2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
56 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
57 static unsigned long page_cache4v_flag
;
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
85 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
87 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
89 static unsigned long cpu_pgsz_mask
;
91 #define MAX_BANKS 1024
93 static struct linux_prom64_registers pavail
[MAX_BANKS
];
94 static int pavail_ents
;
96 u64 numa_latency
[MAX_NUMNODES
][MAX_NUMNODES
];
98 static int cmp_p64(const void *a
, const void *b
)
100 const struct linux_prom64_registers
*x
= a
, *y
= b
;
102 if (x
->phys_addr
> y
->phys_addr
)
104 if (x
->phys_addr
< y
->phys_addr
)
109 static void __init
read_obp_memory(const char *property
,
110 struct linux_prom64_registers
*regs
,
113 phandle node
= prom_finddevice("/memory");
114 int prop_size
= prom_getproplen(node
, property
);
117 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
118 if (ents
> MAX_BANKS
) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property
, MAX_BANKS
);
125 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
127 prom_printf("Couldn't get %s property from /memory.\n",
132 /* Sanitize what we got from the firmware, by page aligning
135 for (i
= 0; i
< ents
; i
++) {
136 unsigned long base
, size
;
138 base
= regs
[i
].phys_addr
;
139 size
= regs
[i
].reg_size
;
142 if (base
& ~PAGE_MASK
) {
143 unsigned long new_base
= PAGE_ALIGN(base
);
145 size
-= new_base
- base
;
146 if ((long) size
< 0L)
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
155 memmove(®s
[i
], ®s
[i
+ 1],
156 (ents
- i
- 1) * sizeof(regs
[0]));
161 regs
[i
].phys_addr
= base
;
162 regs
[i
].reg_size
= size
;
167 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly
;
173 unsigned long kern_size __read_mostly
;
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64
;
177 extern unsigned int sparc_ramdisk_image
;
178 extern unsigned int sparc_ramdisk_size
;
180 struct page
*mem_map_zero __read_mostly
;
181 EXPORT_SYMBOL(mem_map_zero
);
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
185 unsigned long sparc64_kern_pri_context __read_mostly
;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
187 unsigned long sparc64_kern_sec_context __read_mostly
;
189 int num_kernel_image_mappings
;
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
194 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
198 inline void flush_dcache_page_impl(struct page
*page
)
200 BUG_ON(tlb_type
== hypervisor
);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes
);
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page
),
207 ((tlb_type
== spitfire
) &&
208 page_mapping(page
) != NULL
));
210 if (page_mapping(page
) != NULL
&&
211 tlb_type
== spitfire
)
212 __flush_icache_page(__pa(page_address(page
)));
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
224 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
226 unsigned long mask
= this_cpu
;
227 unsigned long non_cpu_bits
;
229 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
230 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
232 __asm__
__volatile__("1:\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
241 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
245 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
247 unsigned long mask
= (1UL << PG_dcache_dirty
);
249 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
263 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
264 "i" (PG_dcache_cpu_mask
),
265 "i" (PG_dcache_cpu_shift
)
269 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
271 unsigned long tsb_addr
= (unsigned long) ent
;
273 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
274 tsb_addr
= __pa(tsb_addr
);
276 __tsb_insert(tsb_addr
, tag
, pte
);
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
281 static void flush_dcache(unsigned long pfn
)
285 page
= pfn_to_page(pfn
);
287 unsigned long pg_flags
;
289 pg_flags
= page
->flags
;
290 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
291 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
293 int this_cpu
= get_cpu();
295 /* This is just to optimize away some function calls
299 flush_dcache_page_impl(page
);
301 smp_flush_dcache_page_impl(page
, cpu
);
303 clear_dcache_dirty_cpu(page
, cpu
);
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
312 unsigned long tsb_hash_shift
, unsigned long address
,
315 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
321 tsb
+= ((address
>> tsb_hash_shift
) &
322 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
323 tag
= (address
>> 22UL);
324 tsb_insert(tsb
, tag
, tte
);
327 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
329 struct mm_struct
*mm
;
333 if (tlb_type
!= hypervisor
) {
334 unsigned long pfn
= pte_pfn(pte
);
342 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
343 if (!pte_accessible(mm
, pte
))
346 spin_lock_irqsave(&mm
->context
.lock
, flags
);
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349 if ((mm
->context
.hugetlb_pte_count
|| mm
->context
.thp_pte_count
) &&
350 is_hugetlb_pte(pte
)) {
351 /* We are fabricating 8MB pages using 4MB real hw pages. */
352 pte_val(pte
) |= (address
& (1UL << REAL_HPAGE_SHIFT
));
353 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
354 address
, pte_val(pte
));
357 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
358 address
, pte_val(pte
));
360 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
363 void flush_dcache_page(struct page
*page
)
365 struct address_space
*mapping
;
368 if (tlb_type
== hypervisor
)
371 /* Do not bother with the expensive D-cache flush if it
372 * is merely the zero page. The 'bigcore' testcase in GDB
373 * causes this case to run millions of times.
375 if (page
== ZERO_PAGE(0))
378 this_cpu
= get_cpu();
380 mapping
= page_mapping(page
);
381 if (mapping
&& !mapping_mapped(mapping
)) {
382 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
384 int dirty_cpu
= dcache_dirty_cpu(page
);
386 if (dirty_cpu
== this_cpu
)
388 smp_flush_dcache_page_impl(page
, dirty_cpu
);
390 set_dcache_dirty(page
, this_cpu
);
392 /* We could delay the flush for the !page_mapping
393 * case too. But that case is for exec env/arg
394 * pages and those are %99 certainly going to get
395 * faulted into the tlb (and thus flushed) anyways.
397 flush_dcache_page_impl(page
);
403 EXPORT_SYMBOL(flush_dcache_page
);
405 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
407 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
408 if (tlb_type
== spitfire
) {
411 /* This code only runs on Spitfire cpus so this is
412 * why we can assume _PAGE_PADDR_4U.
414 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
415 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
417 if (kaddr
>= PAGE_OFFSET
)
418 paddr
= kaddr
& mask
;
420 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
421 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
422 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
423 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
425 paddr
= pte_val(*ptep
) & mask
;
427 __flush_icache_page(paddr
);
431 EXPORT_SYMBOL(flush_icache_range
);
433 void mmu_info(struct seq_file
*m
)
435 static const char *pgsz_strings
[] = {
436 "8K", "64K", "512K", "4MB", "32MB",
437 "256MB", "2GB", "16GB",
441 if (tlb_type
== cheetah
)
442 seq_printf(m
, "MMU Type\t: Cheetah\n");
443 else if (tlb_type
== cheetah_plus
)
444 seq_printf(m
, "MMU Type\t: Cheetah+\n");
445 else if (tlb_type
== spitfire
)
446 seq_printf(m
, "MMU Type\t: Spitfire\n");
447 else if (tlb_type
== hypervisor
)
448 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
450 seq_printf(m
, "MMU Type\t: ???\n");
452 seq_printf(m
, "MMU PGSZs\t: ");
454 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
455 if (cpu_pgsz_mask
& (1UL << i
)) {
456 seq_printf(m
, "%s%s",
457 printed
? "," : "", pgsz_strings
[i
]);
463 #ifdef CONFIG_DEBUG_DCFLUSH
464 seq_printf(m
, "DCPageFlushes\t: %d\n",
465 atomic_read(&dcpage_flushes
));
467 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
468 atomic_read(&dcpage_flushes_xcall
));
469 #endif /* CONFIG_SMP */
470 #endif /* CONFIG_DEBUG_DCFLUSH */
473 struct linux_prom_translation prom_trans
[512] __read_mostly
;
474 unsigned int prom_trans_ents __read_mostly
;
476 unsigned long kern_locked_tte_data
;
478 /* The obp translations are saved based on 8k pagesize, since obp can
479 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
480 * HI_OBP_ADDRESS range are handled in ktlb.S.
482 static inline int in_obp_range(unsigned long vaddr
)
484 return (vaddr
>= LOW_OBP_ADDRESS
&&
485 vaddr
< HI_OBP_ADDRESS
);
488 static int cmp_ptrans(const void *a
, const void *b
)
490 const struct linux_prom_translation
*x
= a
, *y
= b
;
492 if (x
->virt
> y
->virt
)
494 if (x
->virt
< y
->virt
)
499 /* Read OBP translations property into 'prom_trans[]'. */
500 static void __init
read_obp_translations(void)
502 int n
, node
, ents
, first
, last
, i
;
504 node
= prom_finddevice("/virtual-memory");
505 n
= prom_getproplen(node
, "translations");
506 if (unlikely(n
== 0 || n
== -1)) {
507 prom_printf("prom_mappings: Couldn't get size.\n");
510 if (unlikely(n
> sizeof(prom_trans
))) {
511 prom_printf("prom_mappings: Size %d is too big.\n", n
);
515 if ((n
= prom_getproperty(node
, "translations",
516 (char *)&prom_trans
[0],
517 sizeof(prom_trans
))) == -1) {
518 prom_printf("prom_mappings: Couldn't get property.\n");
522 n
= n
/ sizeof(struct linux_prom_translation
);
526 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
529 /* Now kick out all the non-OBP entries. */
530 for (i
= 0; i
< ents
; i
++) {
531 if (in_obp_range(prom_trans
[i
].virt
))
535 for (; i
< ents
; i
++) {
536 if (!in_obp_range(prom_trans
[i
].virt
))
541 for (i
= 0; i
< (last
- first
); i
++) {
542 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
543 struct linux_prom_translation
*dest
= &prom_trans
[i
];
547 for (; i
< ents
; i
++) {
548 struct linux_prom_translation
*dest
= &prom_trans
[i
];
549 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
552 prom_trans_ents
= last
- first
;
554 if (tlb_type
== spitfire
) {
555 /* Clear diag TTE bits. */
556 for (i
= 0; i
< prom_trans_ents
; i
++)
557 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
560 /* Force execute bit on. */
561 for (i
= 0; i
< prom_trans_ents
; i
++)
562 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
563 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
566 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
570 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
573 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
574 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
579 static unsigned long kern_large_tte(unsigned long paddr
);
581 static void __init
remap_kernel(void)
583 unsigned long phys_page
, tte_vaddr
, tte_data
;
584 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
586 tte_vaddr
= (unsigned long) KERNBASE
;
587 phys_page
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
588 tte_data
= kern_large_tte(phys_page
);
590 kern_locked_tte_data
= tte_data
;
592 /* Now lock us into the TLBs via Hypervisor or OBP. */
593 if (tlb_type
== hypervisor
) {
594 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
595 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
596 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
597 tte_vaddr
+= 0x400000;
598 tte_data
+= 0x400000;
601 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
602 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
603 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
604 tte_vaddr
+= 0x400000;
605 tte_data
+= 0x400000;
607 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
609 if (tlb_type
== cheetah_plus
) {
610 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
611 CTX_CHEETAH_PLUS_NUC
);
612 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
613 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
618 static void __init
inherit_prom_mappings(void)
620 /* Now fixup OBP's idea about where we really are mapped. */
621 printk("Remapping the kernel... ");
626 void prom_world(int enter
)
631 __asm__
__volatile__("flushw");
634 void __flush_dcache_range(unsigned long start
, unsigned long end
)
638 if (tlb_type
== spitfire
) {
641 for (va
= start
; va
< end
; va
+= 32) {
642 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
646 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
649 for (va
= start
; va
< end
; va
+= 32)
650 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
654 "i" (ASI_DCACHE_INVALIDATE
));
657 EXPORT_SYMBOL(__flush_dcache_range
);
659 /* get_new_mmu_context() uses "cache + 1". */
660 DEFINE_SPINLOCK(ctx_alloc_lock
);
661 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
662 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
663 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
664 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
666 /* Caller does TLB context flushing on local CPU if necessary.
667 * The caller also ensures that CTX_VALID(mm->context) is false.
669 * We must be careful about boundary cases so that we never
670 * let the user have CTX 0 (nucleus) or we ever use a CTX
671 * version of zero (and thus NO_CONTEXT would not be caught
672 * by version mis-match tests in mmu_context.h).
674 * Always invoked with interrupts disabled.
676 void get_new_mmu_context(struct mm_struct
*mm
)
678 unsigned long ctx
, new_ctx
;
679 unsigned long orig_pgsz_bits
;
682 spin_lock(&ctx_alloc_lock
);
683 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
684 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
685 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
687 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
688 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
689 if (new_ctx
>= ctx
) {
691 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
694 new_ctx
= CTX_FIRST_VERSION
;
696 /* Don't call memset, for 16 entries that's just
699 mmu_context_bmap
[0] = 3;
700 mmu_context_bmap
[1] = 0;
701 mmu_context_bmap
[2] = 0;
702 mmu_context_bmap
[3] = 0;
703 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
704 mmu_context_bmap
[i
+ 0] = 0;
705 mmu_context_bmap
[i
+ 1] = 0;
706 mmu_context_bmap
[i
+ 2] = 0;
707 mmu_context_bmap
[i
+ 3] = 0;
713 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
714 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
716 tlb_context_cache
= new_ctx
;
717 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
718 spin_unlock(&ctx_alloc_lock
);
720 if (unlikely(new_version
))
721 smp_new_mmu_context_version();
724 static int numa_enabled
= 1;
725 static int numa_debug
;
727 static int __init
early_numa(char *p
)
732 if (strstr(p
, "off"))
735 if (strstr(p
, "debug"))
740 early_param("numa", early_numa
);
742 #define numadbg(f, a...) \
743 do { if (numa_debug) \
744 printk(KERN_INFO f, ## a); \
747 static void __init
find_ramdisk(unsigned long phys_base
)
749 #ifdef CONFIG_BLK_DEV_INITRD
750 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
751 unsigned long ramdisk_image
;
753 /* Older versions of the bootloader only supported a
754 * 32-bit physical address for the ramdisk image
755 * location, stored at sparc_ramdisk_image. Newer
756 * SILO versions set sparc_ramdisk_image to zero and
757 * provide a full 64-bit physical address at
758 * sparc_ramdisk_image64.
760 ramdisk_image
= sparc_ramdisk_image
;
762 ramdisk_image
= sparc_ramdisk_image64
;
764 /* Another bootloader quirk. The bootloader normalizes
765 * the physical address to KERNBASE, so we have to
766 * factor that back out and add in the lowest valid
767 * physical page address to get the true physical address.
769 ramdisk_image
-= KERNBASE
;
770 ramdisk_image
+= phys_base
;
772 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
773 ramdisk_image
, sparc_ramdisk_size
);
775 initrd_start
= ramdisk_image
;
776 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
778 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
780 initrd_start
+= PAGE_OFFSET
;
781 initrd_end
+= PAGE_OFFSET
;
786 struct node_mem_mask
{
790 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
791 static int num_node_masks
;
793 #ifdef CONFIG_NEED_MULTIPLE_NODES
795 int numa_cpu_lookup_table
[NR_CPUS
];
796 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
798 struct mdesc_mblock
{
801 u64 offset
; /* RA-to-PA */
803 static struct mdesc_mblock
*mblocks
;
804 static int num_mblocks
;
806 static unsigned long ra_to_pa(unsigned long addr
)
810 for (i
= 0; i
< num_mblocks
; i
++) {
811 struct mdesc_mblock
*m
= &mblocks
[i
];
813 if (addr
>= m
->base
&&
814 addr
< (m
->base
+ m
->size
)) {
822 static int find_node(unsigned long addr
)
826 addr
= ra_to_pa(addr
);
827 for (i
= 0; i
< num_node_masks
; i
++) {
828 struct node_mem_mask
*p
= &node_masks
[i
];
830 if ((addr
& p
->mask
) == p
->val
)
833 /* The following condition has been observed on LDOM guests.*/
834 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
835 " rule. Some physical memory will be owned by node 0.");
839 static u64
memblock_nid_range(u64 start
, u64 end
, int *nid
)
841 *nid
= find_node(start
);
843 while (start
< end
) {
844 int n
= find_node(start
);
858 /* This must be invoked after performing all of the necessary
859 * memblock_set_node() calls for 'nid'. We need to be able to get
860 * correct data from get_pfn_range_for_nid().
862 static void __init
allocate_node_data(int nid
)
864 struct pglist_data
*p
;
865 unsigned long start_pfn
, end_pfn
;
866 #ifdef CONFIG_NEED_MULTIPLE_NODES
869 paddr
= memblock_alloc_try_nid(sizeof(struct pglist_data
), SMP_CACHE_BYTES
, nid
);
871 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
874 NODE_DATA(nid
) = __va(paddr
);
875 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
877 NODE_DATA(nid
)->node_id
= nid
;
882 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
883 p
->node_start_pfn
= start_pfn
;
884 p
->node_spanned_pages
= end_pfn
- start_pfn
;
887 static void init_node_masks_nonnuma(void)
889 #ifdef CONFIG_NEED_MULTIPLE_NODES
893 numadbg("Initializing tables for non-numa.\n");
895 node_masks
[0].mask
= node_masks
[0].val
= 0;
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
899 for (i
= 0; i
< NR_CPUS
; i
++)
900 numa_cpu_lookup_table
[i
] = 0;
902 cpumask_setall(&numa_cpumask_lookup_table
[0]);
906 #ifdef CONFIG_NEED_MULTIPLE_NODES
907 struct pglist_data
*node_data
[MAX_NUMNODES
];
909 EXPORT_SYMBOL(numa_cpu_lookup_table
);
910 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
911 EXPORT_SYMBOL(node_data
);
913 struct mdesc_mlgroup
{
919 static struct mdesc_mlgroup
*mlgroups
;
920 static int num_mlgroups
;
922 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
927 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
928 u64 target
= mdesc_arc_target(md
, arc
);
931 val
= mdesc_get_property(md
, target
,
933 if (val
&& *val
== cfg_handle
)
939 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
942 u64 arc
, candidate
, best_latency
= ~(u64
)0;
944 candidate
= MDESC_NODE_NULL
;
945 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
946 u64 target
= mdesc_arc_target(md
, arc
);
947 const char *name
= mdesc_node_name(md
, target
);
950 if (strcmp(name
, "pio-latency-group"))
953 val
= mdesc_get_property(md
, target
, "latency", NULL
);
957 if (*val
< best_latency
) {
963 if (candidate
== MDESC_NODE_NULL
)
966 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
969 int of_node_to_nid(struct device_node
*dp
)
971 const struct linux_prom64_registers
*regs
;
972 struct mdesc_handle
*md
;
977 /* This is the right thing to do on currently supported
978 * SUN4U NUMA platforms as well, as the PCI controller does
979 * not sit behind any particular memory controller.
984 regs
= of_get_property(dp
, "reg", NULL
);
988 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
994 mdesc_for_each_node_by_name(md
, grp
, "group") {
995 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1007 static void __init
add_node_ranges(void)
1009 struct memblock_region
*reg
;
1011 for_each_memblock(memory
, reg
) {
1012 unsigned long size
= reg
->size
;
1013 unsigned long start
, end
;
1017 while (start
< end
) {
1018 unsigned long this_end
;
1021 this_end
= memblock_nid_range(start
, end
, &nid
);
1023 numadbg("Setting memblock NUMA node nid[%d] "
1024 "start[%lx] end[%lx]\n",
1025 nid
, start
, this_end
);
1027 memblock_set_node(start
, this_end
- start
,
1028 &memblock
.memory
, nid
);
1034 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1036 unsigned long paddr
;
1040 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1045 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mlgroup
),
1050 mlgroups
= __va(paddr
);
1051 num_mlgroups
= count
;
1054 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1055 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1060 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1062 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1064 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1067 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1068 "match[%llx] mask[%llx]\n",
1069 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1075 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1077 unsigned long paddr
;
1081 mdesc_for_each_node_by_name(md
, node
, "mblock")
1086 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mblock
),
1091 mblocks
= __va(paddr
);
1092 num_mblocks
= count
;
1095 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1096 struct mdesc_mblock
*m
= &mblocks
[count
++];
1099 val
= mdesc_get_property(md
, node
, "base", NULL
);
1101 val
= mdesc_get_property(md
, node
, "size", NULL
);
1103 val
= mdesc_get_property(md
, node
,
1104 "address-congruence-offset", NULL
);
1106 /* The address-congruence-offset property is optional.
1107 * Explicity zero it be identifty this.
1114 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1115 count
- 1, m
->base
, m
->size
, m
->offset
);
1121 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1122 u64 grp
, cpumask_t
*mask
)
1126 cpumask_clear(mask
);
1128 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1129 u64 target
= mdesc_arc_target(md
, arc
);
1130 const char *name
= mdesc_node_name(md
, target
);
1133 if (strcmp(name
, "cpu"))
1135 id
= mdesc_get_property(md
, target
, "id", NULL
);
1136 if (*id
< nr_cpu_ids
)
1137 cpumask_set_cpu(*id
, mask
);
1141 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1145 for (i
= 0; i
< num_mlgroups
; i
++) {
1146 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1147 if (m
->node
== node
)
1153 int __node_distance(int from
, int to
)
1155 if ((from
>= MAX_NUMNODES
) || (to
>= MAX_NUMNODES
)) {
1156 pr_warn("Returning default NUMA distance value for %d->%d\n",
1158 return (from
== to
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1160 return numa_latency
[from
][to
];
1163 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup
*grp
)
1167 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1168 struct node_mem_mask
*n
= &node_masks
[i
];
1170 if ((grp
->mask
== n
->mask
) && (grp
->match
== n
->val
))
1176 static void find_numa_latencies_for_group(struct mdesc_handle
*md
, u64 grp
,
1181 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1183 u64 target
= mdesc_arc_target(md
, arc
);
1184 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1188 tnode
= find_best_numa_node_for_mlgroup(m
);
1189 if (tnode
== MAX_NUMNODES
)
1191 numa_latency
[index
][tnode
] = m
->latency
;
1195 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1198 struct mdesc_mlgroup
*candidate
= NULL
;
1199 u64 arc
, best_latency
= ~(u64
)0;
1200 struct node_mem_mask
*n
;
1202 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1203 u64 target
= mdesc_arc_target(md
, arc
);
1204 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1207 if (m
->latency
< best_latency
) {
1209 best_latency
= m
->latency
;
1215 if (num_node_masks
!= index
) {
1216 printk(KERN_ERR
"Inconsistent NUMA state, "
1217 "index[%d] != num_node_masks[%d]\n",
1218 index
, num_node_masks
);
1222 n
= &node_masks
[num_node_masks
++];
1224 n
->mask
= candidate
->mask
;
1225 n
->val
= candidate
->match
;
1227 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1228 index
, n
->mask
, n
->val
, candidate
->latency
);
1233 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1239 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1241 for_each_cpu(cpu
, &mask
)
1242 numa_cpu_lookup_table
[cpu
] = index
;
1243 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1246 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1247 for_each_cpu(cpu
, &mask
)
1252 return numa_attach_mlgroup(md
, grp
, index
);
1255 static int __init
numa_parse_mdesc(void)
1257 struct mdesc_handle
*md
= mdesc_grab();
1258 int i
, j
, err
, count
;
1261 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1262 if (node
== MDESC_NODE_NULL
) {
1267 err
= grab_mblocks(md
);
1271 err
= grab_mlgroups(md
);
1276 mdesc_for_each_node_by_name(md
, node
, "group") {
1277 err
= numa_parse_mdesc_group(md
, node
, count
);
1284 mdesc_for_each_node_by_name(md
, node
, "group") {
1285 find_numa_latencies_for_group(md
, node
, count
);
1289 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1290 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1291 u64 self_latency
= numa_latency
[i
][i
];
1293 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
1294 numa_latency
[i
][j
] =
1295 (numa_latency
[i
][j
] * LOCAL_DISTANCE
) /
1302 for (i
= 0; i
< num_node_masks
; i
++) {
1303 allocate_node_data(i
);
1313 static int __init
numa_parse_jbus(void)
1315 unsigned long cpu
, index
;
1317 /* NUMA node id is encoded in bits 36 and higher, and there is
1318 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1321 for_each_present_cpu(cpu
) {
1322 numa_cpu_lookup_table
[cpu
] = index
;
1323 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1324 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1325 node_masks
[index
].val
= cpu
<< 36UL;
1329 num_node_masks
= index
;
1333 for (index
= 0; index
< num_node_masks
; index
++) {
1334 allocate_node_data(index
);
1335 node_set_online(index
);
1341 static int __init
numa_parse_sun4u(void)
1343 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1346 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1347 if ((ver
>> 32UL) == __JALAPENO_ID
||
1348 (ver
>> 32UL) == __SERRANO_ID
)
1349 return numa_parse_jbus();
1354 static int __init
bootmem_init_numa(void)
1359 numadbg("bootmem_init_numa()\n");
1361 /* Some sane defaults for numa latency values */
1362 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1363 for (j
= 0; j
< MAX_NUMNODES
; j
++)
1364 numa_latency
[i
][j
] = (i
== j
) ?
1365 LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1369 if (tlb_type
== hypervisor
)
1370 err
= numa_parse_mdesc();
1372 err
= numa_parse_sun4u();
1379 static int bootmem_init_numa(void)
1386 static void __init
bootmem_init_nonnuma(void)
1388 unsigned long top_of_ram
= memblock_end_of_DRAM();
1389 unsigned long total_ram
= memblock_phys_mem_size();
1391 numadbg("bootmem_init_nonnuma()\n");
1393 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1394 top_of_ram
, total_ram
);
1395 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1396 (top_of_ram
- total_ram
) >> 20);
1398 init_node_masks_nonnuma();
1399 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, &memblock
.memory
, 0);
1400 allocate_node_data(0);
1404 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1406 unsigned long end_pfn
;
1408 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1409 max_pfn
= max_low_pfn
= end_pfn
;
1410 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1412 if (bootmem_init_numa() < 0)
1413 bootmem_init_nonnuma();
1415 /* Dump memblock with node info. */
1416 memblock_dump_all();
1418 /* XXX cpu notifier XXX */
1420 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1426 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1427 static int pall_ents __initdata
;
1429 static unsigned long max_phys_bits
= 40;
1431 bool kern_addr_valid(unsigned long addr
)
1438 if ((long)addr
< 0L) {
1439 unsigned long pa
= __pa(addr
);
1441 if ((addr
>> max_phys_bits
) != 0UL)
1444 return pfn_valid(pa
>> PAGE_SHIFT
);
1447 if (addr
>= (unsigned long) KERNBASE
&&
1448 addr
< (unsigned long)&_end
)
1451 pgd
= pgd_offset_k(addr
);
1455 pud
= pud_offset(pgd
, addr
);
1459 if (pud_large(*pud
))
1460 return pfn_valid(pud_pfn(*pud
));
1462 pmd
= pmd_offset(pud
, addr
);
1466 if (pmd_large(*pmd
))
1467 return pfn_valid(pmd_pfn(*pmd
));
1469 pte
= pte_offset_kernel(pmd
, addr
);
1473 return pfn_valid(pte_pfn(*pte
));
1475 EXPORT_SYMBOL(kern_addr_valid
);
1477 static unsigned long __ref
kernel_map_hugepud(unsigned long vstart
,
1481 const unsigned long mask16gb
= (1UL << 34) - 1UL;
1482 u64 pte_val
= vstart
;
1484 /* Each PUD is 8GB */
1485 if ((vstart
& mask16gb
) ||
1486 (vend
- vstart
<= mask16gb
)) {
1487 pte_val
^= kern_linear_pte_xor
[2];
1488 pud_val(*pud
) = pte_val
| _PAGE_PUD_HUGE
;
1490 return vstart
+ PUD_SIZE
;
1493 pte_val
^= kern_linear_pte_xor
[3];
1494 pte_val
|= _PAGE_PUD_HUGE
;
1496 vend
= vstart
+ mask16gb
+ 1UL;
1497 while (vstart
< vend
) {
1498 pud_val(*pud
) = pte_val
;
1500 pte_val
+= PUD_SIZE
;
1507 static bool kernel_can_map_hugepud(unsigned long vstart
, unsigned long vend
,
1510 if (guard
&& !(vstart
& ~PUD_MASK
) && (vend
- vstart
) >= PUD_SIZE
)
1516 static unsigned long __ref
kernel_map_hugepmd(unsigned long vstart
,
1520 const unsigned long mask256mb
= (1UL << 28) - 1UL;
1521 const unsigned long mask2gb
= (1UL << 31) - 1UL;
1522 u64 pte_val
= vstart
;
1524 /* Each PMD is 8MB */
1525 if ((vstart
& mask256mb
) ||
1526 (vend
- vstart
<= mask256mb
)) {
1527 pte_val
^= kern_linear_pte_xor
[0];
1528 pmd_val(*pmd
) = pte_val
| _PAGE_PMD_HUGE
;
1530 return vstart
+ PMD_SIZE
;
1533 if ((vstart
& mask2gb
) ||
1534 (vend
- vstart
<= mask2gb
)) {
1535 pte_val
^= kern_linear_pte_xor
[1];
1536 pte_val
|= _PAGE_PMD_HUGE
;
1537 vend
= vstart
+ mask256mb
+ 1UL;
1539 pte_val
^= kern_linear_pte_xor
[2];
1540 pte_val
|= _PAGE_PMD_HUGE
;
1541 vend
= vstart
+ mask2gb
+ 1UL;
1544 while (vstart
< vend
) {
1545 pmd_val(*pmd
) = pte_val
;
1547 pte_val
+= PMD_SIZE
;
1555 static bool kernel_can_map_hugepmd(unsigned long vstart
, unsigned long vend
,
1558 if (guard
&& !(vstart
& ~PMD_MASK
) && (vend
- vstart
) >= PMD_SIZE
)
1564 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1565 unsigned long pend
, pgprot_t prot
,
1568 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1569 unsigned long vend
= PAGE_OFFSET
+ pend
;
1570 unsigned long alloc_bytes
= 0UL;
1572 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1573 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1578 while (vstart
< vend
) {
1579 unsigned long this_end
, paddr
= __pa(vstart
);
1580 pgd_t
*pgd
= pgd_offset_k(vstart
);
1585 if (pgd_none(*pgd
)) {
1588 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1589 alloc_bytes
+= PAGE_SIZE
;
1590 pgd_populate(&init_mm
, pgd
, new);
1592 pud
= pud_offset(pgd
, vstart
);
1593 if (pud_none(*pud
)) {
1596 if (kernel_can_map_hugepud(vstart
, vend
, use_huge
)) {
1597 vstart
= kernel_map_hugepud(vstart
, vend
, pud
);
1600 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1601 alloc_bytes
+= PAGE_SIZE
;
1602 pud_populate(&init_mm
, pud
, new);
1605 pmd
= pmd_offset(pud
, vstart
);
1606 if (pmd_none(*pmd
)) {
1609 if (kernel_can_map_hugepmd(vstart
, vend
, use_huge
)) {
1610 vstart
= kernel_map_hugepmd(vstart
, vend
, pmd
);
1613 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1614 alloc_bytes
+= PAGE_SIZE
;
1615 pmd_populate_kernel(&init_mm
, pmd
, new);
1618 pte
= pte_offset_kernel(pmd
, vstart
);
1619 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1620 if (this_end
> vend
)
1623 while (vstart
< this_end
) {
1624 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1626 vstart
+= PAGE_SIZE
;
1635 static void __init
flush_all_kernel_tsbs(void)
1639 for (i
= 0; i
< KERNEL_TSB_NENTRIES
; i
++) {
1640 struct tsb
*ent
= &swapper_tsb
[i
];
1642 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1644 #ifndef CONFIG_DEBUG_PAGEALLOC
1645 for (i
= 0; i
< KERNEL_TSB4M_NENTRIES
; i
++) {
1646 struct tsb
*ent
= &swapper_4m_tsb
[i
];
1648 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1653 extern unsigned int kvmap_linear_patch
[1];
1655 static void __init
kernel_physical_mapping_init(void)
1657 unsigned long i
, mem_alloced
= 0UL;
1658 bool use_huge
= true;
1660 #ifdef CONFIG_DEBUG_PAGEALLOC
1663 for (i
= 0; i
< pall_ents
; i
++) {
1664 unsigned long phys_start
, phys_end
;
1666 phys_start
= pall
[i
].phys_addr
;
1667 phys_end
= phys_start
+ pall
[i
].reg_size
;
1669 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1670 PAGE_KERNEL
, use_huge
);
1673 printk("Allocated %ld bytes for kernel page tables.\n",
1676 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1677 flushi(&kvmap_linear_patch
[0]);
1679 flush_all_kernel_tsbs();
1684 #ifdef CONFIG_DEBUG_PAGEALLOC
1685 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1687 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1688 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1690 kernel_map_range(phys_start
, phys_end
,
1691 (enable
? PAGE_KERNEL
: __pgprot(0)), false);
1693 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1694 PAGE_OFFSET
+ phys_end
);
1696 /* we should perform an IPI and flush all tlbs,
1697 * but that can deadlock->flush only current cpu.
1699 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1700 PAGE_OFFSET
+ phys_end
);
1704 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1708 for (i
= 0; i
< pavail_ents
; i
++) {
1709 if (pavail
[i
].reg_size
>= size
)
1710 return pavail
[i
].phys_addr
;
1716 unsigned long PAGE_OFFSET
;
1717 EXPORT_SYMBOL(PAGE_OFFSET
);
1719 unsigned long VMALLOC_END
= 0x0000010000000000UL
;
1720 EXPORT_SYMBOL(VMALLOC_END
);
1722 unsigned long sparc64_va_hole_top
= 0xfffff80000000000UL
;
1723 unsigned long sparc64_va_hole_bottom
= 0x0000080000000000UL
;
1725 static void __init
setup_page_offset(void)
1727 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1728 /* Cheetah/Panther support a full 64-bit virtual
1729 * address, so we can use all that our page tables
1732 sparc64_va_hole_top
= 0xfff0000000000000UL
;
1733 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
1736 } else if (tlb_type
== hypervisor
) {
1737 switch (sun4v_chip_type
) {
1738 case SUN4V_CHIP_NIAGARA1
:
1739 case SUN4V_CHIP_NIAGARA2
:
1740 /* T1 and T2 support 48-bit virtual addresses. */
1741 sparc64_va_hole_top
= 0xffff800000000000UL
;
1742 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1746 case SUN4V_CHIP_NIAGARA3
:
1747 /* T3 supports 48-bit virtual addresses. */
1748 sparc64_va_hole_top
= 0xffff800000000000UL
;
1749 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1753 case SUN4V_CHIP_NIAGARA4
:
1754 case SUN4V_CHIP_NIAGARA5
:
1755 case SUN4V_CHIP_SPARC64X
:
1756 case SUN4V_CHIP_SPARC_M6
:
1757 /* T4 and later support 52-bit virtual addresses. */
1758 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1759 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1762 case SUN4V_CHIP_SPARC_M7
:
1763 case SUN4V_CHIP_SPARC_SN
:
1765 /* M7 and later support 52-bit virtual addresses. */
1766 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1767 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1773 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
1774 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1779 PAGE_OFFSET
= sparc64_va_hole_top
;
1780 VMALLOC_END
= ((sparc64_va_hole_bottom
>> 1) +
1781 (sparc64_va_hole_bottom
>> 2));
1783 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1784 PAGE_OFFSET
, max_phys_bits
);
1785 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1786 VMALLOC_START
, VMALLOC_END
);
1787 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1788 VMEMMAP_BASE
, VMEMMAP_BASE
<< 1);
1791 static void __init
tsb_phys_patch(void)
1793 struct tsb_ldquad_phys_patch_entry
*pquad
;
1794 struct tsb_phys_patch_entry
*p
;
1796 pquad
= &__tsb_ldquad_phys_patch
;
1797 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1798 unsigned long addr
= pquad
->addr
;
1800 if (tlb_type
== hypervisor
)
1801 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1803 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1805 __asm__
__volatile__("flush %0"
1812 p
= &__tsb_phys_patch
;
1813 while (p
< &__tsb_phys_patch_end
) {
1814 unsigned long addr
= p
->addr
;
1816 *(unsigned int *) addr
= p
->insn
;
1818 __asm__
__volatile__("flush %0"
1826 /* Don't mark as init, we give this to the Hypervisor. */
1827 #ifndef CONFIG_DEBUG_PAGEALLOC
1828 #define NUM_KTSB_DESCR 2
1830 #define NUM_KTSB_DESCR 1
1832 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1834 /* The swapper TSBs are loaded with a base sequence of:
1836 * sethi %uhi(SYMBOL), REG1
1837 * sethi %hi(SYMBOL), REG2
1838 * or REG1, %ulo(SYMBOL), REG1
1839 * or REG2, %lo(SYMBOL), REG2
1840 * sllx REG1, 32, REG1
1841 * or REG1, REG2, REG1
1843 * When we use physical addressing for the TSB accesses, we patch the
1844 * first four instructions in the above sequence.
1847 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
1849 unsigned long high_bits
, low_bits
;
1851 high_bits
= (pa
>> 32) & 0xffffffff;
1852 low_bits
= (pa
>> 0) & 0xffffffff;
1854 while (start
< end
) {
1855 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
1857 ia
[0] = (ia
[0] & ~0x3fffff) | (high_bits
>> 10);
1858 __asm__
__volatile__("flush %0" : : "r" (ia
));
1860 ia
[1] = (ia
[1] & ~0x3fffff) | (low_bits
>> 10);
1861 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
1863 ia
[2] = (ia
[2] & ~0x1fff) | (high_bits
& 0x3ff);
1864 __asm__
__volatile__("flush %0" : : "r" (ia
+ 2));
1866 ia
[3] = (ia
[3] & ~0x1fff) | (low_bits
& 0x3ff);
1867 __asm__
__volatile__("flush %0" : : "r" (ia
+ 3));
1873 static void ktsb_phys_patch(void)
1875 extern unsigned int __swapper_tsb_phys_patch
;
1876 extern unsigned int __swapper_tsb_phys_patch_end
;
1877 unsigned long ktsb_pa
;
1879 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1880 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
1881 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
1882 #ifndef CONFIG_DEBUG_PAGEALLOC
1884 extern unsigned int __swapper_4m_tsb_phys_patch
;
1885 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
1886 ktsb_pa
= (kern_base
+
1887 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1888 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
1889 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
1894 static void __init
sun4v_ktsb_init(void)
1896 unsigned long ktsb_pa
;
1898 /* First KTSB for PAGE_SIZE mappings. */
1899 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1901 switch (PAGE_SIZE
) {
1904 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1905 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1909 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1910 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1914 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1915 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1918 case 4 * 1024 * 1024:
1919 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1920 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1924 ktsb_descr
[0].assoc
= 1;
1925 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1926 ktsb_descr
[0].ctx_idx
= 0;
1927 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1928 ktsb_descr
[0].resv
= 0;
1930 #ifndef CONFIG_DEBUG_PAGEALLOC
1931 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1932 ktsb_pa
= (kern_base
+
1933 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1935 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1936 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
1937 HV_PGSZ_MASK_256MB
|
1939 HV_PGSZ_MASK_16GB
) &
1941 ktsb_descr
[1].assoc
= 1;
1942 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1943 ktsb_descr
[1].ctx_idx
= 0;
1944 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1945 ktsb_descr
[1].resv
= 0;
1949 void sun4v_ktsb_register(void)
1951 unsigned long pa
, ret
;
1953 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1955 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1957 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1958 "errors with %lx\n", pa
, ret
);
1963 static void __init
sun4u_linear_pte_xor_finalize(void)
1965 #ifndef CONFIG_DEBUG_PAGEALLOC
1966 /* This is where we would add Panther support for
1967 * 32MB and 256MB pages.
1972 static void __init
sun4v_linear_pte_xor_finalize(void)
1974 unsigned long pagecv_flag
;
1976 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1977 * enables MCD error. Do not set bit 9 on M7 processor.
1979 switch (sun4v_chip_type
) {
1980 case SUN4V_CHIP_SPARC_M7
:
1981 case SUN4V_CHIP_SPARC_SN
:
1985 pagecv_flag
= _PAGE_CV_4V
;
1988 #ifndef CONFIG_DEBUG_PAGEALLOC
1989 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
1990 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
1992 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| pagecv_flag
|
1993 _PAGE_P_4V
| _PAGE_W_4V
);
1995 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
1998 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
1999 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
2001 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| pagecv_flag
|
2002 _PAGE_P_4V
| _PAGE_W_4V
);
2004 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
2007 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
2008 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
2010 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| pagecv_flag
|
2011 _PAGE_P_4V
| _PAGE_W_4V
);
2013 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
2018 /* paging_init() sets up the page tables */
2020 static unsigned long last_valid_pfn
;
2022 static void sun4u_pgprot_init(void);
2023 static void sun4v_pgprot_init(void);
2025 static phys_addr_t __init
available_memory(void)
2027 phys_addr_t available
= 0ULL;
2028 phys_addr_t pa_start
, pa_end
;
2031 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &pa_start
,
2033 available
= available
+ (pa_end
- pa_start
);
2038 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2039 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2040 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2041 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2042 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2043 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2045 /* We need to exclude reserved regions. This exclusion will include
2046 * vmlinux and initrd. To be more precise the initrd size could be used to
2047 * compute a new lower limit because it is freed later during initialization.
2049 static void __init
reduce_memory(phys_addr_t limit_ram
)
2051 phys_addr_t avail_ram
= available_memory();
2052 phys_addr_t pa_start
, pa_end
;
2055 if (limit_ram
>= avail_ram
)
2058 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &pa_start
,
2060 phys_addr_t region_size
= pa_end
- pa_start
;
2061 phys_addr_t clip_start
= pa_start
;
2063 avail_ram
= avail_ram
- region_size
;
2064 /* Are we consuming too much? */
2065 if (avail_ram
< limit_ram
) {
2066 phys_addr_t give_back
= limit_ram
- avail_ram
;
2068 region_size
= region_size
- give_back
;
2069 clip_start
= clip_start
+ give_back
;
2072 memblock_remove(clip_start
, region_size
);
2074 if (avail_ram
<= limit_ram
)
2080 void __init
paging_init(void)
2082 unsigned long end_pfn
, shift
, phys_base
;
2083 unsigned long real_end
, i
;
2086 setup_page_offset();
2088 /* These build time checkes make sure that the dcache_dirty_cpu()
2089 * page->flags usage will work.
2091 * When a page gets marked as dcache-dirty, we store the
2092 * cpu number starting at bit 32 in the page->flags. Also,
2093 * functions like clear_dcache_dirty_cpu use the cpu mask
2094 * in 13-bit signed-immediate instruction fields.
2098 * Page flags must not reach into upper 32 bits that are used
2099 * for the cpu number
2101 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
2104 * The bit fields placed in the high range must not reach below
2105 * the 32 bit boundary. Otherwise we cannot place the cpu field
2106 * at the 32 bit boundary.
2108 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
2109 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
2111 BUILD_BUG_ON(NR_CPUS
> 4096);
2113 kern_base
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
2114 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
2116 /* Invalidate both kernel TSBs. */
2117 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
2118 #ifndef CONFIG_DEBUG_PAGEALLOC
2119 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2122 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2123 * bit on M7 processor. This is a conflicting usage of the same
2124 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2125 * Detection error on all pages and this will lead to problems
2126 * later. Kernel does not run with MCD enabled and hence rest
2127 * of the required steps to fully configure memory corruption
2128 * detection are not taken. We need to ensure TTE.mcde is not
2129 * set on M7 processor. Compute the value of cacheability
2130 * flag for use later taking this into consideration.
2132 switch (sun4v_chip_type
) {
2133 case SUN4V_CHIP_SPARC_M7
:
2134 case SUN4V_CHIP_SPARC_SN
:
2135 page_cache4v_flag
= _PAGE_CP_4V
;
2138 page_cache4v_flag
= _PAGE_CACHE_4V
;
2142 if (tlb_type
== hypervisor
)
2143 sun4v_pgprot_init();
2145 sun4u_pgprot_init();
2147 if (tlb_type
== cheetah_plus
||
2148 tlb_type
== hypervisor
) {
2153 if (tlb_type
== hypervisor
)
2154 sun4v_patch_tlb_handlers();
2156 /* Find available physical memory...
2158 * Read it twice in order to work around a bug in openfirmware.
2159 * The call to grab this table itself can cause openfirmware to
2160 * allocate memory, which in turn can take away some space from
2161 * the list of available memory. Reading it twice makes sure
2162 * we really do get the final value.
2164 read_obp_translations();
2165 read_obp_memory("reg", &pall
[0], &pall_ents
);
2166 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2167 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2169 phys_base
= 0xffffffffffffffffUL
;
2170 for (i
= 0; i
< pavail_ents
; i
++) {
2171 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
2172 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
2175 memblock_reserve(kern_base
, kern_size
);
2177 find_ramdisk(phys_base
);
2179 if (cmdline_memory_size
)
2180 reduce_memory(cmdline_memory_size
);
2182 memblock_allow_resize();
2183 memblock_dump_all();
2185 set_bit(0, mmu_context_bmap
);
2187 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
2189 real_end
= (unsigned long)_end
;
2190 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << ILOG2_4MB
);
2191 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2192 num_kernel_image_mappings
);
2194 /* Set kernel pgd to upper alias so physical page computations
2197 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
2199 memset(swapper_pg_dir
, 0, sizeof(swapper_pg_dir
));
2201 inherit_prom_mappings();
2203 /* Ok, we can use our TLB miss and window trap handlers safely. */
2208 prom_build_devicetree();
2209 of_populate_present_mask();
2211 of_fill_in_cpu_data();
2214 if (tlb_type
== hypervisor
) {
2216 mdesc_populate_present_mask(cpu_all_mask
);
2218 mdesc_fill_in_cpu_data(cpu_all_mask
);
2220 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
2222 sun4v_linear_pte_xor_finalize();
2225 sun4v_ktsb_register();
2227 unsigned long impl
, ver
;
2229 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
2230 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
2232 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
2233 impl
= ((ver
>> 32) & 0xffff);
2234 if (impl
== PANTHER_IMPL
)
2235 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
2236 HV_PGSZ_MASK_256MB
);
2238 sun4u_linear_pte_xor_finalize();
2241 /* Flush the TLBs and the 4M TSB so that the updated linear
2242 * pte XOR settings are realized for all mappings.
2245 #ifndef CONFIG_DEBUG_PAGEALLOC
2246 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2250 /* Setup bootmem... */
2251 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2253 /* Once the OF device tree and MDESC have been setup, we know
2254 * the list of possible cpus. Therefore we can allocate the
2257 for_each_possible_cpu(i
) {
2258 node
= cpu_to_node(i
);
2260 softirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
2263 hardirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
2268 kernel_physical_mapping_init();
2271 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2273 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2275 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2277 free_area_init_nodes(max_zone_pfns
);
2280 printk("Booting Linux...\n");
2283 int page_in_phys_avail(unsigned long paddr
)
2289 for (i
= 0; i
< pavail_ents
; i
++) {
2290 unsigned long start
, end
;
2292 start
= pavail
[i
].phys_addr
;
2293 end
= start
+ pavail
[i
].reg_size
;
2295 if (paddr
>= start
&& paddr
< end
)
2298 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2300 #ifdef CONFIG_BLK_DEV_INITRD
2301 if (paddr
>= __pa(initrd_start
) &&
2302 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2309 static void __init
register_page_bootmem_info(void)
2311 #ifdef CONFIG_NEED_MULTIPLE_NODES
2314 for_each_online_node(i
)
2315 if (NODE_DATA(i
)->node_spanned_pages
)
2316 register_page_bootmem_info_node(NODE_DATA(i
));
2319 void __init
mem_init(void)
2321 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2323 register_page_bootmem_info();
2327 * Set up the zero page, mark it reserved, so that page count
2328 * is not manipulated when freeing the page from user ptes.
2330 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2331 if (mem_map_zero
== NULL
) {
2332 prom_printf("paging_init: Cannot alloc zero page.\n");
2335 mark_page_reserved(mem_map_zero
);
2337 mem_init_print_info(NULL
);
2339 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2340 cheetah_ecache_flush_init();
2343 void free_initmem(void)
2345 unsigned long addr
, initend
;
2348 /* If the physical memory maps were trimmed by kernel command
2349 * line options, don't even try freeing this initmem stuff up.
2350 * The kernel image could have been in the trimmed out region
2351 * and if so the freeing below will free invalid page structs.
2353 if (cmdline_memory_size
)
2357 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2359 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2360 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2361 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2365 ((unsigned long) __va(kern_base
)) -
2366 ((unsigned long) KERNBASE
));
2367 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2370 free_reserved_page(virt_to_page(page
));
2374 #ifdef CONFIG_BLK_DEV_INITRD
2375 void free_initrd_mem(unsigned long start
, unsigned long end
)
2377 free_reserved_area((void *)start
, (void *)end
, POISON_FREE_INITMEM
,
2382 pgprot_t PAGE_KERNEL __read_mostly
;
2383 EXPORT_SYMBOL(PAGE_KERNEL
);
2385 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2386 pgprot_t PAGE_COPY __read_mostly
;
2388 pgprot_t PAGE_SHARED __read_mostly
;
2389 EXPORT_SYMBOL(PAGE_SHARED
);
2391 unsigned long pg_iobits __read_mostly
;
2393 unsigned long _PAGE_IE __read_mostly
;
2394 EXPORT_SYMBOL(_PAGE_IE
);
2396 unsigned long _PAGE_E __read_mostly
;
2397 EXPORT_SYMBOL(_PAGE_E
);
2399 unsigned long _PAGE_CACHE __read_mostly
;
2400 EXPORT_SYMBOL(_PAGE_CACHE
);
2402 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2403 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2406 unsigned long pte_base
;
2408 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2409 _PAGE_CP_4U
| _PAGE_CV_4U
|
2410 _PAGE_P_4U
| _PAGE_W_4U
);
2411 if (tlb_type
== hypervisor
)
2412 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2413 page_cache4v_flag
| _PAGE_P_4V
| _PAGE_W_4V
);
2415 pte_base
|= _PAGE_PMD_HUGE
;
2417 vstart
= vstart
& PMD_MASK
;
2418 vend
= ALIGN(vend
, PMD_SIZE
);
2419 for (; vstart
< vend
; vstart
+= PMD_SIZE
) {
2420 pgd_t
*pgd
= pgd_offset_k(vstart
);
2425 if (pgd_none(*pgd
)) {
2426 pud_t
*new = vmemmap_alloc_block(PAGE_SIZE
, node
);
2430 pgd_populate(&init_mm
, pgd
, new);
2433 pud
= pud_offset(pgd
, vstart
);
2434 if (pud_none(*pud
)) {
2435 pmd_t
*new = vmemmap_alloc_block(PAGE_SIZE
, node
);
2439 pud_populate(&init_mm
, pud
, new);
2442 pmd
= pmd_offset(pud
, vstart
);
2444 pte
= pmd_val(*pmd
);
2445 if (!(pte
& _PAGE_VALID
)) {
2446 void *block
= vmemmap_alloc_block(PMD_SIZE
, node
);
2451 pmd_val(*pmd
) = pte_base
| __pa(block
);
2458 void vmemmap_free(unsigned long start
, unsigned long end
)
2461 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2463 static void prot_init_common(unsigned long page_none
,
2464 unsigned long page_shared
,
2465 unsigned long page_copy
,
2466 unsigned long page_readonly
,
2467 unsigned long page_exec_bit
)
2469 PAGE_COPY
= __pgprot(page_copy
);
2470 PAGE_SHARED
= __pgprot(page_shared
);
2472 protection_map
[0x0] = __pgprot(page_none
);
2473 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2474 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2475 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2476 protection_map
[0x4] = __pgprot(page_readonly
);
2477 protection_map
[0x5] = __pgprot(page_readonly
);
2478 protection_map
[0x6] = __pgprot(page_copy
);
2479 protection_map
[0x7] = __pgprot(page_copy
);
2480 protection_map
[0x8] = __pgprot(page_none
);
2481 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2482 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2483 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2484 protection_map
[0xc] = __pgprot(page_readonly
);
2485 protection_map
[0xd] = __pgprot(page_readonly
);
2486 protection_map
[0xe] = __pgprot(page_shared
);
2487 protection_map
[0xf] = __pgprot(page_shared
);
2490 static void __init
sun4u_pgprot_init(void)
2492 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2493 unsigned long page_exec_bit
;
2496 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2497 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2498 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2500 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2501 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2502 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2503 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2505 _PAGE_IE
= _PAGE_IE_4U
;
2506 _PAGE_E
= _PAGE_E_4U
;
2507 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2509 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2510 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2512 #ifdef CONFIG_DEBUG_PAGEALLOC
2513 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2515 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2518 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2519 _PAGE_P_4U
| _PAGE_W_4U
);
2521 for (i
= 1; i
< 4; i
++)
2522 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2524 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2525 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2526 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2529 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2530 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2531 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2532 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2533 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2534 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2535 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2537 page_exec_bit
= _PAGE_EXEC_4U
;
2539 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2543 static void __init
sun4v_pgprot_init(void)
2545 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2546 unsigned long page_exec_bit
;
2549 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2550 page_cache4v_flag
| _PAGE_P_4V
|
2551 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2553 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2555 _PAGE_IE
= _PAGE_IE_4V
;
2556 _PAGE_E
= _PAGE_E_4V
;
2557 _PAGE_CACHE
= page_cache4v_flag
;
2559 #ifdef CONFIG_DEBUG_PAGEALLOC
2560 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2562 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2565 kern_linear_pte_xor
[0] |= (page_cache4v_flag
| _PAGE_P_4V
|
2568 for (i
= 1; i
< 4; i
++)
2569 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2571 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2572 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2574 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2575 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2576 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2577 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2579 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| page_cache4v_flag
;
2580 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2581 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2582 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2583 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2584 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2585 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2587 page_exec_bit
= _PAGE_EXEC_4V
;
2589 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2593 unsigned long pte_sz_bits(unsigned long sz
)
2595 if (tlb_type
== hypervisor
) {
2599 return _PAGE_SZ8K_4V
;
2601 return _PAGE_SZ64K_4V
;
2603 return _PAGE_SZ512K_4V
;
2604 case 4 * 1024 * 1024:
2605 return _PAGE_SZ4MB_4V
;
2611 return _PAGE_SZ8K_4U
;
2613 return _PAGE_SZ64K_4U
;
2615 return _PAGE_SZ512K_4U
;
2616 case 4 * 1024 * 1024:
2617 return _PAGE_SZ4MB_4U
;
2622 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2626 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2627 pte_val(pte
) |= (((unsigned long)space
) << 32);
2628 pte_val(pte
) |= pte_sz_bits(page_size
);
2633 static unsigned long kern_large_tte(unsigned long paddr
)
2637 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2638 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2639 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2640 if (tlb_type
== hypervisor
)
2641 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2642 page_cache4v_flag
| _PAGE_P_4V
|
2643 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2648 /* If not locked, zap it. */
2649 void __flush_tlb_all(void)
2651 unsigned long pstate
;
2654 __asm__
__volatile__("flushw\n\t"
2655 "rdpr %%pstate, %0\n\t"
2656 "wrpr %0, %1, %%pstate"
2659 if (tlb_type
== hypervisor
) {
2660 sun4v_mmu_demap_all();
2661 } else if (tlb_type
== spitfire
) {
2662 for (i
= 0; i
< 64; i
++) {
2663 /* Spitfire Errata #32 workaround */
2664 /* NOTE: Always runs on spitfire, so no
2665 * cheetah+ page size encodings.
2667 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2671 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2673 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2674 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2677 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2678 spitfire_put_dtlb_data(i
, 0x0UL
);
2681 /* Spitfire Errata #32 workaround */
2682 /* NOTE: Always runs on spitfire, so no
2683 * cheetah+ page size encodings.
2685 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2689 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2691 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2692 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2695 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2696 spitfire_put_itlb_data(i
, 0x0UL
);
2699 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2700 cheetah_flush_dtlb_all();
2701 cheetah_flush_itlb_all();
2703 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2707 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
,
2708 unsigned long address
)
2710 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
| __GFP_ZERO
);
2714 pte
= (pte_t
*) page_address(page
);
2719 pgtable_t
pte_alloc_one(struct mm_struct
*mm
,
2720 unsigned long address
)
2722 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
| __GFP_ZERO
);
2725 if (!pgtable_page_ctor(page
)) {
2726 free_hot_cold_page(page
, 0);
2729 return (pte_t
*) page_address(page
);
2732 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2734 free_page((unsigned long)pte
);
2737 static void __pte_free(pgtable_t pte
)
2739 struct page
*page
= virt_to_page(pte
);
2741 pgtable_page_dtor(page
);
2745 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2750 void pgtable_free(void *table
, bool is_page
)
2755 kmem_cache_free(pgtable_cache
, table
);
2758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2759 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2762 unsigned long pte
, flags
;
2763 struct mm_struct
*mm
;
2766 if (!pmd_large(entry
) || !pmd_young(entry
))
2769 pte
= pmd_val(entry
);
2771 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2772 if (!(pte
& _PAGE_VALID
))
2775 /* We are fabricating 8MB pages using 4MB real hw pages. */
2776 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
2780 spin_lock_irqsave(&mm
->context
.lock
, flags
);
2782 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
2783 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
2786 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
2788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2790 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2791 static void context_reload(void *__data
)
2793 struct mm_struct
*mm
= __data
;
2795 if (mm
== current
->mm
)
2796 load_secondary_context(mm
);
2799 void hugetlb_setup(struct pt_regs
*regs
)
2801 struct mm_struct
*mm
= current
->mm
;
2802 struct tsb_config
*tp
;
2804 if (faulthandler_disabled() || !mm
) {
2805 const struct exception_table_entry
*entry
;
2807 entry
= search_exception_tables(regs
->tpc
);
2809 regs
->tpc
= entry
->fixup
;
2810 regs
->tnpc
= regs
->tpc
+ 4;
2813 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2814 die_if_kernel("HugeTSB in atomic", regs
);
2817 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
2818 if (likely(tp
->tsb
== NULL
))
2819 tsb_grow(mm
, MM_TSB_HUGE
, 0);
2821 tsb_context_switch(mm
);
2824 /* On UltraSPARC-III+ and later, configure the second half of
2825 * the Data-TLB for huge pages.
2827 if (tlb_type
== cheetah_plus
) {
2828 bool need_context_reload
= false;
2831 spin_lock_irq(&ctx_alloc_lock
);
2832 ctx
= mm
->context
.sparc64_ctx_val
;
2833 ctx
&= ~CTX_PGSZ_MASK
;
2834 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
2835 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
2837 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
2838 /* When changing the page size fields, we
2839 * must perform a context flush so that no
2840 * stale entries match. This flush must
2841 * occur with the original context register
2844 do_flush_tlb_mm(mm
);
2846 /* Reload the context register of all processors
2847 * also executing in this address space.
2849 mm
->context
.sparc64_ctx_val
= ctx
;
2850 need_context_reload
= true;
2852 spin_unlock_irq(&ctx_alloc_lock
);
2854 if (need_context_reload
)
2855 on_each_cpu(context_reload
, mm
, 0);
2860 static struct resource code_resource
= {
2861 .name
= "Kernel code",
2862 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
2865 static struct resource data_resource
= {
2866 .name
= "Kernel data",
2867 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
2870 static struct resource bss_resource
= {
2871 .name
= "Kernel bss",
2872 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
2875 static inline resource_size_t
compute_kern_paddr(void *addr
)
2877 return (resource_size_t
) (addr
- KERNBASE
+ kern_base
);
2880 static void __init
kernel_lds_init(void)
2882 code_resource
.start
= compute_kern_paddr(_text
);
2883 code_resource
.end
= compute_kern_paddr(_etext
- 1);
2884 data_resource
.start
= compute_kern_paddr(_etext
);
2885 data_resource
.end
= compute_kern_paddr(_edata
- 1);
2886 bss_resource
.start
= compute_kern_paddr(__bss_start
);
2887 bss_resource
.end
= compute_kern_paddr(_end
- 1);
2890 static int __init
report_memory(void)
2893 struct resource
*res
;
2897 for (i
= 0; i
< pavail_ents
; i
++) {
2898 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
2901 pr_warn("Failed to allocate source.\n");
2905 res
->name
= "System RAM";
2906 res
->start
= pavail
[i
].phys_addr
;
2907 res
->end
= pavail
[i
].phys_addr
+ pavail
[i
].reg_size
- 1;
2908 res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
2910 if (insert_resource(&iomem_resource
, res
) < 0) {
2911 pr_warn("Resource insertion failed.\n");
2915 insert_resource(res
, &code_resource
);
2916 insert_resource(res
, &data_resource
);
2917 insert_resource(res
, &bss_resource
);
2922 arch_initcall(report_memory
);
2925 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2927 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2930 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
2932 if (start
< HI_OBP_ADDRESS
&& end
> LOW_OBP_ADDRESS
) {
2933 if (start
< LOW_OBP_ADDRESS
) {
2934 flush_tsb_kernel_range(start
, LOW_OBP_ADDRESS
);
2935 do_flush_tlb_kernel_range(start
, LOW_OBP_ADDRESS
);
2937 if (end
> HI_OBP_ADDRESS
) {
2938 flush_tsb_kernel_range(HI_OBP_ADDRESS
, end
);
2939 do_flush_tlb_kernel_range(HI_OBP_ADDRESS
, end
);
2942 flush_tsb_kernel_range(start
, end
);
2943 do_flush_tlb_kernel_range(start
, end
);