2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 #include <linux/slab.h>
10 int sched_rr_timeslice
= RR_TIMESLICE
;
12 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
14 struct rt_bandwidth def_rt_bandwidth
;
16 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
18 struct rt_bandwidth
*rt_b
=
19 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
25 now
= hrtimer_cb_get_time(timer
);
26 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
31 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
34 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
37 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
39 rt_b
->rt_period
= ns_to_ktime(period
);
40 rt_b
->rt_runtime
= runtime
;
42 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
44 hrtimer_init(&rt_b
->rt_period_timer
,
45 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
46 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
49 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
51 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
54 if (hrtimer_active(&rt_b
->rt_period_timer
))
57 raw_spin_lock(&rt_b
->rt_runtime_lock
);
58 start_bandwidth_timer(&rt_b
->rt_period_timer
, rt_b
->rt_period
);
59 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
62 void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
64 struct rt_prio_array
*array
;
67 array
= &rt_rq
->active
;
68 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
69 INIT_LIST_HEAD(array
->queue
+ i
);
70 __clear_bit(i
, array
->bitmap
);
72 /* delimiter for bitsearch: */
73 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
75 #if defined CONFIG_SMP
76 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
77 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
78 rt_rq
->rt_nr_migratory
= 0;
79 rt_rq
->overloaded
= 0;
80 plist_head_init(&rt_rq
->pushable_tasks
);
84 rt_rq
->rt_throttled
= 0;
85 rt_rq
->rt_runtime
= 0;
86 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
92 hrtimer_cancel(&rt_b
->rt_period_timer
);
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
97 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
99 #ifdef CONFIG_SCHED_DEBUG
100 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
102 return container_of(rt_se
, struct task_struct
, rt
);
105 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
110 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
115 void free_rt_sched_group(struct task_group
*tg
)
120 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
122 for_each_possible_cpu(i
) {
133 void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
134 struct sched_rt_entity
*rt_se
, int cpu
,
135 struct sched_rt_entity
*parent
)
137 struct rq
*rq
= cpu_rq(cpu
);
139 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
140 rt_rq
->rt_nr_boosted
= 0;
144 tg
->rt_rq
[cpu
] = rt_rq
;
145 tg
->rt_se
[cpu
] = rt_se
;
151 rt_se
->rt_rq
= &rq
->rt
;
153 rt_se
->rt_rq
= parent
->my_q
;
156 rt_se
->parent
= parent
;
157 INIT_LIST_HEAD(&rt_se
->run_list
);
160 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
163 struct sched_rt_entity
*rt_se
;
166 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
169 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
173 init_rt_bandwidth(&tg
->rt_bandwidth
,
174 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
176 for_each_possible_cpu(i
) {
177 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
178 GFP_KERNEL
, cpu_to_node(i
));
182 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
183 GFP_KERNEL
, cpu_to_node(i
));
187 init_rt_rq(rt_rq
, cpu_rq(i
));
188 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
189 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
200 #else /* CONFIG_RT_GROUP_SCHED */
202 #define rt_entity_is_task(rt_se) (1)
204 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
206 return container_of(rt_se
, struct task_struct
, rt
);
209 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
211 return container_of(rt_rq
, struct rq
, rt
);
214 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
216 struct task_struct
*p
= rt_task_of(rt_se
);
217 struct rq
*rq
= task_rq(p
);
222 void free_rt_sched_group(struct task_group
*tg
) { }
224 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
228 #endif /* CONFIG_RT_GROUP_SCHED */
232 static inline int rt_overloaded(struct rq
*rq
)
234 return atomic_read(&rq
->rd
->rto_count
);
237 static inline void rt_set_overload(struct rq
*rq
)
242 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
244 * Make sure the mask is visible before we set
245 * the overload count. That is checked to determine
246 * if we should look at the mask. It would be a shame
247 * if we looked at the mask, but the mask was not
250 * Matched by the barrier in pull_rt_task().
253 atomic_inc(&rq
->rd
->rto_count
);
256 static inline void rt_clear_overload(struct rq
*rq
)
261 /* the order here really doesn't matter */
262 atomic_dec(&rq
->rd
->rto_count
);
263 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
266 static void update_rt_migration(struct rt_rq
*rt_rq
)
268 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
269 if (!rt_rq
->overloaded
) {
270 rt_set_overload(rq_of_rt_rq(rt_rq
));
271 rt_rq
->overloaded
= 1;
273 } else if (rt_rq
->overloaded
) {
274 rt_clear_overload(rq_of_rt_rq(rt_rq
));
275 rt_rq
->overloaded
= 0;
279 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
281 struct task_struct
*p
;
283 if (!rt_entity_is_task(rt_se
))
286 p
= rt_task_of(rt_se
);
287 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
289 rt_rq
->rt_nr_total
++;
290 if (p
->nr_cpus_allowed
> 1)
291 rt_rq
->rt_nr_migratory
++;
293 update_rt_migration(rt_rq
);
296 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
298 struct task_struct
*p
;
300 if (!rt_entity_is_task(rt_se
))
303 p
= rt_task_of(rt_se
);
304 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
306 rt_rq
->rt_nr_total
--;
307 if (p
->nr_cpus_allowed
> 1)
308 rt_rq
->rt_nr_migratory
--;
310 update_rt_migration(rt_rq
);
313 static inline int has_pushable_tasks(struct rq
*rq
)
315 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
318 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
320 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
321 plist_node_init(&p
->pushable_tasks
, p
->prio
);
322 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
324 /* Update the highest prio pushable task */
325 if (p
->prio
< rq
->rt
.highest_prio
.next
)
326 rq
->rt
.highest_prio
.next
= p
->prio
;
329 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
331 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
333 /* Update the new highest prio pushable task */
334 if (has_pushable_tasks(rq
)) {
335 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
336 struct task_struct
, pushable_tasks
);
337 rq
->rt
.highest_prio
.next
= p
->prio
;
339 rq
->rt
.highest_prio
.next
= MAX_RT_PRIO
;
344 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
348 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
353 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
358 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
362 #endif /* CONFIG_SMP */
364 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
366 return !list_empty(&rt_se
->run_list
);
369 #ifdef CONFIG_RT_GROUP_SCHED
371 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
376 return rt_rq
->rt_runtime
;
379 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
381 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
384 typedef struct task_group
*rt_rq_iter_t
;
386 static inline struct task_group
*next_task_group(struct task_group
*tg
)
389 tg
= list_entry_rcu(tg
->list
.next
,
390 typeof(struct task_group
), list
);
391 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
393 if (&tg
->list
== &task_groups
)
399 #define for_each_rt_rq(rt_rq, iter, rq) \
400 for (iter = container_of(&task_groups, typeof(*iter), list); \
401 (iter = next_task_group(iter)) && \
402 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
404 #define for_each_sched_rt_entity(rt_se) \
405 for (; rt_se; rt_se = rt_se->parent)
407 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
412 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
413 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
415 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
417 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
418 struct sched_rt_entity
*rt_se
;
420 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
422 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
424 if (rt_rq
->rt_nr_running
) {
425 if (rt_se
&& !on_rt_rq(rt_se
))
426 enqueue_rt_entity(rt_se
, false);
427 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
432 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
434 struct sched_rt_entity
*rt_se
;
435 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
437 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
439 if (rt_se
&& on_rt_rq(rt_se
))
440 dequeue_rt_entity(rt_se
);
443 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
445 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
448 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
450 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
451 struct task_struct
*p
;
454 return !!rt_rq
->rt_nr_boosted
;
456 p
= rt_task_of(rt_se
);
457 return p
->prio
!= p
->normal_prio
;
461 static inline const struct cpumask
*sched_rt_period_mask(void)
463 return this_rq()->rd
->span
;
466 static inline const struct cpumask
*sched_rt_period_mask(void)
468 return cpu_online_mask
;
473 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
475 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
478 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
480 return &rt_rq
->tg
->rt_bandwidth
;
483 #else /* !CONFIG_RT_GROUP_SCHED */
485 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
487 return rt_rq
->rt_runtime
;
490 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
492 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
495 typedef struct rt_rq
*rt_rq_iter_t
;
497 #define for_each_rt_rq(rt_rq, iter, rq) \
498 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
500 #define for_each_sched_rt_entity(rt_se) \
501 for (; rt_se; rt_se = NULL)
503 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
508 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
510 if (rt_rq
->rt_nr_running
)
511 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
514 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
518 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
520 return rt_rq
->rt_throttled
;
523 static inline const struct cpumask
*sched_rt_period_mask(void)
525 return cpu_online_mask
;
529 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
531 return &cpu_rq(cpu
)->rt
;
534 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
536 return &def_rt_bandwidth
;
539 #endif /* CONFIG_RT_GROUP_SCHED */
543 * We ran out of runtime, see if we can borrow some from our neighbours.
545 static int do_balance_runtime(struct rt_rq
*rt_rq
)
547 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
548 struct root_domain
*rd
= rq_of_rt_rq(rt_rq
)->rd
;
549 int i
, weight
, more
= 0;
552 weight
= cpumask_weight(rd
->span
);
554 raw_spin_lock(&rt_b
->rt_runtime_lock
);
555 rt_period
= ktime_to_ns(rt_b
->rt_period
);
556 for_each_cpu(i
, rd
->span
) {
557 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
563 raw_spin_lock(&iter
->rt_runtime_lock
);
565 * Either all rqs have inf runtime and there's nothing to steal
566 * or __disable_runtime() below sets a specific rq to inf to
567 * indicate its been disabled and disalow stealing.
569 if (iter
->rt_runtime
== RUNTIME_INF
)
573 * From runqueues with spare time, take 1/n part of their
574 * spare time, but no more than our period.
576 diff
= iter
->rt_runtime
- iter
->rt_time
;
578 diff
= div_u64((u64
)diff
, weight
);
579 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
580 diff
= rt_period
- rt_rq
->rt_runtime
;
581 iter
->rt_runtime
-= diff
;
582 rt_rq
->rt_runtime
+= diff
;
584 if (rt_rq
->rt_runtime
== rt_period
) {
585 raw_spin_unlock(&iter
->rt_runtime_lock
);
590 raw_spin_unlock(&iter
->rt_runtime_lock
);
592 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
598 * Ensure this RQ takes back all the runtime it lend to its neighbours.
600 static void __disable_runtime(struct rq
*rq
)
602 struct root_domain
*rd
= rq
->rd
;
606 if (unlikely(!scheduler_running
))
609 for_each_rt_rq(rt_rq
, iter
, rq
) {
610 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
614 raw_spin_lock(&rt_b
->rt_runtime_lock
);
615 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
617 * Either we're all inf and nobody needs to borrow, or we're
618 * already disabled and thus have nothing to do, or we have
619 * exactly the right amount of runtime to take out.
621 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
622 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
624 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
627 * Calculate the difference between what we started out with
628 * and what we current have, that's the amount of runtime
629 * we lend and now have to reclaim.
631 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
634 * Greedy reclaim, take back as much as we can.
636 for_each_cpu(i
, rd
->span
) {
637 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
641 * Can't reclaim from ourselves or disabled runqueues.
643 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
646 raw_spin_lock(&iter
->rt_runtime_lock
);
648 diff
= min_t(s64
, iter
->rt_runtime
, want
);
649 iter
->rt_runtime
-= diff
;
652 iter
->rt_runtime
-= want
;
655 raw_spin_unlock(&iter
->rt_runtime_lock
);
661 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
663 * We cannot be left wanting - that would mean some runtime
664 * leaked out of the system.
669 * Disable all the borrow logic by pretending we have inf
670 * runtime - in which case borrowing doesn't make sense.
672 rt_rq
->rt_runtime
= RUNTIME_INF
;
673 rt_rq
->rt_throttled
= 0;
674 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
675 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
679 static void __enable_runtime(struct rq
*rq
)
684 if (unlikely(!scheduler_running
))
688 * Reset each runqueue's bandwidth settings
690 for_each_rt_rq(rt_rq
, iter
, rq
) {
691 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
693 raw_spin_lock(&rt_b
->rt_runtime_lock
);
694 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
695 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
697 rt_rq
->rt_throttled
= 0;
698 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
699 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
703 static int balance_runtime(struct rt_rq
*rt_rq
)
707 if (!sched_feat(RT_RUNTIME_SHARE
))
710 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
711 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
712 more
= do_balance_runtime(rt_rq
);
713 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
718 #else /* !CONFIG_SMP */
719 static inline int balance_runtime(struct rt_rq
*rt_rq
)
723 #endif /* CONFIG_SMP */
725 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
727 int i
, idle
= 1, throttled
= 0;
728 const struct cpumask
*span
;
730 span
= sched_rt_period_mask();
731 #ifdef CONFIG_RT_GROUP_SCHED
733 * FIXME: isolated CPUs should really leave the root task group,
734 * whether they are isolcpus or were isolated via cpusets, lest
735 * the timer run on a CPU which does not service all runqueues,
736 * potentially leaving other CPUs indefinitely throttled. If
737 * isolation is really required, the user will turn the throttle
738 * off to kill the perturbations it causes anyway. Meanwhile,
739 * this maintains functionality for boot and/or troubleshooting.
741 if (rt_b
== &root_task_group
.rt_bandwidth
)
742 span
= cpu_online_mask
;
744 for_each_cpu(i
, span
) {
746 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
747 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
749 raw_spin_lock(&rq
->lock
);
750 if (rt_rq
->rt_time
) {
753 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
754 if (rt_rq
->rt_throttled
)
755 balance_runtime(rt_rq
);
756 runtime
= rt_rq
->rt_runtime
;
757 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
758 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
759 rt_rq
->rt_throttled
= 0;
763 * Force a clock update if the CPU was idle,
764 * lest wakeup -> unthrottle time accumulate.
766 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
767 rq
->skip_clock_update
= -1;
769 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
771 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
772 } else if (rt_rq
->rt_nr_running
) {
774 if (!rt_rq_throttled(rt_rq
))
777 if (rt_rq
->rt_throttled
)
781 sched_rt_rq_enqueue(rt_rq
);
782 raw_spin_unlock(&rq
->lock
);
785 if (!throttled
&& (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
))
791 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
793 #ifdef CONFIG_RT_GROUP_SCHED
794 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
797 return rt_rq
->highest_prio
.curr
;
800 return rt_task_of(rt_se
)->prio
;
803 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
805 u64 runtime
= sched_rt_runtime(rt_rq
);
807 if (rt_rq
->rt_throttled
)
808 return rt_rq_throttled(rt_rq
);
810 if (runtime
>= sched_rt_period(rt_rq
))
813 balance_runtime(rt_rq
);
814 runtime
= sched_rt_runtime(rt_rq
);
815 if (runtime
== RUNTIME_INF
)
818 if (rt_rq
->rt_time
> runtime
) {
819 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
822 * Don't actually throttle groups that have no runtime assigned
823 * but accrue some time due to boosting.
825 if (likely(rt_b
->rt_runtime
)) {
826 static bool once
= false;
828 rt_rq
->rt_throttled
= 1;
832 printk_deferred("sched: RT throttling activated\n");
836 * In case we did anyway, make it go away,
837 * replenishment is a joke, since it will replenish us
843 if (rt_rq_throttled(rt_rq
)) {
844 sched_rt_rq_dequeue(rt_rq
);
853 * Update the current task's runtime statistics. Skip current tasks that
854 * are not in our scheduling class.
856 static void update_curr_rt(struct rq
*rq
)
858 struct task_struct
*curr
= rq
->curr
;
859 struct sched_rt_entity
*rt_se
= &curr
->rt
;
860 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
863 if (curr
->sched_class
!= &rt_sched_class
)
866 delta_exec
= rq_clock_task(rq
) - curr
->se
.exec_start
;
867 if (unlikely((s64
)delta_exec
<= 0))
870 schedstat_set(curr
->se
.statistics
.exec_max
,
871 max(curr
->se
.statistics
.exec_max
, delta_exec
));
873 curr
->se
.sum_exec_runtime
+= delta_exec
;
874 account_group_exec_runtime(curr
, delta_exec
);
876 curr
->se
.exec_start
= rq_clock_task(rq
);
877 cpuacct_charge(curr
, delta_exec
);
879 sched_rt_avg_update(rq
, delta_exec
);
881 if (!rt_bandwidth_enabled())
884 for_each_sched_rt_entity(rt_se
) {
885 rt_rq
= rt_rq_of_se(rt_se
);
887 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
888 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
889 rt_rq
->rt_time
+= delta_exec
;
890 if (sched_rt_runtime_exceeded(rt_rq
))
892 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
897 #if defined CONFIG_SMP
900 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
902 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
904 #ifdef CONFIG_RT_GROUP_SCHED
906 * Change rq's cpupri only if rt_rq is the top queue.
908 if (&rq
->rt
!= rt_rq
)
911 if (rq
->online
&& prio
< prev_prio
)
912 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
916 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
918 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
920 #ifdef CONFIG_RT_GROUP_SCHED
922 * Change rq's cpupri only if rt_rq is the top queue.
924 if (&rq
->rt
!= rt_rq
)
927 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
928 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
931 #else /* CONFIG_SMP */
934 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
936 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
938 #endif /* CONFIG_SMP */
940 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
942 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
944 int prev_prio
= rt_rq
->highest_prio
.curr
;
946 if (prio
< prev_prio
)
947 rt_rq
->highest_prio
.curr
= prio
;
949 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
953 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
955 int prev_prio
= rt_rq
->highest_prio
.curr
;
957 if (rt_rq
->rt_nr_running
) {
959 WARN_ON(prio
< prev_prio
);
962 * This may have been our highest task, and therefore
963 * we may have some recomputation to do
965 if (prio
== prev_prio
) {
966 struct rt_prio_array
*array
= &rt_rq
->active
;
968 rt_rq
->highest_prio
.curr
=
969 sched_find_first_bit(array
->bitmap
);
973 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
975 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
980 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
981 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
983 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
985 #ifdef CONFIG_RT_GROUP_SCHED
988 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
990 if (rt_se_boosted(rt_se
))
991 rt_rq
->rt_nr_boosted
++;
994 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
998 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1000 if (rt_se_boosted(rt_se
))
1001 rt_rq
->rt_nr_boosted
--;
1003 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
1006 #else /* CONFIG_RT_GROUP_SCHED */
1009 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1011 start_rt_bandwidth(&def_rt_bandwidth
);
1015 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
1017 #endif /* CONFIG_RT_GROUP_SCHED */
1020 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1022 int prio
= rt_se_prio(rt_se
);
1024 WARN_ON(!rt_prio(prio
));
1025 rt_rq
->rt_nr_running
++;
1027 inc_rt_prio(rt_rq
, prio
);
1028 inc_rt_migration(rt_se
, rt_rq
);
1029 inc_rt_group(rt_se
, rt_rq
);
1033 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
1035 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
1036 WARN_ON(!rt_rq
->rt_nr_running
);
1037 rt_rq
->rt_nr_running
--;
1039 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
1040 dec_rt_migration(rt_se
, rt_rq
);
1041 dec_rt_group(rt_se
, rt_rq
);
1044 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1046 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1047 struct rt_prio_array
*array
= &rt_rq
->active
;
1048 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
1049 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1052 * Don't enqueue the group if its throttled, or when empty.
1053 * The latter is a consequence of the former when a child group
1054 * get throttled and the current group doesn't have any other
1057 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
1061 list_add(&rt_se
->run_list
, queue
);
1063 list_add_tail(&rt_se
->run_list
, queue
);
1064 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
1066 inc_rt_tasks(rt_se
, rt_rq
);
1069 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1071 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
1072 struct rt_prio_array
*array
= &rt_rq
->active
;
1074 list_del_init(&rt_se
->run_list
);
1075 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
1076 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
1078 dec_rt_tasks(rt_se
, rt_rq
);
1082 * Because the prio of an upper entry depends on the lower
1083 * entries, we must remove entries top - down.
1085 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
1087 struct sched_rt_entity
*back
= NULL
;
1089 for_each_sched_rt_entity(rt_se
) {
1094 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
1095 if (on_rt_rq(rt_se
))
1096 __dequeue_rt_entity(rt_se
);
1100 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
1102 dequeue_rt_stack(rt_se
);
1103 for_each_sched_rt_entity(rt_se
)
1104 __enqueue_rt_entity(rt_se
, head
);
1107 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
1109 dequeue_rt_stack(rt_se
);
1111 for_each_sched_rt_entity(rt_se
) {
1112 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
1114 if (rt_rq
&& rt_rq
->rt_nr_running
)
1115 __enqueue_rt_entity(rt_se
, false);
1120 * Adding/removing a task to/from a priority array:
1123 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1125 struct sched_rt_entity
*rt_se
= &p
->rt
;
1127 if (flags
& ENQUEUE_WAKEUP
)
1130 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
1132 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1133 enqueue_pushable_task(rq
, p
);
1138 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1140 struct sched_rt_entity
*rt_se
= &p
->rt
;
1143 dequeue_rt_entity(rt_se
);
1145 dequeue_pushable_task(rq
, p
);
1151 * Put task to the head or the end of the run list without the overhead of
1152 * dequeue followed by enqueue.
1155 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
1157 if (on_rt_rq(rt_se
)) {
1158 struct rt_prio_array
*array
= &rt_rq
->active
;
1159 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
1162 list_move(&rt_se
->run_list
, queue
);
1164 list_move_tail(&rt_se
->run_list
, queue
);
1168 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
1170 struct sched_rt_entity
*rt_se
= &p
->rt
;
1171 struct rt_rq
*rt_rq
;
1173 for_each_sched_rt_entity(rt_se
) {
1174 rt_rq
= rt_rq_of_se(rt_se
);
1175 requeue_rt_entity(rt_rq
, rt_se
, head
);
1179 static void yield_task_rt(struct rq
*rq
)
1181 requeue_task_rt(rq
, rq
->curr
, 0);
1185 static int find_lowest_rq(struct task_struct
*task
);
1188 select_task_rq_rt(struct task_struct
*p
, int sd_flag
, int flags
)
1190 struct task_struct
*curr
;
1196 if (p
->nr_cpus_allowed
== 1)
1199 /* For anything but wake ups, just return the task_cpu */
1200 if (sd_flag
!= SD_BALANCE_WAKE
&& sd_flag
!= SD_BALANCE_FORK
)
1206 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1209 * If the current task on @p's runqueue is an RT task, then
1210 * try to see if we can wake this RT task up on another
1211 * runqueue. Otherwise simply start this RT task
1212 * on its current runqueue.
1214 * We want to avoid overloading runqueues. If the woken
1215 * task is a higher priority, then it will stay on this CPU
1216 * and the lower prio task should be moved to another CPU.
1217 * Even though this will probably make the lower prio task
1218 * lose its cache, we do not want to bounce a higher task
1219 * around just because it gave up its CPU, perhaps for a
1222 * For equal prio tasks, we just let the scheduler sort it out.
1224 * Otherwise, just let it ride on the affined RQ and the
1225 * post-schedule router will push the preempted task away
1227 * This test is optimistic, if we get it wrong the load-balancer
1228 * will have to sort it out.
1230 if (curr
&& unlikely(rt_task(curr
)) &&
1231 (curr
->nr_cpus_allowed
< 2 ||
1232 curr
->prio
<= p
->prio
)) {
1233 int target
= find_lowest_rq(p
);
1244 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1246 if (rq
->curr
->nr_cpus_allowed
== 1)
1249 if (p
->nr_cpus_allowed
!= 1
1250 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1253 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1257 * There appears to be other cpus that can accept
1258 * current and none to run 'p', so lets reschedule
1259 * to try and push current away:
1261 requeue_task_rt(rq
, p
, 1);
1262 resched_task(rq
->curr
);
1265 #endif /* CONFIG_SMP */
1268 * Preempt the current task with a newly woken task if needed:
1270 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1272 if (p
->prio
< rq
->curr
->prio
) {
1273 resched_task(rq
->curr
);
1281 * - the newly woken task is of equal priority to the current task
1282 * - the newly woken task is non-migratable while current is migratable
1283 * - current will be preempted on the next reschedule
1285 * we should check to see if current can readily move to a different
1286 * cpu. If so, we will reschedule to allow the push logic to try
1287 * to move current somewhere else, making room for our non-migratable
1290 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1291 check_preempt_equal_prio(rq
, p
);
1295 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1296 struct rt_rq
*rt_rq
)
1298 struct rt_prio_array
*array
= &rt_rq
->active
;
1299 struct sched_rt_entity
*next
= NULL
;
1300 struct list_head
*queue
;
1303 idx
= sched_find_first_bit(array
->bitmap
);
1304 BUG_ON(idx
>= MAX_RT_PRIO
);
1306 queue
= array
->queue
+ idx
;
1307 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1312 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1314 struct sched_rt_entity
*rt_se
;
1315 struct task_struct
*p
;
1316 struct rt_rq
*rt_rq
;
1320 if (!rt_rq
->rt_nr_running
)
1323 if (rt_rq_throttled(rt_rq
))
1327 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1329 rt_rq
= group_rt_rq(rt_se
);
1332 p
= rt_task_of(rt_se
);
1333 p
->se
.exec_start
= rq_clock_task(rq
);
1338 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1340 struct task_struct
*p
= _pick_next_task_rt(rq
);
1342 /* The running task is never eligible for pushing */
1344 dequeue_pushable_task(rq
, p
);
1348 * We detect this state here so that we can avoid taking the RQ
1349 * lock again later if there is no need to push
1351 rq
->post_schedule
= has_pushable_tasks(rq
);
1357 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1362 * The previous task needs to be made eligible for pushing
1363 * if it is still active
1365 if (on_rt_rq(&p
->rt
) && p
->nr_cpus_allowed
> 1)
1366 enqueue_pushable_task(rq
, p
);
1371 /* Only try algorithms three times */
1372 #define RT_MAX_TRIES 3
1374 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1376 if (!task_running(rq
, p
) &&
1377 cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)))
1383 * Return the highest pushable rq's task, which is suitable to be executed
1384 * on the cpu, NULL otherwise
1386 static struct task_struct
*pick_highest_pushable_task(struct rq
*rq
, int cpu
)
1388 struct plist_head
*head
= &rq
->rt
.pushable_tasks
;
1389 struct task_struct
*p
;
1391 if (!has_pushable_tasks(rq
))
1394 plist_for_each_entry(p
, head
, pushable_tasks
) {
1395 if (pick_rt_task(rq
, p
, cpu
))
1402 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1404 static int find_lowest_rq(struct task_struct
*task
)
1406 struct sched_domain
*sd
;
1407 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1408 int this_cpu
= smp_processor_id();
1409 int cpu
= task_cpu(task
);
1411 /* Make sure the mask is initialized first */
1412 if (unlikely(!lowest_mask
))
1415 if (task
->nr_cpus_allowed
== 1)
1416 return -1; /* No other targets possible */
1418 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1419 return -1; /* No targets found */
1422 * At this point we have built a mask of cpus representing the
1423 * lowest priority tasks in the system. Now we want to elect
1424 * the best one based on our affinity and topology.
1426 * We prioritize the last cpu that the task executed on since
1427 * it is most likely cache-hot in that location.
1429 if (cpumask_test_cpu(cpu
, lowest_mask
))
1433 * Otherwise, we consult the sched_domains span maps to figure
1434 * out which cpu is logically closest to our hot cache data.
1436 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1437 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1440 for_each_domain(cpu
, sd
) {
1441 if (sd
->flags
& SD_WAKE_AFFINE
) {
1445 * "this_cpu" is cheaper to preempt than a
1448 if (this_cpu
!= -1 &&
1449 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1454 best_cpu
= cpumask_first_and(lowest_mask
,
1455 sched_domain_span(sd
));
1456 if (best_cpu
< nr_cpu_ids
) {
1465 * And finally, if there were no matches within the domains
1466 * just give the caller *something* to work with from the compatible
1472 cpu
= cpumask_any(lowest_mask
);
1473 if (cpu
< nr_cpu_ids
)
1478 /* Will lock the rq it finds */
1479 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1481 struct rq
*lowest_rq
= NULL
;
1485 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1486 cpu
= find_lowest_rq(task
);
1488 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1491 lowest_rq
= cpu_rq(cpu
);
1493 /* if the prio of this runqueue changed, try again */
1494 if (double_lock_balance(rq
, lowest_rq
)) {
1496 * We had to unlock the run queue. In
1497 * the mean time, task could have
1498 * migrated already or had its affinity changed.
1499 * Also make sure that it wasn't scheduled on its rq.
1501 if (unlikely(task_rq(task
) != rq
||
1502 !cpumask_test_cpu(lowest_rq
->cpu
,
1503 tsk_cpus_allowed(task
)) ||
1504 task_running(rq
, task
) ||
1507 double_unlock_balance(rq
, lowest_rq
);
1513 /* If this rq is still suitable use it. */
1514 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1518 double_unlock_balance(rq
, lowest_rq
);
1525 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1527 struct task_struct
*p
;
1529 if (!has_pushable_tasks(rq
))
1532 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1533 struct task_struct
, pushable_tasks
);
1535 BUG_ON(rq
->cpu
!= task_cpu(p
));
1536 BUG_ON(task_current(rq
, p
));
1537 BUG_ON(p
->nr_cpus_allowed
<= 1);
1540 BUG_ON(!rt_task(p
));
1546 * If the current CPU has more than one RT task, see if the non
1547 * running task can migrate over to a CPU that is running a task
1548 * of lesser priority.
1550 static int push_rt_task(struct rq
*rq
)
1552 struct task_struct
*next_task
;
1553 struct rq
*lowest_rq
;
1556 if (!rq
->rt
.overloaded
)
1559 next_task
= pick_next_pushable_task(rq
);
1564 if (unlikely(next_task
== rq
->curr
)) {
1570 * It's possible that the next_task slipped in of
1571 * higher priority than current. If that's the case
1572 * just reschedule current.
1574 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1575 resched_task(rq
->curr
);
1579 /* We might release rq lock */
1580 get_task_struct(next_task
);
1582 /* find_lock_lowest_rq locks the rq if found */
1583 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1585 struct task_struct
*task
;
1587 * find_lock_lowest_rq releases rq->lock
1588 * so it is possible that next_task has migrated.
1590 * We need to make sure that the task is still on the same
1591 * run-queue and is also still the next task eligible for
1594 task
= pick_next_pushable_task(rq
);
1595 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1597 * The task hasn't migrated, and is still the next
1598 * eligible task, but we failed to find a run-queue
1599 * to push it to. Do not retry in this case, since
1600 * other cpus will pull from us when ready.
1606 /* No more tasks, just exit */
1610 * Something has shifted, try again.
1612 put_task_struct(next_task
);
1617 deactivate_task(rq
, next_task
, 0);
1618 set_task_cpu(next_task
, lowest_rq
->cpu
);
1619 activate_task(lowest_rq
, next_task
, 0);
1622 resched_task(lowest_rq
->curr
);
1624 double_unlock_balance(rq
, lowest_rq
);
1627 put_task_struct(next_task
);
1632 static void push_rt_tasks(struct rq
*rq
)
1634 /* push_rt_task will return true if it moved an RT */
1635 while (push_rt_task(rq
))
1639 static int pull_rt_task(struct rq
*this_rq
)
1641 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1642 struct task_struct
*p
;
1645 if (likely(!rt_overloaded(this_rq
)))
1649 * Match the barrier from rt_set_overloaded; this guarantees that if we
1650 * see overloaded we must also see the rto_mask bit.
1654 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1655 if (this_cpu
== cpu
)
1658 src_rq
= cpu_rq(cpu
);
1661 * Don't bother taking the src_rq->lock if the next highest
1662 * task is known to be lower-priority than our current task.
1663 * This may look racy, but if this value is about to go
1664 * logically higher, the src_rq will push this task away.
1665 * And if its going logically lower, we do not care
1667 if (src_rq
->rt
.highest_prio
.next
>=
1668 this_rq
->rt
.highest_prio
.curr
)
1672 * We can potentially drop this_rq's lock in
1673 * double_lock_balance, and another CPU could
1676 double_lock_balance(this_rq
, src_rq
);
1679 * We can pull only a task, which is pushable
1680 * on its rq, and no others.
1682 p
= pick_highest_pushable_task(src_rq
, this_cpu
);
1685 * Do we have an RT task that preempts
1686 * the to-be-scheduled task?
1688 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1689 WARN_ON(p
== src_rq
->curr
);
1693 * There's a chance that p is higher in priority
1694 * than what's currently running on its cpu.
1695 * This is just that p is wakeing up and hasn't
1696 * had a chance to schedule. We only pull
1697 * p if it is lower in priority than the
1698 * current task on the run queue
1700 if (p
->prio
< src_rq
->curr
->prio
)
1705 deactivate_task(src_rq
, p
, 0);
1706 set_task_cpu(p
, this_cpu
);
1707 activate_task(this_rq
, p
, 0);
1709 * We continue with the search, just in
1710 * case there's an even higher prio task
1711 * in another runqueue. (low likelihood
1716 double_unlock_balance(this_rq
, src_rq
);
1722 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1724 /* Try to pull RT tasks here if we lower this rq's prio */
1725 if (rq
->rt
.highest_prio
.curr
> prev
->prio
)
1729 static void post_schedule_rt(struct rq
*rq
)
1735 * If we are not running and we are not going to reschedule soon, we should
1736 * try to push tasks away now
1738 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1740 if (!task_running(rq
, p
) &&
1741 !test_tsk_need_resched(rq
->curr
) &&
1742 has_pushable_tasks(rq
) &&
1743 p
->nr_cpus_allowed
> 1 &&
1744 rt_task(rq
->curr
) &&
1745 (rq
->curr
->nr_cpus_allowed
< 2 ||
1746 rq
->curr
->prio
<= p
->prio
))
1750 static void set_cpus_allowed_rt(struct task_struct
*p
,
1751 const struct cpumask
*new_mask
)
1756 BUG_ON(!rt_task(p
));
1761 weight
= cpumask_weight(new_mask
);
1764 * Only update if the process changes its state from whether it
1765 * can migrate or not.
1767 if ((p
->nr_cpus_allowed
> 1) == (weight
> 1))
1773 * The process used to be able to migrate OR it can now migrate
1776 if (!task_current(rq
, p
))
1777 dequeue_pushable_task(rq
, p
);
1778 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1779 rq
->rt
.rt_nr_migratory
--;
1781 if (!task_current(rq
, p
))
1782 enqueue_pushable_task(rq
, p
);
1783 rq
->rt
.rt_nr_migratory
++;
1786 update_rt_migration(&rq
->rt
);
1789 /* Assumes rq->lock is held */
1790 static void rq_online_rt(struct rq
*rq
)
1792 if (rq
->rt
.overloaded
)
1793 rt_set_overload(rq
);
1795 __enable_runtime(rq
);
1797 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1800 /* Assumes rq->lock is held */
1801 static void rq_offline_rt(struct rq
*rq
)
1803 if (rq
->rt
.overloaded
)
1804 rt_clear_overload(rq
);
1806 __disable_runtime(rq
);
1808 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1812 * When switch from the rt queue, we bring ourselves to a position
1813 * that we might want to pull RT tasks from other runqueues.
1815 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1818 * If there are other RT tasks then we will reschedule
1819 * and the scheduling of the other RT tasks will handle
1820 * the balancing. But if we are the last RT task
1821 * we may need to handle the pulling of RT tasks
1824 if (!p
->on_rq
|| rq
->rt
.rt_nr_running
)
1827 if (pull_rt_task(rq
))
1828 resched_task(rq
->curr
);
1831 void init_sched_rt_class(void)
1835 for_each_possible_cpu(i
) {
1836 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1837 GFP_KERNEL
, cpu_to_node(i
));
1840 #endif /* CONFIG_SMP */
1843 * When switching a task to RT, we may overload the runqueue
1844 * with RT tasks. In this case we try to push them off to
1847 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1849 int check_resched
= 1;
1852 * If we are already running, then there's nothing
1853 * that needs to be done. But if we are not running
1854 * we may need to preempt the current running task.
1855 * If that current running task is also an RT task
1856 * then see if we can move to another run queue.
1858 if (p
->on_rq
&& rq
->curr
!= p
) {
1860 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1861 /* Don't resched if we changed runqueues */
1864 #endif /* CONFIG_SMP */
1865 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1866 resched_task(rq
->curr
);
1871 * Priority of the task has changed. This may cause
1872 * us to initiate a push or pull.
1875 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1880 if (rq
->curr
== p
) {
1883 * If our priority decreases while running, we
1884 * may need to pull tasks to this runqueue.
1886 if (oldprio
< p
->prio
)
1889 * If there's a higher priority task waiting to run
1890 * then reschedule. Note, the above pull_rt_task
1891 * can release the rq lock and p could migrate.
1892 * Only reschedule if p is still on the same runqueue.
1894 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1897 /* For UP simply resched on drop of prio */
1898 if (oldprio
< p
->prio
)
1900 #endif /* CONFIG_SMP */
1903 * This task is not running, but if it is
1904 * greater than the current running task
1907 if (p
->prio
< rq
->curr
->prio
)
1908 resched_task(rq
->curr
);
1912 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1914 unsigned long soft
, hard
;
1916 /* max may change after cur was read, this will be fixed next tick */
1917 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1918 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1920 if (soft
!= RLIM_INFINITY
) {
1923 if (p
->rt
.watchdog_stamp
!= jiffies
) {
1925 p
->rt
.watchdog_stamp
= jiffies
;
1928 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1929 if (p
->rt
.timeout
> next
)
1930 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1934 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1936 struct sched_rt_entity
*rt_se
= &p
->rt
;
1943 * RR tasks need a special form of timeslice management.
1944 * FIFO tasks have no timeslices.
1946 if (p
->policy
!= SCHED_RR
)
1949 if (--p
->rt
.time_slice
)
1952 p
->rt
.time_slice
= sched_rr_timeslice
;
1955 * Requeue to the end of queue if we (and all of our ancestors) are the
1956 * only element on the queue
1958 for_each_sched_rt_entity(rt_se
) {
1959 if (rt_se
->run_list
.prev
!= rt_se
->run_list
.next
) {
1960 requeue_task_rt(rq
, p
, 0);
1961 set_tsk_need_resched(p
);
1967 static void set_curr_task_rt(struct rq
*rq
)
1969 struct task_struct
*p
= rq
->curr
;
1971 p
->se
.exec_start
= rq_clock_task(rq
);
1973 /* The running task is never eligible for pushing */
1974 dequeue_pushable_task(rq
, p
);
1977 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
1980 * Time slice is 0 for SCHED_FIFO tasks
1982 if (task
->policy
== SCHED_RR
)
1983 return sched_rr_timeslice
;
1988 const struct sched_class rt_sched_class
= {
1989 .next
= &fair_sched_class
,
1990 .enqueue_task
= enqueue_task_rt
,
1991 .dequeue_task
= dequeue_task_rt
,
1992 .yield_task
= yield_task_rt
,
1994 .check_preempt_curr
= check_preempt_curr_rt
,
1996 .pick_next_task
= pick_next_task_rt
,
1997 .put_prev_task
= put_prev_task_rt
,
2000 .select_task_rq
= select_task_rq_rt
,
2002 .set_cpus_allowed
= set_cpus_allowed_rt
,
2003 .rq_online
= rq_online_rt
,
2004 .rq_offline
= rq_offline_rt
,
2005 .pre_schedule
= pre_schedule_rt
,
2006 .post_schedule
= post_schedule_rt
,
2007 .task_woken
= task_woken_rt
,
2008 .switched_from
= switched_from_rt
,
2011 .set_curr_task
= set_curr_task_rt
,
2012 .task_tick
= task_tick_rt
,
2014 .get_rr_interval
= get_rr_interval_rt
,
2016 .prio_changed
= prio_changed_rt
,
2017 .switched_to
= switched_to_rt
,
2020 #ifdef CONFIG_SCHED_DEBUG
2021 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
2023 void print_rt_stats(struct seq_file
*m
, int cpu
)
2026 struct rt_rq
*rt_rq
;
2029 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
2030 print_rt_rq(m
, cpu
, rt_rq
);
2033 #endif /* CONFIG_SCHED_DEBUG */