alx: fix alx_poll()
[linux/fpc-iii.git] / fs / ocfs2 / aops.c
blobbb6ee06118caf348a150634ece57252a20affdcb
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #include <cluster/masklog.h>
34 #include "ocfs2.h"
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
49 #include "buffer_head_io.h"
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
79 fe = (struct ocfs2_dinode *) bh->b_data;
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 err = -ENOMEM;
84 mlog(ML_ERROR, "block offset is outside the allocated size: "
85 "%llu\n", (unsigned long long)iblock);
86 goto bail;
89 /* We don't use the page cache to create symlink data, so if
90 * need be, copy it over from the buffer cache. */
91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 iblock;
94 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 if (!buffer_cache_bh) {
96 err = -ENOMEM;
97 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 goto bail;
101 /* we haven't locked out transactions, so a commit
102 * could've happened. Since we've got a reference on
103 * the bh, even if it commits while we're doing the
104 * copy, the data is still good. */
105 if (buffer_jbd(buffer_cache_bh)
106 && ocfs2_inode_is_new(inode)) {
107 kaddr = kmap_atomic(bh_result->b_page);
108 if (!kaddr) {
109 mlog(ML_ERROR, "couldn't kmap!\n");
110 goto bail;
112 memcpy(kaddr + (bh_result->b_size * iblock),
113 buffer_cache_bh->b_data,
114 bh_result->b_size);
115 kunmap_atomic(kaddr);
116 set_buffer_uptodate(bh_result);
118 brelse(buffer_cache_bh);
121 map_bh(bh_result, inode->i_sb,
122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
124 err = 0;
126 bail:
127 brelse(bh);
129 return err;
132 int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 struct buffer_head *bh_result, int create)
135 int err = 0;
136 unsigned int ext_flags;
137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 u64 p_blkno, count, past_eof;
139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 (unsigned long long)iblock, bh_result, create);
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
155 &ext_flags);
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
160 goto bail;
163 if (max_blocks < count)
164 count = max_blocks;
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
170 * allows __block_write_begin() to zero.
172 * If we see this on a sparse file system, then a truncate has
173 * raced us and removed the cluster. In this case, we clear
174 * the buffers dirty and uptodate bits and let the buffer code
175 * ignore it as a hole.
177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 clear_buffer_dirty(bh_result);
179 clear_buffer_uptodate(bh_result);
180 goto bail;
183 /* Treat the unwritten extent as a hole for zeroing purposes. */
184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
185 map_bh(bh_result, inode->i_sb, p_blkno);
187 bh_result->b_size = count << inode->i_blkbits;
189 if (!ocfs2_sparse_alloc(osb)) {
190 if (p_blkno == 0) {
191 err = -EIO;
192 mlog(ML_ERROR,
193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 (unsigned long long)iblock,
195 (unsigned long long)p_blkno,
196 (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 dump_stack();
199 goto bail;
203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 (unsigned long long)past_eof);
207 if (create && (iblock >= past_eof))
208 set_buffer_new(bh_result);
210 bail:
211 if (err < 0)
212 err = -EIO;
214 return err;
217 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 struct buffer_head *di_bh)
220 void *kaddr;
221 loff_t size;
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
230 size = i_size_read(inode);
232 if (size > PAGE_CACHE_SIZE ||
233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
234 ocfs2_error(inode->i_sb,
235 "Inode %llu has with inline data has bad size: %Lu",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
238 return -EROFS;
241 kaddr = kmap_atomic(page);
242 if (size)
243 memcpy(kaddr, di->id2.i_data.id_data, size);
244 /* Clear the remaining part of the page */
245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 flush_dcache_page(page);
247 kunmap_atomic(kaddr);
249 SetPageUptodate(page);
251 return 0;
254 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
256 int ret;
257 struct buffer_head *di_bh = NULL;
259 BUG_ON(!PageLocked(page));
260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
262 ret = ocfs2_read_inode_block(inode, &di_bh);
263 if (ret) {
264 mlog_errno(ret);
265 goto out;
268 ret = ocfs2_read_inline_data(inode, page, di_bh);
269 out:
270 unlock_page(page);
272 brelse(di_bh);
273 return ret;
276 static int ocfs2_readpage(struct file *file, struct page *page)
278 struct inode *inode = page->mapping->host;
279 struct ocfs2_inode_info *oi = OCFS2_I(inode);
280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 int ret, unlock = 1;
283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 (page ? page->index : 0));
286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296 * Unlock the page and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
299 ret = AOP_TRUNCATED_PAGE;
300 unlock_page(page);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
304 goto out_inode_unlock;
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_page->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 * and notice that the page they just read isn't needed.
315 * XXX sys_readahead() seems to get that wrong?
317 if (start >= i_size_read(inode)) {
318 zero_user(page, 0, PAGE_SIZE);
319 SetPageUptodate(page);
320 ret = 0;
321 goto out_alloc;
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, page);
326 else
327 ret = block_read_full_page(page, ocfs2_get_block);
328 unlock = 0;
330 out_alloc:
331 up_read(&OCFS2_I(inode)->ip_alloc_sem);
332 out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
334 out:
335 if (unlock)
336 unlock_page(page);
337 return ret;
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
349 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
389 out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
393 return err;
396 /* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
407 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
409 trace_ocfs2_writepage(
410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 page->index);
413 return block_write_full_page(page, ocfs2_get_block, wbc);
416 /* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
420 int walk_page_buffers( handle_t *handle,
421 struct buffer_head *head,
422 unsigned from,
423 unsigned to,
424 int *partial,
425 int (*fn)( handle_t *handle,
426 struct buffer_head *bh))
428 struct buffer_head *bh;
429 unsigned block_start, block_end;
430 unsigned blocksize = head->b_size;
431 int err, ret = 0;
432 struct buffer_head *next;
434 for ( bh = head, block_start = 0;
435 ret == 0 && (bh != head || !block_start);
436 block_start = block_end, bh = next)
438 next = bh->b_this_page;
439 block_end = block_start + blocksize;
440 if (block_end <= from || block_start >= to) {
441 if (partial && !buffer_uptodate(bh))
442 *partial = 1;
443 continue;
445 err = (*fn)(handle, bh);
446 if (!ret)
447 ret = err;
449 return ret;
452 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
454 sector_t status;
455 u64 p_blkno = 0;
456 int err = 0;
457 struct inode *inode = mapping->host;
459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)block);
462 /* We don't need to lock journal system files, since they aren't
463 * accessed concurrently from multiple nodes.
465 if (!INODE_JOURNAL(inode)) {
466 err = ocfs2_inode_lock(inode, NULL, 0);
467 if (err) {
468 if (err != -ENOENT)
469 mlog_errno(err);
470 goto bail;
472 down_read(&OCFS2_I(inode)->ip_alloc_sem);
475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 NULL);
479 if (!INODE_JOURNAL(inode)) {
480 up_read(&OCFS2_I(inode)->ip_alloc_sem);
481 ocfs2_inode_unlock(inode, 0);
484 if (err) {
485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 (unsigned long long)block);
487 mlog_errno(err);
488 goto bail;
491 bail:
492 status = err ? 0 : p_blkno;
494 return status;
498 * TODO: Make this into a generic get_blocks function.
500 * From do_direct_io in direct-io.c:
501 * "So what we do is to permit the ->get_blocks function to populate
502 * bh.b_size with the size of IO which is permitted at this offset and
503 * this i_blkbits."
505 * This function is called directly from get_more_blocks in direct-io.c.
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * fs_count, map_bh, dio->rw == WRITE);
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
513 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
514 struct buffer_head *bh_result, int create)
516 int ret;
517 u64 p_blkno, inode_blocks, contig_blocks;
518 unsigned int ext_flags;
519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
522 /* This function won't even be called if the request isn't all
523 * nicely aligned and of the right size, so there's no need
524 * for us to check any of that. */
526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
528 /* This figures out the size of the next contiguous block, and
529 * our logical offset */
530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
531 &contig_blocks, &ext_flags);
532 if (ret) {
533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 (unsigned long long)iblock);
535 ret = -EIO;
536 goto bail;
539 /* We should already CoW the refcounted extent in case of create. */
540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
543 * get_more_blocks() expects us to describe a hole by clearing
544 * the mapped bit on bh_result().
546 * Consider an unwritten extent as a hole.
548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
549 map_bh(bh_result, inode->i_sb, p_blkno);
550 else
551 clear_buffer_mapped(bh_result);
553 /* make sure we don't map more than max_blocks blocks here as
554 that's all the kernel will handle at this point. */
555 if (max_blocks < contig_blocks)
556 contig_blocks = max_blocks;
557 bh_result->b_size = contig_blocks << blocksize_bits;
558 bail:
559 return ret;
563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
567 static void ocfs2_dio_end_io(struct kiocb *iocb,
568 loff_t offset,
569 ssize_t bytes,
570 void *private)
572 struct inode *inode = file_inode(iocb->ki_filp);
573 int level;
574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
579 if (ocfs2_iocb_is_sem_locked(iocb))
580 ocfs2_iocb_clear_sem_locked(iocb);
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
591 ocfs2_iocb_clear_rw_locked(iocb);
593 level = ocfs2_iocb_rw_locked_level(iocb);
594 ocfs2_rw_unlock(inode, level);
597 static int ocfs2_releasepage(struct page *page, gfp_t wait)
599 if (!page_has_buffers(page))
600 return 0;
601 return try_to_free_buffers(page);
604 static ssize_t ocfs2_direct_IO(int rw,
605 struct kiocb *iocb,
606 const struct iovec *iov,
607 loff_t offset,
608 unsigned long nr_segs)
610 struct file *file = iocb->ki_filp;
611 struct inode *inode = file_inode(file)->i_mapping->host;
614 * Fallback to buffered I/O if we see an inode without
615 * extents.
617 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
618 return 0;
620 /* Fallback to buffered I/O if we are appending. */
621 if (i_size_read(inode) <= offset)
622 return 0;
624 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
625 iov, offset, nr_segs,
626 ocfs2_direct_IO_get_blocks,
627 ocfs2_dio_end_io, NULL, 0);
630 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
631 u32 cpos,
632 unsigned int *start,
633 unsigned int *end)
635 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
637 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
638 unsigned int cpp;
640 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
642 cluster_start = cpos % cpp;
643 cluster_start = cluster_start << osb->s_clustersize_bits;
645 cluster_end = cluster_start + osb->s_clustersize;
648 BUG_ON(cluster_start > PAGE_SIZE);
649 BUG_ON(cluster_end > PAGE_SIZE);
651 if (start)
652 *start = cluster_start;
653 if (end)
654 *end = cluster_end;
658 * 'from' and 'to' are the region in the page to avoid zeroing.
660 * If pagesize > clustersize, this function will avoid zeroing outside
661 * of the cluster boundary.
663 * from == to == 0 is code for "zero the entire cluster region"
665 static void ocfs2_clear_page_regions(struct page *page,
666 struct ocfs2_super *osb, u32 cpos,
667 unsigned from, unsigned to)
669 void *kaddr;
670 unsigned int cluster_start, cluster_end;
672 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
674 kaddr = kmap_atomic(page);
676 if (from || to) {
677 if (from > cluster_start)
678 memset(kaddr + cluster_start, 0, from - cluster_start);
679 if (to < cluster_end)
680 memset(kaddr + to, 0, cluster_end - to);
681 } else {
682 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
685 kunmap_atomic(kaddr);
689 * Nonsparse file systems fully allocate before we get to the write
690 * code. This prevents ocfs2_write() from tagging the write as an
691 * allocating one, which means ocfs2_map_page_blocks() might try to
692 * read-in the blocks at the tail of our file. Avoid reading them by
693 * testing i_size against each block offset.
695 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
696 unsigned int block_start)
698 u64 offset = page_offset(page) + block_start;
700 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
701 return 1;
703 if (i_size_read(inode) > offset)
704 return 1;
706 return 0;
710 * Some of this taken from __block_write_begin(). We already have our
711 * mapping by now though, and the entire write will be allocating or
712 * it won't, so not much need to use BH_New.
714 * This will also skip zeroing, which is handled externally.
716 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
717 struct inode *inode, unsigned int from,
718 unsigned int to, int new)
720 int ret = 0;
721 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
722 unsigned int block_end, block_start;
723 unsigned int bsize = 1 << inode->i_blkbits;
725 if (!page_has_buffers(page))
726 create_empty_buffers(page, bsize, 0);
728 head = page_buffers(page);
729 for (bh = head, block_start = 0; bh != head || !block_start;
730 bh = bh->b_this_page, block_start += bsize) {
731 block_end = block_start + bsize;
733 clear_buffer_new(bh);
736 * Ignore blocks outside of our i/o range -
737 * they may belong to unallocated clusters.
739 if (block_start >= to || block_end <= from) {
740 if (PageUptodate(page))
741 set_buffer_uptodate(bh);
742 continue;
746 * For an allocating write with cluster size >= page
747 * size, we always write the entire page.
749 if (new)
750 set_buffer_new(bh);
752 if (!buffer_mapped(bh)) {
753 map_bh(bh, inode->i_sb, *p_blkno);
754 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
757 if (PageUptodate(page)) {
758 if (!buffer_uptodate(bh))
759 set_buffer_uptodate(bh);
760 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
761 !buffer_new(bh) &&
762 ocfs2_should_read_blk(inode, page, block_start) &&
763 (block_start < from || block_end > to)) {
764 ll_rw_block(READ, 1, &bh);
765 *wait_bh++=bh;
768 *p_blkno = *p_blkno + 1;
772 * If we issued read requests - let them complete.
774 while(wait_bh > wait) {
775 wait_on_buffer(*--wait_bh);
776 if (!buffer_uptodate(*wait_bh))
777 ret = -EIO;
780 if (ret == 0 || !new)
781 return ret;
784 * If we get -EIO above, zero out any newly allocated blocks
785 * to avoid exposing stale data.
787 bh = head;
788 block_start = 0;
789 do {
790 block_end = block_start + bsize;
791 if (block_end <= from)
792 goto next_bh;
793 if (block_start >= to)
794 break;
796 zero_user(page, block_start, bh->b_size);
797 set_buffer_uptodate(bh);
798 mark_buffer_dirty(bh);
800 next_bh:
801 block_start = block_end;
802 bh = bh->b_this_page;
803 } while (bh != head);
805 return ret;
808 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
809 #define OCFS2_MAX_CTXT_PAGES 1
810 #else
811 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
812 #endif
814 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
817 * Describe the state of a single cluster to be written to.
819 struct ocfs2_write_cluster_desc {
820 u32 c_cpos;
821 u32 c_phys;
823 * Give this a unique field because c_phys eventually gets
824 * filled.
826 unsigned c_new;
827 unsigned c_unwritten;
828 unsigned c_needs_zero;
831 struct ocfs2_write_ctxt {
832 /* Logical cluster position / len of write */
833 u32 w_cpos;
834 u32 w_clen;
836 /* First cluster allocated in a nonsparse extend */
837 u32 w_first_new_cpos;
839 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
842 * This is true if page_size > cluster_size.
844 * It triggers a set of special cases during write which might
845 * have to deal with allocating writes to partial pages.
847 unsigned int w_large_pages;
850 * Pages involved in this write.
852 * w_target_page is the page being written to by the user.
854 * w_pages is an array of pages which always contains
855 * w_target_page, and in the case of an allocating write with
856 * page_size < cluster size, it will contain zero'd and mapped
857 * pages adjacent to w_target_page which need to be written
858 * out in so that future reads from that region will get
859 * zero's.
861 unsigned int w_num_pages;
862 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
863 struct page *w_target_page;
866 * w_target_locked is used for page_mkwrite path indicating no unlocking
867 * against w_target_page in ocfs2_write_end_nolock.
869 unsigned int w_target_locked:1;
872 * ocfs2_write_end() uses this to know what the real range to
873 * write in the target should be.
875 unsigned int w_target_from;
876 unsigned int w_target_to;
879 * We could use journal_current_handle() but this is cleaner,
880 * IMHO -Mark
882 handle_t *w_handle;
884 struct buffer_head *w_di_bh;
886 struct ocfs2_cached_dealloc_ctxt w_dealloc;
889 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
891 int i;
893 for(i = 0; i < num_pages; i++) {
894 if (pages[i]) {
895 unlock_page(pages[i]);
896 mark_page_accessed(pages[i]);
897 page_cache_release(pages[i]);
902 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
904 int i;
907 * w_target_locked is only set to true in the page_mkwrite() case.
908 * The intent is to allow us to lock the target page from write_begin()
909 * to write_end(). The caller must hold a ref on w_target_page.
911 if (wc->w_target_locked) {
912 BUG_ON(!wc->w_target_page);
913 for (i = 0; i < wc->w_num_pages; i++) {
914 if (wc->w_target_page == wc->w_pages[i]) {
915 wc->w_pages[i] = NULL;
916 break;
919 mark_page_accessed(wc->w_target_page);
920 page_cache_release(wc->w_target_page);
922 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
925 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
927 ocfs2_unlock_pages(wc);
928 brelse(wc->w_di_bh);
929 kfree(wc);
932 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
933 struct ocfs2_super *osb, loff_t pos,
934 unsigned len, struct buffer_head *di_bh)
936 u32 cend;
937 struct ocfs2_write_ctxt *wc;
939 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
940 if (!wc)
941 return -ENOMEM;
943 wc->w_cpos = pos >> osb->s_clustersize_bits;
944 wc->w_first_new_cpos = UINT_MAX;
945 cend = (pos + len - 1) >> osb->s_clustersize_bits;
946 wc->w_clen = cend - wc->w_cpos + 1;
947 get_bh(di_bh);
948 wc->w_di_bh = di_bh;
950 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
951 wc->w_large_pages = 1;
952 else
953 wc->w_large_pages = 0;
955 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
957 *wcp = wc;
959 return 0;
963 * If a page has any new buffers, zero them out here, and mark them uptodate
964 * and dirty so they'll be written out (in order to prevent uninitialised
965 * block data from leaking). And clear the new bit.
967 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
969 unsigned int block_start, block_end;
970 struct buffer_head *head, *bh;
972 BUG_ON(!PageLocked(page));
973 if (!page_has_buffers(page))
974 return;
976 bh = head = page_buffers(page);
977 block_start = 0;
978 do {
979 block_end = block_start + bh->b_size;
981 if (buffer_new(bh)) {
982 if (block_end > from && block_start < to) {
983 if (!PageUptodate(page)) {
984 unsigned start, end;
986 start = max(from, block_start);
987 end = min(to, block_end);
989 zero_user_segment(page, start, end);
990 set_buffer_uptodate(bh);
993 clear_buffer_new(bh);
994 mark_buffer_dirty(bh);
998 block_start = block_end;
999 bh = bh->b_this_page;
1000 } while (bh != head);
1004 * Only called when we have a failure during allocating write to write
1005 * zero's to the newly allocated region.
1007 static void ocfs2_write_failure(struct inode *inode,
1008 struct ocfs2_write_ctxt *wc,
1009 loff_t user_pos, unsigned user_len)
1011 int i;
1012 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1013 to = user_pos + user_len;
1014 struct page *tmppage;
1016 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1018 for(i = 0; i < wc->w_num_pages; i++) {
1019 tmppage = wc->w_pages[i];
1021 if (page_has_buffers(tmppage)) {
1022 if (ocfs2_should_order_data(inode))
1023 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1025 block_commit_write(tmppage, from, to);
1030 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1031 struct ocfs2_write_ctxt *wc,
1032 struct page *page, u32 cpos,
1033 loff_t user_pos, unsigned user_len,
1034 int new)
1036 int ret;
1037 unsigned int map_from = 0, map_to = 0;
1038 unsigned int cluster_start, cluster_end;
1039 unsigned int user_data_from = 0, user_data_to = 0;
1041 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1042 &cluster_start, &cluster_end);
1044 /* treat the write as new if the a hole/lseek spanned across
1045 * the page boundary.
1047 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1048 (page_offset(page) <= user_pos));
1050 if (page == wc->w_target_page) {
1051 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1052 map_to = map_from + user_len;
1054 if (new)
1055 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1056 cluster_start, cluster_end,
1057 new);
1058 else
1059 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1060 map_from, map_to, new);
1061 if (ret) {
1062 mlog_errno(ret);
1063 goto out;
1066 user_data_from = map_from;
1067 user_data_to = map_to;
1068 if (new) {
1069 map_from = cluster_start;
1070 map_to = cluster_end;
1072 } else {
1074 * If we haven't allocated the new page yet, we
1075 * shouldn't be writing it out without copying user
1076 * data. This is likely a math error from the caller.
1078 BUG_ON(!new);
1080 map_from = cluster_start;
1081 map_to = cluster_end;
1083 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1084 cluster_start, cluster_end, new);
1085 if (ret) {
1086 mlog_errno(ret);
1087 goto out;
1092 * Parts of newly allocated pages need to be zero'd.
1094 * Above, we have also rewritten 'to' and 'from' - as far as
1095 * the rest of the function is concerned, the entire cluster
1096 * range inside of a page needs to be written.
1098 * We can skip this if the page is up to date - it's already
1099 * been zero'd from being read in as a hole.
1101 if (new && !PageUptodate(page))
1102 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1103 cpos, user_data_from, user_data_to);
1105 flush_dcache_page(page);
1107 out:
1108 return ret;
1112 * This function will only grab one clusters worth of pages.
1114 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1115 struct ocfs2_write_ctxt *wc,
1116 u32 cpos, loff_t user_pos,
1117 unsigned user_len, int new,
1118 struct page *mmap_page)
1120 int ret = 0, i;
1121 unsigned long start, target_index, end_index, index;
1122 struct inode *inode = mapping->host;
1123 loff_t last_byte;
1125 target_index = user_pos >> PAGE_CACHE_SHIFT;
1128 * Figure out how many pages we'll be manipulating here. For
1129 * non allocating write, we just change the one
1130 * page. Otherwise, we'll need a whole clusters worth. If we're
1131 * writing past i_size, we only need enough pages to cover the
1132 * last page of the write.
1134 if (new) {
1135 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1136 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1138 * We need the index *past* the last page we could possibly
1139 * touch. This is the page past the end of the write or
1140 * i_size, whichever is greater.
1142 last_byte = max(user_pos + user_len, i_size_read(inode));
1143 BUG_ON(last_byte < 1);
1144 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1145 if ((start + wc->w_num_pages) > end_index)
1146 wc->w_num_pages = end_index - start;
1147 } else {
1148 wc->w_num_pages = 1;
1149 start = target_index;
1152 for(i = 0; i < wc->w_num_pages; i++) {
1153 index = start + i;
1155 if (index == target_index && mmap_page) {
1157 * ocfs2_pagemkwrite() is a little different
1158 * and wants us to directly use the page
1159 * passed in.
1161 lock_page(mmap_page);
1163 /* Exit and let the caller retry */
1164 if (mmap_page->mapping != mapping) {
1165 WARN_ON(mmap_page->mapping);
1166 unlock_page(mmap_page);
1167 ret = -EAGAIN;
1168 goto out;
1171 page_cache_get(mmap_page);
1172 wc->w_pages[i] = mmap_page;
1173 wc->w_target_locked = true;
1174 } else {
1175 wc->w_pages[i] = find_or_create_page(mapping, index,
1176 GFP_NOFS);
1177 if (!wc->w_pages[i]) {
1178 ret = -ENOMEM;
1179 mlog_errno(ret);
1180 goto out;
1183 wait_for_stable_page(wc->w_pages[i]);
1185 if (index == target_index)
1186 wc->w_target_page = wc->w_pages[i];
1188 out:
1189 if (ret)
1190 wc->w_target_locked = false;
1191 return ret;
1195 * Prepare a single cluster for write one cluster into the file.
1197 static int ocfs2_write_cluster(struct address_space *mapping,
1198 u32 phys, unsigned int unwritten,
1199 unsigned int should_zero,
1200 struct ocfs2_alloc_context *data_ac,
1201 struct ocfs2_alloc_context *meta_ac,
1202 struct ocfs2_write_ctxt *wc, u32 cpos,
1203 loff_t user_pos, unsigned user_len)
1205 int ret, i, new;
1206 u64 v_blkno, p_blkno;
1207 struct inode *inode = mapping->host;
1208 struct ocfs2_extent_tree et;
1210 new = phys == 0 ? 1 : 0;
1211 if (new) {
1212 u32 tmp_pos;
1215 * This is safe to call with the page locks - it won't take
1216 * any additional semaphores or cluster locks.
1218 tmp_pos = cpos;
1219 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1220 &tmp_pos, 1, 0, wc->w_di_bh,
1221 wc->w_handle, data_ac,
1222 meta_ac, NULL);
1224 * This shouldn't happen because we must have already
1225 * calculated the correct meta data allocation required. The
1226 * internal tree allocation code should know how to increase
1227 * transaction credits itself.
1229 * If need be, we could handle -EAGAIN for a
1230 * RESTART_TRANS here.
1232 mlog_bug_on_msg(ret == -EAGAIN,
1233 "Inode %llu: EAGAIN return during allocation.\n",
1234 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1235 if (ret < 0) {
1236 mlog_errno(ret);
1237 goto out;
1239 } else if (unwritten) {
1240 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1241 wc->w_di_bh);
1242 ret = ocfs2_mark_extent_written(inode, &et,
1243 wc->w_handle, cpos, 1, phys,
1244 meta_ac, &wc->w_dealloc);
1245 if (ret < 0) {
1246 mlog_errno(ret);
1247 goto out;
1251 if (should_zero)
1252 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1253 else
1254 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1257 * The only reason this should fail is due to an inability to
1258 * find the extent added.
1260 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1261 NULL);
1262 if (ret < 0) {
1263 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1264 "at logical block %llu",
1265 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1266 (unsigned long long)v_blkno);
1267 goto out;
1270 BUG_ON(p_blkno == 0);
1272 for(i = 0; i < wc->w_num_pages; i++) {
1273 int tmpret;
1275 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1276 wc->w_pages[i], cpos,
1277 user_pos, user_len,
1278 should_zero);
1279 if (tmpret) {
1280 mlog_errno(tmpret);
1281 if (ret == 0)
1282 ret = tmpret;
1287 * We only have cleanup to do in case of allocating write.
1289 if (ret && new)
1290 ocfs2_write_failure(inode, wc, user_pos, user_len);
1292 out:
1294 return ret;
1297 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1298 struct ocfs2_alloc_context *data_ac,
1299 struct ocfs2_alloc_context *meta_ac,
1300 struct ocfs2_write_ctxt *wc,
1301 loff_t pos, unsigned len)
1303 int ret, i;
1304 loff_t cluster_off;
1305 unsigned int local_len = len;
1306 struct ocfs2_write_cluster_desc *desc;
1307 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1309 for (i = 0; i < wc->w_clen; i++) {
1310 desc = &wc->w_desc[i];
1313 * We have to make sure that the total write passed in
1314 * doesn't extend past a single cluster.
1316 local_len = len;
1317 cluster_off = pos & (osb->s_clustersize - 1);
1318 if ((cluster_off + local_len) > osb->s_clustersize)
1319 local_len = osb->s_clustersize - cluster_off;
1321 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1322 desc->c_unwritten,
1323 desc->c_needs_zero,
1324 data_ac, meta_ac,
1325 wc, desc->c_cpos, pos, local_len);
1326 if (ret) {
1327 mlog_errno(ret);
1328 goto out;
1331 len -= local_len;
1332 pos += local_len;
1335 ret = 0;
1336 out:
1337 return ret;
1341 * ocfs2_write_end() wants to know which parts of the target page it
1342 * should complete the write on. It's easiest to compute them ahead of
1343 * time when a more complete view of the write is available.
1345 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1346 struct ocfs2_write_ctxt *wc,
1347 loff_t pos, unsigned len, int alloc)
1349 struct ocfs2_write_cluster_desc *desc;
1351 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1352 wc->w_target_to = wc->w_target_from + len;
1354 if (alloc == 0)
1355 return;
1358 * Allocating write - we may have different boundaries based
1359 * on page size and cluster size.
1361 * NOTE: We can no longer compute one value from the other as
1362 * the actual write length and user provided length may be
1363 * different.
1366 if (wc->w_large_pages) {
1368 * We only care about the 1st and last cluster within
1369 * our range and whether they should be zero'd or not. Either
1370 * value may be extended out to the start/end of a
1371 * newly allocated cluster.
1373 desc = &wc->w_desc[0];
1374 if (desc->c_needs_zero)
1375 ocfs2_figure_cluster_boundaries(osb,
1376 desc->c_cpos,
1377 &wc->w_target_from,
1378 NULL);
1380 desc = &wc->w_desc[wc->w_clen - 1];
1381 if (desc->c_needs_zero)
1382 ocfs2_figure_cluster_boundaries(osb,
1383 desc->c_cpos,
1384 NULL,
1385 &wc->w_target_to);
1386 } else {
1387 wc->w_target_from = 0;
1388 wc->w_target_to = PAGE_CACHE_SIZE;
1393 * Populate each single-cluster write descriptor in the write context
1394 * with information about the i/o to be done.
1396 * Returns the number of clusters that will have to be allocated, as
1397 * well as a worst case estimate of the number of extent records that
1398 * would have to be created during a write to an unwritten region.
1400 static int ocfs2_populate_write_desc(struct inode *inode,
1401 struct ocfs2_write_ctxt *wc,
1402 unsigned int *clusters_to_alloc,
1403 unsigned int *extents_to_split)
1405 int ret;
1406 struct ocfs2_write_cluster_desc *desc;
1407 unsigned int num_clusters = 0;
1408 unsigned int ext_flags = 0;
1409 u32 phys = 0;
1410 int i;
1412 *clusters_to_alloc = 0;
1413 *extents_to_split = 0;
1415 for (i = 0; i < wc->w_clen; i++) {
1416 desc = &wc->w_desc[i];
1417 desc->c_cpos = wc->w_cpos + i;
1419 if (num_clusters == 0) {
1421 * Need to look up the next extent record.
1423 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1424 &num_clusters, &ext_flags);
1425 if (ret) {
1426 mlog_errno(ret);
1427 goto out;
1430 /* We should already CoW the refcountd extent. */
1431 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1434 * Assume worst case - that we're writing in
1435 * the middle of the extent.
1437 * We can assume that the write proceeds from
1438 * left to right, in which case the extent
1439 * insert code is smart enough to coalesce the
1440 * next splits into the previous records created.
1442 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1443 *extents_to_split = *extents_to_split + 2;
1444 } else if (phys) {
1446 * Only increment phys if it doesn't describe
1447 * a hole.
1449 phys++;
1453 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1454 * file that got extended. w_first_new_cpos tells us
1455 * where the newly allocated clusters are so we can
1456 * zero them.
1458 if (desc->c_cpos >= wc->w_first_new_cpos) {
1459 BUG_ON(phys == 0);
1460 desc->c_needs_zero = 1;
1463 desc->c_phys = phys;
1464 if (phys == 0) {
1465 desc->c_new = 1;
1466 desc->c_needs_zero = 1;
1467 *clusters_to_alloc = *clusters_to_alloc + 1;
1470 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1471 desc->c_unwritten = 1;
1472 desc->c_needs_zero = 1;
1475 num_clusters--;
1478 ret = 0;
1479 out:
1480 return ret;
1483 static int ocfs2_write_begin_inline(struct address_space *mapping,
1484 struct inode *inode,
1485 struct ocfs2_write_ctxt *wc)
1487 int ret;
1488 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1489 struct page *page;
1490 handle_t *handle;
1491 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1493 page = find_or_create_page(mapping, 0, GFP_NOFS);
1494 if (!page) {
1495 ret = -ENOMEM;
1496 mlog_errno(ret);
1497 goto out;
1500 * If we don't set w_num_pages then this page won't get unlocked
1501 * and freed on cleanup of the write context.
1503 wc->w_pages[0] = wc->w_target_page = page;
1504 wc->w_num_pages = 1;
1506 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1507 if (IS_ERR(handle)) {
1508 ret = PTR_ERR(handle);
1509 mlog_errno(ret);
1510 goto out;
1513 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1514 OCFS2_JOURNAL_ACCESS_WRITE);
1515 if (ret) {
1516 ocfs2_commit_trans(osb, handle);
1518 mlog_errno(ret);
1519 goto out;
1522 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1523 ocfs2_set_inode_data_inline(inode, di);
1525 if (!PageUptodate(page)) {
1526 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1527 if (ret) {
1528 ocfs2_commit_trans(osb, handle);
1530 goto out;
1534 wc->w_handle = handle;
1535 out:
1536 return ret;
1539 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1541 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1543 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1544 return 1;
1545 return 0;
1548 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1549 struct inode *inode, loff_t pos,
1550 unsigned len, struct page *mmap_page,
1551 struct ocfs2_write_ctxt *wc)
1553 int ret, written = 0;
1554 loff_t end = pos + len;
1555 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1556 struct ocfs2_dinode *di = NULL;
1558 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1559 len, (unsigned long long)pos,
1560 oi->ip_dyn_features);
1563 * Handle inodes which already have inline data 1st.
1565 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1566 if (mmap_page == NULL &&
1567 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1568 goto do_inline_write;
1571 * The write won't fit - we have to give this inode an
1572 * inline extent list now.
1574 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1575 if (ret)
1576 mlog_errno(ret);
1577 goto out;
1581 * Check whether the inode can accept inline data.
1583 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1584 return 0;
1587 * Check whether the write can fit.
1589 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1590 if (mmap_page ||
1591 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1592 return 0;
1594 do_inline_write:
1595 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1596 if (ret) {
1597 mlog_errno(ret);
1598 goto out;
1602 * This signals to the caller that the data can be written
1603 * inline.
1605 written = 1;
1606 out:
1607 return written ? written : ret;
1611 * This function only does anything for file systems which can't
1612 * handle sparse files.
1614 * What we want to do here is fill in any hole between the current end
1615 * of allocation and the end of our write. That way the rest of the
1616 * write path can treat it as an non-allocating write, which has no
1617 * special case code for sparse/nonsparse files.
1619 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1620 struct buffer_head *di_bh,
1621 loff_t pos, unsigned len,
1622 struct ocfs2_write_ctxt *wc)
1624 int ret;
1625 loff_t newsize = pos + len;
1627 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1629 if (newsize <= i_size_read(inode))
1630 return 0;
1632 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1633 if (ret)
1634 mlog_errno(ret);
1636 wc->w_first_new_cpos =
1637 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1639 return ret;
1642 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1643 loff_t pos)
1645 int ret = 0;
1647 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1648 if (pos > i_size_read(inode))
1649 ret = ocfs2_zero_extend(inode, di_bh, pos);
1651 return ret;
1655 * Try to flush truncate logs if we can free enough clusters from it.
1656 * As for return value, "< 0" means error, "0" no space and "1" means
1657 * we have freed enough spaces and let the caller try to allocate again.
1659 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1660 unsigned int needed)
1662 tid_t target;
1663 int ret = 0;
1664 unsigned int truncated_clusters;
1666 mutex_lock(&osb->osb_tl_inode->i_mutex);
1667 truncated_clusters = osb->truncated_clusters;
1668 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1671 * Check whether we can succeed in allocating if we free
1672 * the truncate log.
1674 if (truncated_clusters < needed)
1675 goto out;
1677 ret = ocfs2_flush_truncate_log(osb);
1678 if (ret) {
1679 mlog_errno(ret);
1680 goto out;
1683 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1684 jbd2_log_wait_commit(osb->journal->j_journal, target);
1685 ret = 1;
1687 out:
1688 return ret;
1691 int ocfs2_write_begin_nolock(struct file *filp,
1692 struct address_space *mapping,
1693 loff_t pos, unsigned len, unsigned flags,
1694 struct page **pagep, void **fsdata,
1695 struct buffer_head *di_bh, struct page *mmap_page)
1697 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1698 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1699 struct ocfs2_write_ctxt *wc;
1700 struct inode *inode = mapping->host;
1701 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1702 struct ocfs2_dinode *di;
1703 struct ocfs2_alloc_context *data_ac = NULL;
1704 struct ocfs2_alloc_context *meta_ac = NULL;
1705 handle_t *handle;
1706 struct ocfs2_extent_tree et;
1707 int try_free = 1, ret1;
1709 try_again:
1710 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1711 if (ret) {
1712 mlog_errno(ret);
1713 return ret;
1716 if (ocfs2_supports_inline_data(osb)) {
1717 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1718 mmap_page, wc);
1719 if (ret == 1) {
1720 ret = 0;
1721 goto success;
1723 if (ret < 0) {
1724 mlog_errno(ret);
1725 goto out;
1729 if (ocfs2_sparse_alloc(osb))
1730 ret = ocfs2_zero_tail(inode, di_bh, pos);
1731 else
1732 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1733 wc);
1734 if (ret) {
1735 mlog_errno(ret);
1736 goto out;
1739 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1740 if (ret < 0) {
1741 mlog_errno(ret);
1742 goto out;
1743 } else if (ret == 1) {
1744 clusters_need = wc->w_clen;
1745 ret = ocfs2_refcount_cow(inode, di_bh,
1746 wc->w_cpos, wc->w_clen, UINT_MAX);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1753 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1754 &extents_to_split);
1755 if (ret) {
1756 mlog_errno(ret);
1757 goto out;
1759 clusters_need += clusters_to_alloc;
1761 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1763 trace_ocfs2_write_begin_nolock(
1764 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1765 (long long)i_size_read(inode),
1766 le32_to_cpu(di->i_clusters),
1767 pos, len, flags, mmap_page,
1768 clusters_to_alloc, extents_to_split);
1771 * We set w_target_from, w_target_to here so that
1772 * ocfs2_write_end() knows which range in the target page to
1773 * write out. An allocation requires that we write the entire
1774 * cluster range.
1776 if (clusters_to_alloc || extents_to_split) {
1778 * XXX: We are stretching the limits of
1779 * ocfs2_lock_allocators(). It greatly over-estimates
1780 * the work to be done.
1782 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1783 wc->w_di_bh);
1784 ret = ocfs2_lock_allocators(inode, &et,
1785 clusters_to_alloc, extents_to_split,
1786 &data_ac, &meta_ac);
1787 if (ret) {
1788 mlog_errno(ret);
1789 goto out;
1792 if (data_ac)
1793 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1795 credits = ocfs2_calc_extend_credits(inode->i_sb,
1796 &di->id2.i_list);
1801 * We have to zero sparse allocated clusters, unwritten extent clusters,
1802 * and non-sparse clusters we just extended. For non-sparse writes,
1803 * we know zeros will only be needed in the first and/or last cluster.
1805 if (clusters_to_alloc || extents_to_split ||
1806 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1807 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1808 cluster_of_pages = 1;
1809 else
1810 cluster_of_pages = 0;
1812 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1814 handle = ocfs2_start_trans(osb, credits);
1815 if (IS_ERR(handle)) {
1816 ret = PTR_ERR(handle);
1817 mlog_errno(ret);
1818 goto out;
1821 wc->w_handle = handle;
1823 if (clusters_to_alloc) {
1824 ret = dquot_alloc_space_nodirty(inode,
1825 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1826 if (ret)
1827 goto out_commit;
1830 * We don't want this to fail in ocfs2_write_end(), so do it
1831 * here.
1833 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1834 OCFS2_JOURNAL_ACCESS_WRITE);
1835 if (ret) {
1836 mlog_errno(ret);
1837 goto out_quota;
1841 * Fill our page array first. That way we've grabbed enough so
1842 * that we can zero and flush if we error after adding the
1843 * extent.
1845 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1846 cluster_of_pages, mmap_page);
1847 if (ret && ret != -EAGAIN) {
1848 mlog_errno(ret);
1849 goto out_quota;
1853 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1854 * the target page. In this case, we exit with no error and no target
1855 * page. This will trigger the caller, page_mkwrite(), to re-try
1856 * the operation.
1858 if (ret == -EAGAIN) {
1859 BUG_ON(wc->w_target_page);
1860 ret = 0;
1861 goto out_quota;
1864 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1865 len);
1866 if (ret) {
1867 mlog_errno(ret);
1868 goto out_quota;
1871 if (data_ac)
1872 ocfs2_free_alloc_context(data_ac);
1873 if (meta_ac)
1874 ocfs2_free_alloc_context(meta_ac);
1876 success:
1877 *pagep = wc->w_target_page;
1878 *fsdata = wc;
1879 return 0;
1880 out_quota:
1881 if (clusters_to_alloc)
1882 dquot_free_space(inode,
1883 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1884 out_commit:
1885 ocfs2_commit_trans(osb, handle);
1887 out:
1888 ocfs2_free_write_ctxt(wc);
1890 if (data_ac) {
1891 ocfs2_free_alloc_context(data_ac);
1892 data_ac = NULL;
1894 if (meta_ac) {
1895 ocfs2_free_alloc_context(meta_ac);
1896 meta_ac = NULL;
1899 if (ret == -ENOSPC && try_free) {
1901 * Try to free some truncate log so that we can have enough
1902 * clusters to allocate.
1904 try_free = 0;
1906 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1907 if (ret1 == 1)
1908 goto try_again;
1910 if (ret1 < 0)
1911 mlog_errno(ret1);
1914 return ret;
1917 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1918 loff_t pos, unsigned len, unsigned flags,
1919 struct page **pagep, void **fsdata)
1921 int ret;
1922 struct buffer_head *di_bh = NULL;
1923 struct inode *inode = mapping->host;
1925 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1926 if (ret) {
1927 mlog_errno(ret);
1928 return ret;
1932 * Take alloc sem here to prevent concurrent lookups. That way
1933 * the mapping, zeroing and tree manipulation within
1934 * ocfs2_write() will be safe against ->readpage(). This
1935 * should also serve to lock out allocation from a shared
1936 * writeable region.
1938 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1940 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1941 fsdata, di_bh, NULL);
1942 if (ret) {
1943 mlog_errno(ret);
1944 goto out_fail;
1947 brelse(di_bh);
1949 return 0;
1951 out_fail:
1952 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1954 brelse(di_bh);
1955 ocfs2_inode_unlock(inode, 1);
1957 return ret;
1960 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1961 unsigned len, unsigned *copied,
1962 struct ocfs2_dinode *di,
1963 struct ocfs2_write_ctxt *wc)
1965 void *kaddr;
1967 if (unlikely(*copied < len)) {
1968 if (!PageUptodate(wc->w_target_page)) {
1969 *copied = 0;
1970 return;
1974 kaddr = kmap_atomic(wc->w_target_page);
1975 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1976 kunmap_atomic(kaddr);
1978 trace_ocfs2_write_end_inline(
1979 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1980 (unsigned long long)pos, *copied,
1981 le16_to_cpu(di->id2.i_data.id_count),
1982 le16_to_cpu(di->i_dyn_features));
1985 int ocfs2_write_end_nolock(struct address_space *mapping,
1986 loff_t pos, unsigned len, unsigned copied,
1987 struct page *page, void *fsdata)
1989 int i;
1990 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1991 struct inode *inode = mapping->host;
1992 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1993 struct ocfs2_write_ctxt *wc = fsdata;
1994 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1995 handle_t *handle = wc->w_handle;
1996 struct page *tmppage;
1998 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1999 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2000 goto out_write_size;
2003 if (unlikely(copied < len)) {
2004 if (!PageUptodate(wc->w_target_page))
2005 copied = 0;
2007 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2008 start+len);
2010 flush_dcache_page(wc->w_target_page);
2012 for(i = 0; i < wc->w_num_pages; i++) {
2013 tmppage = wc->w_pages[i];
2015 if (tmppage == wc->w_target_page) {
2016 from = wc->w_target_from;
2017 to = wc->w_target_to;
2019 BUG_ON(from > PAGE_CACHE_SIZE ||
2020 to > PAGE_CACHE_SIZE ||
2021 to < from);
2022 } else {
2024 * Pages adjacent to the target (if any) imply
2025 * a hole-filling write in which case we want
2026 * to flush their entire range.
2028 from = 0;
2029 to = PAGE_CACHE_SIZE;
2032 if (page_has_buffers(tmppage)) {
2033 if (ocfs2_should_order_data(inode))
2034 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2035 block_commit_write(tmppage, from, to);
2039 out_write_size:
2040 pos += copied;
2041 if (pos > i_size_read(inode)) {
2042 i_size_write(inode, pos);
2043 mark_inode_dirty(inode);
2045 inode->i_blocks = ocfs2_inode_sector_count(inode);
2046 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2047 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2048 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2049 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2050 ocfs2_journal_dirty(handle, wc->w_di_bh);
2052 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2053 * lock, or it will cause a deadlock since journal commit threads holds
2054 * this lock and will ask for the page lock when flushing the data.
2055 * put it here to preserve the unlock order.
2057 ocfs2_unlock_pages(wc);
2059 ocfs2_commit_trans(osb, handle);
2061 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2063 brelse(wc->w_di_bh);
2064 kfree(wc);
2066 return copied;
2069 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2070 loff_t pos, unsigned len, unsigned copied,
2071 struct page *page, void *fsdata)
2073 int ret;
2074 struct inode *inode = mapping->host;
2076 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2078 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2079 ocfs2_inode_unlock(inode, 1);
2081 return ret;
2084 const struct address_space_operations ocfs2_aops = {
2085 .readpage = ocfs2_readpage,
2086 .readpages = ocfs2_readpages,
2087 .writepage = ocfs2_writepage,
2088 .write_begin = ocfs2_write_begin,
2089 .write_end = ocfs2_write_end,
2090 .bmap = ocfs2_bmap,
2091 .direct_IO = ocfs2_direct_IO,
2092 .invalidatepage = block_invalidatepage,
2093 .releasepage = ocfs2_releasepage,
2094 .migratepage = buffer_migrate_page,
2095 .is_partially_uptodate = block_is_partially_uptodate,
2096 .error_remove_page = generic_error_remove_page,