2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock
);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node
);
76 EXPORT_PER_CPU_SYMBOL(numa_node
);
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
86 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
91 * Array of node states.
93 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
94 [N_POSSIBLE
] = NODE_MASK_ALL
,
95 [N_ONLINE
] = { { [0] = 1UL } },
97 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
99 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY
] = { { [0] = 1UL } },
104 [N_CPU
] = { { [0] = 1UL } },
107 EXPORT_SYMBOL(node_states
);
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock
);
112 unsigned long totalram_pages __read_mostly
;
113 unsigned long totalreserve_pages __read_mostly
;
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
120 unsigned long dirty_balance_reserve __read_mostly
;
122 int percpu_pagelist_fraction
;
123 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
125 #ifdef CONFIG_PM_SLEEP
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
135 static gfp_t saved_gfp_mask
;
137 void pm_restore_gfp_mask(void)
139 WARN_ON(!mutex_is_locked(&pm_mutex
));
140 if (saved_gfp_mask
) {
141 gfp_allowed_mask
= saved_gfp_mask
;
146 void pm_restrict_gfp_mask(void)
148 WARN_ON(!mutex_is_locked(&pm_mutex
));
149 WARN_ON(saved_gfp_mask
);
150 saved_gfp_mask
= gfp_allowed_mask
;
151 gfp_allowed_mask
&= ~GFP_IOFS
;
154 bool pm_suspended_storage(void)
156 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
160 #endif /* CONFIG_PM_SLEEP */
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly
;
166 static void __free_pages_ok(struct page
*page
, unsigned int order
);
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
179 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
180 #ifdef CONFIG_ZONE_DMA
183 #ifdef CONFIG_ZONE_DMA32
186 #ifdef CONFIG_HIGHMEM
192 EXPORT_SYMBOL(totalram_pages
);
194 static char * const zone_names
[MAX_NR_ZONES
] = {
195 #ifdef CONFIG_ZONE_DMA
198 #ifdef CONFIG_ZONE_DMA32
202 #ifdef CONFIG_HIGHMEM
208 int min_free_kbytes
= 1024;
209 int user_min_free_kbytes
;
211 static unsigned long __meminitdata nr_kernel_pages
;
212 static unsigned long __meminitdata nr_all_pages
;
213 static unsigned long __meminitdata dma_reserve
;
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
218 static unsigned long __initdata required_kernelcore
;
219 static unsigned long __initdata required_movablecore
;
220 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 EXPORT_SYMBOL(movable_zone
);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
229 int nr_online_nodes __read_mostly
= 1;
230 EXPORT_SYMBOL(nr_node_ids
);
231 EXPORT_SYMBOL(nr_online_nodes
);
234 int page_group_by_mobility_disabled __read_mostly
;
236 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
239 if (unlikely(page_group_by_mobility_disabled
))
240 migratetype
= MIGRATE_UNMOVABLE
;
242 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
243 PB_migrate
, PB_migrate_end
);
246 bool oom_killer_disabled __read_mostly
;
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
253 unsigned long pfn
= page_to_pfn(page
);
254 unsigned long sp
, start_pfn
;
257 seq
= zone_span_seqbegin(zone
);
258 start_pfn
= zone
->zone_start_pfn
;
259 sp
= zone
->spanned_pages
;
260 if (!zone_spans_pfn(zone
, pfn
))
262 } while (zone_span_seqretry(zone
, seq
));
265 pr_err("page %lu outside zone [ %lu - %lu ]\n",
266 pfn
, start_pfn
, start_pfn
+ sp
);
271 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
273 if (!pfn_valid_within(page_to_pfn(page
)))
275 if (zone
!= page_zone(page
))
281 * Temporary debugging check for pages not lying within a given zone.
283 static int bad_range(struct zone
*zone
, struct page
*page
)
285 if (page_outside_zone_boundaries(zone
, page
))
287 if (!page_is_consistent(zone
, page
))
293 static inline int bad_range(struct zone
*zone
, struct page
*page
)
299 static void bad_page(struct page
*page
)
301 static unsigned long resume
;
302 static unsigned long nr_shown
;
303 static unsigned long nr_unshown
;
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page
)) {
307 page_mapcount_reset(page
); /* remove PageBuddy */
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
315 if (nr_shown
== 60) {
316 if (time_before(jiffies
, resume
)) {
322 "BUG: Bad page state: %lu messages suppressed\n",
329 resume
= jiffies
+ 60 * HZ
;
331 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
332 current
->comm
, page_to_pfn(page
));
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 page_mapcount_reset(page
); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
344 * Higher-order pages are called "compound pages". They are structured thusly:
346 * The first PAGE_SIZE page is called the "head page".
348 * The remaining PAGE_SIZE pages are called "tail pages".
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
358 static void free_compound_page(struct page
*page
)
360 __free_pages_ok(page
, compound_order(page
));
363 void prep_compound_page(struct page
*page
, unsigned long order
)
366 int nr_pages
= 1 << order
;
368 set_compound_page_dtor(page
, free_compound_page
);
369 set_compound_order(page
, order
);
371 for (i
= 1; i
< nr_pages
; i
++) {
372 struct page
*p
= page
+ i
;
373 set_page_count(p
, 0);
374 p
->first_page
= page
;
375 /* Make sure p->first_page is always valid for PageTail() */
381 /* update __split_huge_page_refcount if you change this function */
382 static int destroy_compound_page(struct page
*page
, unsigned long order
)
385 int nr_pages
= 1 << order
;
388 if (unlikely(compound_order(page
) != order
)) {
393 __ClearPageHead(page
);
395 for (i
= 1; i
< nr_pages
; i
++) {
396 struct page
*p
= page
+ i
;
398 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
408 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
413 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
414 * and __GFP_HIGHMEM from hard or soft interrupt context.
416 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
417 for (i
= 0; i
< (1 << order
); i
++)
418 clear_highpage(page
+ i
);
421 #ifdef CONFIG_DEBUG_PAGEALLOC
422 unsigned int _debug_guardpage_minorder
;
424 static int __init
debug_guardpage_minorder_setup(char *buf
)
428 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
429 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
432 _debug_guardpage_minorder
= res
;
433 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
436 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
438 static inline void set_page_guard_flag(struct page
*page
)
440 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
443 static inline void clear_page_guard_flag(struct page
*page
)
445 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
448 static inline void set_page_guard_flag(struct page
*page
) { }
449 static inline void clear_page_guard_flag(struct page
*page
) { }
452 static inline void set_page_order(struct page
*page
, int order
)
454 set_page_private(page
, order
);
455 __SetPageBuddy(page
);
458 static inline void rmv_page_order(struct page
*page
)
460 __ClearPageBuddy(page
);
461 set_page_private(page
, 0);
465 * Locate the struct page for both the matching buddy in our
466 * pair (buddy1) and the combined O(n+1) page they form (page).
468 * 1) Any buddy B1 will have an order O twin B2 which satisfies
469 * the following equation:
471 * For example, if the starting buddy (buddy2) is #8 its order
473 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
475 * 2) Any buddy B will have an order O+1 parent P which
476 * satisfies the following equation:
479 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
481 static inline unsigned long
482 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
484 return page_idx
^ (1 << order
);
488 * This function checks whether a page is free && is the buddy
489 * we can do coalesce a page and its buddy if
490 * (a) the buddy is not in a hole &&
491 * (b) the buddy is in the buddy system &&
492 * (c) a page and its buddy have the same order &&
493 * (d) a page and its buddy are in the same zone.
495 * For recording whether a page is in the buddy system, we set ->_mapcount
496 * PAGE_BUDDY_MAPCOUNT_VALUE.
497 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
498 * serialized by zone->lock.
500 * For recording page's order, we use page_private(page).
502 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
505 if (!pfn_valid_within(page_to_pfn(buddy
)))
508 if (page_zone_id(page
) != page_zone_id(buddy
))
511 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
512 VM_BUG_ON(page_count(buddy
) != 0);
516 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
517 VM_BUG_ON(page_count(buddy
) != 0);
524 * Freeing function for a buddy system allocator.
526 * The concept of a buddy system is to maintain direct-mapped table
527 * (containing bit values) for memory blocks of various "orders".
528 * The bottom level table contains the map for the smallest allocatable
529 * units of memory (here, pages), and each level above it describes
530 * pairs of units from the levels below, hence, "buddies".
531 * At a high level, all that happens here is marking the table entry
532 * at the bottom level available, and propagating the changes upward
533 * as necessary, plus some accounting needed to play nicely with other
534 * parts of the VM system.
535 * At each level, we keep a list of pages, which are heads of continuous
536 * free pages of length of (1 << order) and marked with _mapcount
537 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
539 * So when we are allocating or freeing one, we can derive the state of the
540 * other. That is, if we allocate a small block, and both were
541 * free, the remainder of the region must be split into blocks.
542 * If a block is freed, and its buddy is also free, then this
543 * triggers coalescing into a block of larger size.
548 static inline void __free_one_page(struct page
*page
,
549 struct zone
*zone
, unsigned int order
,
552 unsigned long page_idx
;
553 unsigned long combined_idx
;
554 unsigned long uninitialized_var(buddy_idx
);
557 VM_BUG_ON(!zone_is_initialized(zone
));
559 if (unlikely(PageCompound(page
)))
560 if (unlikely(destroy_compound_page(page
, order
)))
563 VM_BUG_ON(migratetype
== -1);
565 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
567 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
568 VM_BUG_ON(bad_range(zone
, page
));
570 while (order
< MAX_ORDER
-1) {
571 buddy_idx
= __find_buddy_index(page_idx
, order
);
572 buddy
= page
+ (buddy_idx
- page_idx
);
573 if (!page_is_buddy(page
, buddy
, order
))
576 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
577 * merge with it and move up one order.
579 if (page_is_guard(buddy
)) {
580 clear_page_guard_flag(buddy
);
581 set_page_private(page
, 0);
582 __mod_zone_freepage_state(zone
, 1 << order
,
585 list_del(&buddy
->lru
);
586 zone
->free_area
[order
].nr_free
--;
587 rmv_page_order(buddy
);
589 combined_idx
= buddy_idx
& page_idx
;
590 page
= page
+ (combined_idx
- page_idx
);
591 page_idx
= combined_idx
;
594 set_page_order(page
, order
);
597 * If this is not the largest possible page, check if the buddy
598 * of the next-highest order is free. If it is, it's possible
599 * that pages are being freed that will coalesce soon. In case,
600 * that is happening, add the free page to the tail of the list
601 * so it's less likely to be used soon and more likely to be merged
602 * as a higher order page
604 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
605 struct page
*higher_page
, *higher_buddy
;
606 combined_idx
= buddy_idx
& page_idx
;
607 higher_page
= page
+ (combined_idx
- page_idx
);
608 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
609 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
610 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
611 list_add_tail(&page
->lru
,
612 &zone
->free_area
[order
].free_list
[migratetype
]);
617 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
619 zone
->free_area
[order
].nr_free
++;
622 static inline int free_pages_check(struct page
*page
)
624 if (unlikely(page_mapcount(page
) |
625 (page
->mapping
!= NULL
) |
626 (atomic_read(&page
->_count
) != 0) |
627 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
628 (mem_cgroup_bad_page_check(page
)))) {
632 page_nid_reset_last(page
);
633 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
634 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
639 * Frees a number of pages from the PCP lists
640 * Assumes all pages on list are in same zone, and of same order.
641 * count is the number of pages to free.
643 * If the zone was previously in an "all pages pinned" state then look to
644 * see if this freeing clears that state.
646 * And clear the zone's pages_scanned counter, to hold off the "all pages are
647 * pinned" detection logic.
649 static void free_pcppages_bulk(struct zone
*zone
, int count
,
650 struct per_cpu_pages
*pcp
)
656 spin_lock(&zone
->lock
);
657 zone
->pages_scanned
= 0;
661 struct list_head
*list
;
664 * Remove pages from lists in a round-robin fashion. A
665 * batch_free count is maintained that is incremented when an
666 * empty list is encountered. This is so more pages are freed
667 * off fuller lists instead of spinning excessively around empty
672 if (++migratetype
== MIGRATE_PCPTYPES
)
674 list
= &pcp
->lists
[migratetype
];
675 } while (list_empty(list
));
677 /* This is the only non-empty list. Free them all. */
678 if (batch_free
== MIGRATE_PCPTYPES
)
679 batch_free
= to_free
;
682 int mt
; /* migratetype of the to-be-freed page */
684 page
= list_entry(list
->prev
, struct page
, lru
);
685 /* must delete as __free_one_page list manipulates */
686 list_del(&page
->lru
);
687 mt
= get_freepage_migratetype(page
);
688 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
689 __free_one_page(page
, zone
, 0, mt
);
690 trace_mm_page_pcpu_drain(page
, 0, mt
);
691 if (likely(!is_migrate_isolate_page(page
))) {
692 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
693 if (is_migrate_cma(mt
))
694 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
696 } while (--to_free
&& --batch_free
&& !list_empty(list
));
698 spin_unlock(&zone
->lock
);
701 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
704 spin_lock(&zone
->lock
);
705 zone
->pages_scanned
= 0;
707 __free_one_page(page
, zone
, order
, migratetype
);
708 if (unlikely(!is_migrate_isolate(migratetype
)))
709 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
710 spin_unlock(&zone
->lock
);
713 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
718 trace_mm_page_free(page
, order
);
719 kmemcheck_free_shadow(page
, order
);
722 page
->mapping
= NULL
;
723 for (i
= 0; i
< (1 << order
); i
++)
724 bad
+= free_pages_check(page
+ i
);
728 if (!PageHighMem(page
)) {
729 debug_check_no_locks_freed(page_address(page
),
731 debug_check_no_obj_freed(page_address(page
),
734 arch_free_page(page
, order
);
735 kernel_map_pages(page
, 1 << order
, 0);
740 static void __free_pages_ok(struct page
*page
, unsigned int order
)
745 if (!free_pages_prepare(page
, order
))
748 local_irq_save(flags
);
749 __count_vm_events(PGFREE
, 1 << order
);
750 migratetype
= get_pageblock_migratetype(page
);
751 set_freepage_migratetype(page
, migratetype
);
752 free_one_page(page_zone(page
), page
, order
, migratetype
);
753 local_irq_restore(flags
);
756 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
758 unsigned int nr_pages
= 1 << order
;
759 struct page
*p
= page
;
763 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
765 __ClearPageReserved(p
);
766 set_page_count(p
, 0);
768 __ClearPageReserved(p
);
769 set_page_count(p
, 0);
771 page_zone(page
)->managed_pages
+= nr_pages
;
772 set_page_refcounted(page
);
773 __free_pages(page
, order
);
777 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
778 void __init
init_cma_reserved_pageblock(struct page
*page
)
780 unsigned i
= pageblock_nr_pages
;
781 struct page
*p
= page
;
784 __ClearPageReserved(p
);
785 set_page_count(p
, 0);
788 set_pageblock_migratetype(page
, MIGRATE_CMA
);
790 if (pageblock_order
>= MAX_ORDER
) {
791 i
= pageblock_nr_pages
;
794 set_page_refcounted(p
);
795 __free_pages(p
, MAX_ORDER
- 1);
796 p
+= MAX_ORDER_NR_PAGES
;
797 } while (i
-= MAX_ORDER_NR_PAGES
);
799 set_page_refcounted(page
);
800 __free_pages(page
, pageblock_order
);
803 adjust_managed_page_count(page
, pageblock_nr_pages
);
808 * The order of subdivision here is critical for the IO subsystem.
809 * Please do not alter this order without good reasons and regression
810 * testing. Specifically, as large blocks of memory are subdivided,
811 * the order in which smaller blocks are delivered depends on the order
812 * they're subdivided in this function. This is the primary factor
813 * influencing the order in which pages are delivered to the IO
814 * subsystem according to empirical testing, and this is also justified
815 * by considering the behavior of a buddy system containing a single
816 * large block of memory acted on by a series of small allocations.
817 * This behavior is a critical factor in sglist merging's success.
821 static inline void expand(struct zone
*zone
, struct page
*page
,
822 int low
, int high
, struct free_area
*area
,
825 unsigned long size
= 1 << high
;
831 VM_BUG_ON(bad_range(zone
, &page
[size
]));
833 #ifdef CONFIG_DEBUG_PAGEALLOC
834 if (high
< debug_guardpage_minorder()) {
836 * Mark as guard pages (or page), that will allow to
837 * merge back to allocator when buddy will be freed.
838 * Corresponding page table entries will not be touched,
839 * pages will stay not present in virtual address space
841 INIT_LIST_HEAD(&page
[size
].lru
);
842 set_page_guard_flag(&page
[size
]);
843 set_page_private(&page
[size
], high
);
844 /* Guard pages are not available for any usage */
845 __mod_zone_freepage_state(zone
, -(1 << high
),
850 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
852 set_page_order(&page
[size
], high
);
857 * This page is about to be returned from the page allocator
859 static inline int check_new_page(struct page
*page
)
861 if (unlikely(page_mapcount(page
) |
862 (page
->mapping
!= NULL
) |
863 (atomic_read(&page
->_count
) != 0) |
864 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
865 (mem_cgroup_bad_page_check(page
)))) {
872 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
876 for (i
= 0; i
< (1 << order
); i
++) {
877 struct page
*p
= page
+ i
;
878 if (unlikely(check_new_page(p
)))
882 set_page_private(page
, 0);
883 set_page_refcounted(page
);
885 arch_alloc_page(page
, order
);
886 kernel_map_pages(page
, 1 << order
, 1);
888 if (gfp_flags
& __GFP_ZERO
)
889 prep_zero_page(page
, order
, gfp_flags
);
891 if (order
&& (gfp_flags
& __GFP_COMP
))
892 prep_compound_page(page
, order
);
898 * Go through the free lists for the given migratetype and remove
899 * the smallest available page from the freelists
902 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
905 unsigned int current_order
;
906 struct free_area
*area
;
909 /* Find a page of the appropriate size in the preferred list */
910 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
911 area
= &(zone
->free_area
[current_order
]);
912 if (list_empty(&area
->free_list
[migratetype
]))
915 page
= list_entry(area
->free_list
[migratetype
].next
,
917 list_del(&page
->lru
);
918 rmv_page_order(page
);
920 expand(zone
, page
, order
, current_order
, area
, migratetype
);
929 * This array describes the order lists are fallen back to when
930 * the free lists for the desirable migrate type are depleted
932 static int fallbacks
[MIGRATE_TYPES
][4] = {
933 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
934 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
936 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
937 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
939 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
941 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
942 #ifdef CONFIG_MEMORY_ISOLATION
943 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
948 * Move the free pages in a range to the free lists of the requested type.
949 * Note that start_page and end_pages are not aligned on a pageblock
950 * boundary. If alignment is required, use move_freepages_block()
952 int move_freepages(struct zone
*zone
,
953 struct page
*start_page
, struct page
*end_page
,
960 #ifndef CONFIG_HOLES_IN_ZONE
962 * page_zone is not safe to call in this context when
963 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
964 * anyway as we check zone boundaries in move_freepages_block().
965 * Remove at a later date when no bug reports exist related to
966 * grouping pages by mobility
968 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
971 for (page
= start_page
; page
<= end_page
;) {
972 /* Make sure we are not inadvertently changing nodes */
973 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
975 if (!pfn_valid_within(page_to_pfn(page
))) {
980 if (!PageBuddy(page
)) {
985 order
= page_order(page
);
986 list_move(&page
->lru
,
987 &zone
->free_area
[order
].free_list
[migratetype
]);
988 set_freepage_migratetype(page
, migratetype
);
990 pages_moved
+= 1 << order
;
996 int move_freepages_block(struct zone
*zone
, struct page
*page
,
999 unsigned long start_pfn
, end_pfn
;
1000 struct page
*start_page
, *end_page
;
1002 start_pfn
= page_to_pfn(page
);
1003 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1004 start_page
= pfn_to_page(start_pfn
);
1005 end_page
= start_page
+ pageblock_nr_pages
- 1;
1006 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1008 /* Do not cross zone boundaries */
1009 if (!zone_spans_pfn(zone
, start_pfn
))
1011 if (!zone_spans_pfn(zone
, end_pfn
))
1014 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1017 static void change_pageblock_range(struct page
*pageblock_page
,
1018 int start_order
, int migratetype
)
1020 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1022 while (nr_pageblocks
--) {
1023 set_pageblock_migratetype(pageblock_page
, migratetype
);
1024 pageblock_page
+= pageblock_nr_pages
;
1029 * If breaking a large block of pages, move all free pages to the preferred
1030 * allocation list. If falling back for a reclaimable kernel allocation, be
1031 * more aggressive about taking ownership of free pages.
1033 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1034 * nor move CMA pages to different free lists. We don't want unmovable pages
1035 * to be allocated from MIGRATE_CMA areas.
1037 * Returns the new migratetype of the pageblock (or the same old migratetype
1038 * if it was unchanged).
1040 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1041 int start_type
, int fallback_type
)
1043 int current_order
= page_order(page
);
1045 if (is_migrate_cma(fallback_type
))
1046 return fallback_type
;
1048 /* Take ownership for orders >= pageblock_order */
1049 if (current_order
>= pageblock_order
) {
1050 change_pageblock_range(page
, current_order
, start_type
);
1054 if (current_order
>= pageblock_order
/ 2 ||
1055 start_type
== MIGRATE_RECLAIMABLE
||
1056 page_group_by_mobility_disabled
) {
1059 pages
= move_freepages_block(zone
, page
, start_type
);
1061 /* Claim the whole block if over half of it is free */
1062 if (pages
>= (1 << (pageblock_order
-1)) ||
1063 page_group_by_mobility_disabled
) {
1065 set_pageblock_migratetype(page
, start_type
);
1071 return fallback_type
;
1074 /* Remove an element from the buddy allocator from the fallback list */
1075 static inline struct page
*
1076 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
1078 struct free_area
*area
;
1081 int migratetype
, new_type
, i
;
1083 /* Find the largest possible block of pages in the other list */
1084 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1087 migratetype
= fallbacks
[start_migratetype
][i
];
1089 /* MIGRATE_RESERVE handled later if necessary */
1090 if (migratetype
== MIGRATE_RESERVE
)
1093 area
= &(zone
->free_area
[current_order
]);
1094 if (list_empty(&area
->free_list
[migratetype
]))
1097 page
= list_entry(area
->free_list
[migratetype
].next
,
1101 new_type
= try_to_steal_freepages(zone
, page
,
1105 /* Remove the page from the freelists */
1106 list_del(&page
->lru
);
1107 rmv_page_order(page
);
1110 * Borrow the excess buddy pages as well, irrespective
1111 * of whether we stole freepages, or took ownership of
1112 * the pageblock or not.
1114 * Exception: When borrowing from MIGRATE_CMA, release
1115 * the excess buddy pages to CMA itself.
1117 expand(zone
, page
, order
, current_order
, area
,
1118 is_migrate_cma(migratetype
)
1119 ? migratetype
: start_migratetype
);
1121 trace_mm_page_alloc_extfrag(page
, order
,
1122 current_order
, start_migratetype
, migratetype
,
1123 new_type
== start_migratetype
);
1133 * Do the hard work of removing an element from the buddy allocator.
1134 * Call me with the zone->lock already held.
1136 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1142 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1144 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1145 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1148 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1149 * is used because __rmqueue_smallest is an inline function
1150 * and we want just one call site
1153 migratetype
= MIGRATE_RESERVE
;
1158 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1163 * Obtain a specified number of elements from the buddy allocator, all under
1164 * a single hold of the lock, for efficiency. Add them to the supplied list.
1165 * Returns the number of new pages which were placed at *list.
1167 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1168 unsigned long count
, struct list_head
*list
,
1169 int migratetype
, int cold
)
1171 int mt
= migratetype
, i
;
1173 spin_lock(&zone
->lock
);
1174 for (i
= 0; i
< count
; ++i
) {
1175 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1176 if (unlikely(page
== NULL
))
1180 * Split buddy pages returned by expand() are received here
1181 * in physical page order. The page is added to the callers and
1182 * list and the list head then moves forward. From the callers
1183 * perspective, the linked list is ordered by page number in
1184 * some conditions. This is useful for IO devices that can
1185 * merge IO requests if the physical pages are ordered
1188 if (likely(cold
== 0))
1189 list_add(&page
->lru
, list
);
1191 list_add_tail(&page
->lru
, list
);
1192 if (IS_ENABLED(CONFIG_CMA
)) {
1193 mt
= get_pageblock_migratetype(page
);
1194 if (!is_migrate_cma(mt
) && !is_migrate_isolate(mt
))
1197 set_freepage_migratetype(page
, mt
);
1199 if (is_migrate_cma(mt
))
1200 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1203 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1204 spin_unlock(&zone
->lock
);
1210 * Called from the vmstat counter updater to drain pagesets of this
1211 * currently executing processor on remote nodes after they have
1214 * Note that this function must be called with the thread pinned to
1215 * a single processor.
1217 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1219 unsigned long flags
;
1221 unsigned long batch
;
1223 local_irq_save(flags
);
1224 batch
= ACCESS_ONCE(pcp
->batch
);
1225 if (pcp
->count
>= batch
)
1228 to_drain
= pcp
->count
;
1230 free_pcppages_bulk(zone
, to_drain
, pcp
);
1231 pcp
->count
-= to_drain
;
1233 local_irq_restore(flags
);
1238 * Drain pages of the indicated processor.
1240 * The processor must either be the current processor and the
1241 * thread pinned to the current processor or a processor that
1244 static void drain_pages(unsigned int cpu
)
1246 unsigned long flags
;
1249 for_each_populated_zone(zone
) {
1250 struct per_cpu_pageset
*pset
;
1251 struct per_cpu_pages
*pcp
;
1253 local_irq_save(flags
);
1254 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1258 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1261 local_irq_restore(flags
);
1266 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1268 void drain_local_pages(void *arg
)
1270 drain_pages(smp_processor_id());
1274 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1276 * Note that this code is protected against sending an IPI to an offline
1277 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1278 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1279 * nothing keeps CPUs from showing up after we populated the cpumask and
1280 * before the call to on_each_cpu_mask().
1282 void drain_all_pages(void)
1285 struct per_cpu_pageset
*pcp
;
1289 * Allocate in the BSS so we wont require allocation in
1290 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1292 static cpumask_t cpus_with_pcps
;
1295 * We don't care about racing with CPU hotplug event
1296 * as offline notification will cause the notified
1297 * cpu to drain that CPU pcps and on_each_cpu_mask
1298 * disables preemption as part of its processing
1300 for_each_online_cpu(cpu
) {
1301 bool has_pcps
= false;
1302 for_each_populated_zone(zone
) {
1303 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1304 if (pcp
->pcp
.count
) {
1310 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1312 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1314 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1317 #ifdef CONFIG_HIBERNATION
1319 void mark_free_pages(struct zone
*zone
)
1321 unsigned long pfn
, max_zone_pfn
;
1322 unsigned long flags
;
1324 struct list_head
*curr
;
1326 if (zone_is_empty(zone
))
1329 spin_lock_irqsave(&zone
->lock
, flags
);
1331 max_zone_pfn
= zone_end_pfn(zone
);
1332 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1333 if (pfn_valid(pfn
)) {
1334 struct page
*page
= pfn_to_page(pfn
);
1336 if (!swsusp_page_is_forbidden(page
))
1337 swsusp_unset_page_free(page
);
1340 for_each_migratetype_order(order
, t
) {
1341 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1344 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1345 for (i
= 0; i
< (1UL << order
); i
++)
1346 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1349 spin_unlock_irqrestore(&zone
->lock
, flags
);
1351 #endif /* CONFIG_PM */
1354 * Free a 0-order page
1355 * cold == 1 ? free a cold page : free a hot page
1357 void free_hot_cold_page(struct page
*page
, int cold
)
1359 struct zone
*zone
= page_zone(page
);
1360 struct per_cpu_pages
*pcp
;
1361 unsigned long flags
;
1364 if (!free_pages_prepare(page
, 0))
1367 migratetype
= get_pageblock_migratetype(page
);
1368 set_freepage_migratetype(page
, migratetype
);
1369 local_irq_save(flags
);
1370 __count_vm_event(PGFREE
);
1373 * We only track unmovable, reclaimable and movable on pcp lists.
1374 * Free ISOLATE pages back to the allocator because they are being
1375 * offlined but treat RESERVE as movable pages so we can get those
1376 * areas back if necessary. Otherwise, we may have to free
1377 * excessively into the page allocator
1379 if (migratetype
>= MIGRATE_PCPTYPES
) {
1380 if (unlikely(is_migrate_isolate(migratetype
))) {
1381 free_one_page(zone
, page
, 0, migratetype
);
1384 migratetype
= MIGRATE_MOVABLE
;
1387 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1389 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1391 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1393 if (pcp
->count
>= pcp
->high
) {
1394 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1395 free_pcppages_bulk(zone
, batch
, pcp
);
1396 pcp
->count
-= batch
;
1400 local_irq_restore(flags
);
1404 * Free a list of 0-order pages
1406 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1408 struct page
*page
, *next
;
1410 list_for_each_entry_safe(page
, next
, list
, lru
) {
1411 trace_mm_page_free_batched(page
, cold
);
1412 free_hot_cold_page(page
, cold
);
1417 * split_page takes a non-compound higher-order page, and splits it into
1418 * n (1<<order) sub-pages: page[0..n]
1419 * Each sub-page must be freed individually.
1421 * Note: this is probably too low level an operation for use in drivers.
1422 * Please consult with lkml before using this in your driver.
1424 void split_page(struct page
*page
, unsigned int order
)
1428 VM_BUG_ON(PageCompound(page
));
1429 VM_BUG_ON(!page_count(page
));
1431 #ifdef CONFIG_KMEMCHECK
1433 * Split shadow pages too, because free(page[0]) would
1434 * otherwise free the whole shadow.
1436 if (kmemcheck_page_is_tracked(page
))
1437 split_page(virt_to_page(page
[0].shadow
), order
);
1440 for (i
= 1; i
< (1 << order
); i
++)
1441 set_page_refcounted(page
+ i
);
1443 EXPORT_SYMBOL_GPL(split_page
);
1445 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1447 unsigned long watermark
;
1451 BUG_ON(!PageBuddy(page
));
1453 zone
= page_zone(page
);
1454 mt
= get_pageblock_migratetype(page
);
1456 if (!is_migrate_isolate(mt
)) {
1457 /* Obey watermarks as if the page was being allocated */
1458 watermark
= low_wmark_pages(zone
) + (1 << order
);
1459 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1462 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1465 /* Remove page from free list */
1466 list_del(&page
->lru
);
1467 zone
->free_area
[order
].nr_free
--;
1468 rmv_page_order(page
);
1470 /* Set the pageblock if the isolated page is at least a pageblock */
1471 if (order
>= pageblock_order
- 1) {
1472 struct page
*endpage
= page
+ (1 << order
) - 1;
1473 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1474 int mt
= get_pageblock_migratetype(page
);
1475 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1476 set_pageblock_migratetype(page
,
1481 return 1UL << order
;
1485 * Similar to split_page except the page is already free. As this is only
1486 * being used for migration, the migratetype of the block also changes.
1487 * As this is called with interrupts disabled, the caller is responsible
1488 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1491 * Note: this is probably too low level an operation for use in drivers.
1492 * Please consult with lkml before using this in your driver.
1494 int split_free_page(struct page
*page
)
1499 order
= page_order(page
);
1501 nr_pages
= __isolate_free_page(page
, order
);
1505 /* Split into individual pages */
1506 set_page_refcounted(page
);
1507 split_page(page
, order
);
1512 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1513 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1517 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1518 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1521 unsigned long flags
;
1523 int cold
= !!(gfp_flags
& __GFP_COLD
);
1526 if (likely(order
== 0)) {
1527 struct per_cpu_pages
*pcp
;
1528 struct list_head
*list
;
1530 local_irq_save(flags
);
1531 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1532 list
= &pcp
->lists
[migratetype
];
1533 if (list_empty(list
)) {
1534 pcp
->count
+= rmqueue_bulk(zone
, 0,
1537 if (unlikely(list_empty(list
)))
1542 page
= list_entry(list
->prev
, struct page
, lru
);
1544 page
= list_entry(list
->next
, struct page
, lru
);
1546 list_del(&page
->lru
);
1549 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1551 * __GFP_NOFAIL is not to be used in new code.
1553 * All __GFP_NOFAIL callers should be fixed so that they
1554 * properly detect and handle allocation failures.
1556 * We most definitely don't want callers attempting to
1557 * allocate greater than order-1 page units with
1560 WARN_ON_ONCE(order
> 1);
1562 spin_lock_irqsave(&zone
->lock
, flags
);
1563 page
= __rmqueue(zone
, order
, migratetype
);
1564 spin_unlock(&zone
->lock
);
1567 __mod_zone_freepage_state(zone
, -(1 << order
),
1568 get_pageblock_migratetype(page
));
1571 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1573 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1574 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1575 local_irq_restore(flags
);
1577 VM_BUG_ON(bad_range(zone
, page
));
1578 if (prep_new_page(page
, order
, gfp_flags
))
1583 local_irq_restore(flags
);
1587 #ifdef CONFIG_FAIL_PAGE_ALLOC
1590 struct fault_attr attr
;
1592 u32 ignore_gfp_highmem
;
1593 u32 ignore_gfp_wait
;
1595 } fail_page_alloc
= {
1596 .attr
= FAULT_ATTR_INITIALIZER
,
1597 .ignore_gfp_wait
= 1,
1598 .ignore_gfp_highmem
= 1,
1602 static int __init
setup_fail_page_alloc(char *str
)
1604 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1606 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1608 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1610 if (order
< fail_page_alloc
.min_order
)
1612 if (gfp_mask
& __GFP_NOFAIL
)
1614 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1616 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1619 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1622 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1624 static int __init
fail_page_alloc_debugfs(void)
1626 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1629 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1630 &fail_page_alloc
.attr
);
1632 return PTR_ERR(dir
);
1634 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1635 &fail_page_alloc
.ignore_gfp_wait
))
1637 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1638 &fail_page_alloc
.ignore_gfp_highmem
))
1640 if (!debugfs_create_u32("min-order", mode
, dir
,
1641 &fail_page_alloc
.min_order
))
1646 debugfs_remove_recursive(dir
);
1651 late_initcall(fail_page_alloc_debugfs
);
1653 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1655 #else /* CONFIG_FAIL_PAGE_ALLOC */
1657 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1662 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1665 * Return true if free pages are above 'mark'. This takes into account the order
1666 * of the allocation.
1668 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1669 int classzone_idx
, int alloc_flags
, long free_pages
)
1671 /* free_pages my go negative - that's OK */
1673 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1677 free_pages
-= (1 << order
) - 1;
1678 if (alloc_flags
& ALLOC_HIGH
)
1680 if (alloc_flags
& ALLOC_HARDER
)
1683 /* If allocation can't use CMA areas don't use free CMA pages */
1684 if (!(alloc_flags
& ALLOC_CMA
))
1685 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1688 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1690 for (o
= 0; o
< order
; o
++) {
1691 /* At the next order, this order's pages become unavailable */
1692 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1694 /* Require fewer higher order pages to be free */
1697 if (free_pages
<= min
)
1703 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1704 int classzone_idx
, int alloc_flags
)
1706 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1707 zone_page_state(z
, NR_FREE_PAGES
));
1710 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1711 int classzone_idx
, int alloc_flags
)
1713 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1715 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1716 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1718 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1724 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1725 * skip over zones that are not allowed by the cpuset, or that have
1726 * been recently (in last second) found to be nearly full. See further
1727 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1728 * that have to skip over a lot of full or unallowed zones.
1730 * If the zonelist cache is present in the passed in zonelist, then
1731 * returns a pointer to the allowed node mask (either the current
1732 * tasks mems_allowed, or node_states[N_MEMORY].)
1734 * If the zonelist cache is not available for this zonelist, does
1735 * nothing and returns NULL.
1737 * If the fullzones BITMAP in the zonelist cache is stale (more than
1738 * a second since last zap'd) then we zap it out (clear its bits.)
1740 * We hold off even calling zlc_setup, until after we've checked the
1741 * first zone in the zonelist, on the theory that most allocations will
1742 * be satisfied from that first zone, so best to examine that zone as
1743 * quickly as we can.
1745 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1747 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1748 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1750 zlc
= zonelist
->zlcache_ptr
;
1754 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1755 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1756 zlc
->last_full_zap
= jiffies
;
1759 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1760 &cpuset_current_mems_allowed
:
1761 &node_states
[N_MEMORY
];
1762 return allowednodes
;
1766 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1767 * if it is worth looking at further for free memory:
1768 * 1) Check that the zone isn't thought to be full (doesn't have its
1769 * bit set in the zonelist_cache fullzones BITMAP).
1770 * 2) Check that the zones node (obtained from the zonelist_cache
1771 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1772 * Return true (non-zero) if zone is worth looking at further, or
1773 * else return false (zero) if it is not.
1775 * This check -ignores- the distinction between various watermarks,
1776 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1777 * found to be full for any variation of these watermarks, it will
1778 * be considered full for up to one second by all requests, unless
1779 * we are so low on memory on all allowed nodes that we are forced
1780 * into the second scan of the zonelist.
1782 * In the second scan we ignore this zonelist cache and exactly
1783 * apply the watermarks to all zones, even it is slower to do so.
1784 * We are low on memory in the second scan, and should leave no stone
1785 * unturned looking for a free page.
1787 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1788 nodemask_t
*allowednodes
)
1790 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1791 int i
; /* index of *z in zonelist zones */
1792 int n
; /* node that zone *z is on */
1794 zlc
= zonelist
->zlcache_ptr
;
1798 i
= z
- zonelist
->_zonerefs
;
1801 /* This zone is worth trying if it is allowed but not full */
1802 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1806 * Given 'z' scanning a zonelist, set the corresponding bit in
1807 * zlc->fullzones, so that subsequent attempts to allocate a page
1808 * from that zone don't waste time re-examining it.
1810 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1812 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1813 int i
; /* index of *z in zonelist zones */
1815 zlc
= zonelist
->zlcache_ptr
;
1819 i
= z
- zonelist
->_zonerefs
;
1821 set_bit(i
, zlc
->fullzones
);
1825 * clear all zones full, called after direct reclaim makes progress so that
1826 * a zone that was recently full is not skipped over for up to a second
1828 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1830 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1832 zlc
= zonelist
->zlcache_ptr
;
1836 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1839 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1841 return local_zone
->node
== zone
->node
;
1844 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1846 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1849 static void __paginginit
init_zone_allows_reclaim(int nid
)
1853 for_each_online_node(i
)
1854 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1855 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1857 zone_reclaim_mode
= 1;
1860 #else /* CONFIG_NUMA */
1862 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1867 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1868 nodemask_t
*allowednodes
)
1873 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1877 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1881 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1886 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1891 static inline void init_zone_allows_reclaim(int nid
)
1894 #endif /* CONFIG_NUMA */
1897 * get_page_from_freelist goes through the zonelist trying to allocate
1900 static struct page
*
1901 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1902 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1903 struct zone
*preferred_zone
, int migratetype
)
1906 struct page
*page
= NULL
;
1909 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1910 int zlc_active
= 0; /* set if using zonelist_cache */
1911 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1913 classzone_idx
= zone_idx(preferred_zone
);
1916 * Scan zonelist, looking for a zone with enough free.
1917 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1919 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1920 high_zoneidx
, nodemask
) {
1923 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1924 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1926 if ((alloc_flags
& ALLOC_CPUSET
) &&
1927 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1929 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1930 if (unlikely(alloc_flags
& ALLOC_NO_WATERMARKS
))
1933 * Distribute pages in proportion to the individual
1934 * zone size to ensure fair page aging. The zone a
1935 * page was allocated in should have no effect on the
1936 * time the page has in memory before being reclaimed.
1938 if (alloc_flags
& ALLOC_FAIR
) {
1939 if (!zone_local(preferred_zone
, zone
))
1941 if (zone_page_state(zone
, NR_ALLOC_BATCH
) <= 0)
1945 * When allocating a page cache page for writing, we
1946 * want to get it from a zone that is within its dirty
1947 * limit, such that no single zone holds more than its
1948 * proportional share of globally allowed dirty pages.
1949 * The dirty limits take into account the zone's
1950 * lowmem reserves and high watermark so that kswapd
1951 * should be able to balance it without having to
1952 * write pages from its LRU list.
1954 * This may look like it could increase pressure on
1955 * lower zones by failing allocations in higher zones
1956 * before they are full. But the pages that do spill
1957 * over are limited as the lower zones are protected
1958 * by this very same mechanism. It should not become
1959 * a practical burden to them.
1961 * XXX: For now, allow allocations to potentially
1962 * exceed the per-zone dirty limit in the slowpath
1963 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1964 * which is important when on a NUMA setup the allowed
1965 * zones are together not big enough to reach the
1966 * global limit. The proper fix for these situations
1967 * will require awareness of zones in the
1968 * dirty-throttling and the flusher threads.
1970 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1971 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1972 goto this_zone_full
;
1974 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1975 if (!zone_watermark_ok(zone
, order
, mark
,
1976 classzone_idx
, alloc_flags
)) {
1979 if (IS_ENABLED(CONFIG_NUMA
) &&
1980 !did_zlc_setup
&& nr_online_nodes
> 1) {
1982 * we do zlc_setup if there are multiple nodes
1983 * and before considering the first zone allowed
1986 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1991 if (zone_reclaim_mode
== 0 ||
1992 !zone_allows_reclaim(preferred_zone
, zone
))
1993 goto this_zone_full
;
1996 * As we may have just activated ZLC, check if the first
1997 * eligible zone has failed zone_reclaim recently.
1999 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2000 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2003 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2005 case ZONE_RECLAIM_NOSCAN
:
2008 case ZONE_RECLAIM_FULL
:
2009 /* scanned but unreclaimable */
2012 /* did we reclaim enough */
2013 if (zone_watermark_ok(zone
, order
, mark
,
2014 classzone_idx
, alloc_flags
))
2018 * Failed to reclaim enough to meet watermark.
2019 * Only mark the zone full if checking the min
2020 * watermark or if we failed to reclaim just
2021 * 1<<order pages or else the page allocator
2022 * fastpath will prematurely mark zones full
2023 * when the watermark is between the low and
2026 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2027 ret
== ZONE_RECLAIM_SOME
)
2028 goto this_zone_full
;
2035 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2036 gfp_mask
, migratetype
);
2040 if (IS_ENABLED(CONFIG_NUMA
))
2041 zlc_mark_zone_full(zonelist
, z
);
2044 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
2045 /* Disable zlc cache for second zonelist scan */
2052 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2053 * necessary to allocate the page. The expectation is
2054 * that the caller is taking steps that will free more
2055 * memory. The caller should avoid the page being used
2056 * for !PFMEMALLOC purposes.
2058 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2064 * Large machines with many possible nodes should not always dump per-node
2065 * meminfo in irq context.
2067 static inline bool should_suppress_show_mem(void)
2072 ret
= in_interrupt();
2077 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2078 DEFAULT_RATELIMIT_INTERVAL
,
2079 DEFAULT_RATELIMIT_BURST
);
2081 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2083 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2085 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2086 debug_guardpage_minorder() > 0)
2090 * Walking all memory to count page types is very expensive and should
2091 * be inhibited in non-blockable contexts.
2093 if (!(gfp_mask
& __GFP_WAIT
))
2094 filter
|= SHOW_MEM_FILTER_PAGE_COUNT
;
2097 * This documents exceptions given to allocations in certain
2098 * contexts that are allowed to allocate outside current's set
2101 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2102 if (test_thread_flag(TIF_MEMDIE
) ||
2103 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2104 filter
&= ~SHOW_MEM_FILTER_NODES
;
2105 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2106 filter
&= ~SHOW_MEM_FILTER_NODES
;
2109 struct va_format vaf
;
2112 va_start(args
, fmt
);
2117 pr_warn("%pV", &vaf
);
2122 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2123 current
->comm
, order
, gfp_mask
);
2126 if (!should_suppress_show_mem())
2131 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2132 unsigned long did_some_progress
,
2133 unsigned long pages_reclaimed
)
2135 /* Do not loop if specifically requested */
2136 if (gfp_mask
& __GFP_NORETRY
)
2139 /* Always retry if specifically requested */
2140 if (gfp_mask
& __GFP_NOFAIL
)
2144 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2145 * making forward progress without invoking OOM. Suspend also disables
2146 * storage devices so kswapd will not help. Bail if we are suspending.
2148 if (!did_some_progress
&& pm_suspended_storage())
2152 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2153 * means __GFP_NOFAIL, but that may not be true in other
2156 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2160 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2161 * specified, then we retry until we no longer reclaim any pages
2162 * (above), or we've reclaimed an order of pages at least as
2163 * large as the allocation's order. In both cases, if the
2164 * allocation still fails, we stop retrying.
2166 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2172 static inline struct page
*
2173 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2174 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2175 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2180 /* Acquire the OOM killer lock for the zones in zonelist */
2181 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2182 schedule_timeout_uninterruptible(1);
2187 * Go through the zonelist yet one more time, keep very high watermark
2188 * here, this is only to catch a parallel oom killing, we must fail if
2189 * we're still under heavy pressure.
2191 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2192 order
, zonelist
, high_zoneidx
,
2193 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2194 preferred_zone
, migratetype
);
2198 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2199 /* The OOM killer will not help higher order allocs */
2200 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2202 /* The OOM killer does not needlessly kill tasks for lowmem */
2203 if (high_zoneidx
< ZONE_NORMAL
)
2206 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2207 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2208 * The caller should handle page allocation failure by itself if
2209 * it specifies __GFP_THISNODE.
2210 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2212 if (gfp_mask
& __GFP_THISNODE
)
2215 /* Exhausted what can be done so it's blamo time */
2216 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2219 clear_zonelist_oom(zonelist
, gfp_mask
);
2223 #ifdef CONFIG_COMPACTION
2224 /* Try memory compaction for high-order allocations before reclaim */
2225 static struct page
*
2226 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2227 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2228 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2229 int migratetype
, bool sync_migration
,
2230 bool *contended_compaction
, bool *deferred_compaction
,
2231 unsigned long *did_some_progress
)
2236 if (compaction_deferred(preferred_zone
, order
)) {
2237 *deferred_compaction
= true;
2241 current
->flags
|= PF_MEMALLOC
;
2242 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2243 nodemask
, sync_migration
,
2244 contended_compaction
);
2245 current
->flags
&= ~PF_MEMALLOC
;
2247 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2250 /* Page migration frees to the PCP lists but we want merging */
2251 drain_pages(get_cpu());
2254 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2255 order
, zonelist
, high_zoneidx
,
2256 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2257 preferred_zone
, migratetype
);
2259 preferred_zone
->compact_blockskip_flush
= false;
2260 preferred_zone
->compact_considered
= 0;
2261 preferred_zone
->compact_defer_shift
= 0;
2262 if (order
>= preferred_zone
->compact_order_failed
)
2263 preferred_zone
->compact_order_failed
= order
+ 1;
2264 count_vm_event(COMPACTSUCCESS
);
2269 * It's bad if compaction run occurs and fails.
2270 * The most likely reason is that pages exist,
2271 * but not enough to satisfy watermarks.
2273 count_vm_event(COMPACTFAIL
);
2276 * As async compaction considers a subset of pageblocks, only
2277 * defer if the failure was a sync compaction failure.
2280 defer_compaction(preferred_zone
, order
);
2288 static inline struct page
*
2289 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2290 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2291 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2292 int migratetype
, bool sync_migration
,
2293 bool *contended_compaction
, bool *deferred_compaction
,
2294 unsigned long *did_some_progress
)
2298 #endif /* CONFIG_COMPACTION */
2300 /* Perform direct synchronous page reclaim */
2302 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2303 nodemask_t
*nodemask
)
2305 struct reclaim_state reclaim_state
;
2310 /* We now go into synchronous reclaim */
2311 cpuset_memory_pressure_bump();
2312 current
->flags
|= PF_MEMALLOC
;
2313 lockdep_set_current_reclaim_state(gfp_mask
);
2314 reclaim_state
.reclaimed_slab
= 0;
2315 current
->reclaim_state
= &reclaim_state
;
2317 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2319 current
->reclaim_state
= NULL
;
2320 lockdep_clear_current_reclaim_state();
2321 current
->flags
&= ~PF_MEMALLOC
;
2328 /* The really slow allocator path where we enter direct reclaim */
2329 static inline struct page
*
2330 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2331 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2332 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2333 int migratetype
, unsigned long *did_some_progress
)
2335 struct page
*page
= NULL
;
2336 bool drained
= false;
2338 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2340 if (unlikely(!(*did_some_progress
)))
2343 /* After successful reclaim, reconsider all zones for allocation */
2344 if (IS_ENABLED(CONFIG_NUMA
))
2345 zlc_clear_zones_full(zonelist
);
2348 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2349 zonelist
, high_zoneidx
,
2350 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2351 preferred_zone
, migratetype
);
2354 * If an allocation failed after direct reclaim, it could be because
2355 * pages are pinned on the per-cpu lists. Drain them and try again
2357 if (!page
&& !drained
) {
2367 * This is called in the allocator slow-path if the allocation request is of
2368 * sufficient urgency to ignore watermarks and take other desperate measures
2370 static inline struct page
*
2371 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2372 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2373 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2379 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2380 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2381 preferred_zone
, migratetype
);
2383 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2384 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2385 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2390 static void reset_alloc_batches(struct zonelist
*zonelist
,
2391 enum zone_type high_zoneidx
,
2392 struct zone
*preferred_zone
)
2397 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
2399 * Only reset the batches of zones that were actually
2400 * considered in the fairness pass, we don't want to
2401 * trash fairness information for zones that are not
2402 * actually part of this zonelist's round-robin cycle.
2404 if (!zone_local(preferred_zone
, zone
))
2406 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2407 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2408 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2412 static void wake_all_kswapds(unsigned int order
,
2413 struct zonelist
*zonelist
,
2414 enum zone_type high_zoneidx
,
2415 struct zone
*preferred_zone
)
2420 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2421 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2425 gfp_to_alloc_flags(gfp_t gfp_mask
)
2427 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2428 const bool atomic
= !(gfp_mask
& (__GFP_WAIT
| __GFP_NO_KSWAPD
));
2430 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2431 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2434 * The caller may dip into page reserves a bit more if the caller
2435 * cannot run direct reclaim, or if the caller has realtime scheduling
2436 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2437 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2439 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2443 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2444 * if it can't schedule.
2446 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2447 alloc_flags
|= ALLOC_HARDER
;
2449 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2450 * comment for __cpuset_node_allowed_softwall().
2452 alloc_flags
&= ~ALLOC_CPUSET
;
2453 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2454 alloc_flags
|= ALLOC_HARDER
;
2456 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2457 if (gfp_mask
& __GFP_MEMALLOC
)
2458 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2459 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2460 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2461 else if (!in_interrupt() &&
2462 ((current
->flags
& PF_MEMALLOC
) ||
2463 unlikely(test_thread_flag(TIF_MEMDIE
))))
2464 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2467 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2468 alloc_flags
|= ALLOC_CMA
;
2473 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2475 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2478 static inline struct page
*
2479 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2480 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2481 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2484 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2485 struct page
*page
= NULL
;
2487 unsigned long pages_reclaimed
= 0;
2488 unsigned long did_some_progress
;
2489 bool sync_migration
= false;
2490 bool deferred_compaction
= false;
2491 bool contended_compaction
= false;
2494 * In the slowpath, we sanity check order to avoid ever trying to
2495 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2496 * be using allocators in order of preference for an area that is
2499 if (order
>= MAX_ORDER
) {
2500 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2505 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2506 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2507 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2508 * using a larger set of nodes after it has established that the
2509 * allowed per node queues are empty and that nodes are
2512 if (IS_ENABLED(CONFIG_NUMA
) &&
2513 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2517 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2518 wake_all_kswapds(order
, zonelist
, high_zoneidx
, preferred_zone
);
2521 * OK, we're below the kswapd watermark and have kicked background
2522 * reclaim. Now things get more complex, so set up alloc_flags according
2523 * to how we want to proceed.
2525 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2528 * Find the true preferred zone if the allocation is unconstrained by
2531 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2532 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2536 /* This is the last chance, in general, before the goto nopage. */
2537 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2538 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2539 preferred_zone
, migratetype
);
2543 /* Allocate without watermarks if the context allows */
2544 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2546 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2547 * the allocation is high priority and these type of
2548 * allocations are system rather than user orientated
2550 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2552 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2553 zonelist
, high_zoneidx
, nodemask
,
2554 preferred_zone
, migratetype
);
2560 /* Atomic allocations - we can't balance anything */
2564 /* Avoid recursion of direct reclaim */
2565 if (current
->flags
& PF_MEMALLOC
)
2568 /* Avoid allocations with no watermarks from looping endlessly */
2569 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2573 * Try direct compaction. The first pass is asynchronous. Subsequent
2574 * attempts after direct reclaim are synchronous
2576 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2577 zonelist
, high_zoneidx
,
2579 alloc_flags
, preferred_zone
,
2580 migratetype
, sync_migration
,
2581 &contended_compaction
,
2582 &deferred_compaction
,
2583 &did_some_progress
);
2586 sync_migration
= true;
2589 * If compaction is deferred for high-order allocations, it is because
2590 * sync compaction recently failed. In this is the case and the caller
2591 * requested a movable allocation that does not heavily disrupt the
2592 * system then fail the allocation instead of entering direct reclaim.
2594 if ((deferred_compaction
|| contended_compaction
) &&
2595 (gfp_mask
& __GFP_NO_KSWAPD
))
2598 /* Try direct reclaim and then allocating */
2599 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2600 zonelist
, high_zoneidx
,
2602 alloc_flags
, preferred_zone
,
2603 migratetype
, &did_some_progress
);
2608 * If we failed to make any progress reclaiming, then we are
2609 * running out of options and have to consider going OOM
2611 if (!did_some_progress
) {
2612 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2613 if (oom_killer_disabled
)
2615 /* Coredumps can quickly deplete all memory reserves */
2616 if ((current
->flags
& PF_DUMPCORE
) &&
2617 !(gfp_mask
& __GFP_NOFAIL
))
2619 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2620 zonelist
, high_zoneidx
,
2621 nodemask
, preferred_zone
,
2626 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2628 * The oom killer is not called for high-order
2629 * allocations that may fail, so if no progress
2630 * is being made, there are no other options and
2631 * retrying is unlikely to help.
2633 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2636 * The oom killer is not called for lowmem
2637 * allocations to prevent needlessly killing
2640 if (high_zoneidx
< ZONE_NORMAL
)
2648 /* Check if we should retry the allocation */
2649 pages_reclaimed
+= did_some_progress
;
2650 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2652 /* Wait for some write requests to complete then retry */
2653 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2657 * High-order allocations do not necessarily loop after
2658 * direct reclaim and reclaim/compaction depends on compaction
2659 * being called after reclaim so call directly if necessary
2661 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2662 zonelist
, high_zoneidx
,
2664 alloc_flags
, preferred_zone
,
2665 migratetype
, sync_migration
,
2666 &contended_compaction
,
2667 &deferred_compaction
,
2668 &did_some_progress
);
2674 warn_alloc_failed(gfp_mask
, order
, NULL
);
2677 if (kmemcheck_enabled
)
2678 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2684 * This is the 'heart' of the zoned buddy allocator.
2687 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2688 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2690 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2691 struct zone
*preferred_zone
;
2692 struct page
*page
= NULL
;
2693 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2694 unsigned int cpuset_mems_cookie
;
2695 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2696 struct mem_cgroup
*memcg
= NULL
;
2698 gfp_mask
&= gfp_allowed_mask
;
2700 lockdep_trace_alloc(gfp_mask
);
2702 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2704 if (should_fail_alloc_page(gfp_mask
, order
))
2708 * Check the zones suitable for the gfp_mask contain at least one
2709 * valid zone. It's possible to have an empty zonelist as a result
2710 * of GFP_THISNODE and a memoryless node
2712 if (unlikely(!zonelist
->_zonerefs
->zone
))
2716 * Will only have any effect when __GFP_KMEMCG is set. This is
2717 * verified in the (always inline) callee
2719 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2723 cpuset_mems_cookie
= get_mems_allowed();
2725 /* The preferred zone is used for statistics later */
2726 first_zones_zonelist(zonelist
, high_zoneidx
,
2727 nodemask
? : &cpuset_current_mems_allowed
,
2729 if (!preferred_zone
)
2733 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2734 alloc_flags
|= ALLOC_CMA
;
2737 /* First allocation attempt */
2738 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2739 zonelist
, high_zoneidx
, alloc_flags
,
2740 preferred_zone
, migratetype
);
2741 if (unlikely(!page
)) {
2743 * The first pass makes sure allocations are spread
2744 * fairly within the local node. However, the local
2745 * node might have free pages left after the fairness
2746 * batches are exhausted, and remote zones haven't
2747 * even been considered yet. Try once more without
2748 * fairness, and include remote zones now, before
2749 * entering the slowpath and waking kswapd: prefer
2750 * spilling to a remote zone over swapping locally.
2752 if (alloc_flags
& ALLOC_FAIR
) {
2753 reset_alloc_batches(zonelist
, high_zoneidx
,
2755 alloc_flags
&= ~ALLOC_FAIR
;
2759 * Runtime PM, block IO and its error handling path
2760 * can deadlock because I/O on the device might not
2763 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2764 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2765 zonelist
, high_zoneidx
, nodemask
,
2766 preferred_zone
, migratetype
);
2769 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2773 * When updating a task's mems_allowed, it is possible to race with
2774 * parallel threads in such a way that an allocation can fail while
2775 * the mask is being updated. If a page allocation is about to fail,
2776 * check if the cpuset changed during allocation and if so, retry.
2778 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2781 memcg_kmem_commit_charge(page
, memcg
, order
);
2785 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2788 * Common helper functions.
2790 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2795 * __get_free_pages() returns a 32-bit address, which cannot represent
2798 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2800 page
= alloc_pages(gfp_mask
, order
);
2803 return (unsigned long) page_address(page
);
2805 EXPORT_SYMBOL(__get_free_pages
);
2807 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2809 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2811 EXPORT_SYMBOL(get_zeroed_page
);
2813 void __free_pages(struct page
*page
, unsigned int order
)
2815 if (put_page_testzero(page
)) {
2817 free_hot_cold_page(page
, 0);
2819 __free_pages_ok(page
, order
);
2823 EXPORT_SYMBOL(__free_pages
);
2825 void free_pages(unsigned long addr
, unsigned int order
)
2828 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2829 __free_pages(virt_to_page((void *)addr
), order
);
2833 EXPORT_SYMBOL(free_pages
);
2836 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2837 * pages allocated with __GFP_KMEMCG.
2839 * Those pages are accounted to a particular memcg, embedded in the
2840 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2841 * for that information only to find out that it is NULL for users who have no
2842 * interest in that whatsoever, we provide these functions.
2844 * The caller knows better which flags it relies on.
2846 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2848 memcg_kmem_uncharge_pages(page
, order
);
2849 __free_pages(page
, order
);
2852 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2855 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2856 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2860 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2863 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2864 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2866 split_page(virt_to_page((void *)addr
), order
);
2867 while (used
< alloc_end
) {
2872 return (void *)addr
;
2876 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2877 * @size: the number of bytes to allocate
2878 * @gfp_mask: GFP flags for the allocation
2880 * This function is similar to alloc_pages(), except that it allocates the
2881 * minimum number of pages to satisfy the request. alloc_pages() can only
2882 * allocate memory in power-of-two pages.
2884 * This function is also limited by MAX_ORDER.
2886 * Memory allocated by this function must be released by free_pages_exact().
2888 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2890 unsigned int order
= get_order(size
);
2893 addr
= __get_free_pages(gfp_mask
, order
);
2894 return make_alloc_exact(addr
, order
, size
);
2896 EXPORT_SYMBOL(alloc_pages_exact
);
2899 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2901 * @nid: the preferred node ID where memory should be allocated
2902 * @size: the number of bytes to allocate
2903 * @gfp_mask: GFP flags for the allocation
2905 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2907 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2910 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2912 unsigned order
= get_order(size
);
2913 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2916 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2918 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2921 * free_pages_exact - release memory allocated via alloc_pages_exact()
2922 * @virt: the value returned by alloc_pages_exact.
2923 * @size: size of allocation, same value as passed to alloc_pages_exact().
2925 * Release the memory allocated by a previous call to alloc_pages_exact.
2927 void free_pages_exact(void *virt
, size_t size
)
2929 unsigned long addr
= (unsigned long)virt
;
2930 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2932 while (addr
< end
) {
2937 EXPORT_SYMBOL(free_pages_exact
);
2940 * nr_free_zone_pages - count number of pages beyond high watermark
2941 * @offset: The zone index of the highest zone
2943 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2944 * high watermark within all zones at or below a given zone index. For each
2945 * zone, the number of pages is calculated as:
2946 * managed_pages - high_pages
2948 static unsigned long nr_free_zone_pages(int offset
)
2953 /* Just pick one node, since fallback list is circular */
2954 unsigned long sum
= 0;
2956 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2958 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2959 unsigned long size
= zone
->managed_pages
;
2960 unsigned long high
= high_wmark_pages(zone
);
2969 * nr_free_buffer_pages - count number of pages beyond high watermark
2971 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2972 * watermark within ZONE_DMA and ZONE_NORMAL.
2974 unsigned long nr_free_buffer_pages(void)
2976 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2978 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2981 * nr_free_pagecache_pages - count number of pages beyond high watermark
2983 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2984 * high watermark within all zones.
2986 unsigned long nr_free_pagecache_pages(void)
2988 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2991 static inline void show_node(struct zone
*zone
)
2993 if (IS_ENABLED(CONFIG_NUMA
))
2994 printk("Node %d ", zone_to_nid(zone
));
2997 void si_meminfo(struct sysinfo
*val
)
2999 val
->totalram
= totalram_pages
;
3001 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3002 val
->bufferram
= nr_blockdev_pages();
3003 val
->totalhigh
= totalhigh_pages
;
3004 val
->freehigh
= nr_free_highpages();
3005 val
->mem_unit
= PAGE_SIZE
;
3008 EXPORT_SYMBOL(si_meminfo
);
3011 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3013 int zone_type
; /* needs to be signed */
3014 unsigned long managed_pages
= 0;
3015 pg_data_t
*pgdat
= NODE_DATA(nid
);
3017 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3018 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3019 val
->totalram
= managed_pages
;
3020 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3021 #ifdef CONFIG_HIGHMEM
3022 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3023 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3029 val
->mem_unit
= PAGE_SIZE
;
3034 * Determine whether the node should be displayed or not, depending on whether
3035 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3037 bool skip_free_areas_node(unsigned int flags
, int nid
)
3040 unsigned int cpuset_mems_cookie
;
3042 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3046 cpuset_mems_cookie
= get_mems_allowed();
3047 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3048 } while (!put_mems_allowed(cpuset_mems_cookie
));
3053 #define K(x) ((x) << (PAGE_SHIFT-10))
3055 static void show_migration_types(unsigned char type
)
3057 static const char types
[MIGRATE_TYPES
] = {
3058 [MIGRATE_UNMOVABLE
] = 'U',
3059 [MIGRATE_RECLAIMABLE
] = 'E',
3060 [MIGRATE_MOVABLE
] = 'M',
3061 [MIGRATE_RESERVE
] = 'R',
3063 [MIGRATE_CMA
] = 'C',
3065 #ifdef CONFIG_MEMORY_ISOLATION
3066 [MIGRATE_ISOLATE
] = 'I',
3069 char tmp
[MIGRATE_TYPES
+ 1];
3073 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3074 if (type
& (1 << i
))
3079 printk("(%s) ", tmp
);
3083 * Show free area list (used inside shift_scroll-lock stuff)
3084 * We also calculate the percentage fragmentation. We do this by counting the
3085 * memory on each free list with the exception of the first item on the list.
3086 * Suppresses nodes that are not allowed by current's cpuset if
3087 * SHOW_MEM_FILTER_NODES is passed.
3089 void show_free_areas(unsigned int filter
)
3094 for_each_populated_zone(zone
) {
3095 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3098 printk("%s per-cpu:\n", zone
->name
);
3100 for_each_online_cpu(cpu
) {
3101 struct per_cpu_pageset
*pageset
;
3103 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3105 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3106 cpu
, pageset
->pcp
.high
,
3107 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3111 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3112 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3114 " dirty:%lu writeback:%lu unstable:%lu\n"
3115 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3116 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3118 global_page_state(NR_ACTIVE_ANON
),
3119 global_page_state(NR_INACTIVE_ANON
),
3120 global_page_state(NR_ISOLATED_ANON
),
3121 global_page_state(NR_ACTIVE_FILE
),
3122 global_page_state(NR_INACTIVE_FILE
),
3123 global_page_state(NR_ISOLATED_FILE
),
3124 global_page_state(NR_UNEVICTABLE
),
3125 global_page_state(NR_FILE_DIRTY
),
3126 global_page_state(NR_WRITEBACK
),
3127 global_page_state(NR_UNSTABLE_NFS
),
3128 global_page_state(NR_FREE_PAGES
),
3129 global_page_state(NR_SLAB_RECLAIMABLE
),
3130 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3131 global_page_state(NR_FILE_MAPPED
),
3132 global_page_state(NR_SHMEM
),
3133 global_page_state(NR_PAGETABLE
),
3134 global_page_state(NR_BOUNCE
),
3135 global_page_state(NR_FREE_CMA_PAGES
));
3137 for_each_populated_zone(zone
) {
3140 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3148 " active_anon:%lukB"
3149 " inactive_anon:%lukB"
3150 " active_file:%lukB"
3151 " inactive_file:%lukB"
3152 " unevictable:%lukB"
3153 " isolated(anon):%lukB"
3154 " isolated(file):%lukB"
3162 " slab_reclaimable:%lukB"
3163 " slab_unreclaimable:%lukB"
3164 " kernel_stack:%lukB"
3169 " writeback_tmp:%lukB"
3170 " pages_scanned:%lu"
3171 " all_unreclaimable? %s"
3174 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3175 K(min_wmark_pages(zone
)),
3176 K(low_wmark_pages(zone
)),
3177 K(high_wmark_pages(zone
)),
3178 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3179 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3180 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3181 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3182 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3183 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3184 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3185 K(zone
->present_pages
),
3186 K(zone
->managed_pages
),
3187 K(zone_page_state(zone
, NR_MLOCK
)),
3188 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3189 K(zone_page_state(zone
, NR_WRITEBACK
)),
3190 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3191 K(zone_page_state(zone
, NR_SHMEM
)),
3192 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3193 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3194 zone_page_state(zone
, NR_KERNEL_STACK
) *
3196 K(zone_page_state(zone
, NR_PAGETABLE
)),
3197 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3198 K(zone_page_state(zone
, NR_BOUNCE
)),
3199 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3200 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3201 zone
->pages_scanned
,
3202 (!zone_reclaimable(zone
) ? "yes" : "no")
3204 printk("lowmem_reserve[]:");
3205 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3206 printk(" %lu", zone
->lowmem_reserve
[i
]);
3210 for_each_populated_zone(zone
) {
3211 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3212 unsigned char types
[MAX_ORDER
];
3214 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3217 printk("%s: ", zone
->name
);
3219 spin_lock_irqsave(&zone
->lock
, flags
);
3220 for (order
= 0; order
< MAX_ORDER
; order
++) {
3221 struct free_area
*area
= &zone
->free_area
[order
];
3224 nr
[order
] = area
->nr_free
;
3225 total
+= nr
[order
] << order
;
3228 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3229 if (!list_empty(&area
->free_list
[type
]))
3230 types
[order
] |= 1 << type
;
3233 spin_unlock_irqrestore(&zone
->lock
, flags
);
3234 for (order
= 0; order
< MAX_ORDER
; order
++) {
3235 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3237 show_migration_types(types
[order
]);
3239 printk("= %lukB\n", K(total
));
3242 hugetlb_show_meminfo();
3244 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3246 show_swap_cache_info();
3249 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3251 zoneref
->zone
= zone
;
3252 zoneref
->zone_idx
= zone_idx(zone
);
3256 * Builds allocation fallback zone lists.
3258 * Add all populated zones of a node to the zonelist.
3260 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3264 enum zone_type zone_type
= MAX_NR_ZONES
;
3268 zone
= pgdat
->node_zones
+ zone_type
;
3269 if (populated_zone(zone
)) {
3270 zoneref_set_zone(zone
,
3271 &zonelist
->_zonerefs
[nr_zones
++]);
3272 check_highest_zone(zone_type
);
3274 } while (zone_type
);
3282 * 0 = automatic detection of better ordering.
3283 * 1 = order by ([node] distance, -zonetype)
3284 * 2 = order by (-zonetype, [node] distance)
3286 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3287 * the same zonelist. So only NUMA can configure this param.
3289 #define ZONELIST_ORDER_DEFAULT 0
3290 #define ZONELIST_ORDER_NODE 1
3291 #define ZONELIST_ORDER_ZONE 2
3293 /* zonelist order in the kernel.
3294 * set_zonelist_order() will set this to NODE or ZONE.
3296 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3297 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3301 /* The value user specified ....changed by config */
3302 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3303 /* string for sysctl */
3304 #define NUMA_ZONELIST_ORDER_LEN 16
3305 char numa_zonelist_order
[16] = "default";
3308 * interface for configure zonelist ordering.
3309 * command line option "numa_zonelist_order"
3310 * = "[dD]efault - default, automatic configuration.
3311 * = "[nN]ode - order by node locality, then by zone within node
3312 * = "[zZ]one - order by zone, then by locality within zone
3315 static int __parse_numa_zonelist_order(char *s
)
3317 if (*s
== 'd' || *s
== 'D') {
3318 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3319 } else if (*s
== 'n' || *s
== 'N') {
3320 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3321 } else if (*s
== 'z' || *s
== 'Z') {
3322 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3325 "Ignoring invalid numa_zonelist_order value: "
3332 static __init
int setup_numa_zonelist_order(char *s
)
3339 ret
= __parse_numa_zonelist_order(s
);
3341 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3345 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3348 * sysctl handler for numa_zonelist_order
3350 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3351 void __user
*buffer
, size_t *length
,
3354 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3356 static DEFINE_MUTEX(zl_order_mutex
);
3358 mutex_lock(&zl_order_mutex
);
3360 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3364 strcpy(saved_string
, (char *)table
->data
);
3366 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3370 int oldval
= user_zonelist_order
;
3372 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3375 * bogus value. restore saved string
3377 strncpy((char *)table
->data
, saved_string
,
3378 NUMA_ZONELIST_ORDER_LEN
);
3379 user_zonelist_order
= oldval
;
3380 } else if (oldval
!= user_zonelist_order
) {
3381 mutex_lock(&zonelists_mutex
);
3382 build_all_zonelists(NULL
, NULL
);
3383 mutex_unlock(&zonelists_mutex
);
3387 mutex_unlock(&zl_order_mutex
);
3392 #define MAX_NODE_LOAD (nr_online_nodes)
3393 static int node_load
[MAX_NUMNODES
];
3396 * find_next_best_node - find the next node that should appear in a given node's fallback list
3397 * @node: node whose fallback list we're appending
3398 * @used_node_mask: nodemask_t of already used nodes
3400 * We use a number of factors to determine which is the next node that should
3401 * appear on a given node's fallback list. The node should not have appeared
3402 * already in @node's fallback list, and it should be the next closest node
3403 * according to the distance array (which contains arbitrary distance values
3404 * from each node to each node in the system), and should also prefer nodes
3405 * with no CPUs, since presumably they'll have very little allocation pressure
3406 * on them otherwise.
3407 * It returns -1 if no node is found.
3409 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3412 int min_val
= INT_MAX
;
3413 int best_node
= NUMA_NO_NODE
;
3414 const struct cpumask
*tmp
= cpumask_of_node(0);
3416 /* Use the local node if we haven't already */
3417 if (!node_isset(node
, *used_node_mask
)) {
3418 node_set(node
, *used_node_mask
);
3422 for_each_node_state(n
, N_MEMORY
) {
3424 /* Don't want a node to appear more than once */
3425 if (node_isset(n
, *used_node_mask
))
3428 /* Use the distance array to find the distance */
3429 val
= node_distance(node
, n
);
3431 /* Penalize nodes under us ("prefer the next node") */
3434 /* Give preference to headless and unused nodes */
3435 tmp
= cpumask_of_node(n
);
3436 if (!cpumask_empty(tmp
))
3437 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3439 /* Slight preference for less loaded node */
3440 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3441 val
+= node_load
[n
];
3443 if (val
< min_val
) {
3450 node_set(best_node
, *used_node_mask
);
3457 * Build zonelists ordered by node and zones within node.
3458 * This results in maximum locality--normal zone overflows into local
3459 * DMA zone, if any--but risks exhausting DMA zone.
3461 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3464 struct zonelist
*zonelist
;
3466 zonelist
= &pgdat
->node_zonelists
[0];
3467 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3469 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3470 zonelist
->_zonerefs
[j
].zone
= NULL
;
3471 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3475 * Build gfp_thisnode zonelists
3477 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3480 struct zonelist
*zonelist
;
3482 zonelist
= &pgdat
->node_zonelists
[1];
3483 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3484 zonelist
->_zonerefs
[j
].zone
= NULL
;
3485 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3489 * Build zonelists ordered by zone and nodes within zones.
3490 * This results in conserving DMA zone[s] until all Normal memory is
3491 * exhausted, but results in overflowing to remote node while memory
3492 * may still exist in local DMA zone.
3494 static int node_order
[MAX_NUMNODES
];
3496 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3499 int zone_type
; /* needs to be signed */
3501 struct zonelist
*zonelist
;
3503 zonelist
= &pgdat
->node_zonelists
[0];
3505 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3506 for (j
= 0; j
< nr_nodes
; j
++) {
3507 node
= node_order
[j
];
3508 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3509 if (populated_zone(z
)) {
3511 &zonelist
->_zonerefs
[pos
++]);
3512 check_highest_zone(zone_type
);
3516 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3517 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3520 static int default_zonelist_order(void)
3523 unsigned long low_kmem_size
, total_size
;
3527 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3528 * If they are really small and used heavily, the system can fall
3529 * into OOM very easily.
3530 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3532 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3535 for_each_online_node(nid
) {
3536 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3537 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3538 if (populated_zone(z
)) {
3539 if (zone_type
< ZONE_NORMAL
)
3540 low_kmem_size
+= z
->managed_pages
;
3541 total_size
+= z
->managed_pages
;
3542 } else if (zone_type
== ZONE_NORMAL
) {
3544 * If any node has only lowmem, then node order
3545 * is preferred to allow kernel allocations
3546 * locally; otherwise, they can easily infringe
3547 * on other nodes when there is an abundance of
3548 * lowmem available to allocate from.
3550 return ZONELIST_ORDER_NODE
;
3554 if (!low_kmem_size
|| /* there are no DMA area. */
3555 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3556 return ZONELIST_ORDER_NODE
;
3558 * look into each node's config.
3559 * If there is a node whose DMA/DMA32 memory is very big area on
3560 * local memory, NODE_ORDER may be suitable.
3562 average_size
= total_size
/
3563 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3564 for_each_online_node(nid
) {
3567 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3568 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3569 if (populated_zone(z
)) {
3570 if (zone_type
< ZONE_NORMAL
)
3571 low_kmem_size
+= z
->present_pages
;
3572 total_size
+= z
->present_pages
;
3575 if (low_kmem_size
&&
3576 total_size
> average_size
&& /* ignore small node */
3577 low_kmem_size
> total_size
* 70/100)
3578 return ZONELIST_ORDER_NODE
;
3580 return ZONELIST_ORDER_ZONE
;
3583 static void set_zonelist_order(void)
3585 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3586 current_zonelist_order
= default_zonelist_order();
3588 current_zonelist_order
= user_zonelist_order
;
3591 static void build_zonelists(pg_data_t
*pgdat
)
3595 nodemask_t used_mask
;
3596 int local_node
, prev_node
;
3597 struct zonelist
*zonelist
;
3598 int order
= current_zonelist_order
;
3600 /* initialize zonelists */
3601 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3602 zonelist
= pgdat
->node_zonelists
+ i
;
3603 zonelist
->_zonerefs
[0].zone
= NULL
;
3604 zonelist
->_zonerefs
[0].zone_idx
= 0;
3607 /* NUMA-aware ordering of nodes */
3608 local_node
= pgdat
->node_id
;
3609 load
= nr_online_nodes
;
3610 prev_node
= local_node
;
3611 nodes_clear(used_mask
);
3613 memset(node_order
, 0, sizeof(node_order
));
3616 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3618 * We don't want to pressure a particular node.
3619 * So adding penalty to the first node in same
3620 * distance group to make it round-robin.
3622 if (node_distance(local_node
, node
) !=
3623 node_distance(local_node
, prev_node
))
3624 node_load
[node
] = load
;
3628 if (order
== ZONELIST_ORDER_NODE
)
3629 build_zonelists_in_node_order(pgdat
, node
);
3631 node_order
[j
++] = node
; /* remember order */
3634 if (order
== ZONELIST_ORDER_ZONE
) {
3635 /* calculate node order -- i.e., DMA last! */
3636 build_zonelists_in_zone_order(pgdat
, j
);
3639 build_thisnode_zonelists(pgdat
);
3642 /* Construct the zonelist performance cache - see further mmzone.h */
3643 static void build_zonelist_cache(pg_data_t
*pgdat
)
3645 struct zonelist
*zonelist
;
3646 struct zonelist_cache
*zlc
;
3649 zonelist
= &pgdat
->node_zonelists
[0];
3650 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3651 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3652 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3653 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3656 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3658 * Return node id of node used for "local" allocations.
3659 * I.e., first node id of first zone in arg node's generic zonelist.
3660 * Used for initializing percpu 'numa_mem', which is used primarily
3661 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3663 int local_memory_node(int node
)
3667 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3668 gfp_zone(GFP_KERNEL
),
3675 #else /* CONFIG_NUMA */
3677 static void set_zonelist_order(void)
3679 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3682 static void build_zonelists(pg_data_t
*pgdat
)
3684 int node
, local_node
;
3686 struct zonelist
*zonelist
;
3688 local_node
= pgdat
->node_id
;
3690 zonelist
= &pgdat
->node_zonelists
[0];
3691 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3694 * Now we build the zonelist so that it contains the zones
3695 * of all the other nodes.
3696 * We don't want to pressure a particular node, so when
3697 * building the zones for node N, we make sure that the
3698 * zones coming right after the local ones are those from
3699 * node N+1 (modulo N)
3701 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3702 if (!node_online(node
))
3704 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3706 for (node
= 0; node
< local_node
; node
++) {
3707 if (!node_online(node
))
3709 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3712 zonelist
->_zonerefs
[j
].zone
= NULL
;
3713 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3716 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3717 static void build_zonelist_cache(pg_data_t
*pgdat
)
3719 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3722 #endif /* CONFIG_NUMA */
3725 * Boot pageset table. One per cpu which is going to be used for all
3726 * zones and all nodes. The parameters will be set in such a way
3727 * that an item put on a list will immediately be handed over to
3728 * the buddy list. This is safe since pageset manipulation is done
3729 * with interrupts disabled.
3731 * The boot_pagesets must be kept even after bootup is complete for
3732 * unused processors and/or zones. They do play a role for bootstrapping
3733 * hotplugged processors.
3735 * zoneinfo_show() and maybe other functions do
3736 * not check if the processor is online before following the pageset pointer.
3737 * Other parts of the kernel may not check if the zone is available.
3739 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3740 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3741 static void setup_zone_pageset(struct zone
*zone
);
3744 * Global mutex to protect against size modification of zonelists
3745 * as well as to serialize pageset setup for the new populated zone.
3747 DEFINE_MUTEX(zonelists_mutex
);
3749 /* return values int ....just for stop_machine() */
3750 static int __build_all_zonelists(void *data
)
3754 pg_data_t
*self
= data
;
3757 memset(node_load
, 0, sizeof(node_load
));
3760 if (self
&& !node_online(self
->node_id
)) {
3761 build_zonelists(self
);
3762 build_zonelist_cache(self
);
3765 for_each_online_node(nid
) {
3766 pg_data_t
*pgdat
= NODE_DATA(nid
);
3768 build_zonelists(pgdat
);
3769 build_zonelist_cache(pgdat
);
3773 * Initialize the boot_pagesets that are going to be used
3774 * for bootstrapping processors. The real pagesets for
3775 * each zone will be allocated later when the per cpu
3776 * allocator is available.
3778 * boot_pagesets are used also for bootstrapping offline
3779 * cpus if the system is already booted because the pagesets
3780 * are needed to initialize allocators on a specific cpu too.
3781 * F.e. the percpu allocator needs the page allocator which
3782 * needs the percpu allocator in order to allocate its pagesets
3783 * (a chicken-egg dilemma).
3785 for_each_possible_cpu(cpu
) {
3786 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3788 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3790 * We now know the "local memory node" for each node--
3791 * i.e., the node of the first zone in the generic zonelist.
3792 * Set up numa_mem percpu variable for on-line cpus. During
3793 * boot, only the boot cpu should be on-line; we'll init the
3794 * secondary cpus' numa_mem as they come on-line. During
3795 * node/memory hotplug, we'll fixup all on-line cpus.
3797 if (cpu_online(cpu
))
3798 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3806 * Called with zonelists_mutex held always
3807 * unless system_state == SYSTEM_BOOTING.
3809 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3811 set_zonelist_order();
3813 if (system_state
== SYSTEM_BOOTING
) {
3814 __build_all_zonelists(NULL
);
3815 mminit_verify_zonelist();
3816 cpuset_init_current_mems_allowed();
3818 #ifdef CONFIG_MEMORY_HOTPLUG
3820 setup_zone_pageset(zone
);
3822 /* we have to stop all cpus to guarantee there is no user
3824 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3825 /* cpuset refresh routine should be here */
3827 vm_total_pages
= nr_free_pagecache_pages();
3829 * Disable grouping by mobility if the number of pages in the
3830 * system is too low to allow the mechanism to work. It would be
3831 * more accurate, but expensive to check per-zone. This check is
3832 * made on memory-hotadd so a system can start with mobility
3833 * disabled and enable it later
3835 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3836 page_group_by_mobility_disabled
= 1;
3838 page_group_by_mobility_disabled
= 0;
3840 printk("Built %i zonelists in %s order, mobility grouping %s. "
3841 "Total pages: %ld\n",
3843 zonelist_order_name
[current_zonelist_order
],
3844 page_group_by_mobility_disabled
? "off" : "on",
3847 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3852 * Helper functions to size the waitqueue hash table.
3853 * Essentially these want to choose hash table sizes sufficiently
3854 * large so that collisions trying to wait on pages are rare.
3855 * But in fact, the number of active page waitqueues on typical
3856 * systems is ridiculously low, less than 200. So this is even
3857 * conservative, even though it seems large.
3859 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3860 * waitqueues, i.e. the size of the waitq table given the number of pages.
3862 #define PAGES_PER_WAITQUEUE 256
3864 #ifndef CONFIG_MEMORY_HOTPLUG
3865 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3867 unsigned long size
= 1;
3869 pages
/= PAGES_PER_WAITQUEUE
;
3871 while (size
< pages
)
3875 * Once we have dozens or even hundreds of threads sleeping
3876 * on IO we've got bigger problems than wait queue collision.
3877 * Limit the size of the wait table to a reasonable size.
3879 size
= min(size
, 4096UL);
3881 return max(size
, 4UL);
3885 * A zone's size might be changed by hot-add, so it is not possible to determine
3886 * a suitable size for its wait_table. So we use the maximum size now.
3888 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3890 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3891 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3892 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3894 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3895 * or more by the traditional way. (See above). It equals:
3897 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3898 * ia64(16K page size) : = ( 8G + 4M)byte.
3899 * powerpc (64K page size) : = (32G +16M)byte.
3901 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3908 * This is an integer logarithm so that shifts can be used later
3909 * to extract the more random high bits from the multiplicative
3910 * hash function before the remainder is taken.
3912 static inline unsigned long wait_table_bits(unsigned long size
)
3917 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3920 * Check if a pageblock contains reserved pages
3922 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3926 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3927 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3934 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3935 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3936 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3937 * higher will lead to a bigger reserve which will get freed as contiguous
3938 * blocks as reclaim kicks in
3940 static void setup_zone_migrate_reserve(struct zone
*zone
)
3942 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3944 unsigned long block_migratetype
;
3948 * Get the start pfn, end pfn and the number of blocks to reserve
3949 * We have to be careful to be aligned to pageblock_nr_pages to
3950 * make sure that we always check pfn_valid for the first page in
3953 start_pfn
= zone
->zone_start_pfn
;
3954 end_pfn
= zone_end_pfn(zone
);
3955 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3956 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3960 * Reserve blocks are generally in place to help high-order atomic
3961 * allocations that are short-lived. A min_free_kbytes value that
3962 * would result in more than 2 reserve blocks for atomic allocations
3963 * is assumed to be in place to help anti-fragmentation for the
3964 * future allocation of hugepages at runtime.
3966 reserve
= min(2, reserve
);
3968 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3969 if (!pfn_valid(pfn
))
3971 page
= pfn_to_page(pfn
);
3973 /* Watch out for overlapping nodes */
3974 if (page_to_nid(page
) != zone_to_nid(zone
))
3977 block_migratetype
= get_pageblock_migratetype(page
);
3979 /* Only test what is necessary when the reserves are not met */
3982 * Blocks with reserved pages will never free, skip
3985 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3986 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3989 /* If this block is reserved, account for it */
3990 if (block_migratetype
== MIGRATE_RESERVE
) {
3995 /* Suitable for reserving if this block is movable */
3996 if (block_migratetype
== MIGRATE_MOVABLE
) {
3997 set_pageblock_migratetype(page
,
3999 move_freepages_block(zone
, page
,
4007 * If the reserve is met and this is a previous reserved block,
4010 if (block_migratetype
== MIGRATE_RESERVE
) {
4011 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4012 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4018 * Initially all pages are reserved - free ones are freed
4019 * up by free_all_bootmem() once the early boot process is
4020 * done. Non-atomic initialization, single-pass.
4022 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4023 unsigned long start_pfn
, enum memmap_context context
)
4026 unsigned long end_pfn
= start_pfn
+ size
;
4030 if (highest_memmap_pfn
< end_pfn
- 1)
4031 highest_memmap_pfn
= end_pfn
- 1;
4033 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4034 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4036 * There can be holes in boot-time mem_map[]s
4037 * handed to this function. They do not
4038 * exist on hotplugged memory.
4040 if (context
== MEMMAP_EARLY
) {
4041 if (!early_pfn_valid(pfn
))
4043 if (!early_pfn_in_nid(pfn
, nid
))
4046 page
= pfn_to_page(pfn
);
4047 set_page_links(page
, zone
, nid
, pfn
);
4048 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4049 init_page_count(page
);
4050 page_mapcount_reset(page
);
4051 page_nid_reset_last(page
);
4052 SetPageReserved(page
);
4054 * Mark the block movable so that blocks are reserved for
4055 * movable at startup. This will force kernel allocations
4056 * to reserve their blocks rather than leaking throughout
4057 * the address space during boot when many long-lived
4058 * kernel allocations are made. Later some blocks near
4059 * the start are marked MIGRATE_RESERVE by
4060 * setup_zone_migrate_reserve()
4062 * bitmap is created for zone's valid pfn range. but memmap
4063 * can be created for invalid pages (for alignment)
4064 * check here not to call set_pageblock_migratetype() against
4067 if ((z
->zone_start_pfn
<= pfn
)
4068 && (pfn
< zone_end_pfn(z
))
4069 && !(pfn
& (pageblock_nr_pages
- 1)))
4070 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4072 INIT_LIST_HEAD(&page
->lru
);
4073 #ifdef WANT_PAGE_VIRTUAL
4074 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4075 if (!is_highmem_idx(zone
))
4076 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4081 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4084 for_each_migratetype_order(order
, t
) {
4085 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4086 zone
->free_area
[order
].nr_free
= 0;
4090 #ifndef __HAVE_ARCH_MEMMAP_INIT
4091 #define memmap_init(size, nid, zone, start_pfn) \
4092 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4095 static int zone_batchsize(struct zone
*zone
)
4101 * The per-cpu-pages pools are set to around 1000th of the
4102 * size of the zone. But no more than 1/2 of a meg.
4104 * OK, so we don't know how big the cache is. So guess.
4106 batch
= zone
->managed_pages
/ 1024;
4107 if (batch
* PAGE_SIZE
> 512 * 1024)
4108 batch
= (512 * 1024) / PAGE_SIZE
;
4109 batch
/= 4; /* We effectively *= 4 below */
4114 * Clamp the batch to a 2^n - 1 value. Having a power
4115 * of 2 value was found to be more likely to have
4116 * suboptimal cache aliasing properties in some cases.
4118 * For example if 2 tasks are alternately allocating
4119 * batches of pages, one task can end up with a lot
4120 * of pages of one half of the possible page colors
4121 * and the other with pages of the other colors.
4123 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4128 /* The deferral and batching of frees should be suppressed under NOMMU
4131 * The problem is that NOMMU needs to be able to allocate large chunks
4132 * of contiguous memory as there's no hardware page translation to
4133 * assemble apparent contiguous memory from discontiguous pages.
4135 * Queueing large contiguous runs of pages for batching, however,
4136 * causes the pages to actually be freed in smaller chunks. As there
4137 * can be a significant delay between the individual batches being
4138 * recycled, this leads to the once large chunks of space being
4139 * fragmented and becoming unavailable for high-order allocations.
4146 * pcp->high and pcp->batch values are related and dependent on one another:
4147 * ->batch must never be higher then ->high.
4148 * The following function updates them in a safe manner without read side
4151 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4152 * those fields changing asynchronously (acording the the above rule).
4154 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4155 * outside of boot time (or some other assurance that no concurrent updaters
4158 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4159 unsigned long batch
)
4161 /* start with a fail safe value for batch */
4165 /* Update high, then batch, in order */
4172 /* a companion to pageset_set_high() */
4173 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4175 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4178 static void pageset_init(struct per_cpu_pageset
*p
)
4180 struct per_cpu_pages
*pcp
;
4183 memset(p
, 0, sizeof(*p
));
4187 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4188 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4191 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4194 pageset_set_batch(p
, batch
);
4198 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4199 * to the value high for the pageset p.
4201 static void pageset_set_high(struct per_cpu_pageset
*p
,
4204 unsigned long batch
= max(1UL, high
/ 4);
4205 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4206 batch
= PAGE_SHIFT
* 8;
4208 pageset_update(&p
->pcp
, high
, batch
);
4211 static void pageset_set_high_and_batch(struct zone
*zone
,
4212 struct per_cpu_pageset
*pcp
)
4214 if (percpu_pagelist_fraction
)
4215 pageset_set_high(pcp
,
4216 (zone
->managed_pages
/
4217 percpu_pagelist_fraction
));
4219 pageset_set_batch(pcp
, zone_batchsize(zone
));
4222 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4224 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4227 pageset_set_high_and_batch(zone
, pcp
);
4230 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4233 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4234 for_each_possible_cpu(cpu
)
4235 zone_pageset_init(zone
, cpu
);
4239 * Allocate per cpu pagesets and initialize them.
4240 * Before this call only boot pagesets were available.
4242 void __init
setup_per_cpu_pageset(void)
4246 for_each_populated_zone(zone
)
4247 setup_zone_pageset(zone
);
4250 static noinline __init_refok
4251 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4254 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4258 * The per-page waitqueue mechanism uses hashed waitqueues
4261 zone
->wait_table_hash_nr_entries
=
4262 wait_table_hash_nr_entries(zone_size_pages
);
4263 zone
->wait_table_bits
=
4264 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4265 alloc_size
= zone
->wait_table_hash_nr_entries
4266 * sizeof(wait_queue_head_t
);
4268 if (!slab_is_available()) {
4269 zone
->wait_table
= (wait_queue_head_t
*)
4270 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
4273 * This case means that a zone whose size was 0 gets new memory
4274 * via memory hot-add.
4275 * But it may be the case that a new node was hot-added. In
4276 * this case vmalloc() will not be able to use this new node's
4277 * memory - this wait_table must be initialized to use this new
4278 * node itself as well.
4279 * To use this new node's memory, further consideration will be
4282 zone
->wait_table
= vmalloc(alloc_size
);
4284 if (!zone
->wait_table
)
4287 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4288 init_waitqueue_head(zone
->wait_table
+ i
);
4293 static __meminit
void zone_pcp_init(struct zone
*zone
)
4296 * per cpu subsystem is not up at this point. The following code
4297 * relies on the ability of the linker to provide the
4298 * offset of a (static) per cpu variable into the per cpu area.
4300 zone
->pageset
= &boot_pageset
;
4302 if (zone
->present_pages
)
4303 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4304 zone
->name
, zone
->present_pages
,
4305 zone_batchsize(zone
));
4308 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4309 unsigned long zone_start_pfn
,
4311 enum memmap_context context
)
4313 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4315 ret
= zone_wait_table_init(zone
, size
);
4318 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4320 zone
->zone_start_pfn
= zone_start_pfn
;
4322 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4323 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4325 (unsigned long)zone_idx(zone
),
4326 zone_start_pfn
, (zone_start_pfn
+ size
));
4328 zone_init_free_lists(zone
);
4333 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4334 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4336 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4337 * Architectures may implement their own version but if add_active_range()
4338 * was used and there are no special requirements, this is a convenient
4341 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4343 unsigned long start_pfn
, end_pfn
;
4346 * NOTE: The following SMP-unsafe globals are only used early in boot
4347 * when the kernel is running single-threaded.
4349 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4350 static int __meminitdata last_nid
;
4352 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4355 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4357 last_start_pfn
= start_pfn
;
4358 last_end_pfn
= end_pfn
;
4364 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4366 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4370 nid
= __early_pfn_to_nid(pfn
);
4373 /* just returns 0 */
4377 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4378 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4382 nid
= __early_pfn_to_nid(pfn
);
4383 if (nid
>= 0 && nid
!= node
)
4390 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4391 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4392 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4394 * If an architecture guarantees that all ranges registered with
4395 * add_active_ranges() contain no holes and may be freed, this
4396 * this function may be used instead of calling free_bootmem() manually.
4398 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4400 unsigned long start_pfn
, end_pfn
;
4403 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4404 start_pfn
= min(start_pfn
, max_low_pfn
);
4405 end_pfn
= min(end_pfn
, max_low_pfn
);
4407 if (start_pfn
< end_pfn
)
4408 free_bootmem_node(NODE_DATA(this_nid
),
4409 PFN_PHYS(start_pfn
),
4410 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4415 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4416 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4418 * If an architecture guarantees that all ranges registered with
4419 * add_active_ranges() contain no holes and may be freed, this
4420 * function may be used instead of calling memory_present() manually.
4422 void __init
sparse_memory_present_with_active_regions(int nid
)
4424 unsigned long start_pfn
, end_pfn
;
4427 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4428 memory_present(this_nid
, start_pfn
, end_pfn
);
4432 * get_pfn_range_for_nid - Return the start and end page frames for a node
4433 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4434 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4435 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4437 * It returns the start and end page frame of a node based on information
4438 * provided by an arch calling add_active_range(). If called for a node
4439 * with no available memory, a warning is printed and the start and end
4442 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4443 unsigned long *start_pfn
, unsigned long *end_pfn
)
4445 unsigned long this_start_pfn
, this_end_pfn
;
4451 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4452 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4453 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4456 if (*start_pfn
== -1UL)
4461 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4462 * assumption is made that zones within a node are ordered in monotonic
4463 * increasing memory addresses so that the "highest" populated zone is used
4465 static void __init
find_usable_zone_for_movable(void)
4468 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4469 if (zone_index
== ZONE_MOVABLE
)
4472 if (arch_zone_highest_possible_pfn
[zone_index
] >
4473 arch_zone_lowest_possible_pfn
[zone_index
])
4477 VM_BUG_ON(zone_index
== -1);
4478 movable_zone
= zone_index
;
4482 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4483 * because it is sized independent of architecture. Unlike the other zones,
4484 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4485 * in each node depending on the size of each node and how evenly kernelcore
4486 * is distributed. This helper function adjusts the zone ranges
4487 * provided by the architecture for a given node by using the end of the
4488 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4489 * zones within a node are in order of monotonic increases memory addresses
4491 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4492 unsigned long zone_type
,
4493 unsigned long node_start_pfn
,
4494 unsigned long node_end_pfn
,
4495 unsigned long *zone_start_pfn
,
4496 unsigned long *zone_end_pfn
)
4498 /* Only adjust if ZONE_MOVABLE is on this node */
4499 if (zone_movable_pfn
[nid
]) {
4500 /* Size ZONE_MOVABLE */
4501 if (zone_type
== ZONE_MOVABLE
) {
4502 *zone_start_pfn
= zone_movable_pfn
[nid
];
4503 *zone_end_pfn
= min(node_end_pfn
,
4504 arch_zone_highest_possible_pfn
[movable_zone
]);
4506 /* Adjust for ZONE_MOVABLE starting within this range */
4507 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4508 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4509 *zone_end_pfn
= zone_movable_pfn
[nid
];
4511 /* Check if this whole range is within ZONE_MOVABLE */
4512 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4513 *zone_start_pfn
= *zone_end_pfn
;
4518 * Return the number of pages a zone spans in a node, including holes
4519 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4521 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4522 unsigned long zone_type
,
4523 unsigned long node_start_pfn
,
4524 unsigned long node_end_pfn
,
4525 unsigned long *ignored
)
4527 unsigned long zone_start_pfn
, zone_end_pfn
;
4529 /* Get the start and end of the zone */
4530 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4531 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4532 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4533 node_start_pfn
, node_end_pfn
,
4534 &zone_start_pfn
, &zone_end_pfn
);
4536 /* Check that this node has pages within the zone's required range */
4537 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4540 /* Move the zone boundaries inside the node if necessary */
4541 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4542 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4544 /* Return the spanned pages */
4545 return zone_end_pfn
- zone_start_pfn
;
4549 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4550 * then all holes in the requested range will be accounted for.
4552 unsigned long __meminit
__absent_pages_in_range(int nid
,
4553 unsigned long range_start_pfn
,
4554 unsigned long range_end_pfn
)
4556 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4557 unsigned long start_pfn
, end_pfn
;
4560 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4561 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4562 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4563 nr_absent
-= end_pfn
- start_pfn
;
4569 * absent_pages_in_range - Return number of page frames in holes within a range
4570 * @start_pfn: The start PFN to start searching for holes
4571 * @end_pfn: The end PFN to stop searching for holes
4573 * It returns the number of pages frames in memory holes within a range.
4575 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4576 unsigned long end_pfn
)
4578 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4581 /* Return the number of page frames in holes in a zone on a node */
4582 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4583 unsigned long zone_type
,
4584 unsigned long node_start_pfn
,
4585 unsigned long node_end_pfn
,
4586 unsigned long *ignored
)
4588 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4589 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4590 unsigned long zone_start_pfn
, zone_end_pfn
;
4592 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4593 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4595 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4596 node_start_pfn
, node_end_pfn
,
4597 &zone_start_pfn
, &zone_end_pfn
);
4598 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4601 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4602 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4603 unsigned long zone_type
,
4604 unsigned long node_start_pfn
,
4605 unsigned long node_end_pfn
,
4606 unsigned long *zones_size
)
4608 return zones_size
[zone_type
];
4611 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4612 unsigned long zone_type
,
4613 unsigned long node_start_pfn
,
4614 unsigned long node_end_pfn
,
4615 unsigned long *zholes_size
)
4620 return zholes_size
[zone_type
];
4623 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4625 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4626 unsigned long node_start_pfn
,
4627 unsigned long node_end_pfn
,
4628 unsigned long *zones_size
,
4629 unsigned long *zholes_size
)
4631 unsigned long realtotalpages
, totalpages
= 0;
4634 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4635 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4639 pgdat
->node_spanned_pages
= totalpages
;
4641 realtotalpages
= totalpages
;
4642 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4644 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4645 node_start_pfn
, node_end_pfn
,
4647 pgdat
->node_present_pages
= realtotalpages
;
4648 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4652 #ifndef CONFIG_SPARSEMEM
4654 * Calculate the size of the zone->blockflags rounded to an unsigned long
4655 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4656 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4657 * round what is now in bits to nearest long in bits, then return it in
4660 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4662 unsigned long usemapsize
;
4664 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4665 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4666 usemapsize
= usemapsize
>> pageblock_order
;
4667 usemapsize
*= NR_PAGEBLOCK_BITS
;
4668 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4670 return usemapsize
/ 8;
4673 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4675 unsigned long zone_start_pfn
,
4676 unsigned long zonesize
)
4678 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4679 zone
->pageblock_flags
= NULL
;
4681 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4685 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4686 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4687 #endif /* CONFIG_SPARSEMEM */
4689 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4691 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4692 void __paginginit
set_pageblock_order(void)
4696 /* Check that pageblock_nr_pages has not already been setup */
4697 if (pageblock_order
)
4700 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4701 order
= HUGETLB_PAGE_ORDER
;
4703 order
= MAX_ORDER
- 1;
4706 * Assume the largest contiguous order of interest is a huge page.
4707 * This value may be variable depending on boot parameters on IA64 and
4710 pageblock_order
= order
;
4712 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4715 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4716 * is unused as pageblock_order is set at compile-time. See
4717 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4720 void __paginginit
set_pageblock_order(void)
4724 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4726 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4727 unsigned long present_pages
)
4729 unsigned long pages
= spanned_pages
;
4732 * Provide a more accurate estimation if there are holes within
4733 * the zone and SPARSEMEM is in use. If there are holes within the
4734 * zone, each populated memory region may cost us one or two extra
4735 * memmap pages due to alignment because memmap pages for each
4736 * populated regions may not naturally algined on page boundary.
4737 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4739 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4740 IS_ENABLED(CONFIG_SPARSEMEM
))
4741 pages
= present_pages
;
4743 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4747 * Set up the zone data structures:
4748 * - mark all pages reserved
4749 * - mark all memory queues empty
4750 * - clear the memory bitmaps
4752 * NOTE: pgdat should get zeroed by caller.
4754 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4755 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4756 unsigned long *zones_size
, unsigned long *zholes_size
)
4759 int nid
= pgdat
->node_id
;
4760 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4763 pgdat_resize_init(pgdat
);
4764 #ifdef CONFIG_NUMA_BALANCING
4765 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4766 pgdat
->numabalancing_migrate_nr_pages
= 0;
4767 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4769 init_waitqueue_head(&pgdat
->kswapd_wait
);
4770 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4771 pgdat_page_cgroup_init(pgdat
);
4773 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4774 struct zone
*zone
= pgdat
->node_zones
+ j
;
4775 unsigned long size
, realsize
, freesize
, memmap_pages
;
4777 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4778 node_end_pfn
, zones_size
);
4779 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4785 * Adjust freesize so that it accounts for how much memory
4786 * is used by this zone for memmap. This affects the watermark
4787 * and per-cpu initialisations
4789 memmap_pages
= calc_memmap_size(size
, realsize
);
4790 if (freesize
>= memmap_pages
) {
4791 freesize
-= memmap_pages
;
4794 " %s zone: %lu pages used for memmap\n",
4795 zone_names
[j
], memmap_pages
);
4798 " %s zone: %lu pages exceeds freesize %lu\n",
4799 zone_names
[j
], memmap_pages
, freesize
);
4801 /* Account for reserved pages */
4802 if (j
== 0 && freesize
> dma_reserve
) {
4803 freesize
-= dma_reserve
;
4804 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4805 zone_names
[0], dma_reserve
);
4808 if (!is_highmem_idx(j
))
4809 nr_kernel_pages
+= freesize
;
4810 /* Charge for highmem memmap if there are enough kernel pages */
4811 else if (nr_kernel_pages
> memmap_pages
* 2)
4812 nr_kernel_pages
-= memmap_pages
;
4813 nr_all_pages
+= freesize
;
4815 zone
->spanned_pages
= size
;
4816 zone
->present_pages
= realsize
;
4818 * Set an approximate value for lowmem here, it will be adjusted
4819 * when the bootmem allocator frees pages into the buddy system.
4820 * And all highmem pages will be managed by the buddy system.
4822 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4825 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4827 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4829 zone
->name
= zone_names
[j
];
4830 spin_lock_init(&zone
->lock
);
4831 spin_lock_init(&zone
->lru_lock
);
4832 zone_seqlock_init(zone
);
4833 zone
->zone_pgdat
= pgdat
;
4834 zone_pcp_init(zone
);
4836 /* For bootup, initialized properly in watermark setup */
4837 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4839 lruvec_init(&zone
->lruvec
);
4843 set_pageblock_order();
4844 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4845 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4846 size
, MEMMAP_EARLY
);
4848 memmap_init(size
, nid
, j
, zone_start_pfn
);
4849 zone_start_pfn
+= size
;
4853 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4855 /* Skip empty nodes */
4856 if (!pgdat
->node_spanned_pages
)
4859 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4860 /* ia64 gets its own node_mem_map, before this, without bootmem */
4861 if (!pgdat
->node_mem_map
) {
4862 unsigned long size
, start
, end
;
4866 * The zone's endpoints aren't required to be MAX_ORDER
4867 * aligned but the node_mem_map endpoints must be in order
4868 * for the buddy allocator to function correctly.
4870 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4871 end
= pgdat_end_pfn(pgdat
);
4872 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4873 size
= (end
- start
) * sizeof(struct page
);
4874 map
= alloc_remap(pgdat
->node_id
, size
);
4876 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4877 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4879 #ifndef CONFIG_NEED_MULTIPLE_NODES
4881 * With no DISCONTIG, the global mem_map is just set as node 0's
4883 if (pgdat
== NODE_DATA(0)) {
4884 mem_map
= NODE_DATA(0)->node_mem_map
;
4885 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4886 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4887 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4888 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4891 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4894 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4895 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4897 pg_data_t
*pgdat
= NODE_DATA(nid
);
4898 unsigned long start_pfn
= 0;
4899 unsigned long end_pfn
= 0;
4901 /* pg_data_t should be reset to zero when it's allocated */
4902 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4904 pgdat
->node_id
= nid
;
4905 pgdat
->node_start_pfn
= node_start_pfn
;
4906 init_zone_allows_reclaim(nid
);
4907 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4908 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4910 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4911 zones_size
, zholes_size
);
4913 alloc_node_mem_map(pgdat
);
4914 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4915 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4916 nid
, (unsigned long)pgdat
,
4917 (unsigned long)pgdat
->node_mem_map
);
4920 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4921 zones_size
, zholes_size
);
4924 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4926 #if MAX_NUMNODES > 1
4928 * Figure out the number of possible node ids.
4930 void __init
setup_nr_node_ids(void)
4933 unsigned int highest
= 0;
4935 for_each_node_mask(node
, node_possible_map
)
4937 nr_node_ids
= highest
+ 1;
4942 * node_map_pfn_alignment - determine the maximum internode alignment
4944 * This function should be called after node map is populated and sorted.
4945 * It calculates the maximum power of two alignment which can distinguish
4948 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4949 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4950 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4951 * shifted, 1GiB is enough and this function will indicate so.
4953 * This is used to test whether pfn -> nid mapping of the chosen memory
4954 * model has fine enough granularity to avoid incorrect mapping for the
4955 * populated node map.
4957 * Returns the determined alignment in pfn's. 0 if there is no alignment
4958 * requirement (single node).
4960 unsigned long __init
node_map_pfn_alignment(void)
4962 unsigned long accl_mask
= 0, last_end
= 0;
4963 unsigned long start
, end
, mask
;
4967 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4968 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4975 * Start with a mask granular enough to pin-point to the
4976 * start pfn and tick off bits one-by-one until it becomes
4977 * too coarse to separate the current node from the last.
4979 mask
= ~((1 << __ffs(start
)) - 1);
4980 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4983 /* accumulate all internode masks */
4987 /* convert mask to number of pages */
4988 return ~accl_mask
+ 1;
4991 /* Find the lowest pfn for a node */
4992 static unsigned long __init
find_min_pfn_for_node(int nid
)
4994 unsigned long min_pfn
= ULONG_MAX
;
4995 unsigned long start_pfn
;
4998 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4999 min_pfn
= min(min_pfn
, start_pfn
);
5001 if (min_pfn
== ULONG_MAX
) {
5003 "Could not find start_pfn for node %d\n", nid
);
5011 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5013 * It returns the minimum PFN based on information provided via
5014 * add_active_range().
5016 unsigned long __init
find_min_pfn_with_active_regions(void)
5018 return find_min_pfn_for_node(MAX_NUMNODES
);
5022 * early_calculate_totalpages()
5023 * Sum pages in active regions for movable zone.
5024 * Populate N_MEMORY for calculating usable_nodes.
5026 static unsigned long __init
early_calculate_totalpages(void)
5028 unsigned long totalpages
= 0;
5029 unsigned long start_pfn
, end_pfn
;
5032 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5033 unsigned long pages
= end_pfn
- start_pfn
;
5035 totalpages
+= pages
;
5037 node_set_state(nid
, N_MEMORY
);
5043 * Find the PFN the Movable zone begins in each node. Kernel memory
5044 * is spread evenly between nodes as long as the nodes have enough
5045 * memory. When they don't, some nodes will have more kernelcore than
5048 static void __init
find_zone_movable_pfns_for_nodes(void)
5051 unsigned long usable_startpfn
;
5052 unsigned long kernelcore_node
, kernelcore_remaining
;
5053 /* save the state before borrow the nodemask */
5054 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5055 unsigned long totalpages
= early_calculate_totalpages();
5056 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5059 * If movablecore was specified, calculate what size of
5060 * kernelcore that corresponds so that memory usable for
5061 * any allocation type is evenly spread. If both kernelcore
5062 * and movablecore are specified, then the value of kernelcore
5063 * will be used for required_kernelcore if it's greater than
5064 * what movablecore would have allowed.
5066 if (required_movablecore
) {
5067 unsigned long corepages
;
5070 * Round-up so that ZONE_MOVABLE is at least as large as what
5071 * was requested by the user
5073 required_movablecore
=
5074 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5075 corepages
= totalpages
- required_movablecore
;
5077 required_kernelcore
= max(required_kernelcore
, corepages
);
5080 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5081 if (!required_kernelcore
)
5084 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5085 find_usable_zone_for_movable();
5086 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5089 /* Spread kernelcore memory as evenly as possible throughout nodes */
5090 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5091 for_each_node_state(nid
, N_MEMORY
) {
5092 unsigned long start_pfn
, end_pfn
;
5095 * Recalculate kernelcore_node if the division per node
5096 * now exceeds what is necessary to satisfy the requested
5097 * amount of memory for the kernel
5099 if (required_kernelcore
< kernelcore_node
)
5100 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5103 * As the map is walked, we track how much memory is usable
5104 * by the kernel using kernelcore_remaining. When it is
5105 * 0, the rest of the node is usable by ZONE_MOVABLE
5107 kernelcore_remaining
= kernelcore_node
;
5109 /* Go through each range of PFNs within this node */
5110 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5111 unsigned long size_pages
;
5113 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5114 if (start_pfn
>= end_pfn
)
5117 /* Account for what is only usable for kernelcore */
5118 if (start_pfn
< usable_startpfn
) {
5119 unsigned long kernel_pages
;
5120 kernel_pages
= min(end_pfn
, usable_startpfn
)
5123 kernelcore_remaining
-= min(kernel_pages
,
5124 kernelcore_remaining
);
5125 required_kernelcore
-= min(kernel_pages
,
5126 required_kernelcore
);
5128 /* Continue if range is now fully accounted */
5129 if (end_pfn
<= usable_startpfn
) {
5132 * Push zone_movable_pfn to the end so
5133 * that if we have to rebalance
5134 * kernelcore across nodes, we will
5135 * not double account here
5137 zone_movable_pfn
[nid
] = end_pfn
;
5140 start_pfn
= usable_startpfn
;
5144 * The usable PFN range for ZONE_MOVABLE is from
5145 * start_pfn->end_pfn. Calculate size_pages as the
5146 * number of pages used as kernelcore
5148 size_pages
= end_pfn
- start_pfn
;
5149 if (size_pages
> kernelcore_remaining
)
5150 size_pages
= kernelcore_remaining
;
5151 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5154 * Some kernelcore has been met, update counts and
5155 * break if the kernelcore for this node has been
5158 required_kernelcore
-= min(required_kernelcore
,
5160 kernelcore_remaining
-= size_pages
;
5161 if (!kernelcore_remaining
)
5167 * If there is still required_kernelcore, we do another pass with one
5168 * less node in the count. This will push zone_movable_pfn[nid] further
5169 * along on the nodes that still have memory until kernelcore is
5173 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5176 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5177 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5178 zone_movable_pfn
[nid
] =
5179 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5182 /* restore the node_state */
5183 node_states
[N_MEMORY
] = saved_node_state
;
5186 /* Any regular or high memory on that node ? */
5187 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5189 enum zone_type zone_type
;
5191 if (N_MEMORY
== N_NORMAL_MEMORY
)
5194 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5195 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5196 if (zone
->present_pages
) {
5197 node_set_state(nid
, N_HIGH_MEMORY
);
5198 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5199 zone_type
<= ZONE_NORMAL
)
5200 node_set_state(nid
, N_NORMAL_MEMORY
);
5207 * free_area_init_nodes - Initialise all pg_data_t and zone data
5208 * @max_zone_pfn: an array of max PFNs for each zone
5210 * This will call free_area_init_node() for each active node in the system.
5211 * Using the page ranges provided by add_active_range(), the size of each
5212 * zone in each node and their holes is calculated. If the maximum PFN
5213 * between two adjacent zones match, it is assumed that the zone is empty.
5214 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5215 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5216 * starts where the previous one ended. For example, ZONE_DMA32 starts
5217 * at arch_max_dma_pfn.
5219 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5221 unsigned long start_pfn
, end_pfn
;
5224 /* Record where the zone boundaries are */
5225 memset(arch_zone_lowest_possible_pfn
, 0,
5226 sizeof(arch_zone_lowest_possible_pfn
));
5227 memset(arch_zone_highest_possible_pfn
, 0,
5228 sizeof(arch_zone_highest_possible_pfn
));
5229 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5230 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5231 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5232 if (i
== ZONE_MOVABLE
)
5234 arch_zone_lowest_possible_pfn
[i
] =
5235 arch_zone_highest_possible_pfn
[i
-1];
5236 arch_zone_highest_possible_pfn
[i
] =
5237 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5239 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5240 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5242 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5243 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5244 find_zone_movable_pfns_for_nodes();
5246 /* Print out the zone ranges */
5247 printk("Zone ranges:\n");
5248 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5249 if (i
== ZONE_MOVABLE
)
5251 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5252 if (arch_zone_lowest_possible_pfn
[i
] ==
5253 arch_zone_highest_possible_pfn
[i
])
5254 printk(KERN_CONT
"empty\n");
5256 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5257 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5258 (arch_zone_highest_possible_pfn
[i
]
5259 << PAGE_SHIFT
) - 1);
5262 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5263 printk("Movable zone start for each node\n");
5264 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5265 if (zone_movable_pfn
[i
])
5266 printk(" Node %d: %#010lx\n", i
,
5267 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5270 /* Print out the early node map */
5271 printk("Early memory node ranges\n");
5272 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5273 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5274 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5276 /* Initialise every node */
5277 mminit_verify_pageflags_layout();
5278 setup_nr_node_ids();
5279 for_each_online_node(nid
) {
5280 pg_data_t
*pgdat
= NODE_DATA(nid
);
5281 free_area_init_node(nid
, NULL
,
5282 find_min_pfn_for_node(nid
), NULL
);
5284 /* Any memory on that node */
5285 if (pgdat
->node_present_pages
)
5286 node_set_state(nid
, N_MEMORY
);
5287 check_for_memory(pgdat
, nid
);
5291 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5293 unsigned long long coremem
;
5297 coremem
= memparse(p
, &p
);
5298 *core
= coremem
>> PAGE_SHIFT
;
5300 /* Paranoid check that UL is enough for the coremem value */
5301 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5307 * kernelcore=size sets the amount of memory for use for allocations that
5308 * cannot be reclaimed or migrated.
5310 static int __init
cmdline_parse_kernelcore(char *p
)
5312 return cmdline_parse_core(p
, &required_kernelcore
);
5316 * movablecore=size sets the amount of memory for use for allocations that
5317 * can be reclaimed or migrated.
5319 static int __init
cmdline_parse_movablecore(char *p
)
5321 return cmdline_parse_core(p
, &required_movablecore
);
5324 early_param("kernelcore", cmdline_parse_kernelcore
);
5325 early_param("movablecore", cmdline_parse_movablecore
);
5327 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5329 void adjust_managed_page_count(struct page
*page
, long count
)
5331 spin_lock(&managed_page_count_lock
);
5332 page_zone(page
)->managed_pages
+= count
;
5333 totalram_pages
+= count
;
5334 #ifdef CONFIG_HIGHMEM
5335 if (PageHighMem(page
))
5336 totalhigh_pages
+= count
;
5338 spin_unlock(&managed_page_count_lock
);
5340 EXPORT_SYMBOL(adjust_managed_page_count
);
5342 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5345 unsigned long pages
= 0;
5347 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5348 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5349 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5350 if ((unsigned int)poison
<= 0xFF)
5351 memset(pos
, poison
, PAGE_SIZE
);
5352 free_reserved_page(virt_to_page(pos
));
5356 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5357 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5361 EXPORT_SYMBOL(free_reserved_area
);
5363 #ifdef CONFIG_HIGHMEM
5364 void free_highmem_page(struct page
*page
)
5366 __free_reserved_page(page
);
5368 page_zone(page
)->managed_pages
++;
5374 void __init
mem_init_print_info(const char *str
)
5376 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5377 unsigned long init_code_size
, init_data_size
;
5379 physpages
= get_num_physpages();
5380 codesize
= _etext
- _stext
;
5381 datasize
= _edata
- _sdata
;
5382 rosize
= __end_rodata
- __start_rodata
;
5383 bss_size
= __bss_stop
- __bss_start
;
5384 init_data_size
= __init_end
- __init_begin
;
5385 init_code_size
= _einittext
- _sinittext
;
5388 * Detect special cases and adjust section sizes accordingly:
5389 * 1) .init.* may be embedded into .data sections
5390 * 2) .init.text.* may be out of [__init_begin, __init_end],
5391 * please refer to arch/tile/kernel/vmlinux.lds.S.
5392 * 3) .rodata.* may be embedded into .text or .data sections.
5394 #define adj_init_size(start, end, size, pos, adj) \
5396 if (start <= pos && pos < end && size > adj) \
5400 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5401 _sinittext
, init_code_size
);
5402 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5403 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5404 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5405 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5407 #undef adj_init_size
5409 printk("Memory: %luK/%luK available "
5410 "(%luK kernel code, %luK rwdata, %luK rodata, "
5411 "%luK init, %luK bss, %luK reserved"
5412 #ifdef CONFIG_HIGHMEM
5416 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5417 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5418 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5419 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5420 #ifdef CONFIG_HIGHMEM
5421 totalhigh_pages
<< (PAGE_SHIFT
-10),
5423 str
? ", " : "", str
? str
: "");
5427 * set_dma_reserve - set the specified number of pages reserved in the first zone
5428 * @new_dma_reserve: The number of pages to mark reserved
5430 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5431 * In the DMA zone, a significant percentage may be consumed by kernel image
5432 * and other unfreeable allocations which can skew the watermarks badly. This
5433 * function may optionally be used to account for unfreeable pages in the
5434 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5435 * smaller per-cpu batchsize.
5437 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5439 dma_reserve
= new_dma_reserve
;
5442 void __init
free_area_init(unsigned long *zones_size
)
5444 free_area_init_node(0, zones_size
,
5445 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5448 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5449 unsigned long action
, void *hcpu
)
5451 int cpu
= (unsigned long)hcpu
;
5453 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5454 lru_add_drain_cpu(cpu
);
5458 * Spill the event counters of the dead processor
5459 * into the current processors event counters.
5460 * This artificially elevates the count of the current
5463 vm_events_fold_cpu(cpu
);
5466 * Zero the differential counters of the dead processor
5467 * so that the vm statistics are consistent.
5469 * This is only okay since the processor is dead and cannot
5470 * race with what we are doing.
5472 cpu_vm_stats_fold(cpu
);
5477 void __init
page_alloc_init(void)
5479 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5483 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5484 * or min_free_kbytes changes.
5486 static void calculate_totalreserve_pages(void)
5488 struct pglist_data
*pgdat
;
5489 unsigned long reserve_pages
= 0;
5490 enum zone_type i
, j
;
5492 for_each_online_pgdat(pgdat
) {
5493 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5494 struct zone
*zone
= pgdat
->node_zones
+ i
;
5495 unsigned long max
= 0;
5497 /* Find valid and maximum lowmem_reserve in the zone */
5498 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5499 if (zone
->lowmem_reserve
[j
] > max
)
5500 max
= zone
->lowmem_reserve
[j
];
5503 /* we treat the high watermark as reserved pages. */
5504 max
+= high_wmark_pages(zone
);
5506 if (max
> zone
->managed_pages
)
5507 max
= zone
->managed_pages
;
5508 reserve_pages
+= max
;
5510 * Lowmem reserves are not available to
5511 * GFP_HIGHUSER page cache allocations and
5512 * kswapd tries to balance zones to their high
5513 * watermark. As a result, neither should be
5514 * regarded as dirtyable memory, to prevent a
5515 * situation where reclaim has to clean pages
5516 * in order to balance the zones.
5518 zone
->dirty_balance_reserve
= max
;
5521 dirty_balance_reserve
= reserve_pages
;
5522 totalreserve_pages
= reserve_pages
;
5526 * setup_per_zone_lowmem_reserve - called whenever
5527 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5528 * has a correct pages reserved value, so an adequate number of
5529 * pages are left in the zone after a successful __alloc_pages().
5531 static void setup_per_zone_lowmem_reserve(void)
5533 struct pglist_data
*pgdat
;
5534 enum zone_type j
, idx
;
5536 for_each_online_pgdat(pgdat
) {
5537 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5538 struct zone
*zone
= pgdat
->node_zones
+ j
;
5539 unsigned long managed_pages
= zone
->managed_pages
;
5541 zone
->lowmem_reserve
[j
] = 0;
5545 struct zone
*lower_zone
;
5549 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5550 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5552 lower_zone
= pgdat
->node_zones
+ idx
;
5553 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5554 sysctl_lowmem_reserve_ratio
[idx
];
5555 managed_pages
+= lower_zone
->managed_pages
;
5560 /* update totalreserve_pages */
5561 calculate_totalreserve_pages();
5564 static void __setup_per_zone_wmarks(void)
5566 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5567 unsigned long lowmem_pages
= 0;
5569 unsigned long flags
;
5571 /* Calculate total number of !ZONE_HIGHMEM pages */
5572 for_each_zone(zone
) {
5573 if (!is_highmem(zone
))
5574 lowmem_pages
+= zone
->managed_pages
;
5577 for_each_zone(zone
) {
5580 spin_lock_irqsave(&zone
->lock
, flags
);
5581 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5582 do_div(tmp
, lowmem_pages
);
5583 if (is_highmem(zone
)) {
5585 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5586 * need highmem pages, so cap pages_min to a small
5589 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5590 * deltas controls asynch page reclaim, and so should
5591 * not be capped for highmem.
5593 unsigned long min_pages
;
5595 min_pages
= zone
->managed_pages
/ 1024;
5596 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5597 zone
->watermark
[WMARK_MIN
] = min_pages
;
5600 * If it's a lowmem zone, reserve a number of pages
5601 * proportionate to the zone's size.
5603 zone
->watermark
[WMARK_MIN
] = tmp
;
5606 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5607 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5609 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5610 high_wmark_pages(zone
) -
5611 low_wmark_pages(zone
) -
5612 zone_page_state(zone
, NR_ALLOC_BATCH
));
5614 setup_zone_migrate_reserve(zone
);
5615 spin_unlock_irqrestore(&zone
->lock
, flags
);
5618 /* update totalreserve_pages */
5619 calculate_totalreserve_pages();
5623 * setup_per_zone_wmarks - called when min_free_kbytes changes
5624 * or when memory is hot-{added|removed}
5626 * Ensures that the watermark[min,low,high] values for each zone are set
5627 * correctly with respect to min_free_kbytes.
5629 void setup_per_zone_wmarks(void)
5631 mutex_lock(&zonelists_mutex
);
5632 __setup_per_zone_wmarks();
5633 mutex_unlock(&zonelists_mutex
);
5637 * The inactive anon list should be small enough that the VM never has to
5638 * do too much work, but large enough that each inactive page has a chance
5639 * to be referenced again before it is swapped out.
5641 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5642 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5643 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5644 * the anonymous pages are kept on the inactive list.
5647 * memory ratio inactive anon
5648 * -------------------------------------
5657 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5659 unsigned int gb
, ratio
;
5661 /* Zone size in gigabytes */
5662 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5664 ratio
= int_sqrt(10 * gb
);
5668 zone
->inactive_ratio
= ratio
;
5671 static void __meminit
setup_per_zone_inactive_ratio(void)
5676 calculate_zone_inactive_ratio(zone
);
5680 * Initialise min_free_kbytes.
5682 * For small machines we want it small (128k min). For large machines
5683 * we want it large (64MB max). But it is not linear, because network
5684 * bandwidth does not increase linearly with machine size. We use
5686 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5687 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5703 int __meminit
init_per_zone_wmark_min(void)
5705 unsigned long lowmem_kbytes
;
5706 int new_min_free_kbytes
;
5708 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5709 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5711 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5712 min_free_kbytes
= new_min_free_kbytes
;
5713 if (min_free_kbytes
< 128)
5714 min_free_kbytes
= 128;
5715 if (min_free_kbytes
> 65536)
5716 min_free_kbytes
= 65536;
5718 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5719 new_min_free_kbytes
, user_min_free_kbytes
);
5721 setup_per_zone_wmarks();
5722 refresh_zone_stat_thresholds();
5723 setup_per_zone_lowmem_reserve();
5724 setup_per_zone_inactive_ratio();
5727 module_init(init_per_zone_wmark_min
)
5730 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5731 * that we can call two helper functions whenever min_free_kbytes
5734 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5735 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5737 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5739 user_min_free_kbytes
= min_free_kbytes
;
5740 setup_per_zone_wmarks();
5746 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5747 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5752 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5757 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5758 sysctl_min_unmapped_ratio
) / 100;
5762 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5763 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5768 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5773 zone
->min_slab_pages
= (zone
->managed_pages
*
5774 sysctl_min_slab_ratio
) / 100;
5780 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5781 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5782 * whenever sysctl_lowmem_reserve_ratio changes.
5784 * The reserve ratio obviously has absolutely no relation with the
5785 * minimum watermarks. The lowmem reserve ratio can only make sense
5786 * if in function of the boot time zone sizes.
5788 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5789 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5791 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5792 setup_per_zone_lowmem_reserve();
5797 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5798 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5799 * pagelist can have before it gets flushed back to buddy allocator.
5801 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5802 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5805 int old_percpu_pagelist_fraction
;
5808 mutex_lock(&pcp_batch_high_lock
);
5809 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
5811 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5812 if (!write
|| ret
< 0)
5815 /* Sanity checking to avoid pcp imbalance */
5816 if (percpu_pagelist_fraction
&&
5817 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
5818 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
5824 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
5827 for_each_populated_zone(zone
) {
5830 for_each_possible_cpu(cpu
)
5831 pageset_set_high_and_batch(zone
,
5832 per_cpu_ptr(zone
->pageset
, cpu
));
5835 mutex_unlock(&pcp_batch_high_lock
);
5839 int hashdist
= HASHDIST_DEFAULT
;
5842 static int __init
set_hashdist(char *str
)
5846 hashdist
= simple_strtoul(str
, &str
, 0);
5849 __setup("hashdist=", set_hashdist
);
5853 * allocate a large system hash table from bootmem
5854 * - it is assumed that the hash table must contain an exact power-of-2
5855 * quantity of entries
5856 * - limit is the number of hash buckets, not the total allocation size
5858 void *__init
alloc_large_system_hash(const char *tablename
,
5859 unsigned long bucketsize
,
5860 unsigned long numentries
,
5863 unsigned int *_hash_shift
,
5864 unsigned int *_hash_mask
,
5865 unsigned long low_limit
,
5866 unsigned long high_limit
)
5868 unsigned long long max
= high_limit
;
5869 unsigned long log2qty
, size
;
5872 /* allow the kernel cmdline to have a say */
5874 /* round applicable memory size up to nearest megabyte */
5875 numentries
= nr_kernel_pages
;
5877 /* It isn't necessary when PAGE_SIZE >= 1MB */
5878 if (PAGE_SHIFT
< 20)
5879 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
5881 /* limit to 1 bucket per 2^scale bytes of low memory */
5882 if (scale
> PAGE_SHIFT
)
5883 numentries
>>= (scale
- PAGE_SHIFT
);
5885 numentries
<<= (PAGE_SHIFT
- scale
);
5887 /* Make sure we've got at least a 0-order allocation.. */
5888 if (unlikely(flags
& HASH_SMALL
)) {
5889 /* Makes no sense without HASH_EARLY */
5890 WARN_ON(!(flags
& HASH_EARLY
));
5891 if (!(numentries
>> *_hash_shift
)) {
5892 numentries
= 1UL << *_hash_shift
;
5893 BUG_ON(!numentries
);
5895 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5896 numentries
= PAGE_SIZE
/ bucketsize
;
5898 numentries
= roundup_pow_of_two(numentries
);
5900 /* limit allocation size to 1/16 total memory by default */
5902 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5903 do_div(max
, bucketsize
);
5905 max
= min(max
, 0x80000000ULL
);
5907 if (numentries
< low_limit
)
5908 numentries
= low_limit
;
5909 if (numentries
> max
)
5912 log2qty
= ilog2(numentries
);
5915 size
= bucketsize
<< log2qty
;
5916 if (flags
& HASH_EARLY
)
5917 table
= alloc_bootmem_nopanic(size
);
5919 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5922 * If bucketsize is not a power-of-two, we may free
5923 * some pages at the end of hash table which
5924 * alloc_pages_exact() automatically does
5926 if (get_order(size
) < MAX_ORDER
) {
5927 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5928 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5931 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5934 panic("Failed to allocate %s hash table\n", tablename
);
5936 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5939 ilog2(size
) - PAGE_SHIFT
,
5943 *_hash_shift
= log2qty
;
5945 *_hash_mask
= (1 << log2qty
) - 1;
5950 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5951 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5954 #ifdef CONFIG_SPARSEMEM
5955 return __pfn_to_section(pfn
)->pageblock_flags
;
5957 return zone
->pageblock_flags
;
5958 #endif /* CONFIG_SPARSEMEM */
5961 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5963 #ifdef CONFIG_SPARSEMEM
5964 pfn
&= (PAGES_PER_SECTION
-1);
5965 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5967 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
5968 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5969 #endif /* CONFIG_SPARSEMEM */
5973 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5974 * @page: The page within the block of interest
5975 * @start_bitidx: The first bit of interest to retrieve
5976 * @end_bitidx: The last bit of interest
5977 * returns pageblock_bits flags
5979 unsigned long get_pageblock_flags_mask(struct page
*page
,
5980 unsigned long end_bitidx
,
5984 unsigned long *bitmap
;
5985 unsigned long pfn
, bitidx
, word_bitidx
;
5988 zone
= page_zone(page
);
5989 pfn
= page_to_pfn(page
);
5990 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5991 bitidx
= pfn_to_bitidx(zone
, pfn
);
5992 word_bitidx
= bitidx
/ BITS_PER_LONG
;
5993 bitidx
&= (BITS_PER_LONG
-1);
5995 word
= bitmap
[word_bitidx
];
5996 bitidx
+= end_bitidx
;
5997 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6001 * set_pageblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6002 * @page: The page within the block of interest
6003 * @start_bitidx: The first bit of interest
6004 * @end_bitidx: The last bit of interest
6005 * @flags: The flags to set
6007 void set_pageblock_flags_mask(struct page
*page
, unsigned long flags
,
6008 unsigned long end_bitidx
,
6012 unsigned long *bitmap
;
6013 unsigned long pfn
, bitidx
, word_bitidx
;
6014 unsigned long old_word
, word
;
6016 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6018 zone
= page_zone(page
);
6019 pfn
= page_to_pfn(page
);
6020 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6021 bitidx
= pfn_to_bitidx(zone
, pfn
);
6022 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6023 bitidx
&= (BITS_PER_LONG
-1);
6025 VM_BUG_ON(!zone_spans_pfn(zone
, pfn
));
6027 bitidx
+= end_bitidx
;
6028 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6029 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6031 word
= ACCESS_ONCE(bitmap
[word_bitidx
]);
6033 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6034 if (word
== old_word
)
6041 * This function checks whether pageblock includes unmovable pages or not.
6042 * If @count is not zero, it is okay to include less @count unmovable pages
6044 * PageLRU check without isolation or lru_lock could race so that
6045 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6046 * expect this function should be exact.
6048 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6049 bool skip_hwpoisoned_pages
)
6051 unsigned long pfn
, iter
, found
;
6055 * For avoiding noise data, lru_add_drain_all() should be called
6056 * If ZONE_MOVABLE, the zone never contains unmovable pages
6058 if (zone_idx(zone
) == ZONE_MOVABLE
)
6060 mt
= get_pageblock_migratetype(page
);
6061 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6064 pfn
= page_to_pfn(page
);
6065 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6066 unsigned long check
= pfn
+ iter
;
6068 if (!pfn_valid_within(check
))
6071 page
= pfn_to_page(check
);
6074 * Hugepages are not in LRU lists, but they're movable.
6075 * We need not scan over tail pages bacause we don't
6076 * handle each tail page individually in migration.
6078 if (PageHuge(page
)) {
6079 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6084 * We can't use page_count without pin a page
6085 * because another CPU can free compound page.
6086 * This check already skips compound tails of THP
6087 * because their page->_count is zero at all time.
6089 if (!atomic_read(&page
->_count
)) {
6090 if (PageBuddy(page
))
6091 iter
+= (1 << page_order(page
)) - 1;
6096 * The HWPoisoned page may be not in buddy system, and
6097 * page_count() is not 0.
6099 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6105 * If there are RECLAIMABLE pages, we need to check it.
6106 * But now, memory offline itself doesn't call shrink_slab()
6107 * and it still to be fixed.
6110 * If the page is not RAM, page_count()should be 0.
6111 * we don't need more check. This is an _used_ not-movable page.
6113 * The problematic thing here is PG_reserved pages. PG_reserved
6114 * is set to both of a memory hole page and a _used_ kernel
6123 bool is_pageblock_removable_nolock(struct page
*page
)
6129 * We have to be careful here because we are iterating over memory
6130 * sections which are not zone aware so we might end up outside of
6131 * the zone but still within the section.
6132 * We have to take care about the node as well. If the node is offline
6133 * its NODE_DATA will be NULL - see page_zone.
6135 if (!node_online(page_to_nid(page
)))
6138 zone
= page_zone(page
);
6139 pfn
= page_to_pfn(page
);
6140 if (!zone_spans_pfn(zone
, pfn
))
6143 return !has_unmovable_pages(zone
, page
, 0, true);
6148 static unsigned long pfn_max_align_down(unsigned long pfn
)
6150 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6151 pageblock_nr_pages
) - 1);
6154 static unsigned long pfn_max_align_up(unsigned long pfn
)
6156 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6157 pageblock_nr_pages
));
6160 /* [start, end) must belong to a single zone. */
6161 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6162 unsigned long start
, unsigned long end
)
6164 /* This function is based on compact_zone() from compaction.c. */
6165 unsigned long nr_reclaimed
;
6166 unsigned long pfn
= start
;
6167 unsigned int tries
= 0;
6172 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6173 if (fatal_signal_pending(current
)) {
6178 if (list_empty(&cc
->migratepages
)) {
6179 cc
->nr_migratepages
= 0;
6180 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6187 } else if (++tries
== 5) {
6188 ret
= ret
< 0 ? ret
: -EBUSY
;
6192 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6194 cc
->nr_migratepages
-= nr_reclaimed
;
6196 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6197 0, MIGRATE_SYNC
, MR_CMA
);
6200 putback_movable_pages(&cc
->migratepages
);
6207 * alloc_contig_range() -- tries to allocate given range of pages
6208 * @start: start PFN to allocate
6209 * @end: one-past-the-last PFN to allocate
6210 * @migratetype: migratetype of the underlaying pageblocks (either
6211 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6212 * in range must have the same migratetype and it must
6213 * be either of the two.
6215 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6216 * aligned, however it's the caller's responsibility to guarantee that
6217 * we are the only thread that changes migrate type of pageblocks the
6220 * The PFN range must belong to a single zone.
6222 * Returns zero on success or negative error code. On success all
6223 * pages which PFN is in [start, end) are allocated for the caller and
6224 * need to be freed with free_contig_range().
6226 int alloc_contig_range(unsigned long start
, unsigned long end
,
6227 unsigned migratetype
)
6229 unsigned long outer_start
, outer_end
;
6232 struct compact_control cc
= {
6233 .nr_migratepages
= 0,
6235 .zone
= page_zone(pfn_to_page(start
)),
6237 .ignore_skip_hint
= true,
6239 INIT_LIST_HEAD(&cc
.migratepages
);
6242 * What we do here is we mark all pageblocks in range as
6243 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6244 * have different sizes, and due to the way page allocator
6245 * work, we align the range to biggest of the two pages so
6246 * that page allocator won't try to merge buddies from
6247 * different pageblocks and change MIGRATE_ISOLATE to some
6248 * other migration type.
6250 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6251 * migrate the pages from an unaligned range (ie. pages that
6252 * we are interested in). This will put all the pages in
6253 * range back to page allocator as MIGRATE_ISOLATE.
6255 * When this is done, we take the pages in range from page
6256 * allocator removing them from the buddy system. This way
6257 * page allocator will never consider using them.
6259 * This lets us mark the pageblocks back as
6260 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6261 * aligned range but not in the unaligned, original range are
6262 * put back to page allocator so that buddy can use them.
6265 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6266 pfn_max_align_up(end
), migratetype
,
6271 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6276 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6277 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6278 * more, all pages in [start, end) are free in page allocator.
6279 * What we are going to do is to allocate all pages from
6280 * [start, end) (that is remove them from page allocator).
6282 * The only problem is that pages at the beginning and at the
6283 * end of interesting range may be not aligned with pages that
6284 * page allocator holds, ie. they can be part of higher order
6285 * pages. Because of this, we reserve the bigger range and
6286 * once this is done free the pages we are not interested in.
6288 * We don't have to hold zone->lock here because the pages are
6289 * isolated thus they won't get removed from buddy.
6292 lru_add_drain_all();
6296 outer_start
= start
;
6297 while (!PageBuddy(pfn_to_page(outer_start
))) {
6298 if (++order
>= MAX_ORDER
) {
6302 outer_start
&= ~0UL << order
;
6305 /* Make sure the range is really isolated. */
6306 if (test_pages_isolated(outer_start
, end
, false)) {
6307 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6314 /* Grab isolated pages from freelists. */
6315 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6321 /* Free head and tail (if any) */
6322 if (start
!= outer_start
)
6323 free_contig_range(outer_start
, start
- outer_start
);
6324 if (end
!= outer_end
)
6325 free_contig_range(end
, outer_end
- end
);
6328 undo_isolate_page_range(pfn_max_align_down(start
),
6329 pfn_max_align_up(end
), migratetype
);
6333 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6335 unsigned int count
= 0;
6337 for (; nr_pages
--; pfn
++) {
6338 struct page
*page
= pfn_to_page(pfn
);
6340 count
+= page_count(page
) != 1;
6343 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6347 #ifdef CONFIG_MEMORY_HOTPLUG
6349 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6350 * page high values need to be recalulated.
6352 void __meminit
zone_pcp_update(struct zone
*zone
)
6355 mutex_lock(&pcp_batch_high_lock
);
6356 for_each_possible_cpu(cpu
)
6357 pageset_set_high_and_batch(zone
,
6358 per_cpu_ptr(zone
->pageset
, cpu
));
6359 mutex_unlock(&pcp_batch_high_lock
);
6363 void zone_pcp_reset(struct zone
*zone
)
6365 unsigned long flags
;
6367 struct per_cpu_pageset
*pset
;
6369 /* avoid races with drain_pages() */
6370 local_irq_save(flags
);
6371 if (zone
->pageset
!= &boot_pageset
) {
6372 for_each_online_cpu(cpu
) {
6373 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6374 drain_zonestat(zone
, pset
);
6376 free_percpu(zone
->pageset
);
6377 zone
->pageset
= &boot_pageset
;
6379 local_irq_restore(flags
);
6382 #ifdef CONFIG_MEMORY_HOTREMOVE
6384 * All pages in the range must be isolated before calling this.
6387 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6393 unsigned long flags
;
6394 /* find the first valid pfn */
6395 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6400 zone
= page_zone(pfn_to_page(pfn
));
6401 spin_lock_irqsave(&zone
->lock
, flags
);
6403 while (pfn
< end_pfn
) {
6404 if (!pfn_valid(pfn
)) {
6408 page
= pfn_to_page(pfn
);
6410 * The HWPoisoned page may be not in buddy system, and
6411 * page_count() is not 0.
6413 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6415 SetPageReserved(page
);
6419 BUG_ON(page_count(page
));
6420 BUG_ON(!PageBuddy(page
));
6421 order
= page_order(page
);
6422 #ifdef CONFIG_DEBUG_VM
6423 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6424 pfn
, 1 << order
, end_pfn
);
6426 list_del(&page
->lru
);
6427 rmv_page_order(page
);
6428 zone
->free_area
[order
].nr_free
--;
6429 for (i
= 0; i
< (1 << order
); i
++)
6430 SetPageReserved((page
+i
));
6431 pfn
+= (1 << order
);
6433 spin_unlock_irqrestore(&zone
->lock
, flags
);
6437 #ifdef CONFIG_MEMORY_FAILURE
6438 bool is_free_buddy_page(struct page
*page
)
6440 struct zone
*zone
= page_zone(page
);
6441 unsigned long pfn
= page_to_pfn(page
);
6442 unsigned long flags
;
6445 spin_lock_irqsave(&zone
->lock
, flags
);
6446 for (order
= 0; order
< MAX_ORDER
; order
++) {
6447 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6449 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6452 spin_unlock_irqrestore(&zone
->lock
, flags
);
6454 return order
< MAX_ORDER
;
6458 static const struct trace_print_flags pageflag_names
[] = {
6459 {1UL << PG_locked
, "locked" },
6460 {1UL << PG_error
, "error" },
6461 {1UL << PG_referenced
, "referenced" },
6462 {1UL << PG_uptodate
, "uptodate" },
6463 {1UL << PG_dirty
, "dirty" },
6464 {1UL << PG_lru
, "lru" },
6465 {1UL << PG_active
, "active" },
6466 {1UL << PG_slab
, "slab" },
6467 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6468 {1UL << PG_arch_1
, "arch_1" },
6469 {1UL << PG_reserved
, "reserved" },
6470 {1UL << PG_private
, "private" },
6471 {1UL << PG_private_2
, "private_2" },
6472 {1UL << PG_writeback
, "writeback" },
6473 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6474 {1UL << PG_head
, "head" },
6475 {1UL << PG_tail
, "tail" },
6477 {1UL << PG_compound
, "compound" },
6479 {1UL << PG_swapcache
, "swapcache" },
6480 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6481 {1UL << PG_reclaim
, "reclaim" },
6482 {1UL << PG_swapbacked
, "swapbacked" },
6483 {1UL << PG_unevictable
, "unevictable" },
6485 {1UL << PG_mlocked
, "mlocked" },
6487 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6488 {1UL << PG_uncached
, "uncached" },
6490 #ifdef CONFIG_MEMORY_FAILURE
6491 {1UL << PG_hwpoison
, "hwpoison" },
6493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6494 {1UL << PG_compound_lock
, "compound_lock" },
6498 static void dump_page_flags(unsigned long flags
)
6500 const char *delim
= "";
6504 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6506 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6508 /* remove zone id */
6509 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6511 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6513 mask
= pageflag_names
[i
].mask
;
6514 if ((flags
& mask
) != mask
)
6518 printk("%s%s", delim
, pageflag_names
[i
].name
);
6522 /* check for left over flags */
6524 printk("%s%#lx", delim
, flags
);
6529 void dump_page(struct page
*page
)
6532 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6533 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6534 page
->mapping
, page
->index
);
6535 dump_page_flags(page
->flags
);
6536 mem_cgroup_print_bad_page(page
);