hpsa: fix bad -ENOMEM return value in hpsa_big_passthru_ioctl
[linux/fpc-iii.git] / mm / migrate.c
blobe3cf71dd1288ca73dfa4da7e661ea8ba1cf0d951
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
46 #include "internal.h"
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
61 lru_add_drain_all();
63 return 0;
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
69 lru_add_drain();
71 return 0;
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
78 void putback_lru_pages(struct list_head *l)
80 struct page *page;
81 struct page *page2;
83 list_for_each_entry_safe(page, page2, l, lru) {
84 list_del(&page->lru);
85 dec_zone_page_state(page, NR_ISOLATED_ANON +
86 page_is_file_cache(page));
87 putback_lru_page(page);
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
98 void putback_movable_pages(struct list_head *l)
100 struct page *page;
101 struct page *page2;
103 list_for_each_entry_safe(page, page2, l, lru) {
104 if (unlikely(PageHuge(page))) {
105 putback_active_hugepage(page);
106 continue;
108 list_del(&page->lru);
109 dec_zone_page_state(page, NR_ISOLATED_ANON +
110 page_is_file_cache(page));
111 if (unlikely(isolated_balloon_page(page)))
112 balloon_page_putback(page);
113 else
114 putback_lru_page(page);
119 * Restore a potential migration pte to a working pte entry
121 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
122 unsigned long addr, void *old)
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
126 pmd_t *pmd;
127 pte_t *ptep, pte;
128 spinlock_t *ptl;
130 if (unlikely(PageHuge(new))) {
131 ptep = huge_pte_offset(mm, addr);
132 if (!ptep)
133 goto out;
134 ptl = &mm->page_table_lock;
135 } else {
136 pmd = mm_find_pmd(mm, addr);
137 if (!pmd)
138 goto out;
139 if (pmd_trans_huge(*pmd))
140 goto out;
142 ptep = pte_offset_map(pmd, addr);
145 * Peek to check is_swap_pte() before taking ptlock? No, we
146 * can race mremap's move_ptes(), which skips anon_vma lock.
149 ptl = pte_lockptr(mm, pmd);
152 spin_lock(ptl);
153 pte = *ptep;
154 if (!is_swap_pte(pte))
155 goto unlock;
157 entry = pte_to_swp_entry(pte);
159 if (!is_migration_entry(entry) ||
160 migration_entry_to_page(entry) != old)
161 goto unlock;
163 get_page(new);
164 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
165 if (pte_swp_soft_dirty(*ptep))
166 pte = pte_mksoft_dirty(pte);
167 if (is_write_migration_entry(entry))
168 pte = pte_mkwrite(pte);
169 #ifdef CONFIG_HUGETLB_PAGE
170 if (PageHuge(new)) {
171 pte = pte_mkhuge(pte);
172 pte = arch_make_huge_pte(pte, vma, new, 0);
174 #endif
175 flush_dcache_page(new);
176 set_pte_at(mm, addr, ptep, pte);
178 if (PageHuge(new)) {
179 if (PageAnon(new))
180 hugepage_add_anon_rmap(new, vma, addr);
181 else
182 page_dup_rmap(new);
183 } else if (PageAnon(new))
184 page_add_anon_rmap(new, vma, addr);
185 else
186 page_add_file_rmap(new);
188 /* No need to invalidate - it was non-present before */
189 update_mmu_cache(vma, addr, ptep);
190 unlock:
191 pte_unmap_unlock(ptep, ptl);
192 out:
193 return SWAP_AGAIN;
197 * Get rid of all migration entries and replace them by
198 * references to the indicated page.
200 static void remove_migration_ptes(struct page *old, struct page *new)
202 rmap_walk(new, remove_migration_pte, old);
206 * Something used the pte of a page under migration. We need to
207 * get to the page and wait until migration is finished.
208 * When we return from this function the fault will be retried.
210 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
211 spinlock_t *ptl)
213 pte_t pte;
214 swp_entry_t entry;
215 struct page *page;
217 spin_lock(ptl);
218 pte = *ptep;
219 if (!is_swap_pte(pte))
220 goto out;
222 entry = pte_to_swp_entry(pte);
223 if (!is_migration_entry(entry))
224 goto out;
226 page = migration_entry_to_page(entry);
229 * Once radix-tree replacement of page migration started, page_count
230 * *must* be zero. And, we don't want to call wait_on_page_locked()
231 * against a page without get_page().
232 * So, we use get_page_unless_zero(), here. Even failed, page fault
233 * will occur again.
235 if (!get_page_unless_zero(page))
236 goto out;
237 pte_unmap_unlock(ptep, ptl);
238 wait_on_page_locked(page);
239 put_page(page);
240 return;
241 out:
242 pte_unmap_unlock(ptep, ptl);
245 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
246 unsigned long address)
248 spinlock_t *ptl = pte_lockptr(mm, pmd);
249 pte_t *ptep = pte_offset_map(pmd, address);
250 __migration_entry_wait(mm, ptep, ptl);
253 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
255 spinlock_t *ptl = &(mm)->page_table_lock;
256 __migration_entry_wait(mm, pte, ptl);
259 #ifdef CONFIG_BLOCK
260 /* Returns true if all buffers are successfully locked */
261 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
262 enum migrate_mode mode)
264 struct buffer_head *bh = head;
266 /* Simple case, sync compaction */
267 if (mode != MIGRATE_ASYNC) {
268 do {
269 get_bh(bh);
270 lock_buffer(bh);
271 bh = bh->b_this_page;
273 } while (bh != head);
275 return true;
278 /* async case, we cannot block on lock_buffer so use trylock_buffer */
279 do {
280 get_bh(bh);
281 if (!trylock_buffer(bh)) {
283 * We failed to lock the buffer and cannot stall in
284 * async migration. Release the taken locks
286 struct buffer_head *failed_bh = bh;
287 put_bh(failed_bh);
288 bh = head;
289 while (bh != failed_bh) {
290 unlock_buffer(bh);
291 put_bh(bh);
292 bh = bh->b_this_page;
294 return false;
297 bh = bh->b_this_page;
298 } while (bh != head);
299 return true;
301 #else
302 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
303 enum migrate_mode mode)
305 return true;
307 #endif /* CONFIG_BLOCK */
310 * Replace the page in the mapping.
312 * The number of remaining references must be:
313 * 1 for anonymous pages without a mapping
314 * 2 for pages with a mapping
315 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
317 int migrate_page_move_mapping(struct address_space *mapping,
318 struct page *newpage, struct page *page,
319 struct buffer_head *head, enum migrate_mode mode,
320 int extra_count)
322 int expected_count = 1 + extra_count;
323 void **pslot;
325 if (!mapping) {
326 /* Anonymous page without mapping */
327 if (page_count(page) != expected_count)
328 return -EAGAIN;
329 return MIGRATEPAGE_SUCCESS;
332 spin_lock_irq(&mapping->tree_lock);
334 pslot = radix_tree_lookup_slot(&mapping->page_tree,
335 page_index(page));
337 expected_count += 1 + page_has_private(page);
338 if (page_count(page) != expected_count ||
339 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
340 spin_unlock_irq(&mapping->tree_lock);
341 return -EAGAIN;
344 if (!page_freeze_refs(page, expected_count)) {
345 spin_unlock_irq(&mapping->tree_lock);
346 return -EAGAIN;
350 * In the async migration case of moving a page with buffers, lock the
351 * buffers using trylock before the mapping is moved. If the mapping
352 * was moved, we later failed to lock the buffers and could not move
353 * the mapping back due to an elevated page count, we would have to
354 * block waiting on other references to be dropped.
356 if (mode == MIGRATE_ASYNC && head &&
357 !buffer_migrate_lock_buffers(head, mode)) {
358 page_unfreeze_refs(page, expected_count);
359 spin_unlock_irq(&mapping->tree_lock);
360 return -EAGAIN;
364 * Now we know that no one else is looking at the page.
366 get_page(newpage); /* add cache reference */
367 if (PageSwapCache(page)) {
368 SetPageSwapCache(newpage);
369 set_page_private(newpage, page_private(page));
372 radix_tree_replace_slot(pslot, newpage);
375 * Drop cache reference from old page by unfreezing
376 * to one less reference.
377 * We know this isn't the last reference.
379 page_unfreeze_refs(page, expected_count - 1);
382 * If moved to a different zone then also account
383 * the page for that zone. Other VM counters will be
384 * taken care of when we establish references to the
385 * new page and drop references to the old page.
387 * Note that anonymous pages are accounted for
388 * via NR_FILE_PAGES and NR_ANON_PAGES if they
389 * are mapped to swap space.
391 __dec_zone_page_state(page, NR_FILE_PAGES);
392 __inc_zone_page_state(newpage, NR_FILE_PAGES);
393 if (!PageSwapCache(page) && PageSwapBacked(page)) {
394 __dec_zone_page_state(page, NR_SHMEM);
395 __inc_zone_page_state(newpage, NR_SHMEM);
397 spin_unlock_irq(&mapping->tree_lock);
399 return MIGRATEPAGE_SUCCESS;
403 * The expected number of remaining references is the same as that
404 * of migrate_page_move_mapping().
406 int migrate_huge_page_move_mapping(struct address_space *mapping,
407 struct page *newpage, struct page *page)
409 int expected_count;
410 void **pslot;
412 if (!mapping) {
413 if (page_count(page) != 1)
414 return -EAGAIN;
415 return MIGRATEPAGE_SUCCESS;
418 spin_lock_irq(&mapping->tree_lock);
420 pslot = radix_tree_lookup_slot(&mapping->page_tree,
421 page_index(page));
423 expected_count = 2 + page_has_private(page);
424 if (page_count(page) != expected_count ||
425 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
426 spin_unlock_irq(&mapping->tree_lock);
427 return -EAGAIN;
430 if (!page_freeze_refs(page, expected_count)) {
431 spin_unlock_irq(&mapping->tree_lock);
432 return -EAGAIN;
435 get_page(newpage);
437 radix_tree_replace_slot(pslot, newpage);
439 page_unfreeze_refs(page, expected_count - 1);
441 spin_unlock_irq(&mapping->tree_lock);
442 return MIGRATEPAGE_SUCCESS;
446 * Copy the page to its new location
448 void migrate_page_copy(struct page *newpage, struct page *page)
450 if (PageHuge(page) || PageTransHuge(page))
451 copy_huge_page(newpage, page);
452 else
453 copy_highpage(newpage, page);
455 if (PageError(page))
456 SetPageError(newpage);
457 if (PageReferenced(page))
458 SetPageReferenced(newpage);
459 if (PageUptodate(page))
460 SetPageUptodate(newpage);
461 if (TestClearPageActive(page)) {
462 VM_BUG_ON(PageUnevictable(page));
463 SetPageActive(newpage);
464 } else if (TestClearPageUnevictable(page))
465 SetPageUnevictable(newpage);
466 if (PageChecked(page))
467 SetPageChecked(newpage);
468 if (PageMappedToDisk(page))
469 SetPageMappedToDisk(newpage);
471 if (PageDirty(page)) {
472 clear_page_dirty_for_io(page);
474 * Want to mark the page and the radix tree as dirty, and
475 * redo the accounting that clear_page_dirty_for_io undid,
476 * but we can't use set_page_dirty because that function
477 * is actually a signal that all of the page has become dirty.
478 * Whereas only part of our page may be dirty.
480 if (PageSwapBacked(page))
481 SetPageDirty(newpage);
482 else
483 __set_page_dirty_nobuffers(newpage);
486 mlock_migrate_page(newpage, page);
487 ksm_migrate_page(newpage, page);
489 * Please do not reorder this without considering how mm/ksm.c's
490 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
492 ClearPageSwapCache(page);
493 ClearPagePrivate(page);
494 set_page_private(page, 0);
497 * If any waiters have accumulated on the new page then
498 * wake them up.
500 if (PageWriteback(newpage))
501 end_page_writeback(newpage);
504 /************************************************************
505 * Migration functions
506 ***********************************************************/
508 /* Always fail migration. Used for mappings that are not movable */
509 int fail_migrate_page(struct address_space *mapping,
510 struct page *newpage, struct page *page)
512 return -EIO;
514 EXPORT_SYMBOL(fail_migrate_page);
517 * Common logic to directly migrate a single page suitable for
518 * pages that do not use PagePrivate/PagePrivate2.
520 * Pages are locked upon entry and exit.
522 int migrate_page(struct address_space *mapping,
523 struct page *newpage, struct page *page,
524 enum migrate_mode mode)
526 int rc;
528 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
530 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
532 if (rc != MIGRATEPAGE_SUCCESS)
533 return rc;
535 migrate_page_copy(newpage, page);
536 return MIGRATEPAGE_SUCCESS;
538 EXPORT_SYMBOL(migrate_page);
540 #ifdef CONFIG_BLOCK
542 * Migration function for pages with buffers. This function can only be used
543 * if the underlying filesystem guarantees that no other references to "page"
544 * exist.
546 int buffer_migrate_page(struct address_space *mapping,
547 struct page *newpage, struct page *page, enum migrate_mode mode)
549 struct buffer_head *bh, *head;
550 int rc;
552 if (!page_has_buffers(page))
553 return migrate_page(mapping, newpage, page, mode);
555 head = page_buffers(page);
557 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
559 if (rc != MIGRATEPAGE_SUCCESS)
560 return rc;
563 * In the async case, migrate_page_move_mapping locked the buffers
564 * with an IRQ-safe spinlock held. In the sync case, the buffers
565 * need to be locked now
567 if (mode != MIGRATE_ASYNC)
568 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
570 ClearPagePrivate(page);
571 set_page_private(newpage, page_private(page));
572 set_page_private(page, 0);
573 put_page(page);
574 get_page(newpage);
576 bh = head;
577 do {
578 set_bh_page(bh, newpage, bh_offset(bh));
579 bh = bh->b_this_page;
581 } while (bh != head);
583 SetPagePrivate(newpage);
585 migrate_page_copy(newpage, page);
587 bh = head;
588 do {
589 unlock_buffer(bh);
590 put_bh(bh);
591 bh = bh->b_this_page;
593 } while (bh != head);
595 return MIGRATEPAGE_SUCCESS;
597 EXPORT_SYMBOL(buffer_migrate_page);
598 #endif
601 * Writeback a page to clean the dirty state
603 static int writeout(struct address_space *mapping, struct page *page)
605 struct writeback_control wbc = {
606 .sync_mode = WB_SYNC_NONE,
607 .nr_to_write = 1,
608 .range_start = 0,
609 .range_end = LLONG_MAX,
610 .for_reclaim = 1
612 int rc;
614 if (!mapping->a_ops->writepage)
615 /* No write method for the address space */
616 return -EINVAL;
618 if (!clear_page_dirty_for_io(page))
619 /* Someone else already triggered a write */
620 return -EAGAIN;
623 * A dirty page may imply that the underlying filesystem has
624 * the page on some queue. So the page must be clean for
625 * migration. Writeout may mean we loose the lock and the
626 * page state is no longer what we checked for earlier.
627 * At this point we know that the migration attempt cannot
628 * be successful.
630 remove_migration_ptes(page, page);
632 rc = mapping->a_ops->writepage(page, &wbc);
634 if (rc != AOP_WRITEPAGE_ACTIVATE)
635 /* unlocked. Relock */
636 lock_page(page);
638 return (rc < 0) ? -EIO : -EAGAIN;
642 * Default handling if a filesystem does not provide a migration function.
644 static int fallback_migrate_page(struct address_space *mapping,
645 struct page *newpage, struct page *page, enum migrate_mode mode)
647 if (PageDirty(page)) {
648 /* Only writeback pages in full synchronous migration */
649 if (mode != MIGRATE_SYNC)
650 return -EBUSY;
651 return writeout(mapping, page);
655 * Buffers may be managed in a filesystem specific way.
656 * We must have no buffers or drop them.
658 if (page_has_private(page) &&
659 !try_to_release_page(page, GFP_KERNEL))
660 return -EAGAIN;
662 return migrate_page(mapping, newpage, page, mode);
666 * Move a page to a newly allocated page
667 * The page is locked and all ptes have been successfully removed.
669 * The new page will have replaced the old page if this function
670 * is successful.
672 * Return value:
673 * < 0 - error code
674 * MIGRATEPAGE_SUCCESS - success
676 static int move_to_new_page(struct page *newpage, struct page *page,
677 int remap_swapcache, enum migrate_mode mode)
679 struct address_space *mapping;
680 int rc;
683 * Block others from accessing the page when we get around to
684 * establishing additional references. We are the only one
685 * holding a reference to the new page at this point.
687 if (!trylock_page(newpage))
688 BUG();
690 /* Prepare mapping for the new page.*/
691 newpage->index = page->index;
692 newpage->mapping = page->mapping;
693 if (PageSwapBacked(page))
694 SetPageSwapBacked(newpage);
696 mapping = page_mapping(page);
697 if (!mapping)
698 rc = migrate_page(mapping, newpage, page, mode);
699 else if (mapping->a_ops->migratepage)
701 * Most pages have a mapping and most filesystems provide a
702 * migratepage callback. Anonymous pages are part of swap
703 * space which also has its own migratepage callback. This
704 * is the most common path for page migration.
706 rc = mapping->a_ops->migratepage(mapping,
707 newpage, page, mode);
708 else
709 rc = fallback_migrate_page(mapping, newpage, page, mode);
711 if (rc != MIGRATEPAGE_SUCCESS) {
712 newpage->mapping = NULL;
713 } else {
714 if (remap_swapcache)
715 remove_migration_ptes(page, newpage);
716 page->mapping = NULL;
719 unlock_page(newpage);
721 return rc;
724 static int __unmap_and_move(struct page *page, struct page *newpage,
725 int force, enum migrate_mode mode)
727 int rc = -EAGAIN;
728 int remap_swapcache = 1;
729 struct mem_cgroup *mem;
730 struct anon_vma *anon_vma = NULL;
732 if (!trylock_page(page)) {
733 if (!force || mode == MIGRATE_ASYNC)
734 goto out;
737 * It's not safe for direct compaction to call lock_page.
738 * For example, during page readahead pages are added locked
739 * to the LRU. Later, when the IO completes the pages are
740 * marked uptodate and unlocked. However, the queueing
741 * could be merging multiple pages for one bio (e.g.
742 * mpage_readpages). If an allocation happens for the
743 * second or third page, the process can end up locking
744 * the same page twice and deadlocking. Rather than
745 * trying to be clever about what pages can be locked,
746 * avoid the use of lock_page for direct compaction
747 * altogether.
749 if (current->flags & PF_MEMALLOC)
750 goto out;
752 lock_page(page);
755 /* charge against new page */
756 mem_cgroup_prepare_migration(page, newpage, &mem);
758 if (PageWriteback(page)) {
760 * Only in the case of a full synchronous migration is it
761 * necessary to wait for PageWriteback. In the async case,
762 * the retry loop is too short and in the sync-light case,
763 * the overhead of stalling is too much
765 if (mode != MIGRATE_SYNC) {
766 rc = -EBUSY;
767 goto uncharge;
769 if (!force)
770 goto uncharge;
771 wait_on_page_writeback(page);
774 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
775 * we cannot notice that anon_vma is freed while we migrates a page.
776 * This get_anon_vma() delays freeing anon_vma pointer until the end
777 * of migration. File cache pages are no problem because of page_lock()
778 * File Caches may use write_page() or lock_page() in migration, then,
779 * just care Anon page here.
781 if (PageAnon(page) && !PageKsm(page)) {
783 * Only page_lock_anon_vma_read() understands the subtleties of
784 * getting a hold on an anon_vma from outside one of its mms.
786 anon_vma = page_get_anon_vma(page);
787 if (anon_vma) {
789 * Anon page
791 } else if (PageSwapCache(page)) {
793 * We cannot be sure that the anon_vma of an unmapped
794 * swapcache page is safe to use because we don't
795 * know in advance if the VMA that this page belonged
796 * to still exists. If the VMA and others sharing the
797 * data have been freed, then the anon_vma could
798 * already be invalid.
800 * To avoid this possibility, swapcache pages get
801 * migrated but are not remapped when migration
802 * completes
804 remap_swapcache = 0;
805 } else {
806 goto uncharge;
810 if (unlikely(balloon_page_movable(page))) {
812 * A ballooned page does not need any special attention from
813 * physical to virtual reverse mapping procedures.
814 * Skip any attempt to unmap PTEs or to remap swap cache,
815 * in order to avoid burning cycles at rmap level, and perform
816 * the page migration right away (proteced by page lock).
818 rc = balloon_page_migrate(newpage, page, mode);
819 goto uncharge;
823 * Corner case handling:
824 * 1. When a new swap-cache page is read into, it is added to the LRU
825 * and treated as swapcache but it has no rmap yet.
826 * Calling try_to_unmap() against a page->mapping==NULL page will
827 * trigger a BUG. So handle it here.
828 * 2. An orphaned page (see truncate_complete_page) might have
829 * fs-private metadata. The page can be picked up due to memory
830 * offlining. Everywhere else except page reclaim, the page is
831 * invisible to the vm, so the page can not be migrated. So try to
832 * free the metadata, so the page can be freed.
834 if (!page->mapping) {
835 VM_BUG_ON(PageAnon(page));
836 if (page_has_private(page)) {
837 try_to_free_buffers(page);
838 goto uncharge;
840 goto skip_unmap;
843 /* Establish migration ptes or remove ptes */
844 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
846 skip_unmap:
847 if (!page_mapped(page))
848 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
850 if (rc && remap_swapcache)
851 remove_migration_ptes(page, page);
853 /* Drop an anon_vma reference if we took one */
854 if (anon_vma)
855 put_anon_vma(anon_vma);
857 uncharge:
858 mem_cgroup_end_migration(mem, page, newpage,
859 (rc == MIGRATEPAGE_SUCCESS ||
860 rc == MIGRATEPAGE_BALLOON_SUCCESS));
861 unlock_page(page);
862 out:
863 return rc;
867 * Obtain the lock on page, remove all ptes and migrate the page
868 * to the newly allocated page in newpage.
870 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
871 struct page *page, int force, enum migrate_mode mode)
873 int rc = 0;
874 int *result = NULL;
875 struct page *newpage = get_new_page(page, private, &result);
877 if (!newpage)
878 return -ENOMEM;
880 if (page_count(page) == 1) {
881 /* page was freed from under us. So we are done. */
882 goto out;
885 if (unlikely(PageTransHuge(page)))
886 if (unlikely(split_huge_page(page)))
887 goto out;
889 rc = __unmap_and_move(page, newpage, force, mode);
891 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
893 * A ballooned page has been migrated already.
894 * Now, it's the time to wrap-up counters,
895 * handle the page back to Buddy and return.
897 dec_zone_page_state(page, NR_ISOLATED_ANON +
898 page_is_file_cache(page));
899 balloon_page_free(page);
900 return MIGRATEPAGE_SUCCESS;
902 out:
903 if (rc != -EAGAIN) {
905 * A page that has been migrated has all references
906 * removed and will be freed. A page that has not been
907 * migrated will have kepts its references and be
908 * restored.
910 list_del(&page->lru);
911 dec_zone_page_state(page, NR_ISOLATED_ANON +
912 page_is_file_cache(page));
913 putback_lru_page(page);
916 * Move the new page to the LRU. If migration was not successful
917 * then this will free the page.
919 putback_lru_page(newpage);
920 if (result) {
921 if (rc)
922 *result = rc;
923 else
924 *result = page_to_nid(newpage);
926 return rc;
930 * Counterpart of unmap_and_move_page() for hugepage migration.
932 * This function doesn't wait the completion of hugepage I/O
933 * because there is no race between I/O and migration for hugepage.
934 * Note that currently hugepage I/O occurs only in direct I/O
935 * where no lock is held and PG_writeback is irrelevant,
936 * and writeback status of all subpages are counted in the reference
937 * count of the head page (i.e. if all subpages of a 2MB hugepage are
938 * under direct I/O, the reference of the head page is 512 and a bit more.)
939 * This means that when we try to migrate hugepage whose subpages are
940 * doing direct I/O, some references remain after try_to_unmap() and
941 * hugepage migration fails without data corruption.
943 * There is also no race when direct I/O is issued on the page under migration,
944 * because then pte is replaced with migration swap entry and direct I/O code
945 * will wait in the page fault for migration to complete.
947 static int unmap_and_move_huge_page(new_page_t get_new_page,
948 unsigned long private, struct page *hpage,
949 int force, enum migrate_mode mode)
951 int rc = 0;
952 int *result = NULL;
953 struct page *new_hpage = get_new_page(hpage, private, &result);
954 struct anon_vma *anon_vma = NULL;
957 * Movability of hugepages depends on architectures and hugepage size.
958 * This check is necessary because some callers of hugepage migration
959 * like soft offline and memory hotremove don't walk through page
960 * tables or check whether the hugepage is pmd-based or not before
961 * kicking migration.
963 if (!hugepage_migration_support(page_hstate(hpage)))
964 return -ENOSYS;
966 if (!new_hpage)
967 return -ENOMEM;
969 rc = -EAGAIN;
971 if (!trylock_page(hpage)) {
972 if (!force || mode != MIGRATE_SYNC)
973 goto out;
974 lock_page(hpage);
977 if (PageAnon(hpage))
978 anon_vma = page_get_anon_vma(hpage);
980 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
982 if (!page_mapped(hpage))
983 rc = move_to_new_page(new_hpage, hpage, 1, mode);
985 if (rc)
986 remove_migration_ptes(hpage, hpage);
988 if (anon_vma)
989 put_anon_vma(anon_vma);
991 if (!rc)
992 hugetlb_cgroup_migrate(hpage, new_hpage);
994 unlock_page(hpage);
995 out:
996 if (rc != -EAGAIN)
997 putback_active_hugepage(hpage);
998 put_page(new_hpage);
999 if (result) {
1000 if (rc)
1001 *result = rc;
1002 else
1003 *result = page_to_nid(new_hpage);
1005 return rc;
1009 * migrate_pages - migrate the pages specified in a list, to the free pages
1010 * supplied as the target for the page migration
1012 * @from: The list of pages to be migrated.
1013 * @get_new_page: The function used to allocate free pages to be used
1014 * as the target of the page migration.
1015 * @private: Private data to be passed on to get_new_page()
1016 * @mode: The migration mode that specifies the constraints for
1017 * page migration, if any.
1018 * @reason: The reason for page migration.
1020 * The function returns after 10 attempts or if no pages are movable any more
1021 * because the list has become empty or no retryable pages exist any more.
1022 * The caller should call putback_lru_pages() to return pages to the LRU
1023 * or free list only if ret != 0.
1025 * Returns the number of pages that were not migrated, or an error code.
1027 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1028 unsigned long private, enum migrate_mode mode, int reason)
1030 int retry = 1;
1031 int nr_failed = 0;
1032 int nr_succeeded = 0;
1033 int pass = 0;
1034 struct page *page;
1035 struct page *page2;
1036 int swapwrite = current->flags & PF_SWAPWRITE;
1037 int rc;
1039 if (!swapwrite)
1040 current->flags |= PF_SWAPWRITE;
1042 for(pass = 0; pass < 10 && retry; pass++) {
1043 retry = 0;
1045 list_for_each_entry_safe(page, page2, from, lru) {
1046 cond_resched();
1048 if (PageHuge(page))
1049 rc = unmap_and_move_huge_page(get_new_page,
1050 private, page, pass > 2, mode);
1051 else
1052 rc = unmap_and_move(get_new_page, private,
1053 page, pass > 2, mode);
1055 switch(rc) {
1056 case -ENOMEM:
1057 goto out;
1058 case -EAGAIN:
1059 retry++;
1060 break;
1061 case MIGRATEPAGE_SUCCESS:
1062 nr_succeeded++;
1063 break;
1064 default:
1065 /* Permanent failure */
1066 nr_failed++;
1067 break;
1071 rc = nr_failed + retry;
1072 out:
1073 if (nr_succeeded)
1074 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1075 if (nr_failed)
1076 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1077 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1079 if (!swapwrite)
1080 current->flags &= ~PF_SWAPWRITE;
1082 return rc;
1085 #ifdef CONFIG_NUMA
1087 * Move a list of individual pages
1089 struct page_to_node {
1090 unsigned long addr;
1091 struct page *page;
1092 int node;
1093 int status;
1096 static struct page *new_page_node(struct page *p, unsigned long private,
1097 int **result)
1099 struct page_to_node *pm = (struct page_to_node *)private;
1101 while (pm->node != MAX_NUMNODES && pm->page != p)
1102 pm++;
1104 if (pm->node == MAX_NUMNODES)
1105 return NULL;
1107 *result = &pm->status;
1109 if (PageHuge(p))
1110 return alloc_huge_page_node(page_hstate(compound_head(p)),
1111 pm->node);
1112 else
1113 return alloc_pages_exact_node(pm->node,
1114 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1118 * Move a set of pages as indicated in the pm array. The addr
1119 * field must be set to the virtual address of the page to be moved
1120 * and the node number must contain a valid target node.
1121 * The pm array ends with node = MAX_NUMNODES.
1123 static int do_move_page_to_node_array(struct mm_struct *mm,
1124 struct page_to_node *pm,
1125 int migrate_all)
1127 int err;
1128 struct page_to_node *pp;
1129 LIST_HEAD(pagelist);
1131 down_read(&mm->mmap_sem);
1134 * Build a list of pages to migrate
1136 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1137 struct vm_area_struct *vma;
1138 struct page *page;
1140 err = -EFAULT;
1141 vma = find_vma(mm, pp->addr);
1142 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1143 goto set_status;
1145 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1147 err = PTR_ERR(page);
1148 if (IS_ERR(page))
1149 goto set_status;
1151 err = -ENOENT;
1152 if (!page)
1153 goto set_status;
1155 /* Use PageReserved to check for zero page */
1156 if (PageReserved(page))
1157 goto put_and_set;
1159 pp->page = page;
1160 err = page_to_nid(page);
1162 if (err == pp->node)
1164 * Node already in the right place
1166 goto put_and_set;
1168 err = -EACCES;
1169 if (page_mapcount(page) > 1 &&
1170 !migrate_all)
1171 goto put_and_set;
1173 if (PageHuge(page)) {
1174 isolate_huge_page(page, &pagelist);
1175 goto put_and_set;
1178 err = isolate_lru_page(page);
1179 if (!err) {
1180 list_add_tail(&page->lru, &pagelist);
1181 inc_zone_page_state(page, NR_ISOLATED_ANON +
1182 page_is_file_cache(page));
1184 put_and_set:
1186 * Either remove the duplicate refcount from
1187 * isolate_lru_page() or drop the page ref if it was
1188 * not isolated.
1190 put_page(page);
1191 set_status:
1192 pp->status = err;
1195 err = 0;
1196 if (!list_empty(&pagelist)) {
1197 err = migrate_pages(&pagelist, new_page_node,
1198 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1199 if (err)
1200 putback_movable_pages(&pagelist);
1203 up_read(&mm->mmap_sem);
1204 return err;
1208 * Migrate an array of page address onto an array of nodes and fill
1209 * the corresponding array of status.
1211 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1212 unsigned long nr_pages,
1213 const void __user * __user *pages,
1214 const int __user *nodes,
1215 int __user *status, int flags)
1217 struct page_to_node *pm;
1218 unsigned long chunk_nr_pages;
1219 unsigned long chunk_start;
1220 int err;
1222 err = -ENOMEM;
1223 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1224 if (!pm)
1225 goto out;
1227 migrate_prep();
1230 * Store a chunk of page_to_node array in a page,
1231 * but keep the last one as a marker
1233 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1235 for (chunk_start = 0;
1236 chunk_start < nr_pages;
1237 chunk_start += chunk_nr_pages) {
1238 int j;
1240 if (chunk_start + chunk_nr_pages > nr_pages)
1241 chunk_nr_pages = nr_pages - chunk_start;
1243 /* fill the chunk pm with addrs and nodes from user-space */
1244 for (j = 0; j < chunk_nr_pages; j++) {
1245 const void __user *p;
1246 int node;
1248 err = -EFAULT;
1249 if (get_user(p, pages + j + chunk_start))
1250 goto out_pm;
1251 pm[j].addr = (unsigned long) p;
1253 if (get_user(node, nodes + j + chunk_start))
1254 goto out_pm;
1256 err = -ENODEV;
1257 if (node < 0 || node >= MAX_NUMNODES)
1258 goto out_pm;
1260 if (!node_state(node, N_MEMORY))
1261 goto out_pm;
1263 err = -EACCES;
1264 if (!node_isset(node, task_nodes))
1265 goto out_pm;
1267 pm[j].node = node;
1270 /* End marker for this chunk */
1271 pm[chunk_nr_pages].node = MAX_NUMNODES;
1273 /* Migrate this chunk */
1274 err = do_move_page_to_node_array(mm, pm,
1275 flags & MPOL_MF_MOVE_ALL);
1276 if (err < 0)
1277 goto out_pm;
1279 /* Return status information */
1280 for (j = 0; j < chunk_nr_pages; j++)
1281 if (put_user(pm[j].status, status + j + chunk_start)) {
1282 err = -EFAULT;
1283 goto out_pm;
1286 err = 0;
1288 out_pm:
1289 free_page((unsigned long)pm);
1290 out:
1291 return err;
1295 * Determine the nodes of an array of pages and store it in an array of status.
1297 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1298 const void __user **pages, int *status)
1300 unsigned long i;
1302 down_read(&mm->mmap_sem);
1304 for (i = 0; i < nr_pages; i++) {
1305 unsigned long addr = (unsigned long)(*pages);
1306 struct vm_area_struct *vma;
1307 struct page *page;
1308 int err = -EFAULT;
1310 vma = find_vma(mm, addr);
1311 if (!vma || addr < vma->vm_start)
1312 goto set_status;
1314 page = follow_page(vma, addr, 0);
1316 err = PTR_ERR(page);
1317 if (IS_ERR(page))
1318 goto set_status;
1320 err = -ENOENT;
1321 /* Use PageReserved to check for zero page */
1322 if (!page || PageReserved(page))
1323 goto set_status;
1325 err = page_to_nid(page);
1326 set_status:
1327 *status = err;
1329 pages++;
1330 status++;
1333 up_read(&mm->mmap_sem);
1337 * Determine the nodes of a user array of pages and store it in
1338 * a user array of status.
1340 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1341 const void __user * __user *pages,
1342 int __user *status)
1344 #define DO_PAGES_STAT_CHUNK_NR 16
1345 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1346 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1348 while (nr_pages) {
1349 unsigned long chunk_nr;
1351 chunk_nr = nr_pages;
1352 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1353 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1355 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1356 break;
1358 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1360 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1361 break;
1363 pages += chunk_nr;
1364 status += chunk_nr;
1365 nr_pages -= chunk_nr;
1367 return nr_pages ? -EFAULT : 0;
1371 * Move a list of pages in the address space of the currently executing
1372 * process.
1374 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1375 const void __user * __user *, pages,
1376 const int __user *, nodes,
1377 int __user *, status, int, flags)
1379 const struct cred *cred = current_cred(), *tcred;
1380 struct task_struct *task;
1381 struct mm_struct *mm;
1382 int err;
1383 nodemask_t task_nodes;
1385 /* Check flags */
1386 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1387 return -EINVAL;
1389 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1390 return -EPERM;
1392 /* Find the mm_struct */
1393 rcu_read_lock();
1394 task = pid ? find_task_by_vpid(pid) : current;
1395 if (!task) {
1396 rcu_read_unlock();
1397 return -ESRCH;
1399 get_task_struct(task);
1402 * Check if this process has the right to modify the specified
1403 * process. The right exists if the process has administrative
1404 * capabilities, superuser privileges or the same
1405 * userid as the target process.
1407 tcred = __task_cred(task);
1408 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1409 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1410 !capable(CAP_SYS_NICE)) {
1411 rcu_read_unlock();
1412 err = -EPERM;
1413 goto out;
1415 rcu_read_unlock();
1417 err = security_task_movememory(task);
1418 if (err)
1419 goto out;
1421 task_nodes = cpuset_mems_allowed(task);
1422 mm = get_task_mm(task);
1423 put_task_struct(task);
1425 if (!mm)
1426 return -EINVAL;
1428 if (nodes)
1429 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1430 nodes, status, flags);
1431 else
1432 err = do_pages_stat(mm, nr_pages, pages, status);
1434 mmput(mm);
1435 return err;
1437 out:
1438 put_task_struct(task);
1439 return err;
1443 * Call migration functions in the vma_ops that may prepare
1444 * memory in a vm for migration. migration functions may perform
1445 * the migration for vmas that do not have an underlying page struct.
1447 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1448 const nodemask_t *from, unsigned long flags)
1450 struct vm_area_struct *vma;
1451 int err = 0;
1453 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1454 if (vma->vm_ops && vma->vm_ops->migrate) {
1455 err = vma->vm_ops->migrate(vma, to, from, flags);
1456 if (err)
1457 break;
1460 return err;
1463 #ifdef CONFIG_NUMA_BALANCING
1465 * Returns true if this is a safe migration target node for misplaced NUMA
1466 * pages. Currently it only checks the watermarks which crude
1468 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1469 unsigned long nr_migrate_pages)
1471 int z;
1472 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1473 struct zone *zone = pgdat->node_zones + z;
1475 if (!populated_zone(zone))
1476 continue;
1478 if (!zone_reclaimable(zone))
1479 continue;
1481 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1482 if (!zone_watermark_ok(zone, 0,
1483 high_wmark_pages(zone) +
1484 nr_migrate_pages,
1485 0, 0))
1486 continue;
1487 return true;
1489 return false;
1492 static struct page *alloc_misplaced_dst_page(struct page *page,
1493 unsigned long data,
1494 int **result)
1496 int nid = (int) data;
1497 struct page *newpage;
1499 newpage = alloc_pages_exact_node(nid,
1500 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1501 __GFP_NOMEMALLOC | __GFP_NORETRY |
1502 __GFP_NOWARN) &
1503 ~GFP_IOFS, 0);
1504 if (newpage)
1505 page_nid_xchg_last(newpage, page_nid_last(page));
1507 return newpage;
1511 * page migration rate limiting control.
1512 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1513 * window of time. Default here says do not migrate more than 1280M per second.
1514 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1515 * as it is faults that reset the window, pte updates will happen unconditionally
1516 * if there has not been a fault since @pteupdate_interval_millisecs after the
1517 * throttle window closed.
1519 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1520 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1521 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1523 /* Returns true if NUMA migration is currently rate limited */
1524 bool migrate_ratelimited(int node)
1526 pg_data_t *pgdat = NODE_DATA(node);
1528 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1529 msecs_to_jiffies(pteupdate_interval_millisecs)))
1530 return false;
1532 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1533 return false;
1535 return true;
1538 /* Returns true if the node is migrate rate-limited after the update */
1539 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1541 bool rate_limited = false;
1544 * Rate-limit the amount of data that is being migrated to a node.
1545 * Optimal placement is no good if the memory bus is saturated and
1546 * all the time is being spent migrating!
1548 spin_lock(&pgdat->numabalancing_migrate_lock);
1549 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1550 pgdat->numabalancing_migrate_nr_pages = 0;
1551 pgdat->numabalancing_migrate_next_window = jiffies +
1552 msecs_to_jiffies(migrate_interval_millisecs);
1554 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1555 rate_limited = true;
1556 else
1557 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1558 spin_unlock(&pgdat->numabalancing_migrate_lock);
1560 return rate_limited;
1563 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1565 int page_lru;
1567 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1569 /* Avoid migrating to a node that is nearly full */
1570 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1571 return 0;
1573 if (isolate_lru_page(page))
1574 return 0;
1577 * migrate_misplaced_transhuge_page() skips page migration's usual
1578 * check on page_count(), so we must do it here, now that the page
1579 * has been isolated: a GUP pin, or any other pin, prevents migration.
1580 * The expected page count is 3: 1 for page's mapcount and 1 for the
1581 * caller's pin and 1 for the reference taken by isolate_lru_page().
1583 if (PageTransHuge(page) && page_count(page) != 3) {
1584 putback_lru_page(page);
1585 return 0;
1588 page_lru = page_is_file_cache(page);
1589 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1590 hpage_nr_pages(page));
1593 * Isolating the page has taken another reference, so the
1594 * caller's reference can be safely dropped without the page
1595 * disappearing underneath us during migration.
1597 put_page(page);
1598 return 1;
1601 bool pmd_trans_migrating(pmd_t pmd)
1603 struct page *page = pmd_page(pmd);
1604 return PageLocked(page);
1607 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1609 struct page *page = pmd_page(*pmd);
1610 wait_on_page_locked(page);
1614 * Attempt to migrate a misplaced page to the specified destination
1615 * node. Caller is expected to have an elevated reference count on
1616 * the page that will be dropped by this function before returning.
1618 int migrate_misplaced_page(struct page *page, int node)
1620 pg_data_t *pgdat = NODE_DATA(node);
1621 int isolated;
1622 int nr_remaining;
1623 LIST_HEAD(migratepages);
1626 * Don't migrate pages that are mapped in multiple processes.
1627 * TODO: Handle false sharing detection instead of this hammer
1629 if (page_mapcount(page) != 1)
1630 goto out;
1633 * Rate-limit the amount of data that is being migrated to a node.
1634 * Optimal placement is no good if the memory bus is saturated and
1635 * all the time is being spent migrating!
1637 if (numamigrate_update_ratelimit(pgdat, 1))
1638 goto out;
1640 isolated = numamigrate_isolate_page(pgdat, page);
1641 if (!isolated)
1642 goto out;
1644 list_add(&page->lru, &migratepages);
1645 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1646 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1647 if (nr_remaining) {
1648 putback_lru_pages(&migratepages);
1649 isolated = 0;
1650 } else
1651 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1652 BUG_ON(!list_empty(&migratepages));
1653 return isolated;
1655 out:
1656 put_page(page);
1657 return 0;
1659 #endif /* CONFIG_NUMA_BALANCING */
1661 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1663 * Migrates a THP to a given target node. page must be locked and is unlocked
1664 * before returning.
1666 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1667 struct vm_area_struct *vma,
1668 pmd_t *pmd, pmd_t entry,
1669 unsigned long address,
1670 struct page *page, int node)
1672 pg_data_t *pgdat = NODE_DATA(node);
1673 int isolated = 0;
1674 struct page *new_page = NULL;
1675 struct mem_cgroup *memcg = NULL;
1676 int page_lru = page_is_file_cache(page);
1677 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1678 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1679 pmd_t orig_entry;
1682 * Don't migrate pages that are mapped in multiple processes.
1683 * TODO: Handle false sharing detection instead of this hammer
1685 if (page_mapcount(page) != 1)
1686 goto out_dropref;
1689 * Rate-limit the amount of data that is being migrated to a node.
1690 * Optimal placement is no good if the memory bus is saturated and
1691 * all the time is being spent migrating!
1693 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1694 goto out_dropref;
1696 new_page = alloc_pages_node(node,
1697 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1698 if (!new_page)
1699 goto out_fail;
1701 page_nid_xchg_last(new_page, page_nid_last(page));
1703 isolated = numamigrate_isolate_page(pgdat, page);
1704 if (!isolated) {
1705 put_page(new_page);
1706 goto out_fail;
1709 if (mm_tlb_flush_pending(mm))
1710 flush_tlb_range(vma, mmun_start, mmun_end);
1712 /* Prepare a page as a migration target */
1713 __set_page_locked(new_page);
1714 SetPageSwapBacked(new_page);
1716 /* anon mapping, we can simply copy page->mapping to the new page: */
1717 new_page->mapping = page->mapping;
1718 new_page->index = page->index;
1719 migrate_page_copy(new_page, page);
1720 WARN_ON(PageLRU(new_page));
1722 /* Recheck the target PMD */
1723 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1724 spin_lock(&mm->page_table_lock);
1725 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1726 fail_putback:
1727 spin_unlock(&mm->page_table_lock);
1728 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1730 /* Reverse changes made by migrate_page_copy() */
1731 if (TestClearPageActive(new_page))
1732 SetPageActive(page);
1733 if (TestClearPageUnevictable(new_page))
1734 SetPageUnevictable(page);
1735 mlock_migrate_page(page, new_page);
1737 unlock_page(new_page);
1738 put_page(new_page); /* Free it */
1740 /* Retake the callers reference and putback on LRU */
1741 get_page(page);
1742 putback_lru_page(page);
1743 mod_zone_page_state(page_zone(page),
1744 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1746 goto out_unlock;
1750 * Traditional migration needs to prepare the memcg charge
1751 * transaction early to prevent the old page from being
1752 * uncharged when installing migration entries. Here we can
1753 * save the potential rollback and start the charge transfer
1754 * only when migration is already known to end successfully.
1756 mem_cgroup_prepare_migration(page, new_page, &memcg);
1758 orig_entry = *pmd;
1759 entry = mk_pmd(new_page, vma->vm_page_prot);
1760 entry = pmd_mkhuge(entry);
1761 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1764 * Clear the old entry under pagetable lock and establish the new PTE.
1765 * Any parallel GUP will either observe the old page blocking on the
1766 * page lock, block on the page table lock or observe the new page.
1767 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1768 * guarantee the copy is visible before the pagetable update.
1770 flush_cache_range(vma, mmun_start, mmun_end);
1771 page_add_new_anon_rmap(new_page, vma, mmun_start);
1772 pmdp_clear_flush(vma, mmun_start, pmd);
1773 set_pmd_at(mm, mmun_start, pmd, entry);
1774 flush_tlb_range(vma, mmun_start, mmun_end);
1775 update_mmu_cache_pmd(vma, address, &entry);
1777 if (page_count(page) != 2) {
1778 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1779 flush_tlb_range(vma, mmun_start, mmun_end);
1780 update_mmu_cache_pmd(vma, address, &entry);
1781 page_remove_rmap(new_page);
1782 goto fail_putback;
1785 page_remove_rmap(page);
1788 * Finish the charge transaction under the page table lock to
1789 * prevent split_huge_page() from dividing up the charge
1790 * before it's fully transferred to the new page.
1792 mem_cgroup_end_migration(memcg, page, new_page, true);
1793 spin_unlock(&mm->page_table_lock);
1794 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1796 unlock_page(new_page);
1797 unlock_page(page);
1798 put_page(page); /* Drop the rmap reference */
1799 put_page(page); /* Drop the LRU isolation reference */
1801 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1802 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1804 mod_zone_page_state(page_zone(page),
1805 NR_ISOLATED_ANON + page_lru,
1806 -HPAGE_PMD_NR);
1807 return isolated;
1809 out_fail:
1810 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1811 out_dropref:
1812 spin_lock(&mm->page_table_lock);
1813 if (pmd_same(*pmd, entry)) {
1814 entry = pmd_mknonnuma(entry);
1815 set_pmd_at(mm, mmun_start, pmd, entry);
1816 update_mmu_cache_pmd(vma, address, &entry);
1818 spin_unlock(&mm->page_table_lock);
1820 out_unlock:
1821 unlock_page(page);
1822 put_page(page);
1823 return 0;
1825 #endif /* CONFIG_NUMA_BALANCING */
1827 #endif /* CONFIG_NUMA */