2 * Copyright (C) 2001-2004 by David Brownell
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or (at your
7 * option) any later version.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 /* this file is part of ehci-hcd.c */
21 /*-------------------------------------------------------------------------*/
24 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
26 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
27 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28 * buffers needed for the larger number). We use one QH per endpoint, queue
29 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
31 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32 * interrupts) needs careful scheduling. Performance improvements can be
33 * an ongoing challenge. That's in "ehci-sched.c".
35 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37 * (b) special fields in qh entries or (c) split iso entries. TTs will
38 * buffer low/full speed data so the host collects it at high speed.
41 /*-------------------------------------------------------------------------*/
43 /* fill a qtd, returning how much of the buffer we were able to queue up */
46 qtd_fill(struct ehci_hcd
*ehci
, struct ehci_qtd
*qtd
, dma_addr_t buf
,
47 size_t len
, int token
, int maxpacket
)
52 /* one buffer entry per 4K ... first might be short or unaligned */
53 qtd
->hw_buf
[0] = cpu_to_hc32(ehci
, (u32
)addr
);
54 qtd
->hw_buf_hi
[0] = cpu_to_hc32(ehci
, (u32
)(addr
>> 32));
55 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
56 if (likely (len
< count
)) /* ... iff needed */
62 /* per-qtd limit: from 16K to 20K (best alignment) */
63 for (i
= 1; count
< len
&& i
< 5; i
++) {
65 qtd
->hw_buf
[i
] = cpu_to_hc32(ehci
, (u32
)addr
);
66 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(ehci
,
69 if ((count
+ 0x1000) < len
)
75 /* short packets may only terminate transfers */
77 count
-= (count
% maxpacket
);
79 qtd
->hw_token
= cpu_to_hc32(ehci
, (count
<< 16) | token
);
85 /*-------------------------------------------------------------------------*/
88 qh_update (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
90 struct ehci_qh_hw
*hw
= qh
->hw
;
92 /* writes to an active overlay are unsafe */
93 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
95 hw
->hw_qtd_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
96 hw
->hw_alt_next
= EHCI_LIST_END(ehci
);
98 /* Except for control endpoints, we make hardware maintain data
99 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
100 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
103 if (!(hw
->hw_info1
& cpu_to_hc32(ehci
, 1 << 14))) {
104 unsigned is_out
, epnum
;
107 epnum
= (hc32_to_cpup(ehci
, &hw
->hw_info1
) >> 8) & 0x0f;
108 if (unlikely (!usb_gettoggle (qh
->dev
, epnum
, is_out
))) {
109 hw
->hw_token
&= ~cpu_to_hc32(ehci
, QTD_TOGGLE
);
110 usb_settoggle (qh
->dev
, epnum
, is_out
, 1);
114 hw
->hw_token
&= cpu_to_hc32(ehci
, QTD_TOGGLE
| QTD_STS_PING
);
117 /* if it weren't for a common silicon quirk (writing the dummy into the qh
118 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
119 * recovery (including urb dequeue) would need software changes to a QH...
122 qh_refresh (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
124 struct ehci_qtd
*qtd
;
126 if (list_empty (&qh
->qtd_list
))
129 qtd
= list_entry (qh
->qtd_list
.next
,
130 struct ehci_qtd
, qtd_list
);
131 /* first qtd may already be partially processed */
132 if (cpu_to_hc32(ehci
, qtd
->qtd_dma
) == qh
->hw
->hw_current
)
137 qh_update (ehci
, qh
, qtd
);
140 /*-------------------------------------------------------------------------*/
142 static void qh_link_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
144 static void ehci_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
145 struct usb_host_endpoint
*ep
)
147 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
148 struct ehci_qh
*qh
= ep
->hcpriv
;
151 spin_lock_irqsave(&ehci
->lock
, flags
);
153 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
154 && ehci
->rh_state
== EHCI_RH_RUNNING
)
155 qh_link_async(ehci
, qh
);
156 spin_unlock_irqrestore(&ehci
->lock
, flags
);
159 static void ehci_clear_tt_buffer(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
,
160 struct urb
*urb
, u32 token
)
163 /* If an async split transaction gets an error or is unlinked,
164 * the TT buffer may be left in an indeterminate state. We
165 * have to clear the TT buffer.
167 * Note: this routine is never called for Isochronous transfers.
169 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
171 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
173 "clear tt buffer port %d, a%d ep%d t%08x\n",
174 urb
->dev
->ttport
, urb
->dev
->devnum
,
175 usb_pipeendpoint(urb
->pipe
), token
);
177 if (!ehci_is_TDI(ehci
)
178 || urb
->dev
->tt
->hub
!=
179 ehci_to_hcd(ehci
)->self
.root_hub
) {
180 if (usb_hub_clear_tt_buffer(urb
) == 0)
184 /* REVISIT ARC-derived cores don't clear the root
185 * hub TT buffer in this way...
191 static int qtd_copy_status (
192 struct ehci_hcd
*ehci
,
198 int status
= -EINPROGRESS
;
200 /* count IN/OUT bytes, not SETUP (even short packets) */
201 if (likely (QTD_PID (token
) != 2))
202 urb
->actual_length
+= length
- QTD_LENGTH (token
);
204 /* don't modify error codes */
205 if (unlikely(urb
->unlinked
))
208 /* force cleanup after short read; not always an error */
209 if (unlikely (IS_SHORT_READ (token
)))
212 /* serious "can't proceed" faults reported by the hardware */
213 if (token
& QTD_STS_HALT
) {
214 if (token
& QTD_STS_BABBLE
) {
215 /* FIXME "must" disable babbling device's port too */
217 /* CERR nonzero + halt --> stall */
218 } else if (QTD_CERR(token
)) {
221 /* In theory, more than one of the following bits can be set
222 * since they are sticky and the transaction is retried.
223 * Which to test first is rather arbitrary.
225 } else if (token
& QTD_STS_MMF
) {
226 /* fs/ls interrupt xfer missed the complete-split */
228 } else if (token
& QTD_STS_DBE
) {
229 status
= (QTD_PID (token
) == 1) /* IN ? */
230 ? -ENOSR
/* hc couldn't read data */
231 : -ECOMM
; /* hc couldn't write data */
232 } else if (token
& QTD_STS_XACT
) {
233 /* timeout, bad CRC, wrong PID, etc */
234 ehci_dbg(ehci
, "devpath %s ep%d%s 3strikes\n",
236 usb_pipeendpoint(urb
->pipe
),
237 usb_pipein(urb
->pipe
) ? "in" : "out");
239 } else { /* unknown */
244 "dev%d ep%d%s qtd token %08x --> status %d\n",
245 usb_pipedevice (urb
->pipe
),
246 usb_pipeendpoint (urb
->pipe
),
247 usb_pipein (urb
->pipe
) ? "in" : "out",
255 ehci_urb_done(struct ehci_hcd
*ehci
, struct urb
*urb
, int status
)
256 __releases(ehci
->lock
)
257 __acquires(ehci
->lock
)
259 if (likely (urb
->hcpriv
!= NULL
)) {
260 struct ehci_qh
*qh
= (struct ehci_qh
*) urb
->hcpriv
;
262 /* S-mask in a QH means it's an interrupt urb */
263 if ((qh
->hw
->hw_info2
& cpu_to_hc32(ehci
, QH_SMASK
)) != 0) {
265 /* ... update hc-wide periodic stats (for usbfs) */
266 ehci_to_hcd(ehci
)->self
.bandwidth_int_reqs
--;
271 if (unlikely(urb
->unlinked
)) {
272 COUNT(ehci
->stats
.unlink
);
274 /* report non-error and short read status as zero */
275 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
277 COUNT(ehci
->stats
.complete
);
280 #ifdef EHCI_URB_TRACE
282 "%s %s urb %p ep%d%s status %d len %d/%d\n",
283 __func__
, urb
->dev
->devpath
, urb
,
284 usb_pipeendpoint (urb
->pipe
),
285 usb_pipein (urb
->pipe
) ? "in" : "out",
287 urb
->actual_length
, urb
->transfer_buffer_length
);
290 /* complete() can reenter this HCD */
291 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
292 spin_unlock (&ehci
->lock
);
293 usb_hcd_giveback_urb(ehci_to_hcd(ehci
), urb
, status
);
294 spin_lock (&ehci
->lock
);
297 static void start_unlink_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
298 static void unlink_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
300 static int qh_schedule (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
303 * Process and free completed qtds for a qh, returning URBs to drivers.
304 * Chases up to qh->hw_current. Returns number of completions called,
305 * indicating how much "real" work we did.
308 qh_completions (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
310 struct ehci_qtd
*last
, *end
= qh
->dummy
;
311 struct list_head
*entry
, *tmp
;
316 struct ehci_qh_hw
*hw
= qh
->hw
;
318 if (unlikely (list_empty (&qh
->qtd_list
)))
321 /* completions (or tasks on other cpus) must never clobber HALT
322 * till we've gone through and cleaned everything up, even when
323 * they add urbs to this qh's queue or mark them for unlinking.
325 * NOTE: unlinking expects to be done in queue order.
327 * It's a bug for qh->qh_state to be anything other than
328 * QH_STATE_IDLE, unless our caller is scan_async() or
331 state
= qh
->qh_state
;
332 qh
->qh_state
= QH_STATE_COMPLETING
;
333 stopped
= (state
== QH_STATE_IDLE
);
337 last_status
= -EINPROGRESS
;
338 qh
->needs_rescan
= 0;
340 /* remove de-activated QTDs from front of queue.
341 * after faults (including short reads), cleanup this urb
342 * then let the queue advance.
343 * if queue is stopped, handles unlinks.
345 list_for_each_safe (entry
, tmp
, &qh
->qtd_list
) {
346 struct ehci_qtd
*qtd
;
350 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
353 /* clean up any state from previous QTD ...*/
355 if (likely (last
->urb
!= urb
)) {
356 ehci_urb_done(ehci
, last
->urb
, last_status
);
358 last_status
= -EINPROGRESS
;
360 ehci_qtd_free (ehci
, last
);
364 /* ignore urbs submitted during completions we reported */
368 /* hardware copies qtd out of qh overlay */
370 token
= hc32_to_cpu(ehci
, qtd
->hw_token
);
372 /* always clean up qtds the hc de-activated */
374 if ((token
& QTD_STS_ACTIVE
) == 0) {
376 /* on STALL, error, and short reads this urb must
377 * complete and all its qtds must be recycled.
379 if ((token
& QTD_STS_HALT
) != 0) {
381 /* retry transaction errors until we
382 * reach the software xacterr limit
384 if ((token
& QTD_STS_XACT
) &&
385 QTD_CERR(token
) == 0 &&
386 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
389 "detected XactErr len %zu/%zu retry %d\n",
390 qtd
->length
- QTD_LENGTH(token
), qtd
->length
, qh
->xacterrs
);
392 /* reset the token in the qtd and the
393 * qh overlay (which still contains
394 * the qtd) so that we pick up from
397 token
&= ~QTD_STS_HALT
;
398 token
|= QTD_STS_ACTIVE
|
399 (EHCI_TUNE_CERR
<< 10);
400 qtd
->hw_token
= cpu_to_hc32(ehci
,
403 hw
->hw_token
= cpu_to_hc32(ehci
,
409 /* magic dummy for some short reads; qh won't advance.
410 * that silicon quirk can kick in with this dummy too.
412 * other short reads won't stop the queue, including
413 * control transfers (status stage handles that) or
414 * most other single-qtd reads ... the queue stops if
415 * URB_SHORT_NOT_OK was set so the driver submitting
416 * the urbs could clean it up.
418 } else if (IS_SHORT_READ (token
)
419 && !(qtd
->hw_alt_next
420 & EHCI_LIST_END(ehci
))) {
424 /* stop scanning when we reach qtds the hc is using */
425 } else if (likely (!stopped
426 && ehci
->rh_state
== EHCI_RH_RUNNING
)) {
429 /* scan the whole queue for unlinks whenever it stops */
433 /* cancel everything if we halt, suspend, etc */
434 if (ehci
->rh_state
!= EHCI_RH_RUNNING
)
435 last_status
= -ESHUTDOWN
;
437 /* this qtd is active; skip it unless a previous qtd
438 * for its urb faulted, or its urb was canceled.
440 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
443 /* qh unlinked; token in overlay may be most current */
444 if (state
== QH_STATE_IDLE
445 && cpu_to_hc32(ehci
, qtd
->qtd_dma
)
447 token
= hc32_to_cpu(ehci
, hw
->hw_token
);
449 /* An unlink may leave an incomplete
450 * async transaction in the TT buffer.
451 * We have to clear it.
453 ehci_clear_tt_buffer(ehci
, qh
, urb
, token
);
457 /* unless we already know the urb's status, collect qtd status
458 * and update count of bytes transferred. in common short read
459 * cases with only one data qtd (including control transfers),
460 * queue processing won't halt. but with two or more qtds (for
461 * example, with a 32 KB transfer), when the first qtd gets a
462 * short read the second must be removed by hand.
464 if (last_status
== -EINPROGRESS
) {
465 last_status
= qtd_copy_status(ehci
, urb
,
467 if (last_status
== -EREMOTEIO
469 & EHCI_LIST_END(ehci
)))
470 last_status
= -EINPROGRESS
;
472 /* As part of low/full-speed endpoint-halt processing
473 * we must clear the TT buffer (11.17.5).
475 if (unlikely(last_status
!= -EINPROGRESS
&&
476 last_status
!= -EREMOTEIO
)) {
477 /* The TT's in some hubs malfunction when they
478 * receive this request following a STALL (they
479 * stop sending isochronous packets). Since a
480 * STALL can't leave the TT buffer in a busy
481 * state (if you believe Figures 11-48 - 11-51
482 * in the USB 2.0 spec), we won't clear the TT
483 * buffer in this case. Strictly speaking this
484 * is a violation of the spec.
486 if (last_status
!= -EPIPE
)
487 ehci_clear_tt_buffer(ehci
, qh
, urb
,
492 /* if we're removing something not at the queue head,
493 * patch the hardware queue pointer.
495 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
496 last
= list_entry (qtd
->qtd_list
.prev
,
497 struct ehci_qtd
, qtd_list
);
498 last
->hw_next
= qtd
->hw_next
;
501 /* remove qtd; it's recycled after possible urb completion */
502 list_del (&qtd
->qtd_list
);
505 /* reinit the xacterr counter for the next qtd */
509 /* last urb's completion might still need calling */
510 if (likely (last
!= NULL
)) {
511 ehci_urb_done(ehci
, last
->urb
, last_status
);
513 ehci_qtd_free (ehci
, last
);
516 /* Do we need to rescan for URBs dequeued during a giveback? */
517 if (unlikely(qh
->needs_rescan
)) {
518 /* If the QH is already unlinked, do the rescan now. */
519 if (state
== QH_STATE_IDLE
)
522 /* Otherwise we have to wait until the QH is fully unlinked.
523 * Our caller will start an unlink if qh->needs_rescan is
524 * set. But if an unlink has already started, nothing needs
527 if (state
!= QH_STATE_LINKED
)
528 qh
->needs_rescan
= 0;
531 /* restore original state; caller must unlink or relink */
532 qh
->qh_state
= state
;
534 /* be sure the hardware's done with the qh before refreshing
535 * it after fault cleanup, or recovering from silicon wrongly
536 * overlaying the dummy qtd (which reduces DMA chatter).
538 if (stopped
!= 0 || hw
->hw_qtd_next
== EHCI_LIST_END(ehci
)) {
541 qh_refresh(ehci
, qh
);
543 case QH_STATE_LINKED
:
544 /* We won't refresh a QH that's linked (after the HC
545 * stopped the queue). That avoids a race:
546 * - HC reads first part of QH;
547 * - CPU updates that first part and the token;
548 * - HC reads rest of that QH, including token
549 * Result: HC gets an inconsistent image, and then
550 * DMAs to/from the wrong memory (corrupting it).
552 * That should be rare for interrupt transfers,
553 * except maybe high bandwidth ...
556 /* Tell the caller to start an unlink */
557 qh
->needs_rescan
= 1;
559 /* otherwise, unlink already started */
566 /*-------------------------------------------------------------------------*/
568 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
569 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
570 // ... and packet size, for any kind of endpoint descriptor
571 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
574 * reverse of qh_urb_transaction: free a list of TDs.
575 * used for cleanup after errors, before HC sees an URB's TDs.
577 static void qtd_list_free (
578 struct ehci_hcd
*ehci
,
580 struct list_head
*qtd_list
582 struct list_head
*entry
, *temp
;
584 list_for_each_safe (entry
, temp
, qtd_list
) {
585 struct ehci_qtd
*qtd
;
587 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
588 list_del (&qtd
->qtd_list
);
589 ehci_qtd_free (ehci
, qtd
);
594 * create a list of filled qtds for this URB; won't link into qh.
596 static struct list_head
*
598 struct ehci_hcd
*ehci
,
600 struct list_head
*head
,
603 struct ehci_qtd
*qtd
, *qtd_prev
;
605 int len
, this_sg_len
, maxpacket
;
609 struct scatterlist
*sg
;
612 * URBs map to sequences of QTDs: one logical transaction
614 qtd
= ehci_qtd_alloc (ehci
, flags
);
617 list_add_tail (&qtd
->qtd_list
, head
);
620 token
= QTD_STS_ACTIVE
;
621 token
|= (EHCI_TUNE_CERR
<< 10);
622 /* for split transactions, SplitXState initialized to zero */
624 len
= urb
->transfer_buffer_length
;
625 is_input
= usb_pipein (urb
->pipe
);
626 if (usb_pipecontrol (urb
->pipe
)) {
628 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
629 sizeof (struct usb_ctrlrequest
),
630 token
| (2 /* "setup" */ << 8), 8);
632 /* ... and always at least one more pid */
635 qtd
= ehci_qtd_alloc (ehci
, flags
);
639 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
640 list_add_tail (&qtd
->qtd_list
, head
);
642 /* for zero length DATA stages, STATUS is always IN */
644 token
|= (1 /* "in" */ << 8);
648 * data transfer stage: buffer setup
651 if (len
> 0 && i
> 0) {
653 buf
= sg_dma_address(sg
);
655 /* urb->transfer_buffer_length may be smaller than the
656 * size of the scatterlist (or vice versa)
658 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
661 buf
= urb
->transfer_dma
;
666 token
|= (1 /* "in" */ << 8);
667 /* else it's already initted to "out" pid (0 << 8) */
669 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
672 * buffer gets wrapped in one or more qtds;
673 * last one may be "short" (including zero len)
674 * and may serve as a control status ack
679 this_qtd_len
= qtd_fill(ehci
, qtd
, buf
, this_sg_len
, token
,
681 this_sg_len
-= this_qtd_len
;
686 * short reads advance to a "magic" dummy instead of the next
687 * qtd ... that forces the queue to stop, for manual cleanup.
688 * (this will usually be overridden later.)
691 qtd
->hw_alt_next
= ehci
->async
->hw
->hw_alt_next
;
693 /* qh makes control packets use qtd toggle; maybe switch it */
694 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
697 if (likely(this_sg_len
<= 0)) {
698 if (--i
<= 0 || len
<= 0)
701 buf
= sg_dma_address(sg
);
702 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
706 qtd
= ehci_qtd_alloc (ehci
, flags
);
710 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
711 list_add_tail (&qtd
->qtd_list
, head
);
715 * unless the caller requires manual cleanup after short reads,
716 * have the alt_next mechanism keep the queue running after the
717 * last data qtd (the only one, for control and most other cases).
719 if (likely ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
720 || usb_pipecontrol (urb
->pipe
)))
721 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
724 * control requests may need a terminating data "status" ack;
725 * other OUT ones may need a terminating short packet
728 if (likely (urb
->transfer_buffer_length
!= 0)) {
731 if (usb_pipecontrol (urb
->pipe
)) {
733 token
^= 0x0100; /* "in" <--> "out" */
734 token
|= QTD_TOGGLE
; /* force DATA1 */
735 } else if (usb_pipeout(urb
->pipe
)
736 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
737 && !(urb
->transfer_buffer_length
% maxpacket
)) {
742 qtd
= ehci_qtd_alloc (ehci
, flags
);
746 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
747 list_add_tail (&qtd
->qtd_list
, head
);
749 /* never any data in such packets */
750 qtd_fill(ehci
, qtd
, 0, 0, token
, 0);
754 /* by default, enable interrupt on urb completion */
755 if (likely (!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
756 qtd
->hw_token
|= cpu_to_hc32(ehci
, QTD_IOC
);
760 qtd_list_free (ehci
, urb
, head
);
764 /*-------------------------------------------------------------------------*/
766 // Would be best to create all qh's from config descriptors,
767 // when each interface/altsetting is established. Unlink
768 // any previous qh and cancel its urbs first; endpoints are
769 // implicitly reset then (data toggle too).
770 // That'd mean updating how usbcore talks to HCDs. (2.7?)
774 * Each QH holds a qtd list; a QH is used for everything except iso.
776 * For interrupt urbs, the scheduler must set the microframe scheduling
777 * mask(s) each time the QH gets scheduled. For highspeed, that's
778 * just one microframe in the s-mask. For split interrupt transactions
779 * there are additional complications: c-mask, maybe FSTNs.
781 static struct ehci_qh
*
783 struct ehci_hcd
*ehci
,
787 struct ehci_qh
*qh
= ehci_qh_alloc (ehci
, flags
);
788 u32 info1
= 0, info2
= 0;
791 struct usb_tt
*tt
= urb
->dev
->tt
;
792 struct ehci_qh_hw
*hw
;
798 * init endpoint/device data for this QH
800 info1
|= usb_pipeendpoint (urb
->pipe
) << 8;
801 info1
|= usb_pipedevice (urb
->pipe
) << 0;
803 is_input
= usb_pipein (urb
->pipe
);
804 type
= usb_pipetype (urb
->pipe
);
805 maxp
= usb_maxpacket (urb
->dev
, urb
->pipe
, !is_input
);
807 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
808 * acts like up to 3KB, but is built from smaller packets.
810 if (max_packet(maxp
) > 1024) {
811 ehci_dbg(ehci
, "bogus qh maxpacket %d\n", max_packet(maxp
));
815 /* Compute interrupt scheduling parameters just once, and save.
816 * - allowing for high bandwidth, how many nsec/uframe are used?
817 * - split transactions need a second CSPLIT uframe; same question
818 * - splits also need a schedule gap (for full/low speed I/O)
819 * - qh has a polling interval
821 * For control/bulk requests, the HC or TT handles these.
823 if (type
== PIPE_INTERRUPT
) {
824 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
826 hb_mult(maxp
) * max_packet(maxp
)));
827 qh
->start
= NO_FRAME
;
828 qh
->stamp
= ehci
->periodic_stamp
;
830 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
834 qh
->period
= urb
->interval
>> 3;
835 if (qh
->period
== 0 && urb
->interval
!= 1) {
836 /* NOTE interval 2 or 4 uframes could work.
837 * But interval 1 scheduling is simpler, and
838 * includes high bandwidth.
841 } else if (qh
->period
> ehci
->periodic_size
) {
842 qh
->period
= ehci
->periodic_size
;
843 urb
->interval
= qh
->period
<< 3;
848 /* gap is f(FS/LS transfer times) */
849 qh
->gap_uf
= 1 + usb_calc_bus_time (urb
->dev
->speed
,
850 is_input
, 0, maxp
) / (125 * 1000);
852 /* FIXME this just approximates SPLIT/CSPLIT times */
853 if (is_input
) { // SPLIT, gap, CSPLIT+DATA
854 qh
->c_usecs
= qh
->usecs
+ HS_USECS (0);
855 qh
->usecs
= HS_USECS (1);
856 } else { // SPLIT+DATA, gap, CSPLIT
857 qh
->usecs
+= HS_USECS (1);
858 qh
->c_usecs
= HS_USECS (0);
861 think_time
= tt
? tt
->think_time
: 0;
862 qh
->tt_usecs
= NS_TO_US (think_time
+
863 usb_calc_bus_time (urb
->dev
->speed
,
864 is_input
, 0, max_packet (maxp
)));
865 qh
->period
= urb
->interval
;
866 if (qh
->period
> ehci
->periodic_size
) {
867 qh
->period
= ehci
->periodic_size
;
868 urb
->interval
= qh
->period
;
873 /* support for tt scheduling, and access to toggles */
877 switch (urb
->dev
->speed
) {
879 info1
|= (1 << 12); /* EPS "low" */
883 /* EPS 0 means "full" */
884 if (type
!= PIPE_INTERRUPT
)
885 info1
|= (EHCI_TUNE_RL_TT
<< 28);
886 if (type
== PIPE_CONTROL
) {
887 info1
|= (1 << 27); /* for TT */
888 info1
|= 1 << 14; /* toggle from qtd */
892 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
894 /* Some Freescale processors have an erratum in which the
895 * port number in the queue head was 0..N-1 instead of 1..N.
897 if (ehci_has_fsl_portno_bug(ehci
))
898 info2
|= (urb
->dev
->ttport
-1) << 23;
900 info2
|= urb
->dev
->ttport
<< 23;
902 /* set the address of the TT; for TDI's integrated
903 * root hub tt, leave it zeroed.
905 if (tt
&& tt
->hub
!= ehci_to_hcd(ehci
)->self
.root_hub
)
906 info2
|= tt
->hub
->devnum
<< 16;
908 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
912 case USB_SPEED_HIGH
: /* no TT involved */
913 info1
|= (2 << 12); /* EPS "high" */
914 if (type
== PIPE_CONTROL
) {
915 info1
|= (EHCI_TUNE_RL_HS
<< 28);
916 info1
|= 64 << 16; /* usb2 fixed maxpacket */
917 info1
|= 1 << 14; /* toggle from qtd */
918 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
919 } else if (type
== PIPE_BULK
) {
920 info1
|= (EHCI_TUNE_RL_HS
<< 28);
921 /* The USB spec says that high speed bulk endpoints
922 * always use 512 byte maxpacket. But some device
923 * vendors decided to ignore that, and MSFT is happy
924 * to help them do so. So now people expect to use
925 * such nonconformant devices with Linux too; sigh.
927 info1
|= max_packet(maxp
) << 16;
928 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
929 } else { /* PIPE_INTERRUPT */
930 info1
|= max_packet (maxp
) << 16;
931 info2
|= hb_mult (maxp
) << 30;
935 dbg ("bogus dev %p speed %d", urb
->dev
, urb
->dev
->speed
);
941 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
943 /* init as live, toggle clear, advance to dummy */
944 qh
->qh_state
= QH_STATE_IDLE
;
946 hw
->hw_info1
= cpu_to_hc32(ehci
, info1
);
947 hw
->hw_info2
= cpu_to_hc32(ehci
, info2
);
948 qh
->is_out
= !is_input
;
949 usb_settoggle (urb
->dev
, usb_pipeendpoint (urb
->pipe
), !is_input
, 1);
950 qh_refresh (ehci
, qh
);
954 /*-------------------------------------------------------------------------*/
956 /* move qh (and its qtds) onto async queue; maybe enable queue. */
958 static void qh_link_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
960 __hc32 dma
= QH_NEXT(ehci
, qh
->qh_dma
);
961 struct ehci_qh
*head
;
963 /* Don't link a QH if there's a Clear-TT-Buffer pending */
964 if (unlikely(qh
->clearing_tt
))
967 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
969 /* (re)start the async schedule? */
971 timer_action_done (ehci
, TIMER_ASYNC_OFF
);
972 if (!head
->qh_next
.qh
) {
973 u32 cmd
= ehci_readl(ehci
, &ehci
->regs
->command
);
975 if (!(cmd
& CMD_ASE
)) {
976 /* in case a clear of CMD_ASE didn't take yet */
977 (void)handshake(ehci
, &ehci
->regs
->status
,
980 ehci_writel(ehci
, cmd
, &ehci
->regs
->command
);
981 /* posted write need not be known to HC yet ... */
985 /* clear halt and/or toggle; and maybe recover from silicon quirk */
986 qh_refresh(ehci
, qh
);
988 /* splice right after start */
989 qh
->qh_next
= head
->qh_next
;
990 qh
->hw
->hw_next
= head
->hw
->hw_next
;
993 head
->qh_next
.qh
= qh
;
994 head
->hw
->hw_next
= dma
;
998 qh
->qh_state
= QH_STATE_LINKED
;
999 /* qtd completions reported later by interrupt */
1002 /*-------------------------------------------------------------------------*/
1005 * For control/bulk/interrupt, return QH with these TDs appended.
1006 * Allocates and initializes the QH if necessary.
1007 * Returns null if it can't allocate a QH it needs to.
1008 * If the QH has TDs (urbs) already, that's great.
1010 static struct ehci_qh
*qh_append_tds (
1011 struct ehci_hcd
*ehci
,
1013 struct list_head
*qtd_list
,
1018 struct ehci_qh
*qh
= NULL
;
1019 __hc32 qh_addr_mask
= cpu_to_hc32(ehci
, 0x7f);
1021 qh
= (struct ehci_qh
*) *ptr
;
1022 if (unlikely (qh
== NULL
)) {
1023 /* can't sleep here, we have ehci->lock... */
1024 qh
= qh_make (ehci
, urb
, GFP_ATOMIC
);
1027 if (likely (qh
!= NULL
)) {
1028 struct ehci_qtd
*qtd
;
1030 if (unlikely (list_empty (qtd_list
)))
1033 qtd
= list_entry (qtd_list
->next
, struct ehci_qtd
,
1036 /* control qh may need patching ... */
1037 if (unlikely (epnum
== 0)) {
1039 /* usb_reset_device() briefly reverts to address 0 */
1040 if (usb_pipedevice (urb
->pipe
) == 0)
1041 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
1044 /* just one way to queue requests: swap with the dummy qtd.
1045 * only hc or qh_refresh() ever modify the overlay.
1047 if (likely (qtd
!= NULL
)) {
1048 struct ehci_qtd
*dummy
;
1052 /* to avoid racing the HC, use the dummy td instead of
1053 * the first td of our list (becomes new dummy). both
1054 * tds stay deactivated until we're done, when the
1055 * HC is allowed to fetch the old dummy (4.10.2).
1057 token
= qtd
->hw_token
;
1058 qtd
->hw_token
= HALT_BIT(ehci
);
1062 dma
= dummy
->qtd_dma
;
1064 dummy
->qtd_dma
= dma
;
1066 list_del (&qtd
->qtd_list
);
1067 list_add (&dummy
->qtd_list
, qtd_list
);
1068 list_splice_tail(qtd_list
, &qh
->qtd_list
);
1070 ehci_qtd_init(ehci
, qtd
, qtd
->qtd_dma
);
1073 /* hc must see the new dummy at list end */
1075 qtd
= list_entry (qh
->qtd_list
.prev
,
1076 struct ehci_qtd
, qtd_list
);
1077 qtd
->hw_next
= QTD_NEXT(ehci
, dma
);
1079 /* let the hc process these next qtds */
1081 dummy
->hw_token
= token
;
1083 urb
->hcpriv
= qh_get (qh
);
1089 /*-------------------------------------------------------------------------*/
1093 struct ehci_hcd
*ehci
,
1095 struct list_head
*qtd_list
,
1099 unsigned long flags
;
1100 struct ehci_qh
*qh
= NULL
;
1103 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1105 #ifdef EHCI_URB_TRACE
1107 struct ehci_qtd
*qtd
;
1108 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1110 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1111 __func__
, urb
->dev
->devpath
, urb
,
1112 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1113 urb
->transfer_buffer_length
,
1114 qtd
, urb
->ep
->hcpriv
);
1118 spin_lock_irqsave (&ehci
->lock
, flags
);
1119 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci
)))) {
1123 rc
= usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci
), urb
);
1127 qh
= qh_append_tds(ehci
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1128 if (unlikely(qh
== NULL
)) {
1129 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
1134 /* Control/bulk operations through TTs don't need scheduling,
1135 * the HC and TT handle it when the TT has a buffer ready.
1137 if (likely (qh
->qh_state
== QH_STATE_IDLE
))
1138 qh_link_async(ehci
, qh
);
1140 spin_unlock_irqrestore (&ehci
->lock
, flags
);
1141 if (unlikely (qh
== NULL
))
1142 qtd_list_free (ehci
, urb
, qtd_list
);
1146 /*-------------------------------------------------------------------------*/
1148 /* the async qh for the qtds being reclaimed are now unlinked from the HC */
1150 static void end_unlink_async (struct ehci_hcd
*ehci
)
1152 struct ehci_qh
*qh
= ehci
->reclaim
;
1153 struct ehci_qh
*next
;
1155 iaa_watchdog_done(ehci
);
1157 // qh->hw_next = cpu_to_hc32(qh->qh_dma);
1158 qh
->qh_state
= QH_STATE_IDLE
;
1159 qh
->qh_next
.qh
= NULL
;
1160 qh_put (qh
); // refcount from reclaim
1162 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1164 ehci
->reclaim
= next
;
1167 qh_completions (ehci
, qh
);
1169 if (!list_empty(&qh
->qtd_list
) && ehci
->rh_state
== EHCI_RH_RUNNING
) {
1170 qh_link_async (ehci
, qh
);
1172 /* it's not free to turn the async schedule on/off; leave it
1173 * active but idle for a while once it empties.
1175 if (ehci
->rh_state
== EHCI_RH_RUNNING
1176 && ehci
->async
->qh_next
.qh
== NULL
)
1177 timer_action (ehci
, TIMER_ASYNC_OFF
);
1179 qh_put(qh
); /* refcount from async list */
1182 ehci
->reclaim
= NULL
;
1183 start_unlink_async (ehci
, next
);
1186 if (ehci
->has_synopsys_hc_bug
)
1187 ehci_writel(ehci
, (u32
) ehci
->async
->qh_dma
,
1188 &ehci
->regs
->async_next
);
1191 /* makes sure the async qh will become idle */
1192 /* caller must own ehci->lock */
1194 static void start_unlink_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1196 int cmd
= ehci_readl(ehci
, &ehci
->regs
->command
);
1197 struct ehci_qh
*prev
;
1200 assert_spin_locked(&ehci
->lock
);
1202 || (qh
->qh_state
!= QH_STATE_LINKED
1203 && qh
->qh_state
!= QH_STATE_UNLINK_WAIT
)
1208 /* stop async schedule right now? */
1209 if (unlikely (qh
== ehci
->async
)) {
1210 /* can't get here without STS_ASS set */
1211 if (ehci
->rh_state
!= EHCI_RH_HALTED
1212 && !ehci
->reclaim
) {
1213 /* ... and CMD_IAAD clear */
1214 ehci_writel(ehci
, cmd
& ~CMD_ASE
,
1215 &ehci
->regs
->command
);
1217 // handshake later, if we need to
1218 timer_action_done (ehci
, TIMER_ASYNC_OFF
);
1223 qh
->qh_state
= QH_STATE_UNLINK
;
1224 ehci
->reclaim
= qh
= qh_get (qh
);
1227 while (prev
->qh_next
.qh
!= qh
)
1228 prev
= prev
->qh_next
.qh
;
1230 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
1231 prev
->qh_next
= qh
->qh_next
;
1232 if (ehci
->qh_scan_next
== qh
)
1233 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1236 /* If the controller isn't running, we don't have to wait for it */
1237 if (unlikely(ehci
->rh_state
!= EHCI_RH_RUNNING
)) {
1238 /* if (unlikely (qh->reclaim != 0))
1239 * this will recurse, probably not much
1241 end_unlink_async (ehci
);
1246 ehci_writel(ehci
, cmd
, &ehci
->regs
->command
);
1247 (void)ehci_readl(ehci
, &ehci
->regs
->command
);
1248 iaa_watchdog_start(ehci
);
1251 /*-------------------------------------------------------------------------*/
1253 static void scan_async (struct ehci_hcd
*ehci
)
1257 enum ehci_timer_action action
= TIMER_IO_WATCHDOG
;
1259 timer_action_done (ehci
, TIMER_ASYNC_SHRINK
);
1260 stopped
= (ehci
->rh_state
!= EHCI_RH_RUNNING
);
1262 ehci
->qh_scan_next
= ehci
->async
->qh_next
.qh
;
1263 while (ehci
->qh_scan_next
) {
1264 qh
= ehci
->qh_scan_next
;
1265 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1267 /* clean any finished work for this qh */
1268 if (!list_empty(&qh
->qtd_list
)) {
1272 * Unlinks could happen here; completion reporting
1273 * drops the lock. That's why ehci->qh_scan_next
1274 * always holds the next qh to scan; if the next qh
1275 * gets unlinked then ehci->qh_scan_next is adjusted
1276 * in start_unlink_async().
1279 temp
= qh_completions(ehci
, qh
);
1280 if (qh
->needs_rescan
)
1281 unlink_async(ehci
, qh
);
1282 qh
->unlink_time
= jiffies
+ EHCI_SHRINK_JIFFIES
;
1288 /* unlink idle entries, reducing DMA usage as well
1289 * as HCD schedule-scanning costs. delay for any qh
1290 * we just scanned, there's a not-unusual case that it
1291 * doesn't stay idle for long.
1292 * (plus, avoids some kind of re-activation race.)
1294 if (list_empty(&qh
->qtd_list
)
1295 && qh
->qh_state
== QH_STATE_LINKED
) {
1296 if (!ehci
->reclaim
&& (stopped
||
1297 time_after_eq(jiffies
, qh
->unlink_time
)))
1298 start_unlink_async(ehci
, qh
);
1300 action
= TIMER_ASYNC_SHRINK
;
1303 if (action
== TIMER_ASYNC_SHRINK
)
1304 timer_action (ehci
, TIMER_ASYNC_SHRINK
);