2 * NVMe over Fabrics RDMA target.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/atomic.h>
16 #include <linux/ctype.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/nvme.h>
22 #include <linux/slab.h>
23 #include <linux/string.h>
24 #include <linux/wait.h>
25 #include <linux/inet.h>
26 #include <asm/unaligned.h>
28 #include <rdma/ib_verbs.h>
29 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
36 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
38 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
39 #define NVMET_RDMA_MAX_INLINE_SGE 4
40 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
42 struct nvmet_rdma_cmd
{
43 struct ib_sge sge
[NVMET_RDMA_MAX_INLINE_SGE
+ 1];
46 struct scatterlist inline_sg
[NVMET_RDMA_MAX_INLINE_SGE
];
47 struct nvme_command
*nvme_cmd
;
48 struct nvmet_rdma_queue
*queue
;
52 NVMET_RDMA_REQ_INLINE_DATA
= (1 << 0),
53 NVMET_RDMA_REQ_INVALIDATE_RKEY
= (1 << 1),
56 struct nvmet_rdma_rsp
{
57 struct ib_sge send_sge
;
58 struct ib_cqe send_cqe
;
59 struct ib_send_wr send_wr
;
61 struct nvmet_rdma_cmd
*cmd
;
62 struct nvmet_rdma_queue
*queue
;
64 struct ib_cqe read_cqe
;
65 struct rdma_rw_ctx rw
;
73 struct list_head wait_list
;
74 struct list_head free_list
;
77 enum nvmet_rdma_queue_state
{
78 NVMET_RDMA_Q_CONNECTING
,
80 NVMET_RDMA_Q_DISCONNECTING
,
83 struct nvmet_rdma_queue
{
84 struct rdma_cm_id
*cm_id
;
85 struct nvmet_port
*port
;
88 struct nvmet_rdma_device
*dev
;
89 spinlock_t state_lock
;
90 enum nvmet_rdma_queue_state state
;
91 struct nvmet_cq nvme_cq
;
92 struct nvmet_sq nvme_sq
;
94 struct nvmet_rdma_rsp
*rsps
;
95 struct list_head free_rsps
;
97 struct nvmet_rdma_cmd
*cmds
;
99 struct work_struct release_work
;
100 struct list_head rsp_wait_list
;
101 struct list_head rsp_wr_wait_list
;
102 spinlock_t rsp_wr_wait_lock
;
109 struct list_head queue_list
;
112 struct nvmet_rdma_device
{
113 struct ib_device
*device
;
116 struct nvmet_rdma_cmd
*srq_cmds
;
119 struct list_head entry
;
120 int inline_data_size
;
121 int inline_page_count
;
124 static bool nvmet_rdma_use_srq
;
125 module_param_named(use_srq
, nvmet_rdma_use_srq
, bool, 0444);
126 MODULE_PARM_DESC(use_srq
, "Use shared receive queue.");
128 static DEFINE_IDA(nvmet_rdma_queue_ida
);
129 static LIST_HEAD(nvmet_rdma_queue_list
);
130 static DEFINE_MUTEX(nvmet_rdma_queue_mutex
);
132 static LIST_HEAD(device_list
);
133 static DEFINE_MUTEX(device_list_mutex
);
135 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
);
136 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
137 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
138 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
139 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
);
140 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
);
142 static const struct nvmet_fabrics_ops nvmet_rdma_ops
;
144 static int num_pages(int len
)
146 return 1 + (((len
- 1) & PAGE_MASK
) >> PAGE_SHIFT
);
149 /* XXX: really should move to a generic header sooner or later.. */
150 static inline u32
get_unaligned_le24(const u8
*p
)
152 return (u32
)p
[0] | (u32
)p
[1] << 8 | (u32
)p
[2] << 16;
155 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp
*rsp
)
157 return nvme_is_write(rsp
->req
.cmd
) &&
158 rsp
->req
.transfer_len
&&
159 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
162 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp
*rsp
)
164 return !nvme_is_write(rsp
->req
.cmd
) &&
165 rsp
->req
.transfer_len
&&
166 !rsp
->req
.rsp
->status
&&
167 !(rsp
->flags
& NVMET_RDMA_REQ_INLINE_DATA
);
170 static inline struct nvmet_rdma_rsp
*
171 nvmet_rdma_get_rsp(struct nvmet_rdma_queue
*queue
)
173 struct nvmet_rdma_rsp
*rsp
;
176 spin_lock_irqsave(&queue
->rsps_lock
, flags
);
177 rsp
= list_first_entry(&queue
->free_rsps
,
178 struct nvmet_rdma_rsp
, free_list
);
179 list_del(&rsp
->free_list
);
180 spin_unlock_irqrestore(&queue
->rsps_lock
, flags
);
186 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp
*rsp
)
190 spin_lock_irqsave(&rsp
->queue
->rsps_lock
, flags
);
191 list_add_tail(&rsp
->free_list
, &rsp
->queue
->free_rsps
);
192 spin_unlock_irqrestore(&rsp
->queue
->rsps_lock
, flags
);
195 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device
*ndev
,
196 struct nvmet_rdma_cmd
*c
)
198 struct scatterlist
*sg
;
202 if (!ndev
->inline_data_size
)
208 for (i
= 0; i
< ndev
->inline_page_count
; i
++, sg
++, sge
++) {
210 ib_dma_unmap_page(ndev
->device
, sge
->addr
,
211 sge
->length
, DMA_FROM_DEVICE
);
213 __free_page(sg_page(sg
));
217 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device
*ndev
,
218 struct nvmet_rdma_cmd
*c
)
220 struct scatterlist
*sg
;
226 if (!ndev
->inline_data_size
)
230 sg_init_table(sg
, ndev
->inline_page_count
);
232 len
= ndev
->inline_data_size
;
234 for (i
= 0; i
< ndev
->inline_page_count
; i
++, sg
++, sge
++) {
235 pg
= alloc_page(GFP_KERNEL
);
238 sg_assign_page(sg
, pg
);
239 sge
->addr
= ib_dma_map_page(ndev
->device
,
240 pg
, 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
241 if (ib_dma_mapping_error(ndev
->device
, sge
->addr
))
243 sge
->length
= min_t(int, len
, PAGE_SIZE
);
244 sge
->lkey
= ndev
->pd
->local_dma_lkey
;
250 for (; i
>= 0; i
--, sg
--, sge
--) {
252 ib_dma_unmap_page(ndev
->device
, sge
->addr
,
253 sge
->length
, DMA_FROM_DEVICE
);
255 __free_page(sg_page(sg
));
260 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device
*ndev
,
261 struct nvmet_rdma_cmd
*c
, bool admin
)
263 /* NVMe command / RDMA RECV */
264 c
->nvme_cmd
= kmalloc(sizeof(*c
->nvme_cmd
), GFP_KERNEL
);
268 c
->sge
[0].addr
= ib_dma_map_single(ndev
->device
, c
->nvme_cmd
,
269 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
270 if (ib_dma_mapping_error(ndev
->device
, c
->sge
[0].addr
))
273 c
->sge
[0].length
= sizeof(*c
->nvme_cmd
);
274 c
->sge
[0].lkey
= ndev
->pd
->local_dma_lkey
;
276 if (!admin
&& nvmet_rdma_alloc_inline_pages(ndev
, c
))
279 c
->cqe
.done
= nvmet_rdma_recv_done
;
281 c
->wr
.wr_cqe
= &c
->cqe
;
282 c
->wr
.sg_list
= c
->sge
;
283 c
->wr
.num_sge
= admin
? 1 : ndev
->inline_page_count
+ 1;
288 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
289 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
297 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device
*ndev
,
298 struct nvmet_rdma_cmd
*c
, bool admin
)
301 nvmet_rdma_free_inline_pages(ndev
, c
);
302 ib_dma_unmap_single(ndev
->device
, c
->sge
[0].addr
,
303 sizeof(*c
->nvme_cmd
), DMA_FROM_DEVICE
);
307 static struct nvmet_rdma_cmd
*
308 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device
*ndev
,
309 int nr_cmds
, bool admin
)
311 struct nvmet_rdma_cmd
*cmds
;
312 int ret
= -EINVAL
, i
;
314 cmds
= kcalloc(nr_cmds
, sizeof(struct nvmet_rdma_cmd
), GFP_KERNEL
);
318 for (i
= 0; i
< nr_cmds
; i
++) {
319 ret
= nvmet_rdma_alloc_cmd(ndev
, cmds
+ i
, admin
);
328 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
334 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device
*ndev
,
335 struct nvmet_rdma_cmd
*cmds
, int nr_cmds
, bool admin
)
339 for (i
= 0; i
< nr_cmds
; i
++)
340 nvmet_rdma_free_cmd(ndev
, cmds
+ i
, admin
);
344 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device
*ndev
,
345 struct nvmet_rdma_rsp
*r
)
347 /* NVMe CQE / RDMA SEND */
348 r
->req
.rsp
= kmalloc(sizeof(*r
->req
.rsp
), GFP_KERNEL
);
352 r
->send_sge
.addr
= ib_dma_map_single(ndev
->device
, r
->req
.rsp
,
353 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
354 if (ib_dma_mapping_error(ndev
->device
, r
->send_sge
.addr
))
357 r
->send_sge
.length
= sizeof(*r
->req
.rsp
);
358 r
->send_sge
.lkey
= ndev
->pd
->local_dma_lkey
;
360 r
->send_cqe
.done
= nvmet_rdma_send_done
;
362 r
->send_wr
.wr_cqe
= &r
->send_cqe
;
363 r
->send_wr
.sg_list
= &r
->send_sge
;
364 r
->send_wr
.num_sge
= 1;
365 r
->send_wr
.send_flags
= IB_SEND_SIGNALED
;
367 /* Data In / RDMA READ */
368 r
->read_cqe
.done
= nvmet_rdma_read_data_done
;
377 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device
*ndev
,
378 struct nvmet_rdma_rsp
*r
)
380 ib_dma_unmap_single(ndev
->device
, r
->send_sge
.addr
,
381 sizeof(*r
->req
.rsp
), DMA_TO_DEVICE
);
386 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue
*queue
)
388 struct nvmet_rdma_device
*ndev
= queue
->dev
;
389 int nr_rsps
= queue
->recv_queue_size
* 2;
390 int ret
= -EINVAL
, i
;
392 queue
->rsps
= kcalloc(nr_rsps
, sizeof(struct nvmet_rdma_rsp
),
397 for (i
= 0; i
< nr_rsps
; i
++) {
398 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
400 ret
= nvmet_rdma_alloc_rsp(ndev
, rsp
);
404 list_add_tail(&rsp
->free_list
, &queue
->free_rsps
);
411 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
413 list_del(&rsp
->free_list
);
414 nvmet_rdma_free_rsp(ndev
, rsp
);
421 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue
*queue
)
423 struct nvmet_rdma_device
*ndev
= queue
->dev
;
424 int i
, nr_rsps
= queue
->recv_queue_size
* 2;
426 for (i
= 0; i
< nr_rsps
; i
++) {
427 struct nvmet_rdma_rsp
*rsp
= &queue
->rsps
[i
];
429 list_del(&rsp
->free_list
);
430 nvmet_rdma_free_rsp(ndev
, rsp
);
435 static int nvmet_rdma_post_recv(struct nvmet_rdma_device
*ndev
,
436 struct nvmet_rdma_cmd
*cmd
)
440 ib_dma_sync_single_for_device(ndev
->device
,
441 cmd
->sge
[0].addr
, cmd
->sge
[0].length
,
445 ret
= ib_post_srq_recv(ndev
->srq
, &cmd
->wr
, NULL
);
447 ret
= ib_post_recv(cmd
->queue
->cm_id
->qp
, &cmd
->wr
, NULL
);
450 pr_err("post_recv cmd failed\n");
455 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue
*queue
)
457 spin_lock(&queue
->rsp_wr_wait_lock
);
458 while (!list_empty(&queue
->rsp_wr_wait_list
)) {
459 struct nvmet_rdma_rsp
*rsp
;
462 rsp
= list_entry(queue
->rsp_wr_wait_list
.next
,
463 struct nvmet_rdma_rsp
, wait_list
);
464 list_del(&rsp
->wait_list
);
466 spin_unlock(&queue
->rsp_wr_wait_lock
);
467 ret
= nvmet_rdma_execute_command(rsp
);
468 spin_lock(&queue
->rsp_wr_wait_lock
);
471 list_add(&rsp
->wait_list
, &queue
->rsp_wr_wait_list
);
475 spin_unlock(&queue
->rsp_wr_wait_lock
);
479 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp
*rsp
)
481 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
483 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
486 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
487 queue
->cm_id
->port_num
, rsp
->req
.sg
,
488 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
491 if (rsp
->req
.sg
!= rsp
->cmd
->inline_sg
)
492 sgl_free(rsp
->req
.sg
);
494 if (unlikely(!list_empty_careful(&queue
->rsp_wr_wait_list
)))
495 nvmet_rdma_process_wr_wait_list(queue
);
497 nvmet_rdma_put_rsp(rsp
);
500 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue
*queue
)
502 if (queue
->nvme_sq
.ctrl
) {
503 nvmet_ctrl_fatal_error(queue
->nvme_sq
.ctrl
);
506 * we didn't setup the controller yet in case
507 * of admin connect error, just disconnect and
510 nvmet_rdma_queue_disconnect(queue
);
514 static void nvmet_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
516 struct nvmet_rdma_rsp
*rsp
=
517 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, send_cqe
);
519 nvmet_rdma_release_rsp(rsp
);
521 if (unlikely(wc
->status
!= IB_WC_SUCCESS
&&
522 wc
->status
!= IB_WC_WR_FLUSH_ERR
)) {
523 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
524 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
525 nvmet_rdma_error_comp(rsp
->queue
);
529 static void nvmet_rdma_queue_response(struct nvmet_req
*req
)
531 struct nvmet_rdma_rsp
*rsp
=
532 container_of(req
, struct nvmet_rdma_rsp
, req
);
533 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
534 struct ib_send_wr
*first_wr
;
536 if (rsp
->flags
& NVMET_RDMA_REQ_INVALIDATE_RKEY
) {
537 rsp
->send_wr
.opcode
= IB_WR_SEND_WITH_INV
;
538 rsp
->send_wr
.ex
.invalidate_rkey
= rsp
->invalidate_rkey
;
540 rsp
->send_wr
.opcode
= IB_WR_SEND
;
543 if (nvmet_rdma_need_data_out(rsp
))
544 first_wr
= rdma_rw_ctx_wrs(&rsp
->rw
, cm_id
->qp
,
545 cm_id
->port_num
, NULL
, &rsp
->send_wr
);
547 first_wr
= &rsp
->send_wr
;
549 nvmet_rdma_post_recv(rsp
->queue
->dev
, rsp
->cmd
);
551 ib_dma_sync_single_for_device(rsp
->queue
->dev
->device
,
552 rsp
->send_sge
.addr
, rsp
->send_sge
.length
,
555 if (unlikely(ib_post_send(cm_id
->qp
, first_wr
, NULL
))) {
556 pr_err("sending cmd response failed\n");
557 nvmet_rdma_release_rsp(rsp
);
561 static void nvmet_rdma_read_data_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
563 struct nvmet_rdma_rsp
*rsp
=
564 container_of(wc
->wr_cqe
, struct nvmet_rdma_rsp
, read_cqe
);
565 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
567 WARN_ON(rsp
->n_rdma
<= 0);
568 atomic_add(rsp
->n_rdma
, &queue
->sq_wr_avail
);
569 rdma_rw_ctx_destroy(&rsp
->rw
, queue
->cm_id
->qp
,
570 queue
->cm_id
->port_num
, rsp
->req
.sg
,
571 rsp
->req
.sg_cnt
, nvmet_data_dir(&rsp
->req
));
574 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
575 nvmet_req_uninit(&rsp
->req
);
576 nvmet_rdma_release_rsp(rsp
);
577 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
578 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
579 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
), wc
->status
);
580 nvmet_rdma_error_comp(queue
);
585 nvmet_req_execute(&rsp
->req
);
588 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp
*rsp
, u32 len
,
591 int sg_count
= num_pages(len
);
592 struct scatterlist
*sg
;
595 sg
= rsp
->cmd
->inline_sg
;
596 for (i
= 0; i
< sg_count
; i
++, sg
++) {
597 if (i
< sg_count
- 1)
602 sg
->length
= min_t(int, len
, PAGE_SIZE
- off
);
608 rsp
->req
.sg
= rsp
->cmd
->inline_sg
;
609 rsp
->req
.sg_cnt
= sg_count
;
612 static u16
nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp
*rsp
)
614 struct nvme_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.sgl
;
615 u64 off
= le64_to_cpu(sgl
->addr
);
616 u32 len
= le32_to_cpu(sgl
->length
);
618 if (!nvme_is_write(rsp
->req
.cmd
))
619 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
621 if (off
+ len
> rsp
->queue
->dev
->inline_data_size
) {
622 pr_err("invalid inline data offset!\n");
623 return NVME_SC_SGL_INVALID_OFFSET
| NVME_SC_DNR
;
626 /* no data command? */
630 nvmet_rdma_use_inline_sg(rsp
, len
, off
);
631 rsp
->flags
|= NVMET_RDMA_REQ_INLINE_DATA
;
632 rsp
->req
.transfer_len
+= len
;
636 static u16
nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp
*rsp
,
637 struct nvme_keyed_sgl_desc
*sgl
, bool invalidate
)
639 struct rdma_cm_id
*cm_id
= rsp
->queue
->cm_id
;
640 u64 addr
= le64_to_cpu(sgl
->addr
);
641 u32 len
= get_unaligned_le24(sgl
->length
);
642 u32 key
= get_unaligned_le32(sgl
->key
);
645 /* no data command? */
649 rsp
->req
.sg
= sgl_alloc(len
, GFP_KERNEL
, &rsp
->req
.sg_cnt
);
651 return NVME_SC_INTERNAL
;
653 ret
= rdma_rw_ctx_init(&rsp
->rw
, cm_id
->qp
, cm_id
->port_num
,
654 rsp
->req
.sg
, rsp
->req
.sg_cnt
, 0, addr
, key
,
655 nvmet_data_dir(&rsp
->req
));
657 return NVME_SC_INTERNAL
;
658 rsp
->req
.transfer_len
+= len
;
662 rsp
->invalidate_rkey
= key
;
663 rsp
->flags
|= NVMET_RDMA_REQ_INVALIDATE_RKEY
;
669 static u16
nvmet_rdma_map_sgl(struct nvmet_rdma_rsp
*rsp
)
671 struct nvme_keyed_sgl_desc
*sgl
= &rsp
->req
.cmd
->common
.dptr
.ksgl
;
673 switch (sgl
->type
>> 4) {
674 case NVME_SGL_FMT_DATA_DESC
:
675 switch (sgl
->type
& 0xf) {
676 case NVME_SGL_FMT_OFFSET
:
677 return nvmet_rdma_map_sgl_inline(rsp
);
679 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
680 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
682 case NVME_KEY_SGL_FMT_DATA_DESC
:
683 switch (sgl
->type
& 0xf) {
684 case NVME_SGL_FMT_ADDRESS
| NVME_SGL_FMT_INVALIDATE
:
685 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, true);
686 case NVME_SGL_FMT_ADDRESS
:
687 return nvmet_rdma_map_sgl_keyed(rsp
, sgl
, false);
689 pr_err("invalid SGL subtype: %#x\n", sgl
->type
);
690 return NVME_SC_INVALID_FIELD
| NVME_SC_DNR
;
693 pr_err("invalid SGL type: %#x\n", sgl
->type
);
694 return NVME_SC_SGL_INVALID_TYPE
| NVME_SC_DNR
;
698 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp
*rsp
)
700 struct nvmet_rdma_queue
*queue
= rsp
->queue
;
702 if (unlikely(atomic_sub_return(1 + rsp
->n_rdma
,
703 &queue
->sq_wr_avail
) < 0)) {
704 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
705 1 + rsp
->n_rdma
, queue
->idx
,
706 queue
->nvme_sq
.ctrl
->cntlid
);
707 atomic_add(1 + rsp
->n_rdma
, &queue
->sq_wr_avail
);
711 if (nvmet_rdma_need_data_in(rsp
)) {
712 if (rdma_rw_ctx_post(&rsp
->rw
, queue
->cm_id
->qp
,
713 queue
->cm_id
->port_num
, &rsp
->read_cqe
, NULL
))
714 nvmet_req_complete(&rsp
->req
, NVME_SC_DATA_XFER_ERROR
);
716 nvmet_req_execute(&rsp
->req
);
722 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue
*queue
,
723 struct nvmet_rdma_rsp
*cmd
)
727 ib_dma_sync_single_for_cpu(queue
->dev
->device
,
728 cmd
->cmd
->sge
[0].addr
, cmd
->cmd
->sge
[0].length
,
730 ib_dma_sync_single_for_cpu(queue
->dev
->device
,
731 cmd
->send_sge
.addr
, cmd
->send_sge
.length
,
734 if (!nvmet_req_init(&cmd
->req
, &queue
->nvme_cq
,
735 &queue
->nvme_sq
, &nvmet_rdma_ops
))
738 status
= nvmet_rdma_map_sgl(cmd
);
742 if (unlikely(!nvmet_rdma_execute_command(cmd
))) {
743 spin_lock(&queue
->rsp_wr_wait_lock
);
744 list_add_tail(&cmd
->wait_list
, &queue
->rsp_wr_wait_list
);
745 spin_unlock(&queue
->rsp_wr_wait_lock
);
751 nvmet_req_complete(&cmd
->req
, status
);
754 static void nvmet_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
756 struct nvmet_rdma_cmd
*cmd
=
757 container_of(wc
->wr_cqe
, struct nvmet_rdma_cmd
, cqe
);
758 struct nvmet_rdma_queue
*queue
= cq
->cq_context
;
759 struct nvmet_rdma_rsp
*rsp
;
761 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
762 if (wc
->status
!= IB_WC_WR_FLUSH_ERR
) {
763 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
764 wc
->wr_cqe
, ib_wc_status_msg(wc
->status
),
766 nvmet_rdma_error_comp(queue
);
771 if (unlikely(wc
->byte_len
< sizeof(struct nvme_command
))) {
772 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
773 nvmet_rdma_error_comp(queue
);
778 rsp
= nvmet_rdma_get_rsp(queue
);
782 rsp
->req
.cmd
= cmd
->nvme_cmd
;
783 rsp
->req
.port
= queue
->port
;
786 if (unlikely(queue
->state
!= NVMET_RDMA_Q_LIVE
)) {
789 spin_lock_irqsave(&queue
->state_lock
, flags
);
790 if (queue
->state
== NVMET_RDMA_Q_CONNECTING
)
791 list_add_tail(&rsp
->wait_list
, &queue
->rsp_wait_list
);
793 nvmet_rdma_put_rsp(rsp
);
794 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
798 nvmet_rdma_handle_command(queue
, rsp
);
801 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device
*ndev
)
806 nvmet_rdma_free_cmds(ndev
, ndev
->srq_cmds
, ndev
->srq_size
, false);
807 ib_destroy_srq(ndev
->srq
);
810 static int nvmet_rdma_init_srq(struct nvmet_rdma_device
*ndev
)
812 struct ib_srq_init_attr srq_attr
= { NULL
, };
817 srq_size
= 4095; /* XXX: tune */
819 srq_attr
.attr
.max_wr
= srq_size
;
820 srq_attr
.attr
.max_sge
= 1 + ndev
->inline_page_count
;
821 srq_attr
.attr
.srq_limit
= 0;
822 srq_attr
.srq_type
= IB_SRQT_BASIC
;
823 srq
= ib_create_srq(ndev
->pd
, &srq_attr
);
826 * If SRQs aren't supported we just go ahead and use normal
827 * non-shared receive queues.
829 pr_info("SRQ requested but not supported.\n");
833 ndev
->srq_cmds
= nvmet_rdma_alloc_cmds(ndev
, srq_size
, false);
834 if (IS_ERR(ndev
->srq_cmds
)) {
835 ret
= PTR_ERR(ndev
->srq_cmds
);
836 goto out_destroy_srq
;
840 ndev
->srq_size
= srq_size
;
842 for (i
= 0; i
< srq_size
; i
++) {
843 ret
= nvmet_rdma_post_recv(ndev
, &ndev
->srq_cmds
[i
]);
851 nvmet_rdma_free_cmds(ndev
, ndev
->srq_cmds
, ndev
->srq_size
, false);
857 static void nvmet_rdma_free_dev(struct kref
*ref
)
859 struct nvmet_rdma_device
*ndev
=
860 container_of(ref
, struct nvmet_rdma_device
, ref
);
862 mutex_lock(&device_list_mutex
);
863 list_del(&ndev
->entry
);
864 mutex_unlock(&device_list_mutex
);
866 nvmet_rdma_destroy_srq(ndev
);
867 ib_dealloc_pd(ndev
->pd
);
872 static struct nvmet_rdma_device
*
873 nvmet_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
875 struct nvmet_port
*port
= cm_id
->context
;
876 struct nvmet_rdma_device
*ndev
;
877 int inline_page_count
;
878 int inline_sge_count
;
881 mutex_lock(&device_list_mutex
);
882 list_for_each_entry(ndev
, &device_list
, entry
) {
883 if (ndev
->device
->node_guid
== cm_id
->device
->node_guid
&&
884 kref_get_unless_zero(&ndev
->ref
))
888 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
892 inline_page_count
= num_pages(port
->inline_data_size
);
893 inline_sge_count
= max(cm_id
->device
->attrs
.max_sge_rd
,
894 cm_id
->device
->attrs
.max_recv_sge
) - 1;
895 if (inline_page_count
> inline_sge_count
) {
896 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
897 port
->inline_data_size
, cm_id
->device
->name
,
898 inline_sge_count
* PAGE_SIZE
);
899 port
->inline_data_size
= inline_sge_count
* PAGE_SIZE
;
900 inline_page_count
= inline_sge_count
;
902 ndev
->inline_data_size
= port
->inline_data_size
;
903 ndev
->inline_page_count
= inline_page_count
;
904 ndev
->device
= cm_id
->device
;
905 kref_init(&ndev
->ref
);
907 ndev
->pd
= ib_alloc_pd(ndev
->device
, 0);
908 if (IS_ERR(ndev
->pd
))
911 if (nvmet_rdma_use_srq
) {
912 ret
= nvmet_rdma_init_srq(ndev
);
917 list_add(&ndev
->entry
, &device_list
);
919 mutex_unlock(&device_list_mutex
);
920 pr_debug("added %s.\n", ndev
->device
->name
);
924 ib_dealloc_pd(ndev
->pd
);
928 mutex_unlock(&device_list_mutex
);
932 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue
*queue
)
934 struct ib_qp_init_attr qp_attr
;
935 struct nvmet_rdma_device
*ndev
= queue
->dev
;
936 int comp_vector
, nr_cqe
, ret
, i
;
939 * Spread the io queues across completion vectors,
940 * but still keep all admin queues on vector 0.
942 comp_vector
= !queue
->host_qid
? 0 :
943 queue
->idx
% ndev
->device
->num_comp_vectors
;
946 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
948 nr_cqe
= queue
->recv_queue_size
+ 2 * queue
->send_queue_size
;
950 queue
->cq
= ib_alloc_cq(ndev
->device
, queue
,
951 nr_cqe
+ 1, comp_vector
,
953 if (IS_ERR(queue
->cq
)) {
954 ret
= PTR_ERR(queue
->cq
);
955 pr_err("failed to create CQ cqe= %d ret= %d\n",
960 memset(&qp_attr
, 0, sizeof(qp_attr
));
961 qp_attr
.qp_context
= queue
;
962 qp_attr
.event_handler
= nvmet_rdma_qp_event
;
963 qp_attr
.send_cq
= queue
->cq
;
964 qp_attr
.recv_cq
= queue
->cq
;
965 qp_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
966 qp_attr
.qp_type
= IB_QPT_RC
;
968 qp_attr
.cap
.max_send_wr
= queue
->send_queue_size
+ 1;
969 qp_attr
.cap
.max_rdma_ctxs
= queue
->send_queue_size
;
970 qp_attr
.cap
.max_send_sge
= max(ndev
->device
->attrs
.max_sge_rd
,
971 ndev
->device
->attrs
.max_send_sge
);
974 qp_attr
.srq
= ndev
->srq
;
977 qp_attr
.cap
.max_recv_wr
= 1 + queue
->recv_queue_size
;
978 qp_attr
.cap
.max_recv_sge
= 1 + ndev
->inline_page_count
;
981 ret
= rdma_create_qp(queue
->cm_id
, ndev
->pd
, &qp_attr
);
983 pr_err("failed to create_qp ret= %d\n", ret
);
987 atomic_set(&queue
->sq_wr_avail
, qp_attr
.cap
.max_send_wr
);
989 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
990 __func__
, queue
->cq
->cqe
, qp_attr
.cap
.max_send_sge
,
991 qp_attr
.cap
.max_send_wr
, queue
->cm_id
);
994 for (i
= 0; i
< queue
->recv_queue_size
; i
++) {
995 queue
->cmds
[i
].queue
= queue
;
996 ret
= nvmet_rdma_post_recv(ndev
, &queue
->cmds
[i
]);
1006 rdma_destroy_qp(queue
->cm_id
);
1008 ib_free_cq(queue
->cq
);
1012 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue
*queue
)
1014 struct ib_qp
*qp
= queue
->cm_id
->qp
;
1017 rdma_destroy_id(queue
->cm_id
);
1019 ib_free_cq(queue
->cq
);
1022 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue
*queue
)
1024 pr_debug("freeing queue %d\n", queue
->idx
);
1026 nvmet_sq_destroy(&queue
->nvme_sq
);
1028 nvmet_rdma_destroy_queue_ib(queue
);
1029 if (!queue
->dev
->srq
) {
1030 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
1031 queue
->recv_queue_size
,
1034 nvmet_rdma_free_rsps(queue
);
1035 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
1039 static void nvmet_rdma_release_queue_work(struct work_struct
*w
)
1041 struct nvmet_rdma_queue
*queue
=
1042 container_of(w
, struct nvmet_rdma_queue
, release_work
);
1043 struct nvmet_rdma_device
*dev
= queue
->dev
;
1045 nvmet_rdma_free_queue(queue
);
1047 kref_put(&dev
->ref
, nvmet_rdma_free_dev
);
1051 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param
*conn
,
1052 struct nvmet_rdma_queue
*queue
)
1054 struct nvme_rdma_cm_req
*req
;
1056 req
= (struct nvme_rdma_cm_req
*)conn
->private_data
;
1057 if (!req
|| conn
->private_data_len
== 0)
1058 return NVME_RDMA_CM_INVALID_LEN
;
1060 if (le16_to_cpu(req
->recfmt
) != NVME_RDMA_CM_FMT_1_0
)
1061 return NVME_RDMA_CM_INVALID_RECFMT
;
1063 queue
->host_qid
= le16_to_cpu(req
->qid
);
1066 * req->hsqsize corresponds to our recv queue size plus 1
1067 * req->hrqsize corresponds to our send queue size
1069 queue
->recv_queue_size
= le16_to_cpu(req
->hsqsize
) + 1;
1070 queue
->send_queue_size
= le16_to_cpu(req
->hrqsize
);
1072 if (!queue
->host_qid
&& queue
->recv_queue_size
> NVME_AQ_DEPTH
)
1073 return NVME_RDMA_CM_INVALID_HSQSIZE
;
1075 /* XXX: Should we enforce some kind of max for IO queues? */
1080 static int nvmet_rdma_cm_reject(struct rdma_cm_id
*cm_id
,
1081 enum nvme_rdma_cm_status status
)
1083 struct nvme_rdma_cm_rej rej
;
1085 pr_debug("rejecting connect request: status %d (%s)\n",
1086 status
, nvme_rdma_cm_msg(status
));
1088 rej
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1089 rej
.sts
= cpu_to_le16(status
);
1091 return rdma_reject(cm_id
, (void *)&rej
, sizeof(rej
));
1094 static struct nvmet_rdma_queue
*
1095 nvmet_rdma_alloc_queue(struct nvmet_rdma_device
*ndev
,
1096 struct rdma_cm_id
*cm_id
,
1097 struct rdma_cm_event
*event
)
1099 struct nvmet_rdma_queue
*queue
;
1102 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
1104 ret
= NVME_RDMA_CM_NO_RSC
;
1108 ret
= nvmet_sq_init(&queue
->nvme_sq
);
1110 ret
= NVME_RDMA_CM_NO_RSC
;
1111 goto out_free_queue
;
1114 ret
= nvmet_rdma_parse_cm_connect_req(&event
->param
.conn
, queue
);
1116 goto out_destroy_sq
;
1119 * Schedules the actual release because calling rdma_destroy_id from
1120 * inside a CM callback would trigger a deadlock. (great API design..)
1122 INIT_WORK(&queue
->release_work
, nvmet_rdma_release_queue_work
);
1124 queue
->cm_id
= cm_id
;
1126 spin_lock_init(&queue
->state_lock
);
1127 queue
->state
= NVMET_RDMA_Q_CONNECTING
;
1128 INIT_LIST_HEAD(&queue
->rsp_wait_list
);
1129 INIT_LIST_HEAD(&queue
->rsp_wr_wait_list
);
1130 spin_lock_init(&queue
->rsp_wr_wait_lock
);
1131 INIT_LIST_HEAD(&queue
->free_rsps
);
1132 spin_lock_init(&queue
->rsps_lock
);
1133 INIT_LIST_HEAD(&queue
->queue_list
);
1135 queue
->idx
= ida_simple_get(&nvmet_rdma_queue_ida
, 0, 0, GFP_KERNEL
);
1136 if (queue
->idx
< 0) {
1137 ret
= NVME_RDMA_CM_NO_RSC
;
1138 goto out_destroy_sq
;
1141 ret
= nvmet_rdma_alloc_rsps(queue
);
1143 ret
= NVME_RDMA_CM_NO_RSC
;
1144 goto out_ida_remove
;
1148 queue
->cmds
= nvmet_rdma_alloc_cmds(ndev
,
1149 queue
->recv_queue_size
,
1151 if (IS_ERR(queue
->cmds
)) {
1152 ret
= NVME_RDMA_CM_NO_RSC
;
1153 goto out_free_responses
;
1157 ret
= nvmet_rdma_create_queue_ib(queue
);
1159 pr_err("%s: creating RDMA queue failed (%d).\n",
1161 ret
= NVME_RDMA_CM_NO_RSC
;
1169 nvmet_rdma_free_cmds(queue
->dev
, queue
->cmds
,
1170 queue
->recv_queue_size
,
1174 nvmet_rdma_free_rsps(queue
);
1176 ida_simple_remove(&nvmet_rdma_queue_ida
, queue
->idx
);
1178 nvmet_sq_destroy(&queue
->nvme_sq
);
1182 nvmet_rdma_cm_reject(cm_id
, ret
);
1186 static void nvmet_rdma_qp_event(struct ib_event
*event
, void *priv
)
1188 struct nvmet_rdma_queue
*queue
= priv
;
1190 switch (event
->event
) {
1191 case IB_EVENT_COMM_EST
:
1192 rdma_notify(queue
->cm_id
, event
->event
);
1195 pr_err("received IB QP event: %s (%d)\n",
1196 ib_event_msg(event
->event
), event
->event
);
1201 static int nvmet_rdma_cm_accept(struct rdma_cm_id
*cm_id
,
1202 struct nvmet_rdma_queue
*queue
,
1203 struct rdma_conn_param
*p
)
1205 struct rdma_conn_param param
= { };
1206 struct nvme_rdma_cm_rep priv
= { };
1209 param
.rnr_retry_count
= 7;
1210 param
.flow_control
= 1;
1211 param
.initiator_depth
= min_t(u8
, p
->initiator_depth
,
1212 queue
->dev
->device
->attrs
.max_qp_init_rd_atom
);
1213 param
.private_data
= &priv
;
1214 param
.private_data_len
= sizeof(priv
);
1215 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1216 priv
.crqsize
= cpu_to_le16(queue
->recv_queue_size
);
1218 ret
= rdma_accept(cm_id
, ¶m
);
1220 pr_err("rdma_accept failed (error code = %d)\n", ret
);
1225 static int nvmet_rdma_queue_connect(struct rdma_cm_id
*cm_id
,
1226 struct rdma_cm_event
*event
)
1228 struct nvmet_rdma_device
*ndev
;
1229 struct nvmet_rdma_queue
*queue
;
1232 ndev
= nvmet_rdma_find_get_device(cm_id
);
1234 nvmet_rdma_cm_reject(cm_id
, NVME_RDMA_CM_NO_RSC
);
1235 return -ECONNREFUSED
;
1238 queue
= nvmet_rdma_alloc_queue(ndev
, cm_id
, event
);
1243 queue
->port
= cm_id
->context
;
1245 if (queue
->host_qid
== 0) {
1246 /* Let inflight controller teardown complete */
1247 flush_scheduled_work();
1250 ret
= nvmet_rdma_cm_accept(cm_id
, queue
, &event
->param
.conn
);
1252 schedule_work(&queue
->release_work
);
1253 /* Destroying rdma_cm id is not needed here */
1257 mutex_lock(&nvmet_rdma_queue_mutex
);
1258 list_add_tail(&queue
->queue_list
, &nvmet_rdma_queue_list
);
1259 mutex_unlock(&nvmet_rdma_queue_mutex
);
1264 kref_put(&ndev
->ref
, nvmet_rdma_free_dev
);
1269 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue
*queue
)
1271 unsigned long flags
;
1273 spin_lock_irqsave(&queue
->state_lock
, flags
);
1274 if (queue
->state
!= NVMET_RDMA_Q_CONNECTING
) {
1275 pr_warn("trying to establish a connected queue\n");
1278 queue
->state
= NVMET_RDMA_Q_LIVE
;
1280 while (!list_empty(&queue
->rsp_wait_list
)) {
1281 struct nvmet_rdma_rsp
*cmd
;
1283 cmd
= list_first_entry(&queue
->rsp_wait_list
,
1284 struct nvmet_rdma_rsp
, wait_list
);
1285 list_del(&cmd
->wait_list
);
1287 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1288 nvmet_rdma_handle_command(queue
, cmd
);
1289 spin_lock_irqsave(&queue
->state_lock
, flags
);
1293 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1296 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1298 bool disconnect
= false;
1299 unsigned long flags
;
1301 pr_debug("cm_id= %p queue->state= %d\n", queue
->cm_id
, queue
->state
);
1303 spin_lock_irqsave(&queue
->state_lock
, flags
);
1304 switch (queue
->state
) {
1305 case NVMET_RDMA_Q_CONNECTING
:
1306 case NVMET_RDMA_Q_LIVE
:
1307 queue
->state
= NVMET_RDMA_Q_DISCONNECTING
;
1310 case NVMET_RDMA_Q_DISCONNECTING
:
1313 spin_unlock_irqrestore(&queue
->state_lock
, flags
);
1316 rdma_disconnect(queue
->cm_id
);
1317 schedule_work(&queue
->release_work
);
1321 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue
*queue
)
1323 bool disconnect
= false;
1325 mutex_lock(&nvmet_rdma_queue_mutex
);
1326 if (!list_empty(&queue
->queue_list
)) {
1327 list_del_init(&queue
->queue_list
);
1330 mutex_unlock(&nvmet_rdma_queue_mutex
);
1333 __nvmet_rdma_queue_disconnect(queue
);
1336 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id
*cm_id
,
1337 struct nvmet_rdma_queue
*queue
)
1339 WARN_ON_ONCE(queue
->state
!= NVMET_RDMA_Q_CONNECTING
);
1341 mutex_lock(&nvmet_rdma_queue_mutex
);
1342 if (!list_empty(&queue
->queue_list
))
1343 list_del_init(&queue
->queue_list
);
1344 mutex_unlock(&nvmet_rdma_queue_mutex
);
1346 pr_err("failed to connect queue %d\n", queue
->idx
);
1347 schedule_work(&queue
->release_work
);
1351 * nvme_rdma_device_removal() - Handle RDMA device removal
1352 * @cm_id: rdma_cm id, used for nvmet port
1353 * @queue: nvmet rdma queue (cm id qp_context)
1355 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1356 * to unplug. Note that this event can be generated on a normal
1357 * queue cm_id and/or a device bound listener cm_id (where in this
1358 * case queue will be null).
1360 * We registered an ib_client to handle device removal for queues,
1361 * so we only need to handle the listening port cm_ids. In this case
1362 * we nullify the priv to prevent double cm_id destruction and destroying
1363 * the cm_id implicitely by returning a non-zero rc to the callout.
1365 static int nvmet_rdma_device_removal(struct rdma_cm_id
*cm_id
,
1366 struct nvmet_rdma_queue
*queue
)
1368 struct nvmet_port
*port
;
1372 * This is a queue cm_id. we have registered
1373 * an ib_client to handle queues removal
1374 * so don't interfear and just return.
1379 port
= cm_id
->context
;
1382 * This is a listener cm_id. Make sure that
1383 * future remove_port won't invoke a double
1384 * cm_id destroy. use atomic xchg to make sure
1385 * we don't compete with remove_port.
1387 if (xchg(&port
->priv
, NULL
) != cm_id
)
1391 * We need to return 1 so that the core will destroy
1392 * it's own ID. What a great API design..
1397 static int nvmet_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1398 struct rdma_cm_event
*event
)
1400 struct nvmet_rdma_queue
*queue
= NULL
;
1404 queue
= cm_id
->qp
->qp_context
;
1406 pr_debug("%s (%d): status %d id %p\n",
1407 rdma_event_msg(event
->event
), event
->event
,
1408 event
->status
, cm_id
);
1410 switch (event
->event
) {
1411 case RDMA_CM_EVENT_CONNECT_REQUEST
:
1412 ret
= nvmet_rdma_queue_connect(cm_id
, event
);
1414 case RDMA_CM_EVENT_ESTABLISHED
:
1415 nvmet_rdma_queue_established(queue
);
1417 case RDMA_CM_EVENT_ADDR_CHANGE
:
1418 case RDMA_CM_EVENT_DISCONNECTED
:
1419 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1420 nvmet_rdma_queue_disconnect(queue
);
1422 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1423 ret
= nvmet_rdma_device_removal(cm_id
, queue
);
1425 case RDMA_CM_EVENT_REJECTED
:
1426 pr_debug("Connection rejected: %s\n",
1427 rdma_reject_msg(cm_id
, event
->status
));
1429 case RDMA_CM_EVENT_UNREACHABLE
:
1430 case RDMA_CM_EVENT_CONNECT_ERROR
:
1431 nvmet_rdma_queue_connect_fail(cm_id
, queue
);
1434 pr_err("received unrecognized RDMA CM event %d\n",
1442 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl
*ctrl
)
1444 struct nvmet_rdma_queue
*queue
;
1447 mutex_lock(&nvmet_rdma_queue_mutex
);
1448 list_for_each_entry(queue
, &nvmet_rdma_queue_list
, queue_list
) {
1449 if (queue
->nvme_sq
.ctrl
== ctrl
) {
1450 list_del_init(&queue
->queue_list
);
1451 mutex_unlock(&nvmet_rdma_queue_mutex
);
1453 __nvmet_rdma_queue_disconnect(queue
);
1457 mutex_unlock(&nvmet_rdma_queue_mutex
);
1460 static int nvmet_rdma_add_port(struct nvmet_port
*port
)
1462 struct rdma_cm_id
*cm_id
;
1463 struct sockaddr_storage addr
= { };
1464 __kernel_sa_family_t af
;
1467 switch (port
->disc_addr
.adrfam
) {
1468 case NVMF_ADDR_FAMILY_IP4
:
1471 case NVMF_ADDR_FAMILY_IP6
:
1475 pr_err("address family %d not supported\n",
1476 port
->disc_addr
.adrfam
);
1480 if (port
->inline_data_size
< 0) {
1481 port
->inline_data_size
= NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE
;
1482 } else if (port
->inline_data_size
> NVMET_RDMA_MAX_INLINE_DATA_SIZE
) {
1483 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1484 port
->inline_data_size
,
1485 NVMET_RDMA_MAX_INLINE_DATA_SIZE
);
1486 port
->inline_data_size
= NVMET_RDMA_MAX_INLINE_DATA_SIZE
;
1489 ret
= inet_pton_with_scope(&init_net
, af
, port
->disc_addr
.traddr
,
1490 port
->disc_addr
.trsvcid
, &addr
);
1492 pr_err("malformed ip/port passed: %s:%s\n",
1493 port
->disc_addr
.traddr
, port
->disc_addr
.trsvcid
);
1497 cm_id
= rdma_create_id(&init_net
, nvmet_rdma_cm_handler
, port
,
1498 RDMA_PS_TCP
, IB_QPT_RC
);
1499 if (IS_ERR(cm_id
)) {
1500 pr_err("CM ID creation failed\n");
1501 return PTR_ERR(cm_id
);
1505 * Allow both IPv4 and IPv6 sockets to bind a single port
1508 ret
= rdma_set_afonly(cm_id
, 1);
1510 pr_err("rdma_set_afonly failed (%d)\n", ret
);
1511 goto out_destroy_id
;
1514 ret
= rdma_bind_addr(cm_id
, (struct sockaddr
*)&addr
);
1516 pr_err("binding CM ID to %pISpcs failed (%d)\n",
1517 (struct sockaddr
*)&addr
, ret
);
1518 goto out_destroy_id
;
1521 ret
= rdma_listen(cm_id
, 128);
1523 pr_err("listening to %pISpcs failed (%d)\n",
1524 (struct sockaddr
*)&addr
, ret
);
1525 goto out_destroy_id
;
1528 pr_info("enabling port %d (%pISpcs)\n",
1529 le16_to_cpu(port
->disc_addr
.portid
), (struct sockaddr
*)&addr
);
1534 rdma_destroy_id(cm_id
);
1538 static void nvmet_rdma_remove_port(struct nvmet_port
*port
)
1540 struct rdma_cm_id
*cm_id
= xchg(&port
->priv
, NULL
);
1543 rdma_destroy_id(cm_id
);
1546 static void nvmet_rdma_disc_port_addr(struct nvmet_req
*req
,
1547 struct nvmet_port
*port
, char *traddr
)
1549 struct rdma_cm_id
*cm_id
= port
->priv
;
1551 if (inet_addr_is_any((struct sockaddr
*)&cm_id
->route
.addr
.src_addr
)) {
1552 struct nvmet_rdma_rsp
*rsp
=
1553 container_of(req
, struct nvmet_rdma_rsp
, req
);
1554 struct rdma_cm_id
*req_cm_id
= rsp
->queue
->cm_id
;
1555 struct sockaddr
*addr
= (void *)&req_cm_id
->route
.addr
.src_addr
;
1557 sprintf(traddr
, "%pISc", addr
);
1559 memcpy(traddr
, port
->disc_addr
.traddr
, NVMF_TRADDR_SIZE
);
1563 static const struct nvmet_fabrics_ops nvmet_rdma_ops
= {
1564 .owner
= THIS_MODULE
,
1565 .type
= NVMF_TRTYPE_RDMA
,
1567 .has_keyed_sgls
= 1,
1568 .add_port
= nvmet_rdma_add_port
,
1569 .remove_port
= nvmet_rdma_remove_port
,
1570 .queue_response
= nvmet_rdma_queue_response
,
1571 .delete_ctrl
= nvmet_rdma_delete_ctrl
,
1572 .disc_traddr
= nvmet_rdma_disc_port_addr
,
1575 static void nvmet_rdma_remove_one(struct ib_device
*ib_device
, void *client_data
)
1577 struct nvmet_rdma_queue
*queue
, *tmp
;
1578 struct nvmet_rdma_device
*ndev
;
1581 mutex_lock(&device_list_mutex
);
1582 list_for_each_entry(ndev
, &device_list
, entry
) {
1583 if (ndev
->device
== ib_device
) {
1588 mutex_unlock(&device_list_mutex
);
1594 * IB Device that is used by nvmet controllers is being removed,
1595 * delete all queues using this device.
1597 mutex_lock(&nvmet_rdma_queue_mutex
);
1598 list_for_each_entry_safe(queue
, tmp
, &nvmet_rdma_queue_list
,
1600 if (queue
->dev
->device
!= ib_device
)
1603 pr_info("Removing queue %d\n", queue
->idx
);
1604 list_del_init(&queue
->queue_list
);
1605 __nvmet_rdma_queue_disconnect(queue
);
1607 mutex_unlock(&nvmet_rdma_queue_mutex
);
1609 flush_scheduled_work();
1612 static struct ib_client nvmet_rdma_ib_client
= {
1613 .name
= "nvmet_rdma",
1614 .remove
= nvmet_rdma_remove_one
1617 static int __init
nvmet_rdma_init(void)
1621 ret
= ib_register_client(&nvmet_rdma_ib_client
);
1625 ret
= nvmet_register_transport(&nvmet_rdma_ops
);
1632 ib_unregister_client(&nvmet_rdma_ib_client
);
1636 static void __exit
nvmet_rdma_exit(void)
1638 nvmet_unregister_transport(&nvmet_rdma_ops
);
1639 ib_unregister_client(&nvmet_rdma_ib_client
);
1640 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list
));
1641 ida_destroy(&nvmet_rdma_queue_ida
);
1644 module_init(nvmet_rdma_init
);
1645 module_exit(nvmet_rdma_exit
);
1647 MODULE_LICENSE("GPL v2");
1648 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */