1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
84 #include <asm/div64.h>
89 #include "s2io-regs.h"
91 #define DRV_VERSION "2.0.26.28"
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name
[] = "Neterion";
95 static const char s2io_driver_version
[] = DRV_VERSION
;
97 static const int rxd_size
[2] = {32, 48};
98 static const int rxd_count
[2] = {127, 85};
100 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
104 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
105 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
125 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
137 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
139 {"tmac_data_octets"},
143 {"tmac_pause_ctrl_frms"},
147 {"tmac_any_err_frms"},
148 {"tmac_ttl_less_fb_octets"},
149 {"tmac_vld_ip_octets"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
163 {"rmac_out_rng_len_err_frms"},
165 {"rmac_pause_ctrl_frms"},
166 {"rmac_unsup_ctrl_frms"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
170 {"rmac_discarded_frms"},
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
177 {"rmac_jabber_frms"},
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
191 {"rmac_err_drp_udp"},
192 {"rmac_xgmii_err_sym"},
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
212 {"rmac_accepted_ip"},
216 {"new_rd_req_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
221 {"new_wr_req_rtry_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
234 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
253 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
321 {"prc_pcix_err_cnt"},
328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
342 init_timer(&timer); \
343 timer.function = handle; \
344 timer.data = (unsigned long)arg; \
345 mod_timer(&timer, (jiffies + exp)) \
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
350 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
351 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
352 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
353 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
354 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
355 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
359 * Constants to be programmed into the Xena's registers, to configure
364 static const u64 herc_act_dtx_cfg
[] = {
366 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
368 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
370 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
372 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
374 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
376 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
378 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
380 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
385 static const u64 xena_dtx_cfg
[] = {
387 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
389 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
391 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
393 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
395 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
397 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
402 * Constants for Fixing the MacAddress problem seen mostly on
405 static const u64 fix_mac
[] = {
406 0x0060000000000000ULL
, 0x0060600000000000ULL
,
407 0x0040600000000000ULL
, 0x0000600000000000ULL
,
408 0x0020600000000000ULL
, 0x0060600000000000ULL
,
409 0x0020600000000000ULL
, 0x0060600000000000ULL
,
410 0x0020600000000000ULL
, 0x0060600000000000ULL
,
411 0x0020600000000000ULL
, 0x0060600000000000ULL
,
412 0x0020600000000000ULL
, 0x0060600000000000ULL
,
413 0x0020600000000000ULL
, 0x0060600000000000ULL
,
414 0x0020600000000000ULL
, 0x0060600000000000ULL
,
415 0x0020600000000000ULL
, 0x0060600000000000ULL
,
416 0x0020600000000000ULL
, 0x0060600000000000ULL
,
417 0x0020600000000000ULL
, 0x0060600000000000ULL
,
418 0x0020600000000000ULL
, 0x0000600000000000ULL
,
419 0x0040600000000000ULL
, 0x0060600000000000ULL
,
423 MODULE_LICENSE("GPL");
424 MODULE_VERSION(DRV_VERSION
);
427 /* Module Loadable parameters. */
428 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
429 S2IO_PARM_INT(rx_ring_num
, 1);
430 S2IO_PARM_INT(multiq
, 0);
431 S2IO_PARM_INT(rx_ring_mode
, 1);
432 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
433 S2IO_PARM_INT(rmac_pause_time
, 0x100);
434 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
435 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
436 S2IO_PARM_INT(shared_splits
, 0);
437 S2IO_PARM_INT(tmac_util_period
, 5);
438 S2IO_PARM_INT(rmac_util_period
, 5);
439 S2IO_PARM_INT(l3l4hdr_size
, 128);
440 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
441 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
442 /* Frequency of Rx desc syncs expressed as power of 2 */
443 S2IO_PARM_INT(rxsync_frequency
, 3);
444 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
445 S2IO_PARM_INT(intr_type
, 2);
446 /* Large receive offload feature */
448 /* Max pkts to be aggregated by LRO at one time. If not specified,
449 * aggregation happens until we hit max IP pkt size(64K)
451 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
452 S2IO_PARM_INT(indicate_max_pkts
, 0);
454 S2IO_PARM_INT(napi
, 1);
455 S2IO_PARM_INT(ufo
, 0);
456 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
458 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
459 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
460 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
461 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
462 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
463 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
465 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
466 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
467 module_param_array(rts_frm_len
, uint
, NULL
, 0);
471 * This table lists all the devices that this driver supports.
473 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
474 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
475 PCI_ANY_ID
, PCI_ANY_ID
},
476 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
477 PCI_ANY_ID
, PCI_ANY_ID
},
478 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
479 PCI_ANY_ID
, PCI_ANY_ID
},
480 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
481 PCI_ANY_ID
, PCI_ANY_ID
},
485 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
487 static struct pci_error_handlers s2io_err_handler
= {
488 .error_detected
= s2io_io_error_detected
,
489 .slot_reset
= s2io_io_slot_reset
,
490 .resume
= s2io_io_resume
,
493 static struct pci_driver s2io_driver
= {
495 .id_table
= s2io_tbl
,
496 .probe
= s2io_init_nic
,
497 .remove
= __devexit_p(s2io_rem_nic
),
498 .err_handler
= &s2io_err_handler
,
501 /* A simplifier macro used both by init and free shared_mem Fns(). */
502 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
504 /* netqueue manipulation helper functions */
505 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
507 if (!sp
->config
.multiq
) {
510 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
511 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
513 netif_tx_stop_all_queues(sp
->dev
);
516 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
518 if (!sp
->config
.multiq
)
519 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
522 netif_tx_stop_all_queues(sp
->dev
);
525 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
527 if (!sp
->config
.multiq
) {
530 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
531 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
533 netif_tx_start_all_queues(sp
->dev
);
536 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
538 if (!sp
->config
.multiq
)
539 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
542 netif_tx_start_all_queues(sp
->dev
);
545 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
547 if (!sp
->config
.multiq
) {
550 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
551 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
553 netif_tx_wake_all_queues(sp
->dev
);
556 static inline void s2io_wake_tx_queue(
557 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
561 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
562 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
563 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
564 if (netif_queue_stopped(fifo
->dev
)) {
565 fifo
->queue_state
= FIFO_QUEUE_START
;
566 netif_wake_queue(fifo
->dev
);
572 * init_shared_mem - Allocation and Initialization of Memory
573 * @nic: Device private variable.
574 * Description: The function allocates all the memory areas shared
575 * between the NIC and the driver. This includes Tx descriptors,
576 * Rx descriptors and the statistics block.
579 static int init_shared_mem(struct s2io_nic
*nic
)
582 void *tmp_v_addr
, *tmp_v_addr_next
;
583 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
584 struct RxD_block
*pre_rxd_blk
= NULL
;
586 int lst_size
, lst_per_page
;
587 struct net_device
*dev
= nic
->dev
;
590 struct config_param
*config
= &nic
->config
;
591 struct mac_info
*mac_control
= &nic
->mac_control
;
592 unsigned long long mem_allocated
= 0;
594 /* Allocation and initialization of TXDLs in FIFOs */
596 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
597 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
599 size
+= tx_cfg
->fifo_len
;
601 if (size
> MAX_AVAILABLE_TXDS
) {
603 "Too many TxDs requested: %d, max supported: %d\n",
604 size
, MAX_AVAILABLE_TXDS
);
609 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
610 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
612 size
= tx_cfg
->fifo_len
;
614 * Legal values are from 2 to 8192
617 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
618 "Valid lengths are 2 through 8192\n",
624 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
625 lst_per_page
= PAGE_SIZE
/ lst_size
;
627 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
628 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
629 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
630 int fifo_len
= tx_cfg
->fifo_len
;
631 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
633 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
634 if (!fifo
->list_info
) {
635 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
638 mem_allocated
+= list_holder_size
;
640 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
641 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
643 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
644 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
646 fifo
->tx_curr_put_info
.offset
= 0;
647 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
648 fifo
->tx_curr_get_info
.offset
= 0;
649 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
652 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
655 for (j
= 0; j
< page_num
; j
++) {
659 tmp_v
= pci_alloc_consistent(nic
->pdev
,
663 "pci_alloc_consistent failed for TxDL\n");
666 /* If we got a zero DMA address(can happen on
667 * certain platforms like PPC), reallocate.
668 * Store virtual address of page we don't want,
672 mac_control
->zerodma_virt_addr
= tmp_v
;
674 "%s: Zero DMA address for TxDL. "
675 "Virtual address %p\n",
677 tmp_v
= pci_alloc_consistent(nic
->pdev
,
681 "pci_alloc_consistent failed for TxDL\n");
684 mem_allocated
+= PAGE_SIZE
;
686 while (k
< lst_per_page
) {
687 int l
= (j
* lst_per_page
) + k
;
688 if (l
== tx_cfg
->fifo_len
)
690 fifo
->list_info
[l
].list_virt_addr
=
691 tmp_v
+ (k
* lst_size
);
692 fifo
->list_info
[l
].list_phy_addr
=
693 tmp_p
+ (k
* lst_size
);
699 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
700 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
701 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
703 size
= tx_cfg
->fifo_len
;
704 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
705 if (!fifo
->ufo_in_band_v
)
707 mem_allocated
+= (size
* sizeof(u64
));
710 /* Allocation and initialization of RXDs in Rings */
712 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
713 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
714 struct ring_info
*ring
= &mac_control
->rings
[i
];
716 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
717 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
718 "multiple of RxDs per Block\n",
722 size
+= rx_cfg
->num_rxd
;
723 ring
->block_count
= rx_cfg
->num_rxd
/
724 (rxd_count
[nic
->rxd_mode
] + 1);
725 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
727 if (nic
->rxd_mode
== RXD_MODE_1
)
728 size
= (size
* (sizeof(struct RxD1
)));
730 size
= (size
* (sizeof(struct RxD3
)));
732 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
733 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
734 struct ring_info
*ring
= &mac_control
->rings
[i
];
736 ring
->rx_curr_get_info
.block_index
= 0;
737 ring
->rx_curr_get_info
.offset
= 0;
738 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
739 ring
->rx_curr_put_info
.block_index
= 0;
740 ring
->rx_curr_put_info
.offset
= 0;
741 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
745 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
746 /* Allocating all the Rx blocks */
747 for (j
= 0; j
< blk_cnt
; j
++) {
748 struct rx_block_info
*rx_blocks
;
751 rx_blocks
= &ring
->rx_blocks
[j
];
752 size
= SIZE_OF_BLOCK
; /* size is always page size */
753 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
755 if (tmp_v_addr
== NULL
) {
757 * In case of failure, free_shared_mem()
758 * is called, which should free any
759 * memory that was alloced till the
762 rx_blocks
->block_virt_addr
= tmp_v_addr
;
765 mem_allocated
+= size
;
766 memset(tmp_v_addr
, 0, size
);
768 size
= sizeof(struct rxd_info
) *
769 rxd_count
[nic
->rxd_mode
];
770 rx_blocks
->block_virt_addr
= tmp_v_addr
;
771 rx_blocks
->block_dma_addr
= tmp_p_addr
;
772 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
773 if (!rx_blocks
->rxds
)
775 mem_allocated
+= size
;
776 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
777 rx_blocks
->rxds
[l
].virt_addr
=
778 rx_blocks
->block_virt_addr
+
779 (rxd_size
[nic
->rxd_mode
] * l
);
780 rx_blocks
->rxds
[l
].dma_addr
=
781 rx_blocks
->block_dma_addr
+
782 (rxd_size
[nic
->rxd_mode
] * l
);
785 /* Interlinking all Rx Blocks */
786 for (j
= 0; j
< blk_cnt
; j
++) {
787 int next
= (j
+ 1) % blk_cnt
;
788 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
789 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
790 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
791 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
793 pre_rxd_blk
= tmp_v_addr
;
794 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
795 (unsigned long)tmp_v_addr_next
;
796 pre_rxd_blk
->pNext_RxD_Blk_physical
=
797 (u64
)tmp_p_addr_next
;
800 if (nic
->rxd_mode
== RXD_MODE_3B
) {
802 * Allocation of Storages for buffer addresses in 2BUFF mode
803 * and the buffers as well.
805 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
806 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
807 struct ring_info
*ring
= &mac_control
->rings
[i
];
809 blk_cnt
= rx_cfg
->num_rxd
/
810 (rxd_count
[nic
->rxd_mode
] + 1);
811 size
= sizeof(struct buffAdd
*) * blk_cnt
;
812 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
815 mem_allocated
+= size
;
816 for (j
= 0; j
< blk_cnt
; j
++) {
819 size
= sizeof(struct buffAdd
) *
820 (rxd_count
[nic
->rxd_mode
] + 1);
821 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
824 mem_allocated
+= size
;
825 while (k
!= rxd_count
[nic
->rxd_mode
]) {
826 ba
= &ring
->ba
[j
][k
];
827 size
= BUF0_LEN
+ ALIGN_SIZE
;
828 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
831 mem_allocated
+= size
;
832 tmp
= (unsigned long)ba
->ba_0_org
;
834 tmp
&= ~((unsigned long)ALIGN_SIZE
);
835 ba
->ba_0
= (void *)tmp
;
837 size
= BUF1_LEN
+ ALIGN_SIZE
;
838 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
841 mem_allocated
+= size
;
842 tmp
= (unsigned long)ba
->ba_1_org
;
844 tmp
&= ~((unsigned long)ALIGN_SIZE
);
845 ba
->ba_1
= (void *)tmp
;
852 /* Allocation and initialization of Statistics block */
853 size
= sizeof(struct stat_block
);
854 mac_control
->stats_mem
=
855 pci_alloc_consistent(nic
->pdev
, size
,
856 &mac_control
->stats_mem_phy
);
858 if (!mac_control
->stats_mem
) {
860 * In case of failure, free_shared_mem() is called, which
861 * should free any memory that was alloced till the
866 mem_allocated
+= size
;
867 mac_control
->stats_mem_sz
= size
;
869 tmp_v_addr
= mac_control
->stats_mem
;
870 mac_control
->stats_info
= tmp_v_addr
;
871 memset(tmp_v_addr
, 0, size
);
872 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
873 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
874 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
879 * free_shared_mem - Free the allocated Memory
880 * @nic: Device private variable.
881 * Description: This function is to free all memory locations allocated by
882 * the init_shared_mem() function and return it to the kernel.
885 static void free_shared_mem(struct s2io_nic
*nic
)
887 int i
, j
, blk_cnt
, size
;
889 dma_addr_t tmp_p_addr
;
890 int lst_size
, lst_per_page
;
891 struct net_device
*dev
;
893 struct config_param
*config
;
894 struct mac_info
*mac_control
;
895 struct stat_block
*stats
;
896 struct swStat
*swstats
;
903 config
= &nic
->config
;
904 mac_control
= &nic
->mac_control
;
905 stats
= mac_control
->stats_info
;
906 swstats
= &stats
->sw_stat
;
908 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
909 lst_per_page
= PAGE_SIZE
/ lst_size
;
911 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
912 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
913 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
915 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
916 for (j
= 0; j
< page_num
; j
++) {
917 int mem_blks
= (j
* lst_per_page
);
918 struct list_info_hold
*fli
;
920 if (!fifo
->list_info
)
923 fli
= &fifo
->list_info
[mem_blks
];
924 if (!fli
->list_virt_addr
)
926 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
929 swstats
->mem_freed
+= PAGE_SIZE
;
931 /* If we got a zero DMA address during allocation,
934 if (mac_control
->zerodma_virt_addr
) {
935 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
936 mac_control
->zerodma_virt_addr
,
939 "%s: Freeing TxDL with zero DMA address. "
940 "Virtual address %p\n",
941 dev
->name
, mac_control
->zerodma_virt_addr
);
942 swstats
->mem_freed
+= PAGE_SIZE
;
944 kfree(fifo
->list_info
);
945 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
946 sizeof(struct list_info_hold
);
949 size
= SIZE_OF_BLOCK
;
950 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
951 struct ring_info
*ring
= &mac_control
->rings
[i
];
953 blk_cnt
= ring
->block_count
;
954 for (j
= 0; j
< blk_cnt
; j
++) {
955 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
956 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
957 if (tmp_v_addr
== NULL
)
959 pci_free_consistent(nic
->pdev
, size
,
960 tmp_v_addr
, tmp_p_addr
);
961 swstats
->mem_freed
+= size
;
962 kfree(ring
->rx_blocks
[j
].rxds
);
963 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
964 rxd_count
[nic
->rxd_mode
];
968 if (nic
->rxd_mode
== RXD_MODE_3B
) {
969 /* Freeing buffer storage addresses in 2BUFF mode. */
970 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
971 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
972 struct ring_info
*ring
= &mac_control
->rings
[i
];
974 blk_cnt
= rx_cfg
->num_rxd
/
975 (rxd_count
[nic
->rxd_mode
] + 1);
976 for (j
= 0; j
< blk_cnt
; j
++) {
980 while (k
!= rxd_count
[nic
->rxd_mode
]) {
981 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
983 swstats
->mem_freed
+=
984 BUF0_LEN
+ ALIGN_SIZE
;
986 swstats
->mem_freed
+=
987 BUF1_LEN
+ ALIGN_SIZE
;
991 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
992 (rxd_count
[nic
->rxd_mode
] + 1);
995 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1000 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1001 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1002 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1004 if (fifo
->ufo_in_band_v
) {
1005 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1007 kfree(fifo
->ufo_in_band_v
);
1011 if (mac_control
->stats_mem
) {
1012 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1013 pci_free_consistent(nic
->pdev
,
1014 mac_control
->stats_mem_sz
,
1015 mac_control
->stats_mem
,
1016 mac_control
->stats_mem_phy
);
1021 * s2io_verify_pci_mode -
1024 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1026 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1027 register u64 val64
= 0;
1030 val64
= readq(&bar0
->pci_mode
);
1031 mode
= (u8
)GET_PCI_MODE(val64
);
1033 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1034 return -1; /* Unknown PCI mode */
1038 #define NEC_VENID 0x1033
1039 #define NEC_DEVID 0x0125
1040 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1042 struct pci_dev
*tdev
= NULL
;
1043 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1044 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1045 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1054 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1056 * s2io_print_pci_mode -
1058 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1060 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1061 register u64 val64
= 0;
1063 struct config_param
*config
= &nic
->config
;
1064 const char *pcimode
;
1066 val64
= readq(&bar0
->pci_mode
);
1067 mode
= (u8
)GET_PCI_MODE(val64
);
1069 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1070 return -1; /* Unknown PCI mode */
1072 config
->bus_speed
= bus_speed
[mode
];
1074 if (s2io_on_nec_bridge(nic
->pdev
)) {
1075 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1081 case PCI_MODE_PCI_33
:
1082 pcimode
= "33MHz PCI bus";
1084 case PCI_MODE_PCI_66
:
1085 pcimode
= "66MHz PCI bus";
1087 case PCI_MODE_PCIX_M1_66
:
1088 pcimode
= "66MHz PCIX(M1) bus";
1090 case PCI_MODE_PCIX_M1_100
:
1091 pcimode
= "100MHz PCIX(M1) bus";
1093 case PCI_MODE_PCIX_M1_133
:
1094 pcimode
= "133MHz PCIX(M1) bus";
1096 case PCI_MODE_PCIX_M2_66
:
1097 pcimode
= "133MHz PCIX(M2) bus";
1099 case PCI_MODE_PCIX_M2_100
:
1100 pcimode
= "200MHz PCIX(M2) bus";
1102 case PCI_MODE_PCIX_M2_133
:
1103 pcimode
= "266MHz PCIX(M2) bus";
1106 pcimode
= "unsupported bus!";
1110 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1111 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1117 * init_tti - Initialization transmit traffic interrupt scheme
1118 * @nic: device private variable
1119 * @link: link status (UP/DOWN) used to enable/disable continuous
1120 * transmit interrupts
1121 * Description: The function configures transmit traffic interrupts
1122 * Return Value: SUCCESS on success and
1126 static int init_tti(struct s2io_nic
*nic
, int link
)
1128 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1129 register u64 val64
= 0;
1131 struct config_param
*config
= &nic
->config
;
1133 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1135 * TTI Initialization. Default Tx timer gets us about
1136 * 250 interrupts per sec. Continuous interrupts are enabled
1139 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1140 int count
= (nic
->config
.bus_speed
* 125)/2;
1141 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1143 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1146 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1147 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1148 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1150 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1151 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1152 writeq(val64
, &bar0
->tti_data1_mem
);
1154 if (nic
->config
.intr_type
== MSI_X
) {
1155 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1156 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1157 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1158 TTI_DATA2_MEM_TX_UFC_D(0x300);
1160 if ((nic
->config
.tx_steering_type
==
1161 TX_DEFAULT_STEERING
) &&
1162 (config
->tx_fifo_num
> 1) &&
1163 (i
>= nic
->udp_fifo_idx
) &&
1164 (i
< (nic
->udp_fifo_idx
+
1165 nic
->total_udp_fifos
)))
1166 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1167 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1168 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1169 TTI_DATA2_MEM_TX_UFC_D(0x120);
1171 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1172 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1173 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1174 TTI_DATA2_MEM_TX_UFC_D(0x80);
1177 writeq(val64
, &bar0
->tti_data2_mem
);
1179 val64
= TTI_CMD_MEM_WE
|
1180 TTI_CMD_MEM_STROBE_NEW_CMD
|
1181 TTI_CMD_MEM_OFFSET(i
);
1182 writeq(val64
, &bar0
->tti_command_mem
);
1184 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1185 TTI_CMD_MEM_STROBE_NEW_CMD
,
1186 S2IO_BIT_RESET
) != SUCCESS
)
1194 * init_nic - Initialization of hardware
1195 * @nic: device private variable
1196 * Description: The function sequentially configures every block
1197 * of the H/W from their reset values.
1198 * Return Value: SUCCESS on success and
1199 * '-1' on failure (endian settings incorrect).
1202 static int init_nic(struct s2io_nic
*nic
)
1204 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1205 struct net_device
*dev
= nic
->dev
;
1206 register u64 val64
= 0;
1211 unsigned long long mem_share
;
1213 struct config_param
*config
= &nic
->config
;
1214 struct mac_info
*mac_control
= &nic
->mac_control
;
1216 /* to set the swapper controle on the card */
1217 if (s2io_set_swapper(nic
)) {
1218 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1223 * Herc requires EOI to be removed from reset before XGXS, so..
1225 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1226 val64
= 0xA500000000ULL
;
1227 writeq(val64
, &bar0
->sw_reset
);
1229 val64
= readq(&bar0
->sw_reset
);
1232 /* Remove XGXS from reset state */
1234 writeq(val64
, &bar0
->sw_reset
);
1236 val64
= readq(&bar0
->sw_reset
);
1238 /* Ensure that it's safe to access registers by checking
1239 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1242 for (i
= 0; i
< 50; i
++) {
1243 val64
= readq(&bar0
->adapter_status
);
1244 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1252 /* Enable Receiving broadcasts */
1253 add
= &bar0
->mac_cfg
;
1254 val64
= readq(&bar0
->mac_cfg
);
1255 val64
|= MAC_RMAC_BCAST_ENABLE
;
1256 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1257 writel((u32
)val64
, add
);
1258 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1259 writel((u32
) (val64
>> 32), (add
+ 4));
1261 /* Read registers in all blocks */
1262 val64
= readq(&bar0
->mac_int_mask
);
1263 val64
= readq(&bar0
->mc_int_mask
);
1264 val64
= readq(&bar0
->xgxs_int_mask
);
1268 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1270 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1271 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1272 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1273 &bar0
->dtx_control
, UF
);
1275 msleep(1); /* Necessary!! */
1279 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1280 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1281 &bar0
->dtx_control
, UF
);
1282 val64
= readq(&bar0
->dtx_control
);
1287 /* Tx DMA Initialization */
1289 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1290 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1291 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1292 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1294 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1295 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1297 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1298 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1300 if (i
== (config
->tx_fifo_num
- 1)) {
1307 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1312 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1317 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1322 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1333 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1334 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1337 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1339 val64
= readq(&bar0
->tx_fifo_partition_0
);
1340 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1341 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1344 * Initialization of Tx_PA_CONFIG register to ignore packet
1345 * integrity checking.
1347 val64
= readq(&bar0
->tx_pa_cfg
);
1348 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1349 TX_PA_CFG_IGNORE_SNAP_OUI
|
1350 TX_PA_CFG_IGNORE_LLC_CTRL
|
1351 TX_PA_CFG_IGNORE_L2_ERR
;
1352 writeq(val64
, &bar0
->tx_pa_cfg
);
1354 /* Rx DMA intialization. */
1356 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1357 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1359 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1361 writeq(val64
, &bar0
->rx_queue_priority
);
1364 * Allocating equal share of memory to all the
1368 if (nic
->device_type
& XFRAME_II_DEVICE
)
1373 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1376 mem_share
= (mem_size
/ config
->rx_ring_num
+
1377 mem_size
% config
->rx_ring_num
);
1378 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1381 mem_share
= (mem_size
/ config
->rx_ring_num
);
1382 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1385 mem_share
= (mem_size
/ config
->rx_ring_num
);
1386 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1389 mem_share
= (mem_size
/ config
->rx_ring_num
);
1390 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1393 mem_share
= (mem_size
/ config
->rx_ring_num
);
1394 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1397 mem_share
= (mem_size
/ config
->rx_ring_num
);
1398 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1401 mem_share
= (mem_size
/ config
->rx_ring_num
);
1402 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1405 mem_share
= (mem_size
/ config
->rx_ring_num
);
1406 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1410 writeq(val64
, &bar0
->rx_queue_cfg
);
1413 * Filling Tx round robin registers
1414 * as per the number of FIFOs for equal scheduling priority
1416 switch (config
->tx_fifo_num
) {
1419 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1420 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1421 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1422 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1423 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1426 val64
= 0x0001000100010001ULL
;
1427 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1428 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1429 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1430 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1431 val64
= 0x0001000100000000ULL
;
1432 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1435 val64
= 0x0001020001020001ULL
;
1436 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1437 val64
= 0x0200010200010200ULL
;
1438 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1439 val64
= 0x0102000102000102ULL
;
1440 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1441 val64
= 0x0001020001020001ULL
;
1442 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1443 val64
= 0x0200010200000000ULL
;
1444 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1447 val64
= 0x0001020300010203ULL
;
1448 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1449 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1450 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1451 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1452 val64
= 0x0001020300000000ULL
;
1453 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1456 val64
= 0x0001020304000102ULL
;
1457 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1458 val64
= 0x0304000102030400ULL
;
1459 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1460 val64
= 0x0102030400010203ULL
;
1461 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1462 val64
= 0x0400010203040001ULL
;
1463 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1464 val64
= 0x0203040000000000ULL
;
1465 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1468 val64
= 0x0001020304050001ULL
;
1469 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1470 val64
= 0x0203040500010203ULL
;
1471 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1472 val64
= 0x0405000102030405ULL
;
1473 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1474 val64
= 0x0001020304050001ULL
;
1475 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1476 val64
= 0x0203040500000000ULL
;
1477 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1480 val64
= 0x0001020304050600ULL
;
1481 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1482 val64
= 0x0102030405060001ULL
;
1483 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1484 val64
= 0x0203040506000102ULL
;
1485 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1486 val64
= 0x0304050600010203ULL
;
1487 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1488 val64
= 0x0405060000000000ULL
;
1489 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1492 val64
= 0x0001020304050607ULL
;
1493 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1494 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1495 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1496 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1497 val64
= 0x0001020300000000ULL
;
1498 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1502 /* Enable all configured Tx FIFO partitions */
1503 val64
= readq(&bar0
->tx_fifo_partition_0
);
1504 val64
|= (TX_FIFO_PARTITION_EN
);
1505 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1507 /* Filling the Rx round robin registers as per the
1508 * number of Rings and steering based on QoS with
1511 switch (config
->rx_ring_num
) {
1514 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1515 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1516 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1517 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1518 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1520 val64
= 0x8080808080808080ULL
;
1521 writeq(val64
, &bar0
->rts_qos_steering
);
1524 val64
= 0x0001000100010001ULL
;
1525 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1526 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1527 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1528 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1529 val64
= 0x0001000100000000ULL
;
1530 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1532 val64
= 0x8080808040404040ULL
;
1533 writeq(val64
, &bar0
->rts_qos_steering
);
1536 val64
= 0x0001020001020001ULL
;
1537 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1538 val64
= 0x0200010200010200ULL
;
1539 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1540 val64
= 0x0102000102000102ULL
;
1541 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1542 val64
= 0x0001020001020001ULL
;
1543 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1544 val64
= 0x0200010200000000ULL
;
1545 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1547 val64
= 0x8080804040402020ULL
;
1548 writeq(val64
, &bar0
->rts_qos_steering
);
1551 val64
= 0x0001020300010203ULL
;
1552 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1553 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1554 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1555 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1556 val64
= 0x0001020300000000ULL
;
1557 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1559 val64
= 0x8080404020201010ULL
;
1560 writeq(val64
, &bar0
->rts_qos_steering
);
1563 val64
= 0x0001020304000102ULL
;
1564 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1565 val64
= 0x0304000102030400ULL
;
1566 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1567 val64
= 0x0102030400010203ULL
;
1568 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1569 val64
= 0x0400010203040001ULL
;
1570 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1571 val64
= 0x0203040000000000ULL
;
1572 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1574 val64
= 0x8080404020201008ULL
;
1575 writeq(val64
, &bar0
->rts_qos_steering
);
1578 val64
= 0x0001020304050001ULL
;
1579 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1580 val64
= 0x0203040500010203ULL
;
1581 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1582 val64
= 0x0405000102030405ULL
;
1583 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1584 val64
= 0x0001020304050001ULL
;
1585 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1586 val64
= 0x0203040500000000ULL
;
1587 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1589 val64
= 0x8080404020100804ULL
;
1590 writeq(val64
, &bar0
->rts_qos_steering
);
1593 val64
= 0x0001020304050600ULL
;
1594 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1595 val64
= 0x0102030405060001ULL
;
1596 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1597 val64
= 0x0203040506000102ULL
;
1598 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1599 val64
= 0x0304050600010203ULL
;
1600 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1601 val64
= 0x0405060000000000ULL
;
1602 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1604 val64
= 0x8080402010080402ULL
;
1605 writeq(val64
, &bar0
->rts_qos_steering
);
1608 val64
= 0x0001020304050607ULL
;
1609 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1610 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1611 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1612 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1613 val64
= 0x0001020300000000ULL
;
1614 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1616 val64
= 0x8040201008040201ULL
;
1617 writeq(val64
, &bar0
->rts_qos_steering
);
1623 for (i
= 0; i
< 8; i
++)
1624 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1626 /* Set the default rts frame length for the rings configured */
1627 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1628 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1629 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1631 /* Set the frame length for the configured rings
1632 * desired by the user
1634 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1635 /* If rts_frm_len[i] == 0 then it is assumed that user not
1636 * specified frame length steering.
1637 * If the user provides the frame length then program
1638 * the rts_frm_len register for those values or else
1639 * leave it as it is.
1641 if (rts_frm_len
[i
] != 0) {
1642 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1643 &bar0
->rts_frm_len_n
[i
]);
1647 /* Disable differentiated services steering logic */
1648 for (i
= 0; i
< 64; i
++) {
1649 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1651 "%s: rts_ds_steer failed on codepoint %d\n",
1657 /* Program statistics memory */
1658 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1660 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1661 val64
= STAT_BC(0x320);
1662 writeq(val64
, &bar0
->stat_byte_cnt
);
1666 * Initializing the sampling rate for the device to calculate the
1667 * bandwidth utilization.
1669 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1670 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1671 writeq(val64
, &bar0
->mac_link_util
);
1674 * Initializing the Transmit and Receive Traffic Interrupt
1678 /* Initialize TTI */
1679 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1682 /* RTI Initialization */
1683 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1685 * Programmed to generate Apprx 500 Intrs per
1688 int count
= (nic
->config
.bus_speed
* 125)/4;
1689 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1691 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1692 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1693 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1694 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1695 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1697 writeq(val64
, &bar0
->rti_data1_mem
);
1699 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1700 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1701 if (nic
->config
.intr_type
== MSI_X
)
1702 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1703 RTI_DATA2_MEM_RX_UFC_D(0x40));
1705 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1706 RTI_DATA2_MEM_RX_UFC_D(0x80));
1707 writeq(val64
, &bar0
->rti_data2_mem
);
1709 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1710 val64
= RTI_CMD_MEM_WE
|
1711 RTI_CMD_MEM_STROBE_NEW_CMD
|
1712 RTI_CMD_MEM_OFFSET(i
);
1713 writeq(val64
, &bar0
->rti_command_mem
);
1716 * Once the operation completes, the Strobe bit of the
1717 * command register will be reset. We poll for this
1718 * particular condition. We wait for a maximum of 500ms
1719 * for the operation to complete, if it's not complete
1720 * by then we return error.
1724 val64
= readq(&bar0
->rti_command_mem
);
1725 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1729 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1739 * Initializing proper values as Pause threshold into all
1740 * the 8 Queues on Rx side.
1742 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1743 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1745 /* Disable RMAC PAD STRIPPING */
1746 add
= &bar0
->mac_cfg
;
1747 val64
= readq(&bar0
->mac_cfg
);
1748 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1749 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1750 writel((u32
) (val64
), add
);
1751 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1752 writel((u32
) (val64
>> 32), (add
+ 4));
1753 val64
= readq(&bar0
->mac_cfg
);
1755 /* Enable FCS stripping by adapter */
1756 add
= &bar0
->mac_cfg
;
1757 val64
= readq(&bar0
->mac_cfg
);
1758 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1759 if (nic
->device_type
== XFRAME_II_DEVICE
)
1760 writeq(val64
, &bar0
->mac_cfg
);
1762 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1763 writel((u32
) (val64
), add
);
1764 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1765 writel((u32
) (val64
>> 32), (add
+ 4));
1769 * Set the time value to be inserted in the pause frame
1770 * generated by xena.
1772 val64
= readq(&bar0
->rmac_pause_cfg
);
1773 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1774 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1775 writeq(val64
, &bar0
->rmac_pause_cfg
);
1778 * Set the Threshold Limit for Generating the pause frame
1779 * If the amount of data in any Queue exceeds ratio of
1780 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1781 * pause frame is generated
1784 for (i
= 0; i
< 4; i
++) {
1785 val64
|= (((u64
)0xFF00 |
1786 nic
->mac_control
.mc_pause_threshold_q0q3
)
1789 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1792 for (i
= 0; i
< 4; i
++) {
1793 val64
|= (((u64
)0xFF00 |
1794 nic
->mac_control
.mc_pause_threshold_q4q7
)
1797 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1800 * TxDMA will stop Read request if the number of read split has
1801 * exceeded the limit pointed by shared_splits
1803 val64
= readq(&bar0
->pic_control
);
1804 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1805 writeq(val64
, &bar0
->pic_control
);
1807 if (nic
->config
.bus_speed
== 266) {
1808 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1809 writeq(0x0, &bar0
->read_retry_delay
);
1810 writeq(0x0, &bar0
->write_retry_delay
);
1814 * Programming the Herc to split every write transaction
1815 * that does not start on an ADB to reduce disconnects.
1817 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1818 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1819 MISC_LINK_STABILITY_PRD(3);
1820 writeq(val64
, &bar0
->misc_control
);
1821 val64
= readq(&bar0
->pic_control2
);
1822 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1823 writeq(val64
, &bar0
->pic_control2
);
1825 if (strstr(nic
->product_name
, "CX4")) {
1826 val64
= TMAC_AVG_IPG(0x17);
1827 writeq(val64
, &bar0
->tmac_avg_ipg
);
1832 #define LINK_UP_DOWN_INTERRUPT 1
1833 #define MAC_RMAC_ERR_TIMER 2
1835 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1837 if (nic
->device_type
== XFRAME_II_DEVICE
)
1838 return LINK_UP_DOWN_INTERRUPT
;
1840 return MAC_RMAC_ERR_TIMER
;
1844 * do_s2io_write_bits - update alarm bits in alarm register
1845 * @value: alarm bits
1846 * @flag: interrupt status
1847 * @addr: address value
1848 * Description: update alarm bits in alarm register
1852 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1856 temp64
= readq(addr
);
1858 if (flag
== ENABLE_INTRS
)
1859 temp64
&= ~((u64
)value
);
1861 temp64
|= ((u64
)value
);
1862 writeq(temp64
, addr
);
1865 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1867 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1868 register u64 gen_int_mask
= 0;
1871 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1872 if (mask
& TX_DMA_INTR
) {
1873 gen_int_mask
|= TXDMA_INT_M
;
1875 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1876 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1877 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1878 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1880 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1881 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1882 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1883 &bar0
->pfc_err_mask
);
1885 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1886 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1887 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1889 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1890 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1891 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1892 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1893 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1895 flag
, &bar0
->pcc_err_mask
);
1897 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1898 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1900 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1901 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1902 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1903 flag
, &bar0
->lso_err_mask
);
1905 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1906 flag
, &bar0
->tpa_err_mask
);
1908 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1911 if (mask
& TX_MAC_INTR
) {
1912 gen_int_mask
|= TXMAC_INT_M
;
1913 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1914 &bar0
->mac_int_mask
);
1915 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1916 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1917 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1918 flag
, &bar0
->mac_tmac_err_mask
);
1921 if (mask
& TX_XGXS_INTR
) {
1922 gen_int_mask
|= TXXGXS_INT_M
;
1923 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1924 &bar0
->xgxs_int_mask
);
1925 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1926 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1927 flag
, &bar0
->xgxs_txgxs_err_mask
);
1930 if (mask
& RX_DMA_INTR
) {
1931 gen_int_mask
|= RXDMA_INT_M
;
1932 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1933 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1934 flag
, &bar0
->rxdma_int_mask
);
1935 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1936 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1937 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1938 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1939 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1940 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1941 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1942 &bar0
->prc_pcix_err_mask
);
1943 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1944 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1945 &bar0
->rpa_err_mask
);
1946 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1947 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1948 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1949 RDA_FRM_ECC_SG_ERR
|
1950 RDA_MISC_ERR
|RDA_PCIX_ERR
,
1951 flag
, &bar0
->rda_err_mask
);
1952 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1953 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1954 flag
, &bar0
->rti_err_mask
);
1957 if (mask
& RX_MAC_INTR
) {
1958 gen_int_mask
|= RXMAC_INT_M
;
1959 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1960 &bar0
->mac_int_mask
);
1961 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1962 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1963 RMAC_DOUBLE_ECC_ERR
);
1964 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
1965 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
1966 do_s2io_write_bits(interruptible
,
1967 flag
, &bar0
->mac_rmac_err_mask
);
1970 if (mask
& RX_XGXS_INTR
) {
1971 gen_int_mask
|= RXXGXS_INT_M
;
1972 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1973 &bar0
->xgxs_int_mask
);
1974 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1975 &bar0
->xgxs_rxgxs_err_mask
);
1978 if (mask
& MC_INTR
) {
1979 gen_int_mask
|= MC_INT_M
;
1980 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
1981 flag
, &bar0
->mc_int_mask
);
1982 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1983 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1984 &bar0
->mc_err_mask
);
1986 nic
->general_int_mask
= gen_int_mask
;
1988 /* Remove this line when alarm interrupts are enabled */
1989 nic
->general_int_mask
= 0;
1993 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1994 * @nic: device private variable,
1995 * @mask: A mask indicating which Intr block must be modified and,
1996 * @flag: A flag indicating whether to enable or disable the Intrs.
1997 * Description: This function will either disable or enable the interrupts
1998 * depending on the flag argument. The mask argument can be used to
1999 * enable/disable any Intr block.
2000 * Return Value: NONE.
2003 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2005 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2006 register u64 temp64
= 0, intr_mask
= 0;
2008 intr_mask
= nic
->general_int_mask
;
2010 /* Top level interrupt classification */
2011 /* PIC Interrupts */
2012 if (mask
& TX_PIC_INTR
) {
2013 /* Enable PIC Intrs in the general intr mask register */
2014 intr_mask
|= TXPIC_INT_M
;
2015 if (flag
== ENABLE_INTRS
) {
2017 * If Hercules adapter enable GPIO otherwise
2018 * disable all PCIX, Flash, MDIO, IIC and GPIO
2019 * interrupts for now.
2022 if (s2io_link_fault_indication(nic
) ==
2023 LINK_UP_DOWN_INTERRUPT
) {
2024 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2025 &bar0
->pic_int_mask
);
2026 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2027 &bar0
->gpio_int_mask
);
2029 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2030 } else if (flag
== DISABLE_INTRS
) {
2032 * Disable PIC Intrs in the general
2033 * intr mask register
2035 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2039 /* Tx traffic interrupts */
2040 if (mask
& TX_TRAFFIC_INTR
) {
2041 intr_mask
|= TXTRAFFIC_INT_M
;
2042 if (flag
== ENABLE_INTRS
) {
2044 * Enable all the Tx side interrupts
2045 * writing 0 Enables all 64 TX interrupt levels
2047 writeq(0x0, &bar0
->tx_traffic_mask
);
2048 } else if (flag
== DISABLE_INTRS
) {
2050 * Disable Tx Traffic Intrs in the general intr mask
2053 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2057 /* Rx traffic interrupts */
2058 if (mask
& RX_TRAFFIC_INTR
) {
2059 intr_mask
|= RXTRAFFIC_INT_M
;
2060 if (flag
== ENABLE_INTRS
) {
2061 /* writing 0 Enables all 8 RX interrupt levels */
2062 writeq(0x0, &bar0
->rx_traffic_mask
);
2063 } else if (flag
== DISABLE_INTRS
) {
2065 * Disable Rx Traffic Intrs in the general intr mask
2068 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2072 temp64
= readq(&bar0
->general_int_mask
);
2073 if (flag
== ENABLE_INTRS
)
2074 temp64
&= ~((u64
)intr_mask
);
2076 temp64
= DISABLE_ALL_INTRS
;
2077 writeq(temp64
, &bar0
->general_int_mask
);
2079 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2083 * verify_pcc_quiescent- Checks for PCC quiescent state
2084 * Return: 1 If PCC is quiescence
2085 * 0 If PCC is not quiescence
2087 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2090 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2091 u64 val64
= readq(&bar0
->adapter_status
);
2093 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2095 if (flag
== false) {
2096 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2097 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2100 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2104 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2105 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2106 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2109 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2110 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2118 * verify_xena_quiescence - Checks whether the H/W is ready
2119 * Description: Returns whether the H/W is ready to go or not. Depending
2120 * on whether adapter enable bit was written or not the comparison
2121 * differs and the calling function passes the input argument flag to
2123 * Return: 1 If xena is quiescence
2124 * 0 If Xena is not quiescence
2127 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2130 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2131 u64 val64
= readq(&bar0
->adapter_status
);
2132 mode
= s2io_verify_pci_mode(sp
);
2134 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2135 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2138 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2139 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2142 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2143 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2146 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2147 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2150 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2151 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2154 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2155 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2158 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2159 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2162 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2163 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2168 * In PCI 33 mode, the P_PLL is not used, and therefore,
2169 * the the P_PLL_LOCK bit in the adapter_status register will
2172 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2173 sp
->device_type
== XFRAME_II_DEVICE
&&
2174 mode
!= PCI_MODE_PCI_33
) {
2175 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2178 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2179 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2180 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2187 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2188 * @sp: Pointer to device specifc structure
2190 * New procedure to clear mac address reading problems on Alpha platforms
2194 static void fix_mac_address(struct s2io_nic
*sp
)
2196 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2199 while (fix_mac
[i
] != END_SIGN
) {
2200 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2202 (void) readq(&bar0
->gpio_control
);
2207 * start_nic - Turns the device on
2208 * @nic : device private variable.
2210 * This function actually turns the device on. Before this function is
2211 * called,all Registers are configured from their reset states
2212 * and shared memory is allocated but the NIC is still quiescent. On
2213 * calling this function, the device interrupts are cleared and the NIC is
2214 * literally switched on by writing into the adapter control register.
2216 * SUCCESS on success and -1 on failure.
2219 static int start_nic(struct s2io_nic
*nic
)
2221 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2222 struct net_device
*dev
= nic
->dev
;
2223 register u64 val64
= 0;
2225 struct config_param
*config
= &nic
->config
;
2226 struct mac_info
*mac_control
= &nic
->mac_control
;
2228 /* PRC Initialization and configuration */
2229 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2230 struct ring_info
*ring
= &mac_control
->rings
[i
];
2232 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2233 &bar0
->prc_rxd0_n
[i
]);
2235 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2236 if (nic
->rxd_mode
== RXD_MODE_1
)
2237 val64
|= PRC_CTRL_RC_ENABLED
;
2239 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2240 if (nic
->device_type
== XFRAME_II_DEVICE
)
2241 val64
|= PRC_CTRL_GROUP_READS
;
2242 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2243 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2244 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2247 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2248 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2249 val64
= readq(&bar0
->rx_pa_cfg
);
2250 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2251 writeq(val64
, &bar0
->rx_pa_cfg
);
2254 if (vlan_tag_strip
== 0) {
2255 val64
= readq(&bar0
->rx_pa_cfg
);
2256 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2257 writeq(val64
, &bar0
->rx_pa_cfg
);
2258 nic
->vlan_strip_flag
= 0;
2262 * Enabling MC-RLDRAM. After enabling the device, we timeout
2263 * for around 100ms, which is approximately the time required
2264 * for the device to be ready for operation.
2266 val64
= readq(&bar0
->mc_rldram_mrs
);
2267 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2268 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2269 val64
= readq(&bar0
->mc_rldram_mrs
);
2271 msleep(100); /* Delay by around 100 ms. */
2273 /* Enabling ECC Protection. */
2274 val64
= readq(&bar0
->adapter_control
);
2275 val64
&= ~ADAPTER_ECC_EN
;
2276 writeq(val64
, &bar0
->adapter_control
);
2279 * Verify if the device is ready to be enabled, if so enable
2282 val64
= readq(&bar0
->adapter_status
);
2283 if (!verify_xena_quiescence(nic
)) {
2284 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2285 "Adapter status reads: 0x%llx\n",
2286 dev
->name
, (unsigned long long)val64
);
2291 * With some switches, link might be already up at this point.
2292 * Because of this weird behavior, when we enable laser,
2293 * we may not get link. We need to handle this. We cannot
2294 * figure out which switch is misbehaving. So we are forced to
2295 * make a global change.
2298 /* Enabling Laser. */
2299 val64
= readq(&bar0
->adapter_control
);
2300 val64
|= ADAPTER_EOI_TX_ON
;
2301 writeq(val64
, &bar0
->adapter_control
);
2303 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2305 * Dont see link state interrupts initially on some switches,
2306 * so directly scheduling the link state task here.
2308 schedule_work(&nic
->set_link_task
);
2310 /* SXE-002: Initialize link and activity LED */
2311 subid
= nic
->pdev
->subsystem_device
;
2312 if (((subid
& 0xFF) >= 0x07) &&
2313 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2314 val64
= readq(&bar0
->gpio_control
);
2315 val64
|= 0x0000800000000000ULL
;
2316 writeq(val64
, &bar0
->gpio_control
);
2317 val64
= 0x0411040400000000ULL
;
2318 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2324 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2327 struct TxD
*txdlp
, int get_off
)
2329 struct s2io_nic
*nic
= fifo_data
->nic
;
2330 struct sk_buff
*skb
;
2335 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2336 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2337 sizeof(u64
), PCI_DMA_TODEVICE
);
2341 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2343 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2346 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2347 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2348 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2351 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2352 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2353 if (!txds
->Buffer_Pointer
)
2355 pci_unmap_page(nic
->pdev
,
2356 (dma_addr_t
)txds
->Buffer_Pointer
,
2357 skb_frag_size(frag
), PCI_DMA_TODEVICE
);
2360 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2365 * free_tx_buffers - Free all queued Tx buffers
2366 * @nic : device private variable.
2368 * Free all queued Tx buffers.
2369 * Return Value: void
2372 static void free_tx_buffers(struct s2io_nic
*nic
)
2374 struct net_device
*dev
= nic
->dev
;
2375 struct sk_buff
*skb
;
2379 struct config_param
*config
= &nic
->config
;
2380 struct mac_info
*mac_control
= &nic
->mac_control
;
2381 struct stat_block
*stats
= mac_control
->stats_info
;
2382 struct swStat
*swstats
= &stats
->sw_stat
;
2384 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2385 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2386 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2387 unsigned long flags
;
2389 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2390 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2391 txdp
= fifo
->list_info
[j
].list_virt_addr
;
2392 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2394 swstats
->mem_freed
+= skb
->truesize
;
2400 "%s: forcibly freeing %d skbs on FIFO%d\n",
2402 fifo
->tx_curr_get_info
.offset
= 0;
2403 fifo
->tx_curr_put_info
.offset
= 0;
2404 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2409 * stop_nic - To stop the nic
2410 * @nic ; device private variable.
2412 * This function does exactly the opposite of what the start_nic()
2413 * function does. This function is called to stop the device.
2418 static void stop_nic(struct s2io_nic
*nic
)
2420 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2421 register u64 val64
= 0;
2424 /* Disable all interrupts */
2425 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2426 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2427 interruptible
|= TX_PIC_INTR
;
2428 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2430 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2431 val64
= readq(&bar0
->adapter_control
);
2432 val64
&= ~(ADAPTER_CNTL_EN
);
2433 writeq(val64
, &bar0
->adapter_control
);
2437 * fill_rx_buffers - Allocates the Rx side skbs
2438 * @ring_info: per ring structure
2439 * @from_card_up: If this is true, we will map the buffer to get
2440 * the dma address for buf0 and buf1 to give it to the card.
2441 * Else we will sync the already mapped buffer to give it to the card.
2443 * The function allocates Rx side skbs and puts the physical
2444 * address of these buffers into the RxD buffer pointers, so that the NIC
2445 * can DMA the received frame into these locations.
2446 * The NIC supports 3 receive modes, viz
2448 * 2. three buffer and
2449 * 3. Five buffer modes.
2450 * Each mode defines how many fragments the received frame will be split
2451 * up into by the NIC. The frame is split into L3 header, L4 Header,
2452 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2453 * is split into 3 fragments. As of now only single buffer mode is
2456 * SUCCESS on success or an appropriate -ve value on failure.
2458 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2461 struct sk_buff
*skb
;
2463 int off
, size
, block_no
, block_no1
;
2468 struct RxD_t
*first_rxdp
= NULL
;
2469 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2473 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2475 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2477 block_no1
= ring
->rx_curr_get_info
.block_index
;
2478 while (alloc_tab
< alloc_cnt
) {
2479 block_no
= ring
->rx_curr_put_info
.block_index
;
2481 off
= ring
->rx_curr_put_info
.offset
;
2483 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2485 rxd_index
= off
+ 1;
2487 rxd_index
+= (block_no
* ring
->rxd_count
);
2489 if ((block_no
== block_no1
) &&
2490 (off
== ring
->rx_curr_get_info
.offset
) &&
2491 (rxdp
->Host_Control
)) {
2492 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2496 if (off
&& (off
== ring
->rxd_count
)) {
2497 ring
->rx_curr_put_info
.block_index
++;
2498 if (ring
->rx_curr_put_info
.block_index
==
2500 ring
->rx_curr_put_info
.block_index
= 0;
2501 block_no
= ring
->rx_curr_put_info
.block_index
;
2503 ring
->rx_curr_put_info
.offset
= off
;
2504 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2505 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2506 ring
->dev
->name
, rxdp
);
2510 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2511 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2512 (rxdp
->Control_2
& s2BIT(0)))) {
2513 ring
->rx_curr_put_info
.offset
= off
;
2516 /* calculate size of skb based on ring mode */
2518 HEADER_ETHERNET_II_802_3_SIZE
+
2519 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2520 if (ring
->rxd_mode
== RXD_MODE_1
)
2521 size
+= NET_IP_ALIGN
;
2523 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2526 skb
= netdev_alloc_skb(nic
->dev
, size
);
2528 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2532 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2534 swstats
->mem_alloc_fail_cnt
++;
2538 swstats
->mem_allocated
+= skb
->truesize
;
2540 if (ring
->rxd_mode
== RXD_MODE_1
) {
2541 /* 1 buffer mode - normal operation mode */
2542 rxdp1
= (struct RxD1
*)rxdp
;
2543 memset(rxdp
, 0, sizeof(struct RxD1
));
2544 skb_reserve(skb
, NET_IP_ALIGN
);
2545 rxdp1
->Buffer0_ptr
=
2546 pci_map_single(ring
->pdev
, skb
->data
,
2547 size
- NET_IP_ALIGN
,
2548 PCI_DMA_FROMDEVICE
);
2549 if (pci_dma_mapping_error(nic
->pdev
,
2550 rxdp1
->Buffer0_ptr
))
2551 goto pci_map_failed
;
2554 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2555 rxdp
->Host_Control
= (unsigned long)skb
;
2556 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2559 * 2 buffer mode provides 128
2560 * byte aligned receive buffers.
2563 rxdp3
= (struct RxD3
*)rxdp
;
2564 /* save buffer pointers to avoid frequent dma mapping */
2565 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2566 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2567 memset(rxdp
, 0, sizeof(struct RxD3
));
2568 /* restore the buffer pointers for dma sync*/
2569 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2570 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2572 ba
= &ring
->ba
[block_no
][off
];
2573 skb_reserve(skb
, BUF0_LEN
);
2574 tmp
= (u64
)(unsigned long)skb
->data
;
2577 skb
->data
= (void *) (unsigned long)tmp
;
2578 skb_reset_tail_pointer(skb
);
2581 rxdp3
->Buffer0_ptr
=
2582 pci_map_single(ring
->pdev
, ba
->ba_0
,
2584 PCI_DMA_FROMDEVICE
);
2585 if (pci_dma_mapping_error(nic
->pdev
,
2586 rxdp3
->Buffer0_ptr
))
2587 goto pci_map_failed
;
2589 pci_dma_sync_single_for_device(ring
->pdev
,
2590 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2592 PCI_DMA_FROMDEVICE
);
2594 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2595 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2596 /* Two buffer mode */
2599 * Buffer2 will have L3/L4 header plus
2602 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2605 PCI_DMA_FROMDEVICE
);
2607 if (pci_dma_mapping_error(nic
->pdev
,
2608 rxdp3
->Buffer2_ptr
))
2609 goto pci_map_failed
;
2612 rxdp3
->Buffer1_ptr
=
2613 pci_map_single(ring
->pdev
,
2616 PCI_DMA_FROMDEVICE
);
2618 if (pci_dma_mapping_error(nic
->pdev
,
2619 rxdp3
->Buffer1_ptr
)) {
2620 pci_unmap_single(ring
->pdev
,
2621 (dma_addr_t
)(unsigned long)
2624 PCI_DMA_FROMDEVICE
);
2625 goto pci_map_failed
;
2628 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2629 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2632 rxdp
->Control_2
|= s2BIT(0);
2633 rxdp
->Host_Control
= (unsigned long) (skb
);
2635 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2636 rxdp
->Control_1
|= RXD_OWN_XENA
;
2638 if (off
== (ring
->rxd_count
+ 1))
2640 ring
->rx_curr_put_info
.offset
= off
;
2642 rxdp
->Control_2
|= SET_RXD_MARKER
;
2643 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2646 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2650 ring
->rx_bufs_left
+= 1;
2655 /* Transfer ownership of first descriptor to adapter just before
2656 * exiting. Before that, use memory barrier so that ownership
2657 * and other fields are seen by adapter correctly.
2661 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2667 swstats
->pci_map_fail_cnt
++;
2668 swstats
->mem_freed
+= skb
->truesize
;
2669 dev_kfree_skb_irq(skb
);
2673 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2675 struct net_device
*dev
= sp
->dev
;
2677 struct sk_buff
*skb
;
2681 struct mac_info
*mac_control
= &sp
->mac_control
;
2682 struct stat_block
*stats
= mac_control
->stats_info
;
2683 struct swStat
*swstats
= &stats
->sw_stat
;
2685 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2686 rxdp
= mac_control
->rings
[ring_no
].
2687 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2688 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2691 if (sp
->rxd_mode
== RXD_MODE_1
) {
2692 rxdp1
= (struct RxD1
*)rxdp
;
2693 pci_unmap_single(sp
->pdev
,
2694 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2696 HEADER_ETHERNET_II_802_3_SIZE
+
2697 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2698 PCI_DMA_FROMDEVICE
);
2699 memset(rxdp
, 0, sizeof(struct RxD1
));
2700 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2701 rxdp3
= (struct RxD3
*)rxdp
;
2702 pci_unmap_single(sp
->pdev
,
2703 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2705 PCI_DMA_FROMDEVICE
);
2706 pci_unmap_single(sp
->pdev
,
2707 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2709 PCI_DMA_FROMDEVICE
);
2710 pci_unmap_single(sp
->pdev
,
2711 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2713 PCI_DMA_FROMDEVICE
);
2714 memset(rxdp
, 0, sizeof(struct RxD3
));
2716 swstats
->mem_freed
+= skb
->truesize
;
2718 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2723 * free_rx_buffers - Frees all Rx buffers
2724 * @sp: device private variable.
2726 * This function will free all Rx buffers allocated by host.
2731 static void free_rx_buffers(struct s2io_nic
*sp
)
2733 struct net_device
*dev
= sp
->dev
;
2734 int i
, blk
= 0, buf_cnt
= 0;
2735 struct config_param
*config
= &sp
->config
;
2736 struct mac_info
*mac_control
= &sp
->mac_control
;
2738 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2739 struct ring_info
*ring
= &mac_control
->rings
[i
];
2741 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2742 free_rxd_blk(sp
, i
, blk
);
2744 ring
->rx_curr_put_info
.block_index
= 0;
2745 ring
->rx_curr_get_info
.block_index
= 0;
2746 ring
->rx_curr_put_info
.offset
= 0;
2747 ring
->rx_curr_get_info
.offset
= 0;
2748 ring
->rx_bufs_left
= 0;
2749 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2750 dev
->name
, buf_cnt
, i
);
2754 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2756 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2757 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2764 * s2io_poll - Rx interrupt handler for NAPI support
2765 * @napi : pointer to the napi structure.
2766 * @budget : The number of packets that were budgeted to be processed
2767 * during one pass through the 'Poll" function.
2769 * Comes into picture only if NAPI support has been incorporated. It does
2770 * the same thing that rx_intr_handler does, but not in a interrupt context
2771 * also It will process only a given number of packets.
2773 * 0 on success and 1 if there are No Rx packets to be processed.
2776 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2778 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2779 struct net_device
*dev
= ring
->dev
;
2780 int pkts_processed
= 0;
2781 u8 __iomem
*addr
= NULL
;
2783 struct s2io_nic
*nic
= netdev_priv(dev
);
2784 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2785 int budget_org
= budget
;
2787 if (unlikely(!is_s2io_card_up(nic
)))
2790 pkts_processed
= rx_intr_handler(ring
, budget
);
2791 s2io_chk_rx_buffers(nic
, ring
);
2793 if (pkts_processed
< budget_org
) {
2794 napi_complete(napi
);
2795 /*Re Enable MSI-Rx Vector*/
2796 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2797 addr
+= 7 - ring
->ring_no
;
2798 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2802 return pkts_processed
;
2805 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2807 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2808 int pkts_processed
= 0;
2809 int ring_pkts_processed
, i
;
2810 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2811 int budget_org
= budget
;
2812 struct config_param
*config
= &nic
->config
;
2813 struct mac_info
*mac_control
= &nic
->mac_control
;
2815 if (unlikely(!is_s2io_card_up(nic
)))
2818 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2819 struct ring_info
*ring
= &mac_control
->rings
[i
];
2820 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2821 s2io_chk_rx_buffers(nic
, ring
);
2822 pkts_processed
+= ring_pkts_processed
;
2823 budget
-= ring_pkts_processed
;
2827 if (pkts_processed
< budget_org
) {
2828 napi_complete(napi
);
2829 /* Re enable the Rx interrupts for the ring */
2830 writeq(0, &bar0
->rx_traffic_mask
);
2831 readl(&bar0
->rx_traffic_mask
);
2833 return pkts_processed
;
2836 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 * s2io_netpoll - netpoll event handler entry point
2839 * @dev : pointer to the device structure.
2841 * This function will be called by upper layer to check for events on the
2842 * interface in situations where interrupts are disabled. It is used for
2843 * specific in-kernel networking tasks, such as remote consoles and kernel
2844 * debugging over the network (example netdump in RedHat).
2846 static void s2io_netpoll(struct net_device
*dev
)
2848 struct s2io_nic
*nic
= netdev_priv(dev
);
2849 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2850 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2852 struct config_param
*config
= &nic
->config
;
2853 struct mac_info
*mac_control
= &nic
->mac_control
;
2855 if (pci_channel_offline(nic
->pdev
))
2858 disable_irq(dev
->irq
);
2860 writeq(val64
, &bar0
->rx_traffic_int
);
2861 writeq(val64
, &bar0
->tx_traffic_int
);
2863 /* we need to free up the transmitted skbufs or else netpoll will
2864 * run out of skbs and will fail and eventually netpoll application such
2865 * as netdump will fail.
2867 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2868 tx_intr_handler(&mac_control
->fifos
[i
]);
2870 /* check for received packet and indicate up to network */
2871 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2872 struct ring_info
*ring
= &mac_control
->rings
[i
];
2874 rx_intr_handler(ring
, 0);
2877 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2878 struct ring_info
*ring
= &mac_control
->rings
[i
];
2880 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2882 "%s: Out of memory in Rx Netpoll!!\n",
2887 enable_irq(dev
->irq
);
2892 * rx_intr_handler - Rx interrupt handler
2893 * @ring_info: per ring structure.
2894 * @budget: budget for napi processing.
2896 * If the interrupt is because of a received frame or if the
2897 * receive ring contains fresh as yet un-processed frames,this function is
2898 * called. It picks out the RxD at which place the last Rx processing had
2899 * stopped and sends the skb to the OSM's Rx handler and then increments
2902 * No. of napi packets processed.
2904 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2906 int get_block
, put_block
;
2907 struct rx_curr_get_info get_info
, put_info
;
2909 struct sk_buff
*skb
;
2910 int pkt_cnt
= 0, napi_pkts
= 0;
2915 get_info
= ring_data
->rx_curr_get_info
;
2916 get_block
= get_info
.block_index
;
2917 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2918 put_block
= put_info
.block_index
;
2919 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2921 while (RXD_IS_UP2DT(rxdp
)) {
2923 * If your are next to put index then it's
2924 * FIFO full condition
2926 if ((get_block
== put_block
) &&
2927 (get_info
.offset
+ 1) == put_info
.offset
) {
2928 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2929 ring_data
->dev
->name
);
2932 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2934 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2935 ring_data
->dev
->name
);
2938 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2939 rxdp1
= (struct RxD1
*)rxdp
;
2940 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2943 HEADER_ETHERNET_II_802_3_SIZE
+
2946 PCI_DMA_FROMDEVICE
);
2947 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
2948 rxdp3
= (struct RxD3
*)rxdp
;
2949 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
2950 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2952 PCI_DMA_FROMDEVICE
);
2953 pci_unmap_single(ring_data
->pdev
,
2954 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2956 PCI_DMA_FROMDEVICE
);
2958 prefetch(skb
->data
);
2959 rx_osm_handler(ring_data
, rxdp
);
2961 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2962 rxdp
= ring_data
->rx_blocks
[get_block
].
2963 rxds
[get_info
.offset
].virt_addr
;
2964 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
2965 get_info
.offset
= 0;
2966 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2968 if (get_block
== ring_data
->block_count
)
2970 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2971 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2974 if (ring_data
->nic
->config
.napi
) {
2981 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2984 if (ring_data
->lro
) {
2985 /* Clear all LRO sessions before exiting */
2986 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
2987 struct lro
*lro
= &ring_data
->lro0_n
[i
];
2989 update_L3L4_header(ring_data
->nic
, lro
);
2990 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
2991 clear_lro_session(lro
);
2999 * tx_intr_handler - Transmit interrupt handler
3000 * @nic : device private variable
3002 * If an interrupt was raised to indicate DMA complete of the
3003 * Tx packet, this function is called. It identifies the last TxD
3004 * whose buffer was freed and frees all skbs whose data have already
3005 * DMA'ed into the NICs internal memory.
3010 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3012 struct s2io_nic
*nic
= fifo_data
->nic
;
3013 struct tx_curr_get_info get_info
, put_info
;
3014 struct sk_buff
*skb
= NULL
;
3017 unsigned long flags
= 0;
3019 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3020 struct swStat
*swstats
= &stats
->sw_stat
;
3022 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3025 get_info
= fifo_data
->tx_curr_get_info
;
3026 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3027 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3028 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3029 (get_info
.offset
!= put_info
.offset
) &&
3030 (txdlp
->Host_Control
)) {
3031 /* Check for TxD errors */
3032 if (txdlp
->Control_1
& TXD_T_CODE
) {
3033 unsigned long long err
;
3034 err
= txdlp
->Control_1
& TXD_T_CODE
;
3036 swstats
->parity_err_cnt
++;
3039 /* update t_code statistics */
3040 err_mask
= err
>> 48;
3043 swstats
->tx_buf_abort_cnt
++;
3047 swstats
->tx_desc_abort_cnt
++;
3051 swstats
->tx_parity_err_cnt
++;
3055 swstats
->tx_link_loss_cnt
++;
3059 swstats
->tx_list_proc_err_cnt
++;
3064 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3066 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3067 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3073 /* Updating the statistics block */
3074 swstats
->mem_freed
+= skb
->truesize
;
3075 dev_kfree_skb_irq(skb
);
3078 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3079 get_info
.offset
= 0;
3080 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3081 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3084 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3086 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3090 * s2io_mdio_write - Function to write in to MDIO registers
3091 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3092 * @addr : address value
3093 * @value : data value
3094 * @dev : pointer to net_device structure
3096 * This function is used to write values to the MDIO registers
3099 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3100 struct net_device
*dev
)
3103 struct s2io_nic
*sp
= netdev_priv(dev
);
3104 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3106 /* address transaction */
3107 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3108 MDIO_MMD_DEV_ADDR(mmd_type
) |
3109 MDIO_MMS_PRT_ADDR(0x0);
3110 writeq(val64
, &bar0
->mdio_control
);
3111 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3112 writeq(val64
, &bar0
->mdio_control
);
3115 /* Data transaction */
3116 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3117 MDIO_MMD_DEV_ADDR(mmd_type
) |
3118 MDIO_MMS_PRT_ADDR(0x0) |
3119 MDIO_MDIO_DATA(value
) |
3120 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3121 writeq(val64
, &bar0
->mdio_control
);
3122 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3123 writeq(val64
, &bar0
->mdio_control
);
3126 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3127 MDIO_MMD_DEV_ADDR(mmd_type
) |
3128 MDIO_MMS_PRT_ADDR(0x0) |
3129 MDIO_OP(MDIO_OP_READ_TRANS
);
3130 writeq(val64
, &bar0
->mdio_control
);
3131 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3132 writeq(val64
, &bar0
->mdio_control
);
3137 * s2io_mdio_read - Function to write in to MDIO registers
3138 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3139 * @addr : address value
3140 * @dev : pointer to net_device structure
3142 * This function is used to read values to the MDIO registers
3145 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3149 struct s2io_nic
*sp
= netdev_priv(dev
);
3150 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3152 /* address transaction */
3153 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3154 | MDIO_MMD_DEV_ADDR(mmd_type
)
3155 | MDIO_MMS_PRT_ADDR(0x0));
3156 writeq(val64
, &bar0
->mdio_control
);
3157 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3158 writeq(val64
, &bar0
->mdio_control
);
3161 /* Data transaction */
3162 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3163 MDIO_MMD_DEV_ADDR(mmd_type
) |
3164 MDIO_MMS_PRT_ADDR(0x0) |
3165 MDIO_OP(MDIO_OP_READ_TRANS
);
3166 writeq(val64
, &bar0
->mdio_control
);
3167 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3168 writeq(val64
, &bar0
->mdio_control
);
3171 /* Read the value from regs */
3172 rval64
= readq(&bar0
->mdio_control
);
3173 rval64
= rval64
& 0xFFFF0000;
3174 rval64
= rval64
>> 16;
3179 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3180 * @counter : counter value to be updated
3181 * @flag : flag to indicate the status
3182 * @type : counter type
3184 * This function is to check the status of the xpak counters value
3188 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3194 for (i
= 0; i
< index
; i
++)
3198 *counter
= *counter
+ 1;
3199 val64
= *regs_stat
& mask
;
3200 val64
= val64
>> (index
* 0x2);
3206 "Take Xframe NIC out of service.\n");
3208 "Excessive temperatures may result in premature transceiver failure.\n");
3212 "Take Xframe NIC out of service.\n");
3214 "Excessive bias currents may indicate imminent laser diode failure.\n");
3218 "Take Xframe NIC out of service.\n");
3220 "Excessive laser output power may saturate far-end receiver.\n");
3224 "Incorrect XPAK Alarm type\n");
3228 val64
= val64
<< (index
* 0x2);
3229 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3232 *regs_stat
= *regs_stat
& (~mask
);
3237 * s2io_updt_xpak_counter - Function to update the xpak counters
3238 * @dev : pointer to net_device struct
3240 * This function is to upate the status of the xpak counters value
3243 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3251 struct s2io_nic
*sp
= netdev_priv(dev
);
3252 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3253 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3255 /* Check the communication with the MDIO slave */
3258 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3259 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3261 "ERR: MDIO slave access failed - Returned %llx\n",
3262 (unsigned long long)val64
);
3266 /* Check for the expected value of control reg 1 */
3267 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3268 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3269 "Returned: %llx- Expected: 0x%x\n",
3270 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3274 /* Loading the DOM register to MDIO register */
3276 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3277 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3279 /* Reading the Alarm flags */
3282 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3284 flag
= CHECKBIT(val64
, 0x7);
3286 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3287 &xstats
->xpak_regs_stat
,
3290 if (CHECKBIT(val64
, 0x6))
3291 xstats
->alarm_transceiver_temp_low
++;
3293 flag
= CHECKBIT(val64
, 0x3);
3295 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3296 &xstats
->xpak_regs_stat
,
3299 if (CHECKBIT(val64
, 0x2))
3300 xstats
->alarm_laser_bias_current_low
++;
3302 flag
= CHECKBIT(val64
, 0x1);
3304 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3305 &xstats
->xpak_regs_stat
,
3308 if (CHECKBIT(val64
, 0x0))
3309 xstats
->alarm_laser_output_power_low
++;
3311 /* Reading the Warning flags */
3314 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3316 if (CHECKBIT(val64
, 0x7))
3317 xstats
->warn_transceiver_temp_high
++;
3319 if (CHECKBIT(val64
, 0x6))
3320 xstats
->warn_transceiver_temp_low
++;
3322 if (CHECKBIT(val64
, 0x3))
3323 xstats
->warn_laser_bias_current_high
++;
3325 if (CHECKBIT(val64
, 0x2))
3326 xstats
->warn_laser_bias_current_low
++;
3328 if (CHECKBIT(val64
, 0x1))
3329 xstats
->warn_laser_output_power_high
++;
3331 if (CHECKBIT(val64
, 0x0))
3332 xstats
->warn_laser_output_power_low
++;
3336 * wait_for_cmd_complete - waits for a command to complete.
3337 * @sp : private member of the device structure, which is a pointer to the
3338 * s2io_nic structure.
3339 * Description: Function that waits for a command to Write into RMAC
3340 * ADDR DATA registers to be completed and returns either success or
3341 * error depending on whether the command was complete or not.
3343 * SUCCESS on success and FAILURE on failure.
3346 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3349 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3352 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3356 val64
= readq(addr
);
3357 if (bit_state
== S2IO_BIT_RESET
) {
3358 if (!(val64
& busy_bit
)) {
3363 if (val64
& busy_bit
) {
3380 * check_pci_device_id - Checks if the device id is supported
3382 * Description: Function to check if the pci device id is supported by driver.
3383 * Return value: Actual device id if supported else PCI_ANY_ID
3385 static u16
check_pci_device_id(u16 id
)
3388 case PCI_DEVICE_ID_HERC_WIN
:
3389 case PCI_DEVICE_ID_HERC_UNI
:
3390 return XFRAME_II_DEVICE
;
3391 case PCI_DEVICE_ID_S2IO_UNI
:
3392 case PCI_DEVICE_ID_S2IO_WIN
:
3393 return XFRAME_I_DEVICE
;
3400 * s2io_reset - Resets the card.
3401 * @sp : private member of the device structure.
3402 * Description: Function to Reset the card. This function then also
3403 * restores the previously saved PCI configuration space registers as
3404 * the card reset also resets the configuration space.
3409 static void s2io_reset(struct s2io_nic
*sp
)
3411 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3416 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3417 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3418 struct stat_block
*stats
;
3419 struct swStat
*swstats
;
3421 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3422 __func__
, pci_name(sp
->pdev
));
3424 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3425 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3427 val64
= SW_RESET_ALL
;
3428 writeq(val64
, &bar0
->sw_reset
);
3429 if (strstr(sp
->product_name
, "CX4"))
3432 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3434 /* Restore the PCI state saved during initialization. */
3435 pci_restore_state(sp
->pdev
);
3436 pci_save_state(sp
->pdev
);
3437 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3438 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3443 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3444 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3446 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3450 /* Set swapper to enable I/O register access */
3451 s2io_set_swapper(sp
);
3453 /* restore mac_addr entries */
3454 do_s2io_restore_unicast_mc(sp
);
3456 /* Restore the MSIX table entries from local variables */
3457 restore_xmsi_data(sp
);
3459 /* Clear certain PCI/PCI-X fields after reset */
3460 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3461 /* Clear "detected parity error" bit */
3462 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3464 /* Clearing PCIX Ecc status register */
3465 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3467 /* Clearing PCI_STATUS error reflected here */
3468 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3471 /* Reset device statistics maintained by OS */
3472 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3474 stats
= sp
->mac_control
.stats_info
;
3475 swstats
= &stats
->sw_stat
;
3477 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3478 up_cnt
= swstats
->link_up_cnt
;
3479 down_cnt
= swstats
->link_down_cnt
;
3480 up_time
= swstats
->link_up_time
;
3481 down_time
= swstats
->link_down_time
;
3482 reset_cnt
= swstats
->soft_reset_cnt
;
3483 mem_alloc_cnt
= swstats
->mem_allocated
;
3484 mem_free_cnt
= swstats
->mem_freed
;
3485 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3487 memset(stats
, 0, sizeof(struct stat_block
));
3489 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3490 swstats
->link_up_cnt
= up_cnt
;
3491 swstats
->link_down_cnt
= down_cnt
;
3492 swstats
->link_up_time
= up_time
;
3493 swstats
->link_down_time
= down_time
;
3494 swstats
->soft_reset_cnt
= reset_cnt
;
3495 swstats
->mem_allocated
= mem_alloc_cnt
;
3496 swstats
->mem_freed
= mem_free_cnt
;
3497 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3499 /* SXE-002: Configure link and activity LED to turn it off */
3500 subid
= sp
->pdev
->subsystem_device
;
3501 if (((subid
& 0xFF) >= 0x07) &&
3502 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3503 val64
= readq(&bar0
->gpio_control
);
3504 val64
|= 0x0000800000000000ULL
;
3505 writeq(val64
, &bar0
->gpio_control
);
3506 val64
= 0x0411040400000000ULL
;
3507 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3511 * Clear spurious ECC interrupts that would have occurred on
3512 * XFRAME II cards after reset.
3514 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3515 val64
= readq(&bar0
->pcc_err_reg
);
3516 writeq(val64
, &bar0
->pcc_err_reg
);
3519 sp
->device_enabled_once
= false;
3523 * s2io_set_swapper - to set the swapper controle on the card
3524 * @sp : private member of the device structure,
3525 * pointer to the s2io_nic structure.
3526 * Description: Function to set the swapper control on the card
3527 * correctly depending on the 'endianness' of the system.
3529 * SUCCESS on success and FAILURE on failure.
3532 static int s2io_set_swapper(struct s2io_nic
*sp
)
3534 struct net_device
*dev
= sp
->dev
;
3535 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3536 u64 val64
, valt
, valr
;
3539 * Set proper endian settings and verify the same by reading
3540 * the PIF Feed-back register.
3543 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3544 if (val64
!= 0x0123456789ABCDEFULL
) {
3546 static const u64 value
[] = {
3547 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3548 0x8100008181000081ULL
, /* FE=1, SE=0 */
3549 0x4200004242000042ULL
, /* FE=0, SE=1 */
3554 writeq(value
[i
], &bar0
->swapper_ctrl
);
3555 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3556 if (val64
== 0x0123456789ABCDEFULL
)
3561 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3562 "feedback read %llx\n",
3563 dev
->name
, (unsigned long long)val64
);
3568 valr
= readq(&bar0
->swapper_ctrl
);
3571 valt
= 0x0123456789ABCDEFULL
;
3572 writeq(valt
, &bar0
->xmsi_address
);
3573 val64
= readq(&bar0
->xmsi_address
);
3575 if (val64
!= valt
) {
3577 static const u64 value
[] = {
3578 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3579 0x0081810000818100ULL
, /* FE=1, SE=0 */
3580 0x0042420000424200ULL
, /* FE=0, SE=1 */
3585 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3586 writeq(valt
, &bar0
->xmsi_address
);
3587 val64
= readq(&bar0
->xmsi_address
);
3593 unsigned long long x
= val64
;
3595 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3599 val64
= readq(&bar0
->swapper_ctrl
);
3600 val64
&= 0xFFFF000000000000ULL
;
3604 * The device by default set to a big endian format, so a
3605 * big endian driver need not set anything.
3607 val64
|= (SWAPPER_CTRL_TXP_FE
|
3608 SWAPPER_CTRL_TXP_SE
|
3609 SWAPPER_CTRL_TXD_R_FE
|
3610 SWAPPER_CTRL_TXD_W_FE
|
3611 SWAPPER_CTRL_TXF_R_FE
|
3612 SWAPPER_CTRL_RXD_R_FE
|
3613 SWAPPER_CTRL_RXD_W_FE
|
3614 SWAPPER_CTRL_RXF_W_FE
|
3615 SWAPPER_CTRL_XMSI_FE
|
3616 SWAPPER_CTRL_STATS_FE
|
3617 SWAPPER_CTRL_STATS_SE
);
3618 if (sp
->config
.intr_type
== INTA
)
3619 val64
|= SWAPPER_CTRL_XMSI_SE
;
3620 writeq(val64
, &bar0
->swapper_ctrl
);
3623 * Initially we enable all bits to make it accessible by the
3624 * driver, then we selectively enable only those bits that
3627 val64
|= (SWAPPER_CTRL_TXP_FE
|
3628 SWAPPER_CTRL_TXP_SE
|
3629 SWAPPER_CTRL_TXD_R_FE
|
3630 SWAPPER_CTRL_TXD_R_SE
|
3631 SWAPPER_CTRL_TXD_W_FE
|
3632 SWAPPER_CTRL_TXD_W_SE
|
3633 SWAPPER_CTRL_TXF_R_FE
|
3634 SWAPPER_CTRL_RXD_R_FE
|
3635 SWAPPER_CTRL_RXD_R_SE
|
3636 SWAPPER_CTRL_RXD_W_FE
|
3637 SWAPPER_CTRL_RXD_W_SE
|
3638 SWAPPER_CTRL_RXF_W_FE
|
3639 SWAPPER_CTRL_XMSI_FE
|
3640 SWAPPER_CTRL_STATS_FE
|
3641 SWAPPER_CTRL_STATS_SE
);
3642 if (sp
->config
.intr_type
== INTA
)
3643 val64
|= SWAPPER_CTRL_XMSI_SE
;
3644 writeq(val64
, &bar0
->swapper_ctrl
);
3646 val64
= readq(&bar0
->swapper_ctrl
);
3649 * Verifying if endian settings are accurate by reading a
3650 * feedback register.
3652 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3653 if (val64
!= 0x0123456789ABCDEFULL
) {
3654 /* Endian settings are incorrect, calls for another dekko. */
3656 "%s: Endian settings are wrong, feedback read %llx\n",
3657 dev
->name
, (unsigned long long)val64
);
3664 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3666 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3668 int ret
= 0, cnt
= 0;
3671 val64
= readq(&bar0
->xmsi_access
);
3672 if (!(val64
& s2BIT(15)))
3678 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3685 static void restore_xmsi_data(struct s2io_nic
*nic
)
3687 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3691 if (nic
->device_type
== XFRAME_I_DEVICE
)
3694 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3695 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3696 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3697 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3698 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3699 writeq(val64
, &bar0
->xmsi_access
);
3700 if (wait_for_msix_trans(nic
, msix_index
)) {
3701 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3702 __func__
, msix_index
);
3708 static void store_xmsi_data(struct s2io_nic
*nic
)
3710 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3711 u64 val64
, addr
, data
;
3714 if (nic
->device_type
== XFRAME_I_DEVICE
)
3717 /* Store and display */
3718 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3719 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3720 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3721 writeq(val64
, &bar0
->xmsi_access
);
3722 if (wait_for_msix_trans(nic
, msix_index
)) {
3723 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3724 __func__
, msix_index
);
3727 addr
= readq(&bar0
->xmsi_address
);
3728 data
= readq(&bar0
->xmsi_data
);
3730 nic
->msix_info
[i
].addr
= addr
;
3731 nic
->msix_info
[i
].data
= data
;
3736 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3738 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3740 u16 msi_control
; /* Temp variable */
3741 int ret
, i
, j
, msix_indx
= 1;
3743 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3744 struct swStat
*swstats
= &stats
->sw_stat
;
3746 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3747 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3748 if (!nic
->entries
) {
3749 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3751 swstats
->mem_alloc_fail_cnt
++;
3754 swstats
->mem_allocated
+= size
;
3756 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3757 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3758 if (!nic
->s2io_entries
) {
3759 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3761 swstats
->mem_alloc_fail_cnt
++;
3762 kfree(nic
->entries
);
3764 += (nic
->num_entries
* sizeof(struct msix_entry
));
3767 swstats
->mem_allocated
+= size
;
3769 nic
->entries
[0].entry
= 0;
3770 nic
->s2io_entries
[0].entry
= 0;
3771 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3772 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3773 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3775 for (i
= 1; i
< nic
->num_entries
; i
++) {
3776 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3777 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3778 nic
->s2io_entries
[i
].arg
= NULL
;
3779 nic
->s2io_entries
[i
].in_use
= 0;
3782 rx_mat
= readq(&bar0
->rx_mat
);
3783 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3784 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3785 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3786 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3787 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3790 writeq(rx_mat
, &bar0
->rx_mat
);
3791 readq(&bar0
->rx_mat
);
3793 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3794 /* We fail init if error or we get less vectors than min required */
3796 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3797 kfree(nic
->entries
);
3798 swstats
->mem_freed
+= nic
->num_entries
*
3799 sizeof(struct msix_entry
);
3800 kfree(nic
->s2io_entries
);
3801 swstats
->mem_freed
+= nic
->num_entries
*
3802 sizeof(struct s2io_msix_entry
);
3803 nic
->entries
= NULL
;
3804 nic
->s2io_entries
= NULL
;
3809 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3810 * in the herc NIC. (Temp change, needs to be removed later)
3812 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3813 msi_control
|= 0x1; /* Enable MSI */
3814 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3819 /* Handle software interrupt used during MSI(X) test */
3820 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3822 struct s2io_nic
*sp
= dev_id
;
3824 sp
->msi_detected
= 1;
3825 wake_up(&sp
->msi_wait
);
3830 /* Test interrupt path by forcing a a software IRQ */
3831 static int s2io_test_msi(struct s2io_nic
*sp
)
3833 struct pci_dev
*pdev
= sp
->pdev
;
3834 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3838 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3841 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3842 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3846 init_waitqueue_head(&sp
->msi_wait
);
3847 sp
->msi_detected
= 0;
3849 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3850 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3851 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3852 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3853 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3855 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3857 if (!sp
->msi_detected
) {
3858 /* MSI(X) test failed, go back to INTx mode */
3859 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3860 "using MSI(X) during test\n",
3861 sp
->dev
->name
, pci_name(pdev
));
3866 free_irq(sp
->entries
[1].vector
, sp
);
3868 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3873 static void remove_msix_isr(struct s2io_nic
*sp
)
3878 for (i
= 0; i
< sp
->num_entries
; i
++) {
3879 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3880 int vector
= sp
->entries
[i
].vector
;
3881 void *arg
= sp
->s2io_entries
[i
].arg
;
3882 free_irq(vector
, arg
);
3887 kfree(sp
->s2io_entries
);
3889 sp
->s2io_entries
= NULL
;
3891 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3892 msi_control
&= 0xFFFE; /* Disable MSI */
3893 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3895 pci_disable_msix(sp
->pdev
);
3898 static void remove_inta_isr(struct s2io_nic
*sp
)
3900 struct net_device
*dev
= sp
->dev
;
3902 free_irq(sp
->pdev
->irq
, dev
);
3905 /* ********************************************************* *
3906 * Functions defined below concern the OS part of the driver *
3907 * ********************************************************* */
3910 * s2io_open - open entry point of the driver
3911 * @dev : pointer to the device structure.
3913 * This function is the open entry point of the driver. It mainly calls a
3914 * function to allocate Rx buffers and inserts them into the buffer
3915 * descriptors and then enables the Rx part of the NIC.
3917 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3921 static int s2io_open(struct net_device
*dev
)
3923 struct s2io_nic
*sp
= netdev_priv(dev
);
3924 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3928 * Make sure you have link off by default every time
3929 * Nic is initialized
3931 netif_carrier_off(dev
);
3932 sp
->last_link_state
= 0;
3934 /* Initialize H/W and enable interrupts */
3935 err
= s2io_card_up(sp
);
3937 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3939 goto hw_init_failed
;
3942 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3943 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3946 goto hw_init_failed
;
3948 s2io_start_all_tx_queue(sp
);
3952 if (sp
->config
.intr_type
== MSI_X
) {
3955 swstats
->mem_freed
+= sp
->num_entries
*
3956 sizeof(struct msix_entry
);
3958 if (sp
->s2io_entries
) {
3959 kfree(sp
->s2io_entries
);
3960 swstats
->mem_freed
+= sp
->num_entries
*
3961 sizeof(struct s2io_msix_entry
);
3968 * s2io_close -close entry point of the driver
3969 * @dev : device pointer.
3971 * This is the stop entry point of the driver. It needs to undo exactly
3972 * whatever was done by the open entry point,thus it's usually referred to
3973 * as the close function.Among other things this function mainly stops the
3974 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3976 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3980 static int s2io_close(struct net_device
*dev
)
3982 struct s2io_nic
*sp
= netdev_priv(dev
);
3983 struct config_param
*config
= &sp
->config
;
3987 /* Return if the device is already closed *
3988 * Can happen when s2io_card_up failed in change_mtu *
3990 if (!is_s2io_card_up(sp
))
3993 s2io_stop_all_tx_queue(sp
);
3994 /* delete all populated mac entries */
3995 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3996 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3997 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3998 do_s2io_delete_unicast_mc(sp
, tmp64
);
4007 * s2io_xmit - Tx entry point of te driver
4008 * @skb : the socket buffer containing the Tx data.
4009 * @dev : device pointer.
4011 * This function is the Tx entry point of the driver. S2IO NIC supports
4012 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4013 * NOTE: when device can't queue the pkt,just the trans_start variable will
4016 * 0 on success & 1 on failure.
4019 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4021 struct s2io_nic
*sp
= netdev_priv(dev
);
4022 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4025 struct TxFIFO_element __iomem
*tx_fifo
;
4026 unsigned long flags
= 0;
4028 struct fifo_info
*fifo
= NULL
;
4029 int do_spin_lock
= 1;
4031 int enable_per_list_interrupt
= 0;
4032 struct config_param
*config
= &sp
->config
;
4033 struct mac_info
*mac_control
= &sp
->mac_control
;
4034 struct stat_block
*stats
= mac_control
->stats_info
;
4035 struct swStat
*swstats
= &stats
->sw_stat
;
4037 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4039 if (unlikely(skb
->len
<= 0)) {
4040 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4041 dev_kfree_skb_any(skb
);
4042 return NETDEV_TX_OK
;
4045 if (!is_s2io_card_up(sp
)) {
4046 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4049 return NETDEV_TX_OK
;
4053 if (vlan_tx_tag_present(skb
))
4054 vlan_tag
= vlan_tx_tag_get(skb
);
4055 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4056 if (skb
->protocol
== htons(ETH_P_IP
)) {
4061 if (!ip_is_fragment(ip
)) {
4062 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4065 if (ip
->protocol
== IPPROTO_TCP
) {
4066 queue_len
= sp
->total_tcp_fifos
;
4067 queue
= (ntohs(th
->source
) +
4069 sp
->fifo_selector
[queue_len
- 1];
4070 if (queue
>= queue_len
)
4071 queue
= queue_len
- 1;
4072 } else if (ip
->protocol
== IPPROTO_UDP
) {
4073 queue_len
= sp
->total_udp_fifos
;
4074 queue
= (ntohs(th
->source
) +
4076 sp
->fifo_selector
[queue_len
- 1];
4077 if (queue
>= queue_len
)
4078 queue
= queue_len
- 1;
4079 queue
+= sp
->udp_fifo_idx
;
4080 if (skb
->len
> 1024)
4081 enable_per_list_interrupt
= 1;
4086 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4087 /* get fifo number based on skb->priority value */
4088 queue
= config
->fifo_mapping
4089 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4090 fifo
= &mac_control
->fifos
[queue
];
4093 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4095 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4096 return NETDEV_TX_LOCKED
;
4099 if (sp
->config
.multiq
) {
4100 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4101 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4102 return NETDEV_TX_BUSY
;
4104 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4105 if (netif_queue_stopped(dev
)) {
4106 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4107 return NETDEV_TX_BUSY
;
4111 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4112 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4113 txdp
= fifo
->list_info
[put_off
].list_virt_addr
;
4115 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4116 /* Avoid "put" pointer going beyond "get" pointer */
4117 if (txdp
->Host_Control
||
4118 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4119 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4120 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4122 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4123 return NETDEV_TX_OK
;
4126 offload_type
= s2io_offload_type(skb
);
4127 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4128 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4129 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4131 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4132 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4136 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4137 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4138 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4139 if (enable_per_list_interrupt
)
4140 if (put_off
& (queue_len
>> 5))
4141 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4143 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4144 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4147 frg_len
= skb_headlen(skb
);
4148 if (offload_type
== SKB_GSO_UDP
) {
4151 ufo_size
= s2io_udp_mss(skb
);
4153 txdp
->Control_1
|= TXD_UFO_EN
;
4154 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4155 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4157 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4158 fifo
->ufo_in_band_v
[put_off
] =
4159 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4161 fifo
->ufo_in_band_v
[put_off
] =
4162 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4164 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4165 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4166 fifo
->ufo_in_band_v
,
4169 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4170 goto pci_map_failed
;
4174 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4175 frg_len
, PCI_DMA_TODEVICE
);
4176 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4177 goto pci_map_failed
;
4179 txdp
->Host_Control
= (unsigned long)skb
;
4180 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4181 if (offload_type
== SKB_GSO_UDP
)
4182 txdp
->Control_1
|= TXD_UFO_EN
;
4184 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4185 /* For fragmented SKB. */
4186 for (i
= 0; i
< frg_cnt
; i
++) {
4187 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4188 /* A '0' length fragment will be ignored */
4189 if (!skb_frag_size(frag
))
4192 txdp
->Buffer_Pointer
= (u64
)skb_frag_dma_map(&sp
->pdev
->dev
,
4194 skb_frag_size(frag
),
4196 txdp
->Control_1
= TXD_BUFFER0_SIZE(skb_frag_size(frag
));
4197 if (offload_type
== SKB_GSO_UDP
)
4198 txdp
->Control_1
|= TXD_UFO_EN
;
4200 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4202 if (offload_type
== SKB_GSO_UDP
)
4203 frg_cnt
++; /* as Txd0 was used for inband header */
4205 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4206 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4207 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4209 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4212 val64
|= TX_FIFO_SPECIAL_FUNC
;
4214 writeq(val64
, &tx_fifo
->List_Control
);
4219 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4221 fifo
->tx_curr_put_info
.offset
= put_off
;
4223 /* Avoid "put" pointer going beyond "get" pointer */
4224 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4225 swstats
->fifo_full_cnt
++;
4227 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4229 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4231 swstats
->mem_allocated
+= skb
->truesize
;
4232 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4234 if (sp
->config
.intr_type
== MSI_X
)
4235 tx_intr_handler(fifo
);
4237 return NETDEV_TX_OK
;
4240 swstats
->pci_map_fail_cnt
++;
4241 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4242 swstats
->mem_freed
+= skb
->truesize
;
4244 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4245 return NETDEV_TX_OK
;
4249 s2io_alarm_handle(unsigned long data
)
4251 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4252 struct net_device
*dev
= sp
->dev
;
4254 s2io_handle_errors(dev
);
4255 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4258 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4260 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4261 struct s2io_nic
*sp
= ring
->nic
;
4262 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4264 if (unlikely(!is_s2io_card_up(sp
)))
4267 if (sp
->config
.napi
) {
4268 u8 __iomem
*addr
= NULL
;
4271 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4272 addr
+= (7 - ring
->ring_no
);
4273 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4276 napi_schedule(&ring
->napi
);
4278 rx_intr_handler(ring
, 0);
4279 s2io_chk_rx_buffers(sp
, ring
);
4285 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4288 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4289 struct s2io_nic
*sp
= fifos
->nic
;
4290 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4291 struct config_param
*config
= &sp
->config
;
4294 if (unlikely(!is_s2io_card_up(sp
)))
4297 reason
= readq(&bar0
->general_int_status
);
4298 if (unlikely(reason
== S2IO_MINUS_ONE
))
4299 /* Nothing much can be done. Get out */
4302 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4303 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4305 if (reason
& GEN_INTR_TXPIC
)
4306 s2io_txpic_intr_handle(sp
);
4308 if (reason
& GEN_INTR_TXTRAFFIC
)
4309 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4311 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4312 tx_intr_handler(&fifos
[i
]);
4314 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4315 readl(&bar0
->general_int_status
);
4318 /* The interrupt was not raised by us */
4322 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4324 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4327 val64
= readq(&bar0
->pic_int_status
);
4328 if (val64
& PIC_INT_GPIO
) {
4329 val64
= readq(&bar0
->gpio_int_reg
);
4330 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4331 (val64
& GPIO_INT_REG_LINK_UP
)) {
4333 * This is unstable state so clear both up/down
4334 * interrupt and adapter to re-evaluate the link state.
4336 val64
|= GPIO_INT_REG_LINK_DOWN
;
4337 val64
|= GPIO_INT_REG_LINK_UP
;
4338 writeq(val64
, &bar0
->gpio_int_reg
);
4339 val64
= readq(&bar0
->gpio_int_mask
);
4340 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4341 GPIO_INT_MASK_LINK_DOWN
);
4342 writeq(val64
, &bar0
->gpio_int_mask
);
4343 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4344 val64
= readq(&bar0
->adapter_status
);
4345 /* Enable Adapter */
4346 val64
= readq(&bar0
->adapter_control
);
4347 val64
|= ADAPTER_CNTL_EN
;
4348 writeq(val64
, &bar0
->adapter_control
);
4349 val64
|= ADAPTER_LED_ON
;
4350 writeq(val64
, &bar0
->adapter_control
);
4351 if (!sp
->device_enabled_once
)
4352 sp
->device_enabled_once
= 1;
4354 s2io_link(sp
, LINK_UP
);
4356 * unmask link down interrupt and mask link-up
4359 val64
= readq(&bar0
->gpio_int_mask
);
4360 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4361 val64
|= GPIO_INT_MASK_LINK_UP
;
4362 writeq(val64
, &bar0
->gpio_int_mask
);
4364 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4365 val64
= readq(&bar0
->adapter_status
);
4366 s2io_link(sp
, LINK_DOWN
);
4367 /* Link is down so unmaks link up interrupt */
4368 val64
= readq(&bar0
->gpio_int_mask
);
4369 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4370 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4371 writeq(val64
, &bar0
->gpio_int_mask
);
4374 val64
= readq(&bar0
->adapter_control
);
4375 val64
= val64
& (~ADAPTER_LED_ON
);
4376 writeq(val64
, &bar0
->adapter_control
);
4379 val64
= readq(&bar0
->gpio_int_mask
);
4383 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4384 * @value: alarm bits
4385 * @addr: address value
4386 * @cnt: counter variable
4387 * Description: Check for alarm and increment the counter
4389 * 1 - if alarm bit set
4390 * 0 - if alarm bit is not set
4392 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4393 unsigned long long *cnt
)
4396 val64
= readq(addr
);
4397 if (val64
& value
) {
4398 writeq(val64
, addr
);
4407 * s2io_handle_errors - Xframe error indication handler
4408 * @nic: device private variable
4409 * Description: Handle alarms such as loss of link, single or
4410 * double ECC errors, critical and serious errors.
4414 static void s2io_handle_errors(void *dev_id
)
4416 struct net_device
*dev
= (struct net_device
*)dev_id
;
4417 struct s2io_nic
*sp
= netdev_priv(dev
);
4418 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4419 u64 temp64
= 0, val64
= 0;
4422 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4423 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4425 if (!is_s2io_card_up(sp
))
4428 if (pci_channel_offline(sp
->pdev
))
4431 memset(&sw_stat
->ring_full_cnt
, 0,
4432 sizeof(sw_stat
->ring_full_cnt
));
4434 /* Handling the XPAK counters update */
4435 if (stats
->xpak_timer_count
< 72000) {
4436 /* waiting for an hour */
4437 stats
->xpak_timer_count
++;
4439 s2io_updt_xpak_counter(dev
);
4440 /* reset the count to zero */
4441 stats
->xpak_timer_count
= 0;
4444 /* Handling link status change error Intr */
4445 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4446 val64
= readq(&bar0
->mac_rmac_err_reg
);
4447 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4448 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4449 schedule_work(&sp
->set_link_task
);
4452 /* In case of a serious error, the device will be Reset. */
4453 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4454 &sw_stat
->serious_err_cnt
))
4457 /* Check for data parity error */
4458 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4459 &sw_stat
->parity_err_cnt
))
4462 /* Check for ring full counter */
4463 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4464 val64
= readq(&bar0
->ring_bump_counter1
);
4465 for (i
= 0; i
< 4; i
++) {
4466 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4467 temp64
>>= 64 - ((i
+1)*16);
4468 sw_stat
->ring_full_cnt
[i
] += temp64
;
4471 val64
= readq(&bar0
->ring_bump_counter2
);
4472 for (i
= 0; i
< 4; i
++) {
4473 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4474 temp64
>>= 64 - ((i
+1)*16);
4475 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4479 val64
= readq(&bar0
->txdma_int_status
);
4480 /*check for pfc_err*/
4481 if (val64
& TXDMA_PFC_INT
) {
4482 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4483 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4486 &sw_stat
->pfc_err_cnt
))
4488 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4490 &sw_stat
->pfc_err_cnt
);
4493 /*check for tda_err*/
4494 if (val64
& TXDMA_TDA_INT
) {
4495 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4499 &sw_stat
->tda_err_cnt
))
4501 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4503 &sw_stat
->tda_err_cnt
);
4505 /*check for pcc_err*/
4506 if (val64
& TXDMA_PCC_INT
) {
4507 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4508 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4509 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4510 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4513 &sw_stat
->pcc_err_cnt
))
4515 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4517 &sw_stat
->pcc_err_cnt
);
4520 /*check for tti_err*/
4521 if (val64
& TXDMA_TTI_INT
) {
4522 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4524 &sw_stat
->tti_err_cnt
))
4526 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4528 &sw_stat
->tti_err_cnt
);
4531 /*check for lso_err*/
4532 if (val64
& TXDMA_LSO_INT
) {
4533 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4534 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4536 &sw_stat
->lso_err_cnt
))
4538 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4540 &sw_stat
->lso_err_cnt
);
4543 /*check for tpa_err*/
4544 if (val64
& TXDMA_TPA_INT
) {
4545 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4547 &sw_stat
->tpa_err_cnt
))
4549 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4551 &sw_stat
->tpa_err_cnt
);
4554 /*check for sm_err*/
4555 if (val64
& TXDMA_SM_INT
) {
4556 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4558 &sw_stat
->sm_err_cnt
))
4562 val64
= readq(&bar0
->mac_int_status
);
4563 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4564 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4565 &bar0
->mac_tmac_err_reg
,
4566 &sw_stat
->mac_tmac_err_cnt
))
4568 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4569 TMAC_DESC_ECC_SG_ERR
|
4570 TMAC_DESC_ECC_DB_ERR
,
4571 &bar0
->mac_tmac_err_reg
,
4572 &sw_stat
->mac_tmac_err_cnt
);
4575 val64
= readq(&bar0
->xgxs_int_status
);
4576 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4577 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4578 &bar0
->xgxs_txgxs_err_reg
,
4579 &sw_stat
->xgxs_txgxs_err_cnt
))
4581 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4582 &bar0
->xgxs_txgxs_err_reg
,
4583 &sw_stat
->xgxs_txgxs_err_cnt
);
4586 val64
= readq(&bar0
->rxdma_int_status
);
4587 if (val64
& RXDMA_INT_RC_INT_M
) {
4588 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4590 RC_PRCn_SM_ERR_ALARM
|
4591 RC_FTC_SM_ERR_ALARM
,
4593 &sw_stat
->rc_err_cnt
))
4595 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4597 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4598 &sw_stat
->rc_err_cnt
);
4599 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4602 &bar0
->prc_pcix_err_reg
,
4603 &sw_stat
->prc_pcix_err_cnt
))
4605 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4608 &bar0
->prc_pcix_err_reg
,
4609 &sw_stat
->prc_pcix_err_cnt
);
4612 if (val64
& RXDMA_INT_RPA_INT_M
) {
4613 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4615 &sw_stat
->rpa_err_cnt
))
4617 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4619 &sw_stat
->rpa_err_cnt
);
4622 if (val64
& RXDMA_INT_RDA_INT_M
) {
4623 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4624 RDA_FRM_ECC_DB_N_AERR
|
4627 RDA_RXD_ECC_DB_SERR
,
4629 &sw_stat
->rda_err_cnt
))
4631 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4632 RDA_FRM_ECC_SG_ERR
|
4636 &sw_stat
->rda_err_cnt
);
4639 if (val64
& RXDMA_INT_RTI_INT_M
) {
4640 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4642 &sw_stat
->rti_err_cnt
))
4644 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4646 &sw_stat
->rti_err_cnt
);
4649 val64
= readq(&bar0
->mac_int_status
);
4650 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4651 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4652 &bar0
->mac_rmac_err_reg
,
4653 &sw_stat
->mac_rmac_err_cnt
))
4655 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4656 RMAC_SINGLE_ECC_ERR
|
4657 RMAC_DOUBLE_ECC_ERR
,
4658 &bar0
->mac_rmac_err_reg
,
4659 &sw_stat
->mac_rmac_err_cnt
);
4662 val64
= readq(&bar0
->xgxs_int_status
);
4663 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4664 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4665 &bar0
->xgxs_rxgxs_err_reg
,
4666 &sw_stat
->xgxs_rxgxs_err_cnt
))
4670 val64
= readq(&bar0
->mc_int_status
);
4671 if (val64
& MC_INT_STATUS_MC_INT
) {
4672 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4674 &sw_stat
->mc_err_cnt
))
4677 /* Handling Ecc errors */
4678 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4679 writeq(val64
, &bar0
->mc_err_reg
);
4680 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4681 sw_stat
->double_ecc_errs
++;
4682 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4684 * Reset XframeI only if critical error
4687 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4688 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4692 sw_stat
->single_ecc_errs
++;
4698 s2io_stop_all_tx_queue(sp
);
4699 schedule_work(&sp
->rst_timer_task
);
4700 sw_stat
->soft_reset_cnt
++;
4704 * s2io_isr - ISR handler of the device .
4705 * @irq: the irq of the device.
4706 * @dev_id: a void pointer to the dev structure of the NIC.
4707 * Description: This function is the ISR handler of the device. It
4708 * identifies the reason for the interrupt and calls the relevant
4709 * service routines. As a contongency measure, this ISR allocates the
4710 * recv buffers, if their numbers are below the panic value which is
4711 * presently set to 25% of the original number of rcv buffers allocated.
4713 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4714 * IRQ_NONE: will be returned if interrupt is not from our device
4716 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4718 struct net_device
*dev
= (struct net_device
*)dev_id
;
4719 struct s2io_nic
*sp
= netdev_priv(dev
);
4720 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4723 struct mac_info
*mac_control
;
4724 struct config_param
*config
;
4726 /* Pretend we handled any irq's from a disconnected card */
4727 if (pci_channel_offline(sp
->pdev
))
4730 if (!is_s2io_card_up(sp
))
4733 config
= &sp
->config
;
4734 mac_control
= &sp
->mac_control
;
4737 * Identify the cause for interrupt and call the appropriate
4738 * interrupt handler. Causes for the interrupt could be;
4743 reason
= readq(&bar0
->general_int_status
);
4745 if (unlikely(reason
== S2IO_MINUS_ONE
))
4746 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4749 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4750 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4753 if (reason
& GEN_INTR_RXTRAFFIC
) {
4754 napi_schedule(&sp
->napi
);
4755 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4756 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4757 readl(&bar0
->rx_traffic_int
);
4761 * rx_traffic_int reg is an R1 register, writing all 1's
4762 * will ensure that the actual interrupt causing bit
4763 * get's cleared and hence a read can be avoided.
4765 if (reason
& GEN_INTR_RXTRAFFIC
)
4766 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4768 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4769 struct ring_info
*ring
= &mac_control
->rings
[i
];
4771 rx_intr_handler(ring
, 0);
4776 * tx_traffic_int reg is an R1 register, writing all 1's
4777 * will ensure that the actual interrupt causing bit get's
4778 * cleared and hence a read can be avoided.
4780 if (reason
& GEN_INTR_TXTRAFFIC
)
4781 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4783 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4784 tx_intr_handler(&mac_control
->fifos
[i
]);
4786 if (reason
& GEN_INTR_TXPIC
)
4787 s2io_txpic_intr_handle(sp
);
4790 * Reallocate the buffers from the interrupt handler itself.
4792 if (!config
->napi
) {
4793 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4794 struct ring_info
*ring
= &mac_control
->rings
[i
];
4796 s2io_chk_rx_buffers(sp
, ring
);
4799 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4800 readl(&bar0
->general_int_status
);
4804 } else if (!reason
) {
4805 /* The interrupt was not raised by us */
4815 static void s2io_updt_stats(struct s2io_nic
*sp
)
4817 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4821 if (is_s2io_card_up(sp
)) {
4822 /* Apprx 30us on a 133 MHz bus */
4823 val64
= SET_UPDT_CLICKS(10) |
4824 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4825 writeq(val64
, &bar0
->stat_cfg
);
4828 val64
= readq(&bar0
->stat_cfg
);
4829 if (!(val64
& s2BIT(0)))
4833 break; /* Updt failed */
4839 * s2io_get_stats - Updates the device statistics structure.
4840 * @dev : pointer to the device structure.
4842 * This function updates the device statistics structure in the s2io_nic
4843 * structure and returns a pointer to the same.
4845 * pointer to the updated net_device_stats structure.
4847 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4849 struct s2io_nic
*sp
= netdev_priv(dev
);
4850 struct mac_info
*mac_control
= &sp
->mac_control
;
4851 struct stat_block
*stats
= mac_control
->stats_info
;
4854 /* Configure Stats for immediate updt */
4855 s2io_updt_stats(sp
);
4857 /* A device reset will cause the on-adapter statistics to be zero'ed.
4858 * This can be done while running by changing the MTU. To prevent the
4859 * system from having the stats zero'ed, the driver keeps a copy of the
4860 * last update to the system (which is also zero'ed on reset). This
4861 * enables the driver to accurately know the delta between the last
4862 * update and the current update.
4864 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4865 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4866 sp
->stats
.rx_packets
+= delta
;
4867 dev
->stats
.rx_packets
+= delta
;
4869 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4870 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4871 sp
->stats
.tx_packets
+= delta
;
4872 dev
->stats
.tx_packets
+= delta
;
4874 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4875 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4876 sp
->stats
.rx_bytes
+= delta
;
4877 dev
->stats
.rx_bytes
+= delta
;
4879 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4880 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4881 sp
->stats
.tx_bytes
+= delta
;
4882 dev
->stats
.tx_bytes
+= delta
;
4884 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4885 sp
->stats
.rx_errors
+= delta
;
4886 dev
->stats
.rx_errors
+= delta
;
4888 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4889 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4890 sp
->stats
.tx_errors
+= delta
;
4891 dev
->stats
.tx_errors
+= delta
;
4893 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4894 sp
->stats
.rx_dropped
+= delta
;
4895 dev
->stats
.rx_dropped
+= delta
;
4897 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4898 sp
->stats
.tx_dropped
+= delta
;
4899 dev
->stats
.tx_dropped
+= delta
;
4901 /* The adapter MAC interprets pause frames as multicast packets, but
4902 * does not pass them up. This erroneously increases the multicast
4903 * packet count and needs to be deducted when the multicast frame count
4906 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4907 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4908 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4909 delta
-= sp
->stats
.multicast
;
4910 sp
->stats
.multicast
+= delta
;
4911 dev
->stats
.multicast
+= delta
;
4913 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4914 le32_to_cpu(stats
->rmac_usized_frms
)) +
4915 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4916 sp
->stats
.rx_length_errors
+= delta
;
4917 dev
->stats
.rx_length_errors
+= delta
;
4919 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4920 sp
->stats
.rx_crc_errors
+= delta
;
4921 dev
->stats
.rx_crc_errors
+= delta
;
4927 * s2io_set_multicast - entry point for multicast address enable/disable.
4928 * @dev : pointer to the device structure
4930 * This function is a driver entry point which gets called by the kernel
4931 * whenever multicast addresses must be enabled/disabled. This also gets
4932 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4933 * determine, if multicast address must be enabled or if promiscuous mode
4934 * is to be disabled etc.
4939 static void s2io_set_multicast(struct net_device
*dev
)
4942 struct netdev_hw_addr
*ha
;
4943 struct s2io_nic
*sp
= netdev_priv(dev
);
4944 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4945 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4947 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4949 struct config_param
*config
= &sp
->config
;
4951 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4952 /* Enable all Multicast addresses */
4953 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4954 &bar0
->rmac_addr_data0_mem
);
4955 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4956 &bar0
->rmac_addr_data1_mem
);
4957 val64
= RMAC_ADDR_CMD_MEM_WE
|
4958 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4959 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4960 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4961 /* Wait till command completes */
4962 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4963 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4967 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4968 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4969 /* Disable all Multicast addresses */
4970 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4971 &bar0
->rmac_addr_data0_mem
);
4972 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4973 &bar0
->rmac_addr_data1_mem
);
4974 val64
= RMAC_ADDR_CMD_MEM_WE
|
4975 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4976 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4977 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4978 /* Wait till command completes */
4979 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4980 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4984 sp
->all_multi_pos
= 0;
4987 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4988 /* Put the NIC into promiscuous mode */
4989 add
= &bar0
->mac_cfg
;
4990 val64
= readq(&bar0
->mac_cfg
);
4991 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4993 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4994 writel((u32
)val64
, add
);
4995 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4996 writel((u32
) (val64
>> 32), (add
+ 4));
4998 if (vlan_tag_strip
!= 1) {
4999 val64
= readq(&bar0
->rx_pa_cfg
);
5000 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5001 writeq(val64
, &bar0
->rx_pa_cfg
);
5002 sp
->vlan_strip_flag
= 0;
5005 val64
= readq(&bar0
->mac_cfg
);
5006 sp
->promisc_flg
= 1;
5007 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5009 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5010 /* Remove the NIC from promiscuous mode */
5011 add
= &bar0
->mac_cfg
;
5012 val64
= readq(&bar0
->mac_cfg
);
5013 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5015 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5016 writel((u32
)val64
, add
);
5017 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5018 writel((u32
) (val64
>> 32), (add
+ 4));
5020 if (vlan_tag_strip
!= 0) {
5021 val64
= readq(&bar0
->rx_pa_cfg
);
5022 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5023 writeq(val64
, &bar0
->rx_pa_cfg
);
5024 sp
->vlan_strip_flag
= 1;
5027 val64
= readq(&bar0
->mac_cfg
);
5028 sp
->promisc_flg
= 0;
5029 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5032 /* Update individual M_CAST address list */
5033 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5034 if (netdev_mc_count(dev
) >
5035 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5037 "%s: No more Rx filters can be added - "
5038 "please enable ALL_MULTI instead\n",
5043 prev_cnt
= sp
->mc_addr_count
;
5044 sp
->mc_addr_count
= netdev_mc_count(dev
);
5046 /* Clear out the previous list of Mc in the H/W. */
5047 for (i
= 0; i
< prev_cnt
; i
++) {
5048 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5049 &bar0
->rmac_addr_data0_mem
);
5050 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5051 &bar0
->rmac_addr_data1_mem
);
5052 val64
= RMAC_ADDR_CMD_MEM_WE
|
5053 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5054 RMAC_ADDR_CMD_MEM_OFFSET
5055 (config
->mc_start_offset
+ i
);
5056 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5058 /* Wait for command completes */
5059 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5063 "%s: Adding Multicasts failed\n",
5069 /* Create the new Rx filter list and update the same in H/W. */
5071 netdev_for_each_mc_addr(ha
, dev
) {
5073 for (j
= 0; j
< ETH_ALEN
; j
++) {
5074 mac_addr
|= ha
->addr
[j
];
5078 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5079 &bar0
->rmac_addr_data0_mem
);
5080 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5081 &bar0
->rmac_addr_data1_mem
);
5082 val64
= RMAC_ADDR_CMD_MEM_WE
|
5083 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5084 RMAC_ADDR_CMD_MEM_OFFSET
5085 (i
+ config
->mc_start_offset
);
5086 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5088 /* Wait for command completes */
5089 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5090 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5093 "%s: Adding Multicasts failed\n",
5102 /* read from CAM unicast & multicast addresses and store it in
5103 * def_mac_addr structure
5105 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5109 struct config_param
*config
= &sp
->config
;
5111 /* store unicast & multicast mac addresses */
5112 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5113 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5114 /* if read fails disable the entry */
5115 if (mac_addr
== FAILURE
)
5116 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5117 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5121 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5122 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5125 struct config_param
*config
= &sp
->config
;
5126 /* restore unicast mac address */
5127 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5128 do_s2io_prog_unicast(sp
->dev
,
5129 sp
->def_mac_addr
[offset
].mac_addr
);
5131 /* restore multicast mac address */
5132 for (offset
= config
->mc_start_offset
;
5133 offset
< config
->max_mc_addr
; offset
++)
5134 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5137 /* add a multicast MAC address to CAM */
5138 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5142 struct config_param
*config
= &sp
->config
;
5144 for (i
= 0; i
< ETH_ALEN
; i
++) {
5146 mac_addr
|= addr
[i
];
5148 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5151 /* check if the multicast mac already preset in CAM */
5152 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5154 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5155 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5158 if (tmp64
== mac_addr
)
5161 if (i
== config
->max_mc_addr
) {
5163 "CAM full no space left for multicast MAC\n");
5166 /* Update the internal structure with this new mac address */
5167 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5169 return do_s2io_add_mac(sp
, mac_addr
, i
);
5172 /* add MAC address to CAM */
5173 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5176 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5178 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5179 &bar0
->rmac_addr_data0_mem
);
5181 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5182 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5183 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5185 /* Wait till command completes */
5186 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5187 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5189 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5194 /* deletes a specified unicast/multicast mac entry from CAM */
5195 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5198 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5199 struct config_param
*config
= &sp
->config
;
5202 offset
< config
->max_mc_addr
; offset
++) {
5203 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5204 if (tmp64
== addr
) {
5205 /* disable the entry by writing 0xffffffffffffULL */
5206 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5208 /* store the new mac list from CAM */
5209 do_s2io_store_unicast_mc(sp
);
5213 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5214 (unsigned long long)addr
);
5218 /* read mac entries from CAM */
5219 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5221 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5222 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5225 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5226 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5227 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5229 /* Wait till command completes */
5230 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5231 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5233 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5236 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5242 * s2io_set_mac_addr driver entry point
5245 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5247 struct sockaddr
*addr
= p
;
5249 if (!is_valid_ether_addr(addr
->sa_data
))
5250 return -EADDRNOTAVAIL
;
5252 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5254 /* store the MAC address in CAM */
5255 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5258 * do_s2io_prog_unicast - Programs the Xframe mac address
5259 * @dev : pointer to the device structure.
5260 * @addr: a uchar pointer to the new mac address which is to be set.
5261 * Description : This procedure will program the Xframe to receive
5262 * frames with new Mac Address
5263 * Return value: SUCCESS on success and an appropriate (-)ve integer
5264 * as defined in errno.h file on failure.
5267 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5269 struct s2io_nic
*sp
= netdev_priv(dev
);
5270 register u64 mac_addr
= 0, perm_addr
= 0;
5273 struct config_param
*config
= &sp
->config
;
5276 * Set the new MAC address as the new unicast filter and reflect this
5277 * change on the device address registered with the OS. It will be
5280 for (i
= 0; i
< ETH_ALEN
; i
++) {
5282 mac_addr
|= addr
[i
];
5284 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5287 /* check if the dev_addr is different than perm_addr */
5288 if (mac_addr
== perm_addr
)
5291 /* check if the mac already preset in CAM */
5292 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5293 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5294 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5297 if (tmp64
== mac_addr
) {
5299 "MAC addr:0x%llx already present in CAM\n",
5300 (unsigned long long)mac_addr
);
5304 if (i
== config
->max_mac_addr
) {
5305 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5308 /* Update the internal structure with this new mac address */
5309 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5311 return do_s2io_add_mac(sp
, mac_addr
, i
);
5315 * s2io_ethtool_sset - Sets different link parameters.
5316 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5317 * @info: pointer to the structure with parameters given by ethtool to set
5320 * The function sets different link parameters provided by the user onto
5326 static int s2io_ethtool_sset(struct net_device
*dev
,
5327 struct ethtool_cmd
*info
)
5329 struct s2io_nic
*sp
= netdev_priv(dev
);
5330 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5331 (ethtool_cmd_speed(info
) != SPEED_10000
) ||
5332 (info
->duplex
!= DUPLEX_FULL
))
5335 s2io_close(sp
->dev
);
5343 * s2io_ethtol_gset - Return link specific information.
5344 * @sp : private member of the device structure, pointer to the
5345 * s2io_nic structure.
5346 * @info : pointer to the structure with parameters given by ethtool
5347 * to return link information.
5349 * Returns link specific information like speed, duplex etc.. to ethtool.
5351 * return 0 on success.
5354 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5356 struct s2io_nic
*sp
= netdev_priv(dev
);
5357 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5358 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5359 info
->port
= PORT_FIBRE
;
5361 /* info->transceiver */
5362 info
->transceiver
= XCVR_EXTERNAL
;
5364 if (netif_carrier_ok(sp
->dev
)) {
5365 ethtool_cmd_speed_set(info
, SPEED_10000
);
5366 info
->duplex
= DUPLEX_FULL
;
5368 ethtool_cmd_speed_set(info
, -1);
5372 info
->autoneg
= AUTONEG_DISABLE
;
5377 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5378 * @sp : private member of the device structure, which is a pointer to the
5379 * s2io_nic structure.
5380 * @info : pointer to the structure with parameters given by ethtool to
5381 * return driver information.
5383 * Returns driver specefic information like name, version etc.. to ethtool.
5388 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5389 struct ethtool_drvinfo
*info
)
5391 struct s2io_nic
*sp
= netdev_priv(dev
);
5393 strlcpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5394 strlcpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5395 strlcpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5396 info
->regdump_len
= XENA_REG_SPACE
;
5397 info
->eedump_len
= XENA_EEPROM_SPACE
;
5401 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5402 * @sp: private member of the device structure, which is a pointer to the
5403 * s2io_nic structure.
5404 * @regs : pointer to the structure with parameters given by ethtool for
5405 * dumping the registers.
5406 * @reg_space: The input argumnet into which all the registers are dumped.
5408 * Dumps the entire register space of xFrame NIC into the user given
5414 static void s2io_ethtool_gregs(struct net_device
*dev
,
5415 struct ethtool_regs
*regs
, void *space
)
5419 u8
*reg_space
= (u8
*)space
;
5420 struct s2io_nic
*sp
= netdev_priv(dev
);
5422 regs
->len
= XENA_REG_SPACE
;
5423 regs
->version
= sp
->pdev
->subsystem_device
;
5425 for (i
= 0; i
< regs
->len
; i
+= 8) {
5426 reg
= readq(sp
->bar0
+ i
);
5427 memcpy((reg_space
+ i
), ®
, 8);
5432 * s2io_set_led - control NIC led
5434 static void s2io_set_led(struct s2io_nic
*sp
, bool on
)
5436 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5437 u16 subid
= sp
->pdev
->subsystem_device
;
5440 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5441 ((subid
& 0xFF) >= 0x07)) {
5442 val64
= readq(&bar0
->gpio_control
);
5444 val64
|= GPIO_CTRL_GPIO_0
;
5446 val64
&= ~GPIO_CTRL_GPIO_0
;
5448 writeq(val64
, &bar0
->gpio_control
);
5450 val64
= readq(&bar0
->adapter_control
);
5452 val64
|= ADAPTER_LED_ON
;
5454 val64
&= ~ADAPTER_LED_ON
;
5456 writeq(val64
, &bar0
->adapter_control
);
5462 * s2io_ethtool_set_led - To physically identify the nic on the system.
5463 * @dev : network device
5464 * @state: led setting
5466 * Description: Used to physically identify the NIC on the system.
5467 * The Link LED will blink for a time specified by the user for
5469 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5470 * identification is possible only if it's link is up.
5473 static int s2io_ethtool_set_led(struct net_device
*dev
,
5474 enum ethtool_phys_id_state state
)
5476 struct s2io_nic
*sp
= netdev_priv(dev
);
5477 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5478 u16 subid
= sp
->pdev
->subsystem_device
;
5480 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5481 u64 val64
= readq(&bar0
->adapter_control
);
5482 if (!(val64
& ADAPTER_CNTL_EN
)) {
5483 pr_err("Adapter Link down, cannot blink LED\n");
5489 case ETHTOOL_ID_ACTIVE
:
5490 sp
->adapt_ctrl_org
= readq(&bar0
->gpio_control
);
5491 return 1; /* cycle on/off once per second */
5494 s2io_set_led(sp
, true);
5497 case ETHTOOL_ID_OFF
:
5498 s2io_set_led(sp
, false);
5501 case ETHTOOL_ID_INACTIVE
:
5502 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
))
5503 writeq(sp
->adapt_ctrl_org
, &bar0
->gpio_control
);
5509 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5510 struct ethtool_ringparam
*ering
)
5512 struct s2io_nic
*sp
= netdev_priv(dev
);
5513 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5515 if (sp
->rxd_mode
== RXD_MODE_1
) {
5516 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5517 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5519 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5520 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5523 ering
->tx_max_pending
= MAX_TX_DESC
;
5525 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
5526 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5527 ering
->rx_pending
= rx_desc_count
;
5528 ering
->rx_jumbo_pending
= rx_desc_count
;
5530 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
5531 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5532 ering
->tx_pending
= tx_desc_count
;
5533 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5537 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5538 * @sp : private member of the device structure, which is a pointer to the
5539 * s2io_nic structure.
5540 * @ep : pointer to the structure with pause parameters given by ethtool.
5542 * Returns the Pause frame generation and reception capability of the NIC.
5546 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5547 struct ethtool_pauseparam
*ep
)
5550 struct s2io_nic
*sp
= netdev_priv(dev
);
5551 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5553 val64
= readq(&bar0
->rmac_pause_cfg
);
5554 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5555 ep
->tx_pause
= true;
5556 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5557 ep
->rx_pause
= true;
5558 ep
->autoneg
= false;
5562 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5563 * @sp : private member of the device structure, which is a pointer to the
5564 * s2io_nic structure.
5565 * @ep : pointer to the structure with pause parameters given by ethtool.
5567 * It can be used to set or reset Pause frame generation or reception
5568 * support of the NIC.
5570 * int, returns 0 on Success
5573 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5574 struct ethtool_pauseparam
*ep
)
5577 struct s2io_nic
*sp
= netdev_priv(dev
);
5578 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5580 val64
= readq(&bar0
->rmac_pause_cfg
);
5582 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5584 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5586 val64
|= RMAC_PAUSE_RX_ENABLE
;
5588 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5589 writeq(val64
, &bar0
->rmac_pause_cfg
);
5594 * read_eeprom - reads 4 bytes of data from user given offset.
5595 * @sp : private member of the device structure, which is a pointer to the
5596 * s2io_nic structure.
5597 * @off : offset at which the data must be written
5598 * @data : Its an output parameter where the data read at the given
5601 * Will read 4 bytes of data from the user given offset and return the
5603 * NOTE: Will allow to read only part of the EEPROM visible through the
5606 * -1 on failure and 0 on success.
5609 #define S2IO_DEV_ID 5
5610 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5615 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5617 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5618 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5619 I2C_CONTROL_ADDR(off
) |
5620 I2C_CONTROL_BYTE_CNT(0x3) |
5622 I2C_CONTROL_CNTL_START
;
5623 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5625 while (exit_cnt
< 5) {
5626 val64
= readq(&bar0
->i2c_control
);
5627 if (I2C_CONTROL_CNTL_END(val64
)) {
5628 *data
= I2C_CONTROL_GET_DATA(val64
);
5637 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5638 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5639 SPI_CONTROL_BYTECNT(0x3) |
5640 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5641 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5642 val64
|= SPI_CONTROL_REQ
;
5643 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5644 while (exit_cnt
< 5) {
5645 val64
= readq(&bar0
->spi_control
);
5646 if (val64
& SPI_CONTROL_NACK
) {
5649 } else if (val64
& SPI_CONTROL_DONE
) {
5650 *data
= readq(&bar0
->spi_data
);
5663 * write_eeprom - actually writes the relevant part of the data value.
5664 * @sp : private member of the device structure, which is a pointer to the
5665 * s2io_nic structure.
5666 * @off : offset at which the data must be written
5667 * @data : The data that is to be written
5668 * @cnt : Number of bytes of the data that are actually to be written into
5669 * the Eeprom. (max of 3)
5671 * Actually writes the relevant part of the data value into the Eeprom
5672 * through the I2C bus.
5674 * 0 on success, -1 on failure.
5677 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5679 int exit_cnt
= 0, ret
= -1;
5681 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5683 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5684 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5685 I2C_CONTROL_ADDR(off
) |
5686 I2C_CONTROL_BYTE_CNT(cnt
) |
5687 I2C_CONTROL_SET_DATA((u32
)data
) |
5688 I2C_CONTROL_CNTL_START
;
5689 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5691 while (exit_cnt
< 5) {
5692 val64
= readq(&bar0
->i2c_control
);
5693 if (I2C_CONTROL_CNTL_END(val64
)) {
5694 if (!(val64
& I2C_CONTROL_NACK
))
5703 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5704 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5705 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5707 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5708 SPI_CONTROL_BYTECNT(write_cnt
) |
5709 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5710 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5711 val64
|= SPI_CONTROL_REQ
;
5712 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5713 while (exit_cnt
< 5) {
5714 val64
= readq(&bar0
->spi_control
);
5715 if (val64
& SPI_CONTROL_NACK
) {
5718 } else if (val64
& SPI_CONTROL_DONE
) {
5728 static void s2io_vpd_read(struct s2io_nic
*nic
)
5732 int i
= 0, cnt
, len
, fail
= 0;
5733 int vpd_addr
= 0x80;
5734 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5736 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5737 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5740 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5743 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5745 vpd_data
= kmalloc(256, GFP_KERNEL
);
5747 swstats
->mem_alloc_fail_cnt
++;
5750 swstats
->mem_allocated
+= 256;
5752 for (i
= 0; i
< 256; i
+= 4) {
5753 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5754 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5755 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5756 for (cnt
= 0; cnt
< 5; cnt
++) {
5758 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5763 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5767 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5768 (u32
*)&vpd_data
[i
]);
5772 /* read serial number of adapter */
5773 for (cnt
= 0; cnt
< 252; cnt
++) {
5774 if ((vpd_data
[cnt
] == 'S') &&
5775 (vpd_data
[cnt
+1] == 'N')) {
5776 len
= vpd_data
[cnt
+2];
5777 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5778 memcpy(nic
->serial_num
,
5781 memset(nic
->serial_num
+len
,
5783 VPD_STRING_LEN
-len
);
5790 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5792 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5793 nic
->product_name
[len
] = 0;
5796 swstats
->mem_freed
+= 256;
5800 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5801 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5802 * @eeprom : pointer to the user level structure provided by ethtool,
5803 * containing all relevant information.
5804 * @data_buf : user defined value to be written into Eeprom.
5805 * Description: Reads the values stored in the Eeprom at given offset
5806 * for a given length. Stores these values int the input argument data
5807 * buffer 'data_buf' and returns these to the caller (ethtool.)
5812 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5813 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5817 struct s2io_nic
*sp
= netdev_priv(dev
);
5819 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5821 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5822 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5824 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5825 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5826 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5830 memcpy((data_buf
+ i
), &valid
, 4);
5836 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5837 * @sp : private member of the device structure, which is a pointer to the
5838 * s2io_nic structure.
5839 * @eeprom : pointer to the user level structure provided by ethtool,
5840 * containing all relevant information.
5841 * @data_buf ; user defined value to be written into Eeprom.
5843 * Tries to write the user provided value in the Eeprom, at the offset
5844 * given by the user.
5846 * 0 on success, -EFAULT on failure.
5849 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5850 struct ethtool_eeprom
*eeprom
,
5853 int len
= eeprom
->len
, cnt
= 0;
5854 u64 valid
= 0, data
;
5855 struct s2io_nic
*sp
= netdev_priv(dev
);
5857 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5859 "ETHTOOL_WRITE_EEPROM Err: "
5860 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5861 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5867 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5869 valid
= (u32
)(data
<< 24);
5873 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5875 "ETHTOOL_WRITE_EEPROM Err: "
5876 "Cannot write into the specified offset\n");
5887 * s2io_register_test - reads and writes into all clock domains.
5888 * @sp : private member of the device structure, which is a pointer to the
5889 * s2io_nic structure.
5890 * @data : variable that returns the result of each of the test conducted b
5893 * Read and write into all clock domains. The NIC has 3 clock domains,
5894 * see that registers in all the three regions are accessible.
5899 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5901 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5902 u64 val64
= 0, exp_val
;
5905 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5906 if (val64
!= 0x123456789abcdefULL
) {
5908 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5911 val64
= readq(&bar0
->rmac_pause_cfg
);
5912 if (val64
!= 0xc000ffff00000000ULL
) {
5914 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5917 val64
= readq(&bar0
->rx_queue_cfg
);
5918 if (sp
->device_type
== XFRAME_II_DEVICE
)
5919 exp_val
= 0x0404040404040404ULL
;
5921 exp_val
= 0x0808080808080808ULL
;
5922 if (val64
!= exp_val
) {
5924 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5927 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5928 if (val64
!= 0x000000001923141EULL
) {
5930 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5933 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5934 writeq(val64
, &bar0
->xmsi_data
);
5935 val64
= readq(&bar0
->xmsi_data
);
5936 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5938 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5941 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5942 writeq(val64
, &bar0
->xmsi_data
);
5943 val64
= readq(&bar0
->xmsi_data
);
5944 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5946 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5954 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5955 * @sp : private member of the device structure, which is a pointer to the
5956 * s2io_nic structure.
5957 * @data:variable that returns the result of each of the test conducted by
5960 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5966 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
5969 u64 ret_data
, org_4F0
, org_7F0
;
5970 u8 saved_4F0
= 0, saved_7F0
= 0;
5971 struct net_device
*dev
= sp
->dev
;
5973 /* Test Write Error at offset 0 */
5974 /* Note that SPI interface allows write access to all areas
5975 * of EEPROM. Hence doing all negative testing only for Xframe I.
5977 if (sp
->device_type
== XFRAME_I_DEVICE
)
5978 if (!write_eeprom(sp
, 0, 0, 3))
5981 /* Save current values at offsets 0x4F0 and 0x7F0 */
5982 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5984 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5987 /* Test Write at offset 4f0 */
5988 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5990 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5993 if (ret_data
!= 0x012345) {
5994 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5995 "Data written %llx Data read %llx\n",
5996 dev
->name
, (unsigned long long)0x12345,
5997 (unsigned long long)ret_data
);
6001 /* Reset the EEPROM data go FFFF */
6002 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6004 /* Test Write Request Error at offset 0x7c */
6005 if (sp
->device_type
== XFRAME_I_DEVICE
)
6006 if (!write_eeprom(sp
, 0x07C, 0, 3))
6009 /* Test Write Request at offset 0x7f0 */
6010 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6012 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6015 if (ret_data
!= 0x012345) {
6016 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6017 "Data written %llx Data read %llx\n",
6018 dev
->name
, (unsigned long long)0x12345,
6019 (unsigned long long)ret_data
);
6023 /* Reset the EEPROM data go FFFF */
6024 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6026 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6027 /* Test Write Error at offset 0x80 */
6028 if (!write_eeprom(sp
, 0x080, 0, 3))
6031 /* Test Write Error at offset 0xfc */
6032 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6035 /* Test Write Error at offset 0x100 */
6036 if (!write_eeprom(sp
, 0x100, 0, 3))
6039 /* Test Write Error at offset 4ec */
6040 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6044 /* Restore values at offsets 0x4F0 and 0x7F0 */
6046 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6048 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6055 * s2io_bist_test - invokes the MemBist test of the card .
6056 * @sp : private member of the device structure, which is a pointer to the
6057 * s2io_nic structure.
6058 * @data:variable that returns the result of each of the test conducted by
6061 * This invokes the MemBist test of the card. We give around
6062 * 2 secs time for the Test to complete. If it's still not complete
6063 * within this peiod, we consider that the test failed.
6065 * 0 on success and -1 on failure.
6068 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6071 int cnt
= 0, ret
= -1;
6073 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6074 bist
|= PCI_BIST_START
;
6075 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6078 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6079 if (!(bist
& PCI_BIST_START
)) {
6080 *data
= (bist
& PCI_BIST_CODE_MASK
);
6092 * s2io-link_test - verifies the link state of the nic
6093 * @sp ; private member of the device structure, which is a pointer to the
6094 * s2io_nic structure.
6095 * @data: variable that returns the result of each of the test conducted by
6098 * The function verifies the link state of the NIC and updates the input
6099 * argument 'data' appropriately.
6104 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6106 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6109 val64
= readq(&bar0
->adapter_status
);
6110 if (!(LINK_IS_UP(val64
)))
6119 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6120 * @sp - private member of the device structure, which is a pointer to the
6121 * s2io_nic structure.
6122 * @data - variable that returns the result of each of the test
6123 * conducted by the driver.
6125 * This is one of the offline test that tests the read and write
6126 * access to the RldRam chip on the NIC.
6131 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6133 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6135 int cnt
, iteration
= 0, test_fail
= 0;
6137 val64
= readq(&bar0
->adapter_control
);
6138 val64
&= ~ADAPTER_ECC_EN
;
6139 writeq(val64
, &bar0
->adapter_control
);
6141 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6142 val64
|= MC_RLDRAM_TEST_MODE
;
6143 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6145 val64
= readq(&bar0
->mc_rldram_mrs
);
6146 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6147 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6149 val64
|= MC_RLDRAM_MRS_ENABLE
;
6150 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6152 while (iteration
< 2) {
6153 val64
= 0x55555555aaaa0000ULL
;
6155 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6156 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6158 val64
= 0xaaaa5a5555550000ULL
;
6160 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6161 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6163 val64
= 0x55aaaaaaaa5a0000ULL
;
6165 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6166 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6168 val64
= (u64
) (0x0000003ffffe0100ULL
);
6169 writeq(val64
, &bar0
->mc_rldram_test_add
);
6171 val64
= MC_RLDRAM_TEST_MODE
|
6172 MC_RLDRAM_TEST_WRITE
|
6174 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6176 for (cnt
= 0; cnt
< 5; cnt
++) {
6177 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6178 if (val64
& MC_RLDRAM_TEST_DONE
)
6186 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6187 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6189 for (cnt
= 0; cnt
< 5; cnt
++) {
6190 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6191 if (val64
& MC_RLDRAM_TEST_DONE
)
6199 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6200 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6208 /* Bring the adapter out of test mode */
6209 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6215 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6216 * @sp : private member of the device structure, which is a pointer to the
6217 * s2io_nic structure.
6218 * @ethtest : pointer to a ethtool command specific structure that will be
6219 * returned to the user.
6220 * @data : variable that returns the result of each of the test
6221 * conducted by the driver.
6223 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6224 * the health of the card.
6229 static void s2io_ethtool_test(struct net_device
*dev
,
6230 struct ethtool_test
*ethtest
,
6233 struct s2io_nic
*sp
= netdev_priv(dev
);
6234 int orig_state
= netif_running(sp
->dev
);
6236 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6237 /* Offline Tests. */
6239 s2io_close(sp
->dev
);
6241 if (s2io_register_test(sp
, &data
[0]))
6242 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6246 if (s2io_rldram_test(sp
, &data
[3]))
6247 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6251 if (s2io_eeprom_test(sp
, &data
[1]))
6252 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6254 if (s2io_bist_test(sp
, &data
[4]))
6255 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6264 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6273 if (s2io_link_test(sp
, &data
[2]))
6274 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6283 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6284 struct ethtool_stats
*estats
,
6288 struct s2io_nic
*sp
= netdev_priv(dev
);
6289 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6290 struct swStat
*swstats
= &stats
->sw_stat
;
6291 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6293 s2io_updt_stats(sp
);
6295 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6296 le32_to_cpu(stats
->tmac_frms
);
6298 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6299 le32_to_cpu(stats
->tmac_data_octets
);
6300 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6302 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6303 le32_to_cpu(stats
->tmac_mcst_frms
);
6305 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6306 le32_to_cpu(stats
->tmac_bcst_frms
);
6307 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6309 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6310 le32_to_cpu(stats
->tmac_ttl_octets
);
6312 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6313 le32_to_cpu(stats
->tmac_ucst_frms
);
6315 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6316 le32_to_cpu(stats
->tmac_nucst_frms
);
6318 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6319 le32_to_cpu(stats
->tmac_any_err_frms
);
6320 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6321 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6323 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6324 le32_to_cpu(stats
->tmac_vld_ip
);
6326 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6327 le32_to_cpu(stats
->tmac_drop_ip
);
6329 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6330 le32_to_cpu(stats
->tmac_icmp
);
6332 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6333 le32_to_cpu(stats
->tmac_rst_tcp
);
6334 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6335 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6336 le32_to_cpu(stats
->tmac_udp
);
6338 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6339 le32_to_cpu(stats
->rmac_vld_frms
);
6341 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6342 le32_to_cpu(stats
->rmac_data_octets
);
6343 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6344 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6346 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6347 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6349 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6350 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6351 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6352 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6353 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6354 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6355 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6357 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6358 le32_to_cpu(stats
->rmac_ttl_octets
);
6360 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6361 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6363 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6364 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6366 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6367 le32_to_cpu(stats
->rmac_discarded_frms
);
6369 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6370 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6371 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6372 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6374 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6375 le32_to_cpu(stats
->rmac_usized_frms
);
6377 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6378 le32_to_cpu(stats
->rmac_osized_frms
);
6380 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6381 le32_to_cpu(stats
->rmac_frag_frms
);
6383 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6384 le32_to_cpu(stats
->rmac_jabber_frms
);
6385 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6386 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6387 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6388 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6389 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6390 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6392 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6393 le32_to_cpu(stats
->rmac_ip
);
6394 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6395 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6397 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6398 le32_to_cpu(stats
->rmac_drop_ip
);
6400 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6401 le32_to_cpu(stats
->rmac_icmp
);
6402 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6404 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6405 le32_to_cpu(stats
->rmac_udp
);
6407 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6408 le32_to_cpu(stats
->rmac_err_drp_udp
);
6409 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6410 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6411 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6412 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6413 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6414 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6415 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6416 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6417 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6418 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6419 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6420 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6421 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6422 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6423 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6424 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6425 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6427 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6428 le32_to_cpu(stats
->rmac_pause_cnt
);
6429 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6430 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6432 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6433 le32_to_cpu(stats
->rmac_accepted_ip
);
6434 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6435 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6436 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6437 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6438 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6439 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6440 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6441 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6442 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6443 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6444 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6445 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6446 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6447 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6448 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6449 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6450 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6451 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6452 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6454 /* Enhanced statistics exist only for Hercules */
6455 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6457 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6459 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6461 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6462 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6463 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6464 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6465 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6466 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6467 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6468 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6469 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6470 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6471 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6472 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6473 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6474 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6478 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6479 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6480 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6481 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6482 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6483 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6484 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6485 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6486 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6487 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6488 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6489 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6490 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6491 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6492 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6493 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6494 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6495 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6496 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6497 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6498 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6499 tmp_stats
[i
++] = swstats
->sending_both
;
6500 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6501 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6502 if (swstats
->num_aggregations
) {
6503 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6506 * Since 64-bit divide does not work on all platforms,
6507 * do repeated subtraction.
6509 while (tmp
>= swstats
->num_aggregations
) {
6510 tmp
-= swstats
->num_aggregations
;
6513 tmp_stats
[i
++] = count
;
6516 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6517 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6518 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6519 tmp_stats
[i
++] = swstats
->mem_allocated
;
6520 tmp_stats
[i
++] = swstats
->mem_freed
;
6521 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6522 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6523 tmp_stats
[i
++] = swstats
->link_up_time
;
6524 tmp_stats
[i
++] = swstats
->link_down_time
;
6526 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6527 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6528 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6529 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6530 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6532 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6533 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6534 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6535 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6536 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6537 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6538 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6539 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6540 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6541 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6542 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6543 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6544 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6545 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6546 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6547 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6548 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6549 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6550 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6551 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6552 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6553 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6554 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6555 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6556 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6557 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6560 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6562 return XENA_REG_SPACE
;
6566 static int s2io_get_eeprom_len(struct net_device
*dev
)
6568 return XENA_EEPROM_SPACE
;
6571 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6573 struct s2io_nic
*sp
= netdev_priv(dev
);
6577 return S2IO_TEST_LEN
;
6579 switch (sp
->device_type
) {
6580 case XFRAME_I_DEVICE
:
6581 return XFRAME_I_STAT_LEN
;
6582 case XFRAME_II_DEVICE
:
6583 return XFRAME_II_STAT_LEN
;
6592 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6593 u32 stringset
, u8
*data
)
6596 struct s2io_nic
*sp
= netdev_priv(dev
);
6598 switch (stringset
) {
6600 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6603 stat_size
= sizeof(ethtool_xena_stats_keys
);
6604 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6605 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6606 memcpy(data
+ stat_size
,
6607 ðtool_enhanced_stats_keys
,
6608 sizeof(ethtool_enhanced_stats_keys
));
6609 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6612 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6613 sizeof(ethtool_driver_stats_keys
));
6617 static int s2io_set_features(struct net_device
*dev
, netdev_features_t features
)
6619 struct s2io_nic
*sp
= netdev_priv(dev
);
6620 netdev_features_t changed
= (features
^ dev
->features
) & NETIF_F_LRO
;
6622 if (changed
&& netif_running(dev
)) {
6625 s2io_stop_all_tx_queue(sp
);
6627 dev
->features
= features
;
6628 rc
= s2io_card_up(sp
);
6632 s2io_start_all_tx_queue(sp
);
6640 static const struct ethtool_ops netdev_ethtool_ops
= {
6641 .get_settings
= s2io_ethtool_gset
,
6642 .set_settings
= s2io_ethtool_sset
,
6643 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6644 .get_regs_len
= s2io_ethtool_get_regs_len
,
6645 .get_regs
= s2io_ethtool_gregs
,
6646 .get_link
= ethtool_op_get_link
,
6647 .get_eeprom_len
= s2io_get_eeprom_len
,
6648 .get_eeprom
= s2io_ethtool_geeprom
,
6649 .set_eeprom
= s2io_ethtool_seeprom
,
6650 .get_ringparam
= s2io_ethtool_gringparam
,
6651 .get_pauseparam
= s2io_ethtool_getpause_data
,
6652 .set_pauseparam
= s2io_ethtool_setpause_data
,
6653 .self_test
= s2io_ethtool_test
,
6654 .get_strings
= s2io_ethtool_get_strings
,
6655 .set_phys_id
= s2io_ethtool_set_led
,
6656 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6657 .get_sset_count
= s2io_get_sset_count
,
6661 * s2io_ioctl - Entry point for the Ioctl
6662 * @dev : Device pointer.
6663 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6664 * a proprietary structure used to pass information to the driver.
6665 * @cmd : This is used to distinguish between the different commands that
6666 * can be passed to the IOCTL functions.
6668 * Currently there are no special functionality supported in IOCTL, hence
6669 * function always return EOPNOTSUPPORTED
6672 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6678 * s2io_change_mtu - entry point to change MTU size for the device.
6679 * @dev : device pointer.
6680 * @new_mtu : the new MTU size for the device.
6681 * Description: A driver entry point to change MTU size for the device.
6682 * Before changing the MTU the device must be stopped.
6684 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6688 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6690 struct s2io_nic
*sp
= netdev_priv(dev
);
6693 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6694 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6699 if (netif_running(dev
)) {
6700 s2io_stop_all_tx_queue(sp
);
6702 ret
= s2io_card_up(sp
);
6704 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6708 s2io_wake_all_tx_queue(sp
);
6709 } else { /* Device is down */
6710 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6711 u64 val64
= new_mtu
;
6713 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6720 * s2io_set_link - Set the LInk status
6721 * @data: long pointer to device private structue
6722 * Description: Sets the link status for the adapter
6725 static void s2io_set_link(struct work_struct
*work
)
6727 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6729 struct net_device
*dev
= nic
->dev
;
6730 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6736 if (!netif_running(dev
))
6739 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6740 /* The card is being reset, no point doing anything */
6744 subid
= nic
->pdev
->subsystem_device
;
6745 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6747 * Allow a small delay for the NICs self initiated
6748 * cleanup to complete.
6753 val64
= readq(&bar0
->adapter_status
);
6754 if (LINK_IS_UP(val64
)) {
6755 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6756 if (verify_xena_quiescence(nic
)) {
6757 val64
= readq(&bar0
->adapter_control
);
6758 val64
|= ADAPTER_CNTL_EN
;
6759 writeq(val64
, &bar0
->adapter_control
);
6760 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6761 nic
->device_type
, subid
)) {
6762 val64
= readq(&bar0
->gpio_control
);
6763 val64
|= GPIO_CTRL_GPIO_0
;
6764 writeq(val64
, &bar0
->gpio_control
);
6765 val64
= readq(&bar0
->gpio_control
);
6767 val64
|= ADAPTER_LED_ON
;
6768 writeq(val64
, &bar0
->adapter_control
);
6770 nic
->device_enabled_once
= true;
6773 "%s: Error: device is not Quiescent\n",
6775 s2io_stop_all_tx_queue(nic
);
6778 val64
= readq(&bar0
->adapter_control
);
6779 val64
|= ADAPTER_LED_ON
;
6780 writeq(val64
, &bar0
->adapter_control
);
6781 s2io_link(nic
, LINK_UP
);
6783 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6785 val64
= readq(&bar0
->gpio_control
);
6786 val64
&= ~GPIO_CTRL_GPIO_0
;
6787 writeq(val64
, &bar0
->gpio_control
);
6788 val64
= readq(&bar0
->gpio_control
);
6791 val64
= readq(&bar0
->adapter_control
);
6792 val64
= val64
& (~ADAPTER_LED_ON
);
6793 writeq(val64
, &bar0
->adapter_control
);
6794 s2io_link(nic
, LINK_DOWN
);
6796 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6802 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6804 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6805 u64
*temp2
, int size
)
6807 struct net_device
*dev
= sp
->dev
;
6808 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6810 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6811 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6814 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6816 * As Rx frame are not going to be processed,
6817 * using same mapped address for the Rxd
6820 rxdp1
->Buffer0_ptr
= *temp0
;
6822 *skb
= netdev_alloc_skb(dev
, size
);
6825 "%s: Out of memory to allocate %s\n",
6826 dev
->name
, "1 buf mode SKBs");
6827 stats
->mem_alloc_fail_cnt
++;
6830 stats
->mem_allocated
+= (*skb
)->truesize
;
6831 /* storing the mapped addr in a temp variable
6832 * such it will be used for next rxd whose
6833 * Host Control is NULL
6835 rxdp1
->Buffer0_ptr
= *temp0
=
6836 pci_map_single(sp
->pdev
, (*skb
)->data
,
6837 size
- NET_IP_ALIGN
,
6838 PCI_DMA_FROMDEVICE
);
6839 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6840 goto memalloc_failed
;
6841 rxdp
->Host_Control
= (unsigned long) (*skb
);
6843 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6844 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6845 /* Two buffer Mode */
6847 rxdp3
->Buffer2_ptr
= *temp2
;
6848 rxdp3
->Buffer0_ptr
= *temp0
;
6849 rxdp3
->Buffer1_ptr
= *temp1
;
6851 *skb
= netdev_alloc_skb(dev
, size
);
6854 "%s: Out of memory to allocate %s\n",
6857 stats
->mem_alloc_fail_cnt
++;
6860 stats
->mem_allocated
+= (*skb
)->truesize
;
6861 rxdp3
->Buffer2_ptr
= *temp2
=
6862 pci_map_single(sp
->pdev
, (*skb
)->data
,
6864 PCI_DMA_FROMDEVICE
);
6865 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6866 goto memalloc_failed
;
6867 rxdp3
->Buffer0_ptr
= *temp0
=
6868 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6869 PCI_DMA_FROMDEVICE
);
6870 if (pci_dma_mapping_error(sp
->pdev
,
6871 rxdp3
->Buffer0_ptr
)) {
6872 pci_unmap_single(sp
->pdev
,
6873 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6875 PCI_DMA_FROMDEVICE
);
6876 goto memalloc_failed
;
6878 rxdp
->Host_Control
= (unsigned long) (*skb
);
6880 /* Buffer-1 will be dummy buffer not used */
6881 rxdp3
->Buffer1_ptr
= *temp1
=
6882 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6883 PCI_DMA_FROMDEVICE
);
6884 if (pci_dma_mapping_error(sp
->pdev
,
6885 rxdp3
->Buffer1_ptr
)) {
6886 pci_unmap_single(sp
->pdev
,
6887 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6888 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6889 pci_unmap_single(sp
->pdev
,
6890 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6892 PCI_DMA_FROMDEVICE
);
6893 goto memalloc_failed
;
6900 stats
->pci_map_fail_cnt
++;
6901 stats
->mem_freed
+= (*skb
)->truesize
;
6902 dev_kfree_skb(*skb
);
6906 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6909 struct net_device
*dev
= sp
->dev
;
6910 if (sp
->rxd_mode
== RXD_MODE_1
) {
6911 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6912 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6913 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6914 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6915 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6919 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6921 int i
, j
, k
, blk_cnt
= 0, size
;
6922 struct config_param
*config
= &sp
->config
;
6923 struct mac_info
*mac_control
= &sp
->mac_control
;
6924 struct net_device
*dev
= sp
->dev
;
6925 struct RxD_t
*rxdp
= NULL
;
6926 struct sk_buff
*skb
= NULL
;
6927 struct buffAdd
*ba
= NULL
;
6928 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6930 /* Calculate the size based on ring mode */
6931 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6932 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6933 if (sp
->rxd_mode
== RXD_MODE_1
)
6934 size
+= NET_IP_ALIGN
;
6935 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6936 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6938 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6939 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6940 struct ring_info
*ring
= &mac_control
->rings
[i
];
6942 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
6944 for (j
= 0; j
< blk_cnt
; j
++) {
6945 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6946 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
6947 if (sp
->rxd_mode
== RXD_MODE_3B
)
6948 ba
= &ring
->ba
[j
][k
];
6949 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
6957 set_rxd_buffer_size(sp
, rxdp
, size
);
6959 /* flip the Ownership bit to Hardware */
6960 rxdp
->Control_1
|= RXD_OWN_XENA
;
6968 static int s2io_add_isr(struct s2io_nic
*sp
)
6971 struct net_device
*dev
= sp
->dev
;
6974 if (sp
->config
.intr_type
== MSI_X
)
6975 ret
= s2io_enable_msi_x(sp
);
6977 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6978 sp
->config
.intr_type
= INTA
;
6982 * Store the values of the MSIX table in
6983 * the struct s2io_nic structure
6985 store_xmsi_data(sp
);
6987 /* After proper initialization of H/W, register ISR */
6988 if (sp
->config
.intr_type
== MSI_X
) {
6989 int i
, msix_rx_cnt
= 0;
6991 for (i
= 0; i
< sp
->num_entries
; i
++) {
6992 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
6993 if (sp
->s2io_entries
[i
].type
==
6995 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6997 err
= request_irq(sp
->entries
[i
].vector
,
6998 s2io_msix_ring_handle
,
7001 sp
->s2io_entries
[i
].arg
);
7002 } else if (sp
->s2io_entries
[i
].type
==
7004 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7006 err
= request_irq(sp
->entries
[i
].vector
,
7007 s2io_msix_fifo_handle
,
7010 sp
->s2io_entries
[i
].arg
);
7013 /* if either data or addr is zero print it. */
7014 if (!(sp
->msix_info
[i
].addr
&&
7015 sp
->msix_info
[i
].data
)) {
7017 "%s @Addr:0x%llx Data:0x%llx\n",
7019 (unsigned long long)
7020 sp
->msix_info
[i
].addr
,
7021 (unsigned long long)
7022 ntohl(sp
->msix_info
[i
].data
));
7026 remove_msix_isr(sp
);
7029 "%s:MSI-X-%d registration "
7030 "failed\n", dev
->name
, i
);
7033 "%s: Defaulting to INTA\n",
7035 sp
->config
.intr_type
= INTA
;
7038 sp
->s2io_entries
[i
].in_use
=
7039 MSIX_REGISTERED_SUCCESS
;
7043 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7045 "MSI-X-TX entries enabled through alarm vector\n");
7048 if (sp
->config
.intr_type
== INTA
) {
7049 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7052 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7060 static void s2io_rem_isr(struct s2io_nic
*sp
)
7062 if (sp
->config
.intr_type
== MSI_X
)
7063 remove_msix_isr(sp
);
7065 remove_inta_isr(sp
);
7068 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7071 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7072 register u64 val64
= 0;
7073 struct config_param
*config
;
7074 config
= &sp
->config
;
7076 if (!is_s2io_card_up(sp
))
7079 del_timer_sync(&sp
->alarm_timer
);
7080 /* If s2io_set_link task is executing, wait till it completes. */
7081 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7083 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7086 if (sp
->config
.napi
) {
7088 if (config
->intr_type
== MSI_X
) {
7089 for (; off
< sp
->config
.rx_ring_num
; off
++)
7090 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7093 napi_disable(&sp
->napi
);
7096 /* disable Tx and Rx traffic on the NIC */
7102 /* stop the tx queue, indicate link down */
7103 s2io_link(sp
, LINK_DOWN
);
7105 /* Check if the device is Quiescent and then Reset the NIC */
7107 /* As per the HW requirement we need to replenish the
7108 * receive buffer to avoid the ring bump. Since there is
7109 * no intention of processing the Rx frame at this pointwe are
7110 * just setting the ownership bit of rxd in Each Rx
7111 * ring to HW and set the appropriate buffer size
7112 * based on the ring mode
7114 rxd_owner_bit_reset(sp
);
7116 val64
= readq(&bar0
->adapter_status
);
7117 if (verify_xena_quiescence(sp
)) {
7118 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7125 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7126 "adapter status reads 0x%llx\n",
7127 (unsigned long long)val64
);
7134 /* Free all Tx buffers */
7135 free_tx_buffers(sp
);
7137 /* Free all Rx buffers */
7138 free_rx_buffers(sp
);
7140 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7143 static void s2io_card_down(struct s2io_nic
*sp
)
7145 do_s2io_card_down(sp
, 1);
7148 static int s2io_card_up(struct s2io_nic
*sp
)
7151 struct config_param
*config
;
7152 struct mac_info
*mac_control
;
7153 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7156 /* Initialize the H/W I/O registers */
7159 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7167 * Initializing the Rx buffers. For now we are considering only 1
7168 * Rx ring and initializing buffers into 30 Rx blocks
7170 config
= &sp
->config
;
7171 mac_control
= &sp
->mac_control
;
7173 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7174 struct ring_info
*ring
= &mac_control
->rings
[i
];
7176 ring
->mtu
= dev
->mtu
;
7177 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7178 ret
= fill_rx_buffers(sp
, ring
, 1);
7180 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7183 free_rx_buffers(sp
);
7186 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7187 ring
->rx_bufs_left
);
7190 /* Initialise napi */
7192 if (config
->intr_type
== MSI_X
) {
7193 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7194 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7196 napi_enable(&sp
->napi
);
7200 /* Maintain the state prior to the open */
7201 if (sp
->promisc_flg
)
7202 sp
->promisc_flg
= 0;
7203 if (sp
->m_cast_flg
) {
7205 sp
->all_multi_pos
= 0;
7208 /* Setting its receive mode */
7209 s2io_set_multicast(dev
);
7211 if (dev
->features
& NETIF_F_LRO
) {
7212 /* Initialize max aggregatable pkts per session based on MTU */
7213 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7214 /* Check if we can use (if specified) user provided value */
7215 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7216 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7219 /* Enable Rx Traffic and interrupts on the NIC */
7220 if (start_nic(sp
)) {
7221 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7223 free_rx_buffers(sp
);
7227 /* Add interrupt service routine */
7228 if (s2io_add_isr(sp
) != 0) {
7229 if (sp
->config
.intr_type
== MSI_X
)
7232 free_rx_buffers(sp
);
7236 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7238 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7240 /* Enable select interrupts */
7241 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7242 if (sp
->config
.intr_type
!= INTA
) {
7243 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7244 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7246 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7247 interruptible
|= TX_PIC_INTR
;
7248 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7255 * s2io_restart_nic - Resets the NIC.
7256 * @data : long pointer to the device private structure
7258 * This function is scheduled to be run by the s2io_tx_watchdog
7259 * function after 0.5 secs to reset the NIC. The idea is to reduce
7260 * the run time of the watch dog routine which is run holding a
7264 static void s2io_restart_nic(struct work_struct
*work
)
7266 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7267 struct net_device
*dev
= sp
->dev
;
7271 if (!netif_running(dev
))
7275 if (s2io_card_up(sp
)) {
7276 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7278 s2io_wake_all_tx_queue(sp
);
7279 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7285 * s2io_tx_watchdog - Watchdog for transmit side.
7286 * @dev : Pointer to net device structure
7288 * This function is triggered if the Tx Queue is stopped
7289 * for a pre-defined amount of time when the Interface is still up.
7290 * If the Interface is jammed in such a situation, the hardware is
7291 * reset (by s2io_close) and restarted again (by s2io_open) to
7292 * overcome any problem that might have been caused in the hardware.
7297 static void s2io_tx_watchdog(struct net_device
*dev
)
7299 struct s2io_nic
*sp
= netdev_priv(dev
);
7300 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7302 if (netif_carrier_ok(dev
)) {
7303 swstats
->watchdog_timer_cnt
++;
7304 schedule_work(&sp
->rst_timer_task
);
7305 swstats
->soft_reset_cnt
++;
7310 * rx_osm_handler - To perform some OS related operations on SKB.
7311 * @sp: private member of the device structure,pointer to s2io_nic structure.
7312 * @skb : the socket buffer pointer.
7313 * @len : length of the packet
7314 * @cksum : FCS checksum of the frame.
7315 * @ring_no : the ring from which this RxD was extracted.
7317 * This function is called by the Rx interrupt serivce routine to perform
7318 * some OS related operations on the SKB before passing it to the upper
7319 * layers. It mainly checks if the checksum is OK, if so adds it to the
7320 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7321 * to the upper layer. If the checksum is wrong, it increments the Rx
7322 * packet error count, frees the SKB and returns error.
7324 * SUCCESS on success and -1 on failure.
7326 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7328 struct s2io_nic
*sp
= ring_data
->nic
;
7329 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7330 struct sk_buff
*skb
= (struct sk_buff
*)
7331 ((unsigned long)rxdp
->Host_Control
);
7332 int ring_no
= ring_data
->ring_no
;
7333 u16 l3_csum
, l4_csum
;
7334 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7335 struct lro
*uninitialized_var(lro
);
7337 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7342 /* Check for parity error */
7344 swstats
->parity_err_cnt
++;
7346 err_mask
= err
>> 48;
7349 swstats
->rx_parity_err_cnt
++;
7353 swstats
->rx_abort_cnt
++;
7357 swstats
->rx_parity_abort_cnt
++;
7361 swstats
->rx_rda_fail_cnt
++;
7365 swstats
->rx_unkn_prot_cnt
++;
7369 swstats
->rx_fcs_err_cnt
++;
7373 swstats
->rx_buf_size_err_cnt
++;
7377 swstats
->rx_rxd_corrupt_cnt
++;
7381 swstats
->rx_unkn_err_cnt
++;
7385 * Drop the packet if bad transfer code. Exception being
7386 * 0x5, which could be due to unsupported IPv6 extension header.
7387 * In this case, we let stack handle the packet.
7388 * Note that in this case, since checksum will be incorrect,
7389 * stack will validate the same.
7391 if (err_mask
!= 0x5) {
7392 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7393 dev
->name
, err_mask
);
7394 dev
->stats
.rx_crc_errors
++;
7398 ring_data
->rx_bufs_left
-= 1;
7399 rxdp
->Host_Control
= 0;
7404 rxdp
->Host_Control
= 0;
7405 if (sp
->rxd_mode
== RXD_MODE_1
) {
7406 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7409 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7410 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7411 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7412 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7413 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7414 unsigned char *buff
= skb_push(skb
, buf0_len
);
7416 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7417 memcpy(buff
, ba
->ba_0
, buf0_len
);
7418 skb_put(skb
, buf2_len
);
7421 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7422 ((!ring_data
->lro
) ||
7423 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7424 (dev
->features
& NETIF_F_RXCSUM
)) {
7425 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7426 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7427 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7429 * NIC verifies if the Checksum of the received
7430 * frame is Ok or not and accordingly returns
7431 * a flag in the RxD.
7433 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7434 if (ring_data
->lro
) {
7439 ret
= s2io_club_tcp_session(ring_data
,
7444 case 3: /* Begin anew */
7447 case 1: /* Aggregate */
7448 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7450 case 4: /* Flush session */
7451 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7452 queue_rx_frame(lro
->parent
,
7454 clear_lro_session(lro
);
7455 swstats
->flush_max_pkts
++;
7457 case 2: /* Flush both */
7458 lro
->parent
->data_len
= lro
->frags_len
;
7459 swstats
->sending_both
++;
7460 queue_rx_frame(lro
->parent
,
7462 clear_lro_session(lro
);
7464 case 0: /* sessions exceeded */
7465 case -1: /* non-TCP or not L2 aggregatable */
7467 * First pkt in session not
7468 * L3/L4 aggregatable
7473 "%s: Samadhana!!\n",
7480 * Packet with erroneous checksum, let the
7481 * upper layers deal with it.
7483 skb_checksum_none_assert(skb
);
7486 skb_checksum_none_assert(skb
);
7488 swstats
->mem_freed
+= skb
->truesize
;
7490 skb_record_rx_queue(skb
, ring_no
);
7491 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7493 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7498 * s2io_link - stops/starts the Tx queue.
7499 * @sp : private member of the device structure, which is a pointer to the
7500 * s2io_nic structure.
7501 * @link : inidicates whether link is UP/DOWN.
7503 * This function stops/starts the Tx queue depending on whether the link
7504 * status of the NIC is is down or up. This is called by the Alarm
7505 * interrupt handler whenever a link change interrupt comes up.
7510 static void s2io_link(struct s2io_nic
*sp
, int link
)
7512 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7513 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7515 if (link
!= sp
->last_link_state
) {
7517 if (link
== LINK_DOWN
) {
7518 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7519 s2io_stop_all_tx_queue(sp
);
7520 netif_carrier_off(dev
);
7521 if (swstats
->link_up_cnt
)
7522 swstats
->link_up_time
=
7523 jiffies
- sp
->start_time
;
7524 swstats
->link_down_cnt
++;
7526 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7527 if (swstats
->link_down_cnt
)
7528 swstats
->link_down_time
=
7529 jiffies
- sp
->start_time
;
7530 swstats
->link_up_cnt
++;
7531 netif_carrier_on(dev
);
7532 s2io_wake_all_tx_queue(sp
);
7535 sp
->last_link_state
= link
;
7536 sp
->start_time
= jiffies
;
7540 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7541 * @sp : private member of the device structure, which is a pointer to the
7542 * s2io_nic structure.
7544 * This function initializes a few of the PCI and PCI-X configuration registers
7545 * with recommended values.
7550 static void s2io_init_pci(struct s2io_nic
*sp
)
7552 u16 pci_cmd
= 0, pcix_cmd
= 0;
7554 /* Enable Data Parity Error Recovery in PCI-X command register. */
7555 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7557 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7559 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7562 /* Set the PErr Response bit in PCI command register. */
7563 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7564 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7565 (pci_cmd
| PCI_COMMAND_PARITY
));
7566 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7569 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7574 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7575 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7576 "(%d) not supported\n", tx_fifo_num
);
7578 if (tx_fifo_num
< 1)
7581 tx_fifo_num
= MAX_TX_FIFOS
;
7583 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7587 *dev_multiq
= multiq
;
7589 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7590 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7592 "Tx steering is not supported with "
7593 "one fifo. Disabling Tx steering.\n");
7594 tx_steering_type
= NO_STEERING
;
7597 if ((tx_steering_type
< NO_STEERING
) ||
7598 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7600 "Requested transmit steering not supported\n");
7601 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7602 tx_steering_type
= NO_STEERING
;
7605 if (rx_ring_num
> MAX_RX_RINGS
) {
7607 "Requested number of rx rings not supported\n");
7608 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7610 rx_ring_num
= MAX_RX_RINGS
;
7613 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7614 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7615 "Defaulting to INTA\n");
7616 *dev_intr_type
= INTA
;
7619 if ((*dev_intr_type
== MSI_X
) &&
7620 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7621 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7622 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7623 "Defaulting to INTA\n");
7624 *dev_intr_type
= INTA
;
7627 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7628 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7629 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7633 for (i
= 0; i
< MAX_RX_RINGS
; i
++)
7634 if (rx_ring_sz
[i
] > MAX_RX_BLOCKS_PER_RING
) {
7635 DBG_PRINT(ERR_DBG
, "Requested rx ring size not "
7636 "supported\nDefaulting to %d\n",
7637 MAX_RX_BLOCKS_PER_RING
);
7638 rx_ring_sz
[i
] = MAX_RX_BLOCKS_PER_RING
;
7645 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7646 * or Traffic class respectively.
7647 * @nic: device private variable
7648 * Description: The function configures the receive steering to
7649 * desired receive ring.
7650 * Return Value: SUCCESS on success and
7651 * '-1' on failure (endian settings incorrect).
7653 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7655 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7656 register u64 val64
= 0;
7658 if (ds_codepoint
> 63)
7661 val64
= RTS_DS_MEM_DATA(ring
);
7662 writeq(val64
, &bar0
->rts_ds_mem_data
);
7664 val64
= RTS_DS_MEM_CTRL_WE
|
7665 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7666 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7668 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7670 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7671 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7675 static const struct net_device_ops s2io_netdev_ops
= {
7676 .ndo_open
= s2io_open
,
7677 .ndo_stop
= s2io_close
,
7678 .ndo_get_stats
= s2io_get_stats
,
7679 .ndo_start_xmit
= s2io_xmit
,
7680 .ndo_validate_addr
= eth_validate_addr
,
7681 .ndo_set_rx_mode
= s2io_set_multicast
,
7682 .ndo_do_ioctl
= s2io_ioctl
,
7683 .ndo_set_mac_address
= s2io_set_mac_addr
,
7684 .ndo_change_mtu
= s2io_change_mtu
,
7685 .ndo_set_features
= s2io_set_features
,
7686 .ndo_tx_timeout
= s2io_tx_watchdog
,
7687 #ifdef CONFIG_NET_POLL_CONTROLLER
7688 .ndo_poll_controller
= s2io_netpoll
,
7693 * s2io_init_nic - Initialization of the adapter .
7694 * @pdev : structure containing the PCI related information of the device.
7695 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7697 * The function initializes an adapter identified by the pci_dec structure.
7698 * All OS related initialization including memory and device structure and
7699 * initlaization of the device private variable is done. Also the swapper
7700 * control register is initialized to enable read and write into the I/O
7701 * registers of the device.
7703 * returns 0 on success and negative on failure.
7706 static int __devinit
7707 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7709 struct s2io_nic
*sp
;
7710 struct net_device
*dev
;
7712 int dma_flag
= false;
7713 u32 mac_up
, mac_down
;
7714 u64 val64
= 0, tmp64
= 0;
7715 struct XENA_dev_config __iomem
*bar0
= NULL
;
7717 struct config_param
*config
;
7718 struct mac_info
*mac_control
;
7720 u8 dev_intr_type
= intr_type
;
7723 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7727 ret
= pci_enable_device(pdev
);
7730 "%s: pci_enable_device failed\n", __func__
);
7734 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7735 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7737 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7739 "Unable to obtain 64bit DMA "
7740 "for consistent allocations\n");
7741 pci_disable_device(pdev
);
7744 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7745 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7747 pci_disable_device(pdev
);
7750 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7752 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7754 pci_disable_device(pdev
);
7758 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7760 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7762 pci_disable_device(pdev
);
7763 pci_release_regions(pdev
);
7767 pci_set_master(pdev
);
7768 pci_set_drvdata(pdev
, dev
);
7769 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7771 /* Private member variable initialized to s2io NIC structure */
7772 sp
= netdev_priv(dev
);
7775 sp
->high_dma_flag
= dma_flag
;
7776 sp
->device_enabled_once
= false;
7777 if (rx_ring_mode
== 1)
7778 sp
->rxd_mode
= RXD_MODE_1
;
7779 if (rx_ring_mode
== 2)
7780 sp
->rxd_mode
= RXD_MODE_3B
;
7782 sp
->config
.intr_type
= dev_intr_type
;
7784 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7785 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7786 sp
->device_type
= XFRAME_II_DEVICE
;
7788 sp
->device_type
= XFRAME_I_DEVICE
;
7791 /* Initialize some PCI/PCI-X fields of the NIC. */
7795 * Setting the device configuration parameters.
7796 * Most of these parameters can be specified by the user during
7797 * module insertion as they are module loadable parameters. If
7798 * these parameters are not not specified during load time, they
7799 * are initialized with default values.
7801 config
= &sp
->config
;
7802 mac_control
= &sp
->mac_control
;
7804 config
->napi
= napi
;
7805 config
->tx_steering_type
= tx_steering_type
;
7807 /* Tx side parameters. */
7808 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7809 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7811 config
->tx_fifo_num
= tx_fifo_num
;
7813 /* Initialize the fifos used for tx steering */
7814 if (config
->tx_fifo_num
< 5) {
7815 if (config
->tx_fifo_num
== 1)
7816 sp
->total_tcp_fifos
= 1;
7818 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7819 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7820 sp
->total_udp_fifos
= 1;
7821 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7823 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7824 FIFO_OTHER_MAX_NUM
);
7825 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7826 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7827 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7830 config
->multiq
= dev_multiq
;
7831 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7832 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7834 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7835 tx_cfg
->fifo_priority
= i
;
7838 /* mapping the QoS priority to the configured fifos */
7839 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7840 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7842 /* map the hashing selector table to the configured fifos */
7843 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7844 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7847 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7848 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7849 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7851 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7852 if (tx_cfg
->fifo_len
< 65) {
7853 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7857 /* + 2 because one Txd for skb->data and one Txd for UFO */
7858 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7860 /* Rx side parameters. */
7861 config
->rx_ring_num
= rx_ring_num
;
7862 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7863 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7864 struct ring_info
*ring
= &mac_control
->rings
[i
];
7866 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7867 rx_cfg
->ring_priority
= i
;
7868 ring
->rx_bufs_left
= 0;
7869 ring
->rxd_mode
= sp
->rxd_mode
;
7870 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7871 ring
->pdev
= sp
->pdev
;
7872 ring
->dev
= sp
->dev
;
7875 for (i
= 0; i
< rx_ring_num
; i
++) {
7876 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7878 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7879 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7882 /* Setting Mac Control parameters */
7883 mac_control
->rmac_pause_time
= rmac_pause_time
;
7884 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7885 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7888 /* initialize the shared memory used by the NIC and the host */
7889 if (init_shared_mem(sp
)) {
7890 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7892 goto mem_alloc_failed
;
7895 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7897 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7900 goto bar0_remap_failed
;
7903 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7905 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7908 goto bar1_remap_failed
;
7911 dev
->irq
= pdev
->irq
;
7912 dev
->base_addr
= (unsigned long)sp
->bar0
;
7914 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7915 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7916 mac_control
->tx_FIFO_start
[j
] = sp
->bar1
+ (j
* 0x00020000);
7919 /* Driver entry points */
7920 dev
->netdev_ops
= &s2io_netdev_ops
;
7921 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7922 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
7923 NETIF_F_TSO
| NETIF_F_TSO6
|
7924 NETIF_F_RXCSUM
| NETIF_F_LRO
;
7925 dev
->features
|= dev
->hw_features
|
7926 NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7927 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7928 dev
->hw_features
|= NETIF_F_UFO
;
7930 dev
->features
|= NETIF_F_UFO
;
7932 if (sp
->high_dma_flag
== true)
7933 dev
->features
|= NETIF_F_HIGHDMA
;
7934 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7935 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7936 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7938 pci_save_state(sp
->pdev
);
7940 /* Setting swapper control on the NIC, for proper reset operation */
7941 if (s2io_set_swapper(sp
)) {
7942 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
7945 goto set_swap_failed
;
7948 /* Verify if the Herc works on the slot its placed into */
7949 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7950 mode
= s2io_verify_pci_mode(sp
);
7952 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
7955 goto set_swap_failed
;
7959 if (sp
->config
.intr_type
== MSI_X
) {
7960 sp
->num_entries
= config
->rx_ring_num
+ 1;
7961 ret
= s2io_enable_msi_x(sp
);
7964 ret
= s2io_test_msi(sp
);
7965 /* rollback MSI-X, will re-enable during add_isr() */
7966 remove_msix_isr(sp
);
7971 "MSI-X requested but failed to enable\n");
7972 sp
->config
.intr_type
= INTA
;
7976 if (config
->intr_type
== MSI_X
) {
7977 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7978 struct ring_info
*ring
= &mac_control
->rings
[i
];
7980 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
7983 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
7986 /* Not needed for Herc */
7987 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7989 * Fix for all "FFs" MAC address problems observed on
7992 fix_mac_address(sp
);
7997 * MAC address initialization.
7998 * For now only one mac address will be read and used.
8001 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8002 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8003 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8004 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8005 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8007 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8008 mac_down
= (u32
)tmp64
;
8009 mac_up
= (u32
) (tmp64
>> 32);
8011 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8012 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8013 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8014 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8015 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8016 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8018 /* Set the factory defined MAC address initially */
8019 dev
->addr_len
= ETH_ALEN
;
8020 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8021 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8023 /* initialize number of multicast & unicast MAC entries variables */
8024 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8025 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8026 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8027 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8028 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8029 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8030 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8031 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8034 /* store mac addresses from CAM to s2io_nic structure */
8035 do_s2io_store_unicast_mc(sp
);
8037 /* Configure MSIX vector for number of rings configured plus one */
8038 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8039 (config
->intr_type
== MSI_X
))
8040 sp
->num_entries
= config
->rx_ring_num
+ 1;
8042 /* Store the values of the MSIX table in the s2io_nic structure */
8043 store_xmsi_data(sp
);
8044 /* reset Nic and bring it to known state */
8048 * Initialize link state flags
8049 * and the card state parameter
8053 /* Initialize spinlocks */
8054 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8055 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8057 spin_lock_init(&fifo
->tx_lock
);
8061 * SXE-002: Configure link and activity LED to init state
8064 subid
= sp
->pdev
->subsystem_device
;
8065 if ((subid
& 0xFF) >= 0x07) {
8066 val64
= readq(&bar0
->gpio_control
);
8067 val64
|= 0x0000800000000000ULL
;
8068 writeq(val64
, &bar0
->gpio_control
);
8069 val64
= 0x0411040400000000ULL
;
8070 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8071 val64
= readq(&bar0
->gpio_control
);
8074 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8076 if (register_netdev(dev
)) {
8077 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8079 goto register_failed
;
8082 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8083 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8084 sp
->product_name
, pdev
->revision
);
8085 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8086 s2io_driver_version
);
8087 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8088 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8089 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8090 mode
= s2io_print_pci_mode(sp
);
8093 unregister_netdev(dev
);
8094 goto set_swap_failed
;
8097 switch (sp
->rxd_mode
) {
8099 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8103 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8108 switch (sp
->config
.napi
) {
8110 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8113 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8117 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8118 sp
->config
.tx_fifo_num
);
8120 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8121 sp
->config
.rx_ring_num
);
8123 switch (sp
->config
.intr_type
) {
8125 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8128 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8131 if (sp
->config
.multiq
) {
8132 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8133 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8135 fifo
->multiq
= config
->multiq
;
8137 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8140 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8143 switch (sp
->config
.tx_steering_type
) {
8145 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8148 case TX_PRIORITY_STEERING
:
8150 "%s: Priority steering enabled for transmit\n",
8153 case TX_DEFAULT_STEERING
:
8155 "%s: Default steering enabled for transmit\n",
8159 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8163 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8165 /* Initialize device name */
8166 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8169 sp
->vlan_strip_flag
= 1;
8171 sp
->vlan_strip_flag
= 0;
8174 * Make Link state as off at this point, when the Link change
8175 * interrupt comes the state will be automatically changed to
8178 netif_carrier_off(dev
);
8189 free_shared_mem(sp
);
8190 pci_disable_device(pdev
);
8191 pci_release_regions(pdev
);
8192 pci_set_drvdata(pdev
, NULL
);
8199 * s2io_rem_nic - Free the PCI device
8200 * @pdev: structure containing the PCI related information of the device.
8201 * Description: This function is called by the Pci subsystem to release a
8202 * PCI device and free up all resource held up by the device. This could
8203 * be in response to a Hot plug event or when the driver is to be removed
8207 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8209 struct net_device
*dev
= pci_get_drvdata(pdev
);
8210 struct s2io_nic
*sp
;
8213 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8217 sp
= netdev_priv(dev
);
8219 cancel_work_sync(&sp
->rst_timer_task
);
8220 cancel_work_sync(&sp
->set_link_task
);
8222 unregister_netdev(dev
);
8224 free_shared_mem(sp
);
8227 pci_release_regions(pdev
);
8228 pci_set_drvdata(pdev
, NULL
);
8230 pci_disable_device(pdev
);
8234 * s2io_starter - Entry point for the driver
8235 * Description: This function is the entry point for the driver. It verifies
8236 * the module loadable parameters and initializes PCI configuration space.
8239 static int __init
s2io_starter(void)
8241 return pci_register_driver(&s2io_driver
);
8245 * s2io_closer - Cleanup routine for the driver
8246 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8249 static __exit
void s2io_closer(void)
8251 pci_unregister_driver(&s2io_driver
);
8252 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8255 module_init(s2io_starter
);
8256 module_exit(s2io_closer
);
8258 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8259 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8260 struct s2io_nic
*sp
)
8263 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8265 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8267 "%s: Non-TCP frames not supported for LRO\n",
8272 /* Checking for DIX type or DIX type with VLAN */
8273 if ((l2_type
== 0) || (l2_type
== 4)) {
8274 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8276 * If vlan stripping is disabled and the frame is VLAN tagged,
8277 * shift the offset by the VLAN header size bytes.
8279 if ((!sp
->vlan_strip_flag
) &&
8280 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8281 ip_off
+= HEADER_VLAN_SIZE
;
8283 /* LLC, SNAP etc are considered non-mergeable */
8287 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8288 ip_len
= (u8
)((*ip
)->ihl
);
8290 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8295 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8298 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8299 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8300 (lro
->iph
->daddr
!= ip
->daddr
) ||
8301 (lro
->tcph
->source
!= tcp
->source
) ||
8302 (lro
->tcph
->dest
!= tcp
->dest
))
8307 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8309 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8312 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8313 struct iphdr
*ip
, struct tcphdr
*tcp
,
8314 u32 tcp_pyld_len
, u16 vlan_tag
)
8316 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8320 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8321 lro
->tcp_ack
= tcp
->ack_seq
;
8323 lro
->total_len
= ntohs(ip
->tot_len
);
8325 lro
->vlan_tag
= vlan_tag
;
8327 * Check if we saw TCP timestamp.
8328 * Other consistency checks have already been done.
8330 if (tcp
->doff
== 8) {
8332 ptr
= (__be32
*)(tcp
+1);
8334 lro
->cur_tsval
= ntohl(*(ptr
+1));
8335 lro
->cur_tsecr
= *(ptr
+2);
8340 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8342 struct iphdr
*ip
= lro
->iph
;
8343 struct tcphdr
*tcp
= lro
->tcph
;
8345 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8347 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8349 /* Update L3 header */
8350 ip
->tot_len
= htons(lro
->total_len
);
8352 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8355 /* Update L4 header */
8356 tcp
->ack_seq
= lro
->tcp_ack
;
8357 tcp
->window
= lro
->window
;
8359 /* Update tsecr field if this session has timestamps enabled */
8361 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8362 *(ptr
+2) = lro
->cur_tsecr
;
8365 /* Update counters required for calculation of
8366 * average no. of packets aggregated.
8368 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8369 swstats
->num_aggregations
++;
8372 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8373 struct tcphdr
*tcp
, u32 l4_pyld
)
8375 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8376 lro
->total_len
+= l4_pyld
;
8377 lro
->frags_len
+= l4_pyld
;
8378 lro
->tcp_next_seq
+= l4_pyld
;
8381 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8382 lro
->tcp_ack
= tcp
->ack_seq
;
8383 lro
->window
= tcp
->window
;
8387 /* Update tsecr and tsval from this packet */
8388 ptr
= (__be32
*)(tcp
+1);
8389 lro
->cur_tsval
= ntohl(*(ptr
+1));
8390 lro
->cur_tsecr
= *(ptr
+ 2);
8394 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8395 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8399 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8401 if (!tcp_pyld_len
) {
8402 /* Runt frame or a pure ack */
8406 if (ip
->ihl
!= 5) /* IP has options */
8409 /* If we see CE codepoint in IP header, packet is not mergeable */
8410 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8413 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8414 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8415 tcp
->syn
|| tcp
->fin
||
8416 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8418 * Currently recognize only the ack control word and
8419 * any other control field being set would result in
8420 * flushing the LRO session
8426 * Allow only one TCP timestamp option. Don't aggregate if
8427 * any other options are detected.
8429 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8432 if (tcp
->doff
== 8) {
8433 ptr
= (u8
*)(tcp
+ 1);
8434 while (*ptr
== TCPOPT_NOP
)
8436 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8439 /* Ensure timestamp value increases monotonically */
8441 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8444 /* timestamp echo reply should be non-zero */
8445 if (*((__be32
*)(ptr
+6)) == 0)
8452 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8453 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8454 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8457 struct tcphdr
*tcph
;
8460 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8462 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8467 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8469 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8470 tcph
= (struct tcphdr
*)*tcp
;
8471 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8472 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8473 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8474 if (l_lro
->in_use
) {
8475 if (check_for_socket_match(l_lro
, ip
, tcph
))
8477 /* Sock pair matched */
8480 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8481 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8482 "expected 0x%x, actual 0x%x\n",
8484 (*lro
)->tcp_next_seq
,
8487 swstats
->outof_sequence_pkts
++;
8492 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8494 ret
= 1; /* Aggregate */
8496 ret
= 2; /* Flush both */
8502 /* Before searching for available LRO objects,
8503 * check if the pkt is L3/L4 aggregatable. If not
8504 * don't create new LRO session. Just send this
8507 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8510 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8511 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8512 if (!(l_lro
->in_use
)) {
8514 ret
= 3; /* Begin anew */
8520 if (ret
== 0) { /* sessions exceeded */
8521 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8529 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8533 update_L3L4_header(sp
, *lro
);
8536 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8537 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8538 update_L3L4_header(sp
, *lro
);
8539 ret
= 4; /* Flush the LRO */
8543 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8550 static void clear_lro_session(struct lro
*lro
)
8552 static u16 lro_struct_size
= sizeof(struct lro
);
8554 memset(lro
, 0, lro_struct_size
);
8557 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8559 struct net_device
*dev
= skb
->dev
;
8560 struct s2io_nic
*sp
= netdev_priv(dev
);
8562 skb
->protocol
= eth_type_trans(skb
, dev
);
8563 if (vlan_tag
&& sp
->vlan_strip_flag
)
8564 __vlan_hwaccel_put_tag(skb
, vlan_tag
);
8565 if (sp
->config
.napi
)
8566 netif_receive_skb(skb
);
8571 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8572 struct sk_buff
*skb
, u32 tcp_len
)
8574 struct sk_buff
*first
= lro
->parent
;
8575 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8577 first
->len
+= tcp_len
;
8578 first
->data_len
= lro
->frags_len
;
8579 skb_pull(skb
, (skb
->len
- tcp_len
));
8580 if (skb_shinfo(first
)->frag_list
)
8581 lro
->last_frag
->next
= skb
;
8583 skb_shinfo(first
)->frag_list
= skb
;
8584 first
->truesize
+= skb
->truesize
;
8585 lro
->last_frag
= skb
;
8586 swstats
->clubbed_frms_cnt
++;
8590 * s2io_io_error_detected - called when PCI error is detected
8591 * @pdev: Pointer to PCI device
8592 * @state: The current pci connection state
8594 * This function is called after a PCI bus error affecting
8595 * this device has been detected.
8597 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8598 pci_channel_state_t state
)
8600 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8601 struct s2io_nic
*sp
= netdev_priv(netdev
);
8603 netif_device_detach(netdev
);
8605 if (state
== pci_channel_io_perm_failure
)
8606 return PCI_ERS_RESULT_DISCONNECT
;
8608 if (netif_running(netdev
)) {
8609 /* Bring down the card, while avoiding PCI I/O */
8610 do_s2io_card_down(sp
, 0);
8612 pci_disable_device(pdev
);
8614 return PCI_ERS_RESULT_NEED_RESET
;
8618 * s2io_io_slot_reset - called after the pci bus has been reset.
8619 * @pdev: Pointer to PCI device
8621 * Restart the card from scratch, as if from a cold-boot.
8622 * At this point, the card has exprienced a hard reset,
8623 * followed by fixups by BIOS, and has its config space
8624 * set up identically to what it was at cold boot.
8626 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8628 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8629 struct s2io_nic
*sp
= netdev_priv(netdev
);
8631 if (pci_enable_device(pdev
)) {
8632 pr_err("Cannot re-enable PCI device after reset.\n");
8633 return PCI_ERS_RESULT_DISCONNECT
;
8636 pci_set_master(pdev
);
8639 return PCI_ERS_RESULT_RECOVERED
;
8643 * s2io_io_resume - called when traffic can start flowing again.
8644 * @pdev: Pointer to PCI device
8646 * This callback is called when the error recovery driver tells
8647 * us that its OK to resume normal operation.
8649 static void s2io_io_resume(struct pci_dev
*pdev
)
8651 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8652 struct s2io_nic
*sp
= netdev_priv(netdev
);
8654 if (netif_running(netdev
)) {
8655 if (s2io_card_up(sp
)) {
8656 pr_err("Can't bring device back up after reset.\n");
8660 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8662 pr_err("Can't restore mac addr after reset.\n");
8667 netif_device_attach(netdev
);
8668 netif_tx_wake_all_queues(netdev
);