 return __nvmet_host_allowed(subsys, hostnqn);
924 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
925 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
927 struct nvmet_subsys *subsys;
928 struct nvmet_ctrl *ctrl;
929 int ret;
930 u16 status;
932 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
933 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
934 if (!subsys) {
935 pr_warn("connect request for invalid subsystem %s!\n",
936 subsysnqn);
937 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
938 goto out;
941 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
942 down_read(&nvmet_config_sem);
943 if (!nvmet_host_allowed(req, subsys, hostnqn)) {
944 pr_info("connect by host %s for subsystem %s not allowed\n",
945 hostnqn, subsysnqn);
946 req->rsp->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
947 up_read(&nvmet_config_sem);
948 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
949 goto out_put_subsystem;
951 up_read(&nvmet_config_sem);
953 status = NVME_SC_INTERNAL;
954 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
955 if (!ctrl)
956 goto out_put_subsystem;
957 mutex_init(&ctrl->lock);
959 nvmet_init_cap(ctrl);
961 ctrl->port = req->port;
963 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
964 INIT_LIST_HEAD(&ctrl->async_events);
966 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
967 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
969 kref_init(&ctrl->ref);
970 ctrl->subsys = subsys;
971 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
973 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
974 sizeof(__le32), GFP_KERNEL);
975 if (!ctrl->changed_ns_list)
976 goto out_free_ctrl;
978 ctrl->cqs = kcalloc(subsys->max_qid + 1,
979 sizeof(struct nvmet_cq *),
980 GFP_KERNEL);
981 if (!ctrl->cqs)
982 goto out_free_changed_ns_list;
984 ctrl->sqs = kcalloc(subsys->max_qid + 1,
985 sizeof(struct nvmet_sq *),
986 GFP_KERNEL);
987 if (!ctrl->sqs)
988 goto out_free_cqs;
990 ret = ida_simple_get(&cntlid_ida,
991 NVME_CNTLID_MIN, NVME_CNTLID_MAX,
992 GFP_KERNEL);
993 if (ret < 0) {
994 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
995 goto out_free_sqs;
997 ctrl->cntlid = ret;
999 ctrl->ops = req->ops;
1000 if (ctrl->subsys->type == NVME_NQN_DISC) {
1001 /* Don't accept keep-alive timeout for discovery controllers */
1002 if (kato) {
1003 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
1004 goto out_remove_ida;
1008 * Discovery controllers use some arbitrary high value in order
1009 * to cleanup stale discovery sessions
1011 * From the latest base diff RC:
1012 * "The Keep Alive command is not supported by
1013 * Discovery controllers. A transport may specify a
1014 * fixed Discovery controller activity timeout value
1015 * (e.g., 2 minutes). If no commands are received
1016 * by a Discovery controller within that time
1017 * period, the controller may perform the
1018 * actions for Keep Alive Timer expiration".
1020 ctrl->kato = NVMET_DISC_KATO;
1021 } else {
1022 /* keep-alive timeout in seconds */
1023 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1025 nvmet_start_keep_alive_timer(ctrl);
1027 mutex_lock(&subsys->lock);
1028 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1029 mutex_unlock(&subsys->lock);
1031 *ctrlp = ctrl;
1032 return 0;
1034 out_remove_ida:
1035 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1036 out_free_sqs:
1037 kfree(ctrl->sqs);
1038 out_free_cqs:
1039 kfree(ctrl->cqs);
1040 out_free_changed_ns_list:
1041 kfree(ctrl->changed_ns_list);
1042 out_free_ctrl:
1043 kfree(ctrl);
1044 out_put_subsystem:
1045 nvmet_subsys_put(subsys);
1046 out:
1047 return status;
1050 static void nvmet_ctrl_free(struct kref *ref)
1052 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1053 struct nvmet_subsys *subsys = ctrl->subsys;
1055 mutex_lock(&subsys->lock);
1056 list_del(&ctrl->subsys_entry);
1057 mutex_unlock(&subsys->lock);
1059 nvmet_stop_keep_alive_timer(ctrl);
1061 flush_work(&ctrl->async_event_work);
1062 cancel_work_sync(&ctrl->fatal_err_work);
1064 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1066 kfree(ctrl->sqs);
1067 kfree(ctrl->cqs);
1068 kfree(ctrl->changed_ns_list);
1069 kfree(ctrl);
1071 nvmet_subsys_put(subsys);
1074 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1076 kref_put(&ctrl->ref, nvmet_ctrl_free);
1079 static void nvmet_fatal_error_handler(struct work_struct *work)
1081 struct nvmet_ctrl *ctrl =
1082 container_of(work, struct nvmet_ctrl, fatal_err_work);
1084 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1085 ctrl->ops->delete_ctrl(ctrl);
1088 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1090 mutex_lock(&ctrl->lock);
1091 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1092 ctrl->csts |= NVME_CSTS_CFS;
1093 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1094 schedule_work(&ctrl->fatal_err_work);
1096 mutex_unlock(&ctrl->lock);
1098 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1100 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1101 const char *subsysnqn)
1103 struct nvmet_subsys_link *p;
1105 if (!port)
1106 return NULL;
1108 if (!strncmp(NVME_DISC_SUBSYS_NAME, subsysnqn,
1109 NVMF_NQN_SIZE)) {
1110 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1111 return NULL;
1112 return nvmet_disc_subsys;
1115 down_read(&nvmet_config_sem);
1116 list_for_each_entry(p, &port->subsystems, entry) {
1117 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1118 NVMF_NQN_SIZE)) {
1119 if (!kref_get_unless_zero(&p->subsys->ref))
1120 break;
1121 up_read(&nvmet_config_sem);
1122 return p->subsys;
1125 up_read(&nvmet_config_sem);
1126 return NULL;
1129 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1130 enum nvme_subsys_type type)
1132 struct nvmet_subsys *subsys;
1134 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1135 if (!subsys)
1136 return NULL;
1138 subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
1139 /* generate a random serial number as our controllers are ephemeral: */
1140 get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1142 switch (type) {
1143 case NVME_NQN_NVME:
1144 subsys->max_qid = NVMET_NR_QUEUES;
1145 break;
1146 case NVME_NQN_DISC:
1147 subsys->max_qid = 0;
1148 break;
1149 default:
1150 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1151 kfree(subsys);
1152 return NULL;
1154 subsys->type = type;
1155 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1156 GFP_KERNEL);
1157 if (!subsys->subsysnqn) {
1158 kfree(subsys);
1159 return NULL;
1162 kref_init(&subsys->ref);
1164 mutex_init(&subsys->lock);
1165 INIT_LIST_HEAD(&subsys->namespaces);
1166 INIT_LIST_HEAD(&subsys->ctrls);
1167 INIT_LIST_HEAD(&subsys->hosts);
1169 return subsys;
1172 static void nvmet_subsys_free(struct kref *ref)
1174 struct nvmet_subsys *subsys =
1175 container_of(ref, struct nvmet_subsys, ref);
1177 WARN_ON_ONCE(!list_empty(&subsys->namespaces));
1179 kfree(subsys->subsysnqn);
1180 kfree(subsys);
1183 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1185 struct nvmet_ctrl *ctrl;
1187 mutex_lock(&subsys->lock);
1188 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1189 ctrl->ops->delete_ctrl(ctrl);
1190 mutex_unlock(&subsys->lock);
1193 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1195 kref_put(&subsys->ref, nvmet_subsys_free);
1198 static int __init nvmet_init(void)
1200 int error;
1202 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1204 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1205 WQ_MEM_RECLAIM, 0);
1206 if (!buffered_io_wq) {
1207 error = -ENOMEM;
1208 goto out;
1211 error = nvmet_init_discovery();
1212 if (error)
1213 goto out;
1215 error = nvmet_init_configfs();
1216 if (error)
1217 goto out_exit_discovery;
1218 return 0;
1220 out_exit_discovery:
1221 nvmet_exit_discovery();
1222 out:
1223 return error;
1226 static void __exit nvmet_exit(void)
1228 nvmet_exit_configfs();
1229 nvmet_exit_discovery();
1230 ida_destroy(&cntlid_ida);
1231 destroy_workqueue(buffered_io_wq);
1233 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1234 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1237 module_init(nvmet_init);
1238 module_exit(nvmet_exit);
1240 MODULE_LICENSE("GPL v2");