1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
29 if (status != VXGE_HW_OK) \
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem
*vp_reg
)
38 val64
= readq(&vp_reg
->rxmac_vcfg0
);
39 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
41 val64
= readq(&vp_reg
->rxmac_vcfg0
);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device
*hldev
, u32 vp_id
)
49 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
50 struct __vxge_hw_virtualpath
*vpath
;
51 u64 val64
, rxd_count
, rxd_spat
;
52 int count
= 0, total_count
= 0;
54 vpath
= &hldev
->virtual_paths
[vp_id
];
55 vp_reg
= vpath
->vp_reg
;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg
);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64
= readq(&vp_reg
->prc_cfg6
);
65 rxd_spat
= VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64
) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
74 rxd_count
= readq(&vp_reg
->prc_rxd_doorbell
);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64
= readq(&vp_reg
->frm_in_progress_cnt
);
80 if ((rxd_count
<= rxd_spat
) || (val64
> 0))
85 } while ((count
< VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT
) &&
86 (total_count
< VXGE_HW_MAX_POLLING_COUNT
));
88 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
89 printk(KERN_ALERT
"%s: Still Receiving traffic. Abort wait\n",
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device
*hldev
)
101 int i
, total_count
= 0;
103 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
104 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
107 total_count
+= vxge_hw_vpath_wait_receive_idle(hldev
, i
);
108 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem
*reg
, u64 mask
, u32 max_millis
)
123 enum vxge_hw_status ret
= VXGE_HW_FAIL
;
140 } while (++i
<= max_millis
);
145 static inline enum vxge_hw_status
146 __vxge_hw_pio_mem_write64(u64 val64
, void __iomem
*addr
,
147 u64 mask
, u32 max_millis
)
149 __vxge_hw_pio_mem_write32_lower((u32
)vxge_bVALn(val64
, 32, 32), addr
);
151 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32), addr
);
154 return __vxge_hw_device_register_poll(addr
, mask
, max_millis
);
157 static enum vxge_hw_status
158 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath
*vpath
, u32 action
,
159 u32 fw_memo
, u32 offset
, u64
*data0
, u64
*data1
,
162 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
163 enum vxge_hw_status status
;
165 u32 retry
= 0, max_retry
= 3;
167 spin_lock(&vpath
->lock
);
168 if (!vpath
->vp_open
) {
169 spin_unlock(&vpath
->lock
);
173 writeq(*data0
, &vp_reg
->rts_access_steer_data0
);
174 writeq(*data1
, &vp_reg
->rts_access_steer_data1
);
177 val64
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action
) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo
) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset
) |
180 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
|
183 status
= __vxge_hw_pio_mem_write64(val64
,
184 &vp_reg
->rts_access_steer_ctrl
,
185 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
186 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
188 /* The __vxge_hw_device_register_poll can udelay for a significant
189 * amount of time, blocking other process from the CPU. If it delays
190 * for ~5secs, a NMI error can occur. A way around this is to give up
191 * the processor via msleep, but this is not allowed is under lock.
192 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
193 * 1sec and sleep for 10ms until the firmware operation has completed
196 while ((status
!= VXGE_HW_OK
) && retry
++ < max_retry
) {
199 status
= __vxge_hw_device_register_poll(
200 &vp_reg
->rts_access_steer_ctrl
,
201 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
202 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
205 if (status
!= VXGE_HW_OK
)
208 val64
= readq(&vp_reg
->rts_access_steer_ctrl
);
209 if (val64
& VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS
) {
210 *data0
= readq(&vp_reg
->rts_access_steer_data0
);
211 *data1
= readq(&vp_reg
->rts_access_steer_data1
);
214 status
= VXGE_HW_FAIL
;
218 spin_unlock(&vpath
->lock
);
223 vxge_hw_upgrade_read_version(struct __vxge_hw_device
*hldev
, u32
*major
,
224 u32
*minor
, u32
*build
)
226 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
227 struct __vxge_hw_virtualpath
*vpath
;
228 enum vxge_hw_status status
;
230 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
232 status
= vxge_hw_vpath_fw_api(vpath
,
233 VXGE_HW_FW_UPGRADE_ACTION
,
234 VXGE_HW_FW_UPGRADE_MEMO
,
235 VXGE_HW_FW_UPGRADE_OFFSET_READ
,
236 &data0
, &data1
, &steer_ctrl
);
237 if (status
!= VXGE_HW_OK
)
240 *major
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
241 *minor
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
242 *build
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
247 enum vxge_hw_status
vxge_hw_flash_fw(struct __vxge_hw_device
*hldev
)
249 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
250 struct __vxge_hw_virtualpath
*vpath
;
251 enum vxge_hw_status status
;
254 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
256 status
= vxge_hw_vpath_fw_api(vpath
,
257 VXGE_HW_FW_UPGRADE_ACTION
,
258 VXGE_HW_FW_UPGRADE_MEMO
,
259 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT
,
260 &data0
, &data1
, &steer_ctrl
);
261 if (status
!= VXGE_HW_OK
) {
262 vxge_debug_init(VXGE_ERR
, "%s: FW upgrade failed", __func__
);
266 ret
= VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl
) & 0x7F;
268 vxge_debug_init(VXGE_ERR
, "%s: FW commit failed with error %d",
270 status
= VXGE_HW_FAIL
;
278 vxge_update_fw_image(struct __vxge_hw_device
*hldev
, const u8
*fwdata
, int size
)
280 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
281 struct __vxge_hw_virtualpath
*vpath
;
282 enum vxge_hw_status status
;
283 int ret_code
, sec_code
;
285 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
287 /* send upgrade start command */
288 status
= vxge_hw_vpath_fw_api(vpath
,
289 VXGE_HW_FW_UPGRADE_ACTION
,
290 VXGE_HW_FW_UPGRADE_MEMO
,
291 VXGE_HW_FW_UPGRADE_OFFSET_START
,
292 &data0
, &data1
, &steer_ctrl
);
293 if (status
!= VXGE_HW_OK
) {
294 vxge_debug_init(VXGE_ERR
, " %s: Upgrade start cmd failed",
299 /* Transfer fw image to adapter 16 bytes at a time */
300 for (; size
> 0; size
-= VXGE_HW_FW_UPGRADE_BLK_SIZE
) {
303 /* The next 128bits of fwdata to be loaded onto the adapter */
304 data0
= *((u64
*)fwdata
);
305 data1
= *((u64
*)fwdata
+ 1);
307 status
= vxge_hw_vpath_fw_api(vpath
,
308 VXGE_HW_FW_UPGRADE_ACTION
,
309 VXGE_HW_FW_UPGRADE_MEMO
,
310 VXGE_HW_FW_UPGRADE_OFFSET_SEND
,
311 &data0
, &data1
, &steer_ctrl
);
312 if (status
!= VXGE_HW_OK
) {
313 vxge_debug_init(VXGE_ERR
, "%s: Upgrade send failed",
318 ret_code
= VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0
);
320 case VXGE_HW_FW_UPGRADE_OK
:
321 /* All OK, send next 16 bytes. */
323 case VXGE_FW_UPGRADE_BYTES2SKIP
:
324 /* skip bytes in the stream */
325 fwdata
+= (data0
>> 8) & 0xFFFFFFFF;
327 case VXGE_HW_FW_UPGRADE_DONE
:
329 case VXGE_HW_FW_UPGRADE_ERR
:
330 sec_code
= VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0
);
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1
:
333 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7
:
335 "corrupted data from .ncf file\n");
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3
:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4
:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5
:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6
:
341 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8
:
342 printk(KERN_ERR
"invalid .ncf file\n");
344 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW
:
345 printk(KERN_ERR
"buffer overflow\n");
347 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH
:
348 printk(KERN_ERR
"failed to flash the image\n");
350 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN
:
352 "generic error. Unknown error type\n");
355 printk(KERN_ERR
"Unknown error of type %d\n",
359 status
= VXGE_HW_FAIL
;
362 printk(KERN_ERR
"Unknown FW error: %d\n", ret_code
);
363 status
= VXGE_HW_FAIL
;
366 /* point to next 16 bytes */
367 fwdata
+= VXGE_HW_FW_UPGRADE_BLK_SIZE
;
374 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device
*hldev
,
375 struct eprom_image
*img
)
377 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
378 struct __vxge_hw_virtualpath
*vpath
;
379 enum vxge_hw_status status
;
382 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
384 for (i
= 0; i
< VXGE_HW_MAX_ROM_IMAGES
; i
++) {
385 data0
= VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i
);
386 data1
= steer_ctrl
= 0;
388 status
= vxge_hw_vpath_fw_api(vpath
,
389 VXGE_HW_FW_API_GET_EPROM_REV
,
390 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
391 0, &data0
, &data1
, &steer_ctrl
);
392 if (status
!= VXGE_HW_OK
)
395 img
[i
].is_valid
= VXGE_HW_GET_EPROM_IMAGE_VALID(data0
);
396 img
[i
].index
= VXGE_HW_GET_EPROM_IMAGE_INDEX(data0
);
397 img
[i
].type
= VXGE_HW_GET_EPROM_IMAGE_TYPE(data0
);
398 img
[i
].version
= VXGE_HW_GET_EPROM_IMAGE_REV(data0
);
405 * __vxge_hw_channel_free - Free memory allocated for channel
406 * This function deallocates memory from the channel and various arrays
409 static void __vxge_hw_channel_free(struct __vxge_hw_channel
*channel
)
411 kfree(channel
->work_arr
);
412 kfree(channel
->free_arr
);
413 kfree(channel
->reserve_arr
);
414 kfree(channel
->orig_arr
);
419 * __vxge_hw_channel_initialize - Initialize a channel
420 * This function initializes a channel by properly setting the
423 static enum vxge_hw_status
424 __vxge_hw_channel_initialize(struct __vxge_hw_channel
*channel
)
427 struct __vxge_hw_virtualpath
*vpath
;
429 vpath
= channel
->vph
->vpath
;
431 if ((channel
->reserve_arr
!= NULL
) && (channel
->orig_arr
!= NULL
)) {
432 for (i
= 0; i
< channel
->length
; i
++)
433 channel
->orig_arr
[i
] = channel
->reserve_arr
[i
];
436 switch (channel
->type
) {
437 case VXGE_HW_CHANNEL_TYPE_FIFO
:
438 vpath
->fifoh
= (struct __vxge_hw_fifo
*)channel
;
439 channel
->stats
= &((struct __vxge_hw_fifo
*)
440 channel
)->stats
->common_stats
;
442 case VXGE_HW_CHANNEL_TYPE_RING
:
443 vpath
->ringh
= (struct __vxge_hw_ring
*)channel
;
444 channel
->stats
= &((struct __vxge_hw_ring
*)
445 channel
)->stats
->common_stats
;
455 * __vxge_hw_channel_reset - Resets a channel
456 * This function resets a channel by properly setting the various references
458 static enum vxge_hw_status
459 __vxge_hw_channel_reset(struct __vxge_hw_channel
*channel
)
463 for (i
= 0; i
< channel
->length
; i
++) {
464 if (channel
->reserve_arr
!= NULL
)
465 channel
->reserve_arr
[i
] = channel
->orig_arr
[i
];
466 if (channel
->free_arr
!= NULL
)
467 channel
->free_arr
[i
] = NULL
;
468 if (channel
->work_arr
!= NULL
)
469 channel
->work_arr
[i
] = NULL
;
471 channel
->free_ptr
= channel
->length
;
472 channel
->reserve_ptr
= channel
->length
;
473 channel
->reserve_top
= 0;
474 channel
->post_index
= 0;
475 channel
->compl_index
= 0;
481 * __vxge_hw_device_pci_e_init
482 * Initialize certain PCI/PCI-X configuration registers
483 * with recommended values. Save config space for future hw resets.
485 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device
*hldev
)
489 /* Set the PErr Repconse bit and SERR in PCI command register. */
490 pci_read_config_word(hldev
->pdev
, PCI_COMMAND
, &cmd
);
492 pci_write_config_word(hldev
->pdev
, PCI_COMMAND
, cmd
);
494 pci_save_state(hldev
->pdev
);
497 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
499 * This routine checks the vpath reset in progress register is turned zero
501 static enum vxge_hw_status
502 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem
*vpath_rst_in_prog
)
504 enum vxge_hw_status status
;
505 status
= __vxge_hw_device_register_poll(vpath_rst_in_prog
,
506 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
507 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
512 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
513 * Set the swapper bits appropriately for the lagacy section.
515 static enum vxge_hw_status
516 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
)
519 enum vxge_hw_status status
= VXGE_HW_OK
;
521 val64
= readq(&legacy_reg
->toc_swapper_fb
);
526 case VXGE_HW_SWAPPER_INITIAL_VALUE
:
529 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED
:
530 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
531 &legacy_reg
->pifm_rd_swap_en
);
532 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
533 &legacy_reg
->pifm_rd_flip_en
);
534 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
535 &legacy_reg
->pifm_wr_swap_en
);
536 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
537 &legacy_reg
->pifm_wr_flip_en
);
540 case VXGE_HW_SWAPPER_BYTE_SWAPPED
:
541 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
542 &legacy_reg
->pifm_rd_swap_en
);
543 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
544 &legacy_reg
->pifm_wr_swap_en
);
547 case VXGE_HW_SWAPPER_BIT_FLIPPED
:
548 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
549 &legacy_reg
->pifm_rd_flip_en
);
550 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
551 &legacy_reg
->pifm_wr_flip_en
);
557 val64
= readq(&legacy_reg
->toc_swapper_fb
);
559 if (val64
!= VXGE_HW_SWAPPER_INITIAL_VALUE
)
560 status
= VXGE_HW_ERR_SWAPPER_CTRL
;
566 * __vxge_hw_device_toc_get
567 * This routine sets the swapper and reads the toc pointer and returns the
568 * memory mapped address of the toc
570 static struct vxge_hw_toc_reg __iomem
*
571 __vxge_hw_device_toc_get(void __iomem
*bar0
)
574 struct vxge_hw_toc_reg __iomem
*toc
= NULL
;
575 enum vxge_hw_status status
;
577 struct vxge_hw_legacy_reg __iomem
*legacy_reg
=
578 (struct vxge_hw_legacy_reg __iomem
*)bar0
;
580 status
= __vxge_hw_legacy_swapper_set(legacy_reg
);
581 if (status
!= VXGE_HW_OK
)
584 val64
= readq(&legacy_reg
->toc_first_pointer
);
591 * __vxge_hw_device_reg_addr_get
592 * This routine sets the swapper and reads the toc pointer and initializes the
593 * register location pointers in the device object. It waits until the ric is
594 * completed initializing registers.
596 static enum vxge_hw_status
597 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device
*hldev
)
601 enum vxge_hw_status status
= VXGE_HW_OK
;
603 hldev
->legacy_reg
= hldev
->bar0
;
605 hldev
->toc_reg
= __vxge_hw_device_toc_get(hldev
->bar0
);
606 if (hldev
->toc_reg
== NULL
) {
607 status
= VXGE_HW_FAIL
;
611 val64
= readq(&hldev
->toc_reg
->toc_common_pointer
);
612 hldev
->common_reg
= hldev
->bar0
+ val64
;
614 val64
= readq(&hldev
->toc_reg
->toc_mrpcim_pointer
);
615 hldev
->mrpcim_reg
= hldev
->bar0
+ val64
;
617 for (i
= 0; i
< VXGE_HW_TITAN_SRPCIM_REG_SPACES
; i
++) {
618 val64
= readq(&hldev
->toc_reg
->toc_srpcim_pointer
[i
]);
619 hldev
->srpcim_reg
[i
] = hldev
->bar0
+ val64
;
622 for (i
= 0; i
< VXGE_HW_TITAN_VPMGMT_REG_SPACES
; i
++) {
623 val64
= readq(&hldev
->toc_reg
->toc_vpmgmt_pointer
[i
]);
624 hldev
->vpmgmt_reg
[i
] = hldev
->bar0
+ val64
;
627 for (i
= 0; i
< VXGE_HW_TITAN_VPATH_REG_SPACES
; i
++) {
628 val64
= readq(&hldev
->toc_reg
->toc_vpath_pointer
[i
]);
629 hldev
->vpath_reg
[i
] = hldev
->bar0
+ val64
;
632 val64
= readq(&hldev
->toc_reg
->toc_kdfc
);
634 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64
)) {
636 hldev
->kdfc
= hldev
->bar0
+ VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64
) ;
642 status
= __vxge_hw_device_vpath_reset_in_prog_check(
643 (u64 __iomem
*)&hldev
->common_reg
->vpath_rst_in_prog
);
649 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
650 * This routine returns the Access Rights of the driver
653 __vxge_hw_device_access_rights_get(u32 host_type
, u32 func_id
)
655 u32 access_rights
= VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH
;
658 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION
:
660 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
661 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
664 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION
:
665 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
666 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
668 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0
:
669 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
670 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
672 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION
:
673 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION
:
674 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG
:
676 case VXGE_HW_SR_VH_FUNCTION0
:
677 case VXGE_HW_VH_NORMAL_FUNCTION
:
678 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
682 return access_rights
;
685 * __vxge_hw_device_is_privilaged
686 * This routine checks if the device function is privilaged or not
690 __vxge_hw_device_is_privilaged(u32 host_type
, u32 func_id
)
692 if (__vxge_hw_device_access_rights_get(host_type
,
694 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)
697 return VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
701 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
702 * Returns the function number of the vpath.
705 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
)
709 val64
= readq(&vpmgmt_reg
->vpath_to_func_map_cfg1
);
712 (u32
)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64
);
716 * __vxge_hw_device_host_info_get
717 * This routine returns the host type assignments
719 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device
*hldev
)
724 val64
= readq(&hldev
->common_reg
->host_type_assignments
);
727 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
729 hldev
->vpath_assignments
= readq(&hldev
->common_reg
->vpath_assignments
);
731 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
732 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
736 __vxge_hw_vpath_func_id_get(hldev
->vpmgmt_reg
[i
]);
738 hldev
->access_rights
= __vxge_hw_device_access_rights_get(
739 hldev
->host_type
, hldev
->func_id
);
741 hldev
->virtual_paths
[i
].vp_open
= VXGE_HW_VP_NOT_OPEN
;
742 hldev
->virtual_paths
[i
].vp_reg
= hldev
->vpath_reg
[i
];
744 hldev
->first_vp_id
= i
;
750 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
751 * link width and signalling rate.
753 static enum vxge_hw_status
754 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device
*hldev
)
756 struct pci_dev
*dev
= hldev
->pdev
;
759 /* Get the negotiated link width and speed from PCI config space */
760 pci_read_config_word(dev
, dev
->pcie_cap
+ PCI_EXP_LNKSTA
, &lnk
);
762 if ((lnk
& PCI_EXP_LNKSTA_CLS
) != 1)
763 return VXGE_HW_ERR_INVALID_PCI_INFO
;
765 switch ((lnk
& PCI_EXP_LNKSTA_NLW
) >> 4) {
766 case PCIE_LNK_WIDTH_RESRV
:
773 return VXGE_HW_ERR_INVALID_PCI_INFO
;
780 * __vxge_hw_device_initialize
781 * Initialize Titan-V hardware.
783 static enum vxge_hw_status
784 __vxge_hw_device_initialize(struct __vxge_hw_device
*hldev
)
786 enum vxge_hw_status status
= VXGE_HW_OK
;
788 if (VXGE_HW_OK
== __vxge_hw_device_is_privilaged(hldev
->host_type
,
790 /* Validate the pci-e link width and speed */
791 status
= __vxge_hw_verify_pci_e_info(hldev
);
792 if (status
!= VXGE_HW_OK
)
801 * __vxge_hw_vpath_fw_ver_get - Get the fw version
804 static enum vxge_hw_status
805 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath
*vpath
,
806 struct vxge_hw_device_hw_info
*hw_info
)
808 struct vxge_hw_device_version
*fw_version
= &hw_info
->fw_version
;
809 struct vxge_hw_device_date
*fw_date
= &hw_info
->fw_date
;
810 struct vxge_hw_device_version
*flash_version
= &hw_info
->flash_version
;
811 struct vxge_hw_device_date
*flash_date
= &hw_info
->flash_date
;
812 u64 data0
, data1
= 0, steer_ctrl
= 0;
813 enum vxge_hw_status status
;
815 status
= vxge_hw_vpath_fw_api(vpath
,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
817 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
818 0, &data0
, &data1
, &steer_ctrl
);
819 if (status
!= VXGE_HW_OK
)
823 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0
);
825 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0
);
827 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0
);
829 snprintf(fw_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
830 fw_date
->month
, fw_date
->day
, fw_date
->year
);
833 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
835 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
837 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
839 snprintf(fw_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
840 fw_version
->major
, fw_version
->minor
, fw_version
->build
);
843 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1
);
845 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1
);
847 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1
);
849 snprintf(flash_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
850 flash_date
->month
, flash_date
->day
, flash_date
->year
);
852 flash_version
->major
=
853 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1
);
854 flash_version
->minor
=
855 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1
);
856 flash_version
->build
=
857 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1
);
859 snprintf(flash_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
860 flash_version
->major
, flash_version
->minor
,
861 flash_version
->build
);
868 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
869 * part number and product description.
871 static enum vxge_hw_status
872 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath
*vpath
,
873 struct vxge_hw_device_hw_info
*hw_info
)
875 enum vxge_hw_status status
;
876 u64 data0
, data1
= 0, steer_ctrl
= 0;
877 u8
*serial_number
= hw_info
->serial_number
;
878 u8
*part_number
= hw_info
->part_number
;
879 u8
*product_desc
= hw_info
->product_desc
;
882 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER
;
884 status
= vxge_hw_vpath_fw_api(vpath
,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
886 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
887 0, &data0
, &data1
, &steer_ctrl
);
888 if (status
!= VXGE_HW_OK
)
891 ((u64
*)serial_number
)[0] = be64_to_cpu(data0
);
892 ((u64
*)serial_number
)[1] = be64_to_cpu(data1
);
894 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER
;
895 data1
= steer_ctrl
= 0;
897 status
= vxge_hw_vpath_fw_api(vpath
,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
899 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
900 0, &data0
, &data1
, &steer_ctrl
);
901 if (status
!= VXGE_HW_OK
)
904 ((u64
*)part_number
)[0] = be64_to_cpu(data0
);
905 ((u64
*)part_number
)[1] = be64_to_cpu(data1
);
907 for (i
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0
;
908 i
<= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3
; i
++) {
910 data1
= steer_ctrl
= 0;
912 status
= vxge_hw_vpath_fw_api(vpath
,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
914 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
915 0, &data0
, &data1
, &steer_ctrl
);
916 if (status
!= VXGE_HW_OK
)
919 ((u64
*)product_desc
)[j
++] = be64_to_cpu(data0
);
920 ((u64
*)product_desc
)[j
++] = be64_to_cpu(data1
);
927 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
928 * Returns pci function mode
930 static enum vxge_hw_status
931 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath
*vpath
,
932 struct vxge_hw_device_hw_info
*hw_info
)
934 u64 data0
, data1
= 0, steer_ctrl
= 0;
935 enum vxge_hw_status status
;
939 status
= vxge_hw_vpath_fw_api(vpath
,
940 VXGE_HW_FW_API_GET_FUNC_MODE
,
941 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
942 0, &data0
, &data1
, &steer_ctrl
);
943 if (status
!= VXGE_HW_OK
)
946 hw_info
->function_mode
= VXGE_HW_GET_FUNC_MODE_VAL(data0
);
951 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
952 * from MAC address table.
954 static enum vxge_hw_status
955 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath
*vpath
,
956 u8
*macaddr
, u8
*macaddr_mask
)
958 u64 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
959 data0
= 0, data1
= 0, steer_ctrl
= 0;
960 enum vxge_hw_status status
;
964 status
= vxge_hw_vpath_fw_api(vpath
, action
,
965 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
966 0, &data0
, &data1
, &steer_ctrl
);
967 if (status
!= VXGE_HW_OK
)
970 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0
);
971 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
974 for (i
= ETH_ALEN
; i
> 0; i
--) {
975 macaddr
[i
- 1] = (u8
) (data0
& 0xFF);
978 macaddr_mask
[i
- 1] = (u8
) (data1
& 0xFF);
982 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
;
983 data0
= 0, data1
= 0, steer_ctrl
= 0;
985 } while (!is_valid_ether_addr(macaddr
));
991 * vxge_hw_device_hw_info_get - Get the hw information
992 * Returns the vpath mask that has the bits set for each vpath allocated
993 * for the driver, FW version information, and the first mac address for
996 enum vxge_hw_status __devinit
997 vxge_hw_device_hw_info_get(void __iomem
*bar0
,
998 struct vxge_hw_device_hw_info
*hw_info
)
1002 struct vxge_hw_toc_reg __iomem
*toc
;
1003 struct vxge_hw_mrpcim_reg __iomem
*mrpcim_reg
;
1004 struct vxge_hw_common_reg __iomem
*common_reg
;
1005 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
1006 enum vxge_hw_status status
;
1007 struct __vxge_hw_virtualpath vpath
;
1009 memset(hw_info
, 0, sizeof(struct vxge_hw_device_hw_info
));
1011 toc
= __vxge_hw_device_toc_get(bar0
);
1013 status
= VXGE_HW_ERR_CRITICAL
;
1017 val64
= readq(&toc
->toc_common_pointer
);
1018 common_reg
= bar0
+ val64
;
1020 status
= __vxge_hw_device_vpath_reset_in_prog_check(
1021 (u64 __iomem
*)&common_reg
->vpath_rst_in_prog
);
1022 if (status
!= VXGE_HW_OK
)
1025 hw_info
->vpath_mask
= readq(&common_reg
->vpath_assignments
);
1027 val64
= readq(&common_reg
->host_type_assignments
);
1029 hw_info
->host_type
=
1030 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
1032 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1033 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1036 val64
= readq(&toc
->toc_vpmgmt_pointer
[i
]);
1038 vpmgmt_reg
= bar0
+ val64
;
1040 hw_info
->func_id
= __vxge_hw_vpath_func_id_get(vpmgmt_reg
);
1041 if (__vxge_hw_device_access_rights_get(hw_info
->host_type
,
1043 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
) {
1045 val64
= readq(&toc
->toc_mrpcim_pointer
);
1047 mrpcim_reg
= bar0
+ val64
;
1049 writeq(0, &mrpcim_reg
->xgmac_gen_fw_memo_mask
);
1053 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1055 spin_lock_init(&vpath
.lock
);
1056 vpath
.vp_reg
= bar0
+ val64
;
1057 vpath
.vp_open
= VXGE_HW_VP_NOT_OPEN
;
1059 status
= __vxge_hw_vpath_pci_func_mode_get(&vpath
, hw_info
);
1060 if (status
!= VXGE_HW_OK
)
1063 status
= __vxge_hw_vpath_fw_ver_get(&vpath
, hw_info
);
1064 if (status
!= VXGE_HW_OK
)
1067 status
= __vxge_hw_vpath_card_info_get(&vpath
, hw_info
);
1068 if (status
!= VXGE_HW_OK
)
1074 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1075 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1078 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1079 vpath
.vp_reg
= bar0
+ val64
;
1080 vpath
.vp_open
= VXGE_HW_VP_NOT_OPEN
;
1082 status
= __vxge_hw_vpath_addr_get(&vpath
,
1083 hw_info
->mac_addrs
[i
],
1084 hw_info
->mac_addr_masks
[i
]);
1085 if (status
!= VXGE_HW_OK
)
1093 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1095 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool
*blockpool
)
1097 struct __vxge_hw_device
*hldev
;
1098 struct list_head
*p
, *n
;
1101 if (blockpool
== NULL
) {
1106 hldev
= blockpool
->hldev
;
1108 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
1109 pci_unmap_single(hldev
->pdev
,
1110 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
1111 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
1112 PCI_DMA_BIDIRECTIONAL
);
1114 vxge_os_dma_free(hldev
->pdev
,
1115 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
1116 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
1118 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1120 blockpool
->pool_size
--;
1123 list_for_each_safe(p
, n
, &blockpool
->free_entry_list
) {
1124 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1133 * __vxge_hw_blockpool_create - Create block pool
1135 static enum vxge_hw_status
1136 __vxge_hw_blockpool_create(struct __vxge_hw_device
*hldev
,
1137 struct __vxge_hw_blockpool
*blockpool
,
1142 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
1144 dma_addr_t dma_addr
;
1145 struct pci_dev
*dma_handle
;
1146 struct pci_dev
*acc_handle
;
1147 enum vxge_hw_status status
= VXGE_HW_OK
;
1149 if (blockpool
== NULL
) {
1150 status
= VXGE_HW_FAIL
;
1151 goto blockpool_create_exit
;
1154 blockpool
->hldev
= hldev
;
1155 blockpool
->block_size
= VXGE_HW_BLOCK_SIZE
;
1156 blockpool
->pool_size
= 0;
1157 blockpool
->pool_max
= pool_max
;
1158 blockpool
->req_out
= 0;
1160 INIT_LIST_HEAD(&blockpool
->free_block_list
);
1161 INIT_LIST_HEAD(&blockpool
->free_entry_list
);
1163 for (i
= 0; i
< pool_size
+ pool_max
; i
++) {
1164 entry
= kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1166 if (entry
== NULL
) {
1167 __vxge_hw_blockpool_destroy(blockpool
);
1168 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1169 goto blockpool_create_exit
;
1171 list_add(&entry
->item
, &blockpool
->free_entry_list
);
1174 for (i
= 0; i
< pool_size
; i
++) {
1175 memblock
= vxge_os_dma_malloc(
1180 if (memblock
== NULL
) {
1181 __vxge_hw_blockpool_destroy(blockpool
);
1182 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1183 goto blockpool_create_exit
;
1186 dma_addr
= pci_map_single(hldev
->pdev
, memblock
,
1187 VXGE_HW_BLOCK_SIZE
, PCI_DMA_BIDIRECTIONAL
);
1188 if (unlikely(pci_dma_mapping_error(hldev
->pdev
,
1190 vxge_os_dma_free(hldev
->pdev
, memblock
, &acc_handle
);
1191 __vxge_hw_blockpool_destroy(blockpool
);
1192 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1193 goto blockpool_create_exit
;
1196 if (!list_empty(&blockpool
->free_entry_list
))
1197 entry
= (struct __vxge_hw_blockpool_entry
*)
1198 list_first_entry(&blockpool
->free_entry_list
,
1199 struct __vxge_hw_blockpool_entry
,
1204 kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1206 if (entry
!= NULL
) {
1207 list_del(&entry
->item
);
1208 entry
->length
= VXGE_HW_BLOCK_SIZE
;
1209 entry
->memblock
= memblock
;
1210 entry
->dma_addr
= dma_addr
;
1211 entry
->acc_handle
= acc_handle
;
1212 entry
->dma_handle
= dma_handle
;
1213 list_add(&entry
->item
,
1214 &blockpool
->free_block_list
);
1215 blockpool
->pool_size
++;
1217 __vxge_hw_blockpool_destroy(blockpool
);
1218 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1219 goto blockpool_create_exit
;
1223 blockpool_create_exit
:
1228 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1229 * Check the fifo configuration
1231 static enum vxge_hw_status
1232 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config
*fifo_config
)
1234 if ((fifo_config
->fifo_blocks
< VXGE_HW_MIN_FIFO_BLOCKS
) ||
1235 (fifo_config
->fifo_blocks
> VXGE_HW_MAX_FIFO_BLOCKS
))
1236 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
1242 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1243 * Check the vpath configuration
1245 static enum vxge_hw_status
1246 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config
*vp_config
)
1248 enum vxge_hw_status status
;
1250 if ((vp_config
->min_bandwidth
< VXGE_HW_VPATH_BANDWIDTH_MIN
) ||
1251 (vp_config
->min_bandwidth
> VXGE_HW_VPATH_BANDWIDTH_MAX
))
1252 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH
;
1254 status
= __vxge_hw_device_fifo_config_check(&vp_config
->fifo
);
1255 if (status
!= VXGE_HW_OK
)
1258 if ((vp_config
->mtu
!= VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) &&
1259 ((vp_config
->mtu
< VXGE_HW_VPATH_MIN_INITIAL_MTU
) ||
1260 (vp_config
->mtu
> VXGE_HW_VPATH_MAX_INITIAL_MTU
)))
1261 return VXGE_HW_BADCFG_VPATH_MTU
;
1263 if ((vp_config
->rpa_strip_vlan_tag
!=
1264 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) &&
1265 (vp_config
->rpa_strip_vlan_tag
!=
1266 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE
) &&
1267 (vp_config
->rpa_strip_vlan_tag
!=
1268 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE
))
1269 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG
;
1275 * __vxge_hw_device_config_check - Check device configuration.
1276 * Check the device configuration
1278 static enum vxge_hw_status
1279 __vxge_hw_device_config_check(struct vxge_hw_device_config
*new_config
)
1282 enum vxge_hw_status status
;
1284 if ((new_config
->intr_mode
!= VXGE_HW_INTR_MODE_IRQLINE
) &&
1285 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX
) &&
1286 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) &&
1287 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_DEF
))
1288 return VXGE_HW_BADCFG_INTR_MODE
;
1290 if ((new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_DISABLE
) &&
1291 (new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_ENABLE
))
1292 return VXGE_HW_BADCFG_RTS_MAC_EN
;
1294 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1295 status
= __vxge_hw_device_vpath_config_check(
1296 &new_config
->vp_config
[i
]);
1297 if (status
!= VXGE_HW_OK
)
1305 * vxge_hw_device_initialize - Initialize Titan device.
1306 * Initialize Titan device. Note that all the arguments of this public API
1307 * are 'IN', including @hldev. Driver cooperates with
1308 * OS to find new Titan device, locate its PCI and memory spaces.
1310 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1311 * to enable the latter to perform Titan hardware initialization.
1313 enum vxge_hw_status __devinit
1314 vxge_hw_device_initialize(
1315 struct __vxge_hw_device
**devh
,
1316 struct vxge_hw_device_attr
*attr
,
1317 struct vxge_hw_device_config
*device_config
)
1321 struct __vxge_hw_device
*hldev
= NULL
;
1322 enum vxge_hw_status status
= VXGE_HW_OK
;
1324 status
= __vxge_hw_device_config_check(device_config
);
1325 if (status
!= VXGE_HW_OK
)
1328 hldev
= vzalloc(sizeof(struct __vxge_hw_device
));
1329 if (hldev
== NULL
) {
1330 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1334 hldev
->magic
= VXGE_HW_DEVICE_MAGIC
;
1336 vxge_hw_device_debug_set(hldev
, VXGE_ERR
, VXGE_COMPONENT_ALL
);
1339 memcpy(&hldev
->config
, device_config
,
1340 sizeof(struct vxge_hw_device_config
));
1342 hldev
->bar0
= attr
->bar0
;
1343 hldev
->pdev
= attr
->pdev
;
1345 hldev
->uld_callbacks
= attr
->uld_callbacks
;
1347 __vxge_hw_device_pci_e_init(hldev
);
1349 status
= __vxge_hw_device_reg_addr_get(hldev
);
1350 if (status
!= VXGE_HW_OK
) {
1355 __vxge_hw_device_host_info_get(hldev
);
1357 /* Incrementing for stats blocks */
1360 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1361 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
1364 if (device_config
->vp_config
[i
].ring
.enable
==
1365 VXGE_HW_RING_ENABLE
)
1366 nblocks
+= device_config
->vp_config
[i
].ring
.ring_blocks
;
1368 if (device_config
->vp_config
[i
].fifo
.enable
==
1369 VXGE_HW_FIFO_ENABLE
)
1370 nblocks
+= device_config
->vp_config
[i
].fifo
.fifo_blocks
;
1374 if (__vxge_hw_blockpool_create(hldev
,
1376 device_config
->dma_blockpool_initial
+ nblocks
,
1377 device_config
->dma_blockpool_max
+ nblocks
) != VXGE_HW_OK
) {
1379 vxge_hw_device_terminate(hldev
);
1380 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1384 status
= __vxge_hw_device_initialize(hldev
);
1385 if (status
!= VXGE_HW_OK
) {
1386 vxge_hw_device_terminate(hldev
);
1396 * vxge_hw_device_terminate - Terminate Titan device.
1397 * Terminate HW device.
1400 vxge_hw_device_terminate(struct __vxge_hw_device
*hldev
)
1402 vxge_assert(hldev
->magic
== VXGE_HW_DEVICE_MAGIC
);
1404 hldev
->magic
= VXGE_HW_DEVICE_DEAD
;
1405 __vxge_hw_blockpool_destroy(&hldev
->block_pool
);
1410 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1411 * and offset and perform an operation
1413 static enum vxge_hw_status
1414 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath
*vpath
,
1415 u32 operation
, u32 offset
, u64
*stat
)
1418 enum vxge_hw_status status
= VXGE_HW_OK
;
1419 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1421 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1422 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1423 goto vpath_stats_access_exit
;
1426 vp_reg
= vpath
->vp_reg
;
1428 val64
= VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation
) |
1429 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
|
1430 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset
);
1432 status
= __vxge_hw_pio_mem_write64(val64
,
1433 &vp_reg
->xmac_stats_access_cmd
,
1434 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
,
1435 vpath
->hldev
->config
.device_poll_millis
);
1436 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1437 *stat
= readq(&vp_reg
->xmac_stats_access_data
);
1441 vpath_stats_access_exit
:
1446 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1448 static enum vxge_hw_status
1449 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1450 struct vxge_hw_xmac_vpath_tx_stats
*vpath_tx_stats
)
1454 u32 offset
= VXGE_HW_STATS_VPATH_TX_OFFSET
;
1455 enum vxge_hw_status status
= VXGE_HW_OK
;
1457 val64
= (u64
*)vpath_tx_stats
;
1459 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1460 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1464 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_tx_stats
) / 8; i
++) {
1465 status
= __vxge_hw_vpath_stats_access(vpath
,
1466 VXGE_HW_STATS_OP_READ
,
1468 if (status
!= VXGE_HW_OK
)
1478 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1480 static enum vxge_hw_status
1481 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1482 struct vxge_hw_xmac_vpath_rx_stats
*vpath_rx_stats
)
1485 enum vxge_hw_status status
= VXGE_HW_OK
;
1487 u32 offset
= VXGE_HW_STATS_VPATH_RX_OFFSET
;
1488 val64
= (u64
*) vpath_rx_stats
;
1490 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1491 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1494 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_rx_stats
) / 8; i
++) {
1495 status
= __vxge_hw_vpath_stats_access(vpath
,
1496 VXGE_HW_STATS_OP_READ
,
1497 offset
>> 3, val64
);
1498 if (status
!= VXGE_HW_OK
)
1509 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1511 static enum vxge_hw_status
1512 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1513 struct vxge_hw_vpath_stats_hw_info
*hw_stats
)
1516 enum vxge_hw_status status
= VXGE_HW_OK
;
1517 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1519 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1520 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1523 vp_reg
= vpath
->vp_reg
;
1525 val64
= readq(&vp_reg
->vpath_debug_stats0
);
1526 hw_stats
->ini_num_mwr_sent
=
1527 (u32
)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64
);
1529 val64
= readq(&vp_reg
->vpath_debug_stats1
);
1530 hw_stats
->ini_num_mrd_sent
=
1531 (u32
)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64
);
1533 val64
= readq(&vp_reg
->vpath_debug_stats2
);
1534 hw_stats
->ini_num_cpl_rcvd
=
1535 (u32
)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64
);
1537 val64
= readq(&vp_reg
->vpath_debug_stats3
);
1538 hw_stats
->ini_num_mwr_byte_sent
=
1539 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64
);
1541 val64
= readq(&vp_reg
->vpath_debug_stats4
);
1542 hw_stats
->ini_num_cpl_byte_rcvd
=
1543 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64
);
1545 val64
= readq(&vp_reg
->vpath_debug_stats5
);
1546 hw_stats
->wrcrdtarb_xoff
=
1547 (u32
)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64
);
1549 val64
= readq(&vp_reg
->vpath_debug_stats6
);
1550 hw_stats
->rdcrdtarb_xoff
=
1551 (u32
)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64
);
1553 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1554 hw_stats
->vpath_genstats_count0
=
1555 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1558 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1559 hw_stats
->vpath_genstats_count1
=
1560 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1563 val64
= readq(&vp_reg
->vpath_genstats_count23
);
1564 hw_stats
->vpath_genstats_count2
=
1565 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1568 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1569 hw_stats
->vpath_genstats_count3
=
1570 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1573 val64
= readq(&vp_reg
->vpath_genstats_count4
);
1574 hw_stats
->vpath_genstats_count4
=
1575 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1578 val64
= readq(&vp_reg
->vpath_genstats_count5
);
1579 hw_stats
->vpath_genstats_count5
=
1580 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1583 status
= __vxge_hw_vpath_xmac_tx_stats_get(vpath
, &hw_stats
->tx_stats
);
1584 if (status
!= VXGE_HW_OK
)
1587 status
= __vxge_hw_vpath_xmac_rx_stats_get(vpath
, &hw_stats
->rx_stats
);
1588 if (status
!= VXGE_HW_OK
)
1591 VXGE_HW_VPATH_STATS_PIO_READ(
1592 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET
);
1594 hw_stats
->prog_event_vnum0
=
1595 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64
);
1597 hw_stats
->prog_event_vnum1
=
1598 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64
);
1600 VXGE_HW_VPATH_STATS_PIO_READ(
1601 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET
);
1603 hw_stats
->prog_event_vnum2
=
1604 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64
);
1606 hw_stats
->prog_event_vnum3
=
1607 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64
);
1609 val64
= readq(&vp_reg
->rx_multi_cast_stats
);
1610 hw_stats
->rx_multi_cast_frame_discard
=
1611 (u16
)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64
);
1613 val64
= readq(&vp_reg
->rx_frm_transferred
);
1614 hw_stats
->rx_frm_transferred
=
1615 (u32
)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64
);
1617 val64
= readq(&vp_reg
->rxd_returned
);
1618 hw_stats
->rxd_returned
=
1619 (u16
)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64
);
1621 val64
= readq(&vp_reg
->dbg_stats_rx_mpa
);
1622 hw_stats
->rx_mpa_len_fail_frms
=
1623 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64
);
1624 hw_stats
->rx_mpa_mrk_fail_frms
=
1625 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64
);
1626 hw_stats
->rx_mpa_crc_fail_frms
=
1627 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64
);
1629 val64
= readq(&vp_reg
->dbg_stats_rx_fau
);
1630 hw_stats
->rx_permitted_frms
=
1631 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64
);
1632 hw_stats
->rx_vp_reset_discarded_frms
=
1633 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64
);
1634 hw_stats
->rx_wol_frms
=
1635 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64
);
1637 val64
= readq(&vp_reg
->tx_vp_reset_discarded_frms
);
1638 hw_stats
->tx_vp_reset_discarded_frms
=
1639 (u16
)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1646 * vxge_hw_device_stats_get - Get the device hw statistics.
1647 * Returns the vpath h/w stats for the device.
1650 vxge_hw_device_stats_get(struct __vxge_hw_device
*hldev
,
1651 struct vxge_hw_device_stats_hw_info
*hw_stats
)
1654 enum vxge_hw_status status
= VXGE_HW_OK
;
1656 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1657 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)) ||
1658 (hldev
->virtual_paths
[i
].vp_open
==
1659 VXGE_HW_VP_NOT_OPEN
))
1662 memcpy(hldev
->virtual_paths
[i
].hw_stats_sav
,
1663 hldev
->virtual_paths
[i
].hw_stats
,
1664 sizeof(struct vxge_hw_vpath_stats_hw_info
));
1666 status
= __vxge_hw_vpath_stats_get(
1667 &hldev
->virtual_paths
[i
],
1668 hldev
->virtual_paths
[i
].hw_stats
);
1671 memcpy(hw_stats
, &hldev
->stats
.hw_dev_info_stats
,
1672 sizeof(struct vxge_hw_device_stats_hw_info
));
1678 * vxge_hw_driver_stats_get - Get the device sw statistics.
1679 * Returns the vpath s/w stats for the device.
1681 enum vxge_hw_status
vxge_hw_driver_stats_get(
1682 struct __vxge_hw_device
*hldev
,
1683 struct vxge_hw_device_stats_sw_info
*sw_stats
)
1685 enum vxge_hw_status status
= VXGE_HW_OK
;
1687 memcpy(sw_stats
, &hldev
->stats
.sw_dev_info_stats
,
1688 sizeof(struct vxge_hw_device_stats_sw_info
));
1694 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1695 * and offset and perform an operation
1696 * Get the statistics from the given location and offset.
1699 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device
*hldev
,
1700 u32 operation
, u32 location
, u32 offset
, u64
*stat
)
1703 enum vxge_hw_status status
= VXGE_HW_OK
;
1705 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1707 if (status
!= VXGE_HW_OK
)
1710 val64
= VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation
) |
1711 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
|
1712 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location
) |
1713 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset
);
1715 status
= __vxge_hw_pio_mem_write64(val64
,
1716 &hldev
->mrpcim_reg
->xmac_stats_sys_cmd
,
1717 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
,
1718 hldev
->config
.device_poll_millis
);
1720 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1721 *stat
= readq(&hldev
->mrpcim_reg
->xmac_stats_sys_data
);
1729 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1730 * Get the Statistics on aggregate port
1732 static enum vxge_hw_status
1733 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1734 struct vxge_hw_xmac_aggr_stats
*aggr_stats
)
1738 u32 offset
= VXGE_HW_STATS_AGGRn_OFFSET
;
1739 enum vxge_hw_status status
= VXGE_HW_OK
;
1741 val64
= (u64
*)aggr_stats
;
1743 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1745 if (status
!= VXGE_HW_OK
)
1748 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_aggr_stats
) / 8; i
++) {
1749 status
= vxge_hw_mrpcim_stats_access(hldev
,
1750 VXGE_HW_STATS_OP_READ
,
1751 VXGE_HW_STATS_LOC_AGGR
,
1752 ((offset
+ (104 * port
)) >> 3), val64
);
1753 if (status
!= VXGE_HW_OK
)
1764 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1765 * Get the Statistics on port
1767 static enum vxge_hw_status
1768 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1769 struct vxge_hw_xmac_port_stats
*port_stats
)
1772 enum vxge_hw_status status
= VXGE_HW_OK
;
1775 val64
= (u64
*) port_stats
;
1777 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1779 if (status
!= VXGE_HW_OK
)
1782 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_port_stats
) / 8; i
++) {
1783 status
= vxge_hw_mrpcim_stats_access(hldev
,
1784 VXGE_HW_STATS_OP_READ
,
1785 VXGE_HW_STATS_LOC_AGGR
,
1786 ((offset
+ (608 * port
)) >> 3), val64
);
1787 if (status
!= VXGE_HW_OK
)
1799 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1800 * Get the XMAC Statistics
1803 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device
*hldev
,
1804 struct vxge_hw_xmac_stats
*xmac_stats
)
1806 enum vxge_hw_status status
= VXGE_HW_OK
;
1809 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1810 0, &xmac_stats
->aggr_stats
[0]);
1811 if (status
!= VXGE_HW_OK
)
1814 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1815 1, &xmac_stats
->aggr_stats
[1]);
1816 if (status
!= VXGE_HW_OK
)
1819 for (i
= 0; i
<= VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
1821 status
= vxge_hw_device_xmac_port_stats_get(hldev
,
1822 i
, &xmac_stats
->port_stats
[i
]);
1823 if (status
!= VXGE_HW_OK
)
1827 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1829 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
1832 status
= __vxge_hw_vpath_xmac_tx_stats_get(
1833 &hldev
->virtual_paths
[i
],
1834 &xmac_stats
->vpath_tx_stats
[i
]);
1835 if (status
!= VXGE_HW_OK
)
1838 status
= __vxge_hw_vpath_xmac_rx_stats_get(
1839 &hldev
->virtual_paths
[i
],
1840 &xmac_stats
->vpath_rx_stats
[i
]);
1841 if (status
!= VXGE_HW_OK
)
1849 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1850 * This routine is used to dynamically change the debug output
1852 void vxge_hw_device_debug_set(struct __vxge_hw_device
*hldev
,
1853 enum vxge_debug_level level
, u32 mask
)
1858 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1859 defined(VXGE_DEBUG_ERR_MASK)
1860 hldev
->debug_module_mask
= mask
;
1861 hldev
->debug_level
= level
;
1864 #if defined(VXGE_DEBUG_ERR_MASK)
1865 hldev
->level_err
= level
& VXGE_ERR
;
1868 #if defined(VXGE_DEBUG_TRACE_MASK)
1869 hldev
->level_trace
= level
& VXGE_TRACE
;
1874 * vxge_hw_device_error_level_get - Get the error level
1875 * This routine returns the current error level set
1877 u32
vxge_hw_device_error_level_get(struct __vxge_hw_device
*hldev
)
1879 #if defined(VXGE_DEBUG_ERR_MASK)
1883 return hldev
->level_err
;
1890 * vxge_hw_device_trace_level_get - Get the trace level
1891 * This routine returns the current trace level set
1893 u32
vxge_hw_device_trace_level_get(struct __vxge_hw_device
*hldev
)
1895 #if defined(VXGE_DEBUG_TRACE_MASK)
1899 return hldev
->level_trace
;
1906 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1907 * Returns the Pause frame generation and reception capability of the NIC.
1909 enum vxge_hw_status
vxge_hw_device_getpause_data(struct __vxge_hw_device
*hldev
,
1910 u32 port
, u32
*tx
, u32
*rx
)
1913 enum vxge_hw_status status
= VXGE_HW_OK
;
1915 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1916 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1920 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1921 status
= VXGE_HW_ERR_INVALID_PORT
;
1925 if (!(hldev
->access_rights
& VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
1926 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
1930 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1931 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
)
1933 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
)
1940 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1941 * It can be used to set or reset Pause frame generation or reception
1942 * support of the NIC.
1944 enum vxge_hw_status
vxge_hw_device_setpause_data(struct __vxge_hw_device
*hldev
,
1945 u32 port
, u32 tx
, u32 rx
)
1948 enum vxge_hw_status status
= VXGE_HW_OK
;
1950 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1951 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1955 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1956 status
= VXGE_HW_ERR_INVALID_PORT
;
1960 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1962 if (status
!= VXGE_HW_OK
)
1965 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1967 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1969 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1971 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1973 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1975 writeq(val64
, &hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1980 u16
vxge_hw_device_link_width_get(struct __vxge_hw_device
*hldev
)
1982 struct pci_dev
*dev
= hldev
->pdev
;
1985 pci_read_config_word(dev
, dev
->pcie_cap
+ PCI_EXP_LNKSTA
, &lnk
);
1986 return (lnk
& VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH
) >> 4;
1990 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1991 * This function returns the index of memory block
1994 __vxge_hw_ring_block_memblock_idx(u8
*block
)
1996 return (u32
)*((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
));
2000 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
2001 * This function sets index to a memory block
2004 __vxge_hw_ring_block_memblock_idx_set(u8
*block
, u32 memblock_idx
)
2006 *((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
)) = memblock_idx
;
2010 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2012 * Sets the next block pointer in RxD block
2015 __vxge_hw_ring_block_next_pointer_set(u8
*block
, dma_addr_t dma_next
)
2017 *((u64
*)(block
+ VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET
)) = dma_next
;
2021 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2023 * Returns the dma address of the first RxD block
2025 static u64
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring
*ring
)
2027 struct vxge_hw_mempool_dma
*dma_object
;
2029 dma_object
= ring
->mempool
->memblocks_dma_arr
;
2030 vxge_assert(dma_object
!= NULL
);
2032 return dma_object
->addr
;
2036 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2037 * This function returns the dma address of a given item
2039 static dma_addr_t
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool
*mempoolh
,
2044 struct vxge_hw_mempool_dma
*memblock_dma_object
;
2045 ptrdiff_t dma_item_offset
;
2047 /* get owner memblock index */
2048 memblock_idx
= __vxge_hw_ring_block_memblock_idx(item
);
2050 /* get owner memblock by memblock index */
2051 memblock
= mempoolh
->memblocks_arr
[memblock_idx
];
2053 /* get memblock DMA object by memblock index */
2054 memblock_dma_object
= mempoolh
->memblocks_dma_arr
+ memblock_idx
;
2056 /* calculate offset in the memblock of this item */
2057 dma_item_offset
= (u8
*)item
- (u8
*)memblock
;
2059 return memblock_dma_object
->addr
+ dma_item_offset
;
2063 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2064 * This function returns the dma address of a given item
2066 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool
*mempoolh
,
2067 struct __vxge_hw_ring
*ring
, u32 from
,
2070 u8
*to_item
, *from_item
;
2073 /* get "from" RxD block */
2074 from_item
= mempoolh
->items_arr
[from
];
2075 vxge_assert(from_item
);
2077 /* get "to" RxD block */
2078 to_item
= mempoolh
->items_arr
[to
];
2079 vxge_assert(to_item
);
2081 /* return address of the beginning of previous RxD block */
2082 to_dma
= __vxge_hw_ring_item_dma_addr(mempoolh
, to_item
);
2084 /* set next pointer for this RxD block to point on
2085 * previous item's DMA start address */
2086 __vxge_hw_ring_block_next_pointer_set(from_item
, to_dma
);
2090 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2092 * This function is callback passed to __vxge_hw_mempool_create to create memory
2093 * pool for RxD block
2096 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool
*mempoolh
,
2098 struct vxge_hw_mempool_dma
*dma_object
,
2099 u32 index
, u32 is_last
)
2102 void *item
= mempoolh
->items_arr
[index
];
2103 struct __vxge_hw_ring
*ring
=
2104 (struct __vxge_hw_ring
*)mempoolh
->userdata
;
2106 /* format rxds array */
2107 for (i
= 0; i
< ring
->rxds_per_block
; i
++) {
2108 void *rxdblock_priv
;
2110 struct vxge_hw_ring_rxd_1
*rxdp
;
2112 u32 reserve_index
= ring
->channel
.reserve_ptr
-
2113 (index
* ring
->rxds_per_block
+ i
+ 1);
2114 u32 memblock_item_idx
;
2116 ring
->channel
.reserve_arr
[reserve_index
] = ((u8
*)item
) +
2119 /* Note: memblock_item_idx is index of the item within
2120 * the memblock. For instance, in case of three RxD-blocks
2121 * per memblock this value can be 0, 1 or 2. */
2122 rxdblock_priv
= __vxge_hw_mempool_item_priv(mempoolh
,
2123 memblock_index
, item
,
2124 &memblock_item_idx
);
2126 rxdp
= ring
->channel
.reserve_arr
[reserve_index
];
2128 uld_priv
= ((u8
*)rxdblock_priv
+ ring
->rxd_priv_size
* i
);
2130 /* pre-format Host_Control */
2131 rxdp
->host_control
= (u64
)(size_t)uld_priv
;
2134 __vxge_hw_ring_block_memblock_idx_set(item
, memblock_index
);
2137 /* link last one with first one */
2138 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
, 0);
2142 /* link this RxD block with previous one */
2143 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
- 1, index
);
2148 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2149 * This function replenishes the RxDs from reserve array to work array
2152 vxge_hw_ring_replenish(struct __vxge_hw_ring
*ring
)
2155 struct __vxge_hw_channel
*channel
;
2156 enum vxge_hw_status status
= VXGE_HW_OK
;
2158 channel
= &ring
->channel
;
2160 while (vxge_hw_channel_dtr_count(channel
) > 0) {
2162 status
= vxge_hw_ring_rxd_reserve(ring
, &rxd
);
2164 vxge_assert(status
== VXGE_HW_OK
);
2166 if (ring
->rxd_init
) {
2167 status
= ring
->rxd_init(rxd
, channel
->userdata
);
2168 if (status
!= VXGE_HW_OK
) {
2169 vxge_hw_ring_rxd_free(ring
, rxd
);
2174 vxge_hw_ring_rxd_post(ring
, rxd
);
2176 status
= VXGE_HW_OK
;
2182 * __vxge_hw_channel_allocate - Allocate memory for channel
2183 * This function allocates required memory for the channel and various arrays
2186 static struct __vxge_hw_channel
*
2187 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle
*vph
,
2188 enum __vxge_hw_channel_type type
,
2189 u32 length
, u32 per_dtr_space
,
2192 struct __vxge_hw_channel
*channel
;
2193 struct __vxge_hw_device
*hldev
;
2197 hldev
= vph
->vpath
->hldev
;
2198 vp_id
= vph
->vpath
->vp_id
;
2201 case VXGE_HW_CHANNEL_TYPE_FIFO
:
2202 size
= sizeof(struct __vxge_hw_fifo
);
2204 case VXGE_HW_CHANNEL_TYPE_RING
:
2205 size
= sizeof(struct __vxge_hw_ring
);
2211 channel
= kzalloc(size
, GFP_KERNEL
);
2212 if (channel
== NULL
)
2214 INIT_LIST_HEAD(&channel
->item
);
2216 channel
->common_reg
= hldev
->common_reg
;
2217 channel
->first_vp_id
= hldev
->first_vp_id
;
2218 channel
->type
= type
;
2219 channel
->devh
= hldev
;
2221 channel
->userdata
= userdata
;
2222 channel
->per_dtr_space
= per_dtr_space
;
2223 channel
->length
= length
;
2224 channel
->vp_id
= vp_id
;
2226 channel
->work_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2227 if (channel
->work_arr
== NULL
)
2230 channel
->free_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2231 if (channel
->free_arr
== NULL
)
2233 channel
->free_ptr
= length
;
2235 channel
->reserve_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2236 if (channel
->reserve_arr
== NULL
)
2238 channel
->reserve_ptr
= length
;
2239 channel
->reserve_top
= 0;
2241 channel
->orig_arr
= kzalloc(sizeof(void *)*length
, GFP_KERNEL
);
2242 if (channel
->orig_arr
== NULL
)
2247 __vxge_hw_channel_free(channel
);
2254 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2255 * Adds a block to block pool
2257 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device
*devh
,
2260 struct pci_dev
*dma_h
,
2261 struct pci_dev
*acc_handle
)
2263 struct __vxge_hw_blockpool
*blockpool
;
2264 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2265 dma_addr_t dma_addr
;
2266 enum vxge_hw_status status
= VXGE_HW_OK
;
2269 blockpool
= &devh
->block_pool
;
2271 if (block_addr
== NULL
) {
2272 blockpool
->req_out
--;
2273 status
= VXGE_HW_FAIL
;
2277 dma_addr
= pci_map_single(devh
->pdev
, block_addr
, length
,
2278 PCI_DMA_BIDIRECTIONAL
);
2280 if (unlikely(pci_dma_mapping_error(devh
->pdev
, dma_addr
))) {
2281 vxge_os_dma_free(devh
->pdev
, block_addr
, &acc_handle
);
2282 blockpool
->req_out
--;
2283 status
= VXGE_HW_FAIL
;
2287 if (!list_empty(&blockpool
->free_entry_list
))
2288 entry
= (struct __vxge_hw_blockpool_entry
*)
2289 list_first_entry(&blockpool
->free_entry_list
,
2290 struct __vxge_hw_blockpool_entry
,
2294 entry
= vmalloc(sizeof(struct __vxge_hw_blockpool_entry
));
2296 list_del(&entry
->item
);
2298 if (entry
!= NULL
) {
2299 entry
->length
= length
;
2300 entry
->memblock
= block_addr
;
2301 entry
->dma_addr
= dma_addr
;
2302 entry
->acc_handle
= acc_handle
;
2303 entry
->dma_handle
= dma_h
;
2304 list_add(&entry
->item
, &blockpool
->free_block_list
);
2305 blockpool
->pool_size
++;
2306 status
= VXGE_HW_OK
;
2308 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2310 blockpool
->req_out
--;
2312 req_out
= blockpool
->req_out
;
2318 vxge_os_dma_malloc_async(struct pci_dev
*pdev
, void *devh
, unsigned long size
)
2324 flags
= GFP_ATOMIC
| GFP_DMA
;
2326 flags
= GFP_KERNEL
| GFP_DMA
;
2328 vaddr
= kmalloc((size
), flags
);
2330 vxge_hw_blockpool_block_add(devh
, vaddr
, size
, pdev
, pdev
);
2334 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2337 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool
*blockpool
)
2341 if ((blockpool
->pool_size
+ blockpool
->req_out
) <
2342 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE
) {
2343 nreq
= VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE
;
2344 blockpool
->req_out
+= nreq
;
2347 for (i
= 0; i
< nreq
; i
++)
2348 vxge_os_dma_malloc_async(
2349 ((struct __vxge_hw_device
*)blockpool
->hldev
)->pdev
,
2350 blockpool
->hldev
, VXGE_HW_BLOCK_SIZE
);
2354 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2355 * Allocates a block of memory of given size, either from block pool
2356 * or by calling vxge_os_dma_malloc()
2358 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device
*devh
, u32 size
,
2359 struct vxge_hw_mempool_dma
*dma_object
)
2361 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2362 struct __vxge_hw_blockpool
*blockpool
;
2363 void *memblock
= NULL
;
2364 enum vxge_hw_status status
= VXGE_HW_OK
;
2366 blockpool
= &devh
->block_pool
;
2368 if (size
!= blockpool
->block_size
) {
2370 memblock
= vxge_os_dma_malloc(devh
->pdev
, size
,
2371 &dma_object
->handle
,
2372 &dma_object
->acc_handle
);
2374 if (memblock
== NULL
) {
2375 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2379 dma_object
->addr
= pci_map_single(devh
->pdev
, memblock
, size
,
2380 PCI_DMA_BIDIRECTIONAL
);
2382 if (unlikely(pci_dma_mapping_error(devh
->pdev
,
2383 dma_object
->addr
))) {
2384 vxge_os_dma_free(devh
->pdev
, memblock
,
2385 &dma_object
->acc_handle
);
2386 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2392 if (!list_empty(&blockpool
->free_block_list
))
2393 entry
= (struct __vxge_hw_blockpool_entry
*)
2394 list_first_entry(&blockpool
->free_block_list
,
2395 struct __vxge_hw_blockpool_entry
,
2398 if (entry
!= NULL
) {
2399 list_del(&entry
->item
);
2400 dma_object
->addr
= entry
->dma_addr
;
2401 dma_object
->handle
= entry
->dma_handle
;
2402 dma_object
->acc_handle
= entry
->acc_handle
;
2403 memblock
= entry
->memblock
;
2405 list_add(&entry
->item
,
2406 &blockpool
->free_entry_list
);
2407 blockpool
->pool_size
--;
2410 if (memblock
!= NULL
)
2411 __vxge_hw_blockpool_blocks_add(blockpool
);
2418 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2421 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool
*blockpool
)
2423 struct list_head
*p
, *n
;
2425 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
2427 if (blockpool
->pool_size
< blockpool
->pool_max
)
2431 ((struct __vxge_hw_device
*)blockpool
->hldev
)->pdev
,
2432 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
2433 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
2434 PCI_DMA_BIDIRECTIONAL
);
2437 ((struct __vxge_hw_device
*)blockpool
->hldev
)->pdev
,
2438 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
2439 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
2441 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
2443 list_add(p
, &blockpool
->free_entry_list
);
2445 blockpool
->pool_size
--;
2451 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2452 * __vxge_hw_blockpool_malloc
2454 static void __vxge_hw_blockpool_free(struct __vxge_hw_device
*devh
,
2455 void *memblock
, u32 size
,
2456 struct vxge_hw_mempool_dma
*dma_object
)
2458 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2459 struct __vxge_hw_blockpool
*blockpool
;
2460 enum vxge_hw_status status
= VXGE_HW_OK
;
2462 blockpool
= &devh
->block_pool
;
2464 if (size
!= blockpool
->block_size
) {
2465 pci_unmap_single(devh
->pdev
, dma_object
->addr
, size
,
2466 PCI_DMA_BIDIRECTIONAL
);
2467 vxge_os_dma_free(devh
->pdev
, memblock
, &dma_object
->acc_handle
);
2470 if (!list_empty(&blockpool
->free_entry_list
))
2471 entry
= (struct __vxge_hw_blockpool_entry
*)
2472 list_first_entry(&blockpool
->free_entry_list
,
2473 struct __vxge_hw_blockpool_entry
,
2477 entry
= vmalloc(sizeof(
2478 struct __vxge_hw_blockpool_entry
));
2480 list_del(&entry
->item
);
2482 if (entry
!= NULL
) {
2483 entry
->length
= size
;
2484 entry
->memblock
= memblock
;
2485 entry
->dma_addr
= dma_object
->addr
;
2486 entry
->acc_handle
= dma_object
->acc_handle
;
2487 entry
->dma_handle
= dma_object
->handle
;
2488 list_add(&entry
->item
,
2489 &blockpool
->free_block_list
);
2490 blockpool
->pool_size
++;
2491 status
= VXGE_HW_OK
;
2493 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2495 if (status
== VXGE_HW_OK
)
2496 __vxge_hw_blockpool_blocks_remove(blockpool
);
2501 * vxge_hw_mempool_destroy
2503 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool
*mempool
)
2506 struct __vxge_hw_device
*devh
= mempool
->devh
;
2508 for (i
= 0; i
< mempool
->memblocks_allocated
; i
++) {
2509 struct vxge_hw_mempool_dma
*dma_object
;
2511 vxge_assert(mempool
->memblocks_arr
[i
]);
2512 vxge_assert(mempool
->memblocks_dma_arr
+ i
);
2514 dma_object
= mempool
->memblocks_dma_arr
+ i
;
2516 for (j
= 0; j
< mempool
->items_per_memblock
; j
++) {
2517 u32 index
= i
* mempool
->items_per_memblock
+ j
;
2519 /* to skip last partially filled(if any) memblock */
2520 if (index
>= mempool
->items_current
)
2524 vfree(mempool
->memblocks_priv_arr
[i
]);
2526 __vxge_hw_blockpool_free(devh
, mempool
->memblocks_arr
[i
],
2527 mempool
->memblock_size
, dma_object
);
2530 vfree(mempool
->items_arr
);
2531 vfree(mempool
->memblocks_dma_arr
);
2532 vfree(mempool
->memblocks_priv_arr
);
2533 vfree(mempool
->memblocks_arr
);
2538 * __vxge_hw_mempool_grow
2539 * Will resize mempool up to %num_allocate value.
2541 static enum vxge_hw_status
2542 __vxge_hw_mempool_grow(struct vxge_hw_mempool
*mempool
, u32 num_allocate
,
2545 u32 i
, first_time
= mempool
->memblocks_allocated
== 0 ? 1 : 0;
2546 u32 n_items
= mempool
->items_per_memblock
;
2547 u32 start_block_idx
= mempool
->memblocks_allocated
;
2548 u32 end_block_idx
= mempool
->memblocks_allocated
+ num_allocate
;
2549 enum vxge_hw_status status
= VXGE_HW_OK
;
2553 if (end_block_idx
> mempool
->memblocks_max
) {
2554 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2558 for (i
= start_block_idx
; i
< end_block_idx
; i
++) {
2560 u32 is_last
= ((end_block_idx
- 1) == i
);
2561 struct vxge_hw_mempool_dma
*dma_object
=
2562 mempool
->memblocks_dma_arr
+ i
;
2565 /* allocate memblock's private part. Each DMA memblock
2566 * has a space allocated for item's private usage upon
2567 * mempool's user request. Each time mempool grows, it will
2568 * allocate new memblock and its private part at once.
2569 * This helps to minimize memory usage a lot. */
2570 mempool
->memblocks_priv_arr
[i
] =
2571 vzalloc(mempool
->items_priv_size
* n_items
);
2572 if (mempool
->memblocks_priv_arr
[i
] == NULL
) {
2573 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2577 /* allocate DMA-capable memblock */
2578 mempool
->memblocks_arr
[i
] =
2579 __vxge_hw_blockpool_malloc(mempool
->devh
,
2580 mempool
->memblock_size
, dma_object
);
2581 if (mempool
->memblocks_arr
[i
] == NULL
) {
2582 vfree(mempool
->memblocks_priv_arr
[i
]);
2583 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2588 mempool
->memblocks_allocated
++;
2590 memset(mempool
->memblocks_arr
[i
], 0, mempool
->memblock_size
);
2592 the_memblock
= mempool
->memblocks_arr
[i
];
2594 /* fill the items hash array */
2595 for (j
= 0; j
< n_items
; j
++) {
2596 u32 index
= i
* n_items
+ j
;
2598 if (first_time
&& index
>= mempool
->items_initial
)
2601 mempool
->items_arr
[index
] =
2602 ((char *)the_memblock
+ j
*mempool
->item_size
);
2604 /* let caller to do more job on each item */
2605 if (mempool
->item_func_alloc
!= NULL
)
2606 mempool
->item_func_alloc(mempool
, i
,
2607 dma_object
, index
, is_last
);
2609 mempool
->items_current
= index
+ 1;
2612 if (first_time
&& mempool
->items_current
==
2613 mempool
->items_initial
)
2621 * vxge_hw_mempool_create
2622 * This function will create memory pool object. Pool may grow but will
2623 * never shrink. Pool consists of number of dynamically allocated blocks
2624 * with size enough to hold %items_initial number of items. Memory is
2625 * DMA-able but client must map/unmap before interoperating with the device.
2627 static struct vxge_hw_mempool
*
2628 __vxge_hw_mempool_create(struct __vxge_hw_device
*devh
,
2631 u32 items_priv_size
,
2634 const struct vxge_hw_mempool_cbs
*mp_callback
,
2637 enum vxge_hw_status status
= VXGE_HW_OK
;
2638 u32 memblocks_to_allocate
;
2639 struct vxge_hw_mempool
*mempool
= NULL
;
2642 if (memblock_size
< item_size
) {
2643 status
= VXGE_HW_FAIL
;
2647 mempool
= vzalloc(sizeof(struct vxge_hw_mempool
));
2648 if (mempool
== NULL
) {
2649 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2653 mempool
->devh
= devh
;
2654 mempool
->memblock_size
= memblock_size
;
2655 mempool
->items_max
= items_max
;
2656 mempool
->items_initial
= items_initial
;
2657 mempool
->item_size
= item_size
;
2658 mempool
->items_priv_size
= items_priv_size
;
2659 mempool
->item_func_alloc
= mp_callback
->item_func_alloc
;
2660 mempool
->userdata
= userdata
;
2662 mempool
->memblocks_allocated
= 0;
2664 mempool
->items_per_memblock
= memblock_size
/ item_size
;
2666 mempool
->memblocks_max
= (items_max
+ mempool
->items_per_memblock
- 1) /
2667 mempool
->items_per_memblock
;
2669 /* allocate array of memblocks */
2670 mempool
->memblocks_arr
=
2671 vzalloc(sizeof(void *) * mempool
->memblocks_max
);
2672 if (mempool
->memblocks_arr
== NULL
) {
2673 __vxge_hw_mempool_destroy(mempool
);
2674 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2679 /* allocate array of private parts of items per memblocks */
2680 mempool
->memblocks_priv_arr
=
2681 vzalloc(sizeof(void *) * mempool
->memblocks_max
);
2682 if (mempool
->memblocks_priv_arr
== NULL
) {
2683 __vxge_hw_mempool_destroy(mempool
);
2684 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2689 /* allocate array of memblocks DMA objects */
2690 mempool
->memblocks_dma_arr
=
2691 vzalloc(sizeof(struct vxge_hw_mempool_dma
) *
2692 mempool
->memblocks_max
);
2693 if (mempool
->memblocks_dma_arr
== NULL
) {
2694 __vxge_hw_mempool_destroy(mempool
);
2695 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2700 /* allocate hash array of items */
2701 mempool
->items_arr
= vzalloc(sizeof(void *) * mempool
->items_max
);
2702 if (mempool
->items_arr
== NULL
) {
2703 __vxge_hw_mempool_destroy(mempool
);
2704 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2709 /* calculate initial number of memblocks */
2710 memblocks_to_allocate
= (mempool
->items_initial
+
2711 mempool
->items_per_memblock
- 1) /
2712 mempool
->items_per_memblock
;
2714 /* pre-allocate the mempool */
2715 status
= __vxge_hw_mempool_grow(mempool
, memblocks_to_allocate
,
2717 if (status
!= VXGE_HW_OK
) {
2718 __vxge_hw_mempool_destroy(mempool
);
2719 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2729 * __vxge_hw_ring_abort - Returns the RxD
2730 * This function terminates the RxDs of ring
2732 static enum vxge_hw_status
__vxge_hw_ring_abort(struct __vxge_hw_ring
*ring
)
2735 struct __vxge_hw_channel
*channel
;
2737 channel
= &ring
->channel
;
2740 vxge_hw_channel_dtr_try_complete(channel
, &rxdh
);
2745 vxge_hw_channel_dtr_complete(channel
);
2748 ring
->rxd_term(rxdh
, VXGE_HW_RXD_STATE_POSTED
,
2751 vxge_hw_channel_dtr_free(channel
, rxdh
);
2758 * __vxge_hw_ring_reset - Resets the ring
2759 * This function resets the ring during vpath reset operation
2761 static enum vxge_hw_status
__vxge_hw_ring_reset(struct __vxge_hw_ring
*ring
)
2763 enum vxge_hw_status status
= VXGE_HW_OK
;
2764 struct __vxge_hw_channel
*channel
;
2766 channel
= &ring
->channel
;
2768 __vxge_hw_ring_abort(ring
);
2770 status
= __vxge_hw_channel_reset(channel
);
2772 if (status
!= VXGE_HW_OK
)
2775 if (ring
->rxd_init
) {
2776 status
= vxge_hw_ring_replenish(ring
);
2777 if (status
!= VXGE_HW_OK
)
2785 * __vxge_hw_ring_delete - Removes the ring
2786 * This function freeup the memory pool and removes the ring
2788 static enum vxge_hw_status
2789 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle
*vp
)
2791 struct __vxge_hw_ring
*ring
= vp
->vpath
->ringh
;
2793 __vxge_hw_ring_abort(ring
);
2796 __vxge_hw_mempool_destroy(ring
->mempool
);
2798 vp
->vpath
->ringh
= NULL
;
2799 __vxge_hw_channel_free(&ring
->channel
);
2805 * __vxge_hw_ring_create - Create a Ring
2806 * This function creates Ring and initializes it.
2808 static enum vxge_hw_status
2809 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle
*vp
,
2810 struct vxge_hw_ring_attr
*attr
)
2812 enum vxge_hw_status status
= VXGE_HW_OK
;
2813 struct __vxge_hw_ring
*ring
;
2815 struct vxge_hw_ring_config
*config
;
2816 struct __vxge_hw_device
*hldev
;
2818 static const struct vxge_hw_mempool_cbs ring_mp_callback
= {
2819 .item_func_alloc
= __vxge_hw_ring_mempool_item_alloc
,
2822 if ((vp
== NULL
) || (attr
== NULL
)) {
2823 status
= VXGE_HW_FAIL
;
2827 hldev
= vp
->vpath
->hldev
;
2828 vp_id
= vp
->vpath
->vp_id
;
2830 config
= &hldev
->config
.vp_config
[vp_id
].ring
;
2832 ring_length
= config
->ring_blocks
*
2833 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2835 ring
= (struct __vxge_hw_ring
*)__vxge_hw_channel_allocate(vp
,
2836 VXGE_HW_CHANNEL_TYPE_RING
,
2838 attr
->per_rxd_space
,
2841 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2845 vp
->vpath
->ringh
= ring
;
2846 ring
->vp_id
= vp_id
;
2847 ring
->vp_reg
= vp
->vpath
->vp_reg
;
2848 ring
->common_reg
= hldev
->common_reg
;
2849 ring
->stats
= &vp
->vpath
->sw_stats
->ring_stats
;
2850 ring
->config
= config
;
2851 ring
->callback
= attr
->callback
;
2852 ring
->rxd_init
= attr
->rxd_init
;
2853 ring
->rxd_term
= attr
->rxd_term
;
2854 ring
->buffer_mode
= config
->buffer_mode
;
2855 ring
->tim_rti_cfg1_saved
= vp
->vpath
->tim_rti_cfg1_saved
;
2856 ring
->tim_rti_cfg3_saved
= vp
->vpath
->tim_rti_cfg3_saved
;
2857 ring
->rxds_limit
= config
->rxds_limit
;
2859 ring
->rxd_size
= vxge_hw_ring_rxd_size_get(config
->buffer_mode
);
2860 ring
->rxd_priv_size
=
2861 sizeof(struct __vxge_hw_ring_rxd_priv
) + attr
->per_rxd_space
;
2862 ring
->per_rxd_space
= attr
->per_rxd_space
;
2864 ring
->rxd_priv_size
=
2865 ((ring
->rxd_priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
2866 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
2868 /* how many RxDs can fit into one block. Depends on configured
2870 ring
->rxds_per_block
=
2871 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2873 /* calculate actual RxD block private size */
2874 ring
->rxdblock_priv_size
= ring
->rxd_priv_size
* ring
->rxds_per_block
;
2875 ring
->mempool
= __vxge_hw_mempool_create(hldev
,
2878 ring
->rxdblock_priv_size
,
2879 ring
->config
->ring_blocks
,
2880 ring
->config
->ring_blocks
,
2883 if (ring
->mempool
== NULL
) {
2884 __vxge_hw_ring_delete(vp
);
2885 return VXGE_HW_ERR_OUT_OF_MEMORY
;
2888 status
= __vxge_hw_channel_initialize(&ring
->channel
);
2889 if (status
!= VXGE_HW_OK
) {
2890 __vxge_hw_ring_delete(vp
);
2895 * Specifying rxd_init callback means two things:
2896 * 1) rxds need to be initialized by driver at channel-open time;
2897 * 2) rxds need to be posted at channel-open time
2898 * (that's what the initial_replenish() below does)
2899 * Currently we don't have a case when the 1) is done without the 2).
2901 if (ring
->rxd_init
) {
2902 status
= vxge_hw_ring_replenish(ring
);
2903 if (status
!= VXGE_HW_OK
) {
2904 __vxge_hw_ring_delete(vp
);
2909 /* initial replenish will increment the counter in its post() routine,
2910 * we have to reset it */
2911 ring
->stats
->common_stats
.usage_cnt
= 0;
2917 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2918 * Initialize Titan device config with default values.
2920 enum vxge_hw_status __devinit
2921 vxge_hw_device_config_default_get(struct vxge_hw_device_config
*device_config
)
2925 device_config
->dma_blockpool_initial
=
2926 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE
;
2927 device_config
->dma_blockpool_max
= VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE
;
2928 device_config
->intr_mode
= VXGE_HW_INTR_MODE_DEF
;
2929 device_config
->rth_en
= VXGE_HW_RTH_DEFAULT
;
2930 device_config
->rth_it_type
= VXGE_HW_RTH_IT_TYPE_DEFAULT
;
2931 device_config
->device_poll_millis
= VXGE_HW_DEF_DEVICE_POLL_MILLIS
;
2932 device_config
->rts_mac_en
= VXGE_HW_RTS_MAC_DEFAULT
;
2934 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
2935 device_config
->vp_config
[i
].vp_id
= i
;
2937 device_config
->vp_config
[i
].min_bandwidth
=
2938 VXGE_HW_VPATH_BANDWIDTH_DEFAULT
;
2940 device_config
->vp_config
[i
].ring
.enable
= VXGE_HW_RING_DEFAULT
;
2942 device_config
->vp_config
[i
].ring
.ring_blocks
=
2943 VXGE_HW_DEF_RING_BLOCKS
;
2945 device_config
->vp_config
[i
].ring
.buffer_mode
=
2946 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT
;
2948 device_config
->vp_config
[i
].ring
.scatter_mode
=
2949 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
;
2951 device_config
->vp_config
[i
].ring
.rxds_limit
=
2952 VXGE_HW_DEF_RING_RXDS_LIMIT
;
2954 device_config
->vp_config
[i
].fifo
.enable
= VXGE_HW_FIFO_ENABLE
;
2956 device_config
->vp_config
[i
].fifo
.fifo_blocks
=
2957 VXGE_HW_MIN_FIFO_BLOCKS
;
2959 device_config
->vp_config
[i
].fifo
.max_frags
=
2960 VXGE_HW_MAX_FIFO_FRAGS
;
2962 device_config
->vp_config
[i
].fifo
.memblock_size
=
2963 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE
;
2965 device_config
->vp_config
[i
].fifo
.alignment_size
=
2966 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE
;
2968 device_config
->vp_config
[i
].fifo
.intr
=
2969 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT
;
2971 device_config
->vp_config
[i
].fifo
.no_snoop_bits
=
2972 VXGE_HW_FIFO_NO_SNOOP_DEFAULT
;
2973 device_config
->vp_config
[i
].tti
.intr_enable
=
2974 VXGE_HW_TIM_INTR_DEFAULT
;
2976 device_config
->vp_config
[i
].tti
.btimer_val
=
2977 VXGE_HW_USE_FLASH_DEFAULT
;
2979 device_config
->vp_config
[i
].tti
.timer_ac_en
=
2980 VXGE_HW_USE_FLASH_DEFAULT
;
2982 device_config
->vp_config
[i
].tti
.timer_ci_en
=
2983 VXGE_HW_USE_FLASH_DEFAULT
;
2985 device_config
->vp_config
[i
].tti
.timer_ri_en
=
2986 VXGE_HW_USE_FLASH_DEFAULT
;
2988 device_config
->vp_config
[i
].tti
.rtimer_val
=
2989 VXGE_HW_USE_FLASH_DEFAULT
;
2991 device_config
->vp_config
[i
].tti
.util_sel
=
2992 VXGE_HW_USE_FLASH_DEFAULT
;
2994 device_config
->vp_config
[i
].tti
.ltimer_val
=
2995 VXGE_HW_USE_FLASH_DEFAULT
;
2997 device_config
->vp_config
[i
].tti
.urange_a
=
2998 VXGE_HW_USE_FLASH_DEFAULT
;
3000 device_config
->vp_config
[i
].tti
.uec_a
=
3001 VXGE_HW_USE_FLASH_DEFAULT
;
3003 device_config
->vp_config
[i
].tti
.urange_b
=
3004 VXGE_HW_USE_FLASH_DEFAULT
;
3006 device_config
->vp_config
[i
].tti
.uec_b
=
3007 VXGE_HW_USE_FLASH_DEFAULT
;
3009 device_config
->vp_config
[i
].tti
.urange_c
=
3010 VXGE_HW_USE_FLASH_DEFAULT
;
3012 device_config
->vp_config
[i
].tti
.uec_c
=
3013 VXGE_HW_USE_FLASH_DEFAULT
;
3015 device_config
->vp_config
[i
].tti
.uec_d
=
3016 VXGE_HW_USE_FLASH_DEFAULT
;
3018 device_config
->vp_config
[i
].rti
.intr_enable
=
3019 VXGE_HW_TIM_INTR_DEFAULT
;
3021 device_config
->vp_config
[i
].rti
.btimer_val
=
3022 VXGE_HW_USE_FLASH_DEFAULT
;
3024 device_config
->vp_config
[i
].rti
.timer_ac_en
=
3025 VXGE_HW_USE_FLASH_DEFAULT
;
3027 device_config
->vp_config
[i
].rti
.timer_ci_en
=
3028 VXGE_HW_USE_FLASH_DEFAULT
;
3030 device_config
->vp_config
[i
].rti
.timer_ri_en
=
3031 VXGE_HW_USE_FLASH_DEFAULT
;
3033 device_config
->vp_config
[i
].rti
.rtimer_val
=
3034 VXGE_HW_USE_FLASH_DEFAULT
;
3036 device_config
->vp_config
[i
].rti
.util_sel
=
3037 VXGE_HW_USE_FLASH_DEFAULT
;
3039 device_config
->vp_config
[i
].rti
.ltimer_val
=
3040 VXGE_HW_USE_FLASH_DEFAULT
;
3042 device_config
->vp_config
[i
].rti
.urange_a
=
3043 VXGE_HW_USE_FLASH_DEFAULT
;
3045 device_config
->vp_config
[i
].rti
.uec_a
=
3046 VXGE_HW_USE_FLASH_DEFAULT
;
3048 device_config
->vp_config
[i
].rti
.urange_b
=
3049 VXGE_HW_USE_FLASH_DEFAULT
;
3051 device_config
->vp_config
[i
].rti
.uec_b
=
3052 VXGE_HW_USE_FLASH_DEFAULT
;
3054 device_config
->vp_config
[i
].rti
.urange_c
=
3055 VXGE_HW_USE_FLASH_DEFAULT
;
3057 device_config
->vp_config
[i
].rti
.uec_c
=
3058 VXGE_HW_USE_FLASH_DEFAULT
;
3060 device_config
->vp_config
[i
].rti
.uec_d
=
3061 VXGE_HW_USE_FLASH_DEFAULT
;
3063 device_config
->vp_config
[i
].mtu
=
3064 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
;
3066 device_config
->vp_config
[i
].rpa_strip_vlan_tag
=
3067 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
;
3074 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3075 * Set the swapper bits appropriately for the vpath.
3077 static enum vxge_hw_status
3078 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3080 #ifndef __BIG_ENDIAN
3083 val64
= readq(&vpath_reg
->vpath_general_cfg1
);
3085 val64
|= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN
;
3086 writeq(val64
, &vpath_reg
->vpath_general_cfg1
);
3093 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3094 * Set the swapper bits appropriately for the vpath.
3096 static enum vxge_hw_status
3097 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
,
3098 struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3102 val64
= readq(&legacy_reg
->pifm_wr_swap_en
);
3104 if (val64
== VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
) {
3105 val64
= readq(&vpath_reg
->kdfcctl_cfg0
);
3108 val64
|= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0
|
3109 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1
|
3110 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2
;
3112 writeq(val64
, &vpath_reg
->kdfcctl_cfg0
);
3120 * vxge_hw_mgmt_reg_read - Read Titan register.
3123 vxge_hw_mgmt_reg_read(struct __vxge_hw_device
*hldev
,
3124 enum vxge_hw_mgmt_reg_type type
,
3125 u32 index
, u32 offset
, u64
*value
)
3127 enum vxge_hw_status status
= VXGE_HW_OK
;
3129 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3130 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3135 case vxge_hw_mgmt_reg_type_legacy
:
3136 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3137 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3140 *value
= readq((void __iomem
*)hldev
->legacy_reg
+ offset
);
3142 case vxge_hw_mgmt_reg_type_toc
:
3143 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3144 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3147 *value
= readq((void __iomem
*)hldev
->toc_reg
+ offset
);
3149 case vxge_hw_mgmt_reg_type_common
:
3150 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3151 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3154 *value
= readq((void __iomem
*)hldev
->common_reg
+ offset
);
3156 case vxge_hw_mgmt_reg_type_mrpcim
:
3157 if (!(hldev
->access_rights
&
3158 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3159 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3162 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3163 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3166 *value
= readq((void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3168 case vxge_hw_mgmt_reg_type_srpcim
:
3169 if (!(hldev
->access_rights
&
3170 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3171 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3174 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3175 status
= VXGE_HW_ERR_INVALID_INDEX
;
3178 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3179 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3182 *value
= readq((void __iomem
*)hldev
->srpcim_reg
[index
] +
3185 case vxge_hw_mgmt_reg_type_vpmgmt
:
3186 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3187 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3188 status
= VXGE_HW_ERR_INVALID_INDEX
;
3191 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3192 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3195 *value
= readq((void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3198 case vxge_hw_mgmt_reg_type_vpath
:
3199 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) ||
3200 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3201 status
= VXGE_HW_ERR_INVALID_INDEX
;
3204 if (index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) {
3205 status
= VXGE_HW_ERR_INVALID_INDEX
;
3208 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3209 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3212 *value
= readq((void __iomem
*)hldev
->vpath_reg
[index
] +
3216 status
= VXGE_HW_ERR_INVALID_TYPE
;
3225 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3228 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device
*hldev
, u64 vpath_mask
)
3230 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
3231 enum vxge_hw_status status
= VXGE_HW_OK
;
3234 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
3235 if (!((vpath_mask
) & vxge_mBIT(i
)))
3237 vpmgmt_reg
= hldev
->vpmgmt_reg
[i
];
3238 for (j
= 0; j
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; j
++) {
3239 if (readq(&vpmgmt_reg
->rxmac_cfg0_port_vpmgmt_clone
[j
])
3240 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS
)
3241 return VXGE_HW_FAIL
;
3247 * vxge_hw_mgmt_reg_Write - Write Titan register.
3250 vxge_hw_mgmt_reg_write(struct __vxge_hw_device
*hldev
,
3251 enum vxge_hw_mgmt_reg_type type
,
3252 u32 index
, u32 offset
, u64 value
)
3254 enum vxge_hw_status status
= VXGE_HW_OK
;
3256 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3257 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3262 case vxge_hw_mgmt_reg_type_legacy
:
3263 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3264 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3267 writeq(value
, (void __iomem
*)hldev
->legacy_reg
+ offset
);
3269 case vxge_hw_mgmt_reg_type_toc
:
3270 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3271 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3274 writeq(value
, (void __iomem
*)hldev
->toc_reg
+ offset
);
3276 case vxge_hw_mgmt_reg_type_common
:
3277 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3278 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3281 writeq(value
, (void __iomem
*)hldev
->common_reg
+ offset
);
3283 case vxge_hw_mgmt_reg_type_mrpcim
:
3284 if (!(hldev
->access_rights
&
3285 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3286 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3289 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3290 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3293 writeq(value
, (void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3295 case vxge_hw_mgmt_reg_type_srpcim
:
3296 if (!(hldev
->access_rights
&
3297 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3298 status
= VXGE_HW_ERR_PRIVILAGED_OPEARATION
;
3301 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3302 status
= VXGE_HW_ERR_INVALID_INDEX
;
3305 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3306 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3309 writeq(value
, (void __iomem
*)hldev
->srpcim_reg
[index
] +
3313 case vxge_hw_mgmt_reg_type_vpmgmt
:
3314 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3315 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3316 status
= VXGE_HW_ERR_INVALID_INDEX
;
3319 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3320 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3323 writeq(value
, (void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3326 case vxge_hw_mgmt_reg_type_vpath
:
3327 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
-1) ||
3328 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3329 status
= VXGE_HW_ERR_INVALID_INDEX
;
3332 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3333 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3336 writeq(value
, (void __iomem
*)hldev
->vpath_reg
[index
] +
3340 status
= VXGE_HW_ERR_INVALID_TYPE
;
3348 * __vxge_hw_fifo_abort - Returns the TxD
3349 * This function terminates the TxDs of fifo
3351 static enum vxge_hw_status
__vxge_hw_fifo_abort(struct __vxge_hw_fifo
*fifo
)
3356 vxge_hw_channel_dtr_try_complete(&fifo
->channel
, &txdlh
);
3361 vxge_hw_channel_dtr_complete(&fifo
->channel
);
3363 if (fifo
->txdl_term
) {
3364 fifo
->txdl_term(txdlh
,
3365 VXGE_HW_TXDL_STATE_POSTED
,
3366 fifo
->channel
.userdata
);
3369 vxge_hw_channel_dtr_free(&fifo
->channel
, txdlh
);
3376 * __vxge_hw_fifo_reset - Resets the fifo
3377 * This function resets the fifo during vpath reset operation
3379 static enum vxge_hw_status
__vxge_hw_fifo_reset(struct __vxge_hw_fifo
*fifo
)
3381 enum vxge_hw_status status
= VXGE_HW_OK
;
3383 __vxge_hw_fifo_abort(fifo
);
3384 status
= __vxge_hw_channel_reset(&fifo
->channel
);
3390 * __vxge_hw_fifo_delete - Removes the FIFO
3391 * This function freeup the memory pool and removes the FIFO
3393 static enum vxge_hw_status
3394 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle
*vp
)
3396 struct __vxge_hw_fifo
*fifo
= vp
->vpath
->fifoh
;
3398 __vxge_hw_fifo_abort(fifo
);
3401 __vxge_hw_mempool_destroy(fifo
->mempool
);
3403 vp
->vpath
->fifoh
= NULL
;
3405 __vxge_hw_channel_free(&fifo
->channel
);
3411 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3413 * This function is callback passed to __vxge_hw_mempool_create to create memory
3417 __vxge_hw_fifo_mempool_item_alloc(
3418 struct vxge_hw_mempool
*mempoolh
,
3419 u32 memblock_index
, struct vxge_hw_mempool_dma
*dma_object
,
3420 u32 index
, u32 is_last
)
3422 u32 memblock_item_idx
;
3423 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
3424 struct vxge_hw_fifo_txd
*txdp
=
3425 (struct vxge_hw_fifo_txd
*)mempoolh
->items_arr
[index
];
3426 struct __vxge_hw_fifo
*fifo
=
3427 (struct __vxge_hw_fifo
*)mempoolh
->userdata
;
3428 void *memblock
= mempoolh
->memblocks_arr
[memblock_index
];
3432 txdp
->host_control
= (u64
) (size_t)
3433 __vxge_hw_mempool_item_priv(mempoolh
, memblock_index
, txdp
,
3434 &memblock_item_idx
);
3436 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdp
);
3438 vxge_assert(txdl_priv
);
3440 fifo
->channel
.reserve_arr
[fifo
->channel
.reserve_ptr
- 1 - index
] = txdp
;
3442 /* pre-format HW's TxDL's private */
3443 txdl_priv
->dma_offset
= (char *)txdp
- (char *)memblock
;
3444 txdl_priv
->dma_addr
= dma_object
->addr
+ txdl_priv
->dma_offset
;
3445 txdl_priv
->dma_handle
= dma_object
->handle
;
3446 txdl_priv
->memblock
= memblock
;
3447 txdl_priv
->first_txdp
= txdp
;
3448 txdl_priv
->next_txdl_priv
= NULL
;
3449 txdl_priv
->alloc_frags
= 0;
3453 * __vxge_hw_fifo_create - Create a FIFO
3454 * This function creates FIFO and initializes it.
3456 static enum vxge_hw_status
3457 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle
*vp
,
3458 struct vxge_hw_fifo_attr
*attr
)
3460 enum vxge_hw_status status
= VXGE_HW_OK
;
3461 struct __vxge_hw_fifo
*fifo
;
3462 struct vxge_hw_fifo_config
*config
;
3463 u32 txdl_size
, txdl_per_memblock
;
3464 struct vxge_hw_mempool_cbs fifo_mp_callback
;
3465 struct __vxge_hw_virtualpath
*vpath
;
3467 if ((vp
== NULL
) || (attr
== NULL
)) {
3468 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3472 config
= &vpath
->hldev
->config
.vp_config
[vpath
->vp_id
].fifo
;
3474 txdl_size
= config
->max_frags
* sizeof(struct vxge_hw_fifo_txd
);
3476 txdl_per_memblock
= config
->memblock_size
/ txdl_size
;
3478 fifo
= (struct __vxge_hw_fifo
*)__vxge_hw_channel_allocate(vp
,
3479 VXGE_HW_CHANNEL_TYPE_FIFO
,
3480 config
->fifo_blocks
* txdl_per_memblock
,
3481 attr
->per_txdl_space
, attr
->userdata
);
3484 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3488 vpath
->fifoh
= fifo
;
3489 fifo
->nofl_db
= vpath
->nofl_db
;
3491 fifo
->vp_id
= vpath
->vp_id
;
3492 fifo
->vp_reg
= vpath
->vp_reg
;
3493 fifo
->stats
= &vpath
->sw_stats
->fifo_stats
;
3495 fifo
->config
= config
;
3497 /* apply "interrupts per txdl" attribute */
3498 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ
;
3499 fifo
->tim_tti_cfg1_saved
= vpath
->tim_tti_cfg1_saved
;
3500 fifo
->tim_tti_cfg3_saved
= vpath
->tim_tti_cfg3_saved
;
3502 if (fifo
->config
->intr
)
3503 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST
;
3505 fifo
->no_snoop_bits
= config
->no_snoop_bits
;
3508 * FIFO memory management strategy:
3510 * TxDL split into three independent parts:
3512 * - TxD HW private part
3513 * - driver private part
3515 * Adaptative memory allocation used. i.e. Memory allocated on
3516 * demand with the size which will fit into one memory block.
3517 * One memory block may contain more than one TxDL.
3519 * During "reserve" operations more memory can be allocated on demand
3520 * for example due to FIFO full condition.
3522 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3523 * routine which will essentially stop the channel and free resources.
3526 /* TxDL common private size == TxDL private + driver private */
3528 sizeof(struct __vxge_hw_fifo_txdl_priv
) + attr
->per_txdl_space
;
3529 fifo
->priv_size
= ((fifo
->priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
3530 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
3532 fifo
->per_txdl_space
= attr
->per_txdl_space
;
3534 /* recompute txdl size to be cacheline aligned */
3535 fifo
->txdl_size
= txdl_size
;
3536 fifo
->txdl_per_memblock
= txdl_per_memblock
;
3538 fifo
->txdl_term
= attr
->txdl_term
;
3539 fifo
->callback
= attr
->callback
;
3541 if (fifo
->txdl_per_memblock
== 0) {
3542 __vxge_hw_fifo_delete(vp
);
3543 status
= VXGE_HW_ERR_INVALID_BLOCK_SIZE
;
3547 fifo_mp_callback
.item_func_alloc
= __vxge_hw_fifo_mempool_item_alloc
;
3550 __vxge_hw_mempool_create(vpath
->hldev
,
3551 fifo
->config
->memblock_size
,
3554 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3555 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3559 if (fifo
->mempool
== NULL
) {
3560 __vxge_hw_fifo_delete(vp
);
3561 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3565 status
= __vxge_hw_channel_initialize(&fifo
->channel
);
3566 if (status
!= VXGE_HW_OK
) {
3567 __vxge_hw_fifo_delete(vp
);
3571 vxge_assert(fifo
->channel
.reserve_ptr
);
3577 * __vxge_hw_vpath_pci_read - Read the content of given address
3578 * in pci config space.
3579 * Read from the vpath pci config space.
3581 static enum vxge_hw_status
3582 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath
*vpath
,
3583 u32 phy_func_0
, u32 offset
, u32
*val
)
3586 enum vxge_hw_status status
= VXGE_HW_OK
;
3587 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
3589 val64
= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset
);
3592 val64
|= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0
;
3594 writeq(val64
, &vp_reg
->pci_config_access_cfg1
);
3596 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ
,
3597 &vp_reg
->pci_config_access_cfg2
);
3600 status
= __vxge_hw_device_register_poll(
3601 &vp_reg
->pci_config_access_cfg2
,
3602 VXGE_HW_INTR_MASK_ALL
, VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
3604 if (status
!= VXGE_HW_OK
)
3607 val64
= readq(&vp_reg
->pci_config_access_status
);
3609 if (val64
& VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR
) {
3610 status
= VXGE_HW_FAIL
;
3613 *val
= (u32
)vxge_bVALn(val64
, 32, 32);
3619 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3620 * @hldev: HW device.
3621 * @on_off: TRUE if flickering to be on, FALSE to be off
3623 * Flicker the link LED.
3626 vxge_hw_device_flick_link_led(struct __vxge_hw_device
*hldev
, u64 on_off
)
3628 struct __vxge_hw_virtualpath
*vpath
;
3629 u64 data0
, data1
= 0, steer_ctrl
= 0;
3630 enum vxge_hw_status status
;
3632 if (hldev
== NULL
) {
3633 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3637 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
3640 status
= vxge_hw_vpath_fw_api(vpath
,
3641 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL
,
3642 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
3643 0, &data0
, &data1
, &steer_ctrl
);
3649 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3652 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle
*vp
,
3653 u32 action
, u32 rts_table
, u32 offset
,
3654 u64
*data0
, u64
*data1
)
3656 enum vxge_hw_status status
;
3660 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3665 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
) ||
3667 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
) ||
3669 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK
) ||
3671 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY
)) {
3672 steer_ctrl
= VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL
;
3675 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3676 data0
, data1
, &steer_ctrl
);
3677 if (status
!= VXGE_HW_OK
)
3680 if ((rts_table
!= VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) &&
3682 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3689 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3692 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle
*vp
, u32 action
,
3693 u32 rts_table
, u32 offset
, u64 steer_data0
,
3696 u64 data0
, data1
= 0, steer_ctrl
= 0;
3697 enum vxge_hw_status status
;
3700 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3704 data0
= steer_data0
;
3706 if ((rts_table
== VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) ||
3708 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3709 data1
= steer_data1
;
3711 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3712 &data0
, &data1
, &steer_ctrl
);
3718 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3720 enum vxge_hw_status
vxge_hw_vpath_rts_rth_set(
3721 struct __vxge_hw_vpath_handle
*vp
,
3722 enum vxge_hw_rth_algoritms algorithm
,
3723 struct vxge_hw_rth_hash_types
*hash_type
,
3727 enum vxge_hw_status status
= VXGE_HW_OK
;
3730 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3734 status
= __vxge_hw_vpath_rts_table_get(vp
,
3735 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
3736 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3738 if (status
!= VXGE_HW_OK
)
3741 data0
&= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3742 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3744 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN
|
3745 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size
) |
3746 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm
);
3748 if (hash_type
->hash_type_tcpipv4_en
)
3749 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN
;
3751 if (hash_type
->hash_type_ipv4_en
)
3752 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN
;
3754 if (hash_type
->hash_type_tcpipv6_en
)
3755 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN
;
3757 if (hash_type
->hash_type_ipv6_en
)
3758 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN
;
3760 if (hash_type
->hash_type_tcpipv6ex_en
)
3762 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN
;
3764 if (hash_type
->hash_type_ipv6ex_en
)
3765 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN
;
3767 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0
))
3768 data0
&= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3770 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3772 status
= __vxge_hw_vpath_rts_table_set(vp
,
3773 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
,
3774 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3781 vxge_hw_rts_rth_data0_data1_get(u32 j
, u64
*data0
, u64
*data1
,
3782 u16 flag
, u8
*itable
)
3786 *data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j
)|
3787 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN
|
3788 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3792 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j
)|
3793 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN
|
3794 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3797 *data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j
)|
3798 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN
|
3799 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3803 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j
)|
3804 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN
|
3805 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3812 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3814 enum vxge_hw_status
vxge_hw_vpath_rts_rth_itable_set(
3815 struct __vxge_hw_vpath_handle
**vpath_handles
,
3821 u32 i
, j
, action
, rts_table
;
3825 enum vxge_hw_status status
= VXGE_HW_OK
;
3826 struct __vxge_hw_vpath_handle
*vp
= vpath_handles
[0];
3829 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3833 max_entries
= (((u32
)1) << itable_size
);
3835 if (vp
->vpath
->hldev
->config
.rth_it_type
3836 == VXGE_HW_RTH_IT_TYPE_SOLO_IT
) {
3837 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3839 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
;
3841 for (j
= 0; j
< max_entries
; j
++) {
3846 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3849 status
= __vxge_hw_vpath_rts_table_set(vpath_handles
[0],
3850 action
, rts_table
, j
, data0
, data1
);
3852 if (status
!= VXGE_HW_OK
)
3856 for (j
= 0; j
< max_entries
; j
++) {
3861 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN
|
3862 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3865 status
= __vxge_hw_vpath_rts_table_set(
3866 vpath_handles
[mtable
[itable
[j
]]], action
,
3867 rts_table
, j
, data0
, data1
);
3869 if (status
!= VXGE_HW_OK
)
3873 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3875 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
;
3876 for (i
= 0; i
< vpath_count
; i
++) {
3878 for (j
= 0; j
< max_entries
;) {
3883 while (j
< max_entries
) {
3884 if (mtable
[itable
[j
]] != i
) {
3888 vxge_hw_rts_rth_data0_data1_get(j
,
3889 &data0
, &data1
, 1, itable
);
3894 while (j
< max_entries
) {
3895 if (mtable
[itable
[j
]] != i
) {
3899 vxge_hw_rts_rth_data0_data1_get(j
,
3900 &data0
, &data1
, 2, itable
);
3905 while (j
< max_entries
) {
3906 if (mtable
[itable
[j
]] != i
) {
3910 vxge_hw_rts_rth_data0_data1_get(j
,
3911 &data0
, &data1
, 3, itable
);
3916 while (j
< max_entries
) {
3917 if (mtable
[itable
[j
]] != i
) {
3921 vxge_hw_rts_rth_data0_data1_get(j
,
3922 &data0
, &data1
, 4, itable
);
3928 status
= __vxge_hw_vpath_rts_table_set(
3933 if (status
!= VXGE_HW_OK
)
3944 * vxge_hw_vpath_check_leak - Check for memory leak
3945 * @ringh: Handle to the ring object used for receive
3947 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3948 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3949 * Returns: VXGE_HW_FAIL, if leak has occurred.
3953 vxge_hw_vpath_check_leak(struct __vxge_hw_ring
*ring
)
3955 enum vxge_hw_status status
= VXGE_HW_OK
;
3956 u64 rxd_new_count
, rxd_spat
;
3961 rxd_new_count
= readl(&ring
->vp_reg
->prc_rxd_doorbell
);
3962 rxd_spat
= readq(&ring
->vp_reg
->prc_cfg6
);
3963 rxd_spat
= VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat
);
3965 if (rxd_new_count
>= rxd_spat
)
3966 status
= VXGE_HW_FAIL
;
3972 * __vxge_hw_vpath_mgmt_read
3973 * This routine reads the vpath_mgmt registers
3975 static enum vxge_hw_status
3976 __vxge_hw_vpath_mgmt_read(
3977 struct __vxge_hw_device
*hldev
,
3978 struct __vxge_hw_virtualpath
*vpath
)
3980 u32 i
, mtu
= 0, max_pyld
= 0;
3982 enum vxge_hw_status status
= VXGE_HW_OK
;
3984 for (i
= 0; i
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
3986 val64
= readq(&vpath
->vpmgmt_reg
->
3987 rxmac_cfg0_port_vpmgmt_clone
[i
]);
3990 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3996 vpath
->max_mtu
= mtu
+ VXGE_HW_MAC_HEADER_MAX_SIZE
;
3998 val64
= readq(&vpath
->vpmgmt_reg
->xmac_vsport_choices_vp
);
4000 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
4001 if (val64
& vxge_mBIT(i
))
4002 vpath
->vsport_number
= i
;
4005 val64
= readq(&vpath
->vpmgmt_reg
->xgmac_gen_status_vpmgmt_clone
);
4007 if (val64
& VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK
)
4008 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_UP
);
4010 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_DOWN
);
4016 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4017 * This routine checks the vpath_rst_in_prog register to see if
4018 * adapter completed the reset process for the vpath
4020 static enum vxge_hw_status
4021 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath
*vpath
)
4023 enum vxge_hw_status status
;
4025 status
= __vxge_hw_device_register_poll(
4026 &vpath
->hldev
->common_reg
->vpath_rst_in_prog
,
4027 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4028 1 << (16 - vpath
->vp_id
)),
4029 vpath
->hldev
->config
.device_poll_millis
);
4035 * __vxge_hw_vpath_reset
4036 * This routine resets the vpath on the device
4038 static enum vxge_hw_status
4039 __vxge_hw_vpath_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4042 enum vxge_hw_status status
= VXGE_HW_OK
;
4044 val64
= VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id
));
4046 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
4047 &hldev
->common_reg
->cmn_rsthdlr_cfg0
);
4053 * __vxge_hw_vpath_sw_reset
4054 * This routine resets the vpath structures
4056 static enum vxge_hw_status
4057 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4059 enum vxge_hw_status status
= VXGE_HW_OK
;
4060 struct __vxge_hw_virtualpath
*vpath
;
4062 vpath
= (struct __vxge_hw_virtualpath
*)&hldev
->virtual_paths
[vp_id
];
4065 status
= __vxge_hw_ring_reset(vpath
->ringh
);
4066 if (status
!= VXGE_HW_OK
)
4071 status
= __vxge_hw_fifo_reset(vpath
->fifoh
);
4077 * __vxge_hw_vpath_prc_configure
4078 * This routine configures the prc registers of virtual path using the config
4082 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4085 struct __vxge_hw_virtualpath
*vpath
;
4086 struct vxge_hw_vp_config
*vp_config
;
4087 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4089 vpath
= &hldev
->virtual_paths
[vp_id
];
4090 vp_reg
= vpath
->vp_reg
;
4091 vp_config
= vpath
->vp_config
;
4093 if (vp_config
->ring
.enable
== VXGE_HW_RING_DISABLE
)
4096 val64
= readq(&vp_reg
->prc_cfg1
);
4097 val64
|= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE
;
4098 writeq(val64
, &vp_reg
->prc_cfg1
);
4100 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4101 val64
|= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN
;
4102 writeq(val64
, &vpath
->vp_reg
->prc_cfg6
);
4104 val64
= readq(&vp_reg
->prc_cfg7
);
4106 if (vpath
->vp_config
->ring
.scatter_mode
!=
4107 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
) {
4109 val64
&= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4111 switch (vpath
->vp_config
->ring
.scatter_mode
) {
4112 case VXGE_HW_RING_SCATTER_MODE_A
:
4113 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4114 VXGE_HW_PRC_CFG7_SCATTER_MODE_A
);
4116 case VXGE_HW_RING_SCATTER_MODE_B
:
4117 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4118 VXGE_HW_PRC_CFG7_SCATTER_MODE_B
);
4120 case VXGE_HW_RING_SCATTER_MODE_C
:
4121 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4122 VXGE_HW_PRC_CFG7_SCATTER_MODE_C
);
4127 writeq(val64
, &vp_reg
->prc_cfg7
);
4129 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4130 __vxge_hw_ring_first_block_address_get(
4131 vpath
->ringh
) >> 3), &vp_reg
->prc_cfg5
);
4133 val64
= readq(&vp_reg
->prc_cfg4
);
4134 val64
|= VXGE_HW_PRC_CFG4_IN_SVC
;
4135 val64
&= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4137 val64
|= VXGE_HW_PRC_CFG4_RING_MODE(
4138 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER
);
4140 if (hldev
->config
.rth_en
== VXGE_HW_RTH_DISABLE
)
4141 val64
|= VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4143 val64
&= ~VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4145 writeq(val64
, &vp_reg
->prc_cfg4
);
4149 * __vxge_hw_vpath_kdfc_configure
4150 * This routine configures the kdfc registers of virtual path using the
4153 static enum vxge_hw_status
4154 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4158 enum vxge_hw_status status
= VXGE_HW_OK
;
4159 struct __vxge_hw_virtualpath
*vpath
;
4160 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4162 vpath
= &hldev
->virtual_paths
[vp_id
];
4163 vp_reg
= vpath
->vp_reg
;
4164 status
= __vxge_hw_kdfc_swapper_set(hldev
->legacy_reg
, vp_reg
);
4166 if (status
!= VXGE_HW_OK
)
4169 val64
= readq(&vp_reg
->kdfc_drbl_triplet_total
);
4171 vpath
->max_kdfc_db
=
4172 (u32
)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4175 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4177 vpath
->max_nofl_db
= vpath
->max_kdfc_db
;
4179 if (vpath
->max_nofl_db
<
4180 ((vpath
->vp_config
->fifo
.memblock_size
/
4181 (vpath
->vp_config
->fifo
.max_frags
*
4182 sizeof(struct vxge_hw_fifo_txd
))) *
4183 vpath
->vp_config
->fifo
.fifo_blocks
)) {
4185 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
4187 val64
= VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4188 (vpath
->max_nofl_db
*2)-1);
4191 writeq(val64
, &vp_reg
->kdfc_fifo_trpl_partition
);
4193 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE
,
4194 &vp_reg
->kdfc_fifo_trpl_ctrl
);
4196 val64
= readq(&vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4198 val64
&= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4199 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4201 val64
|= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4202 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY
) |
4203 #ifndef __BIG_ENDIAN
4204 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN
|
4206 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4208 writeq(val64
, &vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4209 writeq((u64
)0, &vp_reg
->kdfc_trpl_fifo_0_wb_address
);
4211 vpath_stride
= readq(&hldev
->toc_reg
->toc_kdfc_vpath_stride
);
4214 (struct __vxge_hw_non_offload_db_wrapper __iomem
*)
4215 (hldev
->kdfc
+ (vp_id
*
4216 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4223 * __vxge_hw_vpath_mac_configure
4224 * This routine configures the mac of virtual path using the config passed
4226 static enum vxge_hw_status
4227 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4230 enum vxge_hw_status status
= VXGE_HW_OK
;
4231 struct __vxge_hw_virtualpath
*vpath
;
4232 struct vxge_hw_vp_config
*vp_config
;
4233 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4235 vpath
= &hldev
->virtual_paths
[vp_id
];
4236 vp_reg
= vpath
->vp_reg
;
4237 vp_config
= vpath
->vp_config
;
4239 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4240 vpath
->vsport_number
), &vp_reg
->xmac_vsport_choice
);
4242 if (vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4244 val64
= readq(&vp_reg
->xmac_rpa_vcfg
);
4246 if (vp_config
->rpa_strip_vlan_tag
!=
4247 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) {
4248 if (vp_config
->rpa_strip_vlan_tag
)
4249 val64
|= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4251 val64
&= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4254 writeq(val64
, &vp_reg
->xmac_rpa_vcfg
);
4255 val64
= readq(&vp_reg
->rxmac_vcfg0
);
4257 if (vp_config
->mtu
!=
4258 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) {
4259 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4260 if ((vp_config
->mtu
+
4261 VXGE_HW_MAC_HEADER_MAX_SIZE
) < vpath
->max_mtu
)
4262 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4264 VXGE_HW_MAC_HEADER_MAX_SIZE
);
4266 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4270 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
4272 val64
= readq(&vp_reg
->rxmac_vcfg1
);
4274 val64
&= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4275 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
);
4277 if (hldev
->config
.rth_it_type
==
4278 VXGE_HW_RTH_IT_TYPE_MULTI_IT
) {
4279 val64
|= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4281 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
;
4284 writeq(val64
, &vp_reg
->rxmac_vcfg1
);
4290 * __vxge_hw_vpath_tim_configure
4291 * This routine configures the tim registers of virtual path using the config
4294 static enum vxge_hw_status
4295 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4298 enum vxge_hw_status status
= VXGE_HW_OK
;
4299 struct __vxge_hw_virtualpath
*vpath
;
4300 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4301 struct vxge_hw_vp_config
*config
;
4303 vpath
= &hldev
->virtual_paths
[vp_id
];
4304 vp_reg
= vpath
->vp_reg
;
4305 config
= vpath
->vp_config
;
4307 writeq(0, &vp_reg
->tim_dest_addr
);
4308 writeq(0, &vp_reg
->tim_vpath_map
);
4309 writeq(0, &vp_reg
->tim_bitmap
);
4310 writeq(0, &vp_reg
->tim_remap
);
4312 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
)
4313 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4314 (vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4315 VXGE_HW_VPATH_INTR_RX
), &vp_reg
->tim_ring_assn
);
4317 val64
= readq(&vp_reg
->tim_pci_cfg
);
4318 val64
|= VXGE_HW_TIM_PCI_CFG_ADD_PAD
;
4319 writeq(val64
, &vp_reg
->tim_pci_cfg
);
4321 if (config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4323 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4325 if (config
->tti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4326 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4328 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4329 config
->tti
.btimer_val
);
4332 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4334 if (config
->tti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4335 if (config
->tti
.timer_ac_en
)
4336 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4338 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4341 if (config
->tti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4342 if (config
->tti
.timer_ci_en
)
4343 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4345 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4348 if (config
->tti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4349 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4350 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4351 config
->tti
.urange_a
);
4354 if (config
->tti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4355 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4356 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4357 config
->tti
.urange_b
);
4360 if (config
->tti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4361 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4362 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4363 config
->tti
.urange_c
);
4366 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4367 vpath
->tim_tti_cfg1_saved
= val64
;
4369 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4371 if (config
->tti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4372 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4373 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4377 if (config
->tti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4378 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4379 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4383 if (config
->tti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4384 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4385 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4389 if (config
->tti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4390 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4391 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4395 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4396 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4398 if (config
->tti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4399 if (config
->tti
.timer_ri_en
)
4400 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4402 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4405 if (config
->tti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4406 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4408 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4409 config
->tti
.rtimer_val
);
4412 if (config
->tti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4413 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4414 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4417 if (config
->tti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4418 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4420 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4421 config
->tti
.ltimer_val
);
4424 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4425 vpath
->tim_tti_cfg3_saved
= val64
;
4428 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4430 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4432 if (config
->rti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4433 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4435 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4436 config
->rti
.btimer_val
);
4439 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4441 if (config
->rti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4442 if (config
->rti
.timer_ac_en
)
4443 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4445 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4448 if (config
->rti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4449 if (config
->rti
.timer_ci_en
)
4450 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4452 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4455 if (config
->rti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4456 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4457 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4458 config
->rti
.urange_a
);
4461 if (config
->rti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4462 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4463 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4464 config
->rti
.urange_b
);
4467 if (config
->rti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4468 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4469 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4470 config
->rti
.urange_c
);
4473 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4474 vpath
->tim_rti_cfg1_saved
= val64
;
4476 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4478 if (config
->rti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4479 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4480 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4484 if (config
->rti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4485 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4486 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4490 if (config
->rti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4491 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4492 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4496 if (config
->rti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4497 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4498 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4502 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4503 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4505 if (config
->rti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4506 if (config
->rti
.timer_ri_en
)
4507 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4509 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4512 if (config
->rti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4513 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4515 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4516 config
->rti
.rtimer_val
);
4519 if (config
->rti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4520 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4521 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4524 if (config
->rti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4525 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4527 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4528 config
->rti
.ltimer_val
);
4531 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4532 vpath
->tim_rti_cfg3_saved
= val64
;
4536 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4537 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4538 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4539 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4540 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4541 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4543 val64
= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4544 val64
|= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4545 val64
|= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4546 writeq(val64
, &vp_reg
->tim_wrkld_clc
);
4552 * __vxge_hw_vpath_initialize
4553 * This routine is the final phase of init which initializes the
4554 * registers of the vpath using the configuration passed.
4556 static enum vxge_hw_status
4557 __vxge_hw_vpath_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4561 enum vxge_hw_status status
= VXGE_HW_OK
;
4562 struct __vxge_hw_virtualpath
*vpath
;
4563 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4565 vpath
= &hldev
->virtual_paths
[vp_id
];
4567 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4568 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4571 vp_reg
= vpath
->vp_reg
;
4573 status
= __vxge_hw_vpath_swapper_set(vpath
->vp_reg
);
4574 if (status
!= VXGE_HW_OK
)
4577 status
= __vxge_hw_vpath_mac_configure(hldev
, vp_id
);
4578 if (status
!= VXGE_HW_OK
)
4581 status
= __vxge_hw_vpath_kdfc_configure(hldev
, vp_id
);
4582 if (status
!= VXGE_HW_OK
)
4585 status
= __vxge_hw_vpath_tim_configure(hldev
, vp_id
);
4586 if (status
!= VXGE_HW_OK
)
4589 val64
= readq(&vp_reg
->rtdma_rd_optimization_ctrl
);
4591 /* Get MRRS value from device control */
4592 status
= __vxge_hw_vpath_pci_read(vpath
, 1, 0x78, &val32
);
4593 if (status
== VXGE_HW_OK
) {
4594 val32
= (val32
& VXGE_HW_PCI_EXP_DEVCTL_READRQ
) >> 12;
4596 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4598 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32
);
4600 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE
;
4603 val64
&= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4605 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4606 VXGE_HW_MAX_PAYLOAD_SIZE_512
);
4608 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN
;
4609 writeq(val64
, &vp_reg
->rtdma_rd_optimization_ctrl
);
4616 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4617 * This routine closes all channels it opened and freeup memory
4619 static void __vxge_hw_vp_terminate(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4621 struct __vxge_hw_virtualpath
*vpath
;
4623 vpath
= &hldev
->virtual_paths
[vp_id
];
4625 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
)
4628 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath
->hldev
->tim_int_mask0
,
4629 vpath
->hldev
->tim_int_mask1
, vpath
->vp_id
);
4630 hldev
->stats
.hw_dev_info_stats
.vpath_info
[vpath
->vp_id
] = NULL
;
4632 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4633 * work after the interface is brought down.
4635 spin_lock(&vpath
->lock
);
4636 vpath
->vp_open
= VXGE_HW_VP_NOT_OPEN
;
4637 spin_unlock(&vpath
->lock
);
4639 vpath
->vpmgmt_reg
= NULL
;
4640 vpath
->nofl_db
= NULL
;
4642 vpath
->vsport_number
= 0;
4643 vpath
->max_kdfc_db
= 0;
4644 vpath
->max_nofl_db
= 0;
4645 vpath
->ringh
= NULL
;
4646 vpath
->fifoh
= NULL
;
4647 memset(&vpath
->vpath_handles
, 0, sizeof(struct list_head
));
4648 vpath
->stats_block
= 0;
4649 vpath
->hw_stats
= NULL
;
4650 vpath
->hw_stats_sav
= NULL
;
4651 vpath
->sw_stats
= NULL
;
4658 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4659 * This routine is the initial phase of init which resets the vpath and
4660 * initializes the software support structures.
4662 static enum vxge_hw_status
4663 __vxge_hw_vp_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
,
4664 struct vxge_hw_vp_config
*config
)
4666 struct __vxge_hw_virtualpath
*vpath
;
4667 enum vxge_hw_status status
= VXGE_HW_OK
;
4669 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4670 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4674 vpath
= &hldev
->virtual_paths
[vp_id
];
4676 spin_lock_init(&vpath
->lock
);
4677 vpath
->vp_id
= vp_id
;
4678 vpath
->vp_open
= VXGE_HW_VP_OPEN
;
4679 vpath
->hldev
= hldev
;
4680 vpath
->vp_config
= config
;
4681 vpath
->vp_reg
= hldev
->vpath_reg
[vp_id
];
4682 vpath
->vpmgmt_reg
= hldev
->vpmgmt_reg
[vp_id
];
4684 __vxge_hw_vpath_reset(hldev
, vp_id
);
4686 status
= __vxge_hw_vpath_reset_check(vpath
);
4687 if (status
!= VXGE_HW_OK
) {
4688 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4692 status
= __vxge_hw_vpath_mgmt_read(hldev
, vpath
);
4693 if (status
!= VXGE_HW_OK
) {
4694 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4698 INIT_LIST_HEAD(&vpath
->vpath_handles
);
4700 vpath
->sw_stats
= &hldev
->stats
.sw_dev_info_stats
.vpath_info
[vp_id
];
4702 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev
->tim_int_mask0
,
4703 hldev
->tim_int_mask1
, vp_id
);
4705 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
4706 if (status
!= VXGE_HW_OK
)
4707 __vxge_hw_vp_terminate(hldev
, vp_id
);
4713 * vxge_hw_vpath_mtu_set - Set MTU.
4714 * Set new MTU value. Example, to use jumbo frames:
4715 * vxge_hw_vpath_mtu_set(my_device, 9600);
4718 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle
*vp
, u32 new_mtu
)
4721 enum vxge_hw_status status
= VXGE_HW_OK
;
4722 struct __vxge_hw_virtualpath
*vpath
;
4725 status
= VXGE_HW_ERR_INVALID_HANDLE
;
4730 new_mtu
+= VXGE_HW_MAC_HEADER_MAX_SIZE
;
4732 if ((new_mtu
< VXGE_HW_MIN_MTU
) || (new_mtu
> vpath
->max_mtu
))
4733 status
= VXGE_HW_ERR_INVALID_MTU_SIZE
;
4735 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
4737 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4738 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu
);
4740 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
4742 vpath
->vp_config
->mtu
= new_mtu
- VXGE_HW_MAC_HEADER_MAX_SIZE
;
4749 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4750 * Enable the DMA vpath statistics. The function is to be called to re-enable
4751 * the adapter to update stats into the host memory
4753 static enum vxge_hw_status
4754 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle
*vp
)
4756 enum vxge_hw_status status
= VXGE_HW_OK
;
4757 struct __vxge_hw_virtualpath
*vpath
;
4761 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4762 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4766 memcpy(vpath
->hw_stats_sav
, vpath
->hw_stats
,
4767 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4769 status
= __vxge_hw_vpath_stats_get(vpath
, vpath
->hw_stats
);
4775 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4776 * This function allocates a block from block pool or from the system
4778 static struct __vxge_hw_blockpool_entry
*
4779 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device
*devh
, u32 size
)
4781 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
4782 struct __vxge_hw_blockpool
*blockpool
;
4784 blockpool
= &devh
->block_pool
;
4786 if (size
== blockpool
->block_size
) {
4788 if (!list_empty(&blockpool
->free_block_list
))
4789 entry
= (struct __vxge_hw_blockpool_entry
*)
4790 list_first_entry(&blockpool
->free_block_list
,
4791 struct __vxge_hw_blockpool_entry
,
4794 if (entry
!= NULL
) {
4795 list_del(&entry
->item
);
4796 blockpool
->pool_size
--;
4801 __vxge_hw_blockpool_blocks_add(blockpool
);
4807 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4808 * This function is used to open access to virtual path of an
4809 * adapter for offload, GRO operations. This function returns
4813 vxge_hw_vpath_open(struct __vxge_hw_device
*hldev
,
4814 struct vxge_hw_vpath_attr
*attr
,
4815 struct __vxge_hw_vpath_handle
**vpath_handle
)
4817 struct __vxge_hw_virtualpath
*vpath
;
4818 struct __vxge_hw_vpath_handle
*vp
;
4819 enum vxge_hw_status status
;
4821 vpath
= &hldev
->virtual_paths
[attr
->vp_id
];
4823 if (vpath
->vp_open
== VXGE_HW_VP_OPEN
) {
4824 status
= VXGE_HW_ERR_INVALID_STATE
;
4825 goto vpath_open_exit1
;
4828 status
= __vxge_hw_vp_initialize(hldev
, attr
->vp_id
,
4829 &hldev
->config
.vp_config
[attr
->vp_id
]);
4830 if (status
!= VXGE_HW_OK
)
4831 goto vpath_open_exit1
;
4833 vp
= vzalloc(sizeof(struct __vxge_hw_vpath_handle
));
4835 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4836 goto vpath_open_exit2
;
4841 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4842 status
= __vxge_hw_fifo_create(vp
, &attr
->fifo_attr
);
4843 if (status
!= VXGE_HW_OK
)
4844 goto vpath_open_exit6
;
4847 if (vpath
->vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4848 status
= __vxge_hw_ring_create(vp
, &attr
->ring_attr
);
4849 if (status
!= VXGE_HW_OK
)
4850 goto vpath_open_exit7
;
4852 __vxge_hw_vpath_prc_configure(hldev
, attr
->vp_id
);
4855 vpath
->fifoh
->tx_intr_num
=
4856 (attr
->vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4857 VXGE_HW_VPATH_INTR_TX
;
4859 vpath
->stats_block
= __vxge_hw_blockpool_block_allocate(hldev
,
4860 VXGE_HW_BLOCK_SIZE
);
4861 if (vpath
->stats_block
== NULL
) {
4862 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4863 goto vpath_open_exit8
;
4866 vpath
->hw_stats
= vpath
->stats_block
->memblock
;
4867 memset(vpath
->hw_stats
, 0,
4868 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4870 hldev
->stats
.hw_dev_info_stats
.vpath_info
[attr
->vp_id
] =
4873 vpath
->hw_stats_sav
=
4874 &hldev
->stats
.hw_dev_info_stats
.vpath_info_sav
[attr
->vp_id
];
4875 memset(vpath
->hw_stats_sav
, 0,
4876 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4878 writeq(vpath
->stats_block
->dma_addr
, &vpath
->vp_reg
->stats_cfg
);
4880 status
= vxge_hw_vpath_stats_enable(vp
);
4881 if (status
!= VXGE_HW_OK
)
4882 goto vpath_open_exit8
;
4884 list_add(&vp
->item
, &vpath
->vpath_handles
);
4886 hldev
->vpaths_deployed
|= vxge_mBIT(vpath
->vp_id
);
4890 attr
->fifo_attr
.userdata
= vpath
->fifoh
;
4891 attr
->ring_attr
.userdata
= vpath
->ringh
;
4896 if (vpath
->ringh
!= NULL
)
4897 __vxge_hw_ring_delete(vp
);
4899 if (vpath
->fifoh
!= NULL
)
4900 __vxge_hw_fifo_delete(vp
);
4904 __vxge_hw_vp_terminate(hldev
, attr
->vp_id
);
4911 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4913 * @vp: Handle got from previous vpath open
4915 * This function is used to close access to virtual path opened
4918 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle
*vp
)
4920 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
4921 struct __vxge_hw_ring
*ring
= vpath
->ringh
;
4922 struct vxgedev
*vdev
= netdev_priv(vpath
->hldev
->ndev
);
4923 u64 new_count
, val64
, val164
;
4926 new_count
= readq(&vpath
->vp_reg
->rxdmem_size
);
4927 new_count
&= 0x1fff;
4929 new_count
= ring
->config
->ring_blocks
* VXGE_HW_BLOCK_SIZE
/ 8;
4931 val164
= VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count
);
4933 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164
),
4934 &vpath
->vp_reg
->prc_rxd_doorbell
);
4935 readl(&vpath
->vp_reg
->prc_rxd_doorbell
);
4938 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4939 val64
= VXGE_HW_PRC_CFG6_RXD_SPAT(val64
);
4943 * Each RxD is of 4 qwords
4945 new_count
-= (val64
+ 1);
4946 val64
= min(val164
, new_count
) / 4;
4948 ring
->rxds_limit
= min(ring
->rxds_limit
, val64
);
4949 if (ring
->rxds_limit
< 4)
4950 ring
->rxds_limit
= 4;
4954 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4956 * @entry: Entry of block to be freed
4958 * This function frees a block from block pool
4961 __vxge_hw_blockpool_block_free(struct __vxge_hw_device
*devh
,
4962 struct __vxge_hw_blockpool_entry
*entry
)
4964 struct __vxge_hw_blockpool
*blockpool
;
4966 blockpool
= &devh
->block_pool
;
4968 if (entry
->length
== blockpool
->block_size
) {
4969 list_add(&entry
->item
, &blockpool
->free_block_list
);
4970 blockpool
->pool_size
++;
4973 __vxge_hw_blockpool_blocks_remove(blockpool
);
4977 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4978 * This function is used to close access to virtual path opened
4981 enum vxge_hw_status
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle
*vp
)
4983 struct __vxge_hw_virtualpath
*vpath
= NULL
;
4984 struct __vxge_hw_device
*devh
= NULL
;
4985 u32 vp_id
= vp
->vpath
->vp_id
;
4986 u32 is_empty
= TRUE
;
4987 enum vxge_hw_status status
= VXGE_HW_OK
;
4990 devh
= vpath
->hldev
;
4992 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4993 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4994 goto vpath_close_exit
;
4997 list_del(&vp
->item
);
4999 if (!list_empty(&vpath
->vpath_handles
)) {
5000 list_add(&vp
->item
, &vpath
->vpath_handles
);
5005 status
= VXGE_HW_FAIL
;
5006 goto vpath_close_exit
;
5009 devh
->vpaths_deployed
&= ~vxge_mBIT(vp_id
);
5011 if (vpath
->ringh
!= NULL
)
5012 __vxge_hw_ring_delete(vp
);
5014 if (vpath
->fifoh
!= NULL
)
5015 __vxge_hw_fifo_delete(vp
);
5017 if (vpath
->stats_block
!= NULL
)
5018 __vxge_hw_blockpool_block_free(devh
, vpath
->stats_block
);
5022 __vxge_hw_vp_terminate(devh
, vp_id
);
5029 * vxge_hw_vpath_reset - Resets vpath
5030 * This function is used to request a reset of vpath
5032 enum vxge_hw_status
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle
*vp
)
5034 enum vxge_hw_status status
;
5036 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
5038 vp_id
= vpath
->vp_id
;
5040 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5041 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5045 status
= __vxge_hw_vpath_reset(vpath
->hldev
, vp_id
);
5046 if (status
== VXGE_HW_OK
)
5047 vpath
->sw_stats
->soft_reset_cnt
++;
5053 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5054 * This function poll's for the vpath reset completion and re initializes
5058 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle
*vp
)
5060 struct __vxge_hw_virtualpath
*vpath
= NULL
;
5061 enum vxge_hw_status status
;
5062 struct __vxge_hw_device
*hldev
;
5065 vp_id
= vp
->vpath
->vp_id
;
5067 hldev
= vpath
->hldev
;
5069 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5070 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5074 status
= __vxge_hw_vpath_reset_check(vpath
);
5075 if (status
!= VXGE_HW_OK
)
5078 status
= __vxge_hw_vpath_sw_reset(hldev
, vp_id
);
5079 if (status
!= VXGE_HW_OK
)
5082 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
5083 if (status
!= VXGE_HW_OK
)
5086 if (vpath
->ringh
!= NULL
)
5087 __vxge_hw_vpath_prc_configure(hldev
, vp_id
);
5089 memset(vpath
->hw_stats
, 0,
5090 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5092 memset(vpath
->hw_stats_sav
, 0,
5093 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5095 writeq(vpath
->stats_block
->dma_addr
,
5096 &vpath
->vp_reg
->stats_cfg
);
5098 status
= vxge_hw_vpath_stats_enable(vp
);
5105 * vxge_hw_vpath_enable - Enable vpath.
5106 * This routine clears the vpath reset thereby enabling a vpath
5107 * to start forwarding frames and generating interrupts.
5110 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle
*vp
)
5112 struct __vxge_hw_device
*hldev
;
5115 hldev
= vp
->vpath
->hldev
;
5117 val64
= VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5118 1 << (16 - vp
->vpath
->vp_id
));
5120 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
5121 &hldev
->common_reg
->cmn_rsthdlr_cfg1
);