2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any
;
86 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
87 MODULE_PARM_DESC(hpsa_allow_any
,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode
;
90 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
91 MODULE_PARM_DESC(hpsa_simple_mode
,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id
[] = {
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
148 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
152 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products
[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access
},
160 {0x3243103C, "Smart Array P410", &SA5_access
},
161 {0x3245103C, "Smart Array P410i", &SA5_access
},
162 {0x3247103C, "Smart Array P411", &SA5_access
},
163 {0x3249103C, "Smart Array P812", &SA5_access
},
164 {0x324A103C, "Smart Array P712m", &SA5_access
},
165 {0x324B103C, "Smart Array P711m", &SA5_access
},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access
},
168 {0x3351103C, "Smart Array P420", &SA5_access
},
169 {0x3352103C, "Smart Array P421", &SA5_access
},
170 {0x3353103C, "Smart Array P822", &SA5_access
},
171 {0x3354103C, "Smart Array P420i", &SA5_access
},
172 {0x3355103C, "Smart Array P220i", &SA5_access
},
173 {0x3356103C, "Smart Array P721m", &SA5_access
},
174 {0x1921103C, "Smart Array P830i", &SA5_access
},
175 {0x1922103C, "Smart Array P430", &SA5_access
},
176 {0x1923103C, "Smart Array P431", &SA5_access
},
177 {0x1924103C, "Smart Array P830", &SA5_access
},
178 {0x1926103C, "Smart Array P731m", &SA5_access
},
179 {0x1928103C, "Smart Array P230i", &SA5_access
},
180 {0x1929103C, "Smart Array P530", &SA5_access
},
181 {0x21BD103C, "Smart Array P244br", &SA5_access
},
182 {0x21BE103C, "Smart Array P741m", &SA5_access
},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
186 {0x21C2103C, "Smart Array P440", &SA5_access
},
187 {0x21C3103C, "Smart Array P441", &SA5_access
},
188 {0x21C4103C, "Smart Array", &SA5_access
},
189 {0x21C5103C, "Smart Array P841", &SA5_access
},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
191 {0x21C7103C, "Smart HBA H240", &SA5_access
},
192 {0x21C8103C, "Smart HBA H241", &SA5_access
},
193 {0x21C9103C, "Smart Array", &SA5_access
},
194 {0x21CA103C, "Smart Array P246br", &SA5_access
},
195 {0x21CB103C, "Smart Array P840", &SA5_access
},
196 {0x21CC103C, "Smart Array", &SA5_access
},
197 {0x21CD103C, "Smart Array", &SA5_access
},
198 {0x21CE103C, "Smart HBA", &SA5_access
},
199 {0x05809005, "SmartHBA-SA", &SA5_access
},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
213 static struct scsi_transport_template
*hpsa_sas_transport_template
;
214 static int hpsa_add_sas_host(struct ctlr_info
*h
);
215 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
216 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
217 struct hpsa_scsi_dev_t
*device
);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
221 struct sas_rphy
*rphy
);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy
;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle
;
227 static int number_of_controllers
;
229 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
230 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
231 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
234 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
238 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
239 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
240 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
241 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
242 struct scsi_cmnd
*scmd
);
243 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
244 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
246 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
251 static void hpsa_scan_start(struct Scsi_Host
*);
252 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
253 unsigned long elapsed_time
);
254 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
258 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
259 static int hpsa_slave_configure(struct scsi_device
*sdev
);
260 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
262 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
263 static int check_for_unit_attention(struct ctlr_info
*h
,
264 struct CommandList
*c
);
265 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
266 struct CommandList
*c
);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket
, int num_buckets
,
269 int nsgs
, int min_blocks
, u32
*bucket_map
);
270 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
272 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
273 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
274 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
276 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
277 unsigned long *memory_bar
);
278 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
279 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
281 static inline void finish_cmd(struct CommandList
*c
);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
286 static void hpsa_flush_cache(struct ctlr_info
*h
);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
288 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
289 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
290 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
291 static u32
lockup_detected(struct ctlr_info
*h
);
292 static int detect_controller_lockup(struct ctlr_info
*h
);
293 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
295 struct ReportExtendedLUNdata
*buf
, int bufsize
);
296 static int hpsa_luns_changed(struct ctlr_info
*h
);
297 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
298 struct hpsa_scsi_dev_t
*dev
,
299 unsigned char *scsi3addr
);
301 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
303 unsigned long *priv
= shost_priv(sdev
->host
);
304 return (struct ctlr_info
*) *priv
;
307 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
309 unsigned long *priv
= shost_priv(sh
);
310 return (struct ctlr_info
*) *priv
;
313 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
315 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
318 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
320 return c
->abort_pending
|| c
->reset_pending
;
323 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
324 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
325 u8
*sense_key
, u8
*asc
, u8
*ascq
)
327 struct scsi_sense_hdr sshdr
;
334 if (sense_data_len
< 1)
337 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
339 *sense_key
= sshdr
.sense_key
;
345 static int check_for_unit_attention(struct ctlr_info
*h
,
346 struct CommandList
*c
)
348 u8 sense_key
, asc
, ascq
;
351 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
352 sense_len
= sizeof(c
->err_info
->SenseInfo
);
354 sense_len
= c
->err_info
->SenseLen
;
356 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
357 &sense_key
, &asc
, &ascq
);
358 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
363 dev_warn(&h
->pdev
->dev
,
364 "%s: a state change detected, command retried\n",
368 dev_warn(&h
->pdev
->dev
,
369 "%s: LUN failure detected\n", h
->devname
);
371 case REPORT_LUNS_CHANGED
:
372 dev_warn(&h
->pdev
->dev
,
373 "%s: report LUN data changed\n", h
->devname
);
375 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376 * target (array) devices.
380 dev_warn(&h
->pdev
->dev
,
381 "%s: a power on or device reset detected\n",
384 case UNIT_ATTENTION_CLEARED
:
385 dev_warn(&h
->pdev
->dev
,
386 "%s: unit attention cleared by another initiator\n",
390 dev_warn(&h
->pdev
->dev
,
391 "%s: unknown unit attention detected\n",
398 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
400 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
401 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
402 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
404 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
408 static u32
lockup_detected(struct ctlr_info
*h
);
409 static ssize_t
host_show_lockup_detected(struct device
*dev
,
410 struct device_attribute
*attr
, char *buf
)
414 struct Scsi_Host
*shost
= class_to_shost(dev
);
416 h
= shost_to_hba(shost
);
417 ld
= lockup_detected(h
);
419 return sprintf(buf
, "ld=%d\n", ld
);
422 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
423 struct device_attribute
*attr
,
424 const char *buf
, size_t count
)
428 struct Scsi_Host
*shost
= class_to_shost(dev
);
431 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
433 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
434 strncpy(tmpbuf
, buf
, len
);
436 if (sscanf(tmpbuf
, "%d", &status
) != 1)
438 h
= shost_to_hba(shost
);
439 h
->acciopath_status
= !!status
;
440 dev_warn(&h
->pdev
->dev
,
441 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
442 h
->acciopath_status
? "enabled" : "disabled");
446 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
447 struct device_attribute
*attr
,
448 const char *buf
, size_t count
)
450 int debug_level
, len
;
452 struct Scsi_Host
*shost
= class_to_shost(dev
);
455 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
457 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
458 strncpy(tmpbuf
, buf
, len
);
460 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
464 h
= shost_to_hba(shost
);
465 h
->raid_offload_debug
= debug_level
;
466 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
467 h
->raid_offload_debug
);
471 static ssize_t
host_store_rescan(struct device
*dev
,
472 struct device_attribute
*attr
,
473 const char *buf
, size_t count
)
476 struct Scsi_Host
*shost
= class_to_shost(dev
);
477 h
= shost_to_hba(shost
);
478 hpsa_scan_start(h
->scsi_host
);
482 static ssize_t
host_show_firmware_revision(struct device
*dev
,
483 struct device_attribute
*attr
, char *buf
)
486 struct Scsi_Host
*shost
= class_to_shost(dev
);
487 unsigned char *fwrev
;
489 h
= shost_to_hba(shost
);
490 if (!h
->hba_inquiry_data
)
492 fwrev
= &h
->hba_inquiry_data
[32];
493 return snprintf(buf
, 20, "%c%c%c%c\n",
494 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
497 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
498 struct device_attribute
*attr
, char *buf
)
500 struct Scsi_Host
*shost
= class_to_shost(dev
);
501 struct ctlr_info
*h
= shost_to_hba(shost
);
503 return snprintf(buf
, 20, "%d\n",
504 atomic_read(&h
->commands_outstanding
));
507 static ssize_t
host_show_transport_mode(struct device
*dev
,
508 struct device_attribute
*attr
, char *buf
)
511 struct Scsi_Host
*shost
= class_to_shost(dev
);
513 h
= shost_to_hba(shost
);
514 return snprintf(buf
, 20, "%s\n",
515 h
->transMethod
& CFGTBL_Trans_Performant
?
516 "performant" : "simple");
519 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
520 struct device_attribute
*attr
, char *buf
)
523 struct Scsi_Host
*shost
= class_to_shost(dev
);
525 h
= shost_to_hba(shost
);
526 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
527 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller
[] = {
532 0x324a103C, /* Smart Array P712m */
533 0x324b103C, /* Smart Array P711m */
534 0x3223103C, /* Smart Array P800 */
535 0x3234103C, /* Smart Array P400 */
536 0x3235103C, /* Smart Array P400i */
537 0x3211103C, /* Smart Array E200i */
538 0x3212103C, /* Smart Array E200 */
539 0x3213103C, /* Smart Array E200i */
540 0x3214103C, /* Smart Array E200i */
541 0x3215103C, /* Smart Array E200i */
542 0x3237103C, /* Smart Array E500 */
543 0x323D103C, /* Smart Array P700m */
544 0x40800E11, /* Smart Array 5i */
545 0x409C0E11, /* Smart Array 6400 */
546 0x409D0E11, /* Smart Array 6400 EM */
547 0x40700E11, /* Smart Array 5300 */
548 0x40820E11, /* Smart Array 532 */
549 0x40830E11, /* Smart Array 5312 */
550 0x409A0E11, /* Smart Array 641 */
551 0x409B0E11, /* Smart Array 642 */
552 0x40910E11, /* Smart Array 6i */
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller
[] = {
557 0x40800E11, /* Smart Array 5i */
558 0x40700E11, /* Smart Array 5300 */
559 0x40820E11, /* Smart Array 532 */
560 0x40830E11, /* Smart Array 5312 */
561 0x409A0E11, /* Smart Array 641 */
562 0x409B0E11, /* Smart Array 642 */
563 0x40910E11, /* Smart Array 6i */
564 /* Exclude 640x boards. These are two pci devices in one slot
565 * which share a battery backed cache module. One controls the
566 * cache, the other accesses the cache through the one that controls
567 * it. If we reset the one controlling the cache, the other will
568 * likely not be happy. Just forbid resetting this conjoined mess.
569 * The 640x isn't really supported by hpsa anyway.
571 0x409C0E11, /* Smart Array 6400 */
572 0x409D0E11, /* Smart Array 6400 EM */
575 static u32 needs_abort_tags_swizzled
[] = {
576 0x323D103C, /* Smart Array P700m */
577 0x324a103C, /* Smart Array P712m */
578 0x324b103C, /* SmartArray P711m */
581 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
585 for (i
= 0; i
< nelems
; i
++)
586 if (a
[i
] == board_id
)
591 static int ctlr_is_hard_resettable(u32 board_id
)
593 return !board_id_in_array(unresettable_controller
,
594 ARRAY_SIZE(unresettable_controller
), board_id
);
597 static int ctlr_is_soft_resettable(u32 board_id
)
599 return !board_id_in_array(soft_unresettable_controller
,
600 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
603 static int ctlr_is_resettable(u32 board_id
)
605 return ctlr_is_hard_resettable(board_id
) ||
606 ctlr_is_soft_resettable(board_id
);
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
611 return board_id_in_array(needs_abort_tags_swizzled
,
612 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
615 static ssize_t
host_show_resettable(struct device
*dev
,
616 struct device_attribute
*attr
, char *buf
)
619 struct Scsi_Host
*shost
= class_to_shost(dev
);
621 h
= shost_to_hba(shost
);
622 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
627 return (scsi3addr
[3] & 0xC0) == 0x40;
630 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
633 #define HPSA_RAID_0 0
634 #define HPSA_RAID_4 1
635 #define HPSA_RAID_1 2 /* also used for RAID 10 */
636 #define HPSA_RAID_5 3 /* also used for RAID 50 */
637 #define HPSA_RAID_51 4
638 #define HPSA_RAID_6 5 /* also used for RAID 60 */
639 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
645 return !device
->physical_device
;
648 static ssize_t
raid_level_show(struct device
*dev
,
649 struct device_attribute
*attr
, char *buf
)
652 unsigned char rlevel
;
654 struct scsi_device
*sdev
;
655 struct hpsa_scsi_dev_t
*hdev
;
658 sdev
= to_scsi_device(dev
);
659 h
= sdev_to_hba(sdev
);
660 spin_lock_irqsave(&h
->lock
, flags
);
661 hdev
= sdev
->hostdata
;
663 spin_unlock_irqrestore(&h
->lock
, flags
);
667 /* Is this even a logical drive? */
668 if (!is_logical_device(hdev
)) {
669 spin_unlock_irqrestore(&h
->lock
, flags
);
670 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
674 rlevel
= hdev
->raid_level
;
675 spin_unlock_irqrestore(&h
->lock
, flags
);
676 if (rlevel
> RAID_UNKNOWN
)
677 rlevel
= RAID_UNKNOWN
;
678 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
682 static ssize_t
lunid_show(struct device
*dev
,
683 struct device_attribute
*attr
, char *buf
)
686 struct scsi_device
*sdev
;
687 struct hpsa_scsi_dev_t
*hdev
;
689 unsigned char lunid
[8];
691 sdev
= to_scsi_device(dev
);
692 h
= sdev_to_hba(sdev
);
693 spin_lock_irqsave(&h
->lock
, flags
);
694 hdev
= sdev
->hostdata
;
696 spin_unlock_irqrestore(&h
->lock
, flags
);
699 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
700 spin_unlock_irqrestore(&h
->lock
, flags
);
701 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
703 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
706 static ssize_t
unique_id_show(struct device
*dev
,
707 struct device_attribute
*attr
, char *buf
)
710 struct scsi_device
*sdev
;
711 struct hpsa_scsi_dev_t
*hdev
;
713 unsigned char sn
[16];
715 sdev
= to_scsi_device(dev
);
716 h
= sdev_to_hba(sdev
);
717 spin_lock_irqsave(&h
->lock
, flags
);
718 hdev
= sdev
->hostdata
;
720 spin_unlock_irqrestore(&h
->lock
, flags
);
723 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
724 spin_unlock_irqrestore(&h
->lock
, flags
);
725 return snprintf(buf
, 16 * 2 + 2,
726 "%02X%02X%02X%02X%02X%02X%02X%02X"
727 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
728 sn
[0], sn
[1], sn
[2], sn
[3],
729 sn
[4], sn
[5], sn
[6], sn
[7],
730 sn
[8], sn
[9], sn
[10], sn
[11],
731 sn
[12], sn
[13], sn
[14], sn
[15]);
734 static ssize_t
sas_address_show(struct device
*dev
,
735 struct device_attribute
*attr
, char *buf
)
738 struct scsi_device
*sdev
;
739 struct hpsa_scsi_dev_t
*hdev
;
743 sdev
= to_scsi_device(dev
);
744 h
= sdev_to_hba(sdev
);
745 spin_lock_irqsave(&h
->lock
, flags
);
746 hdev
= sdev
->hostdata
;
747 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
748 spin_unlock_irqrestore(&h
->lock
, flags
);
751 sas_address
= hdev
->sas_address
;
752 spin_unlock_irqrestore(&h
->lock
, flags
);
754 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
757 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
758 struct device_attribute
*attr
, char *buf
)
761 struct scsi_device
*sdev
;
762 struct hpsa_scsi_dev_t
*hdev
;
766 sdev
= to_scsi_device(dev
);
767 h
= sdev_to_hba(sdev
);
768 spin_lock_irqsave(&h
->lock
, flags
);
769 hdev
= sdev
->hostdata
;
771 spin_unlock_irqrestore(&h
->lock
, flags
);
774 offload_enabled
= hdev
->offload_enabled
;
775 spin_unlock_irqrestore(&h
->lock
, flags
);
776 return snprintf(buf
, 20, "%d\n", offload_enabled
);
780 static ssize_t
path_info_show(struct device
*dev
,
781 struct device_attribute
*attr
, char *buf
)
784 struct scsi_device
*sdev
;
785 struct hpsa_scsi_dev_t
*hdev
;
791 u8 path_map_index
= 0;
793 unsigned char phys_connector
[2];
795 sdev
= to_scsi_device(dev
);
796 h
= sdev_to_hba(sdev
);
797 spin_lock_irqsave(&h
->devlock
, flags
);
798 hdev
= sdev
->hostdata
;
800 spin_unlock_irqrestore(&h
->devlock
, flags
);
805 for (i
= 0; i
< MAX_PATHS
; i
++) {
806 path_map_index
= 1<<i
;
807 if (i
== hdev
->active_path_index
)
809 else if (hdev
->path_map
& path_map_index
)
814 output_len
+= scnprintf(buf
+ output_len
,
815 PAGE_SIZE
- output_len
,
816 "[%d:%d:%d:%d] %20.20s ",
817 h
->scsi_host
->host_no
,
818 hdev
->bus
, hdev
->target
, hdev
->lun
,
819 scsi_device_type(hdev
->devtype
));
821 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
822 output_len
+= scnprintf(buf
+ output_len
,
823 PAGE_SIZE
- output_len
,
829 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
830 sizeof(phys_connector
));
831 if (phys_connector
[0] < '0')
832 phys_connector
[0] = '0';
833 if (phys_connector
[1] < '0')
834 phys_connector
[1] = '0';
835 output_len
+= scnprintf(buf
+ output_len
,
836 PAGE_SIZE
- output_len
,
839 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
840 hdev
->expose_device
) {
841 if (box
== 0 || box
== 0xFF) {
842 output_len
+= scnprintf(buf
+ output_len
,
843 PAGE_SIZE
- output_len
,
847 output_len
+= scnprintf(buf
+ output_len
,
848 PAGE_SIZE
- output_len
,
849 "BOX: %hhu BAY: %hhu %s\n",
852 } else if (box
!= 0 && box
!= 0xFF) {
853 output_len
+= scnprintf(buf
+ output_len
,
854 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
857 output_len
+= scnprintf(buf
+ output_len
,
858 PAGE_SIZE
- output_len
, "%s\n", active
);
861 spin_unlock_irqrestore(&h
->devlock
, flags
);
865 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
866 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
867 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
868 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
869 static DEVICE_ATTR(sas_address
, S_IRUGO
, sas_address_show
, NULL
);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
871 host_show_hp_ssd_smart_path_enabled
, NULL
);
872 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
873 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
874 host_show_hp_ssd_smart_path_status
,
875 host_store_hp_ssd_smart_path_status
);
876 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
877 host_store_raid_offload_debug
);
878 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
879 host_show_firmware_revision
, NULL
);
880 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
881 host_show_commands_outstanding
, NULL
);
882 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
883 host_show_transport_mode
, NULL
);
884 static DEVICE_ATTR(resettable
, S_IRUGO
,
885 host_show_resettable
, NULL
);
886 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
887 host_show_lockup_detected
, NULL
);
889 static struct device_attribute
*hpsa_sdev_attrs
[] = {
890 &dev_attr_raid_level
,
893 &dev_attr_hp_ssd_smart_path_enabled
,
895 &dev_attr_sas_address
,
899 static struct device_attribute
*hpsa_shost_attrs
[] = {
901 &dev_attr_firmware_revision
,
902 &dev_attr_commands_outstanding
,
903 &dev_attr_transport_mode
,
904 &dev_attr_resettable
,
905 &dev_attr_hp_ssd_smart_path_status
,
906 &dev_attr_raid_offload_debug
,
907 &dev_attr_lockup_detected
,
911 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
912 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
914 static struct scsi_host_template hpsa_driver_template
= {
915 .module
= THIS_MODULE
,
918 .queuecommand
= hpsa_scsi_queue_command
,
919 .scan_start
= hpsa_scan_start
,
920 .scan_finished
= hpsa_scan_finished
,
921 .change_queue_depth
= hpsa_change_queue_depth
,
923 .use_clustering
= ENABLE_CLUSTERING
,
924 .eh_abort_handler
= hpsa_eh_abort_handler
,
925 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
927 .slave_alloc
= hpsa_slave_alloc
,
928 .slave_configure
= hpsa_slave_configure
,
929 .slave_destroy
= hpsa_slave_destroy
,
931 .compat_ioctl
= hpsa_compat_ioctl
,
933 .sdev_attrs
= hpsa_sdev_attrs
,
934 .shost_attrs
= hpsa_shost_attrs
,
939 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
942 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
944 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
945 return h
->access
.command_completed(h
, q
);
947 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
948 return h
->access
.command_completed(h
, q
);
950 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
951 a
= rq
->head
[rq
->current_entry
];
953 atomic_dec(&h
->commands_outstanding
);
957 /* Check for wraparound */
958 if (rq
->current_entry
== h
->max_commands
) {
959 rq
->current_entry
= 0;
966 * There are some special bits in the bus address of the
967 * command that we have to set for the controller to know
968 * how to process the command:
970 * Normal performant mode:
971 * bit 0: 1 means performant mode, 0 means simple mode.
972 * bits 1-3 = block fetch table entry
973 * bits 4-6 = command type (== 0)
976 * bit 0 = "performant mode" bit.
977 * bits 1-3 = block fetch table entry
978 * bits 4-6 = command type (== 110)
979 * (command type is needed because ioaccel1 mode
980 * commands are submitted through the same register as normal
981 * mode commands, so this is how the controller knows whether
982 * the command is normal mode or ioaccel1 mode.)
985 * bit 0 = "performant mode" bit.
986 * bits 1-4 = block fetch table entry (note extra bit)
987 * bits 4-6 = not needed, because ioaccel2 mode has
988 * a separate special register for submitting commands.
992 * set_performant_mode: Modify the tag for cciss performant
993 * set bit 0 for pull model, bits 3-1 for block fetch
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1000 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1001 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1002 if (unlikely(!h
->msix_vector
))
1004 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1005 c
->Header
.ReplyQueue
=
1006 raw_smp_processor_id() % h
->nreply_queues
;
1008 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
1012 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1013 struct CommandList
*c
,
1016 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1019 * Tell the controller to post the reply to the queue for this
1020 * processor. This seems to give the best I/O throughput.
1022 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1023 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
1025 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1027 * Set the bits in the address sent down to include:
1028 * - performant mode bit (bit 0)
1029 * - pull count (bits 1-3)
1030 * - command type (bits 4-6)
1032 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1033 IOACCEL1_BUSADDR_CMDTYPE
;
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1037 struct CommandList
*c
,
1040 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1041 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1043 /* Tell the controller to post the reply to the queue for this
1044 * processor. This seems to give the best I/O throughput.
1046 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1047 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1049 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1050 /* Set the bits in the address sent down to include:
1051 * - performant mode bit not used in ioaccel mode 2
1052 * - pull count (bits 0-3)
1053 * - command type isn't needed for ioaccel2
1055 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1058 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1059 struct CommandList
*c
,
1062 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1065 * Tell the controller to post the reply to the queue for this
1066 * processor. This seems to give the best I/O throughput.
1068 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1069 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1071 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1073 * Set the bits in the address sent down to include:
1074 * - performant mode bit not used in ioaccel mode 2
1075 * - pull count (bits 0-3)
1076 * - command type isn't needed for ioaccel2
1078 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1081 static int is_firmware_flash_cmd(u8
*cdb
)
1083 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1087 * During firmware flash, the heartbeat register may not update as frequently
1088 * as it should. So we dial down lockup detection during firmware flash. and
1089 * dial it back up when firmware flash completes.
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1094 struct CommandList
*c
)
1096 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1098 atomic_inc(&h
->firmware_flash_in_progress
);
1099 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1103 struct CommandList
*c
)
1105 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1106 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1107 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1111 struct CommandList
*c
, int reply_queue
)
1113 dial_down_lockup_detection_during_fw_flash(h
, c
);
1114 atomic_inc(&h
->commands_outstanding
);
1115 switch (c
->cmd_type
) {
1117 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1118 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1121 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1122 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1125 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1126 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1129 set_performant_mode(h
, c
, reply_queue
);
1130 h
->access
.submit_command(h
, c
);
1134 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1136 if (unlikely(hpsa_is_pending_event(c
)))
1137 return finish_cmd(c
);
1139 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1142 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1144 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1147 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1149 if (!h
->hba_inquiry_data
)
1151 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1156 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1157 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1159 /* finds an unused bus, target, lun for a new physical device
1160 * assumes h->devlock is held
1163 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1165 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1167 for (i
= 0; i
< h
->ndevices
; i
++) {
1168 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1169 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1172 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1173 if (i
< HPSA_MAX_DEVICES
) {
1182 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1183 struct hpsa_scsi_dev_t
*dev
, char *description
)
1185 #define LABEL_SIZE 25
1186 char label
[LABEL_SIZE
];
1188 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1191 switch (dev
->devtype
) {
1193 snprintf(label
, LABEL_SIZE
, "controller");
1195 case TYPE_ENCLOSURE
:
1196 snprintf(label
, LABEL_SIZE
, "enclosure");
1201 snprintf(label
, LABEL_SIZE
, "external");
1202 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1203 snprintf(label
, LABEL_SIZE
, "%s",
1204 raid_label
[PHYSICAL_DRIVE
]);
1206 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1207 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1208 raid_label
[dev
->raid_level
]);
1211 snprintf(label
, LABEL_SIZE
, "rom");
1214 snprintf(label
, LABEL_SIZE
, "tape");
1216 case TYPE_MEDIUM_CHANGER
:
1217 snprintf(label
, LABEL_SIZE
, "changer");
1220 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1224 dev_printk(level
, &h
->pdev
->dev
,
1225 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1228 scsi_device_type(dev
->devtype
),
1232 dev
->offload_config
? '+' : '-',
1233 dev
->offload_enabled
? '+' : '-',
1234 dev
->expose_device
);
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1239 struct hpsa_scsi_dev_t
*device
,
1240 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1242 /* assumes h->devlock is held */
1243 int n
= h
->ndevices
;
1245 unsigned char addr1
[8], addr2
[8];
1246 struct hpsa_scsi_dev_t
*sd
;
1248 if (n
>= HPSA_MAX_DEVICES
) {
1249 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1254 /* physical devices do not have lun or target assigned until now. */
1255 if (device
->lun
!= -1)
1256 /* Logical device, lun is already assigned. */
1259 /* If this device a non-zero lun of a multi-lun device
1260 * byte 4 of the 8-byte LUN addr will contain the logical
1261 * unit no, zero otherwise.
1263 if (device
->scsi3addr
[4] == 0) {
1264 /* This is not a non-zero lun of a multi-lun device */
1265 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1266 device
->bus
, &device
->target
, &device
->lun
) != 0)
1271 /* This is a non-zero lun of a multi-lun device.
1272 * Search through our list and find the device which
1273 * has the same 8 byte LUN address, excepting byte 4 and 5.
1274 * Assign the same bus and target for this new LUN.
1275 * Use the logical unit number from the firmware.
1277 memcpy(addr1
, device
->scsi3addr
, 8);
1280 for (i
= 0; i
< n
; i
++) {
1282 memcpy(addr2
, sd
->scsi3addr
, 8);
1285 /* differ only in byte 4 and 5? */
1286 if (memcmp(addr1
, addr2
, 8) == 0) {
1287 device
->bus
= sd
->bus
;
1288 device
->target
= sd
->target
;
1289 device
->lun
= device
->scsi3addr
[4];
1293 if (device
->lun
== -1) {
1294 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1295 " suspect firmware bug or unsupported hardware "
1296 "configuration.\n");
1304 added
[*nadded
] = device
;
1306 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1307 device
->expose_device
? "added" : "masked");
1308 device
->offload_to_be_enabled
= device
->offload_enabled
;
1309 device
->offload_enabled
= 0;
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1315 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1317 int offload_enabled
;
1318 /* assumes h->devlock is held */
1319 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1321 /* Raid level changed. */
1322 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1324 /* Raid offload parameters changed. Careful about the ordering. */
1325 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1327 * if drive is newly offload_enabled, we want to copy the
1328 * raid map data first. If previously offload_enabled and
1329 * offload_config were set, raid map data had better be
1330 * the same as it was before. if raid map data is changed
1331 * then it had better be the case that
1332 * h->dev[entry]->offload_enabled is currently 0.
1334 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1335 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1337 if (new_entry
->hba_ioaccel_enabled
) {
1338 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1339 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1341 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1342 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1343 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1344 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1347 * We can turn off ioaccel offload now, but need to delay turning
1348 * it on until we can update h->dev[entry]->phys_disk[], but we
1349 * can't do that until all the devices are updated.
1351 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1352 if (!new_entry
->offload_enabled
)
1353 h
->dev
[entry
]->offload_enabled
= 0;
1355 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1356 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1357 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1358 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1363 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1364 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1365 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1367 /* assumes h->devlock is held */
1368 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1369 removed
[*nremoved
] = h
->dev
[entry
];
1373 * New physical devices won't have target/lun assigned yet
1374 * so we need to preserve the values in the slot we are replacing.
1376 if (new_entry
->target
== -1) {
1377 new_entry
->target
= h
->dev
[entry
]->target
;
1378 new_entry
->lun
= h
->dev
[entry
]->lun
;
1381 h
->dev
[entry
] = new_entry
;
1382 added
[*nadded
] = new_entry
;
1384 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1385 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1386 new_entry
->offload_enabled
= 0;
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1391 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1393 /* assumes h->devlock is held */
1395 struct hpsa_scsi_dev_t
*sd
;
1397 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1400 removed
[*nremoved
] = h
->dev
[entry
];
1403 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1404 h
->dev
[i
] = h
->dev
[i
+1];
1406 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410 (a)[7] == (b)[7] && \
1411 (a)[6] == (b)[6] && \
1412 (a)[5] == (b)[5] && \
1413 (a)[4] == (b)[4] && \
1414 (a)[3] == (b)[3] && \
1415 (a)[2] == (b)[2] && \
1416 (a)[1] == (b)[1] && \
1419 static void fixup_botched_add(struct ctlr_info
*h
,
1420 struct hpsa_scsi_dev_t
*added
)
1422 /* called when scsi_add_device fails in order to re-adjust
1423 * h->dev[] to match the mid layer's view.
1425 unsigned long flags
;
1428 spin_lock_irqsave(&h
->lock
, flags
);
1429 for (i
= 0; i
< h
->ndevices
; i
++) {
1430 if (h
->dev
[i
] == added
) {
1431 for (j
= i
; j
< h
->ndevices
-1; j
++)
1432 h
->dev
[j
] = h
->dev
[j
+1];
1437 spin_unlock_irqrestore(&h
->lock
, flags
);
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1442 struct hpsa_scsi_dev_t
*dev2
)
1444 /* we compare everything except lun and target as these
1445 * are not yet assigned. Compare parts likely
1448 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1449 sizeof(dev1
->scsi3addr
)) != 0)
1451 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1452 sizeof(dev1
->device_id
)) != 0)
1454 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1456 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1458 if (dev1
->devtype
!= dev2
->devtype
)
1460 if (dev1
->bus
!= dev2
->bus
)
1465 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1466 struct hpsa_scsi_dev_t
*dev2
)
1468 /* Device attributes that can change, but don't mean
1469 * that the device is a different device, nor that the OS
1470 * needs to be told anything about the change.
1472 if (dev1
->raid_level
!= dev2
->raid_level
)
1474 if (dev1
->offload_config
!= dev2
->offload_config
)
1476 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1478 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1479 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1484 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1485 * and return needle location in *index. If scsi3addr matches, but not
1486 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487 * location in *index.
1488 * In the case of a minor device attribute change, such as RAID level, just
1489 * return DEVICE_UPDATED, along with the updated device's location in index.
1490 * If needle not found, return DEVICE_NOT_FOUND.
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1493 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1502 return DEVICE_NOT_FOUND
;
1504 for (i
= 0; i
< haystack_size
; i
++) {
1505 if (haystack
[i
] == NULL
) /* previously removed. */
1507 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1509 if (device_is_the_same(needle
, haystack
[i
])) {
1510 if (device_updated(needle
, haystack
[i
]))
1511 return DEVICE_UPDATED
;
1514 /* Keep offline devices offline */
1515 if (needle
->volume_offline
)
1516 return DEVICE_NOT_FOUND
;
1517 return DEVICE_CHANGED
;
1522 return DEVICE_NOT_FOUND
;
1525 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1526 unsigned char scsi3addr
[])
1528 struct offline_device_entry
*device
;
1529 unsigned long flags
;
1531 /* Check to see if device is already on the list */
1532 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1533 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1534 if (memcmp(device
->scsi3addr
, scsi3addr
,
1535 sizeof(device
->scsi3addr
)) == 0) {
1536 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1540 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1542 /* Device is not on the list, add it. */
1543 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1545 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1548 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1549 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1550 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1551 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1556 struct hpsa_scsi_dev_t
*sd
)
1558 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1559 dev_info(&h
->pdev
->dev
,
1560 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561 h
->scsi_host
->host_no
,
1562 sd
->bus
, sd
->target
, sd
->lun
);
1563 switch (sd
->volume_offline
) {
1566 case HPSA_LV_UNDERGOING_ERASE
:
1567 dev_info(&h
->pdev
->dev
,
1568 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569 h
->scsi_host
->host_no
,
1570 sd
->bus
, sd
->target
, sd
->lun
);
1572 case HPSA_LV_NOT_AVAILABLE
:
1573 dev_info(&h
->pdev
->dev
,
1574 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575 h
->scsi_host
->host_no
,
1576 sd
->bus
, sd
->target
, sd
->lun
);
1578 case HPSA_LV_UNDERGOING_RPI
:
1579 dev_info(&h
->pdev
->dev
,
1580 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581 h
->scsi_host
->host_no
,
1582 sd
->bus
, sd
->target
, sd
->lun
);
1584 case HPSA_LV_PENDING_RPI
:
1585 dev_info(&h
->pdev
->dev
,
1586 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587 h
->scsi_host
->host_no
,
1588 sd
->bus
, sd
->target
, sd
->lun
);
1590 case HPSA_LV_ENCRYPTED_NO_KEY
:
1591 dev_info(&h
->pdev
->dev
,
1592 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593 h
->scsi_host
->host_no
,
1594 sd
->bus
, sd
->target
, sd
->lun
);
1596 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1597 dev_info(&h
->pdev
->dev
,
1598 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599 h
->scsi_host
->host_no
,
1600 sd
->bus
, sd
->target
, sd
->lun
);
1602 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1603 dev_info(&h
->pdev
->dev
,
1604 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605 h
->scsi_host
->host_no
,
1606 sd
->bus
, sd
->target
, sd
->lun
);
1608 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1609 dev_info(&h
->pdev
->dev
,
1610 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611 h
->scsi_host
->host_no
,
1612 sd
->bus
, sd
->target
, sd
->lun
);
1614 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1615 dev_info(&h
->pdev
->dev
,
1616 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617 h
->scsi_host
->host_no
,
1618 sd
->bus
, sd
->target
, sd
->lun
);
1620 case HPSA_LV_PENDING_ENCRYPTION
:
1621 dev_info(&h
->pdev
->dev
,
1622 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623 h
->scsi_host
->host_no
,
1624 sd
->bus
, sd
->target
, sd
->lun
);
1626 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1627 dev_info(&h
->pdev
->dev
,
1628 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629 h
->scsi_host
->host_no
,
1630 sd
->bus
, sd
->target
, sd
->lun
);
1636 * Figure the list of physical drive pointers for a logical drive with
1637 * raid offload configured.
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1640 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1641 struct hpsa_scsi_dev_t
*logical_drive
)
1643 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1644 struct raid_map_disk_data
*dd
= &map
->data
[0];
1646 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1647 le16_to_cpu(map
->metadata_disks_per_row
);
1648 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1649 le16_to_cpu(map
->layout_map_count
) *
1650 total_disks_per_row
;
1651 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1652 total_disks_per_row
;
1655 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1656 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1658 logical_drive
->nphysical_disks
= nraid_map_entries
;
1661 for (i
= 0; i
< nraid_map_entries
; i
++) {
1662 logical_drive
->phys_disk
[i
] = NULL
;
1663 if (!logical_drive
->offload_config
)
1665 for (j
= 0; j
< ndevices
; j
++) {
1668 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1669 dev
[j
]->devtype
!= TYPE_ZBC
)
1671 if (is_logical_device(dev
[j
]))
1673 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1676 logical_drive
->phys_disk
[i
] = dev
[j
];
1678 qdepth
= min(h
->nr_cmds
, qdepth
+
1679 logical_drive
->phys_disk
[i
]->queue_depth
);
1684 * This can happen if a physical drive is removed and
1685 * the logical drive is degraded. In that case, the RAID
1686 * map data will refer to a physical disk which isn't actually
1687 * present. And in that case offload_enabled should already
1688 * be 0, but we'll turn it off here just in case
1690 if (!logical_drive
->phys_disk
[i
]) {
1691 logical_drive
->offload_enabled
= 0;
1692 logical_drive
->offload_to_be_enabled
= 0;
1693 logical_drive
->queue_depth
= 8;
1696 if (nraid_map_entries
)
1698 * This is correct for reads, too high for full stripe writes,
1699 * way too high for partial stripe writes
1701 logical_drive
->queue_depth
= qdepth
;
1703 logical_drive
->queue_depth
= h
->nr_cmds
;
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1707 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1711 for (i
= 0; i
< ndevices
; i
++) {
1714 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1715 dev
[i
]->devtype
!= TYPE_ZBC
)
1717 if (!is_logical_device(dev
[i
]))
1721 * If offload is currently enabled, the RAID map and
1722 * phys_disk[] assignment *better* not be changing
1723 * and since it isn't changing, we do not need to
1726 if (dev
[i
]->offload_enabled
)
1729 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1733 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1740 if (is_logical_device(device
)) /* RAID */
1741 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1742 device
->target
, device
->lun
);
1744 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1750 struct hpsa_scsi_dev_t
*dev
)
1755 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1756 struct CommandList
*c
= h
->cmd_pool
+ i
;
1757 int refcount
= atomic_inc_return(&c
->refcount
);
1759 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1761 unsigned long flags
;
1763 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1764 if (!hpsa_is_cmd_idle(c
))
1766 spin_unlock_irqrestore(&h
->lock
, flags
);
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1776 struct hpsa_scsi_dev_t
*device
)
1782 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1787 dev_warn(&h
->pdev
->dev
,
1788 "%s: removing device with %d outstanding commands!\n",
1794 static void hpsa_remove_device(struct ctlr_info
*h
,
1795 struct hpsa_scsi_dev_t
*device
)
1797 struct scsi_device
*sdev
= NULL
;
1802 if (is_logical_device(device
)) { /* RAID */
1803 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1804 device
->target
, device
->lun
);
1806 scsi_remove_device(sdev
);
1807 scsi_device_put(sdev
);
1810 * We don't expect to get here. Future commands
1811 * to this device will get a selection timeout as
1812 * if the device were gone.
1814 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1815 "didn't find device for removal.");
1819 device
->removed
= 1;
1820 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1822 hpsa_remove_sas_device(device
);
1826 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1827 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1829 /* sd contains scsi3 addresses and devtypes, and inquiry
1830 * data. This function takes what's in sd to be the current
1831 * reality and updates h->dev[] to reflect that reality.
1833 int i
, entry
, device_change
, changes
= 0;
1834 struct hpsa_scsi_dev_t
*csd
;
1835 unsigned long flags
;
1836 struct hpsa_scsi_dev_t
**added
, **removed
;
1837 int nadded
, nremoved
;
1840 * A reset can cause a device status to change
1841 * re-schedule the scan to see what happened.
1843 if (h
->reset_in_progress
) {
1844 h
->drv_req_rescan
= 1;
1848 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1849 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1851 if (!added
|| !removed
) {
1852 dev_warn(&h
->pdev
->dev
, "out of memory in "
1853 "adjust_hpsa_scsi_table\n");
1857 spin_lock_irqsave(&h
->devlock
, flags
);
1859 /* find any devices in h->dev[] that are not in
1860 * sd[] and remove them from h->dev[], and for any
1861 * devices which have changed, remove the old device
1862 * info and add the new device info.
1863 * If minor device attributes change, just update
1864 * the existing device structure.
1869 while (i
< h
->ndevices
) {
1871 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1872 if (device_change
== DEVICE_NOT_FOUND
) {
1874 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1875 continue; /* remove ^^^, hence i not incremented */
1876 } else if (device_change
== DEVICE_CHANGED
) {
1878 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1879 added
, &nadded
, removed
, &nremoved
);
1880 /* Set it to NULL to prevent it from being freed
1881 * at the bottom of hpsa_update_scsi_devices()
1884 } else if (device_change
== DEVICE_UPDATED
) {
1885 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1890 /* Now, make sure every device listed in sd[] is also
1891 * listed in h->dev[], adding them if they aren't found
1894 for (i
= 0; i
< nsds
; i
++) {
1895 if (!sd
[i
]) /* if already added above. */
1898 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899 * as the SCSI mid-layer does not handle such devices well.
1900 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901 * at 160Hz, and prevents the system from coming up.
1903 if (sd
[i
]->volume_offline
) {
1904 hpsa_show_volume_status(h
, sd
[i
]);
1905 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1909 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1910 h
->ndevices
, &entry
);
1911 if (device_change
== DEVICE_NOT_FOUND
) {
1913 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1915 sd
[i
] = NULL
; /* prevent from being freed later. */
1916 } else if (device_change
== DEVICE_CHANGED
) {
1917 /* should never happen... */
1919 dev_warn(&h
->pdev
->dev
,
1920 "device unexpectedly changed.\n");
1921 /* but if it does happen, we just ignore that device */
1924 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1926 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927 * any logical drives that need it enabled.
1929 for (i
= 0; i
< h
->ndevices
; i
++) {
1930 if (h
->dev
[i
] == NULL
)
1932 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1935 spin_unlock_irqrestore(&h
->devlock
, flags
);
1937 /* Monitor devices which are in one of several NOT READY states to be
1938 * brought online later. This must be done without holding h->devlock,
1939 * so don't touch h->dev[]
1941 for (i
= 0; i
< nsds
; i
++) {
1942 if (!sd
[i
]) /* if already added above. */
1944 if (sd
[i
]->volume_offline
)
1945 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1948 /* Don't notify scsi mid layer of any changes the first time through
1949 * (or if there are no changes) scsi_scan_host will do it later the
1950 * first time through.
1955 /* Notify scsi mid layer of any removed devices */
1956 for (i
= 0; i
< nremoved
; i
++) {
1957 if (removed
[i
] == NULL
)
1959 if (removed
[i
]->expose_device
)
1960 hpsa_remove_device(h
, removed
[i
]);
1965 /* Notify scsi mid layer of any added devices */
1966 for (i
= 0; i
< nadded
; i
++) {
1969 if (added
[i
] == NULL
)
1971 if (!(added
[i
]->expose_device
))
1973 rc
= hpsa_add_device(h
, added
[i
]);
1976 dev_warn(&h
->pdev
->dev
,
1977 "addition failed %d, device not added.", rc
);
1978 /* now we have to remove it from h->dev,
1979 * since it didn't get added to scsi mid layer
1981 fixup_botched_add(h
, added
[i
]);
1982 h
->drv_req_rescan
= 1;
1991 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992 * Assume's h->devlock is held.
1994 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1995 int bus
, int target
, int lun
)
1998 struct hpsa_scsi_dev_t
*sd
;
2000 for (i
= 0; i
< h
->ndevices
; i
++) {
2002 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2008 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2010 struct hpsa_scsi_dev_t
*sd
;
2011 unsigned long flags
;
2012 struct ctlr_info
*h
;
2014 h
= sdev_to_hba(sdev
);
2015 spin_lock_irqsave(&h
->devlock
, flags
);
2016 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2017 struct scsi_target
*starget
;
2018 struct sas_rphy
*rphy
;
2020 starget
= scsi_target(sdev
);
2021 rphy
= target_to_rphy(starget
);
2022 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2024 sd
->target
= sdev_id(sdev
);
2025 sd
->lun
= sdev
->lun
;
2028 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2029 sdev_id(sdev
), sdev
->lun
);
2031 if (sd
&& sd
->expose_device
) {
2032 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2033 sdev
->hostdata
= sd
;
2035 sdev
->hostdata
= NULL
;
2036 spin_unlock_irqrestore(&h
->devlock
, flags
);
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2043 struct hpsa_scsi_dev_t
*sd
;
2046 sd
= sdev
->hostdata
;
2047 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2050 queue_depth
= sd
->queue_depth
!= 0 ?
2051 sd
->queue_depth
: sdev
->host
->can_queue
;
2053 queue_depth
= sdev
->host
->can_queue
;
2055 scsi_change_queue_depth(sdev
, queue_depth
);
2060 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2062 /* nothing to do. */
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2069 if (!h
->ioaccel2_cmd_sg_list
)
2071 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2072 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2073 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2075 kfree(h
->ioaccel2_cmd_sg_list
);
2076 h
->ioaccel2_cmd_sg_list
= NULL
;
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2083 if (h
->chainsize
<= 0)
2086 h
->ioaccel2_cmd_sg_list
=
2087 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2089 if (!h
->ioaccel2_cmd_sg_list
)
2091 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2092 h
->ioaccel2_cmd_sg_list
[i
] =
2093 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2094 h
->maxsgentries
, GFP_KERNEL
);
2095 if (!h
->ioaccel2_cmd_sg_list
[i
])
2101 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2109 if (!h
->cmd_sg_list
)
2111 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2112 kfree(h
->cmd_sg_list
[i
]);
2113 h
->cmd_sg_list
[i
] = NULL
;
2115 kfree(h
->cmd_sg_list
);
2116 h
->cmd_sg_list
= NULL
;
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2123 if (h
->chainsize
<= 0)
2126 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2128 if (!h
->cmd_sg_list
) {
2129 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
2132 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2133 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2134 h
->chainsize
, GFP_KERNEL
);
2135 if (!h
->cmd_sg_list
[i
]) {
2136 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
2143 hpsa_free_sg_chain_blocks(h
);
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2148 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2150 struct ioaccel2_sg_element
*chain_block
;
2154 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2155 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2156 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2158 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2159 /* prevent subsequent unmapping */
2160 cp
->sg
->address
= 0;
2163 cp
->sg
->address
= cpu_to_le64(temp64
);
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2168 struct io_accel2_cmd
*cp
)
2170 struct ioaccel2_sg_element
*chain_sg
;
2175 temp64
= le64_to_cpu(chain_sg
->address
);
2176 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2177 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2180 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2181 struct CommandList
*c
)
2183 struct SGDescriptor
*chain_sg
, *chain_block
;
2187 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2188 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2189 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2190 chain_len
= sizeof(*chain_sg
) *
2191 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2192 chain_sg
->Len
= cpu_to_le32(chain_len
);
2193 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2195 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2196 /* prevent subsequent unmapping */
2197 chain_sg
->Addr
= cpu_to_le64(0);
2200 chain_sg
->Addr
= cpu_to_le64(temp64
);
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2205 struct CommandList
*c
)
2207 struct SGDescriptor
*chain_sg
;
2209 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2212 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2213 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2214 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2218 /* Decode the various types of errors on ioaccel2 path.
2219 * Return 1 for any error that should generate a RAID path retry.
2220 * Return 0 for errors that don't require a RAID path retry.
2222 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2223 struct CommandList
*c
,
2224 struct scsi_cmnd
*cmd
,
2225 struct io_accel2_cmd
*c2
,
2226 struct hpsa_scsi_dev_t
*dev
)
2230 u32 ioaccel2_resid
= 0;
2232 switch (c2
->error_data
.serv_response
) {
2233 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2234 switch (c2
->error_data
.status
) {
2235 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2237 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2238 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2239 if (c2
->error_data
.data_present
!=
2240 IOACCEL2_SENSE_DATA_PRESENT
) {
2241 memset(cmd
->sense_buffer
, 0,
2242 SCSI_SENSE_BUFFERSIZE
);
2245 /* copy the sense data */
2246 data_len
= c2
->error_data
.sense_data_len
;
2247 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2248 data_len
= SCSI_SENSE_BUFFERSIZE
;
2249 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2251 sizeof(c2
->error_data
.sense_data_buff
);
2252 memcpy(cmd
->sense_buffer
,
2253 c2
->error_data
.sense_data_buff
, data_len
);
2256 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2259 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2262 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2265 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2273 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2274 switch (c2
->error_data
.status
) {
2275 case IOACCEL2_STATUS_SR_IO_ERROR
:
2276 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2277 case IOACCEL2_STATUS_SR_OVERRUN
:
2280 case IOACCEL2_STATUS_SR_UNDERRUN
:
2281 cmd
->result
= (DID_OK
<< 16); /* host byte */
2282 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2283 ioaccel2_resid
= get_unaligned_le32(
2284 &c2
->error_data
.resid_cnt
[0]);
2285 scsi_set_resid(cmd
, ioaccel2_resid
);
2287 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2288 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2289 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2291 * Did an HBA disk disappear? We will eventually
2292 * get a state change event from the controller but
2293 * in the meantime, we need to tell the OS that the
2294 * HBA disk is no longer there and stop I/O
2295 * from going down. This allows the potential re-insert
2296 * of the disk to get the same device node.
2298 if (dev
->physical_device
&& dev
->expose_device
) {
2299 cmd
->result
= DID_NO_CONNECT
<< 16;
2301 h
->drv_req_rescan
= 1;
2302 dev_warn(&h
->pdev
->dev
,
2303 "%s: device is gone!\n", __func__
);
2306 * Retry by sending down the RAID path.
2307 * We will get an event from ctlr to
2308 * trigger rescan regardless.
2316 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2318 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2320 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2323 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2330 return retry
; /* retry on raid path? */
2333 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2334 struct CommandList
*c
)
2336 bool do_wake
= false;
2339 * Prevent the following race in the abort handler:
2341 * 1. LLD is requested to abort a SCSI command
2342 * 2. The SCSI command completes
2343 * 3. The struct CommandList associated with step 2 is made available
2344 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345 * 5. Abort handler follows scsi_cmnd->host_scribble and
2346 * finds struct CommandList and tries to aborts it
2347 * Now we have aborted the wrong command.
2349 * Reset c->scsi_cmd here so that the abort or reset handler will know
2350 * this command has completed. Then, check to see if the handler is
2351 * waiting for this command, and, if so, wake it.
2353 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2354 mb(); /* Declare command idle before checking for pending events. */
2355 if (c
->abort_pending
) {
2357 c
->abort_pending
= false;
2359 if (c
->reset_pending
) {
2360 unsigned long flags
;
2361 struct hpsa_scsi_dev_t
*dev
;
2364 * There appears to be a reset pending; lock the lock and
2365 * reconfirm. If so, then decrement the count of outstanding
2366 * commands and wake the reset command if this is the last one.
2368 spin_lock_irqsave(&h
->lock
, flags
);
2369 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2370 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2372 c
->reset_pending
= NULL
;
2373 spin_unlock_irqrestore(&h
->lock
, flags
);
2377 wake_up_all(&h
->event_sync_wait_queue
);
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2381 struct CommandList
*c
)
2383 hpsa_cmd_resolve_events(h
, c
);
2384 cmd_tagged_free(h
, c
);
2387 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2388 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2390 hpsa_cmd_resolve_and_free(h
, c
);
2391 cmd
->scsi_done(cmd
);
2394 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2396 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2397 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2400 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2402 cmd
->result
= DID_ABORT
<< 16;
2405 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2406 struct scsi_cmnd
*cmd
)
2408 hpsa_set_scsi_cmd_aborted(cmd
);
2409 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2410 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2411 hpsa_cmd_resolve_and_free(h
, c
);
2414 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2415 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2416 struct hpsa_scsi_dev_t
*dev
)
2418 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2420 /* check for good status */
2421 if (likely(c2
->error_data
.serv_response
== 0 &&
2422 c2
->error_data
.status
== 0))
2423 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2426 * Any RAID offload error results in retry which will use
2427 * the normal I/O path so the controller can handle whatever's
2430 if (is_logical_device(dev
) &&
2431 c2
->error_data
.serv_response
==
2432 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2433 if (c2
->error_data
.status
==
2434 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2435 dev
->offload_enabled
= 0;
2436 dev
->offload_to_be_enabled
= 0;
2439 return hpsa_retry_cmd(h
, c
);
2442 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2443 return hpsa_retry_cmd(h
, c
);
2445 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2448 /* Returns 0 on success, < 0 otherwise. */
2449 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2450 struct CommandList
*cp
)
2452 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2454 switch (tmf_status
) {
2455 case CISS_TMF_COMPLETE
:
2457 * CISS_TMF_COMPLETE never happens, instead,
2458 * ei->CommandStatus == 0 for this case.
2460 case CISS_TMF_SUCCESS
:
2462 case CISS_TMF_INVALID_FRAME
:
2463 case CISS_TMF_NOT_SUPPORTED
:
2464 case CISS_TMF_FAILED
:
2465 case CISS_TMF_WRONG_LUN
:
2466 case CISS_TMF_OVERLAPPED_TAG
:
2469 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2476 static void complete_scsi_command(struct CommandList
*cp
)
2478 struct scsi_cmnd
*cmd
;
2479 struct ctlr_info
*h
;
2480 struct ErrorInfo
*ei
;
2481 struct hpsa_scsi_dev_t
*dev
;
2482 struct io_accel2_cmd
*c2
;
2485 u8 asc
; /* additional sense code */
2486 u8 ascq
; /* additional sense code qualifier */
2487 unsigned long sense_data_size
;
2492 dev
= cmd
->device
->hostdata
;
2493 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2495 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2496 if ((cp
->cmd_type
== CMD_SCSI
) &&
2497 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2498 hpsa_unmap_sg_chain_block(h
, cp
);
2500 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2501 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2502 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2504 cmd
->result
= (DID_OK
<< 16); /* host byte */
2505 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2507 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2508 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2511 * We check for lockup status here as it may be set for
2512 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513 * fail_all_oustanding_cmds()
2515 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2516 /* DID_NO_CONNECT will prevent a retry */
2517 cmd
->result
= DID_NO_CONNECT
<< 16;
2518 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2521 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2522 if (cp
->reset_pending
)
2523 return hpsa_cmd_resolve_and_free(h
, cp
);
2524 if (cp
->abort_pending
)
2525 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2528 if (cp
->cmd_type
== CMD_IOACCEL2
)
2529 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2531 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2532 if (ei
->CommandStatus
== 0)
2533 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2535 /* For I/O accelerator commands, copy over some fields to the normal
2536 * CISS header used below for error handling.
2538 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2539 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2540 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2541 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2542 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2543 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2544 cp
->Header
.tag
= c
->tag
;
2545 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2546 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2548 /* Any RAID offload error results in retry which will use
2549 * the normal I/O path so the controller can handle whatever's
2552 if (is_logical_device(dev
)) {
2553 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2554 dev
->offload_enabled
= 0;
2555 return hpsa_retry_cmd(h
, cp
);
2559 /* an error has occurred */
2560 switch (ei
->CommandStatus
) {
2562 case CMD_TARGET_STATUS
:
2563 cmd
->result
|= ei
->ScsiStatus
;
2564 /* copy the sense data */
2565 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2566 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2568 sense_data_size
= sizeof(ei
->SenseInfo
);
2569 if (ei
->SenseLen
< sense_data_size
)
2570 sense_data_size
= ei
->SenseLen
;
2571 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2573 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2574 &sense_key
, &asc
, &ascq
);
2575 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2576 if (sense_key
== ABORTED_COMMAND
) {
2577 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2582 /* Problem was not a check condition
2583 * Pass it up to the upper layers...
2585 if (ei
->ScsiStatus
) {
2586 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2587 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588 "Returning result: 0x%x\n",
2590 sense_key
, asc
, ascq
,
2592 } else { /* scsi status is zero??? How??? */
2593 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2594 "Returning no connection.\n", cp
),
2596 /* Ordinarily, this case should never happen,
2597 * but there is a bug in some released firmware
2598 * revisions that allows it to happen if, for
2599 * example, a 4100 backplane loses power and
2600 * the tape drive is in it. We assume that
2601 * it's a fatal error of some kind because we
2602 * can't show that it wasn't. We will make it
2603 * look like selection timeout since that is
2604 * the most common reason for this to occur,
2605 * and it's severe enough.
2608 cmd
->result
= DID_NO_CONNECT
<< 16;
2612 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2614 case CMD_DATA_OVERRUN
:
2615 dev_warn(&h
->pdev
->dev
,
2616 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2619 /* print_bytes(cp, sizeof(*cp), 1, 0);
2621 /* We get CMD_INVALID if you address a non-existent device
2622 * instead of a selection timeout (no response). You will
2623 * see this if you yank out a drive, then try to access it.
2624 * This is kind of a shame because it means that any other
2625 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626 * missing target. */
2627 cmd
->result
= DID_NO_CONNECT
<< 16;
2630 case CMD_PROTOCOL_ERR
:
2631 cmd
->result
= DID_ERROR
<< 16;
2632 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2635 case CMD_HARDWARE_ERR
:
2636 cmd
->result
= DID_ERROR
<< 16;
2637 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2640 case CMD_CONNECTION_LOST
:
2641 cmd
->result
= DID_ERROR
<< 16;
2642 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2646 /* Return now to avoid calling scsi_done(). */
2647 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2648 case CMD_ABORT_FAILED
:
2649 cmd
->result
= DID_ERROR
<< 16;
2650 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2653 case CMD_UNSOLICITED_ABORT
:
2654 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2655 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2659 cmd
->result
= DID_TIME_OUT
<< 16;
2660 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2663 case CMD_UNABORTABLE
:
2664 cmd
->result
= DID_ERROR
<< 16;
2665 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2667 case CMD_TMF_STATUS
:
2668 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2669 cmd
->result
= DID_ERROR
<< 16;
2671 case CMD_IOACCEL_DISABLED
:
2672 /* This only handles the direct pass-through case since RAID
2673 * offload is handled above. Just attempt a retry.
2675 cmd
->result
= DID_SOFT_ERROR
<< 16;
2676 dev_warn(&h
->pdev
->dev
,
2677 "cp %p had HP SSD Smart Path error\n", cp
);
2680 cmd
->result
= DID_ERROR
<< 16;
2681 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2682 cp
, ei
->CommandStatus
);
2685 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2688 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2689 struct CommandList
*c
, int sg_used
, int data_direction
)
2693 for (i
= 0; i
< sg_used
; i
++)
2694 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2695 le32_to_cpu(c
->SG
[i
].Len
),
2699 static int hpsa_map_one(struct pci_dev
*pdev
,
2700 struct CommandList
*cp
,
2707 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2708 cp
->Header
.SGList
= 0;
2709 cp
->Header
.SGTotal
= cpu_to_le16(0);
2713 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2714 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2715 /* Prevent subsequent unmap of something never mapped */
2716 cp
->Header
.SGList
= 0;
2717 cp
->Header
.SGTotal
= cpu_to_le16(0);
2720 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2721 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2722 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2723 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2724 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2728 #define NO_TIMEOUT ((unsigned long) -1)
2729 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2731 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2733 DECLARE_COMPLETION_ONSTACK(wait
);
2736 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2737 if (timeout_msecs
== NO_TIMEOUT
) {
2738 /* TODO: get rid of this no-timeout thing */
2739 wait_for_completion_io(&wait
);
2742 if (!wait_for_completion_io_timeout(&wait
,
2743 msecs_to_jiffies(timeout_msecs
))) {
2744 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2750 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2751 int reply_queue
, unsigned long timeout_msecs
)
2753 if (unlikely(lockup_detected(h
))) {
2754 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2757 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2760 static u32
lockup_detected(struct ctlr_info
*h
)
2763 u32 rc
, *lockup_detected
;
2766 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2767 rc
= *lockup_detected
;
2772 #define MAX_DRIVER_CMD_RETRIES 25
2773 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2774 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2776 int backoff_time
= 10, retry_count
= 0;
2780 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2781 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2786 if (retry_count
> 3) {
2787 msleep(backoff_time
);
2788 if (backoff_time
< 1000)
2791 } while ((check_for_unit_attention(h
, c
) ||
2792 check_for_busy(h
, c
)) &&
2793 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2794 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2795 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2800 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2801 struct CommandList
*c
)
2803 const u8
*cdb
= c
->Request
.CDB
;
2804 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2806 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2809 lun
[4], lun
[5], lun
[6], lun
[7],
2810 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2811 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2812 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2813 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2816 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2817 struct CommandList
*cp
)
2819 const struct ErrorInfo
*ei
= cp
->err_info
;
2820 struct device
*d
= &cp
->h
->pdev
->dev
;
2821 u8 sense_key
, asc
, ascq
;
2824 switch (ei
->CommandStatus
) {
2825 case CMD_TARGET_STATUS
:
2826 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2827 sense_len
= sizeof(ei
->SenseInfo
);
2829 sense_len
= ei
->SenseLen
;
2830 decode_sense_data(ei
->SenseInfo
, sense_len
,
2831 &sense_key
, &asc
, &ascq
);
2832 hpsa_print_cmd(h
, "SCSI status", cp
);
2833 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2834 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835 sense_key
, asc
, ascq
);
2837 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2838 if (ei
->ScsiStatus
== 0)
2839 dev_warn(d
, "SCSI status is abnormally zero. "
2840 "(probably indicates selection timeout "
2841 "reported incorrectly due to a known "
2842 "firmware bug, circa July, 2001.)\n");
2844 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2846 case CMD_DATA_OVERRUN
:
2847 hpsa_print_cmd(h
, "overrun condition", cp
);
2850 /* controller unfortunately reports SCSI passthru's
2851 * to non-existent targets as invalid commands.
2853 hpsa_print_cmd(h
, "invalid command", cp
);
2854 dev_warn(d
, "probably means device no longer present\n");
2857 case CMD_PROTOCOL_ERR
:
2858 hpsa_print_cmd(h
, "protocol error", cp
);
2860 case CMD_HARDWARE_ERR
:
2861 hpsa_print_cmd(h
, "hardware error", cp
);
2863 case CMD_CONNECTION_LOST
:
2864 hpsa_print_cmd(h
, "connection lost", cp
);
2867 hpsa_print_cmd(h
, "aborted", cp
);
2869 case CMD_ABORT_FAILED
:
2870 hpsa_print_cmd(h
, "abort failed", cp
);
2872 case CMD_UNSOLICITED_ABORT
:
2873 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2876 hpsa_print_cmd(h
, "timed out", cp
);
2878 case CMD_UNABORTABLE
:
2879 hpsa_print_cmd(h
, "unabortable", cp
);
2881 case CMD_CTLR_LOCKUP
:
2882 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2885 hpsa_print_cmd(h
, "unknown status", cp
);
2886 dev_warn(d
, "Unknown command status %x\n",
2891 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2892 u16 page
, unsigned char *buf
,
2893 unsigned char bufsize
)
2896 struct CommandList
*c
;
2897 struct ErrorInfo
*ei
;
2901 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2902 page
, scsi3addr
, TYPE_CMD
)) {
2906 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2907 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
2911 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2912 hpsa_scsi_interpret_error(h
, c
);
2920 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2921 u8 reset_type
, int reply_queue
)
2924 struct CommandList
*c
;
2925 struct ErrorInfo
*ei
;
2930 /* fill_cmd can't fail here, no data buffer to map. */
2931 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2932 scsi3addr
, TYPE_MSG
);
2933 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
2935 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2938 /* no unmap needed here because no data xfer. */
2941 if (ei
->CommandStatus
!= 0) {
2942 hpsa_scsi_interpret_error(h
, c
);
2950 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2951 struct hpsa_scsi_dev_t
*dev
,
2952 unsigned char *scsi3addr
)
2956 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2957 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2959 if (hpsa_is_cmd_idle(c
))
2962 switch (c
->cmd_type
) {
2964 case CMD_IOCTL_PEND
:
2965 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2966 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2971 if (c
->phys_disk
== dev
) {
2972 /* HBA mode match */
2975 /* Possible RAID mode -- check each phys dev. */
2976 /* FIXME: Do we need to take out a lock here? If
2977 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2979 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2980 /* FIXME: an alternate test might be
2982 * match = dev->phys_disk[i]->ioaccel_handle
2983 * == c2->scsi_nexus; */
2984 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2990 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2991 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2992 le32_to_cpu(ac
->it_nexus
);
2996 case 0: /* The command is in the middle of being initialized. */
3001 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3009 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3010 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
3015 /* We can really only handle one reset at a time */
3016 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3017 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3021 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
3023 for (i
= 0; i
< h
->nr_cmds
; i
++) {
3024 struct CommandList
*c
= h
->cmd_pool
+ i
;
3025 int refcount
= atomic_inc_return(&c
->refcount
);
3027 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
3028 unsigned long flags
;
3031 * Mark the target command as having a reset pending,
3032 * then lock a lock so that the command cannot complete
3033 * while we're considering it. If the command is not
3034 * idle then count it; otherwise revoke the event.
3036 c
->reset_pending
= dev
;
3037 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
3038 if (!hpsa_is_cmd_idle(c
))
3039 atomic_inc(&dev
->reset_cmds_out
);
3041 c
->reset_pending
= NULL
;
3042 spin_unlock_irqrestore(&h
->lock
, flags
);
3048 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
3050 wait_event(h
->event_sync_wait_queue
,
3051 atomic_read(&dev
->reset_cmds_out
) == 0 ||
3052 lockup_detected(h
));
3054 if (unlikely(lockup_detected(h
))) {
3055 dev_warn(&h
->pdev
->dev
,
3056 "Controller lockup detected during reset wait\n");
3061 atomic_set(&dev
->reset_cmds_out
, 0);
3063 mutex_unlock(&h
->reset_mutex
);
3067 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3068 unsigned char *scsi3addr
, unsigned char *raid_level
)
3073 *raid_level
= RAID_UNKNOWN
;
3074 buf
= kzalloc(64, GFP_KERNEL
);
3077 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
3079 *raid_level
= buf
[8];
3080 if (*raid_level
> RAID_UNKNOWN
)
3081 *raid_level
= RAID_UNKNOWN
;
3086 #define HPSA_MAP_DEBUG
3087 #ifdef HPSA_MAP_DEBUG
3088 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3089 struct raid_map_data
*map_buff
)
3091 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3093 u16 map_cnt
, row_cnt
, disks_per_row
;
3098 /* Show details only if debugging has been activated. */
3099 if (h
->raid_offload_debug
< 2)
3102 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3103 le32_to_cpu(map_buff
->structure_size
));
3104 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3105 le32_to_cpu(map_buff
->volume_blk_size
));
3106 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3107 le64_to_cpu(map_buff
->volume_blk_cnt
));
3108 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3109 map_buff
->phys_blk_shift
);
3110 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3111 map_buff
->parity_rotation_shift
);
3112 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3113 le16_to_cpu(map_buff
->strip_size
));
3114 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3115 le64_to_cpu(map_buff
->disk_starting_blk
));
3116 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3117 le64_to_cpu(map_buff
->disk_blk_cnt
));
3118 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3119 le16_to_cpu(map_buff
->data_disks_per_row
));
3120 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3121 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3122 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3123 le16_to_cpu(map_buff
->row_cnt
));
3124 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3125 le16_to_cpu(map_buff
->layout_map_count
));
3126 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3127 le16_to_cpu(map_buff
->flags
));
3128 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
3129 le16_to_cpu(map_buff
->flags
) &
3130 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3131 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3132 le16_to_cpu(map_buff
->dekindex
));
3133 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3134 for (map
= 0; map
< map_cnt
; map
++) {
3135 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3136 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3137 for (row
= 0; row
< row_cnt
; row
++) {
3138 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3140 le16_to_cpu(map_buff
->data_disks_per_row
);
3141 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3142 dev_info(&h
->pdev
->dev
,
3143 " D%02u: h=0x%04x xor=%u,%u\n",
3144 col
, dd
->ioaccel_handle
,
3145 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3147 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3148 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3149 dev_info(&h
->pdev
->dev
,
3150 " M%02u: h=0x%04x xor=%u,%u\n",
3151 col
, dd
->ioaccel_handle
,
3152 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3157 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3158 __attribute__((unused
)) int rc
,
3159 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3164 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3165 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3168 struct CommandList
*c
;
3169 struct ErrorInfo
*ei
;
3173 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3174 sizeof(this_device
->raid_map
), 0,
3175 scsi3addr
, TYPE_CMD
)) {
3176 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3180 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3181 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3185 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3186 hpsa_scsi_interpret_error(h
, c
);
3192 /* @todo in the future, dynamically allocate RAID map memory */
3193 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3194 sizeof(this_device
->raid_map
)) {
3195 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3198 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3205 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3206 unsigned char scsi3addr
[], u16 bmic_device_index
,
3207 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3210 struct CommandList
*c
;
3211 struct ErrorInfo
*ei
;
3215 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3216 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3220 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3221 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3223 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3224 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3228 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3229 hpsa_scsi_interpret_error(h
, c
);
3237 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3238 struct bmic_identify_controller
*buf
, size_t bufsize
)
3241 struct CommandList
*c
;
3242 struct ErrorInfo
*ei
;
3246 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3247 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3251 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3252 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3256 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3257 hpsa_scsi_interpret_error(h
, c
);
3265 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3266 unsigned char scsi3addr
[], u16 bmic_device_index
,
3267 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3270 struct CommandList
*c
;
3271 struct ErrorInfo
*ei
;
3274 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3275 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3279 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3280 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3282 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3285 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3286 hpsa_scsi_interpret_error(h
, c
);
3296 * get enclosure information
3297 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299 * Uses id_physical_device to determine the box_index.
3301 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3302 unsigned char *scsi3addr
,
3303 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3304 struct hpsa_scsi_dev_t
*encl_dev
)
3307 struct CommandList
*c
= NULL
;
3308 struct ErrorInfo
*ei
= NULL
;
3309 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3310 struct bmic_identify_physical_device
*id_phys
= NULL
;
3311 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3312 u16 bmic_device_index
= 0;
3314 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3316 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3321 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3325 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3329 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3330 id_phys
, sizeof(*id_phys
));
3332 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3333 __func__
, encl_dev
->external
, bmic_device_index
);
3339 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3340 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3345 if (id_phys
->phys_connector
[1] == 'E')
3346 c
->Request
.CDB
[5] = id_phys
->box_index
;
3348 c
->Request
.CDB
[5] = 0;
3350 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3356 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3361 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3362 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3363 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3374 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3375 "Error, could not get enclosure information\n");
3378 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3379 unsigned char *scsi3addr
)
3381 struct ReportExtendedLUNdata
*physdev
;
3386 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3390 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3391 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3395 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3397 for (i
= 0; i
< nphysicals
; i
++)
3398 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3399 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3408 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3409 struct hpsa_scsi_dev_t
*dev
)
3414 if (is_hba_lunid(scsi3addr
)) {
3415 struct bmic_sense_subsystem_info
*ssi
;
3417 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3419 dev_warn(&h
->pdev
->dev
,
3420 "%s: out of memory\n", __func__
);
3424 rc
= hpsa_bmic_sense_subsystem_information(h
,
3425 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3427 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3428 h
->sas_address
= sa
;
3433 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3435 dev
->sas_address
= sa
;
3438 /* Get a device id from inquiry page 0x83 */
3439 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
3440 unsigned char scsi3addr
[], u8 page
)
3445 unsigned char *buf
, bufsize
;
3447 buf
= kzalloc(256, GFP_KERNEL
);
3451 /* Get the size of the page list first */
3452 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3453 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3454 buf
, HPSA_VPD_HEADER_SZ
);
3456 goto exit_unsupported
;
3458 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3459 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3463 /* Get the whole VPD page list */
3464 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3465 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3468 goto exit_unsupported
;
3471 for (i
= 1; i
<= pages
; i
++)
3472 if (buf
[3 + i
] == page
)
3473 goto exit_supported
;
3482 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3483 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3489 this_device
->offload_config
= 0;
3490 this_device
->offload_enabled
= 0;
3491 this_device
->offload_to_be_enabled
= 0;
3493 buf
= kzalloc(64, GFP_KERNEL
);
3496 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3498 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3499 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3503 #define IOACCEL_STATUS_BYTE 4
3504 #define OFFLOAD_CONFIGURED_BIT 0x01
3505 #define OFFLOAD_ENABLED_BIT 0x02
3506 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3507 this_device
->offload_config
=
3508 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3509 if (this_device
->offload_config
) {
3510 this_device
->offload_enabled
=
3511 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3512 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3513 this_device
->offload_enabled
= 0;
3515 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3521 /* Get the device id from inquiry page 0x83 */
3522 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3523 unsigned char *device_id
, int index
, int buflen
)
3530 buf
= kzalloc(64, GFP_KERNEL
);
3533 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3535 memcpy(device_id
, &buf
[index
], buflen
);
3542 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3543 void *buf
, int bufsize
,
3544 int extended_response
)
3547 struct CommandList
*c
;
3548 unsigned char scsi3addr
[8];
3549 struct ErrorInfo
*ei
;
3553 /* address the controller */
3554 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3555 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3556 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3560 if (extended_response
)
3561 c
->Request
.CDB
[1] = extended_response
;
3562 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3563 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
3567 if (ei
->CommandStatus
!= 0 &&
3568 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3569 hpsa_scsi_interpret_error(h
, c
);
3572 struct ReportLUNdata
*rld
= buf
;
3574 if (rld
->extended_response_flag
!= extended_response
) {
3575 dev_err(&h
->pdev
->dev
,
3576 "report luns requested format %u, got %u\n",
3578 rld
->extended_response_flag
);
3587 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3588 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3590 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3591 HPSA_REPORT_PHYS_EXTENDED
);
3594 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3595 struct ReportLUNdata
*buf
, int bufsize
)
3597 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3600 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3601 int bus
, int target
, int lun
)
3604 device
->target
= target
;
3608 /* Use VPD inquiry to get details of volume status */
3609 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3610 unsigned char scsi3addr
[])
3617 buf
= kzalloc(64, GFP_KERNEL
);
3619 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3621 /* Does controller have VPD for logical volume status? */
3622 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3625 /* Get the size of the VPD return buffer */
3626 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3627 buf
, HPSA_VPD_HEADER_SZ
);
3632 /* Now get the whole VPD buffer */
3633 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3634 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3637 status
= buf
[4]; /* status byte */
3643 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3646 /* Determine offline status of a volume.
3649 * 0xff (offline for unknown reasons)
3650 * # (integer code indicating one of several NOT READY states
3651 * describing why a volume is to be kept offline)
3653 static int hpsa_volume_offline(struct ctlr_info
*h
,
3654 unsigned char scsi3addr
[])
3656 struct CommandList
*c
;
3657 unsigned char *sense
;
3658 u8 sense_key
, asc
, ascq
;
3663 #define ASC_LUN_NOT_READY 0x04
3664 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3669 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3670 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3676 sense
= c
->err_info
->SenseInfo
;
3677 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3678 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3680 sense_len
= c
->err_info
->SenseLen
;
3681 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3682 cmd_status
= c
->err_info
->CommandStatus
;
3683 scsi_status
= c
->err_info
->ScsiStatus
;
3685 /* Is the volume 'not ready'? */
3686 if (cmd_status
!= CMD_TARGET_STATUS
||
3687 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
3688 sense_key
!= NOT_READY
||
3689 asc
!= ASC_LUN_NOT_READY
) {
3693 /* Determine the reason for not ready state */
3694 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3696 /* Keep volume offline in certain cases: */
3698 case HPSA_LV_UNDERGOING_ERASE
:
3699 case HPSA_LV_NOT_AVAILABLE
:
3700 case HPSA_LV_UNDERGOING_RPI
:
3701 case HPSA_LV_PENDING_RPI
:
3702 case HPSA_LV_ENCRYPTED_NO_KEY
:
3703 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3704 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3705 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3706 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3708 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3709 /* If VPD status page isn't available,
3710 * use ASC/ASCQ to determine state
3712 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3713 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3723 * Find out if a logical device supports aborts by simply trying one.
3724 * Smart Array may claim not to support aborts on logical drives, but
3725 * if a MSA2000 * is connected, the drives on that will be presented
3726 * by the Smart Array as logical drives, and aborts may be sent to
3727 * those devices successfully. So the simplest way to find out is
3728 * to simply try an abort and see how the device responds.
3730 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3731 unsigned char *scsi3addr
)
3733 struct CommandList
*c
;
3734 struct ErrorInfo
*ei
;
3737 u64 tag
= (u64
) -1; /* bogus tag */
3739 /* Assume that physical devices support aborts */
3740 if (!is_logical_dev_addr_mode(scsi3addr
))
3745 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3746 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3748 /* no unmap needed here because no data xfer. */
3750 switch (ei
->CommandStatus
) {
3754 case CMD_UNABORTABLE
:
3755 case CMD_ABORT_FAILED
:
3758 case CMD_TMF_STATUS
:
3759 rc
= hpsa_evaluate_tmf_status(h
, c
);
3769 static int hpsa_update_device_info(struct ctlr_info
*h
,
3770 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3771 unsigned char *is_OBDR_device
)
3774 #define OBDR_SIG_OFFSET 43
3775 #define OBDR_TAPE_SIG "$DR-10"
3776 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3779 unsigned char *inq_buff
;
3780 unsigned char *obdr_sig
;
3783 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3789 /* Do an inquiry to the device to see what it is. */
3790 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3791 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3792 /* Inquiry failed (msg printed already) */
3793 dev_err(&h
->pdev
->dev
,
3794 "hpsa_update_device_info: inquiry failed\n");
3799 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3800 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3802 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3803 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3804 memcpy(this_device
->vendor
, &inq_buff
[8],
3805 sizeof(this_device
->vendor
));
3806 memcpy(this_device
->model
, &inq_buff
[16],
3807 sizeof(this_device
->model
));
3808 memset(this_device
->device_id
, 0,
3809 sizeof(this_device
->device_id
));
3810 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3811 sizeof(this_device
->device_id
));
3813 if ((this_device
->devtype
== TYPE_DISK
||
3814 this_device
->devtype
== TYPE_ZBC
) &&
3815 is_logical_dev_addr_mode(scsi3addr
)) {
3818 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3819 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3820 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3821 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3822 if (volume_offline
< 0 || volume_offline
> 0xff)
3823 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3824 this_device
->volume_offline
= volume_offline
& 0xff;
3826 this_device
->raid_level
= RAID_UNKNOWN
;
3827 this_device
->offload_config
= 0;
3828 this_device
->offload_enabled
= 0;
3829 this_device
->offload_to_be_enabled
= 0;
3830 this_device
->hba_ioaccel_enabled
= 0;
3831 this_device
->volume_offline
= 0;
3832 this_device
->queue_depth
= h
->nr_cmds
;
3835 if (is_OBDR_device
) {
3836 /* See if this is a One-Button-Disaster-Recovery device
3837 * by looking for "$DR-10" at offset 43 in inquiry data.
3839 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3840 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3841 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3842 OBDR_SIG_LEN
) == 0);
3852 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3853 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3855 unsigned long flags
;
3858 * See if this device supports aborts. If we already know
3859 * the device, we already know if it supports aborts, otherwise
3860 * we have to find out if it supports aborts by trying one.
3862 spin_lock_irqsave(&h
->devlock
, flags
);
3863 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3864 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3865 entry
>= 0 && entry
< h
->ndevices
) {
3866 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3867 spin_unlock_irqrestore(&h
->devlock
, flags
);
3869 spin_unlock_irqrestore(&h
->devlock
, flags
);
3870 dev
->supports_aborts
=
3871 hpsa_device_supports_aborts(h
, scsi3addr
);
3872 if (dev
->supports_aborts
< 0)
3873 dev
->supports_aborts
= 0;
3878 * Helper function to assign bus, target, lun mapping of devices.
3879 * Logical drive target and lun are assigned at this time, but
3880 * physical device lun and target assignment are deferred (assigned
3881 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3883 static void figure_bus_target_lun(struct ctlr_info
*h
,
3884 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3886 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3888 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3889 /* physical device, target and lun filled in later */
3890 if (is_hba_lunid(lunaddrbytes
))
3891 hpsa_set_bus_target_lun(device
,
3892 HPSA_HBA_BUS
, 0, lunid
& 0x3fff);
3894 /* defer target, lun assignment for physical devices */
3895 hpsa_set_bus_target_lun(device
,
3896 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3899 /* It's a logical device */
3900 if (device
->external
) {
3901 hpsa_set_bus_target_lun(device
,
3902 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3906 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3912 * Get address of physical disk used for an ioaccel2 mode command:
3913 * 1. Extract ioaccel2 handle from the command.
3914 * 2. Find a matching ioaccel2 handle from list of physical disks.
3916 * 1 and set scsi3addr to address of matching physical
3917 * 0 if no matching physical disk was found.
3919 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3920 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3922 struct io_accel2_cmd
*c2
=
3923 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3924 unsigned long flags
;
3927 spin_lock_irqsave(&h
->devlock
, flags
);
3928 for (i
= 0; i
< h
->ndevices
; i
++)
3929 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3930 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3931 sizeof(h
->dev
[i
]->scsi3addr
));
3932 spin_unlock_irqrestore(&h
->devlock
, flags
);
3935 spin_unlock_irqrestore(&h
->devlock
, flags
);
3939 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3940 int i
, int nphysicals
, int nlocal_logicals
)
3942 /* In report logicals, local logicals are listed first,
3943 * then any externals.
3945 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3947 if (i
== raid_ctlr_position
)
3950 if (i
< logicals_start
)
3953 /* i is in logicals range, but still within local logicals */
3954 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
3957 return 1; /* it's an external lun */
3961 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3962 * logdev. The number of luns in physdev and logdev are returned in
3963 * *nphysicals and *nlogicals, respectively.
3964 * Returns 0 on success, -1 otherwise.
3966 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3967 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3968 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3970 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3971 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3974 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3975 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3976 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3978 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3980 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3981 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3984 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3985 /* Reject Logicals in excess of our max capability. */
3986 if (*nlogicals
> HPSA_MAX_LUN
) {
3987 dev_warn(&h
->pdev
->dev
,
3988 "maximum logical LUNs (%d) exceeded. "
3989 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3990 *nlogicals
- HPSA_MAX_LUN
);
3991 *nlogicals
= HPSA_MAX_LUN
;
3993 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3994 dev_warn(&h
->pdev
->dev
,
3995 "maximum logical + physical LUNs (%d) exceeded. "
3996 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3997 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3998 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4003 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4004 int i
, int nphysicals
, int nlogicals
,
4005 struct ReportExtendedLUNdata
*physdev_list
,
4006 struct ReportLUNdata
*logdev_list
)
4008 /* Helper function, figure out where the LUN ID info is coming from
4009 * given index i, lists of physical and logical devices, where in
4010 * the list the raid controller is supposed to appear (first or last)
4013 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4014 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4016 if (i
== raid_ctlr_position
)
4017 return RAID_CTLR_LUNID
;
4019 if (i
< logicals_start
)
4020 return &physdev_list
->LUN
[i
-
4021 (raid_ctlr_position
== 0)].lunid
[0];
4023 if (i
< last_device
)
4024 return &logdev_list
->LUN
[i
- nphysicals
-
4025 (raid_ctlr_position
== 0)][0];
4030 /* get physical drive ioaccel handle and queue depth */
4031 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4032 struct hpsa_scsi_dev_t
*dev
,
4033 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4034 struct bmic_identify_physical_device
*id_phys
)
4037 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4039 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4040 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4041 dev
->hba_ioaccel_enabled
= 1;
4042 memset(id_phys
, 0, sizeof(*id_phys
));
4043 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4044 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4047 /* Reserve space for FW operations */
4048 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4049 #define DRIVE_QUEUE_DEPTH 7
4051 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4052 DRIVE_CMDS_RESERVED_FOR_FW
;
4054 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4057 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4058 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4059 struct bmic_identify_physical_device
*id_phys
)
4061 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
4063 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4064 this_device
->hba_ioaccel_enabled
= 1;
4066 memcpy(&this_device
->active_path_index
,
4067 &id_phys
->active_path_number
,
4068 sizeof(this_device
->active_path_index
));
4069 memcpy(&this_device
->path_map
,
4070 &id_phys
->redundant_path_present_map
,
4071 sizeof(this_device
->path_map
));
4072 memcpy(&this_device
->box
,
4073 &id_phys
->alternate_paths_phys_box_on_port
,
4074 sizeof(this_device
->box
));
4075 memcpy(&this_device
->phys_connector
,
4076 &id_phys
->alternate_paths_phys_connector
,
4077 sizeof(this_device
->phys_connector
));
4078 memcpy(&this_device
->bay
,
4079 &id_phys
->phys_bay_in_box
,
4080 sizeof(this_device
->bay
));
4083 /* get number of local logical disks. */
4084 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4085 struct bmic_identify_controller
*id_ctlr
,
4091 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4095 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4096 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4098 if (id_ctlr
->configured_logical_drive_count
< 256)
4099 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4101 *nlocals
= le16_to_cpu(
4102 id_ctlr
->extended_logical_unit_count
);
4108 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4110 struct bmic_identify_physical_device
*id_phys
;
4111 bool is_spare
= false;
4114 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4118 rc
= hpsa_bmic_id_physical_device(h
,
4120 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4121 id_phys
, sizeof(*id_phys
));
4123 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4129 #define RPL_DEV_FLAG_NON_DISK 0x1
4130 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4131 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4133 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4135 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4136 struct ext_report_lun_entry
*rle
)
4141 if (!MASKED_DEVICE(lunaddrbytes
))
4144 device_flags
= rle
->device_flags
;
4145 device_type
= rle
->device_type
;
4147 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4148 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4153 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4156 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4160 * Spares may be spun down, we do not want to
4161 * do an Inquiry to a RAID set spare drive as
4162 * that would have them spun up, that is a
4163 * performance hit because I/O to the RAID device
4164 * stops while the spin up occurs which can take
4167 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4173 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4175 /* the idea here is we could get notified
4176 * that some devices have changed, so we do a report
4177 * physical luns and report logical luns cmd, and adjust
4178 * our list of devices accordingly.
4180 * The scsi3addr's of devices won't change so long as the
4181 * adapter is not reset. That means we can rescan and
4182 * tell which devices we already know about, vs. new
4183 * devices, vs. disappearing devices.
4185 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4186 struct ReportLUNdata
*logdev_list
= NULL
;
4187 struct bmic_identify_physical_device
*id_phys
= NULL
;
4188 struct bmic_identify_controller
*id_ctlr
= NULL
;
4191 u32 nlocal_logicals
= 0;
4192 u32 ndev_allocated
= 0;
4193 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4195 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4196 int raid_ctlr_position
;
4197 bool physical_device
;
4198 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4200 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4201 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4202 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4203 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4204 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4205 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4207 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4208 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4209 dev_err(&h
->pdev
->dev
, "out of memory\n");
4212 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4214 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4216 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4217 logdev_list
, &nlogicals
)) {
4218 h
->drv_req_rescan
= 1;
4222 /* Set number of local logicals (non PTRAID) */
4223 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4224 dev_warn(&h
->pdev
->dev
,
4225 "%s: Can't determine number of local logical devices.\n",
4229 /* We might see up to the maximum number of logical and physical disks
4230 * plus external target devices, and a device for the local RAID
4233 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4235 /* Allocate the per device structures */
4236 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4237 if (i
>= HPSA_MAX_DEVICES
) {
4238 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4239 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4240 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4244 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4245 if (!currentsd
[i
]) {
4246 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
4247 __FILE__
, __LINE__
);
4248 h
->drv_req_rescan
= 1;
4254 if (is_scsi_rev_5(h
))
4255 raid_ctlr_position
= 0;
4257 raid_ctlr_position
= nphysicals
+ nlogicals
;
4259 /* adjust our table of devices */
4260 n_ext_target_devs
= 0;
4261 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4262 u8
*lunaddrbytes
, is_OBDR
= 0;
4264 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4265 bool skip_device
= false;
4267 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4269 /* Figure out where the LUN ID info is coming from */
4270 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4271 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4274 * Skip over some devices such as a spare.
4276 if (!tmpdevice
->external
&& physical_device
) {
4277 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4278 &physdev_list
->LUN
[phys_dev_index
]);
4283 /* Get device type, vendor, model, device id */
4284 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4286 if (rc
== -ENOMEM
) {
4287 dev_warn(&h
->pdev
->dev
,
4288 "Out of memory, rescan deferred.\n");
4289 h
->drv_req_rescan
= 1;
4293 dev_warn(&h
->pdev
->dev
,
4294 "Inquiry failed, skipping device.\n");
4298 /* Determine if this is a lun from an external target array */
4299 tmpdevice
->external
=
4300 figure_external_status(h
, raid_ctlr_position
, i
,
4301 nphysicals
, nlocal_logicals
);
4303 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4304 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
4305 this_device
= currentsd
[ncurrent
];
4307 /* Turn on discovery_polling if there are ext target devices.
4308 * Event-based change notification is unreliable for those.
4310 if (!h
->discovery_polling
) {
4311 if (tmpdevice
->external
) {
4312 h
->discovery_polling
= 1;
4313 dev_info(&h
->pdev
->dev
,
4314 "External target, activate discovery polling.\n");
4319 *this_device
= *tmpdevice
;
4320 this_device
->physical_device
= physical_device
;
4323 * Expose all devices except for physical devices that
4326 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4327 this_device
->expose_device
= 0;
4329 this_device
->expose_device
= 1;
4333 * Get the SAS address for physical devices that are exposed.
4335 if (this_device
->physical_device
&& this_device
->expose_device
)
4336 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4338 switch (this_device
->devtype
) {
4340 /* We don't *really* support actual CD-ROM devices,
4341 * just "One Button Disaster Recovery" tape drive
4342 * which temporarily pretends to be a CD-ROM drive.
4343 * So we check that the device is really an OBDR tape
4344 * device by checking for "$DR-10" in bytes 43-48 of
4352 if (this_device
->physical_device
) {
4353 /* The disk is in HBA mode. */
4354 /* Never use RAID mapper in HBA mode. */
4355 this_device
->offload_enabled
= 0;
4356 hpsa_get_ioaccel_drive_info(h
, this_device
,
4357 physdev_list
, phys_dev_index
, id_phys
);
4358 hpsa_get_path_info(this_device
,
4359 physdev_list
, phys_dev_index
, id_phys
);
4364 case TYPE_MEDIUM_CHANGER
:
4367 case TYPE_ENCLOSURE
:
4368 if (!this_device
->external
)
4369 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4370 physdev_list
, phys_dev_index
,
4375 /* Only present the Smartarray HBA as a RAID controller.
4376 * If it's a RAID controller other than the HBA itself
4377 * (an external RAID controller, MSA500 or similar)
4380 if (!is_hba_lunid(lunaddrbytes
))
4387 if (ncurrent
>= HPSA_MAX_DEVICES
)
4391 if (h
->sas_host
== NULL
) {
4394 rc
= hpsa_add_sas_host(h
);
4396 dev_warn(&h
->pdev
->dev
,
4397 "Could not add sas host %d\n", rc
);
4402 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4405 for (i
= 0; i
< ndev_allocated
; i
++)
4406 kfree(currentsd
[i
]);
4408 kfree(physdev_list
);
4414 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4415 struct scatterlist
*sg
)
4417 u64 addr64
= (u64
) sg_dma_address(sg
);
4418 unsigned int len
= sg_dma_len(sg
);
4420 desc
->Addr
= cpu_to_le64(addr64
);
4421 desc
->Len
= cpu_to_le32(len
);
4426 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4427 * dma mapping and fills in the scatter gather entries of the
4430 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4431 struct CommandList
*cp
,
4432 struct scsi_cmnd
*cmd
)
4434 struct scatterlist
*sg
;
4435 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4436 struct SGDescriptor
*curr_sg
;
4438 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4440 use_sg
= scsi_dma_map(cmd
);
4445 goto sglist_finished
;
4448 * If the number of entries is greater than the max for a single list,
4449 * then we have a chained list; we will set up all but one entry in the
4450 * first list (the last entry is saved for link information);
4451 * otherwise, we don't have a chained list and we'll set up at each of
4452 * the entries in the one list.
4455 chained
= use_sg
> h
->max_cmd_sg_entries
;
4456 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4457 last_sg
= scsi_sg_count(cmd
) - 1;
4458 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4459 hpsa_set_sg_descriptor(curr_sg
, sg
);
4465 * Continue with the chained list. Set curr_sg to the chained
4466 * list. Modify the limit to the total count less the entries
4467 * we've already set up. Resume the scan at the list entry
4468 * where the previous loop left off.
4470 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4471 sg_limit
= use_sg
- sg_limit
;
4472 for_each_sg(sg
, sg
, sg_limit
, i
) {
4473 hpsa_set_sg_descriptor(curr_sg
, sg
);
4478 /* Back the pointer up to the last entry and mark it as "last". */
4479 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4481 if (use_sg
+ chained
> h
->maxSG
)
4482 h
->maxSG
= use_sg
+ chained
;
4485 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4486 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4487 if (hpsa_map_sg_chain_block(h
, cp
)) {
4488 scsi_dma_unmap(cmd
);
4496 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4497 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4501 #define IO_ACCEL_INELIGIBLE (1)
4502 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4508 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4515 if (*cdb_len
== 6) {
4516 block
= get_unaligned_be16(&cdb
[2]);
4521 BUG_ON(*cdb_len
!= 12);
4522 block
= get_unaligned_be32(&cdb
[2]);
4523 block_cnt
= get_unaligned_be32(&cdb
[6]);
4525 if (block_cnt
> 0xffff)
4526 return IO_ACCEL_INELIGIBLE
;
4528 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4530 cdb
[2] = (u8
) (block
>> 24);
4531 cdb
[3] = (u8
) (block
>> 16);
4532 cdb
[4] = (u8
) (block
>> 8);
4533 cdb
[5] = (u8
) (block
);
4535 cdb
[7] = (u8
) (block_cnt
>> 8);
4536 cdb
[8] = (u8
) (block_cnt
);
4544 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4545 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4546 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4548 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4549 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4551 unsigned int total_len
= 0;
4552 struct scatterlist
*sg
;
4555 struct SGDescriptor
*curr_sg
;
4556 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4558 /* TODO: implement chaining support */
4559 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4560 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4561 return IO_ACCEL_INELIGIBLE
;
4564 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4566 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4567 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4568 return IO_ACCEL_INELIGIBLE
;
4571 c
->cmd_type
= CMD_IOACCEL1
;
4573 /* Adjust the DMA address to point to the accelerated command buffer */
4574 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4575 (c
->cmdindex
* sizeof(*cp
));
4576 BUG_ON(c
->busaddr
& 0x0000007F);
4578 use_sg
= scsi_dma_map(cmd
);
4580 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4586 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4587 addr64
= (u64
) sg_dma_address(sg
);
4588 len
= sg_dma_len(sg
);
4590 curr_sg
->Addr
= cpu_to_le64(addr64
);
4591 curr_sg
->Len
= cpu_to_le32(len
);
4592 curr_sg
->Ext
= cpu_to_le32(0);
4595 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4597 switch (cmd
->sc_data_direction
) {
4599 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4601 case DMA_FROM_DEVICE
:
4602 control
|= IOACCEL1_CONTROL_DATA_IN
;
4605 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4608 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4609 cmd
->sc_data_direction
);
4614 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4617 c
->Header
.SGList
= use_sg
;
4618 /* Fill out the command structure to submit */
4619 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4620 cp
->transfer_len
= cpu_to_le32(total_len
);
4621 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4622 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4623 cp
->control
= cpu_to_le32(control
);
4624 memcpy(cp
->CDB
, cdb
, cdb_len
);
4625 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4626 /* Tag was already set at init time. */
4627 enqueue_cmd_and_start_io(h
, c
);
4632 * Queue a command directly to a device behind the controller using the
4633 * I/O accelerator path.
4635 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4636 struct CommandList
*c
)
4638 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4639 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4643 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4644 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4648 * Set encryption parameters for the ioaccel2 request
4650 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4651 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4653 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4654 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4655 struct raid_map_data
*map
= &dev
->raid_map
;
4658 /* Are we doing encryption on this device */
4659 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4661 /* Set the data encryption key index. */
4662 cp
->dekindex
= map
->dekindex
;
4664 /* Set the encryption enable flag, encoded into direction field. */
4665 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4667 /* Set encryption tweak values based on logical block address
4668 * If block size is 512, tweak value is LBA.
4669 * For other block sizes, tweak is (LBA * block size)/ 512)
4671 switch (cmd
->cmnd
[0]) {
4672 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4675 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4679 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4682 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4686 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4689 dev_err(&h
->pdev
->dev
,
4690 "ERROR: %s: size (0x%x) not supported for encryption\n",
4691 __func__
, cmd
->cmnd
[0]);
4696 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4697 first_block
= first_block
*
4698 le32_to_cpu(map
->volume_blk_size
)/512;
4700 cp
->tweak_lower
= cpu_to_le32(first_block
);
4701 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4704 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4705 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4706 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4708 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4709 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4710 struct ioaccel2_sg_element
*curr_sg
;
4712 struct scatterlist
*sg
;
4717 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4719 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4720 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4721 return IO_ACCEL_INELIGIBLE
;
4724 c
->cmd_type
= CMD_IOACCEL2
;
4725 /* Adjust the DMA address to point to the accelerated command buffer */
4726 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4727 (c
->cmdindex
* sizeof(*cp
));
4728 BUG_ON(c
->busaddr
& 0x0000007F);
4730 memset(cp
, 0, sizeof(*cp
));
4731 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4733 use_sg
= scsi_dma_map(cmd
);
4735 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4741 if (use_sg
> h
->ioaccel_maxsg
) {
4742 addr64
= le64_to_cpu(
4743 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4744 curr_sg
->address
= cpu_to_le64(addr64
);
4745 curr_sg
->length
= 0;
4746 curr_sg
->reserved
[0] = 0;
4747 curr_sg
->reserved
[1] = 0;
4748 curr_sg
->reserved
[2] = 0;
4749 curr_sg
->chain_indicator
= 0x80;
4751 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4753 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4754 addr64
= (u64
) sg_dma_address(sg
);
4755 len
= sg_dma_len(sg
);
4757 curr_sg
->address
= cpu_to_le64(addr64
);
4758 curr_sg
->length
= cpu_to_le32(len
);
4759 curr_sg
->reserved
[0] = 0;
4760 curr_sg
->reserved
[1] = 0;
4761 curr_sg
->reserved
[2] = 0;
4762 curr_sg
->chain_indicator
= 0;
4766 switch (cmd
->sc_data_direction
) {
4768 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4769 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4771 case DMA_FROM_DEVICE
:
4772 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4773 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4776 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4777 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4780 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4781 cmd
->sc_data_direction
);
4786 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4787 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4790 /* Set encryption parameters, if necessary */
4791 set_encrypt_ioaccel2(h
, c
, cp
);
4793 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4794 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4795 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4797 cp
->data_len
= cpu_to_le32(total_len
);
4798 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4799 offsetof(struct io_accel2_cmd
, error_data
));
4800 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4802 /* fill in sg elements */
4803 if (use_sg
> h
->ioaccel_maxsg
) {
4805 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4806 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4807 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4808 scsi_dma_unmap(cmd
);
4812 cp
->sg_count
= (u8
) use_sg
;
4814 enqueue_cmd_and_start_io(h
, c
);
4819 * Queue a command to the correct I/O accelerator path.
4821 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4822 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4823 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4825 /* Try to honor the device's queue depth */
4826 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4827 phys_disk
->queue_depth
) {
4828 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4829 return IO_ACCEL_INELIGIBLE
;
4831 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4832 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4833 cdb
, cdb_len
, scsi3addr
,
4836 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4837 cdb
, cdb_len
, scsi3addr
,
4841 static void raid_map_helper(struct raid_map_data
*map
,
4842 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4844 if (offload_to_mirror
== 0) {
4845 /* use physical disk in the first mirrored group. */
4846 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4850 /* determine mirror group that *map_index indicates */
4851 *current_group
= *map_index
/
4852 le16_to_cpu(map
->data_disks_per_row
);
4853 if (offload_to_mirror
== *current_group
)
4855 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4856 /* select map index from next group */
4857 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4860 /* select map index from first group */
4861 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4864 } while (offload_to_mirror
!= *current_group
);
4868 * Attempt to perform offload RAID mapping for a logical volume I/O.
4870 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4871 struct CommandList
*c
)
4873 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4874 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4875 struct raid_map_data
*map
= &dev
->raid_map
;
4876 struct raid_map_disk_data
*dd
= &map
->data
[0];
4879 u64 first_block
, last_block
;
4882 u64 first_row
, last_row
;
4883 u32 first_row_offset
, last_row_offset
;
4884 u32 first_column
, last_column
;
4885 u64 r0_first_row
, r0_last_row
;
4886 u32 r5or6_blocks_per_row
;
4887 u64 r5or6_first_row
, r5or6_last_row
;
4888 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4889 u32 r5or6_first_column
, r5or6_last_column
;
4890 u32 total_disks_per_row
;
4892 u32 first_group
, last_group
, current_group
;
4900 #if BITS_PER_LONG == 32
4903 int offload_to_mirror
;
4905 /* check for valid opcode, get LBA and block count */
4906 switch (cmd
->cmnd
[0]) {
4910 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4911 block_cnt
= cmd
->cmnd
[4];
4919 (((u64
) cmd
->cmnd
[2]) << 24) |
4920 (((u64
) cmd
->cmnd
[3]) << 16) |
4921 (((u64
) cmd
->cmnd
[4]) << 8) |
4924 (((u32
) cmd
->cmnd
[7]) << 8) |
4931 (((u64
) cmd
->cmnd
[2]) << 24) |
4932 (((u64
) cmd
->cmnd
[3]) << 16) |
4933 (((u64
) cmd
->cmnd
[4]) << 8) |
4936 (((u32
) cmd
->cmnd
[6]) << 24) |
4937 (((u32
) cmd
->cmnd
[7]) << 16) |
4938 (((u32
) cmd
->cmnd
[8]) << 8) |
4945 (((u64
) cmd
->cmnd
[2]) << 56) |
4946 (((u64
) cmd
->cmnd
[3]) << 48) |
4947 (((u64
) cmd
->cmnd
[4]) << 40) |
4948 (((u64
) cmd
->cmnd
[5]) << 32) |
4949 (((u64
) cmd
->cmnd
[6]) << 24) |
4950 (((u64
) cmd
->cmnd
[7]) << 16) |
4951 (((u64
) cmd
->cmnd
[8]) << 8) |
4954 (((u32
) cmd
->cmnd
[10]) << 24) |
4955 (((u32
) cmd
->cmnd
[11]) << 16) |
4956 (((u32
) cmd
->cmnd
[12]) << 8) |
4960 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4962 last_block
= first_block
+ block_cnt
- 1;
4964 /* check for write to non-RAID-0 */
4965 if (is_write
&& dev
->raid_level
!= 0)
4966 return IO_ACCEL_INELIGIBLE
;
4968 /* check for invalid block or wraparound */
4969 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4970 last_block
< first_block
)
4971 return IO_ACCEL_INELIGIBLE
;
4973 /* calculate stripe information for the request */
4974 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4975 le16_to_cpu(map
->strip_size
);
4976 strip_size
= le16_to_cpu(map
->strip_size
);
4977 #if BITS_PER_LONG == 32
4978 tmpdiv
= first_block
;
4979 (void) do_div(tmpdiv
, blocks_per_row
);
4981 tmpdiv
= last_block
;
4982 (void) do_div(tmpdiv
, blocks_per_row
);
4984 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4985 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4986 tmpdiv
= first_row_offset
;
4987 (void) do_div(tmpdiv
, strip_size
);
4988 first_column
= tmpdiv
;
4989 tmpdiv
= last_row_offset
;
4990 (void) do_div(tmpdiv
, strip_size
);
4991 last_column
= tmpdiv
;
4993 first_row
= first_block
/ blocks_per_row
;
4994 last_row
= last_block
/ blocks_per_row
;
4995 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4996 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4997 first_column
= first_row_offset
/ strip_size
;
4998 last_column
= last_row_offset
/ strip_size
;
5001 /* if this isn't a single row/column then give to the controller */
5002 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5003 return IO_ACCEL_INELIGIBLE
;
5005 /* proceeding with driver mapping */
5006 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5007 le16_to_cpu(map
->metadata_disks_per_row
);
5008 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5009 le16_to_cpu(map
->row_cnt
);
5010 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5012 switch (dev
->raid_level
) {
5014 break; /* nothing special to do */
5016 /* Handles load balance across RAID 1 members.
5017 * (2-drive R1 and R10 with even # of drives.)
5018 * Appropriate for SSDs, not optimal for HDDs
5020 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
5021 if (dev
->offload_to_mirror
)
5022 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5023 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5026 /* Handles N-way mirrors (R1-ADM)
5027 * and R10 with # of drives divisible by 3.)
5029 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
5031 offload_to_mirror
= dev
->offload_to_mirror
;
5032 raid_map_helper(map
, offload_to_mirror
,
5033 &map_index
, ¤t_group
);
5034 /* set mirror group to use next time */
5036 (offload_to_mirror
>=
5037 le16_to_cpu(map
->layout_map_count
) - 1)
5038 ? 0 : offload_to_mirror
+ 1;
5039 dev
->offload_to_mirror
= offload_to_mirror
;
5040 /* Avoid direct use of dev->offload_to_mirror within this
5041 * function since multiple threads might simultaneously
5042 * increment it beyond the range of dev->layout_map_count -1.
5047 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5050 /* Verify first and last block are in same RAID group */
5051 r5or6_blocks_per_row
=
5052 le16_to_cpu(map
->strip_size
) *
5053 le16_to_cpu(map
->data_disks_per_row
);
5054 BUG_ON(r5or6_blocks_per_row
== 0);
5055 stripesize
= r5or6_blocks_per_row
*
5056 le16_to_cpu(map
->layout_map_count
);
5057 #if BITS_PER_LONG == 32
5058 tmpdiv
= first_block
;
5059 first_group
= do_div(tmpdiv
, stripesize
);
5060 tmpdiv
= first_group
;
5061 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5062 first_group
= tmpdiv
;
5063 tmpdiv
= last_block
;
5064 last_group
= do_div(tmpdiv
, stripesize
);
5065 tmpdiv
= last_group
;
5066 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5067 last_group
= tmpdiv
;
5069 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5070 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5072 if (first_group
!= last_group
)
5073 return IO_ACCEL_INELIGIBLE
;
5075 /* Verify request is in a single row of RAID 5/6 */
5076 #if BITS_PER_LONG == 32
5077 tmpdiv
= first_block
;
5078 (void) do_div(tmpdiv
, stripesize
);
5079 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5080 tmpdiv
= last_block
;
5081 (void) do_div(tmpdiv
, stripesize
);
5082 r5or6_last_row
= r0_last_row
= tmpdiv
;
5084 first_row
= r5or6_first_row
= r0_first_row
=
5085 first_block
/ stripesize
;
5086 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5088 if (r5or6_first_row
!= r5or6_last_row
)
5089 return IO_ACCEL_INELIGIBLE
;
5092 /* Verify request is in a single column */
5093 #if BITS_PER_LONG == 32
5094 tmpdiv
= first_block
;
5095 first_row_offset
= do_div(tmpdiv
, stripesize
);
5096 tmpdiv
= first_row_offset
;
5097 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5098 r5or6_first_row_offset
= first_row_offset
;
5099 tmpdiv
= last_block
;
5100 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5101 tmpdiv
= r5or6_last_row_offset
;
5102 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5103 tmpdiv
= r5or6_first_row_offset
;
5104 (void) do_div(tmpdiv
, map
->strip_size
);
5105 first_column
= r5or6_first_column
= tmpdiv
;
5106 tmpdiv
= r5or6_last_row_offset
;
5107 (void) do_div(tmpdiv
, map
->strip_size
);
5108 r5or6_last_column
= tmpdiv
;
5110 first_row_offset
= r5or6_first_row_offset
=
5111 (u32
)((first_block
% stripesize
) %
5112 r5or6_blocks_per_row
);
5114 r5or6_last_row_offset
=
5115 (u32
)((last_block
% stripesize
) %
5116 r5or6_blocks_per_row
);
5118 first_column
= r5or6_first_column
=
5119 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5121 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5123 if (r5or6_first_column
!= r5or6_last_column
)
5124 return IO_ACCEL_INELIGIBLE
;
5126 /* Request is eligible */
5127 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5128 le16_to_cpu(map
->row_cnt
);
5130 map_index
= (first_group
*
5131 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5132 (map_row
* total_disks_per_row
) + first_column
;
5135 return IO_ACCEL_INELIGIBLE
;
5138 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5139 return IO_ACCEL_INELIGIBLE
;
5141 c
->phys_disk
= dev
->phys_disk
[map_index
];
5143 return IO_ACCEL_INELIGIBLE
;
5145 disk_handle
= dd
[map_index
].ioaccel_handle
;
5146 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5147 first_row
* le16_to_cpu(map
->strip_size
) +
5148 (first_row_offset
- first_column
*
5149 le16_to_cpu(map
->strip_size
));
5150 disk_block_cnt
= block_cnt
;
5152 /* handle differing logical/physical block sizes */
5153 if (map
->phys_blk_shift
) {
5154 disk_block
<<= map
->phys_blk_shift
;
5155 disk_block_cnt
<<= map
->phys_blk_shift
;
5157 BUG_ON(disk_block_cnt
> 0xffff);
5159 /* build the new CDB for the physical disk I/O */
5160 if (disk_block
> 0xffffffff) {
5161 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5163 cdb
[2] = (u8
) (disk_block
>> 56);
5164 cdb
[3] = (u8
) (disk_block
>> 48);
5165 cdb
[4] = (u8
) (disk_block
>> 40);
5166 cdb
[5] = (u8
) (disk_block
>> 32);
5167 cdb
[6] = (u8
) (disk_block
>> 24);
5168 cdb
[7] = (u8
) (disk_block
>> 16);
5169 cdb
[8] = (u8
) (disk_block
>> 8);
5170 cdb
[9] = (u8
) (disk_block
);
5171 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5172 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5173 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5174 cdb
[13] = (u8
) (disk_block_cnt
);
5179 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5181 cdb
[2] = (u8
) (disk_block
>> 24);
5182 cdb
[3] = (u8
) (disk_block
>> 16);
5183 cdb
[4] = (u8
) (disk_block
>> 8);
5184 cdb
[5] = (u8
) (disk_block
);
5186 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5187 cdb
[8] = (u8
) (disk_block_cnt
);
5191 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5193 dev
->phys_disk
[map_index
]);
5197 * Submit commands down the "normal" RAID stack path
5198 * All callers to hpsa_ciss_submit must check lockup_detected
5199 * beforehand, before (opt.) and after calling cmd_alloc
5201 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5202 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5203 unsigned char scsi3addr
[])
5205 cmd
->host_scribble
= (unsigned char *) c
;
5206 c
->cmd_type
= CMD_SCSI
;
5208 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5209 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5210 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5212 /* Fill in the request block... */
5214 c
->Request
.Timeout
= 0;
5215 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5216 c
->Request
.CDBLen
= cmd
->cmd_len
;
5217 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5218 switch (cmd
->sc_data_direction
) {
5220 c
->Request
.type_attr_dir
=
5221 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5223 case DMA_FROM_DEVICE
:
5224 c
->Request
.type_attr_dir
=
5225 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5228 c
->Request
.type_attr_dir
=
5229 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5231 case DMA_BIDIRECTIONAL
:
5232 /* This can happen if a buggy application does a scsi passthru
5233 * and sets both inlen and outlen to non-zero. ( see
5234 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5237 c
->Request
.type_attr_dir
=
5238 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5239 /* This is technically wrong, and hpsa controllers should
5240 * reject it with CMD_INVALID, which is the most correct
5241 * response, but non-fibre backends appear to let it
5242 * slide by, and give the same results as if this field
5243 * were set correctly. Either way is acceptable for
5244 * our purposes here.
5250 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5251 cmd
->sc_data_direction
);
5256 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5257 hpsa_cmd_resolve_and_free(h
, c
);
5258 return SCSI_MLQUEUE_HOST_BUSY
;
5260 enqueue_cmd_and_start_io(h
, c
);
5261 /* the cmd'll come back via intr handler in complete_scsi_command() */
5265 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5266 struct CommandList
*c
)
5268 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5270 /* Zero out all of commandlist except the last field, refcount */
5271 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5272 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5273 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5274 c
->err_info
= h
->errinfo_pool
+ index
;
5275 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5276 err_dma_handle
= h
->errinfo_pool_dhandle
5277 + index
* sizeof(*c
->err_info
);
5278 c
->cmdindex
= index
;
5279 c
->busaddr
= (u32
) cmd_dma_handle
;
5280 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5281 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5283 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5286 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5290 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5291 struct CommandList
*c
= h
->cmd_pool
+ i
;
5293 hpsa_cmd_init(h
, i
, c
);
5294 atomic_set(&c
->refcount
, 0);
5298 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5299 struct CommandList
*c
)
5301 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5303 BUG_ON(c
->cmdindex
!= index
);
5305 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5306 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5307 c
->busaddr
= (u32
) cmd_dma_handle
;
5310 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5311 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5312 unsigned char *scsi3addr
)
5314 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5315 int rc
= IO_ACCEL_INELIGIBLE
;
5317 cmd
->host_scribble
= (unsigned char *) c
;
5319 if (dev
->offload_enabled
) {
5320 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5321 c
->cmd_type
= CMD_SCSI
;
5323 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5324 if (rc
< 0) /* scsi_dma_map failed. */
5325 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5326 } else if (dev
->hba_ioaccel_enabled
) {
5327 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5328 c
->cmd_type
= CMD_SCSI
;
5330 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5331 if (rc
< 0) /* scsi_dma_map failed. */
5332 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5337 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5339 struct scsi_cmnd
*cmd
;
5340 struct hpsa_scsi_dev_t
*dev
;
5341 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5344 dev
= cmd
->device
->hostdata
;
5346 cmd
->result
= DID_NO_CONNECT
<< 16;
5347 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5349 if (c
->reset_pending
)
5350 return hpsa_cmd_resolve_and_free(c
->h
, c
);
5351 if (c
->abort_pending
)
5352 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
5353 if (c
->cmd_type
== CMD_IOACCEL2
) {
5354 struct ctlr_info
*h
= c
->h
;
5355 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5358 if (c2
->error_data
.serv_response
==
5359 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5360 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5363 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5365 * If we get here, it means dma mapping failed.
5366 * Try again via scsi mid layer, which will
5367 * then get SCSI_MLQUEUE_HOST_BUSY.
5369 cmd
->result
= DID_IMM_RETRY
<< 16;
5370 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5372 /* else, fall thru and resubmit down CISS path */
5375 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5376 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5378 * If we get here, it means dma mapping failed. Try
5379 * again via scsi mid layer, which will then get
5380 * SCSI_MLQUEUE_HOST_BUSY.
5382 * hpsa_ciss_submit will have already freed c
5383 * if it encountered a dma mapping failure.
5385 cmd
->result
= DID_IMM_RETRY
<< 16;
5386 cmd
->scsi_done(cmd
);
5390 /* Running in struct Scsi_Host->host_lock less mode */
5391 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5393 struct ctlr_info
*h
;
5394 struct hpsa_scsi_dev_t
*dev
;
5395 unsigned char scsi3addr
[8];
5396 struct CommandList
*c
;
5399 /* Get the ptr to our adapter structure out of cmd->host. */
5400 h
= sdev_to_hba(cmd
->device
);
5402 BUG_ON(cmd
->request
->tag
< 0);
5404 dev
= cmd
->device
->hostdata
;
5406 cmd
->result
= NOT_READY
<< 16; /* host byte */
5407 cmd
->scsi_done(cmd
);
5412 cmd
->result
= DID_NO_CONNECT
<< 16;
5413 cmd
->scsi_done(cmd
);
5417 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5419 if (unlikely(lockup_detected(h
))) {
5420 cmd
->result
= DID_NO_CONNECT
<< 16;
5421 cmd
->scsi_done(cmd
);
5424 c
= cmd_tagged_alloc(h
, cmd
);
5427 * Call alternate submit routine for I/O accelerated commands.
5428 * Retries always go down the normal I/O path.
5430 if (likely(cmd
->retries
== 0 &&
5431 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
5432 h
->acciopath_status
)) {
5433 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5436 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5437 hpsa_cmd_resolve_and_free(h
, c
);
5438 return SCSI_MLQUEUE_HOST_BUSY
;
5441 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5444 static void hpsa_scan_complete(struct ctlr_info
*h
)
5446 unsigned long flags
;
5448 spin_lock_irqsave(&h
->scan_lock
, flags
);
5449 h
->scan_finished
= 1;
5450 wake_up_all(&h
->scan_wait_queue
);
5451 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5454 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5456 struct ctlr_info
*h
= shost_to_hba(sh
);
5457 unsigned long flags
;
5460 * Don't let rescans be initiated on a controller known to be locked
5461 * up. If the controller locks up *during* a rescan, that thread is
5462 * probably hosed, but at least we can prevent new rescan threads from
5463 * piling up on a locked up controller.
5465 if (unlikely(lockup_detected(h
)))
5466 return hpsa_scan_complete(h
);
5468 /* wait until any scan already in progress is finished. */
5470 spin_lock_irqsave(&h
->scan_lock
, flags
);
5471 if (h
->scan_finished
)
5473 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5474 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5475 /* Note: We don't need to worry about a race between this
5476 * thread and driver unload because the midlayer will
5477 * have incremented the reference count, so unload won't
5478 * happen if we're in here.
5481 h
->scan_finished
= 0; /* mark scan as in progress */
5482 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5484 if (unlikely(lockup_detected(h
)))
5485 return hpsa_scan_complete(h
);
5487 hpsa_update_scsi_devices(h
);
5489 hpsa_scan_complete(h
);
5492 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5494 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5501 else if (qdepth
> logical_drive
->queue_depth
)
5502 qdepth
= logical_drive
->queue_depth
;
5504 return scsi_change_queue_depth(sdev
, qdepth
);
5507 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5508 unsigned long elapsed_time
)
5510 struct ctlr_info
*h
= shost_to_hba(sh
);
5511 unsigned long flags
;
5514 spin_lock_irqsave(&h
->scan_lock
, flags
);
5515 finished
= h
->scan_finished
;
5516 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5520 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5522 struct Scsi_Host
*sh
;
5524 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5526 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5533 sh
->max_channel
= 3;
5534 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5535 sh
->max_lun
= HPSA_MAX_LUN
;
5536 sh
->max_id
= HPSA_MAX_LUN
;
5537 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5538 sh
->cmd_per_lun
= sh
->can_queue
;
5539 sh
->sg_tablesize
= h
->maxsgentries
;
5540 sh
->transportt
= hpsa_sas_transport_template
;
5541 sh
->hostdata
[0] = (unsigned long) h
;
5542 sh
->irq
= h
->intr
[h
->intr_mode
];
5543 sh
->unique_id
= sh
->irq
;
5549 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5553 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5555 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5558 scsi_scan_host(h
->scsi_host
);
5563 * The block layer has already gone to the trouble of picking out a unique,
5564 * small-integer tag for this request. We use an offset from that value as
5565 * an index to select our command block. (The offset allows us to reserve the
5566 * low-numbered entries for our own uses.)
5568 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5570 int idx
= scmd
->request
->tag
;
5575 /* Offset to leave space for internal cmds. */
5576 return idx
+= HPSA_NRESERVED_CMDS
;
5580 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5581 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5583 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5584 struct CommandList
*c
, unsigned char lunaddr
[],
5589 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5590 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5591 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5592 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5595 /* no unmap needed here because no data xfer. */
5597 /* Check if the unit is already ready. */
5598 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5602 * The first command sent after reset will receive "unit attention" to
5603 * indicate that the LUN has been reset...this is actually what we're
5604 * looking for (but, success is good too).
5606 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5607 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5608 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5609 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5616 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5617 * returns zero when the unit is ready, and non-zero when giving up.
5619 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5620 struct CommandList
*c
,
5621 unsigned char lunaddr
[], int reply_queue
)
5625 int waittime
= 1; /* seconds */
5627 /* Send test unit ready until device ready, or give up. */
5628 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5631 * Wait for a bit. do this first, because if we send
5632 * the TUR right away, the reset will just abort it.
5634 msleep(1000 * waittime
);
5636 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5640 /* Increase wait time with each try, up to a point. */
5641 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5644 dev_warn(&h
->pdev
->dev
,
5645 "waiting %d secs for device to become ready.\n",
5652 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5653 unsigned char lunaddr
[],
5660 struct CommandList
*c
;
5665 * If no specific reply queue was requested, then send the TUR
5666 * repeatedly, requesting a reply on each reply queue; otherwise execute
5667 * the loop exactly once using only the specified queue.
5669 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5671 last_queue
= h
->nreply_queues
- 1;
5673 first_queue
= reply_queue
;
5674 last_queue
= reply_queue
;
5677 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5678 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5684 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5686 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5692 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5693 * complaining. Doing a host- or bus-reset can't do anything good here.
5695 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5698 struct ctlr_info
*h
;
5699 struct hpsa_scsi_dev_t
*dev
;
5703 /* find the controller to which the command to be aborted was sent */
5704 h
= sdev_to_hba(scsicmd
->device
);
5705 if (h
== NULL
) /* paranoia */
5708 if (lockup_detected(h
))
5711 dev
= scsicmd
->device
->hostdata
;
5713 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5717 /* if controller locked up, we can guarantee command won't complete */
5718 if (lockup_detected(h
)) {
5719 snprintf(msg
, sizeof(msg
),
5720 "cmd %d RESET FAILED, lockup detected",
5721 hpsa_get_cmd_index(scsicmd
));
5722 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5726 /* this reset request might be the result of a lockup; check */
5727 if (detect_controller_lockup(h
)) {
5728 snprintf(msg
, sizeof(msg
),
5729 "cmd %d RESET FAILED, new lockup detected",
5730 hpsa_get_cmd_index(scsicmd
));
5731 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5735 /* Do not attempt on controller */
5736 if (is_hba_lunid(dev
->scsi3addr
))
5739 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5740 reset_type
= HPSA_DEVICE_RESET_MSG
;
5742 reset_type
= HPSA_PHYS_TARGET_RESET
;
5744 sprintf(msg
, "resetting %s",
5745 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5746 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5748 h
->reset_in_progress
= 1;
5750 /* send a reset to the SCSI LUN which the command was sent to */
5751 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5752 DEFAULT_REPLY_QUEUE
);
5753 sprintf(msg
, "reset %s %s",
5754 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5755 rc
== 0 ? "completed successfully" : "failed");
5756 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5757 h
->reset_in_progress
= 0;
5758 return rc
== 0 ? SUCCESS
: FAILED
;
5761 static void swizzle_abort_tag(u8
*tag
)
5765 memcpy(original_tag
, tag
, 8);
5766 tag
[0] = original_tag
[3];
5767 tag
[1] = original_tag
[2];
5768 tag
[2] = original_tag
[1];
5769 tag
[3] = original_tag
[0];
5770 tag
[4] = original_tag
[7];
5771 tag
[5] = original_tag
[6];
5772 tag
[6] = original_tag
[5];
5773 tag
[7] = original_tag
[4];
5776 static void hpsa_get_tag(struct ctlr_info
*h
,
5777 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5780 if (c
->cmd_type
== CMD_IOACCEL1
) {
5781 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5782 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5783 tag
= le64_to_cpu(cm1
->tag
);
5784 *tagupper
= cpu_to_le32(tag
>> 32);
5785 *taglower
= cpu_to_le32(tag
);
5788 if (c
->cmd_type
== CMD_IOACCEL2
) {
5789 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5790 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5791 /* upper tag not used in ioaccel2 mode */
5792 memset(tagupper
, 0, sizeof(*tagupper
));
5793 *taglower
= cm2
->Tag
;
5796 tag
= le64_to_cpu(c
->Header
.tag
);
5797 *tagupper
= cpu_to_le32(tag
>> 32);
5798 *taglower
= cpu_to_le32(tag
);
5801 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5802 struct CommandList
*abort
, int reply_queue
)
5805 struct CommandList
*c
;
5806 struct ErrorInfo
*ei
;
5807 __le32 tagupper
, taglower
;
5811 /* fill_cmd can't fail here, no buffer to map */
5812 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5813 0, 0, scsi3addr
, TYPE_MSG
);
5814 if (h
->needs_abort_tags_swizzled
)
5815 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5816 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5817 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5818 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5819 __func__
, tagupper
, taglower
);
5820 /* no unmap needed here because no data xfer. */
5823 switch (ei
->CommandStatus
) {
5826 case CMD_TMF_STATUS
:
5827 rc
= hpsa_evaluate_tmf_status(h
, c
);
5829 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5833 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5834 __func__
, tagupper
, taglower
);
5835 hpsa_scsi_interpret_error(h
, c
);
5840 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5841 __func__
, tagupper
, taglower
);
5845 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5846 struct CommandList
*command_to_abort
, int reply_queue
)
5848 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5849 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5850 struct io_accel2_cmd
*c2a
=
5851 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5852 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5853 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5856 * We're overlaying struct hpsa_tmf_struct on top of something which
5857 * was allocated as a struct io_accel2_cmd, so we better be sure it
5858 * actually fits, and doesn't overrun the error info space.
5860 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5861 sizeof(struct io_accel2_cmd
));
5862 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5863 offsetof(struct hpsa_tmf_struct
, error_len
) +
5864 sizeof(ac
->error_len
));
5866 c
->cmd_type
= IOACCEL2_TMF
;
5867 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5869 /* Adjust the DMA address to point to the accelerated command buffer */
5870 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5871 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5872 BUG_ON(c
->busaddr
& 0x0000007F);
5874 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5875 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5876 ac
->reply_queue
= reply_queue
;
5877 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5878 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5879 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5880 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5881 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5882 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5883 offsetof(struct io_accel2_cmd
, error_data
));
5884 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5887 /* ioaccel2 path firmware cannot handle abort task requests.
5888 * Change abort requests to physical target reset, and send to the
5889 * address of the physical disk used for the ioaccel 2 command.
5890 * Return 0 on success (IO_OK)
5894 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5895 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5898 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5899 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5900 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5901 unsigned char *psa
= &phys_scsi3addr
[0];
5903 /* Get a pointer to the hpsa logical device. */
5904 scmd
= abort
->scsi_cmd
;
5905 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5907 dev_warn(&h
->pdev
->dev
,
5908 "Cannot abort: no device pointer for command.\n");
5909 return -1; /* not abortable */
5912 if (h
->raid_offload_debug
> 0)
5913 dev_info(&h
->pdev
->dev
,
5914 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5915 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5917 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5918 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5920 if (!dev
->offload_enabled
) {
5921 dev_warn(&h
->pdev
->dev
,
5922 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5923 return -1; /* not abortable */
5926 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5927 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5928 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5929 return -1; /* not abortable */
5932 /* send the reset */
5933 if (h
->raid_offload_debug
> 0)
5934 dev_info(&h
->pdev
->dev
,
5935 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5936 psa
[0], psa
[1], psa
[2], psa
[3],
5937 psa
[4], psa
[5], psa
[6], psa
[7]);
5938 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5940 dev_warn(&h
->pdev
->dev
,
5941 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5942 psa
[0], psa
[1], psa
[2], psa
[3],
5943 psa
[4], psa
[5], psa
[6], psa
[7]);
5944 return rc
; /* failed to reset */
5947 /* wait for device to recover */
5948 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5949 dev_warn(&h
->pdev
->dev
,
5950 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5951 psa
[0], psa
[1], psa
[2], psa
[3],
5952 psa
[4], psa
[5], psa
[6], psa
[7]);
5953 return -1; /* failed to recover */
5956 /* device recovered */
5957 dev_info(&h
->pdev
->dev
,
5958 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5959 psa
[0], psa
[1], psa
[2], psa
[3],
5960 psa
[4], psa
[5], psa
[6], psa
[7]);
5962 return rc
; /* success */
5965 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5966 struct CommandList
*abort
, int reply_queue
)
5969 struct CommandList
*c
;
5970 __le32 taglower
, tagupper
;
5971 struct hpsa_scsi_dev_t
*dev
;
5972 struct io_accel2_cmd
*c2
;
5974 dev
= abort
->scsi_cmd
->device
->hostdata
;
5975 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5979 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5980 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5981 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, DEFAULT_TIMEOUT
);
5982 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5983 dev_dbg(&h
->pdev
->dev
,
5984 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5985 __func__
, tagupper
, taglower
);
5986 /* no unmap needed here because no data xfer. */
5988 dev_dbg(&h
->pdev
->dev
,
5989 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5990 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5991 switch (c2
->error_data
.serv_response
) {
5992 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5993 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5996 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5997 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5998 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
6002 dev_warn(&h
->pdev
->dev
,
6003 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6004 __func__
, tagupper
, taglower
,
6005 c2
->error_data
.serv_response
);
6009 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
6010 tagupper
, taglower
);
6014 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
6015 struct hpsa_scsi_dev_t
*dev
, struct CommandList
*abort
, int reply_queue
)
6018 * ioccelerator mode 2 commands should be aborted via the
6019 * accelerated path, since RAID path is unaware of these commands,
6020 * but not all underlying firmware can handle abort TMF.
6021 * Change abort to physical device reset when abort TMF is unsupported.
6023 if (abort
->cmd_type
== CMD_IOACCEL2
) {
6024 if ((HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
) ||
6025 dev
->physical_device
)
6026 return hpsa_send_abort_ioaccel2(h
, abort
,
6029 return hpsa_send_reset_as_abort_ioaccel2(h
,
6031 abort
, reply_queue
);
6033 return hpsa_send_abort(h
, dev
->scsi3addr
, abort
, reply_queue
);
6036 /* Find out which reply queue a command was meant to return on */
6037 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
6038 struct CommandList
*c
)
6040 if (c
->cmd_type
== CMD_IOACCEL2
)
6041 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
6042 return c
->Header
.ReplyQueue
;
6046 * Limit concurrency of abort commands to prevent
6047 * over-subscription of commands
6049 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
6051 #define ABORT_CMD_WAIT_MSECS 5000
6052 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
6053 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
6054 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
6057 /* Send an abort for the specified command.
6058 * If the device and controller support it,
6059 * send a task abort request.
6061 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
6065 struct ctlr_info
*h
;
6066 struct hpsa_scsi_dev_t
*dev
;
6067 struct CommandList
*abort
; /* pointer to command to be aborted */
6068 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
6069 char msg
[256]; /* For debug messaging. */
6071 __le32 tagupper
, taglower
;
6072 int refcount
, reply_queue
;
6077 if (sc
->device
== NULL
)
6080 /* Find the controller of the command to be aborted */
6081 h
= sdev_to_hba(sc
->device
);
6085 /* Find the device of the command to be aborted */
6086 dev
= sc
->device
->hostdata
;
6088 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
6093 /* If controller locked up, we can guarantee command won't complete */
6094 if (lockup_detected(h
)) {
6095 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6096 "ABORT FAILED, lockup detected");
6100 /* This is a good time to check if controller lockup has occurred */
6101 if (detect_controller_lockup(h
)) {
6102 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6103 "ABORT FAILED, new lockup detected");
6107 /* Check that controller supports some kind of task abort */
6108 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
6109 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
6112 memset(msg
, 0, sizeof(msg
));
6113 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
6114 h
->scsi_host
->host_no
, sc
->device
->channel
,
6115 sc
->device
->id
, sc
->device
->lun
,
6116 "Aborting command", sc
);
6118 /* Get SCSI command to be aborted */
6119 abort
= (struct CommandList
*) sc
->host_scribble
;
6120 if (abort
== NULL
) {
6121 /* This can happen if the command already completed. */
6124 refcount
= atomic_inc_return(&abort
->refcount
);
6125 if (refcount
== 1) { /* Command is done already. */
6130 /* Don't bother trying the abort if we know it won't work. */
6131 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
6132 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
6138 * Check that we're aborting the right command.
6139 * It's possible the CommandList already completed and got re-used.
6141 if (abort
->scsi_cmd
!= sc
) {
6146 abort
->abort_pending
= true;
6147 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
6148 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
6149 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
6150 as
= abort
->scsi_cmd
;
6152 ml
+= sprintf(msg
+ml
,
6153 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6154 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
6156 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
6157 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
6160 * Command is in flight, or possibly already completed
6161 * by the firmware (but not to the scsi mid layer) but we can't
6162 * distinguish which. Send the abort down.
6164 if (wait_for_available_abort_cmd(h
)) {
6165 dev_warn(&h
->pdev
->dev
,
6166 "%s FAILED, timeout waiting for an abort command to become available.\n",
6171 rc
= hpsa_send_abort_both_ways(h
, dev
, abort
, reply_queue
);
6172 atomic_inc(&h
->abort_cmds_available
);
6173 wake_up_all(&h
->abort_cmd_wait_queue
);
6175 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
6176 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6177 "FAILED to abort command");
6181 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
6182 wait_event(h
->event_sync_wait_queue
,
6183 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
6185 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
6189 * For operations with an associated SCSI command, a command block is allocated
6190 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6191 * block request tag as an index into a table of entries. cmd_tagged_free() is
6192 * the complement, although cmd_free() may be called instead.
6194 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6195 struct scsi_cmnd
*scmd
)
6197 int idx
= hpsa_get_cmd_index(scmd
);
6198 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6200 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6201 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6202 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6203 /* The index value comes from the block layer, so if it's out of
6204 * bounds, it's probably not our bug.
6209 atomic_inc(&c
->refcount
);
6210 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6212 * We expect that the SCSI layer will hand us a unique tag
6213 * value. Thus, there should never be a collision here between
6214 * two requests...because if the selected command isn't idle
6215 * then someone is going to be very disappointed.
6217 dev_err(&h
->pdev
->dev
,
6218 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6220 if (c
->scsi_cmd
!= NULL
)
6221 scsi_print_command(c
->scsi_cmd
);
6222 scsi_print_command(scmd
);
6225 hpsa_cmd_partial_init(h
, idx
, c
);
6229 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6232 * Release our reference to the block. We don't need to do anything
6233 * else to free it, because it is accessed by index. (There's no point
6234 * in checking the result of the decrement, since we cannot guarantee
6235 * that there isn't a concurrent abort which is also accessing it.)
6237 (void)atomic_dec(&c
->refcount
);
6241 * For operations that cannot sleep, a command block is allocated at init,
6242 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6243 * which ones are free or in use. Lock must be held when calling this.
6244 * cmd_free() is the complement.
6245 * This function never gives up and returns NULL. If it hangs,
6246 * another thread must call cmd_free() to free some tags.
6249 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6251 struct CommandList
*c
;
6256 * There is some *extremely* small but non-zero chance that that
6257 * multiple threads could get in here, and one thread could
6258 * be scanning through the list of bits looking for a free
6259 * one, but the free ones are always behind him, and other
6260 * threads sneak in behind him and eat them before he can
6261 * get to them, so that while there is always a free one, a
6262 * very unlucky thread might be starved anyway, never able to
6263 * beat the other threads. In reality, this happens so
6264 * infrequently as to be indistinguishable from never.
6266 * Note that we start allocating commands before the SCSI host structure
6267 * is initialized. Since the search starts at bit zero, this
6268 * all works, since we have at least one command structure available;
6269 * however, it means that the structures with the low indexes have to be
6270 * reserved for driver-initiated requests, while requests from the block
6271 * layer will use the higher indexes.
6275 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6276 HPSA_NRESERVED_CMDS
,
6278 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6282 c
= h
->cmd_pool
+ i
;
6283 refcount
= atomic_inc_return(&c
->refcount
);
6284 if (unlikely(refcount
> 1)) {
6285 cmd_free(h
, c
); /* already in use */
6286 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6289 set_bit(i
& (BITS_PER_LONG
- 1),
6290 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6291 break; /* it's ours now. */
6293 hpsa_cmd_partial_init(h
, i
, c
);
6298 * This is the complementary operation to cmd_alloc(). Note, however, in some
6299 * corner cases it may also be used to free blocks allocated by
6300 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6301 * the clear-bit is harmless.
6303 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6305 if (atomic_dec_and_test(&c
->refcount
)) {
6308 i
= c
- h
->cmd_pool
;
6309 clear_bit(i
& (BITS_PER_LONG
- 1),
6310 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6314 #ifdef CONFIG_COMPAT
6316 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6319 IOCTL32_Command_struct __user
*arg32
=
6320 (IOCTL32_Command_struct __user
*) arg
;
6321 IOCTL_Command_struct arg64
;
6322 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6326 memset(&arg64
, 0, sizeof(arg64
));
6328 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6329 sizeof(arg64
.LUN_info
));
6330 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6331 sizeof(arg64
.Request
));
6332 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6333 sizeof(arg64
.error_info
));
6334 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6335 err
|= get_user(cp
, &arg32
->buf
);
6336 arg64
.buf
= compat_ptr(cp
);
6337 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6342 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6345 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6346 sizeof(arg32
->error_info
));
6352 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6353 int cmd
, void __user
*arg
)
6355 BIG_IOCTL32_Command_struct __user
*arg32
=
6356 (BIG_IOCTL32_Command_struct __user
*) arg
;
6357 BIG_IOCTL_Command_struct arg64
;
6358 BIG_IOCTL_Command_struct __user
*p
=
6359 compat_alloc_user_space(sizeof(arg64
));
6363 memset(&arg64
, 0, sizeof(arg64
));
6365 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6366 sizeof(arg64
.LUN_info
));
6367 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6368 sizeof(arg64
.Request
));
6369 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6370 sizeof(arg64
.error_info
));
6371 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6372 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6373 err
|= get_user(cp
, &arg32
->buf
);
6374 arg64
.buf
= compat_ptr(cp
);
6375 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6380 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6383 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6384 sizeof(arg32
->error_info
));
6390 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6393 case CCISS_GETPCIINFO
:
6394 case CCISS_GETINTINFO
:
6395 case CCISS_SETINTINFO
:
6396 case CCISS_GETNODENAME
:
6397 case CCISS_SETNODENAME
:
6398 case CCISS_GETHEARTBEAT
:
6399 case CCISS_GETBUSTYPES
:
6400 case CCISS_GETFIRMVER
:
6401 case CCISS_GETDRIVVER
:
6402 case CCISS_REVALIDVOLS
:
6403 case CCISS_DEREGDISK
:
6404 case CCISS_REGNEWDISK
:
6406 case CCISS_RESCANDISK
:
6407 case CCISS_GETLUNINFO
:
6408 return hpsa_ioctl(dev
, cmd
, arg
);
6410 case CCISS_PASSTHRU32
:
6411 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6412 case CCISS_BIG_PASSTHRU32
:
6413 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6416 return -ENOIOCTLCMD
;
6421 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6423 struct hpsa_pci_info pciinfo
;
6427 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6428 pciinfo
.bus
= h
->pdev
->bus
->number
;
6429 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6430 pciinfo
.board_id
= h
->board_id
;
6431 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6436 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6438 DriverVer_type DriverVer
;
6439 unsigned char vmaj
, vmin
, vsubmin
;
6442 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6443 &vmaj
, &vmin
, &vsubmin
);
6445 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6446 "unrecognized.", HPSA_DRIVER_VERSION
);
6451 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6454 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6459 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6461 IOCTL_Command_struct iocommand
;
6462 struct CommandList
*c
;
6469 if (!capable(CAP_SYS_RAWIO
))
6471 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6473 if ((iocommand
.buf_size
< 1) &&
6474 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6477 if (iocommand
.buf_size
> 0) {
6478 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6481 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6482 /* Copy the data into the buffer we created */
6483 if (copy_from_user(buff
, iocommand
.buf
,
6484 iocommand
.buf_size
)) {
6489 memset(buff
, 0, iocommand
.buf_size
);
6494 /* Fill in the command type */
6495 c
->cmd_type
= CMD_IOCTL_PEND
;
6496 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6497 /* Fill in Command Header */
6498 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6499 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6500 c
->Header
.SGList
= 1;
6501 c
->Header
.SGTotal
= cpu_to_le16(1);
6502 } else { /* no buffers to fill */
6503 c
->Header
.SGList
= 0;
6504 c
->Header
.SGTotal
= cpu_to_le16(0);
6506 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6508 /* Fill in Request block */
6509 memcpy(&c
->Request
, &iocommand
.Request
,
6510 sizeof(c
->Request
));
6512 /* Fill in the scatter gather information */
6513 if (iocommand
.buf_size
> 0) {
6514 temp64
= pci_map_single(h
->pdev
, buff
,
6515 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6516 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6517 c
->SG
[0].Addr
= cpu_to_le64(0);
6518 c
->SG
[0].Len
= cpu_to_le32(0);
6522 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6523 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6524 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6526 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6528 if (iocommand
.buf_size
> 0)
6529 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6530 check_ioctl_unit_attention(h
, c
);
6536 /* Copy the error information out */
6537 memcpy(&iocommand
.error_info
, c
->err_info
,
6538 sizeof(iocommand
.error_info
));
6539 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6543 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6544 iocommand
.buf_size
> 0) {
6545 /* Copy the data out of the buffer we created */
6546 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6558 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6560 BIG_IOCTL_Command_struct
*ioc
;
6561 struct CommandList
*c
;
6562 unsigned char **buff
= NULL
;
6563 int *buff_size
= NULL
;
6569 BYTE __user
*data_ptr
;
6573 if (!capable(CAP_SYS_RAWIO
))
6575 ioc
= (BIG_IOCTL_Command_struct
*)
6576 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6581 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6585 if ((ioc
->buf_size
< 1) &&
6586 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6590 /* Check kmalloc limits using all SGs */
6591 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6595 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6599 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6604 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6609 left
= ioc
->buf_size
;
6610 data_ptr
= ioc
->buf
;
6612 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6613 buff_size
[sg_used
] = sz
;
6614 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6615 if (buff
[sg_used
] == NULL
) {
6619 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6620 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6625 memset(buff
[sg_used
], 0, sz
);
6632 c
->cmd_type
= CMD_IOCTL_PEND
;
6633 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6634 c
->Header
.ReplyQueue
= 0;
6635 c
->Header
.SGList
= (u8
) sg_used
;
6636 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6637 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6638 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6639 if (ioc
->buf_size
> 0) {
6641 for (i
= 0; i
< sg_used
; i
++) {
6642 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6643 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6644 if (dma_mapping_error(&h
->pdev
->dev
,
6645 (dma_addr_t
) temp64
)) {
6646 c
->SG
[i
].Addr
= cpu_to_le64(0);
6647 c
->SG
[i
].Len
= cpu_to_le32(0);
6648 hpsa_pci_unmap(h
->pdev
, c
, i
,
6649 PCI_DMA_BIDIRECTIONAL
);
6653 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6654 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6655 c
->SG
[i
].Ext
= cpu_to_le32(0);
6657 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6659 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6662 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6663 check_ioctl_unit_attention(h
, c
);
6669 /* Copy the error information out */
6670 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6671 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6675 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6678 /* Copy the data out of the buffer we created */
6679 BYTE __user
*ptr
= ioc
->buf
;
6680 for (i
= 0; i
< sg_used
; i
++) {
6681 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6685 ptr
+= buff_size
[i
];
6695 for (i
= 0; i
< sg_used
; i
++)
6704 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6705 struct CommandList
*c
)
6707 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6708 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6709 (void) check_for_unit_attention(h
, c
);
6715 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6717 struct ctlr_info
*h
;
6718 void __user
*argp
= (void __user
*)arg
;
6721 h
= sdev_to_hba(dev
);
6724 case CCISS_DEREGDISK
:
6725 case CCISS_REGNEWDISK
:
6727 hpsa_scan_start(h
->scsi_host
);
6729 case CCISS_GETPCIINFO
:
6730 return hpsa_getpciinfo_ioctl(h
, argp
);
6731 case CCISS_GETDRIVVER
:
6732 return hpsa_getdrivver_ioctl(h
, argp
);
6733 case CCISS_PASSTHRU
:
6734 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6736 rc
= hpsa_passthru_ioctl(h
, argp
);
6737 atomic_inc(&h
->passthru_cmds_avail
);
6739 case CCISS_BIG_PASSTHRU
:
6740 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6742 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6743 atomic_inc(&h
->passthru_cmds_avail
);
6750 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6753 struct CommandList
*c
;
6757 /* fill_cmd can't fail here, no data buffer to map */
6758 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6759 RAID_CTLR_LUNID
, TYPE_MSG
);
6760 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6762 enqueue_cmd_and_start_io(h
, c
);
6763 /* Don't wait for completion, the reset won't complete. Don't free
6764 * the command either. This is the last command we will send before
6765 * re-initializing everything, so it doesn't matter and won't leak.
6770 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6771 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6774 int pci_dir
= XFER_NONE
;
6775 u64 tag
; /* for commands to be aborted */
6777 c
->cmd_type
= CMD_IOCTL_PEND
;
6778 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6779 c
->Header
.ReplyQueue
= 0;
6780 if (buff
!= NULL
&& size
> 0) {
6781 c
->Header
.SGList
= 1;
6782 c
->Header
.SGTotal
= cpu_to_le16(1);
6784 c
->Header
.SGList
= 0;
6785 c
->Header
.SGTotal
= cpu_to_le16(0);
6787 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6789 if (cmd_type
== TYPE_CMD
) {
6792 /* are we trying to read a vital product page */
6793 if (page_code
& VPD_PAGE
) {
6794 c
->Request
.CDB
[1] = 0x01;
6795 c
->Request
.CDB
[2] = (page_code
& 0xff);
6797 c
->Request
.CDBLen
= 6;
6798 c
->Request
.type_attr_dir
=
6799 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6800 c
->Request
.Timeout
= 0;
6801 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6802 c
->Request
.CDB
[4] = size
& 0xFF;
6804 case HPSA_REPORT_LOG
:
6805 case HPSA_REPORT_PHYS
:
6806 /* Talking to controller so It's a physical command
6807 mode = 00 target = 0. Nothing to write.
6809 c
->Request
.CDBLen
= 12;
6810 c
->Request
.type_attr_dir
=
6811 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6812 c
->Request
.Timeout
= 0;
6813 c
->Request
.CDB
[0] = cmd
;
6814 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6815 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6816 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6817 c
->Request
.CDB
[9] = size
& 0xFF;
6819 case BMIC_SENSE_DIAG_OPTIONS
:
6820 c
->Request
.CDBLen
= 16;
6821 c
->Request
.type_attr_dir
=
6822 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6823 c
->Request
.Timeout
= 0;
6824 /* Spec says this should be BMIC_WRITE */
6825 c
->Request
.CDB
[0] = BMIC_READ
;
6826 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6828 case BMIC_SET_DIAG_OPTIONS
:
6829 c
->Request
.CDBLen
= 16;
6830 c
->Request
.type_attr_dir
=
6831 TYPE_ATTR_DIR(cmd_type
,
6832 ATTR_SIMPLE
, XFER_WRITE
);
6833 c
->Request
.Timeout
= 0;
6834 c
->Request
.CDB
[0] = BMIC_WRITE
;
6835 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6837 case HPSA_CACHE_FLUSH
:
6838 c
->Request
.CDBLen
= 12;
6839 c
->Request
.type_attr_dir
=
6840 TYPE_ATTR_DIR(cmd_type
,
6841 ATTR_SIMPLE
, XFER_WRITE
);
6842 c
->Request
.Timeout
= 0;
6843 c
->Request
.CDB
[0] = BMIC_WRITE
;
6844 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6845 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6846 c
->Request
.CDB
[8] = size
& 0xFF;
6848 case TEST_UNIT_READY
:
6849 c
->Request
.CDBLen
= 6;
6850 c
->Request
.type_attr_dir
=
6851 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6852 c
->Request
.Timeout
= 0;
6854 case HPSA_GET_RAID_MAP
:
6855 c
->Request
.CDBLen
= 12;
6856 c
->Request
.type_attr_dir
=
6857 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6858 c
->Request
.Timeout
= 0;
6859 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6860 c
->Request
.CDB
[1] = cmd
;
6861 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6862 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6863 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6864 c
->Request
.CDB
[9] = size
& 0xFF;
6866 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6867 c
->Request
.CDBLen
= 10;
6868 c
->Request
.type_attr_dir
=
6869 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6870 c
->Request
.Timeout
= 0;
6871 c
->Request
.CDB
[0] = BMIC_READ
;
6872 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6873 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6874 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6876 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6877 c
->Request
.CDBLen
= 10;
6878 c
->Request
.type_attr_dir
=
6879 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6880 c
->Request
.Timeout
= 0;
6881 c
->Request
.CDB
[0] = BMIC_READ
;
6882 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6883 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6884 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6886 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6887 c
->Request
.CDBLen
= 10;
6888 c
->Request
.type_attr_dir
=
6889 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6890 c
->Request
.Timeout
= 0;
6891 c
->Request
.CDB
[0] = BMIC_READ
;
6892 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6893 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6894 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6896 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6897 c
->Request
.CDBLen
= 10;
6898 c
->Request
.type_attr_dir
=
6899 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6900 c
->Request
.Timeout
= 0;
6901 c
->Request
.CDB
[0] = BMIC_READ
;
6902 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6903 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6904 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6906 case BMIC_IDENTIFY_CONTROLLER
:
6907 c
->Request
.CDBLen
= 10;
6908 c
->Request
.type_attr_dir
=
6909 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6910 c
->Request
.Timeout
= 0;
6911 c
->Request
.CDB
[0] = BMIC_READ
;
6912 c
->Request
.CDB
[1] = 0;
6913 c
->Request
.CDB
[2] = 0;
6914 c
->Request
.CDB
[3] = 0;
6915 c
->Request
.CDB
[4] = 0;
6916 c
->Request
.CDB
[5] = 0;
6917 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6918 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6919 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6920 c
->Request
.CDB
[9] = 0;
6923 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6927 } else if (cmd_type
== TYPE_MSG
) {
6930 case HPSA_PHYS_TARGET_RESET
:
6931 c
->Request
.CDBLen
= 16;
6932 c
->Request
.type_attr_dir
=
6933 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6934 c
->Request
.Timeout
= 0; /* Don't time out */
6935 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6936 c
->Request
.CDB
[0] = HPSA_RESET
;
6937 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6938 /* Physical target reset needs no control bytes 4-7*/
6939 c
->Request
.CDB
[4] = 0x00;
6940 c
->Request
.CDB
[5] = 0x00;
6941 c
->Request
.CDB
[6] = 0x00;
6942 c
->Request
.CDB
[7] = 0x00;
6944 case HPSA_DEVICE_RESET_MSG
:
6945 c
->Request
.CDBLen
= 16;
6946 c
->Request
.type_attr_dir
=
6947 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6948 c
->Request
.Timeout
= 0; /* Don't time out */
6949 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6950 c
->Request
.CDB
[0] = cmd
;
6951 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6952 /* If bytes 4-7 are zero, it means reset the */
6954 c
->Request
.CDB
[4] = 0x00;
6955 c
->Request
.CDB
[5] = 0x00;
6956 c
->Request
.CDB
[6] = 0x00;
6957 c
->Request
.CDB
[7] = 0x00;
6959 case HPSA_ABORT_MSG
:
6960 memcpy(&tag
, buff
, sizeof(tag
));
6961 dev_dbg(&h
->pdev
->dev
,
6962 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6963 tag
, c
->Header
.tag
);
6964 c
->Request
.CDBLen
= 16;
6965 c
->Request
.type_attr_dir
=
6966 TYPE_ATTR_DIR(cmd_type
,
6967 ATTR_SIMPLE
, XFER_WRITE
);
6968 c
->Request
.Timeout
= 0; /* Don't time out */
6969 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6970 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6971 c
->Request
.CDB
[2] = 0x00; /* reserved */
6972 c
->Request
.CDB
[3] = 0x00; /* reserved */
6973 /* Tag to abort goes in CDB[4]-CDB[11] */
6974 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6975 c
->Request
.CDB
[12] = 0x00; /* reserved */
6976 c
->Request
.CDB
[13] = 0x00; /* reserved */
6977 c
->Request
.CDB
[14] = 0x00; /* reserved */
6978 c
->Request
.CDB
[15] = 0x00; /* reserved */
6981 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6986 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6990 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6992 pci_dir
= PCI_DMA_FROMDEVICE
;
6995 pci_dir
= PCI_DMA_TODEVICE
;
6998 pci_dir
= PCI_DMA_NONE
;
7001 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
7003 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
7009 * Map (physical) PCI mem into (virtual) kernel space
7011 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
7013 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
7014 ulong page_offs
= ((ulong
) base
) - page_base
;
7015 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
7018 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
7021 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
7023 return h
->access
.command_completed(h
, q
);
7026 static inline bool interrupt_pending(struct ctlr_info
*h
)
7028 return h
->access
.intr_pending(h
);
7031 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
7033 return (h
->access
.intr_pending(h
) == 0) ||
7034 (h
->interrupts_enabled
== 0);
7037 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
7040 if (unlikely(tag_index
>= h
->nr_cmds
)) {
7041 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
7047 static inline void finish_cmd(struct CommandList
*c
)
7049 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
7050 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
7051 || c
->cmd_type
== CMD_IOACCEL2
))
7052 complete_scsi_command(c
);
7053 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
7054 complete(c
->waiting
);
7057 /* process completion of an indexed ("direct lookup") command */
7058 static inline void process_indexed_cmd(struct ctlr_info
*h
,
7062 struct CommandList
*c
;
7064 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
7065 if (!bad_tag(h
, tag_index
, raw_tag
)) {
7066 c
= h
->cmd_pool
+ tag_index
;
7071 /* Some controllers, like p400, will give us one interrupt
7072 * after a soft reset, even if we turned interrupts off.
7073 * Only need to check for this in the hpsa_xxx_discard_completions
7076 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
7078 if (likely(!reset_devices
))
7081 if (likely(h
->interrupts_enabled
))
7084 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
7085 "(known firmware bug.) Ignoring.\n");
7091 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7092 * Relies on (h-q[x] == x) being true for x such that
7093 * 0 <= x < MAX_REPLY_QUEUES.
7095 static struct ctlr_info
*queue_to_hba(u8
*queue
)
7097 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
7100 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
7102 struct ctlr_info
*h
= queue_to_hba(queue
);
7103 u8 q
= *(u8
*) queue
;
7106 if (ignore_bogus_interrupt(h
))
7109 if (interrupt_not_for_us(h
))
7111 h
->last_intr_timestamp
= get_jiffies_64();
7112 while (interrupt_pending(h
)) {
7113 raw_tag
= get_next_completion(h
, q
);
7114 while (raw_tag
!= FIFO_EMPTY
)
7115 raw_tag
= next_command(h
, q
);
7120 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
7122 struct ctlr_info
*h
= queue_to_hba(queue
);
7124 u8 q
= *(u8
*) queue
;
7126 if (ignore_bogus_interrupt(h
))
7129 h
->last_intr_timestamp
= get_jiffies_64();
7130 raw_tag
= get_next_completion(h
, q
);
7131 while (raw_tag
!= FIFO_EMPTY
)
7132 raw_tag
= next_command(h
, q
);
7136 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
7138 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
7140 u8 q
= *(u8
*) queue
;
7142 if (interrupt_not_for_us(h
))
7144 h
->last_intr_timestamp
= get_jiffies_64();
7145 while (interrupt_pending(h
)) {
7146 raw_tag
= get_next_completion(h
, q
);
7147 while (raw_tag
!= FIFO_EMPTY
) {
7148 process_indexed_cmd(h
, raw_tag
);
7149 raw_tag
= next_command(h
, q
);
7155 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
7157 struct ctlr_info
*h
= queue_to_hba(queue
);
7159 u8 q
= *(u8
*) queue
;
7161 h
->last_intr_timestamp
= get_jiffies_64();
7162 raw_tag
= get_next_completion(h
, q
);
7163 while (raw_tag
!= FIFO_EMPTY
) {
7164 process_indexed_cmd(h
, raw_tag
);
7165 raw_tag
= next_command(h
, q
);
7170 /* Send a message CDB to the firmware. Careful, this only works
7171 * in simple mode, not performant mode due to the tag lookup.
7172 * We only ever use this immediately after a controller reset.
7174 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7178 struct CommandListHeader CommandHeader
;
7179 struct RequestBlock Request
;
7180 struct ErrDescriptor ErrorDescriptor
;
7182 struct Command
*cmd
;
7183 static const size_t cmd_sz
= sizeof(*cmd
) +
7184 sizeof(cmd
->ErrorDescriptor
);
7188 void __iomem
*vaddr
;
7191 vaddr
= pci_ioremap_bar(pdev
, 0);
7195 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7196 * CCISS commands, so they must be allocated from the lower 4GiB of
7199 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
7205 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7211 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7212 * although there's no guarantee, we assume that the address is at
7213 * least 4-byte aligned (most likely, it's page-aligned).
7215 paddr32
= cpu_to_le32(paddr64
);
7217 cmd
->CommandHeader
.ReplyQueue
= 0;
7218 cmd
->CommandHeader
.SGList
= 0;
7219 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7220 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7221 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7223 cmd
->Request
.CDBLen
= 16;
7224 cmd
->Request
.type_attr_dir
=
7225 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7226 cmd
->Request
.Timeout
= 0; /* Don't time out */
7227 cmd
->Request
.CDB
[0] = opcode
;
7228 cmd
->Request
.CDB
[1] = type
;
7229 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7230 cmd
->ErrorDescriptor
.Addr
=
7231 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7232 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7234 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7236 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7237 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7238 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7240 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7245 /* we leak the DMA buffer here ... no choice since the controller could
7246 * still complete the command.
7248 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7249 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7254 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7256 if (tag
& HPSA_ERROR_BIT
) {
7257 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7262 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7267 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7269 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7270 void __iomem
*vaddr
, u32 use_doorbell
)
7274 /* For everything after the P600, the PCI power state method
7275 * of resetting the controller doesn't work, so we have this
7276 * other way using the doorbell register.
7278 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7279 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7281 /* PMC hardware guys tell us we need a 10 second delay after
7282 * doorbell reset and before any attempt to talk to the board
7283 * at all to ensure that this actually works and doesn't fall
7284 * over in some weird corner cases.
7287 } else { /* Try to do it the PCI power state way */
7289 /* Quoting from the Open CISS Specification: "The Power
7290 * Management Control/Status Register (CSR) controls the power
7291 * state of the device. The normal operating state is D0,
7292 * CSR=00h. The software off state is D3, CSR=03h. To reset
7293 * the controller, place the interface device in D3 then to D0,
7294 * this causes a secondary PCI reset which will reset the
7299 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7301 /* enter the D3hot power management state */
7302 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7308 /* enter the D0 power management state */
7309 rc
= pci_set_power_state(pdev
, PCI_D0
);
7314 * The P600 requires a small delay when changing states.
7315 * Otherwise we may think the board did not reset and we bail.
7316 * This for kdump only and is particular to the P600.
7323 static void init_driver_version(char *driver_version
, int len
)
7325 memset(driver_version
, 0, len
);
7326 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7329 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7331 char *driver_version
;
7332 int i
, size
= sizeof(cfgtable
->driver_version
);
7334 driver_version
= kmalloc(size
, GFP_KERNEL
);
7335 if (!driver_version
)
7338 init_driver_version(driver_version
, size
);
7339 for (i
= 0; i
< size
; i
++)
7340 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7341 kfree(driver_version
);
7345 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7346 unsigned char *driver_ver
)
7350 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7351 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7354 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7357 char *driver_ver
, *old_driver_ver
;
7358 int rc
, size
= sizeof(cfgtable
->driver_version
);
7360 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7361 if (!old_driver_ver
)
7363 driver_ver
= old_driver_ver
+ size
;
7365 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7366 * should have been changed, otherwise we know the reset failed.
7368 init_driver_version(old_driver_ver
, size
);
7369 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7370 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7371 kfree(old_driver_ver
);
7374 /* This does a hard reset of the controller using PCI power management
7375 * states or the using the doorbell register.
7377 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7381 u64 cfg_base_addr_index
;
7382 void __iomem
*vaddr
;
7383 unsigned long paddr
;
7384 u32 misc_fw_support
;
7386 struct CfgTable __iomem
*cfgtable
;
7388 u16 command_register
;
7390 /* For controllers as old as the P600, this is very nearly
7393 * pci_save_state(pci_dev);
7394 * pci_set_power_state(pci_dev, PCI_D3hot);
7395 * pci_set_power_state(pci_dev, PCI_D0);
7396 * pci_restore_state(pci_dev);
7398 * For controllers newer than the P600, the pci power state
7399 * method of resetting doesn't work so we have another way
7400 * using the doorbell register.
7403 if (!ctlr_is_resettable(board_id
)) {
7404 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7408 /* if controller is soft- but not hard resettable... */
7409 if (!ctlr_is_hard_resettable(board_id
))
7410 return -ENOTSUPP
; /* try soft reset later. */
7412 /* Save the PCI command register */
7413 pci_read_config_word(pdev
, 4, &command_register
);
7414 pci_save_state(pdev
);
7416 /* find the first memory BAR, so we can find the cfg table */
7417 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7420 vaddr
= remap_pci_mem(paddr
, 0x250);
7424 /* find cfgtable in order to check if reset via doorbell is supported */
7425 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7426 &cfg_base_addr_index
, &cfg_offset
);
7429 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7430 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7435 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7437 goto unmap_cfgtable
;
7439 /* If reset via doorbell register is supported, use that.
7440 * There are two such methods. Favor the newest method.
7442 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7443 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7445 use_doorbell
= DOORBELL_CTLR_RESET2
;
7447 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7449 dev_warn(&pdev
->dev
,
7450 "Soft reset not supported. Firmware update is required.\n");
7451 rc
= -ENOTSUPP
; /* try soft reset */
7452 goto unmap_cfgtable
;
7456 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7458 goto unmap_cfgtable
;
7460 pci_restore_state(pdev
);
7461 pci_write_config_word(pdev
, 4, command_register
);
7463 /* Some devices (notably the HP Smart Array 5i Controller)
7464 need a little pause here */
7465 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7467 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7469 dev_warn(&pdev
->dev
,
7470 "Failed waiting for board to become ready after hard reset\n");
7471 goto unmap_cfgtable
;
7474 rc
= controller_reset_failed(vaddr
);
7476 goto unmap_cfgtable
;
7478 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7479 "controller. Will try soft reset.\n");
7482 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7494 * We cannot read the structure directly, for portability we must use
7496 * This is for debug only.
7498 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7504 dev_info(dev
, "Controller Configuration information\n");
7505 dev_info(dev
, "------------------------------------\n");
7506 for (i
= 0; i
< 4; i
++)
7507 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7508 temp_name
[4] = '\0';
7509 dev_info(dev
, " Signature = %s\n", temp_name
);
7510 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7511 dev_info(dev
, " Transport methods supported = 0x%x\n",
7512 readl(&(tb
->TransportSupport
)));
7513 dev_info(dev
, " Transport methods active = 0x%x\n",
7514 readl(&(tb
->TransportActive
)));
7515 dev_info(dev
, " Requested transport Method = 0x%x\n",
7516 readl(&(tb
->HostWrite
.TransportRequest
)));
7517 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7518 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7519 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7520 readl(&(tb
->HostWrite
.CoalIntCount
)));
7521 dev_info(dev
, " Max outstanding commands = %d\n",
7522 readl(&(tb
->CmdsOutMax
)));
7523 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7524 for (i
= 0; i
< 16; i
++)
7525 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7526 temp_name
[16] = '\0';
7527 dev_info(dev
, " Server Name = %s\n", temp_name
);
7528 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7529 readl(&(tb
->HeartBeat
)));
7530 #endif /* HPSA_DEBUG */
7533 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7535 int i
, offset
, mem_type
, bar_type
;
7537 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7540 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7541 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7542 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7545 mem_type
= pci_resource_flags(pdev
, i
) &
7546 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7548 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7549 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7550 offset
+= 4; /* 32 bit */
7552 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7555 default: /* reserved in PCI 2.2 */
7556 dev_warn(&pdev
->dev
,
7557 "base address is invalid\n");
7562 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7568 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7570 if (h
->msix_vector
) {
7571 if (h
->pdev
->msix_enabled
)
7572 pci_disable_msix(h
->pdev
);
7574 } else if (h
->msi_vector
) {
7575 if (h
->pdev
->msi_enabled
)
7576 pci_disable_msi(h
->pdev
);
7581 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7582 * controllers that are capable. If not, we use legacy INTx mode.
7584 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
7586 #ifdef CONFIG_PCI_MSI
7588 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
7590 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
7591 hpsa_msix_entries
[i
].vector
= 0;
7592 hpsa_msix_entries
[i
].entry
= i
;
7595 /* Some boards advertise MSI but don't really support it */
7596 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
7597 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
7598 goto default_int_mode
;
7599 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
7600 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
7601 h
->msix_vector
= MAX_REPLY_QUEUES
;
7602 if (h
->msix_vector
> num_online_cpus())
7603 h
->msix_vector
= num_online_cpus();
7604 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7607 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7609 goto single_msi_mode
;
7610 } else if (err
< h
->msix_vector
) {
7611 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7612 "available\n", err
);
7614 h
->msix_vector
= err
;
7615 for (i
= 0; i
< h
->msix_vector
; i
++)
7616 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7620 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7621 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7622 if (!pci_enable_msi(h
->pdev
))
7625 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7628 #endif /* CONFIG_PCI_MSI */
7629 /* if we get here we're going to use the default interrupt mode */
7630 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7633 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7636 u32 subsystem_vendor_id
, subsystem_device_id
;
7638 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7639 subsystem_device_id
= pdev
->subsystem_device
;
7640 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7641 subsystem_vendor_id
;
7643 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7644 if (*board_id
== products
[i
].board_id
)
7647 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7648 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7650 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7651 "0x%08x, ignoring.\n", *board_id
);
7654 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7657 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7658 unsigned long *memory_bar
)
7662 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7663 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7664 /* addressing mode bits already removed */
7665 *memory_bar
= pci_resource_start(pdev
, i
);
7666 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7670 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7674 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7680 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7682 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7684 for (i
= 0; i
< iterations
; i
++) {
7685 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7686 if (wait_for_ready
) {
7687 if (scratchpad
== HPSA_FIRMWARE_READY
)
7690 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7693 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7695 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7699 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7700 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7703 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7704 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7705 *cfg_base_addr
&= (u32
) 0x0000ffff;
7706 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7707 if (*cfg_base_addr_index
== -1) {
7708 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7714 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7716 if (h
->transtable
) {
7717 iounmap(h
->transtable
);
7718 h
->transtable
= NULL
;
7721 iounmap(h
->cfgtable
);
7726 /* Find and map CISS config table and transfer table
7727 + * several items must be unmapped (freed) later
7729 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7733 u64 cfg_base_addr_index
;
7737 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7738 &cfg_base_addr_index
, &cfg_offset
);
7741 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7742 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7744 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7747 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7750 /* Find performant mode table. */
7751 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7752 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7753 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7754 sizeof(*h
->transtable
));
7755 if (!h
->transtable
) {
7756 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7757 hpsa_free_cfgtables(h
);
7763 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7765 #define MIN_MAX_COMMANDS 16
7766 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7768 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7770 /* Limit commands in memory limited kdump scenario. */
7771 if (reset_devices
&& h
->max_commands
> 32)
7772 h
->max_commands
= 32;
7774 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7775 dev_warn(&h
->pdev
->dev
,
7776 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7779 h
->max_commands
= MIN_MAX_COMMANDS
;
7783 /* If the controller reports that the total max sg entries is greater than 512,
7784 * then we know that chained SG blocks work. (Original smart arrays did not
7785 * support chained SG blocks and would return zero for max sg entries.)
7787 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7789 return h
->maxsgentries
> 512;
7792 /* Interrogate the hardware for some limits:
7793 * max commands, max SG elements without chaining, and with chaining,
7794 * SG chain block size, etc.
7796 static void hpsa_find_board_params(struct ctlr_info
*h
)
7798 hpsa_get_max_perf_mode_cmds(h
);
7799 h
->nr_cmds
= h
->max_commands
;
7800 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7801 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7802 if (hpsa_supports_chained_sg_blocks(h
)) {
7803 /* Limit in-command s/g elements to 32 save dma'able memory. */
7804 h
->max_cmd_sg_entries
= 32;
7805 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7806 h
->maxsgentries
--; /* save one for chain pointer */
7809 * Original smart arrays supported at most 31 s/g entries
7810 * embedded inline in the command (trying to use more
7811 * would lock up the controller)
7813 h
->max_cmd_sg_entries
= 31;
7814 h
->maxsgentries
= 31; /* default to traditional values */
7818 /* Find out what task management functions are supported and cache */
7819 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7820 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7821 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7822 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7823 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7824 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7825 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7828 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7830 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7831 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7837 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7841 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7842 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7844 driver_support
|= ENABLE_SCSI_PREFETCH
;
7846 driver_support
|= ENABLE_UNIT_ATTN
;
7847 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7850 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7851 * in a prefetch beyond physical memory.
7853 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7857 if (h
->board_id
!= 0x3225103C)
7859 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7860 dma_prefetch
|= 0x8000;
7861 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7864 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7868 unsigned long flags
;
7869 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7870 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7871 spin_lock_irqsave(&h
->lock
, flags
);
7872 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7873 spin_unlock_irqrestore(&h
->lock
, flags
);
7874 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7876 /* delay and try again */
7877 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7884 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7888 unsigned long flags
;
7890 /* under certain very rare conditions, this can take awhile.
7891 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7892 * as we enter this code.)
7894 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7895 if (h
->remove_in_progress
)
7897 spin_lock_irqsave(&h
->lock
, flags
);
7898 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7899 spin_unlock_irqrestore(&h
->lock
, flags
);
7900 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7902 /* delay and try again */
7903 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7910 /* return -ENODEV or other reason on error, 0 on success */
7911 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7915 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7916 if (!(trans_support
& SIMPLE_MODE
))
7919 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7921 /* Update the field, and then ring the doorbell */
7922 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7923 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7924 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7925 if (hpsa_wait_for_mode_change_ack(h
))
7927 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7928 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7930 h
->transMethod
= CFGTBL_Trans_Simple
;
7933 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7937 /* free items allocated or mapped by hpsa_pci_init */
7938 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7940 hpsa_free_cfgtables(h
); /* pci_init 4 */
7941 iounmap(h
->vaddr
); /* pci_init 3 */
7943 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7945 * call pci_disable_device before pci_release_regions per
7946 * Documentation/PCI/pci.txt
7948 pci_disable_device(h
->pdev
); /* pci_init 1 */
7949 pci_release_regions(h
->pdev
); /* pci_init 2 */
7952 /* several items must be freed later */
7953 static int hpsa_pci_init(struct ctlr_info
*h
)
7955 int prod_index
, err
;
7957 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7960 h
->product_name
= products
[prod_index
].product_name
;
7961 h
->access
= *(products
[prod_index
].access
);
7963 h
->needs_abort_tags_swizzled
=
7964 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7966 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7967 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7969 err
= pci_enable_device(h
->pdev
);
7971 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7972 pci_disable_device(h
->pdev
);
7976 err
= pci_request_regions(h
->pdev
, HPSA
);
7978 dev_err(&h
->pdev
->dev
,
7979 "failed to obtain PCI resources\n");
7980 pci_disable_device(h
->pdev
);
7984 pci_set_master(h
->pdev
);
7986 hpsa_interrupt_mode(h
);
7987 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7989 goto clean2
; /* intmode+region, pci */
7990 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7992 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7994 goto clean2
; /* intmode+region, pci */
7996 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7998 goto clean3
; /* vaddr, intmode+region, pci */
7999 err
= hpsa_find_cfgtables(h
);
8001 goto clean3
; /* vaddr, intmode+region, pci */
8002 hpsa_find_board_params(h
);
8004 if (!hpsa_CISS_signature_present(h
)) {
8006 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
8008 hpsa_set_driver_support_bits(h
);
8009 hpsa_p600_dma_prefetch_quirk(h
);
8010 err
= hpsa_enter_simple_mode(h
);
8012 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
8015 clean4
: /* cfgtables, vaddr, intmode+region, pci */
8016 hpsa_free_cfgtables(h
);
8017 clean3
: /* vaddr, intmode+region, pci */
8020 clean2
: /* intmode+region, pci */
8021 hpsa_disable_interrupt_mode(h
);
8023 * call pci_disable_device before pci_release_regions per
8024 * Documentation/PCI/pci.txt
8026 pci_disable_device(h
->pdev
);
8027 pci_release_regions(h
->pdev
);
8031 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
8035 #define HBA_INQUIRY_BYTE_COUNT 64
8036 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
8037 if (!h
->hba_inquiry_data
)
8039 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
8040 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
8042 kfree(h
->hba_inquiry_data
);
8043 h
->hba_inquiry_data
= NULL
;
8047 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
8050 void __iomem
*vaddr
;
8055 /* kdump kernel is loading, we don't know in which state is
8056 * the pci interface. The dev->enable_cnt is equal zero
8057 * so we call enable+disable, wait a while and switch it on.
8059 rc
= pci_enable_device(pdev
);
8061 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
8064 pci_disable_device(pdev
);
8065 msleep(260); /* a randomly chosen number */
8066 rc
= pci_enable_device(pdev
);
8068 dev_warn(&pdev
->dev
, "failed to enable device.\n");
8072 pci_set_master(pdev
);
8074 vaddr
= pci_ioremap_bar(pdev
, 0);
8075 if (vaddr
== NULL
) {
8079 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
8082 /* Reset the controller with a PCI power-cycle or via doorbell */
8083 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
8085 /* -ENOTSUPP here means we cannot reset the controller
8086 * but it's already (and still) up and running in
8087 * "performant mode". Or, it might be 640x, which can't reset
8088 * due to concerns about shared bbwc between 6402/6404 pair.
8093 /* Now try to get the controller to respond to a no-op */
8094 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
8095 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
8096 if (hpsa_noop(pdev
) == 0)
8099 dev_warn(&pdev
->dev
, "no-op failed%s\n",
8100 (i
< 11 ? "; re-trying" : ""));
8105 pci_disable_device(pdev
);
8109 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
8111 kfree(h
->cmd_pool_bits
);
8112 h
->cmd_pool_bits
= NULL
;
8114 pci_free_consistent(h
->pdev
,
8115 h
->nr_cmds
* sizeof(struct CommandList
),
8117 h
->cmd_pool_dhandle
);
8119 h
->cmd_pool_dhandle
= 0;
8121 if (h
->errinfo_pool
) {
8122 pci_free_consistent(h
->pdev
,
8123 h
->nr_cmds
* sizeof(struct ErrorInfo
),
8125 h
->errinfo_pool_dhandle
);
8126 h
->errinfo_pool
= NULL
;
8127 h
->errinfo_pool_dhandle
= 0;
8131 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
8133 h
->cmd_pool_bits
= kzalloc(
8134 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
8135 sizeof(unsigned long), GFP_KERNEL
);
8136 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
8137 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
8138 &(h
->cmd_pool_dhandle
));
8139 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
8140 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
8141 &(h
->errinfo_pool_dhandle
));
8142 if ((h
->cmd_pool_bits
== NULL
)
8143 || (h
->cmd_pool
== NULL
)
8144 || (h
->errinfo_pool
== NULL
)) {
8145 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
8148 hpsa_preinitialize_commands(h
);
8151 hpsa_free_cmd_pool(h
);
8155 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
8159 cpu
= cpumask_first(cpu_online_mask
);
8160 for (i
= 0; i
< h
->msix_vector
; i
++) {
8161 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
8162 cpu
= cpumask_next(cpu
, cpu_online_mask
);
8166 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8167 static void hpsa_free_irqs(struct ctlr_info
*h
)
8171 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
8172 /* Single reply queue, only one irq to free */
8174 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8175 free_irq(h
->intr
[i
], &h
->q
[i
]);
8180 for (i
= 0; i
< h
->msix_vector
; i
++) {
8181 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8182 free_irq(h
->intr
[i
], &h
->q
[i
]);
8185 for (; i
< MAX_REPLY_QUEUES
; i
++)
8189 /* returns 0 on success; cleans up and returns -Enn on error */
8190 static int hpsa_request_irqs(struct ctlr_info
*h
,
8191 irqreturn_t (*msixhandler
)(int, void *),
8192 irqreturn_t (*intxhandler
)(int, void *))
8197 * initialize h->q[x] = x so that interrupt handlers know which
8200 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8203 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
8204 /* If performant mode and MSI-X, use multiple reply queues */
8205 for (i
= 0; i
< h
->msix_vector
; i
++) {
8206 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8207 rc
= request_irq(h
->intr
[i
], msixhandler
,
8213 dev_err(&h
->pdev
->dev
,
8214 "failed to get irq %d for %s\n",
8215 h
->intr
[i
], h
->devname
);
8216 for (j
= 0; j
< i
; j
++) {
8217 free_irq(h
->intr
[j
], &h
->q
[j
]);
8220 for (; j
< MAX_REPLY_QUEUES
; j
++)
8225 hpsa_irq_affinity_hints(h
);
8227 /* Use single reply pool */
8228 if (h
->msix_vector
> 0 || h
->msi_vector
) {
8230 sprintf(h
->intrname
[h
->intr_mode
],
8231 "%s-msix", h
->devname
);
8233 sprintf(h
->intrname
[h
->intr_mode
],
8234 "%s-msi", h
->devname
);
8235 rc
= request_irq(h
->intr
[h
->intr_mode
],
8237 h
->intrname
[h
->intr_mode
],
8238 &h
->q
[h
->intr_mode
]);
8240 sprintf(h
->intrname
[h
->intr_mode
],
8241 "%s-intx", h
->devname
);
8242 rc
= request_irq(h
->intr
[h
->intr_mode
],
8243 intxhandler
, IRQF_SHARED
,
8244 h
->intrname
[h
->intr_mode
],
8245 &h
->q
[h
->intr_mode
]);
8247 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
8250 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8251 h
->intr
[h
->intr_mode
], h
->devname
);
8258 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8261 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8263 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8264 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8266 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8270 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8271 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8273 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8274 "after soft reset.\n");
8281 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8285 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8286 if (!h
->reply_queue
[i
].head
)
8288 pci_free_consistent(h
->pdev
,
8289 h
->reply_queue_size
,
8290 h
->reply_queue
[i
].head
,
8291 h
->reply_queue
[i
].busaddr
);
8292 h
->reply_queue
[i
].head
= NULL
;
8293 h
->reply_queue
[i
].busaddr
= 0;
8295 h
->reply_queue_size
= 0;
8298 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8300 hpsa_free_performant_mode(h
); /* init_one 7 */
8301 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8302 hpsa_free_cmd_pool(h
); /* init_one 5 */
8303 hpsa_free_irqs(h
); /* init_one 4 */
8304 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8305 h
->scsi_host
= NULL
; /* init_one 3 */
8306 hpsa_free_pci_init(h
); /* init_one 2_5 */
8307 free_percpu(h
->lockup_detected
); /* init_one 2 */
8308 h
->lockup_detected
= NULL
; /* init_one 2 */
8309 if (h
->resubmit_wq
) {
8310 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8311 h
->resubmit_wq
= NULL
;
8313 if (h
->rescan_ctlr_wq
) {
8314 destroy_workqueue(h
->rescan_ctlr_wq
);
8315 h
->rescan_ctlr_wq
= NULL
;
8317 kfree(h
); /* init_one 1 */
8320 /* Called when controller lockup detected. */
8321 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8324 struct CommandList
*c
;
8327 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8328 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8329 c
= h
->cmd_pool
+ i
;
8330 refcount
= atomic_inc_return(&c
->refcount
);
8332 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8334 atomic_dec(&h
->commands_outstanding
);
8339 dev_warn(&h
->pdev
->dev
,
8340 "failed %d commands in fail_all\n", failcount
);
8343 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8347 for_each_online_cpu(cpu
) {
8348 u32
*lockup_detected
;
8349 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8350 *lockup_detected
= value
;
8352 wmb(); /* be sure the per-cpu variables are out to memory */
8355 static void controller_lockup_detected(struct ctlr_info
*h
)
8357 unsigned long flags
;
8358 u32 lockup_detected
;
8360 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8361 spin_lock_irqsave(&h
->lock
, flags
);
8362 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8363 if (!lockup_detected
) {
8364 /* no heartbeat, but controller gave us a zero. */
8365 dev_warn(&h
->pdev
->dev
,
8366 "lockup detected after %d but scratchpad register is zero\n",
8367 h
->heartbeat_sample_interval
/ HZ
);
8368 lockup_detected
= 0xffffffff;
8370 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8371 spin_unlock_irqrestore(&h
->lock
, flags
);
8372 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8373 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8374 pci_disable_device(h
->pdev
);
8375 fail_all_outstanding_cmds(h
);
8378 static int detect_controller_lockup(struct ctlr_info
*h
)
8382 unsigned long flags
;
8384 now
= get_jiffies_64();
8385 /* If we've received an interrupt recently, we're ok. */
8386 if (time_after64(h
->last_intr_timestamp
+
8387 (h
->heartbeat_sample_interval
), now
))
8391 * If we've already checked the heartbeat recently, we're ok.
8392 * This could happen if someone sends us a signal. We
8393 * otherwise don't care about signals in this thread.
8395 if (time_after64(h
->last_heartbeat_timestamp
+
8396 (h
->heartbeat_sample_interval
), now
))
8399 /* If heartbeat has not changed since we last looked, we're not ok. */
8400 spin_lock_irqsave(&h
->lock
, flags
);
8401 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8402 spin_unlock_irqrestore(&h
->lock
, flags
);
8403 if (h
->last_heartbeat
== heartbeat
) {
8404 controller_lockup_detected(h
);
8409 h
->last_heartbeat
= heartbeat
;
8410 h
->last_heartbeat_timestamp
= now
;
8414 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8419 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8422 /* Ask the controller to clear the events we're handling. */
8423 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8424 | CFGTBL_Trans_io_accel2
)) &&
8425 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8426 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8428 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8429 event_type
= "state change";
8430 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8431 event_type
= "configuration change";
8432 /* Stop sending new RAID offload reqs via the IO accelerator */
8433 scsi_block_requests(h
->scsi_host
);
8434 for (i
= 0; i
< h
->ndevices
; i
++) {
8435 h
->dev
[i
]->offload_enabled
= 0;
8436 h
->dev
[i
]->offload_to_be_enabled
= 0;
8438 hpsa_drain_accel_commands(h
);
8439 /* Set 'accelerator path config change' bit */
8440 dev_warn(&h
->pdev
->dev
,
8441 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8442 h
->events
, event_type
);
8443 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8444 /* Set the "clear event notify field update" bit 6 */
8445 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8446 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8447 hpsa_wait_for_clear_event_notify_ack(h
);
8448 scsi_unblock_requests(h
->scsi_host
);
8450 /* Acknowledge controller notification events. */
8451 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8452 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8453 hpsa_wait_for_clear_event_notify_ack(h
);
8455 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8456 hpsa_wait_for_mode_change_ack(h
);
8462 /* Check a register on the controller to see if there are configuration
8463 * changes (added/changed/removed logical drives, etc.) which mean that
8464 * we should rescan the controller for devices.
8465 * Also check flag for driver-initiated rescan.
8467 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8469 if (h
->drv_req_rescan
) {
8470 h
->drv_req_rescan
= 0;
8474 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8477 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8478 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8482 * Check if any of the offline devices have become ready
8484 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8486 unsigned long flags
;
8487 struct offline_device_entry
*d
;
8488 struct list_head
*this, *tmp
;
8490 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8491 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8492 d
= list_entry(this, struct offline_device_entry
,
8494 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8495 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8496 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8497 list_del(&d
->offline_list
);
8498 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8501 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8503 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8507 static int hpsa_luns_changed(struct ctlr_info
*h
)
8509 int rc
= 1; /* assume there are changes */
8510 struct ReportLUNdata
*logdev
= NULL
;
8512 /* if we can't find out if lun data has changed,
8513 * assume that it has.
8516 if (!h
->lastlogicals
)
8519 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8521 dev_warn(&h
->pdev
->dev
,
8522 "Out of memory, can't track lun changes.\n");
8525 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8526 dev_warn(&h
->pdev
->dev
,
8527 "report luns failed, can't track lun changes.\n");
8530 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8531 dev_info(&h
->pdev
->dev
,
8532 "Lun changes detected.\n");
8533 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8536 rc
= 0; /* no changes detected. */
8542 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8544 unsigned long flags
;
8545 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8546 struct ctlr_info
, rescan_ctlr_work
);
8549 if (h
->remove_in_progress
)
8552 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
8553 scsi_host_get(h
->scsi_host
);
8554 hpsa_ack_ctlr_events(h
);
8555 hpsa_scan_start(h
->scsi_host
);
8556 scsi_host_put(h
->scsi_host
);
8557 } else if (h
->discovery_polling
) {
8558 hpsa_disable_rld_caching(h
);
8559 if (hpsa_luns_changed(h
)) {
8560 struct Scsi_Host
*sh
= NULL
;
8562 dev_info(&h
->pdev
->dev
,
8563 "driver discovery polling rescan.\n");
8564 sh
= scsi_host_get(h
->scsi_host
);
8566 hpsa_scan_start(sh
);
8571 spin_lock_irqsave(&h
->lock
, flags
);
8572 if (!h
->remove_in_progress
)
8573 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8574 h
->heartbeat_sample_interval
);
8575 spin_unlock_irqrestore(&h
->lock
, flags
);
8578 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8580 unsigned long flags
;
8581 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8582 struct ctlr_info
, monitor_ctlr_work
);
8584 detect_controller_lockup(h
);
8585 if (lockup_detected(h
))
8588 spin_lock_irqsave(&h
->lock
, flags
);
8589 if (!h
->remove_in_progress
)
8590 schedule_delayed_work(&h
->monitor_ctlr_work
,
8591 h
->heartbeat_sample_interval
);
8592 spin_unlock_irqrestore(&h
->lock
, flags
);
8595 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8598 struct workqueue_struct
*wq
= NULL
;
8600 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8602 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8607 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8610 struct ctlr_info
*h
;
8611 int try_soft_reset
= 0;
8612 unsigned long flags
;
8615 if (number_of_controllers
== 0)
8616 printk(KERN_INFO DRIVER_NAME
"\n");
8618 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8620 dev_warn(&pdev
->dev
, "Board ID not found\n");
8624 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8626 if (rc
!= -ENOTSUPP
)
8628 /* If the reset fails in a particular way (it has no way to do
8629 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8630 * a soft reset once we get the controller configured up to the
8631 * point that it can accept a command.
8637 reinit_after_soft_reset
:
8639 /* Command structures must be aligned on a 32-byte boundary because
8640 * the 5 lower bits of the address are used by the hardware. and by
8641 * the driver. See comments in hpsa.h for more info.
8643 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8644 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8646 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8652 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8653 INIT_LIST_HEAD(&h
->offline_device_list
);
8654 spin_lock_init(&h
->lock
);
8655 spin_lock_init(&h
->offline_device_lock
);
8656 spin_lock_init(&h
->scan_lock
);
8657 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8658 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8660 /* Allocate and clear per-cpu variable lockup_detected */
8661 h
->lockup_detected
= alloc_percpu(u32
);
8662 if (!h
->lockup_detected
) {
8663 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8665 goto clean1
; /* aer/h */
8667 set_lockup_detected_for_all_cpus(h
, 0);
8669 rc
= hpsa_pci_init(h
);
8671 goto clean2
; /* lu, aer/h */
8673 /* relies on h-> settings made by hpsa_pci_init, including
8674 * interrupt_mode h->intr */
8675 rc
= hpsa_scsi_host_alloc(h
);
8677 goto clean2_5
; /* pci, lu, aer/h */
8679 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8680 h
->ctlr
= number_of_controllers
;
8681 number_of_controllers
++;
8683 /* configure PCI DMA stuff */
8684 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8688 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8692 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8693 goto clean3
; /* shost, pci, lu, aer/h */
8697 /* make sure the board interrupts are off */
8698 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8700 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8702 goto clean3
; /* shost, pci, lu, aer/h */
8703 rc
= hpsa_alloc_cmd_pool(h
);
8705 goto clean4
; /* irq, shost, pci, lu, aer/h */
8706 rc
= hpsa_alloc_sg_chain_blocks(h
);
8708 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8709 init_waitqueue_head(&h
->scan_wait_queue
);
8710 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8711 init_waitqueue_head(&h
->event_sync_wait_queue
);
8712 mutex_init(&h
->reset_mutex
);
8713 h
->scan_finished
= 1; /* no scan currently in progress */
8715 pci_set_drvdata(pdev
, h
);
8718 spin_lock_init(&h
->devlock
);
8719 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8721 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8723 /* create the resubmit workqueue */
8724 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8725 if (!h
->rescan_ctlr_wq
) {
8730 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8731 if (!h
->resubmit_wq
) {
8733 goto clean7
; /* aer/h */
8737 * At this point, the controller is ready to take commands.
8738 * Now, if reset_devices and the hard reset didn't work, try
8739 * the soft reset and see if that works.
8741 if (try_soft_reset
) {
8743 /* This is kind of gross. We may or may not get a completion
8744 * from the soft reset command, and if we do, then the value
8745 * from the fifo may or may not be valid. So, we wait 10 secs
8746 * after the reset throwing away any completions we get during
8747 * that time. Unregister the interrupt handler and register
8748 * fake ones to scoop up any residual completions.
8750 spin_lock_irqsave(&h
->lock
, flags
);
8751 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8752 spin_unlock_irqrestore(&h
->lock
, flags
);
8754 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8755 hpsa_intx_discard_completions
);
8757 dev_warn(&h
->pdev
->dev
,
8758 "Failed to request_irq after soft reset.\n");
8760 * cannot goto clean7 or free_irqs will be called
8761 * again. Instead, do its work
8763 hpsa_free_performant_mode(h
); /* clean7 */
8764 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8765 hpsa_free_cmd_pool(h
); /* clean5 */
8767 * skip hpsa_free_irqs(h) clean4 since that
8768 * was just called before request_irqs failed
8773 rc
= hpsa_kdump_soft_reset(h
);
8775 /* Neither hard nor soft reset worked, we're hosed. */
8778 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8779 dev_info(&h
->pdev
->dev
,
8780 "Waiting for stale completions to drain.\n");
8781 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8783 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8785 rc
= controller_reset_failed(h
->cfgtable
);
8787 dev_info(&h
->pdev
->dev
,
8788 "Soft reset appears to have failed.\n");
8790 /* since the controller's reset, we have to go back and re-init
8791 * everything. Easiest to just forget what we've done and do it
8794 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8797 /* don't goto clean, we already unallocated */
8800 goto reinit_after_soft_reset
;
8803 /* Enable Accelerated IO path at driver layer */
8804 h
->acciopath_status
= 1;
8805 /* Disable discovery polling.*/
8806 h
->discovery_polling
= 0;
8809 /* Turn the interrupts on so we can service requests */
8810 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8812 hpsa_hba_inquiry(h
);
8814 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8815 if (!h
->lastlogicals
)
8816 dev_info(&h
->pdev
->dev
,
8817 "Can't track change to report lun data\n");
8819 /* hook into SCSI subsystem */
8820 rc
= hpsa_scsi_add_host(h
);
8822 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8824 /* Monitor the controller for firmware lockups */
8825 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8826 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8827 schedule_delayed_work(&h
->monitor_ctlr_work
,
8828 h
->heartbeat_sample_interval
);
8829 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8830 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8831 h
->heartbeat_sample_interval
);
8834 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8835 hpsa_free_performant_mode(h
);
8836 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8837 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8838 hpsa_free_sg_chain_blocks(h
);
8839 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8840 hpsa_free_cmd_pool(h
);
8841 clean4
: /* irq, shost, pci, lu, aer/h */
8843 clean3
: /* shost, pci, lu, aer/h */
8844 scsi_host_put(h
->scsi_host
);
8845 h
->scsi_host
= NULL
;
8846 clean2_5
: /* pci, lu, aer/h */
8847 hpsa_free_pci_init(h
);
8848 clean2
: /* lu, aer/h */
8849 if (h
->lockup_detected
) {
8850 free_percpu(h
->lockup_detected
);
8851 h
->lockup_detected
= NULL
;
8853 clean1
: /* wq/aer/h */
8854 if (h
->resubmit_wq
) {
8855 destroy_workqueue(h
->resubmit_wq
);
8856 h
->resubmit_wq
= NULL
;
8858 if (h
->rescan_ctlr_wq
) {
8859 destroy_workqueue(h
->rescan_ctlr_wq
);
8860 h
->rescan_ctlr_wq
= NULL
;
8866 static void hpsa_flush_cache(struct ctlr_info
*h
)
8869 struct CommandList
*c
;
8872 if (unlikely(lockup_detected(h
)))
8874 flush_buf
= kzalloc(4, GFP_KERNEL
);
8880 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8881 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8884 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8885 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8888 if (c
->err_info
->CommandStatus
!= 0)
8890 dev_warn(&h
->pdev
->dev
,
8891 "error flushing cache on controller\n");
8896 /* Make controller gather fresh report lun data each time we
8897 * send down a report luns request
8899 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8902 struct CommandList
*c
;
8905 /* Don't bother trying to set diag options if locked up */
8906 if (unlikely(h
->lockup_detected
))
8909 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8911 dev_err(&h
->pdev
->dev
,
8912 "Error: failed to disable rld caching, during alloc.\n");
8918 /* first, get the current diag options settings */
8919 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8920 RAID_CTLR_LUNID
, TYPE_CMD
))
8923 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8924 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8925 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8928 /* Now, set the bit for disabling the RLD caching */
8929 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8931 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8932 RAID_CTLR_LUNID
, TYPE_CMD
))
8935 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8936 PCI_DMA_TODEVICE
, DEFAULT_TIMEOUT
);
8937 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8940 /* Now verify that it got set: */
8941 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8942 RAID_CTLR_LUNID
, TYPE_CMD
))
8945 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8946 PCI_DMA_FROMDEVICE
, DEFAULT_TIMEOUT
);
8947 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8950 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8954 dev_err(&h
->pdev
->dev
,
8955 "Error: failed to disable report lun data caching.\n");
8961 static void hpsa_shutdown(struct pci_dev
*pdev
)
8963 struct ctlr_info
*h
;
8965 h
= pci_get_drvdata(pdev
);
8966 /* Turn board interrupts off and send the flush cache command
8967 * sendcmd will turn off interrupt, and send the flush...
8968 * To write all data in the battery backed cache to disks
8970 hpsa_flush_cache(h
);
8971 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8972 hpsa_free_irqs(h
); /* init_one 4 */
8973 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8976 static void hpsa_free_device_info(struct ctlr_info
*h
)
8980 for (i
= 0; i
< h
->ndevices
; i
++) {
8986 static void hpsa_remove_one(struct pci_dev
*pdev
)
8988 struct ctlr_info
*h
;
8989 unsigned long flags
;
8991 if (pci_get_drvdata(pdev
) == NULL
) {
8992 dev_err(&pdev
->dev
, "unable to remove device\n");
8995 h
= pci_get_drvdata(pdev
);
8997 /* Get rid of any controller monitoring work items */
8998 spin_lock_irqsave(&h
->lock
, flags
);
8999 h
->remove_in_progress
= 1;
9000 spin_unlock_irqrestore(&h
->lock
, flags
);
9001 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
9002 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
9003 destroy_workqueue(h
->rescan_ctlr_wq
);
9004 destroy_workqueue(h
->resubmit_wq
);
9007 * Call before disabling interrupts.
9008 * scsi_remove_host can trigger I/O operations especially
9009 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9010 * operations which cannot complete and will hang the system.
9013 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
9014 /* includes hpsa_free_irqs - init_one 4 */
9015 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9016 hpsa_shutdown(pdev
);
9018 hpsa_free_device_info(h
); /* scan */
9020 kfree(h
->hba_inquiry_data
); /* init_one 10 */
9021 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
9022 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9023 hpsa_free_performant_mode(h
); /* init_one 7 */
9024 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
9025 hpsa_free_cmd_pool(h
); /* init_one 5 */
9026 kfree(h
->lastlogicals
);
9028 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9030 scsi_host_put(h
->scsi_host
); /* init_one 3 */
9031 h
->scsi_host
= NULL
; /* init_one 3 */
9033 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9034 hpsa_free_pci_init(h
); /* init_one 2.5 */
9036 free_percpu(h
->lockup_detected
); /* init_one 2 */
9037 h
->lockup_detected
= NULL
; /* init_one 2 */
9038 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9040 hpsa_delete_sas_host(h
);
9042 kfree(h
); /* init_one 1 */
9045 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
9046 __attribute__((unused
)) pm_message_t state
)
9051 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
9056 static struct pci_driver hpsa_pci_driver
= {
9058 .probe
= hpsa_init_one
,
9059 .remove
= hpsa_remove_one
,
9060 .id_table
= hpsa_pci_device_id
, /* id_table */
9061 .shutdown
= hpsa_shutdown
,
9062 .suspend
= hpsa_suspend
,
9063 .resume
= hpsa_resume
,
9066 /* Fill in bucket_map[], given nsgs (the max number of
9067 * scatter gather elements supported) and bucket[],
9068 * which is an array of 8 integers. The bucket[] array
9069 * contains 8 different DMA transfer sizes (in 16
9070 * byte increments) which the controller uses to fetch
9071 * commands. This function fills in bucket_map[], which
9072 * maps a given number of scatter gather elements to one of
9073 * the 8 DMA transfer sizes. The point of it is to allow the
9074 * controller to only do as much DMA as needed to fetch the
9075 * command, with the DMA transfer size encoded in the lower
9076 * bits of the command address.
9078 static void calc_bucket_map(int bucket
[], int num_buckets
,
9079 int nsgs
, int min_blocks
, u32
*bucket_map
)
9083 /* Note, bucket_map must have nsgs+1 entries. */
9084 for (i
= 0; i
<= nsgs
; i
++) {
9085 /* Compute size of a command with i SG entries */
9086 size
= i
+ min_blocks
;
9087 b
= num_buckets
; /* Assume the biggest bucket */
9088 /* Find the bucket that is just big enough */
9089 for (j
= 0; j
< num_buckets
; j
++) {
9090 if (bucket
[j
] >= size
) {
9095 /* for a command with i SG entries, use bucket b. */
9101 * return -ENODEV on err, 0 on success (or no action)
9102 * allocates numerous items that must be freed later
9104 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9107 unsigned long register_value
;
9108 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9109 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9110 CFGTBL_Trans_enable_directed_msix
|
9111 (trans_support
& (CFGTBL_Trans_io_accel1
|
9112 CFGTBL_Trans_io_accel2
));
9113 struct access_method access
= SA5_performant_access
;
9115 /* This is a bit complicated. There are 8 registers on
9116 * the controller which we write to to tell it 8 different
9117 * sizes of commands which there may be. It's a way of
9118 * reducing the DMA done to fetch each command. Encoded into
9119 * each command's tag are 3 bits which communicate to the controller
9120 * which of the eight sizes that command fits within. The size of
9121 * each command depends on how many scatter gather entries there are.
9122 * Each SG entry requires 16 bytes. The eight registers are programmed
9123 * with the number of 16-byte blocks a command of that size requires.
9124 * The smallest command possible requires 5 such 16 byte blocks.
9125 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9126 * blocks. Note, this only extends to the SG entries contained
9127 * within the command block, and does not extend to chained blocks
9128 * of SG elements. bft[] contains the eight values we write to
9129 * the registers. They are not evenly distributed, but have more
9130 * sizes for small commands, and fewer sizes for larger commands.
9132 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9133 #define MIN_IOACCEL2_BFT_ENTRY 5
9134 #define HPSA_IOACCEL2_HEADER_SZ 4
9135 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9136 13, 14, 15, 16, 17, 18, 19,
9137 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9138 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9139 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9140 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9141 16 * MIN_IOACCEL2_BFT_ENTRY
);
9142 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9143 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9144 /* 5 = 1 s/g entry or 4k
9145 * 6 = 2 s/g entry or 8k
9146 * 8 = 4 s/g entry or 16k
9147 * 10 = 6 s/g entry or 24k
9150 /* If the controller supports either ioaccel method then
9151 * we can also use the RAID stack submit path that does not
9152 * perform the superfluous readl() after each command submission.
9154 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9155 access
= SA5_performant_access_no_read
;
9157 /* Controller spec: zero out this buffer. */
9158 for (i
= 0; i
< h
->nreply_queues
; i
++)
9159 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9161 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9162 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9163 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9164 for (i
= 0; i
< 8; i
++)
9165 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9167 /* size of controller ring buffer */
9168 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9169 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9170 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9171 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9173 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9174 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9175 writel(h
->reply_queue
[i
].busaddr
,
9176 &h
->transtable
->RepQAddr
[i
].lower
);
9179 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9180 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9182 * enable outbound interrupt coalescing in accelerator mode;
9184 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9185 access
= SA5_ioaccel_mode1_access
;
9186 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9187 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9189 if (trans_support
& CFGTBL_Trans_io_accel2
) {
9190 access
= SA5_ioaccel_mode2_access
;
9191 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9192 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9195 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9196 if (hpsa_wait_for_mode_change_ack(h
)) {
9197 dev_err(&h
->pdev
->dev
,
9198 "performant mode problem - doorbell timeout\n");
9201 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9202 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9203 dev_err(&h
->pdev
->dev
,
9204 "performant mode problem - transport not active\n");
9207 /* Change the access methods to the performant access methods */
9209 h
->transMethod
= transMethod
;
9211 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9212 (trans_support
& CFGTBL_Trans_io_accel2
)))
9215 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9216 /* Set up I/O accelerator mode */
9217 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9218 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9219 h
->reply_queue
[i
].current_entry
=
9220 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9222 bft
[7] = h
->ioaccel_maxsg
+ 8;
9223 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9224 h
->ioaccel1_blockFetchTable
);
9226 /* initialize all reply queue entries to unused */
9227 for (i
= 0; i
< h
->nreply_queues
; i
++)
9228 memset(h
->reply_queue
[i
].head
,
9229 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9230 h
->reply_queue_size
);
9232 /* set all the constant fields in the accelerator command
9233 * frames once at init time to save CPU cycles later.
9235 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9236 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9238 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9239 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9240 (i
* sizeof(struct ErrorInfo
)));
9241 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9242 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9243 cp
->host_context_flags
=
9244 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9245 cp
->timeout_sec
= 0;
9248 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9250 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9251 (i
* sizeof(struct io_accel1_cmd
)));
9253 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9254 u64 cfg_offset
, cfg_base_addr_index
;
9255 u32 bft2_offset
, cfg_base_addr
;
9258 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9259 &cfg_base_addr_index
, &cfg_offset
);
9260 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9261 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9262 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9263 4, h
->ioaccel2_blockFetchTable
);
9264 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9265 BUILD_BUG_ON(offsetof(struct CfgTable
,
9266 io_accel_request_size_offset
) != 0xb8);
9267 h
->ioaccel2_bft2_regs
=
9268 remap_pci_mem(pci_resource_start(h
->pdev
,
9269 cfg_base_addr_index
) +
9270 cfg_offset
+ bft2_offset
,
9272 sizeof(*h
->ioaccel2_bft2_regs
));
9273 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9274 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9276 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9277 if (hpsa_wait_for_mode_change_ack(h
)) {
9278 dev_err(&h
->pdev
->dev
,
9279 "performant mode problem - enabling ioaccel mode\n");
9285 /* Free ioaccel1 mode command blocks and block fetch table */
9286 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9288 if (h
->ioaccel_cmd_pool
) {
9289 pci_free_consistent(h
->pdev
,
9290 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9291 h
->ioaccel_cmd_pool
,
9292 h
->ioaccel_cmd_pool_dhandle
);
9293 h
->ioaccel_cmd_pool
= NULL
;
9294 h
->ioaccel_cmd_pool_dhandle
= 0;
9296 kfree(h
->ioaccel1_blockFetchTable
);
9297 h
->ioaccel1_blockFetchTable
= NULL
;
9300 /* Allocate ioaccel1 mode command blocks and block fetch table */
9301 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9304 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9305 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9306 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9308 /* Command structures must be aligned on a 128-byte boundary
9309 * because the 7 lower bits of the address are used by the
9312 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9313 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9314 h
->ioaccel_cmd_pool
=
9315 pci_alloc_consistent(h
->pdev
,
9316 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9317 &(h
->ioaccel_cmd_pool_dhandle
));
9319 h
->ioaccel1_blockFetchTable
=
9320 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9321 sizeof(u32
)), GFP_KERNEL
);
9323 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9324 (h
->ioaccel1_blockFetchTable
== NULL
))
9327 memset(h
->ioaccel_cmd_pool
, 0,
9328 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9332 hpsa_free_ioaccel1_cmd_and_bft(h
);
9336 /* Free ioaccel2 mode command blocks and block fetch table */
9337 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9339 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9341 if (h
->ioaccel2_cmd_pool
) {
9342 pci_free_consistent(h
->pdev
,
9343 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9344 h
->ioaccel2_cmd_pool
,
9345 h
->ioaccel2_cmd_pool_dhandle
);
9346 h
->ioaccel2_cmd_pool
= NULL
;
9347 h
->ioaccel2_cmd_pool_dhandle
= 0;
9349 kfree(h
->ioaccel2_blockFetchTable
);
9350 h
->ioaccel2_blockFetchTable
= NULL
;
9353 /* Allocate ioaccel2 mode command blocks and block fetch table */
9354 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9358 /* Allocate ioaccel2 mode command blocks and block fetch table */
9361 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9362 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9363 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9365 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9366 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9367 h
->ioaccel2_cmd_pool
=
9368 pci_alloc_consistent(h
->pdev
,
9369 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9370 &(h
->ioaccel2_cmd_pool_dhandle
));
9372 h
->ioaccel2_blockFetchTable
=
9373 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9374 sizeof(u32
)), GFP_KERNEL
);
9376 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9377 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9382 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9386 memset(h
->ioaccel2_cmd_pool
, 0,
9387 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9391 hpsa_free_ioaccel2_cmd_and_bft(h
);
9395 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9396 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9398 kfree(h
->blockFetchTable
);
9399 h
->blockFetchTable
= NULL
;
9400 hpsa_free_reply_queues(h
);
9401 hpsa_free_ioaccel1_cmd_and_bft(h
);
9402 hpsa_free_ioaccel2_cmd_and_bft(h
);
9405 /* return -ENODEV on error, 0 on success (or no action)
9406 * allocates numerous items that must be freed later
9408 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9411 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9412 CFGTBL_Trans_use_short_tags
;
9415 if (hpsa_simple_mode
)
9418 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9419 if (!(trans_support
& PERFORMANT_MODE
))
9422 /* Check for I/O accelerator mode support */
9423 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9424 transMethod
|= CFGTBL_Trans_io_accel1
|
9425 CFGTBL_Trans_enable_directed_msix
;
9426 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9429 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9430 transMethod
|= CFGTBL_Trans_io_accel2
|
9431 CFGTBL_Trans_enable_directed_msix
;
9432 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9437 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
9438 hpsa_get_max_perf_mode_cmds(h
);
9439 /* Performant mode ring buffer and supporting data structures */
9440 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9442 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9443 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9444 h
->reply_queue_size
,
9445 &(h
->reply_queue
[i
].busaddr
));
9446 if (!h
->reply_queue
[i
].head
) {
9448 goto clean1
; /* rq, ioaccel */
9450 h
->reply_queue
[i
].size
= h
->max_commands
;
9451 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9452 h
->reply_queue
[i
].current_entry
= 0;
9455 /* Need a block fetch table for performant mode */
9456 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9457 sizeof(u32
)), GFP_KERNEL
);
9458 if (!h
->blockFetchTable
) {
9460 goto clean1
; /* rq, ioaccel */
9463 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9465 goto clean2
; /* bft, rq, ioaccel */
9468 clean2
: /* bft, rq, ioaccel */
9469 kfree(h
->blockFetchTable
);
9470 h
->blockFetchTable
= NULL
;
9471 clean1
: /* rq, ioaccel */
9472 hpsa_free_reply_queues(h
);
9473 hpsa_free_ioaccel1_cmd_and_bft(h
);
9474 hpsa_free_ioaccel2_cmd_and_bft(h
);
9478 static int is_accelerated_cmd(struct CommandList
*c
)
9480 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9483 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9485 struct CommandList
*c
= NULL
;
9486 int i
, accel_cmds_out
;
9489 do { /* wait for all outstanding ioaccel commands to drain out */
9491 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9492 c
= h
->cmd_pool
+ i
;
9493 refcount
= atomic_inc_return(&c
->refcount
);
9494 if (refcount
> 1) /* Command is allocated */
9495 accel_cmds_out
+= is_accelerated_cmd(c
);
9498 if (accel_cmds_out
<= 0)
9504 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9505 struct hpsa_sas_port
*hpsa_sas_port
)
9507 struct hpsa_sas_phy
*hpsa_sas_phy
;
9508 struct sas_phy
*phy
;
9510 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9514 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9515 hpsa_sas_port
->next_phy_index
);
9517 kfree(hpsa_sas_phy
);
9521 hpsa_sas_port
->next_phy_index
++;
9522 hpsa_sas_phy
->phy
= phy
;
9523 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9525 return hpsa_sas_phy
;
9528 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9530 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9532 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9534 if (hpsa_sas_phy
->added_to_port
)
9535 list_del(&hpsa_sas_phy
->phy_list_entry
);
9536 kfree(hpsa_sas_phy
);
9539 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9542 struct hpsa_sas_port
*hpsa_sas_port
;
9543 struct sas_phy
*phy
;
9544 struct sas_identify
*identify
;
9546 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9547 phy
= hpsa_sas_phy
->phy
;
9549 identify
= &phy
->identify
;
9550 memset(identify
, 0, sizeof(*identify
));
9551 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9552 identify
->device_type
= SAS_END_DEVICE
;
9553 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9554 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9555 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9556 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9557 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9558 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9559 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9561 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9565 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9566 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9567 &hpsa_sas_port
->phy_list_head
);
9568 hpsa_sas_phy
->added_to_port
= true;
9574 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9575 struct sas_rphy
*rphy
)
9577 struct sas_identify
*identify
;
9579 identify
= &rphy
->identify
;
9580 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9581 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9582 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9584 return sas_rphy_add(rphy
);
9587 static struct hpsa_sas_port
9588 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9592 struct hpsa_sas_port
*hpsa_sas_port
;
9593 struct sas_port
*port
;
9595 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9599 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9600 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9602 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9604 goto free_hpsa_port
;
9606 rc
= sas_port_add(port
);
9610 hpsa_sas_port
->port
= port
;
9611 hpsa_sas_port
->sas_address
= sas_address
;
9612 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9613 &hpsa_sas_node
->port_list_head
);
9615 return hpsa_sas_port
;
9618 sas_port_free(port
);
9620 kfree(hpsa_sas_port
);
9625 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9627 struct hpsa_sas_phy
*hpsa_sas_phy
;
9628 struct hpsa_sas_phy
*next
;
9630 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9631 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9632 hpsa_free_sas_phy(hpsa_sas_phy
);
9634 sas_port_delete(hpsa_sas_port
->port
);
9635 list_del(&hpsa_sas_port
->port_list_entry
);
9636 kfree(hpsa_sas_port
);
9639 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9641 struct hpsa_sas_node
*hpsa_sas_node
;
9643 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9644 if (hpsa_sas_node
) {
9645 hpsa_sas_node
->parent_dev
= parent_dev
;
9646 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9649 return hpsa_sas_node
;
9652 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9654 struct hpsa_sas_port
*hpsa_sas_port
;
9655 struct hpsa_sas_port
*next
;
9660 list_for_each_entry_safe(hpsa_sas_port
, next
,
9661 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9662 hpsa_free_sas_port(hpsa_sas_port
);
9664 kfree(hpsa_sas_node
);
9667 static struct hpsa_scsi_dev_t
9668 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9669 struct sas_rphy
*rphy
)
9672 struct hpsa_scsi_dev_t
*device
;
9674 for (i
= 0; i
< h
->ndevices
; i
++) {
9676 if (!device
->sas_port
)
9678 if (device
->sas_port
->rphy
== rphy
)
9685 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9688 struct device
*parent_dev
;
9689 struct hpsa_sas_node
*hpsa_sas_node
;
9690 struct hpsa_sas_port
*hpsa_sas_port
;
9691 struct hpsa_sas_phy
*hpsa_sas_phy
;
9693 parent_dev
= &h
->scsi_host
->shost_gendev
;
9695 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9699 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9700 if (!hpsa_sas_port
) {
9705 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9706 if (!hpsa_sas_phy
) {
9711 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9715 h
->sas_host
= hpsa_sas_node
;
9720 hpsa_free_sas_phy(hpsa_sas_phy
);
9722 hpsa_free_sas_port(hpsa_sas_port
);
9724 hpsa_free_sas_node(hpsa_sas_node
);
9729 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9731 hpsa_free_sas_node(h
->sas_host
);
9734 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9735 struct hpsa_scsi_dev_t
*device
)
9738 struct hpsa_sas_port
*hpsa_sas_port
;
9739 struct sas_rphy
*rphy
;
9741 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9745 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9751 hpsa_sas_port
->rphy
= rphy
;
9752 device
->sas_port
= hpsa_sas_port
;
9754 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9761 hpsa_free_sas_port(hpsa_sas_port
);
9762 device
->sas_port
= NULL
;
9767 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9769 if (device
->sas_port
) {
9770 hpsa_free_sas_port(device
->sas_port
);
9771 device
->sas_port
= NULL
;
9776 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9782 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9789 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9795 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9801 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9807 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9813 hpsa_sas_phy_release(struct sas_phy
*phy
)
9818 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9823 /* SMP = Serial Management Protocol */
9825 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9826 struct request
*req
)
9831 static struct sas_function_template hpsa_sas_transport_functions
= {
9832 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9833 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9834 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9835 .phy_reset
= hpsa_sas_phy_reset
,
9836 .phy_enable
= hpsa_sas_phy_enable
,
9837 .phy_setup
= hpsa_sas_phy_setup
,
9838 .phy_release
= hpsa_sas_phy_release
,
9839 .set_phy_speed
= hpsa_sas_phy_speed
,
9840 .smp_handler
= hpsa_sas_smp_handler
,
9844 * This is it. Register the PCI driver information for the cards we control
9845 * the OS will call our registered routines when it finds one of our cards.
9847 static int __init
hpsa_init(void)
9851 hpsa_sas_transport_template
=
9852 sas_attach_transport(&hpsa_sas_transport_functions
);
9853 if (!hpsa_sas_transport_template
)
9856 rc
= pci_register_driver(&hpsa_pci_driver
);
9859 sas_release_transport(hpsa_sas_transport_template
);
9864 static void __exit
hpsa_cleanup(void)
9866 pci_unregister_driver(&hpsa_pci_driver
);
9867 sas_release_transport(hpsa_sas_transport_template
);
9870 static void __attribute__((unused
)) verify_offsets(void)
9872 #define VERIFY_OFFSET(member, offset) \
9873 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9875 VERIFY_OFFSET(structure_size
, 0);
9876 VERIFY_OFFSET(volume_blk_size
, 4);
9877 VERIFY_OFFSET(volume_blk_cnt
, 8);
9878 VERIFY_OFFSET(phys_blk_shift
, 16);
9879 VERIFY_OFFSET(parity_rotation_shift
, 17);
9880 VERIFY_OFFSET(strip_size
, 18);
9881 VERIFY_OFFSET(disk_starting_blk
, 20);
9882 VERIFY_OFFSET(disk_blk_cnt
, 28);
9883 VERIFY_OFFSET(data_disks_per_row
, 36);
9884 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9885 VERIFY_OFFSET(row_cnt
, 40);
9886 VERIFY_OFFSET(layout_map_count
, 42);
9887 VERIFY_OFFSET(flags
, 44);
9888 VERIFY_OFFSET(dekindex
, 46);
9889 /* VERIFY_OFFSET(reserved, 48 */
9890 VERIFY_OFFSET(data
, 64);
9892 #undef VERIFY_OFFSET
9894 #define VERIFY_OFFSET(member, offset) \
9895 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9897 VERIFY_OFFSET(IU_type
, 0);
9898 VERIFY_OFFSET(direction
, 1);
9899 VERIFY_OFFSET(reply_queue
, 2);
9900 /* VERIFY_OFFSET(reserved1, 3); */
9901 VERIFY_OFFSET(scsi_nexus
, 4);
9902 VERIFY_OFFSET(Tag
, 8);
9903 VERIFY_OFFSET(cdb
, 16);
9904 VERIFY_OFFSET(cciss_lun
, 32);
9905 VERIFY_OFFSET(data_len
, 40);
9906 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9907 VERIFY_OFFSET(sg_count
, 45);
9908 /* VERIFY_OFFSET(reserved3 */
9909 VERIFY_OFFSET(err_ptr
, 48);
9910 VERIFY_OFFSET(err_len
, 56);
9911 /* VERIFY_OFFSET(reserved4 */
9912 VERIFY_OFFSET(sg
, 64);
9914 #undef VERIFY_OFFSET
9916 #define VERIFY_OFFSET(member, offset) \
9917 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9919 VERIFY_OFFSET(dev_handle
, 0x00);
9920 VERIFY_OFFSET(reserved1
, 0x02);
9921 VERIFY_OFFSET(function
, 0x03);
9922 VERIFY_OFFSET(reserved2
, 0x04);
9923 VERIFY_OFFSET(err_info
, 0x0C);
9924 VERIFY_OFFSET(reserved3
, 0x10);
9925 VERIFY_OFFSET(err_info_len
, 0x12);
9926 VERIFY_OFFSET(reserved4
, 0x13);
9927 VERIFY_OFFSET(sgl_offset
, 0x14);
9928 VERIFY_OFFSET(reserved5
, 0x15);
9929 VERIFY_OFFSET(transfer_len
, 0x1C);
9930 VERIFY_OFFSET(reserved6
, 0x20);
9931 VERIFY_OFFSET(io_flags
, 0x24);
9932 VERIFY_OFFSET(reserved7
, 0x26);
9933 VERIFY_OFFSET(LUN
, 0x34);
9934 VERIFY_OFFSET(control
, 0x3C);
9935 VERIFY_OFFSET(CDB
, 0x40);
9936 VERIFY_OFFSET(reserved8
, 0x50);
9937 VERIFY_OFFSET(host_context_flags
, 0x60);
9938 VERIFY_OFFSET(timeout_sec
, 0x62);
9939 VERIFY_OFFSET(ReplyQueue
, 0x64);
9940 VERIFY_OFFSET(reserved9
, 0x65);
9941 VERIFY_OFFSET(tag
, 0x68);
9942 VERIFY_OFFSET(host_addr
, 0x70);
9943 VERIFY_OFFSET(CISS_LUN
, 0x78);
9944 VERIFY_OFFSET(SG
, 0x78 + 8);
9945 #undef VERIFY_OFFSET
9948 module_init(hpsa_init
);
9949 module_exit(hpsa_cleanup
);