1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
23 #include "workarounds.h"
25 /**************************************************************************
29 **************************************************************************
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
76 static void efx_magic_event(struct efx_channel
*channel
, u32 magic
);
78 /**************************************************************************
80 * Solarstorm hardware access
82 **************************************************************************/
84 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
87 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
91 /* Read the current event from the event queue */
92 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
95 return ((efx_qword_t
*) (channel
->eventq
.addr
)) +
96 (index
& channel
->eventq_mask
);
99 /* See if an event is present
101 * We check both the high and low dword of the event for all ones. We
102 * wrote all ones when we cleared the event, and no valid event can
103 * have all ones in either its high or low dwords. This approach is
104 * robust against reordering.
106 * Note that using a single 64-bit comparison is incorrect; even
107 * though the CPU read will be atomic, the DMA write may not be.
109 static inline int efx_event_present(efx_qword_t
*event
)
111 return !(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
112 EFX_DWORD_IS_ALL_ONES(event
->dword
[1]));
115 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
116 const efx_oword_t
*mask
)
118 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
119 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
122 int efx_nic_test_registers(struct efx_nic
*efx
,
123 const struct efx_nic_register_test
*regs
,
126 unsigned address
= 0, i
, j
;
127 efx_oword_t mask
, imask
, original
, reg
, buf
;
129 for (i
= 0; i
< n_regs
; ++i
) {
130 address
= regs
[i
].address
;
131 mask
= imask
= regs
[i
].mask
;
132 EFX_INVERT_OWORD(imask
);
134 efx_reado(efx
, &original
, address
);
136 /* bit sweep on and off */
137 for (j
= 0; j
< 128; j
++) {
138 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
141 /* Test this testable bit can be set in isolation */
142 EFX_AND_OWORD(reg
, original
, mask
);
143 EFX_SET_OWORD32(reg
, j
, j
, 1);
145 efx_writeo(efx
, ®
, address
);
146 efx_reado(efx
, &buf
, address
);
148 if (efx_masked_compare_oword(®
, &buf
, &mask
))
151 /* Test this testable bit can be cleared in isolation */
152 EFX_OR_OWORD(reg
, original
, mask
);
153 EFX_SET_OWORD32(reg
, j
, j
, 0);
155 efx_writeo(efx
, ®
, address
);
156 efx_reado(efx
, &buf
, address
);
158 if (efx_masked_compare_oword(®
, &buf
, &mask
))
162 efx_writeo(efx
, &original
, address
);
168 netif_err(efx
, hw
, efx
->net_dev
,
169 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
170 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
171 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
175 /**************************************************************************
177 * Special buffer handling
178 * Special buffers are used for event queues and the TX and RX
181 *************************************************************************/
184 * Initialise a special buffer
186 * This will define a buffer (previously allocated via
187 * efx_alloc_special_buffer()) in the buffer table, allowing
188 * it to be used for event queues, descriptor rings etc.
191 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
193 efx_qword_t buf_desc
;
198 EFX_BUG_ON_PARANOID(!buffer
->addr
);
200 /* Write buffer descriptors to NIC */
201 for (i
= 0; i
< buffer
->entries
; i
++) {
202 index
= buffer
->index
+ i
;
203 dma_addr
= buffer
->dma_addr
+ (i
* EFX_BUF_SIZE
);
204 netif_dbg(efx
, probe
, efx
->net_dev
,
205 "mapping special buffer %d at %llx\n",
206 index
, (unsigned long long)dma_addr
);
207 EFX_POPULATE_QWORD_3(buf_desc
,
208 FRF_AZ_BUF_ADR_REGION
, 0,
209 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
210 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
211 efx_write_buf_tbl(efx
, &buf_desc
, index
);
215 /* Unmaps a buffer and clears the buffer table entries */
217 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
219 efx_oword_t buf_tbl_upd
;
220 unsigned int start
= buffer
->index
;
221 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
223 if (!buffer
->entries
)
226 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
227 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
229 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
230 FRF_AZ_BUF_UPD_CMD
, 0,
231 FRF_AZ_BUF_CLR_CMD
, 1,
232 FRF_AZ_BUF_CLR_END_ID
, end
,
233 FRF_AZ_BUF_CLR_START_ID
, start
);
234 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
238 * Allocate a new special buffer
240 * This allocates memory for a new buffer, clears it and allocates a
241 * new buffer ID range. It does not write into the buffer table.
243 * This call will allocate 4KB buffers, since 8KB buffers can't be
244 * used for event queues and descriptor rings.
246 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
247 struct efx_special_buffer
*buffer
,
250 len
= ALIGN(len
, EFX_BUF_SIZE
);
252 buffer
->addr
= dma_alloc_coherent(&efx
->pci_dev
->dev
, len
,
253 &buffer
->dma_addr
, GFP_KERNEL
);
257 buffer
->entries
= len
/ EFX_BUF_SIZE
;
258 BUG_ON(buffer
->dma_addr
& (EFX_BUF_SIZE
- 1));
260 /* All zeros is a potentially valid event so memset to 0xff */
261 memset(buffer
->addr
, 0xff, len
);
263 /* Select new buffer ID */
264 buffer
->index
= efx
->next_buffer_table
;
265 efx
->next_buffer_table
+= buffer
->entries
;
266 #ifdef CONFIG_SFC_SRIOV
267 BUG_ON(efx_sriov_enabled(efx
) &&
268 efx
->vf_buftbl_base
< efx
->next_buffer_table
);
271 netif_dbg(efx
, probe
, efx
->net_dev
,
272 "allocating special buffers %d-%d at %llx+%x "
273 "(virt %p phys %llx)\n", buffer
->index
,
274 buffer
->index
+ buffer
->entries
- 1,
275 (u64
)buffer
->dma_addr
, len
,
276 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
282 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
287 netif_dbg(efx
, hw
, efx
->net_dev
,
288 "deallocating special buffers %d-%d at %llx+%x "
289 "(virt %p phys %llx)\n", buffer
->index
,
290 buffer
->index
+ buffer
->entries
- 1,
291 (u64
)buffer
->dma_addr
, buffer
->len
,
292 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
294 dma_free_coherent(&efx
->pci_dev
->dev
, buffer
->len
, buffer
->addr
,
300 /**************************************************************************
302 * Generic buffer handling
303 * These buffers are used for interrupt status and MAC stats
305 **************************************************************************/
307 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
310 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
315 memset(buffer
->addr
, 0, len
);
319 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
322 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
323 buffer
->addr
, buffer
->dma_addr
);
328 /**************************************************************************
332 **************************************************************************/
334 /* Returns a pointer to the specified transmit descriptor in the TX
335 * descriptor queue belonging to the specified channel.
337 static inline efx_qword_t
*
338 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
340 return ((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
;
343 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
344 static inline void efx_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
349 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
350 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
351 efx_writed_page(tx_queue
->efx
, ®
,
352 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
355 /* Write pointer and first descriptor for TX descriptor ring */
356 static inline void efx_push_tx_desc(struct efx_tx_queue
*tx_queue
,
357 const efx_qword_t
*txd
)
362 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
363 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
365 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
366 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
367 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
369 efx_writeo_page(tx_queue
->efx
, ®
,
370 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
374 efx_may_push_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int write_count
)
376 unsigned empty_read_count
= ACCESS_ONCE(tx_queue
->empty_read_count
);
378 if (empty_read_count
== 0)
381 tx_queue
->empty_read_count
= 0;
382 return ((empty_read_count
^ write_count
) & ~EFX_EMPTY_COUNT_VALID
) == 0
383 && tx_queue
->write_count
- write_count
== 1;
386 /* For each entry inserted into the software descriptor ring, create a
387 * descriptor in the hardware TX descriptor ring (in host memory), and
390 void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
393 struct efx_tx_buffer
*buffer
;
396 unsigned old_write_count
= tx_queue
->write_count
;
398 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
401 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
402 buffer
= &tx_queue
->buffer
[write_ptr
];
403 txd
= efx_tx_desc(tx_queue
, write_ptr
);
404 ++tx_queue
->write_count
;
406 /* Create TX descriptor ring entry */
407 EFX_POPULATE_QWORD_4(*txd
,
408 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
409 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
410 FSF_AZ_TX_KER_BUF_REGION
, 0,
411 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
412 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
414 wmb(); /* Ensure descriptors are written before they are fetched */
416 if (efx_may_push_tx_desc(tx_queue
, old_write_count
)) {
417 txd
= efx_tx_desc(tx_queue
,
418 old_write_count
& tx_queue
->ptr_mask
);
419 efx_push_tx_desc(tx_queue
, txd
);
422 efx_notify_tx_desc(tx_queue
);
426 /* Allocate hardware resources for a TX queue */
427 int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
429 struct efx_nic
*efx
= tx_queue
->efx
;
432 entries
= tx_queue
->ptr_mask
+ 1;
433 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
434 entries
* sizeof(efx_qword_t
));
437 void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
439 struct efx_nic
*efx
= tx_queue
->efx
;
442 /* Pin TX descriptor ring */
443 efx_init_special_buffer(efx
, &tx_queue
->txd
);
445 /* Push TX descriptor ring to card */
446 EFX_POPULATE_OWORD_10(reg
,
447 FRF_AZ_TX_DESCQ_EN
, 1,
448 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
449 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
450 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
451 FRF_AZ_TX_DESCQ_EVQ_ID
,
452 tx_queue
->channel
->channel
,
453 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
454 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
455 FRF_AZ_TX_DESCQ_SIZE
,
456 __ffs(tx_queue
->txd
.entries
),
457 FRF_AZ_TX_DESCQ_TYPE
, 0,
458 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
460 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
461 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
462 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
463 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
467 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
470 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
471 /* Only 128 bits in this register */
472 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
474 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
475 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
476 clear_bit_le(tx_queue
->queue
, (void *)®
);
478 set_bit_le(tx_queue
->queue
, (void *)®
);
479 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
482 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
483 EFX_POPULATE_OWORD_1(reg
,
485 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
487 FFE_BZ_TX_PACE_RESERVED
);
488 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
493 static void efx_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
495 struct efx_nic
*efx
= tx_queue
->efx
;
496 efx_oword_t tx_flush_descq
;
498 WARN_ON(atomic_read(&tx_queue
->flush_outstanding
));
499 atomic_set(&tx_queue
->flush_outstanding
, 1);
501 EFX_POPULATE_OWORD_2(tx_flush_descq
,
502 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
503 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
504 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
507 void efx_nic_fini_tx(struct efx_tx_queue
*tx_queue
)
509 struct efx_nic
*efx
= tx_queue
->efx
;
510 efx_oword_t tx_desc_ptr
;
512 /* Remove TX descriptor ring from card */
513 EFX_ZERO_OWORD(tx_desc_ptr
);
514 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
517 /* Unpin TX descriptor ring */
518 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
521 /* Free buffers backing TX queue */
522 void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
524 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
527 /**************************************************************************
531 **************************************************************************/
533 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
534 static inline efx_qword_t
*
535 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
537 return ((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
;
540 /* This creates an entry in the RX descriptor queue */
542 efx_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
544 struct efx_rx_buffer
*rx_buf
;
547 rxd
= efx_rx_desc(rx_queue
, index
);
548 rx_buf
= efx_rx_buffer(rx_queue
, index
);
549 EFX_POPULATE_QWORD_3(*rxd
,
550 FSF_AZ_RX_KER_BUF_SIZE
,
552 rx_queue
->efx
->type
->rx_buffer_padding
,
553 FSF_AZ_RX_KER_BUF_REGION
, 0,
554 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
557 /* This writes to the RX_DESC_WPTR register for the specified receive
560 void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
562 struct efx_nic
*efx
= rx_queue
->efx
;
566 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
569 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
570 ++rx_queue
->notified_count
;
574 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
575 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
576 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
577 efx_rx_queue_index(rx_queue
));
580 int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
582 struct efx_nic
*efx
= rx_queue
->efx
;
585 entries
= rx_queue
->ptr_mask
+ 1;
586 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
587 entries
* sizeof(efx_qword_t
));
590 void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
592 efx_oword_t rx_desc_ptr
;
593 struct efx_nic
*efx
= rx_queue
->efx
;
594 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
595 bool iscsi_digest_en
= is_b0
;
597 netif_dbg(efx
, hw
, efx
->net_dev
,
598 "RX queue %d ring in special buffers %d-%d\n",
599 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
600 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
602 /* Pin RX descriptor ring */
603 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
605 /* Push RX descriptor ring to card */
606 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
607 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
608 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
609 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
610 FRF_AZ_RX_DESCQ_EVQ_ID
,
611 efx_rx_queue_channel(rx_queue
)->channel
,
612 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
613 FRF_AZ_RX_DESCQ_LABEL
,
614 efx_rx_queue_index(rx_queue
),
615 FRF_AZ_RX_DESCQ_SIZE
,
616 __ffs(rx_queue
->rxd
.entries
),
617 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
618 /* For >=B0 this is scatter so disable */
619 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
620 FRF_AZ_RX_DESCQ_EN
, 1);
621 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
622 efx_rx_queue_index(rx_queue
));
625 static void efx_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
627 struct efx_nic
*efx
= rx_queue
->efx
;
628 efx_oword_t rx_flush_descq
;
630 EFX_POPULATE_OWORD_2(rx_flush_descq
,
631 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
632 FRF_AZ_RX_FLUSH_DESCQ
,
633 efx_rx_queue_index(rx_queue
));
634 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
637 void efx_nic_fini_rx(struct efx_rx_queue
*rx_queue
)
639 efx_oword_t rx_desc_ptr
;
640 struct efx_nic
*efx
= rx_queue
->efx
;
642 /* Remove RX descriptor ring from card */
643 EFX_ZERO_OWORD(rx_desc_ptr
);
644 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
645 efx_rx_queue_index(rx_queue
));
647 /* Unpin RX descriptor ring */
648 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
651 /* Free buffers backing RX queue */
652 void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
654 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
657 /**************************************************************************
661 **************************************************************************/
663 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
664 * or more RX flushes can be kicked off.
666 static bool efx_flush_wake(struct efx_nic
*efx
)
668 /* Ensure that all updates are visible to efx_nic_flush_queues() */
671 return (atomic_read(&efx
->drain_pending
) == 0 ||
672 (atomic_read(&efx
->rxq_flush_outstanding
) < EFX_RX_FLUSH_COUNT
673 && atomic_read(&efx
->rxq_flush_pending
) > 0));
676 static bool efx_check_tx_flush_complete(struct efx_nic
*efx
)
679 efx_oword_t txd_ptr_tbl
;
680 struct efx_channel
*channel
;
681 struct efx_tx_queue
*tx_queue
;
683 efx_for_each_channel(channel
, efx
) {
684 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
685 efx_reado_table(efx
, &txd_ptr_tbl
,
686 FR_BZ_TX_DESC_PTR_TBL
, tx_queue
->queue
);
687 if (EFX_OWORD_FIELD(txd_ptr_tbl
,
688 FRF_AZ_TX_DESCQ_FLUSH
) ||
689 EFX_OWORD_FIELD(txd_ptr_tbl
,
690 FRF_AZ_TX_DESCQ_EN
)) {
691 netif_dbg(efx
, hw
, efx
->net_dev
,
692 "flush did not complete on TXQ %d\n",
695 } else if (atomic_cmpxchg(&tx_queue
->flush_outstanding
,
697 /* The flush is complete, but we didn't
698 * receive a flush completion event
700 netif_dbg(efx
, hw
, efx
->net_dev
,
701 "flush complete on TXQ %d, so drain "
702 "the queue\n", tx_queue
->queue
);
703 /* Don't need to increment drain_pending as it
704 * has already been incremented for the queues
705 * which did not drain
707 efx_magic_event(channel
,
708 EFX_CHANNEL_MAGIC_TX_DRAIN(
717 /* Flush all the transmit queues, and continue flushing receive queues until
718 * they're all flushed. Wait for the DRAIN events to be recieved so that there
719 * are no more RX and TX events left on any channel. */
720 int efx_nic_flush_queues(struct efx_nic
*efx
)
722 unsigned timeout
= msecs_to_jiffies(5000); /* 5s for all flushes and drains */
723 struct efx_channel
*channel
;
724 struct efx_rx_queue
*rx_queue
;
725 struct efx_tx_queue
*tx_queue
;
728 efx
->type
->prepare_flush(efx
);
730 efx_for_each_channel(channel
, efx
) {
731 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
732 atomic_inc(&efx
->drain_pending
);
733 efx_flush_tx_queue(tx_queue
);
735 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
736 atomic_inc(&efx
->drain_pending
);
737 rx_queue
->flush_pending
= true;
738 atomic_inc(&efx
->rxq_flush_pending
);
742 while (timeout
&& atomic_read(&efx
->drain_pending
) > 0) {
743 /* If SRIOV is enabled, then offload receive queue flushing to
744 * the firmware (though we will still have to poll for
745 * completion). If that fails, fall back to the old scheme.
747 if (efx_sriov_enabled(efx
)) {
748 rc
= efx_mcdi_flush_rxqs(efx
);
753 /* The hardware supports four concurrent rx flushes, each of
754 * which may need to be retried if there is an outstanding
757 efx_for_each_channel(channel
, efx
) {
758 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
759 if (atomic_read(&efx
->rxq_flush_outstanding
) >=
763 if (rx_queue
->flush_pending
) {
764 rx_queue
->flush_pending
= false;
765 atomic_dec(&efx
->rxq_flush_pending
);
766 atomic_inc(&efx
->rxq_flush_outstanding
);
767 efx_flush_rx_queue(rx_queue
);
773 timeout
= wait_event_timeout(efx
->flush_wq
, efx_flush_wake(efx
),
777 if (atomic_read(&efx
->drain_pending
) &&
778 !efx_check_tx_flush_complete(efx
)) {
779 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues "
780 "(rx %d+%d)\n", atomic_read(&efx
->drain_pending
),
781 atomic_read(&efx
->rxq_flush_outstanding
),
782 atomic_read(&efx
->rxq_flush_pending
));
785 atomic_set(&efx
->drain_pending
, 0);
786 atomic_set(&efx
->rxq_flush_pending
, 0);
787 atomic_set(&efx
->rxq_flush_outstanding
, 0);
790 efx
->type
->finish_flush(efx
);
795 /**************************************************************************
797 * Event queue processing
798 * Event queues are processed by per-channel tasklets.
800 **************************************************************************/
802 /* Update a channel's event queue's read pointer (RPTR) register
804 * This writes the EVQ_RPTR_REG register for the specified channel's
807 void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
810 struct efx_nic
*efx
= channel
->efx
;
812 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
813 channel
->eventq_read_ptr
& channel
->eventq_mask
);
814 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
818 /* Use HW to insert a SW defined event */
819 void efx_generate_event(struct efx_nic
*efx
, unsigned int evq
,
822 efx_oword_t drv_ev_reg
;
824 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
825 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
826 drv_ev_reg
.u32
[0] = event
->u32
[0];
827 drv_ev_reg
.u32
[1] = event
->u32
[1];
828 drv_ev_reg
.u32
[2] = 0;
829 drv_ev_reg
.u32
[3] = 0;
830 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, evq
);
831 efx_writeo(efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
834 static void efx_magic_event(struct efx_channel
*channel
, u32 magic
)
838 EFX_POPULATE_QWORD_2(event
, FSF_AZ_EV_CODE
,
839 FSE_AZ_EV_CODE_DRV_GEN_EV
,
840 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
841 efx_generate_event(channel
->efx
, channel
->channel
, &event
);
844 /* Handle a transmit completion event
846 * The NIC batches TX completion events; the message we receive is of
847 * the form "complete all TX events up to this index".
850 efx_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
852 unsigned int tx_ev_desc_ptr
;
853 unsigned int tx_ev_q_label
;
854 struct efx_tx_queue
*tx_queue
;
855 struct efx_nic
*efx
= channel
->efx
;
858 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
861 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
862 /* Transmit completion */
863 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
864 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
865 tx_queue
= efx_channel_get_tx_queue(
866 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
867 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
869 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
870 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
871 /* Rewrite the FIFO write pointer */
872 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
873 tx_queue
= efx_channel_get_tx_queue(
874 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
876 netif_tx_lock(efx
->net_dev
);
877 efx_notify_tx_desc(tx_queue
);
878 netif_tx_unlock(efx
->net_dev
);
879 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
880 EFX_WORKAROUND_10727(efx
)) {
881 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
883 netif_err(efx
, tx_err
, efx
->net_dev
,
884 "channel %d unexpected TX event "
885 EFX_QWORD_FMT
"\n", channel
->channel
,
886 EFX_QWORD_VAL(*event
));
892 /* Detect errors included in the rx_evt_pkt_ok bit. */
893 static u16
efx_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
894 const efx_qword_t
*event
)
896 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
897 struct efx_nic
*efx
= rx_queue
->efx
;
898 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
899 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
900 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
901 bool rx_ev_other_err
, rx_ev_pause_frm
;
902 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
903 unsigned rx_ev_pkt_type
;
905 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
906 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
907 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
908 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
909 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
910 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
911 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
912 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
913 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
914 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
915 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
916 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
917 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
918 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
919 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
921 /* Every error apart from tobe_disc and pause_frm */
922 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
923 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
924 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
926 /* Count errors that are not in MAC stats. Ignore expected
927 * checksum errors during self-test. */
929 ++channel
->n_rx_frm_trunc
;
930 else if (rx_ev_tobe_disc
)
931 ++channel
->n_rx_tobe_disc
;
932 else if (!efx
->loopback_selftest
) {
933 if (rx_ev_ip_hdr_chksum_err
)
934 ++channel
->n_rx_ip_hdr_chksum_err
;
935 else if (rx_ev_tcp_udp_chksum_err
)
936 ++channel
->n_rx_tcp_udp_chksum_err
;
939 /* TOBE_DISC is expected on unicast mismatches; don't print out an
940 * error message. FRM_TRUNC indicates RXDP dropped the packet due
941 * to a FIFO overflow.
944 if (rx_ev_other_err
&& net_ratelimit()) {
945 netif_dbg(efx
, rx_err
, efx
->net_dev
,
946 " RX queue %d unexpected RX event "
947 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
948 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
949 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
950 rx_ev_ip_hdr_chksum_err
?
951 " [IP_HDR_CHKSUM_ERR]" : "",
952 rx_ev_tcp_udp_chksum_err
?
953 " [TCP_UDP_CHKSUM_ERR]" : "",
954 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
955 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
956 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
957 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
958 rx_ev_pause_frm
? " [PAUSE]" : "");
962 /* The frame must be discarded if any of these are true. */
963 return (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
964 rx_ev_tobe_disc
| rx_ev_pause_frm
) ?
965 EFX_RX_PKT_DISCARD
: 0;
968 /* Handle receive events that are not in-order. */
970 efx_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
972 struct efx_nic
*efx
= rx_queue
->efx
;
973 unsigned expected
, dropped
;
975 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
976 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
977 netif_info(efx
, rx_err
, efx
->net_dev
,
978 "dropped %d events (index=%d expected=%d)\n",
979 dropped
, index
, expected
);
981 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
982 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
985 /* Handle a packet received event
987 * The NIC gives a "discard" flag if it's a unicast packet with the
988 * wrong destination address
989 * Also "is multicast" and "matches multicast filter" flags can be used to
990 * discard non-matching multicast packets.
993 efx_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
995 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
996 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
997 unsigned expected_ptr
;
1000 struct efx_rx_queue
*rx_queue
;
1001 struct efx_nic
*efx
= channel
->efx
;
1003 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
1006 /* Basic packet information */
1007 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
1008 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
1009 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
1010 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
1011 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
1012 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
1015 rx_queue
= efx_channel_get_rx_queue(channel
);
1017 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
1018 expected_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
1019 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
1020 efx_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
1022 if (likely(rx_ev_pkt_ok
)) {
1023 /* If packet is marked as OK and packet type is TCP/IP or
1024 * UDP/IP, then we can rely on the hardware checksum.
1026 flags
= (rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
||
1027 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
) ?
1028 EFX_RX_PKT_CSUMMED
: 0;
1030 flags
= efx_handle_rx_not_ok(rx_queue
, event
);
1033 /* Detect multicast packets that didn't match the filter */
1034 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
1035 if (rx_ev_mcast_pkt
) {
1036 unsigned int rx_ev_mcast_hash_match
=
1037 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
1039 if (unlikely(!rx_ev_mcast_hash_match
)) {
1040 ++channel
->n_rx_mcast_mismatch
;
1041 flags
|= EFX_RX_PKT_DISCARD
;
1045 channel
->irq_mod_score
+= 2;
1047 /* Handle received packet */
1048 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
, flags
);
1051 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1052 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1053 * of all transmit completions.
1056 efx_handle_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1058 struct efx_tx_queue
*tx_queue
;
1061 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1062 if (qid
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1063 tx_queue
= efx_get_tx_queue(efx
, qid
/ EFX_TXQ_TYPES
,
1064 qid
% EFX_TXQ_TYPES
);
1065 if (atomic_cmpxchg(&tx_queue
->flush_outstanding
, 1, 0)) {
1066 efx_magic_event(tx_queue
->channel
,
1067 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue
));
1072 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1073 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1074 * the RX queue back to the mask of RX queues in need of flushing.
1077 efx_handle_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1079 struct efx_channel
*channel
;
1080 struct efx_rx_queue
*rx_queue
;
1084 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1085 failed
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1086 if (qid
>= efx
->n_channels
)
1088 channel
= efx_get_channel(efx
, qid
);
1089 if (!efx_channel_has_rx_queue(channel
))
1091 rx_queue
= efx_channel_get_rx_queue(channel
);
1094 netif_info(efx
, hw
, efx
->net_dev
,
1095 "RXQ %d flush retry\n", qid
);
1096 rx_queue
->flush_pending
= true;
1097 atomic_inc(&efx
->rxq_flush_pending
);
1099 efx_magic_event(efx_rx_queue_channel(rx_queue
),
1100 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
));
1102 atomic_dec(&efx
->rxq_flush_outstanding
);
1103 if (efx_flush_wake(efx
))
1104 wake_up(&efx
->flush_wq
);
1108 efx_handle_drain_event(struct efx_channel
*channel
)
1110 struct efx_nic
*efx
= channel
->efx
;
1112 WARN_ON(atomic_read(&efx
->drain_pending
) == 0);
1113 atomic_dec(&efx
->drain_pending
);
1114 if (efx_flush_wake(efx
))
1115 wake_up(&efx
->flush_wq
);
1119 efx_handle_generated_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1121 struct efx_nic
*efx
= channel
->efx
;
1122 struct efx_rx_queue
*rx_queue
=
1123 efx_channel_has_rx_queue(channel
) ?
1124 efx_channel_get_rx_queue(channel
) : NULL
;
1125 unsigned magic
, code
;
1127 magic
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1128 code
= _EFX_CHANNEL_MAGIC_CODE(magic
);
1130 if (magic
== EFX_CHANNEL_MAGIC_TEST(channel
)) {
1131 channel
->event_test_cpu
= raw_smp_processor_id();
1132 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_FILL(rx_queue
)) {
1133 /* The queue must be empty, so we won't receive any rx
1134 * events, so efx_process_channel() won't refill the
1135 * queue. Refill it here */
1136 efx_fast_push_rx_descriptors(rx_queue
);
1137 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
)) {
1138 rx_queue
->enabled
= false;
1139 efx_handle_drain_event(channel
);
1140 } else if (code
== _EFX_CHANNEL_MAGIC_TX_DRAIN
) {
1141 efx_handle_drain_event(channel
);
1143 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
1144 "generated event "EFX_QWORD_FMT
"\n",
1145 channel
->channel
, EFX_QWORD_VAL(*event
));
1150 efx_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1152 struct efx_nic
*efx
= channel
->efx
;
1153 unsigned int ev_sub_code
;
1154 unsigned int ev_sub_data
;
1156 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
1157 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1159 switch (ev_sub_code
) {
1160 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
1161 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
1162 channel
->channel
, ev_sub_data
);
1163 efx_handle_tx_flush_done(efx
, event
);
1164 efx_sriov_tx_flush_done(efx
, event
);
1166 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
1167 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
1168 channel
->channel
, ev_sub_data
);
1169 efx_handle_rx_flush_done(efx
, event
);
1170 efx_sriov_rx_flush_done(efx
, event
);
1172 case FSE_AZ_EVQ_INIT_DONE_EV
:
1173 netif_dbg(efx
, hw
, efx
->net_dev
,
1174 "channel %d EVQ %d initialised\n",
1175 channel
->channel
, ev_sub_data
);
1177 case FSE_AZ_SRM_UPD_DONE_EV
:
1178 netif_vdbg(efx
, hw
, efx
->net_dev
,
1179 "channel %d SRAM update done\n", channel
->channel
);
1181 case FSE_AZ_WAKE_UP_EV
:
1182 netif_vdbg(efx
, hw
, efx
->net_dev
,
1183 "channel %d RXQ %d wakeup event\n",
1184 channel
->channel
, ev_sub_data
);
1186 case FSE_AZ_TIMER_EV
:
1187 netif_vdbg(efx
, hw
, efx
->net_dev
,
1188 "channel %d RX queue %d timer expired\n",
1189 channel
->channel
, ev_sub_data
);
1191 case FSE_AA_RX_RECOVER_EV
:
1192 netif_err(efx
, rx_err
, efx
->net_dev
,
1193 "channel %d seen DRIVER RX_RESET event. "
1194 "Resetting.\n", channel
->channel
);
1195 atomic_inc(&efx
->rx_reset
);
1196 efx_schedule_reset(efx
,
1197 EFX_WORKAROUND_6555(efx
) ?
1198 RESET_TYPE_RX_RECOVERY
:
1199 RESET_TYPE_DISABLE
);
1201 case FSE_BZ_RX_DSC_ERROR_EV
:
1202 if (ev_sub_data
< EFX_VI_BASE
) {
1203 netif_err(efx
, rx_err
, efx
->net_dev
,
1204 "RX DMA Q %d reports descriptor fetch error."
1205 " RX Q %d is disabled.\n", ev_sub_data
,
1207 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
1209 efx_sriov_desc_fetch_err(efx
, ev_sub_data
);
1211 case FSE_BZ_TX_DSC_ERROR_EV
:
1212 if (ev_sub_data
< EFX_VI_BASE
) {
1213 netif_err(efx
, tx_err
, efx
->net_dev
,
1214 "TX DMA Q %d reports descriptor fetch error."
1215 " TX Q %d is disabled.\n", ev_sub_data
,
1217 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
1219 efx_sriov_desc_fetch_err(efx
, ev_sub_data
);
1222 netif_vdbg(efx
, hw
, efx
->net_dev
,
1223 "channel %d unknown driver event code %d "
1224 "data %04x\n", channel
->channel
, ev_sub_code
,
1230 int efx_nic_process_eventq(struct efx_channel
*channel
, int budget
)
1232 struct efx_nic
*efx
= channel
->efx
;
1233 unsigned int read_ptr
;
1234 efx_qword_t event
, *p_event
;
1239 read_ptr
= channel
->eventq_read_ptr
;
1242 p_event
= efx_event(channel
, read_ptr
);
1245 if (!efx_event_present(&event
))
1249 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1250 "channel %d event is "EFX_QWORD_FMT
"\n",
1251 channel
->channel
, EFX_QWORD_VAL(event
));
1253 /* Clear this event by marking it all ones */
1254 EFX_SET_QWORD(*p_event
);
1258 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1261 case FSE_AZ_EV_CODE_RX_EV
:
1262 efx_handle_rx_event(channel
, &event
);
1263 if (++spent
== budget
)
1266 case FSE_AZ_EV_CODE_TX_EV
:
1267 tx_packets
+= efx_handle_tx_event(channel
, &event
);
1268 if (tx_packets
> efx
->txq_entries
) {
1273 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1274 efx_handle_generated_event(channel
, &event
);
1276 case FSE_AZ_EV_CODE_DRIVER_EV
:
1277 efx_handle_driver_event(channel
, &event
);
1279 case FSE_CZ_EV_CODE_USER_EV
:
1280 efx_sriov_event(channel
, &event
);
1282 case FSE_CZ_EV_CODE_MCDI_EV
:
1283 efx_mcdi_process_event(channel
, &event
);
1285 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1286 if (efx
->type
->handle_global_event
&&
1287 efx
->type
->handle_global_event(channel
, &event
))
1289 /* else fall through */
1291 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1292 "channel %d unknown event type %d (data "
1293 EFX_QWORD_FMT
")\n", channel
->channel
,
1294 ev_code
, EFX_QWORD_VAL(event
));
1299 channel
->eventq_read_ptr
= read_ptr
;
1303 /* Check whether an event is present in the eventq at the current
1304 * read pointer. Only useful for self-test.
1306 bool efx_nic_event_present(struct efx_channel
*channel
)
1308 return efx_event_present(efx_event(channel
, channel
->eventq_read_ptr
));
1311 /* Allocate buffer table entries for event queue */
1312 int efx_nic_probe_eventq(struct efx_channel
*channel
)
1314 struct efx_nic
*efx
= channel
->efx
;
1317 entries
= channel
->eventq_mask
+ 1;
1318 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1319 entries
* sizeof(efx_qword_t
));
1322 void efx_nic_init_eventq(struct efx_channel
*channel
)
1325 struct efx_nic
*efx
= channel
->efx
;
1327 netif_dbg(efx
, hw
, efx
->net_dev
,
1328 "channel %d event queue in special buffers %d-%d\n",
1329 channel
->channel
, channel
->eventq
.index
,
1330 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1332 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1333 EFX_POPULATE_OWORD_3(reg
,
1334 FRF_CZ_TIMER_Q_EN
, 1,
1335 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1336 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1337 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1340 /* Pin event queue buffer */
1341 efx_init_special_buffer(efx
, &channel
->eventq
);
1343 /* Fill event queue with all ones (i.e. empty events) */
1344 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1346 /* Push event queue to card */
1347 EFX_POPULATE_OWORD_3(reg
,
1349 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1350 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1351 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1354 efx
->type
->push_irq_moderation(channel
);
1357 void efx_nic_fini_eventq(struct efx_channel
*channel
)
1360 struct efx_nic
*efx
= channel
->efx
;
1362 /* Remove event queue from card */
1363 EFX_ZERO_OWORD(reg
);
1364 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1366 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1367 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1369 /* Unpin event queue */
1370 efx_fini_special_buffer(efx
, &channel
->eventq
);
1373 /* Free buffers backing event queue */
1374 void efx_nic_remove_eventq(struct efx_channel
*channel
)
1376 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1380 void efx_nic_event_test_start(struct efx_channel
*channel
)
1382 channel
->event_test_cpu
= -1;
1384 efx_magic_event(channel
, EFX_CHANNEL_MAGIC_TEST(channel
));
1387 void efx_nic_generate_fill_event(struct efx_rx_queue
*rx_queue
)
1389 efx_magic_event(efx_rx_queue_channel(rx_queue
),
1390 EFX_CHANNEL_MAGIC_FILL(rx_queue
));
1393 /**************************************************************************
1395 * Hardware interrupts
1396 * The hardware interrupt handler does very little work; all the event
1397 * queue processing is carried out by per-channel tasklets.
1399 **************************************************************************/
1401 /* Enable/disable/generate interrupts */
1402 static inline void efx_nic_interrupts(struct efx_nic
*efx
,
1403 bool enabled
, bool force
)
1405 efx_oword_t int_en_reg_ker
;
1407 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1408 FRF_AZ_KER_INT_LEVE_SEL
, efx
->irq_level
,
1409 FRF_AZ_KER_INT_KER
, force
,
1410 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1411 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1414 void efx_nic_enable_interrupts(struct efx_nic
*efx
)
1416 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1417 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1419 efx_nic_interrupts(efx
, true, false);
1422 void efx_nic_disable_interrupts(struct efx_nic
*efx
)
1424 /* Disable interrupts */
1425 efx_nic_interrupts(efx
, false, false);
1428 /* Generate a test interrupt
1429 * Interrupt must already have been enabled, otherwise nasty things
1432 void efx_nic_irq_test_start(struct efx_nic
*efx
)
1434 efx
->last_irq_cpu
= -1;
1436 efx_nic_interrupts(efx
, true, true);
1439 /* Process a fatal interrupt
1440 * Disable bus mastering ASAP and schedule a reset
1442 irqreturn_t
efx_nic_fatal_interrupt(struct efx_nic
*efx
)
1444 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1445 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1446 efx_oword_t fatal_intr
;
1447 int error
, mem_perr
;
1449 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1450 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1452 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1453 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1454 EFX_OWORD_VAL(fatal_intr
),
1455 error
? "disabling bus mastering" : "no recognised error");
1457 /* If this is a memory parity error dump which blocks are offending */
1458 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1459 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1462 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1463 netif_err(efx
, hw
, efx
->net_dev
,
1464 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1465 EFX_OWORD_VAL(reg
));
1468 /* Disable both devices */
1469 pci_clear_master(efx
->pci_dev
);
1470 if (efx_nic_is_dual_func(efx
))
1471 pci_clear_master(nic_data
->pci_dev2
);
1472 efx_nic_disable_interrupts(efx
);
1474 /* Count errors and reset or disable the NIC accordingly */
1475 if (efx
->int_error_count
== 0 ||
1476 time_after(jiffies
, efx
->int_error_expire
)) {
1477 efx
->int_error_count
= 0;
1478 efx
->int_error_expire
=
1479 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1481 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1482 netif_err(efx
, hw
, efx
->net_dev
,
1483 "SYSTEM ERROR - reset scheduled\n");
1484 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1486 netif_err(efx
, hw
, efx
->net_dev
,
1487 "SYSTEM ERROR - max number of errors seen."
1488 "NIC will be disabled\n");
1489 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1495 /* Handle a legacy interrupt
1496 * Acknowledges the interrupt and schedule event queue processing.
1498 static irqreturn_t
efx_legacy_interrupt(int irq
, void *dev_id
)
1500 struct efx_nic
*efx
= dev_id
;
1501 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1502 irqreturn_t result
= IRQ_NONE
;
1503 struct efx_channel
*channel
;
1508 /* Could this be ours? If interrupts are disabled then the
1509 * channel state may not be valid.
1511 if (!efx
->legacy_irq_enabled
)
1514 /* Read the ISR which also ACKs the interrupts */
1515 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1516 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1518 /* Handle non-event-queue sources */
1519 if (queues
& (1U << efx
->irq_level
)) {
1520 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1521 if (unlikely(syserr
))
1522 return efx_nic_fatal_interrupt(efx
);
1523 efx
->last_irq_cpu
= raw_smp_processor_id();
1527 if (EFX_WORKAROUND_15783(efx
))
1528 efx
->irq_zero_count
= 0;
1530 /* Schedule processing of any interrupting queues */
1531 efx_for_each_channel(channel
, efx
) {
1533 efx_schedule_channel_irq(channel
);
1536 result
= IRQ_HANDLED
;
1538 } else if (EFX_WORKAROUND_15783(efx
)) {
1541 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1542 * because this might be a shared interrupt. */
1543 if (efx
->irq_zero_count
++ == 0)
1544 result
= IRQ_HANDLED
;
1546 /* Ensure we schedule or rearm all event queues */
1547 efx_for_each_channel(channel
, efx
) {
1548 event
= efx_event(channel
, channel
->eventq_read_ptr
);
1549 if (efx_event_present(event
))
1550 efx_schedule_channel_irq(channel
);
1552 efx_nic_eventq_read_ack(channel
);
1556 if (result
== IRQ_HANDLED
)
1557 netif_vdbg(efx
, intr
, efx
->net_dev
,
1558 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1559 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1564 /* Handle an MSI interrupt
1566 * Handle an MSI hardware interrupt. This routine schedules event
1567 * queue processing. No interrupt acknowledgement cycle is necessary.
1568 * Also, we never need to check that the interrupt is for us, since
1569 * MSI interrupts cannot be shared.
1571 static irqreturn_t
efx_msi_interrupt(int irq
, void *dev_id
)
1573 struct efx_channel
*channel
= *(struct efx_channel
**)dev_id
;
1574 struct efx_nic
*efx
= channel
->efx
;
1575 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1578 netif_vdbg(efx
, intr
, efx
->net_dev
,
1579 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1580 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1582 /* Handle non-event-queue sources */
1583 if (channel
->channel
== efx
->irq_level
) {
1584 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1585 if (unlikely(syserr
))
1586 return efx_nic_fatal_interrupt(efx
);
1587 efx
->last_irq_cpu
= raw_smp_processor_id();
1590 /* Schedule processing of the channel */
1591 efx_schedule_channel_irq(channel
);
1597 /* Setup RSS indirection table.
1598 * This maps from the hash value of the packet to RXQ
1600 void efx_nic_push_rx_indir_table(struct efx_nic
*efx
)
1605 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1608 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1609 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1611 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1612 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1613 efx
->rx_indir_table
[i
]);
1614 efx_writed_table(efx
, &dword
, FR_BZ_RX_INDIRECTION_TBL
, i
);
1618 /* Hook interrupt handler(s)
1619 * Try MSI and then legacy interrupts.
1621 int efx_nic_init_interrupt(struct efx_nic
*efx
)
1623 struct efx_channel
*channel
;
1626 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1627 irq_handler_t handler
;
1628 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1629 handler
= efx_legacy_interrupt
;
1631 handler
= falcon_legacy_interrupt_a1
;
1633 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1636 netif_err(efx
, drv
, efx
->net_dev
,
1637 "failed to hook legacy IRQ %d\n",
1644 /* Hook MSI or MSI-X interrupt */
1645 efx_for_each_channel(channel
, efx
) {
1646 rc
= request_irq(channel
->irq
, efx_msi_interrupt
,
1647 IRQF_PROBE_SHARED
, /* Not shared */
1648 efx
->channel_name
[channel
->channel
],
1649 &efx
->channel
[channel
->channel
]);
1651 netif_err(efx
, drv
, efx
->net_dev
,
1652 "failed to hook IRQ %d\n", channel
->irq
);
1660 efx_for_each_channel(channel
, efx
)
1661 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1666 void efx_nic_fini_interrupt(struct efx_nic
*efx
)
1668 struct efx_channel
*channel
;
1671 /* Disable MSI/MSI-X interrupts */
1672 efx_for_each_channel(channel
, efx
) {
1674 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1677 /* ACK legacy interrupt */
1678 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1679 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1681 falcon_irq_ack_a1(efx
);
1683 /* Disable legacy interrupt */
1684 if (efx
->legacy_irq
)
1685 free_irq(efx
->legacy_irq
, efx
);
1688 /* Looks at available SRAM resources and works out how many queues we
1689 * can support, and where things like descriptor caches should live.
1691 * SRAM is split up as follows:
1692 * 0 buftbl entries for channels
1693 * efx->vf_buftbl_base buftbl entries for SR-IOV
1694 * efx->rx_dc_base RX descriptor caches
1695 * efx->tx_dc_base TX descriptor caches
1697 void efx_nic_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
)
1699 unsigned vi_count
, buftbl_min
;
1701 /* Account for the buffer table entries backing the datapath channels
1702 * and the descriptor caches for those channels.
1704 buftbl_min
= ((efx
->n_rx_channels
* EFX_MAX_DMAQ_SIZE
+
1705 efx
->n_tx_channels
* EFX_TXQ_TYPES
* EFX_MAX_DMAQ_SIZE
+
1706 efx
->n_channels
* EFX_MAX_EVQ_SIZE
)
1707 * sizeof(efx_qword_t
) / EFX_BUF_SIZE
);
1708 vi_count
= max(efx
->n_channels
, efx
->n_tx_channels
* EFX_TXQ_TYPES
);
1710 #ifdef CONFIG_SFC_SRIOV
1711 if (efx_sriov_wanted(efx
)) {
1712 unsigned vi_dc_entries
, buftbl_free
, entries_per_vf
, vf_limit
;
1714 efx
->vf_buftbl_base
= buftbl_min
;
1716 vi_dc_entries
= RX_DC_ENTRIES
+ TX_DC_ENTRIES
;
1717 vi_count
= max(vi_count
, EFX_VI_BASE
);
1718 buftbl_free
= (sram_lim_qw
- buftbl_min
-
1719 vi_count
* vi_dc_entries
);
1721 entries_per_vf
= ((vi_dc_entries
+ EFX_VF_BUFTBL_PER_VI
) *
1723 vf_limit
= min(buftbl_free
/ entries_per_vf
,
1724 (1024U - EFX_VI_BASE
) >> efx
->vi_scale
);
1726 if (efx
->vf_count
> vf_limit
) {
1727 netif_err(efx
, probe
, efx
->net_dev
,
1728 "Reducing VF count from from %d to %d\n",
1729 efx
->vf_count
, vf_limit
);
1730 efx
->vf_count
= vf_limit
;
1732 vi_count
+= efx
->vf_count
* efx_vf_size(efx
);
1736 efx
->tx_dc_base
= sram_lim_qw
- vi_count
* TX_DC_ENTRIES
;
1737 efx
->rx_dc_base
= efx
->tx_dc_base
- vi_count
* RX_DC_ENTRIES
;
1740 u32
efx_nic_fpga_ver(struct efx_nic
*efx
)
1742 efx_oword_t altera_build
;
1743 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1744 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1747 void efx_nic_init_common(struct efx_nic
*efx
)
1751 /* Set positions of descriptor caches in SRAM. */
1752 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, efx
->tx_dc_base
);
1753 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1754 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, efx
->rx_dc_base
);
1755 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1757 /* Set TX descriptor cache size. */
1758 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1759 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1760 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1762 /* Set RX descriptor cache size. Set low watermark to size-8, as
1763 * this allows most efficient prefetching.
1765 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1766 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1767 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1768 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1769 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1771 /* Program INT_KER address */
1772 EFX_POPULATE_OWORD_2(temp
,
1773 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1774 EFX_INT_MODE_USE_MSI(efx
),
1775 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1776 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1778 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1779 /* Use an interrupt level unused by event queues */
1780 efx
->irq_level
= 0x1f;
1782 /* Use a valid MSI-X vector */
1785 /* Enable all the genuinely fatal interrupts. (They are still
1786 * masked by the overall interrupt mask, controlled by
1787 * falcon_interrupts()).
1789 * Note: All other fatal interrupts are enabled
1791 EFX_POPULATE_OWORD_3(temp
,
1792 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1793 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1794 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1795 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1796 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1797 EFX_INVERT_OWORD(temp
);
1798 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1800 efx_nic_push_rx_indir_table(efx
);
1802 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1803 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1805 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1806 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1807 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1808 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1809 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1810 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1811 /* Enable SW_EV to inherit in char driver - assume harmless here */
1812 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1813 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1814 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1815 /* Disable hardware watchdog which can misfire */
1816 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1817 /* Squash TX of packets of 16 bytes or less */
1818 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1819 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1820 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1822 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1823 EFX_POPULATE_OWORD_4(temp
,
1824 /* Default values */
1825 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1826 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1827 FRF_BZ_TX_PACE_FB_BASE
, 0,
1828 /* Allow large pace values in the
1830 FRF_BZ_TX_PACE_BIN_TH
,
1831 FFE_BZ_TX_PACE_RESERVED
);
1832 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1838 #define REGISTER_REVISION_A 1
1839 #define REGISTER_REVISION_B 2
1840 #define REGISTER_REVISION_C 3
1841 #define REGISTER_REVISION_Z 3 /* latest revision */
1843 struct efx_nic_reg
{
1845 u32 min_revision
:2, max_revision
:2;
1848 #define REGISTER(name, min_rev, max_rev) { \
1849 FR_ ## min_rev ## max_rev ## _ ## name, \
1850 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1852 #define REGISTER_AA(name) REGISTER(name, A, A)
1853 #define REGISTER_AB(name) REGISTER(name, A, B)
1854 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1855 #define REGISTER_BB(name) REGISTER(name, B, B)
1856 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1857 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1859 static const struct efx_nic_reg efx_nic_regs
[] = {
1860 REGISTER_AZ(ADR_REGION
),
1861 REGISTER_AZ(INT_EN_KER
),
1862 REGISTER_BZ(INT_EN_CHAR
),
1863 REGISTER_AZ(INT_ADR_KER
),
1864 REGISTER_BZ(INT_ADR_CHAR
),
1865 /* INT_ACK_KER is WO */
1866 /* INT_ISR0 is RC */
1867 REGISTER_AZ(HW_INIT
),
1868 REGISTER_CZ(USR_EV_CFG
),
1869 REGISTER_AB(EE_SPI_HCMD
),
1870 REGISTER_AB(EE_SPI_HADR
),
1871 REGISTER_AB(EE_SPI_HDATA
),
1872 REGISTER_AB(EE_BASE_PAGE
),
1873 REGISTER_AB(EE_VPD_CFG0
),
1874 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1875 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1876 /* PCIE_CORE_INDIRECT is indirect */
1877 REGISTER_AB(NIC_STAT
),
1878 REGISTER_AB(GPIO_CTL
),
1879 REGISTER_AB(GLB_CTL
),
1880 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1881 REGISTER_BZ(DP_CTRL
),
1882 REGISTER_AZ(MEM_STAT
),
1883 REGISTER_AZ(CS_DEBUG
),
1884 REGISTER_AZ(ALTERA_BUILD
),
1885 REGISTER_AZ(CSR_SPARE
),
1886 REGISTER_AB(PCIE_SD_CTL0123
),
1887 REGISTER_AB(PCIE_SD_CTL45
),
1888 REGISTER_AB(PCIE_PCS_CTL_STAT
),
1889 /* DEBUG_DATA_OUT is not used */
1891 REGISTER_AZ(EVQ_CTL
),
1892 REGISTER_AZ(EVQ_CNT1
),
1893 REGISTER_AZ(EVQ_CNT2
),
1894 REGISTER_AZ(BUF_TBL_CFG
),
1895 REGISTER_AZ(SRM_RX_DC_CFG
),
1896 REGISTER_AZ(SRM_TX_DC_CFG
),
1897 REGISTER_AZ(SRM_CFG
),
1898 /* BUF_TBL_UPD is WO */
1899 REGISTER_AZ(SRM_UPD_EVQ
),
1900 REGISTER_AZ(SRAM_PARITY
),
1901 REGISTER_AZ(RX_CFG
),
1902 REGISTER_BZ(RX_FILTER_CTL
),
1903 /* RX_FLUSH_DESCQ is WO */
1904 REGISTER_AZ(RX_DC_CFG
),
1905 REGISTER_AZ(RX_DC_PF_WM
),
1906 REGISTER_BZ(RX_RSS_TKEY
),
1907 /* RX_NODESC_DROP is RC */
1908 REGISTER_AA(RX_SELF_RST
),
1909 /* RX_DEBUG, RX_PUSH_DROP are not used */
1910 REGISTER_CZ(RX_RSS_IPV6_REG1
),
1911 REGISTER_CZ(RX_RSS_IPV6_REG2
),
1912 REGISTER_CZ(RX_RSS_IPV6_REG3
),
1913 /* TX_FLUSH_DESCQ is WO */
1914 REGISTER_AZ(TX_DC_CFG
),
1915 REGISTER_AA(TX_CHKSM_CFG
),
1916 REGISTER_AZ(TX_CFG
),
1917 /* TX_PUSH_DROP is not used */
1918 REGISTER_AZ(TX_RESERVED
),
1919 REGISTER_BZ(TX_PACE
),
1920 /* TX_PACE_DROP_QID is RC */
1921 REGISTER_BB(TX_VLAN
),
1922 REGISTER_BZ(TX_IPFIL_PORTEN
),
1923 REGISTER_AB(MD_TXD
),
1924 REGISTER_AB(MD_RXD
),
1926 REGISTER_AB(MD_PHY_ADR
),
1929 REGISTER_AB(MAC_STAT_DMA
),
1930 REGISTER_AB(MAC_CTRL
),
1931 REGISTER_BB(GEN_MODE
),
1932 REGISTER_AB(MAC_MC_HASH_REG0
),
1933 REGISTER_AB(MAC_MC_HASH_REG1
),
1934 REGISTER_AB(GM_CFG1
),
1935 REGISTER_AB(GM_CFG2
),
1936 /* GM_IPG and GM_HD are not used */
1937 REGISTER_AB(GM_MAX_FLEN
),
1938 /* GM_TEST is not used */
1939 REGISTER_AB(GM_ADR1
),
1940 REGISTER_AB(GM_ADR2
),
1941 REGISTER_AB(GMF_CFG0
),
1942 REGISTER_AB(GMF_CFG1
),
1943 REGISTER_AB(GMF_CFG2
),
1944 REGISTER_AB(GMF_CFG3
),
1945 REGISTER_AB(GMF_CFG4
),
1946 REGISTER_AB(GMF_CFG5
),
1947 REGISTER_BB(TX_SRC_MAC_CTL
),
1948 REGISTER_AB(XM_ADR_LO
),
1949 REGISTER_AB(XM_ADR_HI
),
1950 REGISTER_AB(XM_GLB_CFG
),
1951 REGISTER_AB(XM_TX_CFG
),
1952 REGISTER_AB(XM_RX_CFG
),
1953 REGISTER_AB(XM_MGT_INT_MASK
),
1955 REGISTER_AB(XM_PAUSE_TIME
),
1956 REGISTER_AB(XM_TX_PARAM
),
1957 REGISTER_AB(XM_RX_PARAM
),
1958 /* XM_MGT_INT_MSK (note no 'A') is RC */
1959 REGISTER_AB(XX_PWR_RST
),
1960 REGISTER_AB(XX_SD_CTL
),
1961 REGISTER_AB(XX_TXDRV_CTL
),
1962 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1963 /* XX_CORE_STAT is partly RC */
1966 struct efx_nic_reg_table
{
1968 u32 min_revision
:2, max_revision
:2;
1969 u32 step
:6, rows
:21;
1972 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1974 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1977 #define REGISTER_TABLE(name, min_rev, max_rev) \
1978 REGISTER_TABLE_DIMENSIONS( \
1979 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1981 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1982 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1983 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1984 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1985 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1986 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1987 #define REGISTER_TABLE_BB_CZ(name) \
1988 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1989 FR_BZ_ ## name ## _STEP, \
1990 FR_BB_ ## name ## _ROWS), \
1991 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1992 FR_BZ_ ## name ## _STEP, \
1993 FR_CZ_ ## name ## _ROWS)
1994 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1996 static const struct efx_nic_reg_table efx_nic_reg_tables
[] = {
1997 /* DRIVER is not used */
1998 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1999 REGISTER_TABLE_BB(TX_IPFIL_TBL
),
2000 REGISTER_TABLE_BB(TX_SRC_MAC_TBL
),
2001 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER
),
2002 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL
),
2003 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER
),
2004 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL
),
2005 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER
),
2006 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL
),
2007 /* We can't reasonably read all of the buffer table (up to 8MB!).
2008 * However this driver will only use a few entries. Reading
2009 * 1K entries allows for some expansion of queue count and
2010 * size before we need to change the version. */
2011 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER
, FR_AA_BUF_FULL_TBL_KER
,
2013 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL
, FR_BZ_BUF_FULL_TBL
,
2015 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0
),
2016 REGISTER_TABLE_BB_CZ(TIMER_TBL
),
2017 REGISTER_TABLE_BB_CZ(TX_PACE_TBL
),
2018 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL
),
2019 /* TX_FILTER_TBL0 is huge and not used by this driver */
2020 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0
),
2021 REGISTER_TABLE_CZ(MC_TREG_SMEM
),
2022 /* MSIX_PBA_TABLE is not mapped */
2023 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2024 REGISTER_TABLE_BZ(RX_FILTER_TBL0
),
2027 size_t efx_nic_get_regs_len(struct efx_nic
*efx
)
2029 const struct efx_nic_reg
*reg
;
2030 const struct efx_nic_reg_table
*table
;
2033 for (reg
= efx_nic_regs
;
2034 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
2036 if (efx
->type
->revision
>= reg
->min_revision
&&
2037 efx
->type
->revision
<= reg
->max_revision
)
2038 len
+= sizeof(efx_oword_t
);
2040 for (table
= efx_nic_reg_tables
;
2041 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
2043 if (efx
->type
->revision
>= table
->min_revision
&&
2044 efx
->type
->revision
<= table
->max_revision
)
2045 len
+= table
->rows
* min_t(size_t, table
->step
, 16);
2050 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
)
2052 const struct efx_nic_reg
*reg
;
2053 const struct efx_nic_reg_table
*table
;
2055 for (reg
= efx_nic_regs
;
2056 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
2058 if (efx
->type
->revision
>= reg
->min_revision
&&
2059 efx
->type
->revision
<= reg
->max_revision
) {
2060 efx_reado(efx
, (efx_oword_t
*)buf
, reg
->offset
);
2061 buf
+= sizeof(efx_oword_t
);
2065 for (table
= efx_nic_reg_tables
;
2066 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
2070 if (!(efx
->type
->revision
>= table
->min_revision
&&
2071 efx
->type
->revision
<= table
->max_revision
))
2074 size
= min_t(size_t, table
->step
, 16);
2076 for (i
= 0; i
< table
->rows
; i
++) {
2077 switch (table
->step
) {
2078 case 4: /* 32-bit register or SRAM */
2079 efx_readd_table(efx
, buf
, table
->offset
, i
);
2081 case 8: /* 64-bit SRAM */
2083 efx
->membase
+ table
->offset
,
2086 case 16: /* 128-bit register */
2087 efx_reado_table(efx
, buf
, table
->offset
, i
);
2089 case 32: /* 128-bit register, interleaved */
2090 efx_reado_table(efx
, buf
, table
->offset
, 2 * i
);