Linux 3.4.102
[linux/fpc-iii.git] / drivers / net / ethernet / tehuti / tehuti.c
blob32f0bcd5e30dc5b3a4d61b05d830bdebec8c1a3e
1 /*
2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels between driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
30 * RXD Fifo.
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include "tehuti.h"
69 static DEFINE_PCI_DEVICE_TABLE(bdx_pci_tbl) = {
70 { PCI_VDEVICE(TEHUTI, 0x3009), },
71 { PCI_VDEVICE(TEHUTI, 0x3010), },
72 { PCI_VDEVICE(TEHUTI, 0x3014), },
73 { 0 }
76 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
78 /* Definitions needed by ISR or NAPI functions */
79 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
80 static void bdx_tx_cleanup(struct bdx_priv *priv);
81 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
83 /* Definitions needed by FW loading */
84 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
86 /* Definitions needed by hw_start */
87 static int bdx_tx_init(struct bdx_priv *priv);
88 static int bdx_rx_init(struct bdx_priv *priv);
90 /* Definitions needed by bdx_close */
91 static void bdx_rx_free(struct bdx_priv *priv);
92 static void bdx_tx_free(struct bdx_priv *priv);
94 /* Definitions needed by bdx_probe */
95 static void bdx_set_ethtool_ops(struct net_device *netdev);
97 /*************************************************************************
98 * Print Info *
99 *************************************************************************/
101 static void print_hw_id(struct pci_dev *pdev)
103 struct pci_nic *nic = pci_get_drvdata(pdev);
104 u16 pci_link_status = 0;
105 u16 pci_ctrl = 0;
107 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
108 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
110 pr_info("%s%s\n", BDX_NIC_NAME,
111 nic->port_num == 1 ? "" : ", 2-Port");
112 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
113 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
114 readl(nic->regs + FPGA_SEED),
115 GET_LINK_STATUS_LANES(pci_link_status),
116 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
119 static void print_fw_id(struct pci_nic *nic)
121 pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
124 static void print_eth_id(struct net_device *ndev)
126 netdev_info(ndev, "%s, Port %c\n",
127 BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
131 /*************************************************************************
132 * Code *
133 *************************************************************************/
135 #define bdx_enable_interrupts(priv) \
136 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
137 #define bdx_disable_interrupts(priv) \
138 do { WRITE_REG(priv, regIMR, 0); } while (0)
140 /* bdx_fifo_init
141 * create TX/RX descriptor fifo for host-NIC communication.
142 * 1K extra space is allocated at the end of the fifo to simplify
143 * processing of descriptors that wraps around fifo's end
144 * @priv - NIC private structure
145 * @f - fifo to initialize
146 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
147 * @reg_XXX - offsets of registers relative to base address
149 * Returns 0 on success, negative value on failure
152 static int
153 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
154 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
156 u16 memsz = FIFO_SIZE * (1 << fsz_type);
158 memset(f, 0, sizeof(struct fifo));
159 /* pci_alloc_consistent gives us 4k-aligned memory */
160 f->va = pci_alloc_consistent(priv->pdev,
161 memsz + FIFO_EXTRA_SPACE, &f->da);
162 if (!f->va) {
163 pr_err("pci_alloc_consistent failed\n");
164 RET(-ENOMEM);
166 f->reg_CFG0 = reg_CFG0;
167 f->reg_CFG1 = reg_CFG1;
168 f->reg_RPTR = reg_RPTR;
169 f->reg_WPTR = reg_WPTR;
170 f->rptr = 0;
171 f->wptr = 0;
172 f->memsz = memsz;
173 f->size_mask = memsz - 1;
174 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
175 WRITE_REG(priv, reg_CFG1, H32_64(f->da));
177 RET(0);
180 /* bdx_fifo_free - free all resources used by fifo
181 * @priv - NIC private structure
182 * @f - fifo to release
184 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
186 ENTER;
187 if (f->va) {
188 pci_free_consistent(priv->pdev,
189 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
190 f->va = NULL;
192 RET();
196 * bdx_link_changed - notifies OS about hw link state.
197 * @bdx_priv - hw adapter structure
199 static void bdx_link_changed(struct bdx_priv *priv)
201 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
203 if (!link) {
204 if (netif_carrier_ok(priv->ndev)) {
205 netif_stop_queue(priv->ndev);
206 netif_carrier_off(priv->ndev);
207 netdev_err(priv->ndev, "Link Down\n");
209 } else {
210 if (!netif_carrier_ok(priv->ndev)) {
211 netif_wake_queue(priv->ndev);
212 netif_carrier_on(priv->ndev);
213 netdev_err(priv->ndev, "Link Up\n");
218 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
220 if (isr & IR_RX_FREE_0) {
221 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
222 DBG("RX_FREE_0\n");
225 if (isr & IR_LNKCHG0)
226 bdx_link_changed(priv);
228 if (isr & IR_PCIE_LINK)
229 netdev_err(priv->ndev, "PCI-E Link Fault\n");
231 if (isr & IR_PCIE_TOUT)
232 netdev_err(priv->ndev, "PCI-E Time Out\n");
236 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
237 * @irq - interrupt number
238 * @ndev - network device
239 * @regs - CPU registers
241 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
243 * It reads ISR register to know interrupt reasons, and proceed them one by one.
244 * Reasons of interest are:
245 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
246 * RX_FREE - number of free Rx buffers in RXF fifo gets low
247 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
250 static irqreturn_t bdx_isr_napi(int irq, void *dev)
252 struct net_device *ndev = dev;
253 struct bdx_priv *priv = netdev_priv(ndev);
254 u32 isr;
256 ENTER;
257 isr = (READ_REG(priv, regISR) & IR_RUN);
258 if (unlikely(!isr)) {
259 bdx_enable_interrupts(priv);
260 return IRQ_NONE; /* Not our interrupt */
263 if (isr & IR_EXTRA)
264 bdx_isr_extra(priv, isr);
266 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
267 if (likely(napi_schedule_prep(&priv->napi))) {
268 __napi_schedule(&priv->napi);
269 RET(IRQ_HANDLED);
270 } else {
271 /* NOTE: we get here if intr has slipped into window
272 * between these lines in bdx_poll:
273 * bdx_enable_interrupts(priv);
274 * return 0;
275 * currently intrs are disabled (since we read ISR),
276 * and we have failed to register next poll.
277 * so we read the regs to trigger chip
278 * and allow further interupts. */
279 READ_REG(priv, regTXF_WPTR_0);
280 READ_REG(priv, regRXD_WPTR_0);
284 bdx_enable_interrupts(priv);
285 RET(IRQ_HANDLED);
288 static int bdx_poll(struct napi_struct *napi, int budget)
290 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
291 int work_done;
293 ENTER;
294 bdx_tx_cleanup(priv);
295 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
296 if ((work_done < budget) ||
297 (priv->napi_stop++ >= 30)) {
298 DBG("rx poll is done. backing to isr-driven\n");
300 /* from time to time we exit to let NAPI layer release
301 * device lock and allow waiting tasks (eg rmmod) to advance) */
302 priv->napi_stop = 0;
304 napi_complete(napi);
305 bdx_enable_interrupts(priv);
307 return work_done;
310 /* bdx_fw_load - loads firmware to NIC
311 * @priv - NIC private structure
312 * Firmware is loaded via TXD fifo, so it must be initialized first.
313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
314 * can have few of them). So all drivers use semaphore register to choose one
315 * that will actually load FW to NIC.
318 static int bdx_fw_load(struct bdx_priv *priv)
320 const struct firmware *fw = NULL;
321 int master, i;
322 int rc;
324 ENTER;
325 master = READ_REG(priv, regINIT_SEMAPHORE);
326 if (!READ_REG(priv, regINIT_STATUS) && master) {
327 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
328 if (rc)
329 goto out;
330 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
331 mdelay(100);
333 for (i = 0; i < 200; i++) {
334 if (READ_REG(priv, regINIT_STATUS)) {
335 rc = 0;
336 goto out;
338 mdelay(2);
340 rc = -EIO;
341 out:
342 if (master)
343 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
344 if (fw)
345 release_firmware(fw);
347 if (rc) {
348 netdev_err(priv->ndev, "firmware loading failed\n");
349 if (rc == -EIO)
350 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
351 READ_REG(priv, regVPC),
352 READ_REG(priv, regVIC),
353 READ_REG(priv, regINIT_STATUS), i);
354 RET(rc);
355 } else {
356 DBG("%s: firmware loading success\n", priv->ndev->name);
357 RET(0);
361 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
363 u32 val;
365 ENTER;
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv, regUNC_MAC0_A),
368 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
370 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
371 WRITE_REG(priv, regUNC_MAC2_A, val);
372 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
373 WRITE_REG(priv, regUNC_MAC1_A, val);
374 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
375 WRITE_REG(priv, regUNC_MAC0_A, val);
377 DBG("mac0=%x mac1=%x mac2=%x\n",
378 READ_REG(priv, regUNC_MAC0_A),
379 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
380 RET();
383 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
384 * @priv - NIC private structure
386 static int bdx_hw_start(struct bdx_priv *priv)
388 int rc = -EIO;
389 struct net_device *ndev = priv->ndev;
391 ENTER;
392 bdx_link_changed(priv);
394 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
395 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
396 WRITE_REG(priv, regPAUSE_QUANT, 0x96);
397 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
398 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
399 WRITE_REG(priv, regRX_FULLNESS, 0);
400 WRITE_REG(priv, regTX_FULLNESS, 0);
401 WRITE_REG(priv, regCTRLST,
402 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
404 WRITE_REG(priv, regVGLB, 0);
405 WRITE_REG(priv, regMAX_FRAME_A,
406 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
408 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
409 WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
410 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
412 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
413 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
415 /* Enable timer interrupt once in 2 secs. */
416 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
417 bdx_restore_mac(priv->ndev, priv);
419 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
420 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
422 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
424 rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
425 ndev->name, ndev);
426 if (rc)
427 goto err_irq;
428 bdx_enable_interrupts(priv);
430 RET(0);
432 err_irq:
433 RET(rc);
436 static void bdx_hw_stop(struct bdx_priv *priv)
438 ENTER;
439 bdx_disable_interrupts(priv);
440 free_irq(priv->pdev->irq, priv->ndev);
442 netif_carrier_off(priv->ndev);
443 netif_stop_queue(priv->ndev);
445 RET();
448 static int bdx_hw_reset_direct(void __iomem *regs)
450 u32 val, i;
451 ENTER;
453 /* reset sequences: read, write 1, read, write 0 */
454 val = readl(regs + regCLKPLL);
455 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
456 udelay(50);
457 val = readl(regs + regCLKPLL);
458 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
460 /* check that the PLLs are locked and reset ended */
461 for (i = 0; i < 70; i++, mdelay(10))
462 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
463 /* do any PCI-E read transaction */
464 readl(regs + regRXD_CFG0_0);
465 return 0;
467 pr_err("HW reset failed\n");
468 return 1; /* failure */
471 static int bdx_hw_reset(struct bdx_priv *priv)
473 u32 val, i;
474 ENTER;
476 if (priv->port == 0) {
477 /* reset sequences: read, write 1, read, write 0 */
478 val = READ_REG(priv, regCLKPLL);
479 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
480 udelay(50);
481 val = READ_REG(priv, regCLKPLL);
482 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
484 /* check that the PLLs are locked and reset ended */
485 for (i = 0; i < 70; i++, mdelay(10))
486 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
487 /* do any PCI-E read transaction */
488 READ_REG(priv, regRXD_CFG0_0);
489 return 0;
491 pr_err("HW reset failed\n");
492 return 1; /* failure */
495 static int bdx_sw_reset(struct bdx_priv *priv)
497 int i;
499 ENTER;
500 /* 1. load MAC (obsolete) */
501 /* 2. disable Rx (and Tx) */
502 WRITE_REG(priv, regGMAC_RXF_A, 0);
503 mdelay(100);
504 /* 3. disable port */
505 WRITE_REG(priv, regDIS_PORT, 1);
506 /* 4. disable queue */
507 WRITE_REG(priv, regDIS_QU, 1);
508 /* 5. wait until hw is disabled */
509 for (i = 0; i < 50; i++) {
510 if (READ_REG(priv, regRST_PORT) & 1)
511 break;
512 mdelay(10);
514 if (i == 50)
515 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
517 /* 6. disable intrs */
518 WRITE_REG(priv, regRDINTCM0, 0);
519 WRITE_REG(priv, regTDINTCM0, 0);
520 WRITE_REG(priv, regIMR, 0);
521 READ_REG(priv, regISR);
523 /* 7. reset queue */
524 WRITE_REG(priv, regRST_QU, 1);
525 /* 8. reset port */
526 WRITE_REG(priv, regRST_PORT, 1);
527 /* 9. zero all read and write pointers */
528 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
529 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
530 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
531 WRITE_REG(priv, i, 0);
532 /* 10. unseet port disable */
533 WRITE_REG(priv, regDIS_PORT, 0);
534 /* 11. unset queue disable */
535 WRITE_REG(priv, regDIS_QU, 0);
536 /* 12. unset queue reset */
537 WRITE_REG(priv, regRST_QU, 0);
538 /* 13. unset port reset */
539 WRITE_REG(priv, regRST_PORT, 0);
540 /* 14. enable Rx */
541 /* skiped. will be done later */
542 /* 15. save MAC (obsolete) */
543 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
544 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
546 RET(0);
549 /* bdx_reset - performs right type of reset depending on hw type */
550 static int bdx_reset(struct bdx_priv *priv)
552 ENTER;
553 RET((priv->pdev->device == 0x3009)
554 ? bdx_hw_reset(priv)
555 : bdx_sw_reset(priv));
559 * bdx_close - Disables a network interface
560 * @netdev: network interface device structure
562 * Returns 0, this is not allowed to fail
564 * The close entry point is called when an interface is de-activated
565 * by the OS. The hardware is still under the drivers control, but
566 * needs to be disabled. A global MAC reset is issued to stop the
567 * hardware, and all transmit and receive resources are freed.
569 static int bdx_close(struct net_device *ndev)
571 struct bdx_priv *priv = NULL;
573 ENTER;
574 priv = netdev_priv(ndev);
576 napi_disable(&priv->napi);
578 bdx_reset(priv);
579 bdx_hw_stop(priv);
580 bdx_rx_free(priv);
581 bdx_tx_free(priv);
582 RET(0);
586 * bdx_open - Called when a network interface is made active
587 * @netdev: network interface device structure
589 * Returns 0 on success, negative value on failure
591 * The open entry point is called when a network interface is made
592 * active by the system (IFF_UP). At this point all resources needed
593 * for transmit and receive operations are allocated, the interrupt
594 * handler is registered with the OS, the watchdog timer is started,
595 * and the stack is notified that the interface is ready.
597 static int bdx_open(struct net_device *ndev)
599 struct bdx_priv *priv;
600 int rc;
602 ENTER;
603 priv = netdev_priv(ndev);
604 bdx_reset(priv);
605 if (netif_running(ndev))
606 netif_stop_queue(priv->ndev);
608 if ((rc = bdx_tx_init(priv)) ||
609 (rc = bdx_rx_init(priv)) ||
610 (rc = bdx_fw_load(priv)))
611 goto err;
613 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
615 rc = bdx_hw_start(priv);
616 if (rc)
617 goto err;
619 napi_enable(&priv->napi);
621 print_fw_id(priv->nic);
623 RET(0);
625 err:
626 bdx_close(ndev);
627 RET(rc);
630 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
632 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
633 -EINVAL : 0;
636 static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
638 struct bdx_priv *priv = netdev_priv(ndev);
639 u32 data[3];
640 int error;
642 ENTER;
644 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
645 if (cmd != SIOCDEVPRIVATE) {
646 error = copy_from_user(data, ifr->ifr_data, sizeof(data));
647 if (error) {
648 pr_err("can't copy from user\n");
649 RET(-EFAULT);
651 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
654 if (!capable(CAP_SYS_RAWIO))
655 return -EPERM;
657 switch (data[0]) {
659 case BDX_OP_READ:
660 error = bdx_range_check(priv, data[1]);
661 if (error < 0)
662 return error;
663 data[2] = READ_REG(priv, data[1]);
664 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
665 data[2]);
666 error = copy_to_user(ifr->ifr_data, data, sizeof(data));
667 if (error)
668 RET(-EFAULT);
669 break;
671 case BDX_OP_WRITE:
672 error = bdx_range_check(priv, data[1]);
673 if (error < 0)
674 return error;
675 WRITE_REG(priv, data[1], data[2]);
676 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
677 break;
679 default:
680 RET(-EOPNOTSUPP);
682 return 0;
685 static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
687 ENTER;
688 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
689 RET(bdx_ioctl_priv(ndev, ifr, cmd));
690 else
691 RET(-EOPNOTSUPP);
695 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
696 * by passing VLAN filter table to hardware
697 * @ndev network device
698 * @vid VLAN vid
699 * @op add or kill operation
701 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
703 struct bdx_priv *priv = netdev_priv(ndev);
704 u32 reg, bit, val;
706 ENTER;
707 DBG2("vid=%d value=%d\n", (int)vid, enable);
708 if (unlikely(vid >= 4096)) {
709 pr_err("invalid VID: %u (> 4096)\n", vid);
710 RET();
712 reg = regVLAN_0 + (vid / 32) * 4;
713 bit = 1 << vid % 32;
714 val = READ_REG(priv, reg);
715 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
716 if (enable)
717 val |= bit;
718 else
719 val &= ~bit;
720 DBG2("new val %x\n", val);
721 WRITE_REG(priv, reg, val);
722 RET();
726 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
727 * @ndev network device
728 * @vid VLAN vid to add
730 static int bdx_vlan_rx_add_vid(struct net_device *ndev, uint16_t vid)
732 __bdx_vlan_rx_vid(ndev, vid, 1);
733 return 0;
737 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
738 * @ndev network device
739 * @vid VLAN vid to kill
741 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
743 __bdx_vlan_rx_vid(ndev, vid, 0);
744 return 0;
748 * bdx_change_mtu - Change the Maximum Transfer Unit
749 * @netdev: network interface device structure
750 * @new_mtu: new value for maximum frame size
752 * Returns 0 on success, negative on failure
754 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
756 ENTER;
758 if (new_mtu == ndev->mtu)
759 RET(0);
761 /* enforce minimum frame size */
762 if (new_mtu < ETH_ZLEN) {
763 netdev_err(ndev, "mtu %d is less then minimal %d\n",
764 new_mtu, ETH_ZLEN);
765 RET(-EINVAL);
768 ndev->mtu = new_mtu;
769 if (netif_running(ndev)) {
770 bdx_close(ndev);
771 bdx_open(ndev);
773 RET(0);
776 static void bdx_setmulti(struct net_device *ndev)
778 struct bdx_priv *priv = netdev_priv(ndev);
780 u32 rxf_val =
781 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
782 int i;
784 ENTER;
785 /* IMF - imperfect (hash) rx multicat filter */
786 /* PMF - perfect rx multicat filter */
788 /* FIXME: RXE(OFF) */
789 if (ndev->flags & IFF_PROMISC) {
790 rxf_val |= GMAC_RX_FILTER_PRM;
791 } else if (ndev->flags & IFF_ALLMULTI) {
792 /* set IMF to accept all multicast frmaes */
793 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
794 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
795 } else if (!netdev_mc_empty(ndev)) {
796 u8 hash;
797 struct netdev_hw_addr *ha;
798 u32 reg, val;
800 /* set IMF to deny all multicast frames */
801 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
802 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
803 /* set PMF to deny all multicast frames */
804 for (i = 0; i < MAC_MCST_NUM; i++) {
805 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
806 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
809 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
810 /* TBD: sort addresses and write them in ascending order
811 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
812 * multicast frames throu IMF */
813 /* accept the rest of addresses throu IMF */
814 netdev_for_each_mc_addr(ha, ndev) {
815 hash = 0;
816 for (i = 0; i < ETH_ALEN; i++)
817 hash ^= ha->addr[i];
818 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
819 val = READ_REG(priv, reg);
820 val |= (1 << (hash % 32));
821 WRITE_REG(priv, reg, val);
824 } else {
825 DBG("only own mac %d\n", netdev_mc_count(ndev));
826 rxf_val |= GMAC_RX_FILTER_AB;
828 WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
829 /* enable RX */
830 /* FIXME: RXE(ON) */
831 RET();
834 static int bdx_set_mac(struct net_device *ndev, void *p)
836 struct bdx_priv *priv = netdev_priv(ndev);
837 struct sockaddr *addr = p;
839 ENTER;
841 if (netif_running(dev))
842 return -EBUSY
844 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
845 bdx_restore_mac(ndev, priv);
846 RET(0);
849 static int bdx_read_mac(struct bdx_priv *priv)
851 u16 macAddress[3], i;
852 ENTER;
854 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
855 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
856 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
857 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
858 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
859 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
860 for (i = 0; i < 3; i++) {
861 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
862 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
864 RET(0);
867 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
869 u64 val;
871 val = READ_REG(priv, reg);
872 val |= ((u64) READ_REG(priv, reg + 8)) << 32;
873 return val;
876 /*Do the statistics-update work*/
877 static void bdx_update_stats(struct bdx_priv *priv)
879 struct bdx_stats *stats = &priv->hw_stats;
880 u64 *stats_vector = (u64 *) stats;
881 int i;
882 int addr;
884 /*Fill HW structure */
885 addr = 0x7200;
886 /*First 12 statistics - 0x7200 - 0x72B0 */
887 for (i = 0; i < 12; i++) {
888 stats_vector[i] = bdx_read_l2stat(priv, addr);
889 addr += 0x10;
891 BDX_ASSERT(addr != 0x72C0);
892 /* 0x72C0-0x72E0 RSRV */
893 addr = 0x72F0;
894 for (; i < 16; i++) {
895 stats_vector[i] = bdx_read_l2stat(priv, addr);
896 addr += 0x10;
898 BDX_ASSERT(addr != 0x7330);
899 /* 0x7330-0x7360 RSRV */
900 addr = 0x7370;
901 for (; i < 19; i++) {
902 stats_vector[i] = bdx_read_l2stat(priv, addr);
903 addr += 0x10;
905 BDX_ASSERT(addr != 0x73A0);
906 /* 0x73A0-0x73B0 RSRV */
907 addr = 0x73C0;
908 for (; i < 23; i++) {
909 stats_vector[i] = bdx_read_l2stat(priv, addr);
910 addr += 0x10;
912 BDX_ASSERT(addr != 0x7400);
913 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
916 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
917 u16 rxd_vlan);
918 static void print_rxfd(struct rxf_desc *rxfd);
920 /*************************************************************************
921 * Rx DB *
922 *************************************************************************/
924 static void bdx_rxdb_destroy(struct rxdb *db)
926 vfree(db);
929 static struct rxdb *bdx_rxdb_create(int nelem)
931 struct rxdb *db;
932 int i;
934 db = vmalloc(sizeof(struct rxdb)
935 + (nelem * sizeof(int))
936 + (nelem * sizeof(struct rx_map)));
937 if (likely(db != NULL)) {
938 db->stack = (int *)(db + 1);
939 db->elems = (void *)(db->stack + nelem);
940 db->nelem = nelem;
941 db->top = nelem;
942 for (i = 0; i < nelem; i++)
943 db->stack[i] = nelem - i - 1; /* to make first allocs
944 close to db struct*/
947 return db;
950 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
952 BDX_ASSERT(db->top <= 0);
953 return db->stack[--(db->top)];
956 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
958 BDX_ASSERT((n < 0) || (n >= db->nelem));
959 return db->elems + n;
962 static inline int bdx_rxdb_available(struct rxdb *db)
964 return db->top;
967 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
969 BDX_ASSERT((n >= db->nelem) || (n < 0));
970 db->stack[(db->top)++] = n;
973 /*************************************************************************
974 * Rx Init *
975 *************************************************************************/
977 /* bdx_rx_init - initialize RX all related HW and SW resources
978 * @priv - NIC private structure
980 * Returns 0 on success, negative value on failure
982 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
983 * skb for rx. It assumes that Rx is desabled in HW
984 * funcs are grouped for better cache usage
986 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
987 * filled and packets will be dropped by nic without getting into host or
988 * cousing interrupt. Anyway, in that condition, host has no chance to process
989 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
992 /* TBD: ensure proper packet size */
994 static int bdx_rx_init(struct bdx_priv *priv)
996 ENTER;
998 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
999 regRXD_CFG0_0, regRXD_CFG1_0,
1000 regRXD_RPTR_0, regRXD_WPTR_0))
1001 goto err_mem;
1002 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
1003 regRXF_CFG0_0, regRXF_CFG1_0,
1004 regRXF_RPTR_0, regRXF_WPTR_0))
1005 goto err_mem;
1006 priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1007 sizeof(struct rxf_desc));
1008 if (!priv->rxdb)
1009 goto err_mem;
1011 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1012 return 0;
1014 err_mem:
1015 netdev_err(priv->ndev, "Rx init failed\n");
1016 return -ENOMEM;
1019 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1020 * @priv - NIC private structure
1021 * @f - RXF fifo
1023 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1025 struct rx_map *dm;
1026 struct rxdb *db = priv->rxdb;
1027 u16 i;
1029 ENTER;
1030 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1031 db->nelem - bdx_rxdb_available(db));
1032 while (bdx_rxdb_available(db) > 0) {
1033 i = bdx_rxdb_alloc_elem(db);
1034 dm = bdx_rxdb_addr_elem(db, i);
1035 dm->dma = 0;
1037 for (i = 0; i < db->nelem; i++) {
1038 dm = bdx_rxdb_addr_elem(db, i);
1039 if (dm->dma) {
1040 pci_unmap_single(priv->pdev,
1041 dm->dma, f->m.pktsz,
1042 PCI_DMA_FROMDEVICE);
1043 dev_kfree_skb(dm->skb);
1048 /* bdx_rx_free - release all Rx resources
1049 * @priv - NIC private structure
1050 * It assumes that Rx is desabled in HW
1052 static void bdx_rx_free(struct bdx_priv *priv)
1054 ENTER;
1055 if (priv->rxdb) {
1056 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1057 bdx_rxdb_destroy(priv->rxdb);
1058 priv->rxdb = NULL;
1060 bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1061 bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1063 RET();
1066 /*************************************************************************
1067 * Rx Engine *
1068 *************************************************************************/
1070 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1071 * @priv - nic's private structure
1072 * @f - RXF fifo that needs skbs
1073 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1074 * skb's virtual and physical addresses are stored in skb db.
1075 * To calculate free space, func uses cached values of RPTR and WPTR
1076 * When needed, it also updates RPTR and WPTR.
1079 /* TBD: do not update WPTR if no desc were written */
1081 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1083 struct sk_buff *skb;
1084 struct rxf_desc *rxfd;
1085 struct rx_map *dm;
1086 int dno, delta, idx;
1087 struct rxdb *db = priv->rxdb;
1089 ENTER;
1090 dno = bdx_rxdb_available(db) - 1;
1091 while (dno > 0) {
1092 skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1093 if (!skb) {
1094 pr_err("NO MEM: netdev_alloc_skb failed\n");
1095 break;
1097 skb_reserve(skb, NET_IP_ALIGN);
1099 idx = bdx_rxdb_alloc_elem(db);
1100 dm = bdx_rxdb_addr_elem(db, idx);
1101 dm->dma = pci_map_single(priv->pdev,
1102 skb->data, f->m.pktsz,
1103 PCI_DMA_FROMDEVICE);
1104 dm->skb = skb;
1105 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1106 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1107 rxfd->va_lo = idx;
1108 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1109 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1110 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1111 print_rxfd(rxfd);
1113 f->m.wptr += sizeof(struct rxf_desc);
1114 delta = f->m.wptr - f->m.memsz;
1115 if (unlikely(delta >= 0)) {
1116 f->m.wptr = delta;
1117 if (delta > 0) {
1118 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1119 DBG("wrapped descriptor\n");
1122 dno--;
1124 /*TBD: to do - delayed rxf wptr like in txd */
1125 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1126 RET();
1129 static inline void
1130 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1131 struct sk_buff *skb)
1133 ENTER;
1134 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1135 if (GET_RXD_VTAG(rxd_val1)) {
1136 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1137 priv->ndev->name,
1138 GET_RXD_VLAN_ID(rxd_vlan),
1139 GET_RXD_VTAG(rxd_val1));
1140 __vlan_hwaccel_put_tag(skb, GET_RXD_VLAN_TCI(rxd_vlan));
1142 netif_receive_skb(skb);
1145 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1147 struct rxf_desc *rxfd;
1148 struct rx_map *dm;
1149 struct rxf_fifo *f;
1150 struct rxdb *db;
1151 struct sk_buff *skb;
1152 int delta;
1154 ENTER;
1155 DBG("priv=%p rxdd=%p\n", priv, rxdd);
1156 f = &priv->rxf_fifo0;
1157 db = priv->rxdb;
1158 DBG("db=%p f=%p\n", db, f);
1159 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1160 DBG("dm=%p\n", dm);
1161 skb = dm->skb;
1162 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1163 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1164 rxfd->va_lo = rxdd->va_lo;
1165 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1166 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1167 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1168 print_rxfd(rxfd);
1170 f->m.wptr += sizeof(struct rxf_desc);
1171 delta = f->m.wptr - f->m.memsz;
1172 if (unlikely(delta >= 0)) {
1173 f->m.wptr = delta;
1174 if (delta > 0) {
1175 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1176 DBG("wrapped descriptor\n");
1179 RET();
1182 /* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1183 * NOTE: a special treatment is given to non-continuous descriptors
1184 * that start near the end, wraps around and continue at the beginning. a second
1185 * part is copied right after the first, and then descriptor is interpreted as
1186 * normal. fifo has an extra space to allow such operations
1187 * @priv - nic's private structure
1188 * @f - RXF fifo that needs skbs
1191 /* TBD: replace memcpy func call by explicite inline asm */
1193 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1195 struct net_device *ndev = priv->ndev;
1196 struct sk_buff *skb, *skb2;
1197 struct rxd_desc *rxdd;
1198 struct rx_map *dm;
1199 struct rxf_fifo *rxf_fifo;
1200 int tmp_len, size;
1201 int done = 0;
1202 int max_done = BDX_MAX_RX_DONE;
1203 struct rxdb *db = NULL;
1204 /* Unmarshalled descriptor - copy of descriptor in host order */
1205 u32 rxd_val1;
1206 u16 len;
1207 u16 rxd_vlan;
1209 ENTER;
1210 max_done = budget;
1212 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1214 size = f->m.wptr - f->m.rptr;
1215 if (size < 0)
1216 size = f->m.memsz + size; /* size is negative :-) */
1218 while (size > 0) {
1220 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1221 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1223 len = CPU_CHIP_SWAP16(rxdd->len);
1225 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1227 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1229 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1230 BDX_ASSERT(tmp_len <= 0);
1231 size -= tmp_len;
1232 if (size < 0) /* test for partially arrived descriptor */
1233 break;
1235 f->m.rptr += tmp_len;
1237 tmp_len = f->m.rptr - f->m.memsz;
1238 if (unlikely(tmp_len >= 0)) {
1239 f->m.rptr = tmp_len;
1240 if (tmp_len > 0) {
1241 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1242 f->m.rptr, tmp_len);
1243 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1247 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1248 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1249 ndev->stats.rx_errors++;
1250 bdx_recycle_skb(priv, rxdd);
1251 continue;
1254 rxf_fifo = &priv->rxf_fifo0;
1255 db = priv->rxdb;
1256 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1257 skb = dm->skb;
1259 if (len < BDX_COPYBREAK &&
1260 (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1261 skb_reserve(skb2, NET_IP_ALIGN);
1262 /*skb_put(skb2, len); */
1263 pci_dma_sync_single_for_cpu(priv->pdev,
1264 dm->dma, rxf_fifo->m.pktsz,
1265 PCI_DMA_FROMDEVICE);
1266 memcpy(skb2->data, skb->data, len);
1267 bdx_recycle_skb(priv, rxdd);
1268 skb = skb2;
1269 } else {
1270 pci_unmap_single(priv->pdev,
1271 dm->dma, rxf_fifo->m.pktsz,
1272 PCI_DMA_FROMDEVICE);
1273 bdx_rxdb_free_elem(db, rxdd->va_lo);
1276 ndev->stats.rx_bytes += len;
1278 skb_put(skb, len);
1279 skb->protocol = eth_type_trans(skb, ndev);
1281 /* Non-IP packets aren't checksum-offloaded */
1282 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1283 skb_checksum_none_assert(skb);
1284 else
1285 skb->ip_summed = CHECKSUM_UNNECESSARY;
1287 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1289 if (++done >= max_done)
1290 break;
1293 ndev->stats.rx_packets += done;
1295 /* FIXME: do smth to minimize pci accesses */
1296 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1298 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1300 RET(done);
1303 /*************************************************************************
1304 * Debug / Temprorary Code *
1305 *************************************************************************/
1306 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1307 u16 rxd_vlan)
1309 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1310 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1311 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1312 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1313 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1314 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1315 rxdd->va_hi);
1318 static void print_rxfd(struct rxf_desc *rxfd)
1320 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1321 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1322 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1326 * TX HW/SW interaction overview
1327 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1328 * There are 2 types of TX communication channels between driver and NIC.
1329 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1330 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1332 * Currently NIC supports TSO, checksuming and gather DMA
1333 * UFO and IP fragmentation is on the way
1335 * RX SW Data Structures
1336 * ~~~~~~~~~~~~~~~~~~~~~
1337 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1338 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1339 * acknowledges sent by TXF descriptors.
1340 * Implemented as cyclic buffer.
1341 * fifo - keeps info about fifo's size and location, relevant HW registers,
1342 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1343 * Implemented as simple struct.
1345 * TX SW Execution Flow
1346 * ~~~~~~~~~~~~~~~~~~~~
1347 * OS calls driver's hard_xmit method with packet to sent.
1348 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1349 * by updating TXD WPTR.
1350 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1351 * To prevent TXD fifo overflow without reading HW registers every time,
1352 * SW deploys "tx level" technique.
1353 * Upon strart up, tx level is initialized to TXD fifo length.
1354 * For every sent packet, SW gets its TXD descriptor sizei
1355 * (from precalculated array) and substructs it from tx level.
1356 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1357 * original TXD descriptor from txdb and adds it to tx level.
1358 * When Tx level drops under some predefined treshhold, the driver
1359 * stops the TX queue. When TX level rises above that level,
1360 * the tx queue is enabled again.
1362 * This technique avoids eccessive reading of RPTR and WPTR registers.
1363 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1366 /*************************************************************************
1367 * Tx DB *
1368 *************************************************************************/
1369 static inline int bdx_tx_db_size(struct txdb *db)
1371 int taken = db->wptr - db->rptr;
1372 if (taken < 0)
1373 taken = db->size + 1 + taken; /* (size + 1) equals memsz */
1375 return db->size - taken;
1378 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1379 * @d - tx data base
1380 * @ptr - read or write pointer
1382 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1384 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1386 BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1387 *pptr != db->wptr); /* or write pointer */
1389 BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1390 *pptr >= db->end); /* in range */
1392 ++*pptr;
1393 if (unlikely(*pptr == db->end))
1394 *pptr = db->start;
1397 /* bdx_tx_db_inc_rptr - increment read pointer
1398 * @d - tx data base
1400 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1402 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1403 __bdx_tx_db_ptr_next(db, &db->rptr);
1406 /* bdx_tx_db_inc_rptr - increment write pointer
1407 * @d - tx data base
1409 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1411 __bdx_tx_db_ptr_next(db, &db->wptr);
1412 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1413 a result of write */
1416 /* bdx_tx_db_init - creates and initializes tx db
1417 * @d - tx data base
1418 * @sz_type - size of tx fifo
1419 * Returns 0 on success, error code otherwise
1421 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1423 int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1425 d->start = vmalloc(memsz);
1426 if (!d->start)
1427 return -ENOMEM;
1430 * In order to differentiate between db is empty and db is full
1431 * states at least one element should always be empty in order to
1432 * avoid rptr == wptr which means db is empty
1434 d->size = memsz / sizeof(struct tx_map) - 1;
1435 d->end = d->start + d->size + 1; /* just after last element */
1437 /* all dbs are created equally empty */
1438 d->rptr = d->start;
1439 d->wptr = d->start;
1441 return 0;
1444 /* bdx_tx_db_close - closes tx db and frees all memory
1445 * @d - tx data base
1447 static void bdx_tx_db_close(struct txdb *d)
1449 BDX_ASSERT(d == NULL);
1451 vfree(d->start);
1452 d->start = NULL;
1455 /*************************************************************************
1456 * Tx Engine *
1457 *************************************************************************/
1459 /* sizes of tx desc (including padding if needed) as function
1460 * of skb's frag number */
1461 static struct {
1462 u16 bytes;
1463 u16 qwords; /* qword = 64 bit */
1464 } txd_sizes[MAX_SKB_FRAGS + 1];
1466 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1467 * @priv - NIC private structure
1468 * @skb - socket buffer to map
1470 * It makes dma mappings for skb's data blocks and writes them to PBL of
1471 * new tx descriptor. It also stores them in the tx db, so they could be
1472 * unmaped after data was sent. It is reponsibility of a caller to make
1473 * sure that there is enough space in the tx db. Last element holds pointer
1474 * to skb itself and marked with zero length
1476 static inline void
1477 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1478 struct txd_desc *txdd)
1480 struct txdb *db = &priv->txdb;
1481 struct pbl *pbl = &txdd->pbl[0];
1482 int nr_frags = skb_shinfo(skb)->nr_frags;
1483 int i;
1485 db->wptr->len = skb_headlen(skb);
1486 db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1487 db->wptr->len, PCI_DMA_TODEVICE);
1488 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1489 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1490 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1491 DBG("=== pbl len: 0x%x ================\n", pbl->len);
1492 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1493 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1494 bdx_tx_db_inc_wptr(db);
1496 for (i = 0; i < nr_frags; i++) {
1497 const struct skb_frag_struct *frag;
1499 frag = &skb_shinfo(skb)->frags[i];
1500 db->wptr->len = skb_frag_size(frag);
1501 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1502 0, skb_frag_size(frag),
1503 DMA_TO_DEVICE);
1505 pbl++;
1506 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1507 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1508 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1509 bdx_tx_db_inc_wptr(db);
1512 /* add skb clean up info. */
1513 db->wptr->len = -txd_sizes[nr_frags].bytes;
1514 db->wptr->addr.skb = skb;
1515 bdx_tx_db_inc_wptr(db);
1518 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1519 * number of frags is used as index to fetch correct descriptors size,
1520 * instead of calculating it each time */
1521 static void __init init_txd_sizes(void)
1523 int i, lwords;
1525 /* 7 - is number of lwords in txd with one phys buffer
1526 * 3 - is number of lwords used for every additional phys buffer */
1527 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1528 lwords = 7 + (i * 3);
1529 if (lwords & 1)
1530 lwords++; /* pad it with 1 lword */
1531 txd_sizes[i].qwords = lwords >> 1;
1532 txd_sizes[i].bytes = lwords << 2;
1536 /* bdx_tx_init - initialize all Tx related stuff.
1537 * Namely, TXD and TXF fifos, database etc */
1538 static int bdx_tx_init(struct bdx_priv *priv)
1540 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1541 regTXD_CFG0_0,
1542 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1543 goto err_mem;
1544 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1545 regTXF_CFG0_0,
1546 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1547 goto err_mem;
1549 /* The TX db has to keep mappings for all packets sent (on TxD)
1550 * and not yet reclaimed (on TxF) */
1551 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1552 goto err_mem;
1554 priv->tx_level = BDX_MAX_TX_LEVEL;
1555 #ifdef BDX_DELAY_WPTR
1556 priv->tx_update_mark = priv->tx_level - 1024;
1557 #endif
1558 return 0;
1560 err_mem:
1561 netdev_err(priv->ndev, "Tx init failed\n");
1562 return -ENOMEM;
1566 * bdx_tx_space - calculates available space in TX fifo
1567 * @priv - NIC private structure
1568 * Returns available space in TX fifo in bytes
1570 static inline int bdx_tx_space(struct bdx_priv *priv)
1572 struct txd_fifo *f = &priv->txd_fifo0;
1573 int fsize;
1575 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1576 fsize = f->m.rptr - f->m.wptr;
1577 if (fsize <= 0)
1578 fsize = f->m.memsz + fsize;
1579 return fsize;
1582 /* bdx_tx_transmit - send packet to NIC
1583 * @skb - packet to send
1584 * ndev - network device assigned to NIC
1585 * Return codes:
1586 * o NETDEV_TX_OK everything ok.
1587 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1588 * Usually a bug, means queue start/stop flow control is broken in
1589 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1590 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1592 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1593 struct net_device *ndev)
1595 struct bdx_priv *priv = netdev_priv(ndev);
1596 struct txd_fifo *f = &priv->txd_fifo0;
1597 int txd_checksum = 7; /* full checksum */
1598 int txd_lgsnd = 0;
1599 int txd_vlan_id = 0;
1600 int txd_vtag = 0;
1601 int txd_mss = 0;
1603 int nr_frags = skb_shinfo(skb)->nr_frags;
1604 struct txd_desc *txdd;
1605 int len;
1606 unsigned long flags;
1608 ENTER;
1609 local_irq_save(flags);
1610 if (!spin_trylock(&priv->tx_lock)) {
1611 local_irq_restore(flags);
1612 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1613 BDX_DRV_NAME, ndev->name);
1614 return NETDEV_TX_LOCKED;
1617 /* build tx descriptor */
1618 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1619 txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1620 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1621 txd_checksum = 0;
1623 if (skb_shinfo(skb)->gso_size) {
1624 txd_mss = skb_shinfo(skb)->gso_size;
1625 txd_lgsnd = 1;
1626 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1627 txd_mss);
1630 if (vlan_tx_tag_present(skb)) {
1631 /*Cut VLAN ID to 12 bits */
1632 txd_vlan_id = vlan_tx_tag_get(skb) & BITS_MASK(12);
1633 txd_vtag = 1;
1636 txdd->length = CPU_CHIP_SWAP16(skb->len);
1637 txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1638 txdd->txd_val1 =
1639 CPU_CHIP_SWAP32(TXD_W1_VAL
1640 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1641 txd_lgsnd, txd_vlan_id));
1642 DBG("=== TxD desc =====================\n");
1643 DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1644 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1646 bdx_tx_map_skb(priv, skb, txdd);
1648 /* increment TXD write pointer. In case of
1649 fifo wrapping copy reminder of the descriptor
1650 to the beginning */
1651 f->m.wptr += txd_sizes[nr_frags].bytes;
1652 len = f->m.wptr - f->m.memsz;
1653 if (unlikely(len >= 0)) {
1654 f->m.wptr = len;
1655 if (len > 0) {
1656 BDX_ASSERT(len > f->m.memsz);
1657 memcpy(f->m.va, f->m.va + f->m.memsz, len);
1660 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1662 priv->tx_level -= txd_sizes[nr_frags].bytes;
1663 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1664 #ifdef BDX_DELAY_WPTR
1665 if (priv->tx_level > priv->tx_update_mark) {
1666 /* Force memory writes to complete before letting h/w
1667 know there are new descriptors to fetch.
1668 (might be needed on platforms like IA64)
1669 wmb(); */
1670 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1671 } else {
1672 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1673 priv->tx_noupd = 0;
1674 WRITE_REG(priv, f->m.reg_WPTR,
1675 f->m.wptr & TXF_WPTR_WR_PTR);
1678 #else
1679 /* Force memory writes to complete before letting h/w
1680 know there are new descriptors to fetch.
1681 (might be needed on platforms like IA64)
1682 wmb(); */
1683 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1685 #endif
1686 #ifdef BDX_LLTX
1687 ndev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1688 #endif
1689 ndev->stats.tx_packets++;
1690 ndev->stats.tx_bytes += skb->len;
1692 if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1693 DBG("%s: %s: TX Q STOP level %d\n",
1694 BDX_DRV_NAME, ndev->name, priv->tx_level);
1695 netif_stop_queue(ndev);
1698 spin_unlock_irqrestore(&priv->tx_lock, flags);
1699 return NETDEV_TX_OK;
1702 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1703 * @priv - bdx adapter
1704 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1705 * that those packets were sent
1707 static void bdx_tx_cleanup(struct bdx_priv *priv)
1709 struct txf_fifo *f = &priv->txf_fifo0;
1710 struct txdb *db = &priv->txdb;
1711 int tx_level = 0;
1713 ENTER;
1714 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1715 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1717 while (f->m.wptr != f->m.rptr) {
1718 f->m.rptr += BDX_TXF_DESC_SZ;
1719 f->m.rptr &= f->m.size_mask;
1721 /* unmap all the fragments */
1722 /* first has to come tx_maps containing dma */
1723 BDX_ASSERT(db->rptr->len == 0);
1724 do {
1725 BDX_ASSERT(db->rptr->addr.dma == 0);
1726 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1727 db->rptr->len, PCI_DMA_TODEVICE);
1728 bdx_tx_db_inc_rptr(db);
1729 } while (db->rptr->len > 0);
1730 tx_level -= db->rptr->len; /* '-' koz len is negative */
1732 /* now should come skb pointer - free it */
1733 dev_kfree_skb_irq(db->rptr->addr.skb);
1734 bdx_tx_db_inc_rptr(db);
1737 /* let h/w know which TXF descriptors were cleaned */
1738 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1739 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1741 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1742 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1743 spin_lock(&priv->tx_lock);
1744 priv->tx_level += tx_level;
1745 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1746 #ifdef BDX_DELAY_WPTR
1747 if (priv->tx_noupd) {
1748 priv->tx_noupd = 0;
1749 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1750 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1752 #endif
1754 if (unlikely(netif_queue_stopped(priv->ndev) &&
1755 netif_carrier_ok(priv->ndev) &&
1756 (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1757 DBG("%s: %s: TX Q WAKE level %d\n",
1758 BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1759 netif_wake_queue(priv->ndev);
1761 spin_unlock(&priv->tx_lock);
1764 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1765 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1767 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1769 struct txdb *db = &priv->txdb;
1771 ENTER;
1772 while (db->rptr != db->wptr) {
1773 if (likely(db->rptr->len))
1774 pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1775 db->rptr->len, PCI_DMA_TODEVICE);
1776 else
1777 dev_kfree_skb(db->rptr->addr.skb);
1778 bdx_tx_db_inc_rptr(db);
1780 RET();
1783 /* bdx_tx_free - frees all Tx resources */
1784 static void bdx_tx_free(struct bdx_priv *priv)
1786 ENTER;
1787 bdx_tx_free_skbs(priv);
1788 bdx_fifo_free(priv, &priv->txd_fifo0.m);
1789 bdx_fifo_free(priv, &priv->txf_fifo0.m);
1790 bdx_tx_db_close(&priv->txdb);
1793 /* bdx_tx_push_desc - push descriptor to TxD fifo
1794 * @priv - NIC private structure
1795 * @data - desc's data
1796 * @size - desc's size
1798 * Pushes desc to TxD fifo and overlaps it if needed.
1799 * NOTE: this func does not check for available space. this is responsibility
1800 * of the caller. Neither does it check that data size is smaller than
1801 * fifo size.
1803 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1805 struct txd_fifo *f = &priv->txd_fifo0;
1806 int i = f->m.memsz - f->m.wptr;
1808 if (size == 0)
1809 return;
1811 if (i > size) {
1812 memcpy(f->m.va + f->m.wptr, data, size);
1813 f->m.wptr += size;
1814 } else {
1815 memcpy(f->m.va + f->m.wptr, data, i);
1816 f->m.wptr = size - i;
1817 memcpy(f->m.va, data + i, f->m.wptr);
1819 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1822 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1823 * @priv - NIC private structure
1824 * @data - desc's data
1825 * @size - desc's size
1827 * NOTE: this func does check for available space and, if necessary, waits for
1828 * NIC to read existing data before writing new one.
1830 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1832 int timer = 0;
1833 ENTER;
1835 while (size > 0) {
1836 /* we substruct 8 because when fifo is full rptr == wptr
1837 which also means that fifo is empty, we can understand
1838 the difference, but could hw do the same ??? :) */
1839 int avail = bdx_tx_space(priv) - 8;
1840 if (avail <= 0) {
1841 if (timer++ > 300) { /* prevent endless loop */
1842 DBG("timeout while writing desc to TxD fifo\n");
1843 break;
1845 udelay(50); /* give hw a chance to clean fifo */
1846 continue;
1848 avail = min(avail, size);
1849 DBG("about to push %d bytes starting %p size %d\n", avail,
1850 data, size);
1851 bdx_tx_push_desc(priv, data, avail);
1852 size -= avail;
1853 data += avail;
1855 RET();
1858 static const struct net_device_ops bdx_netdev_ops = {
1859 .ndo_open = bdx_open,
1860 .ndo_stop = bdx_close,
1861 .ndo_start_xmit = bdx_tx_transmit,
1862 .ndo_validate_addr = eth_validate_addr,
1863 .ndo_do_ioctl = bdx_ioctl,
1864 .ndo_set_rx_mode = bdx_setmulti,
1865 .ndo_change_mtu = bdx_change_mtu,
1866 .ndo_set_mac_address = bdx_set_mac,
1867 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
1868 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
1872 * bdx_probe - Device Initialization Routine
1873 * @pdev: PCI device information struct
1874 * @ent: entry in bdx_pci_tbl
1876 * Returns 0 on success, negative on failure
1878 * bdx_probe initializes an adapter identified by a pci_dev structure.
1879 * The OS initialization, configuring of the adapter private structure,
1880 * and a hardware reset occur.
1882 * functions and their order used as explained in
1883 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1887 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1888 static int __devinit
1889 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1891 struct net_device *ndev;
1892 struct bdx_priv *priv;
1893 int err, pci_using_dac, port;
1894 unsigned long pciaddr;
1895 u32 regionSize;
1896 struct pci_nic *nic;
1898 ENTER;
1900 nic = vmalloc(sizeof(*nic));
1901 if (!nic)
1902 RET(-ENOMEM);
1904 /************** pci *****************/
1905 err = pci_enable_device(pdev);
1906 if (err) /* it triggers interrupt, dunno why. */
1907 goto err_pci; /* it's not a problem though */
1909 if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1910 !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1911 pci_using_dac = 1;
1912 } else {
1913 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1914 (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1915 pr_err("No usable DMA configuration, aborting\n");
1916 goto err_dma;
1918 pci_using_dac = 0;
1921 err = pci_request_regions(pdev, BDX_DRV_NAME);
1922 if (err)
1923 goto err_dma;
1925 pci_set_master(pdev);
1927 pciaddr = pci_resource_start(pdev, 0);
1928 if (!pciaddr) {
1929 err = -EIO;
1930 pr_err("no MMIO resource\n");
1931 goto err_out_res;
1933 regionSize = pci_resource_len(pdev, 0);
1934 if (regionSize < BDX_REGS_SIZE) {
1935 err = -EIO;
1936 pr_err("MMIO resource (%x) too small\n", regionSize);
1937 goto err_out_res;
1940 nic->regs = ioremap(pciaddr, regionSize);
1941 if (!nic->regs) {
1942 err = -EIO;
1943 pr_err("ioremap failed\n");
1944 goto err_out_res;
1947 if (pdev->irq < 2) {
1948 err = -EIO;
1949 pr_err("invalid irq (%d)\n", pdev->irq);
1950 goto err_out_iomap;
1952 pci_set_drvdata(pdev, nic);
1954 if (pdev->device == 0x3014)
1955 nic->port_num = 2;
1956 else
1957 nic->port_num = 1;
1959 print_hw_id(pdev);
1961 bdx_hw_reset_direct(nic->regs);
1963 nic->irq_type = IRQ_INTX;
1964 #ifdef BDX_MSI
1965 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1966 err = pci_enable_msi(pdev);
1967 if (err)
1968 pr_err("Can't eneble msi. error is %d\n", err);
1969 else
1970 nic->irq_type = IRQ_MSI;
1971 } else
1972 DBG("HW does not support MSI\n");
1973 #endif
1975 /************** netdev **************/
1976 for (port = 0; port < nic->port_num; port++) {
1977 ndev = alloc_etherdev(sizeof(struct bdx_priv));
1978 if (!ndev) {
1979 err = -ENOMEM;
1980 goto err_out_iomap;
1983 ndev->netdev_ops = &bdx_netdev_ops;
1984 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1986 bdx_set_ethtool_ops(ndev); /* ethtool interface */
1988 /* these fields are used for info purposes only
1989 * so we can have them same for all ports of the board */
1990 ndev->if_port = port;
1991 ndev->base_addr = pciaddr;
1992 ndev->mem_start = pciaddr;
1993 ndev->mem_end = pciaddr + regionSize;
1994 ndev->irq = pdev->irq;
1995 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
1996 | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
1997 NETIF_F_HW_VLAN_FILTER | NETIF_F_RXCSUM
1999 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2000 NETIF_F_TSO | NETIF_F_HW_VLAN_TX;
2002 if (pci_using_dac)
2003 ndev->features |= NETIF_F_HIGHDMA;
2005 /************** priv ****************/
2006 priv = nic->priv[port] = netdev_priv(ndev);
2008 priv->pBdxRegs = nic->regs + port * 0x8000;
2009 priv->port = port;
2010 priv->pdev = pdev;
2011 priv->ndev = ndev;
2012 priv->nic = nic;
2013 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2015 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2017 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2018 DBG("HW statistics not supported\n");
2019 priv->stats_flag = 0;
2020 } else {
2021 priv->stats_flag = 1;
2024 /* Initialize fifo sizes. */
2025 priv->txd_size = 2;
2026 priv->txf_size = 2;
2027 priv->rxd_size = 2;
2028 priv->rxf_size = 3;
2030 /* Initialize the initial coalescing registers. */
2031 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2032 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2034 /* ndev->xmit_lock spinlock is not used.
2035 * Private priv->tx_lock is used for synchronization
2036 * between transmit and TX irq cleanup. In addition
2037 * set multicast list callback has to use priv->tx_lock.
2039 #ifdef BDX_LLTX
2040 ndev->features |= NETIF_F_LLTX;
2041 #endif
2042 spin_lock_init(&priv->tx_lock);
2044 /*bdx_hw_reset(priv); */
2045 if (bdx_read_mac(priv)) {
2046 pr_err("load MAC address failed\n");
2047 goto err_out_iomap;
2049 SET_NETDEV_DEV(ndev, &pdev->dev);
2050 err = register_netdev(ndev);
2051 if (err) {
2052 pr_err("register_netdev failed\n");
2053 goto err_out_free;
2055 netif_carrier_off(ndev);
2056 netif_stop_queue(ndev);
2058 print_eth_id(ndev);
2060 RET(0);
2062 err_out_free:
2063 free_netdev(ndev);
2064 err_out_iomap:
2065 iounmap(nic->regs);
2066 err_out_res:
2067 pci_release_regions(pdev);
2068 err_dma:
2069 pci_disable_device(pdev);
2070 err_pci:
2071 vfree(nic);
2073 RET(err);
2076 /****************** Ethtool interface *********************/
2077 /* get strings for statistics counters */
2078 static const char
2079 bdx_stat_names[][ETH_GSTRING_LEN] = {
2080 "InUCast", /* 0x7200 */
2081 "InMCast", /* 0x7210 */
2082 "InBCast", /* 0x7220 */
2083 "InPkts", /* 0x7230 */
2084 "InErrors", /* 0x7240 */
2085 "InDropped", /* 0x7250 */
2086 "FrameTooLong", /* 0x7260 */
2087 "FrameSequenceErrors", /* 0x7270 */
2088 "InVLAN", /* 0x7280 */
2089 "InDroppedDFE", /* 0x7290 */
2090 "InDroppedIntFull", /* 0x72A0 */
2091 "InFrameAlignErrors", /* 0x72B0 */
2093 /* 0x72C0-0x72E0 RSRV */
2095 "OutUCast", /* 0x72F0 */
2096 "OutMCast", /* 0x7300 */
2097 "OutBCast", /* 0x7310 */
2098 "OutPkts", /* 0x7320 */
2100 /* 0x7330-0x7360 RSRV */
2102 "OutVLAN", /* 0x7370 */
2103 "InUCastOctects", /* 0x7380 */
2104 "OutUCastOctects", /* 0x7390 */
2106 /* 0x73A0-0x73B0 RSRV */
2108 "InBCastOctects", /* 0x73C0 */
2109 "OutBCastOctects", /* 0x73D0 */
2110 "InOctects", /* 0x73E0 */
2111 "OutOctects", /* 0x73F0 */
2115 * bdx_get_settings - get device-specific settings
2116 * @netdev
2117 * @ecmd
2119 static int bdx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2121 u32 rdintcm;
2122 u32 tdintcm;
2123 struct bdx_priv *priv = netdev_priv(netdev);
2125 rdintcm = priv->rdintcm;
2126 tdintcm = priv->tdintcm;
2128 ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
2129 ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
2130 ethtool_cmd_speed_set(ecmd, SPEED_10000);
2131 ecmd->duplex = DUPLEX_FULL;
2132 ecmd->port = PORT_FIBRE;
2133 ecmd->transceiver = XCVR_EXTERNAL; /* what does it mean? */
2134 ecmd->autoneg = AUTONEG_DISABLE;
2136 /* PCK_TH measures in multiples of FIFO bytes
2137 We translate to packets */
2138 ecmd->maxtxpkt =
2139 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2140 ecmd->maxrxpkt =
2141 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2143 return 0;
2147 * bdx_get_drvinfo - report driver information
2148 * @netdev
2149 * @drvinfo
2151 static void
2152 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2154 struct bdx_priv *priv = netdev_priv(netdev);
2156 strlcat(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2157 strlcat(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2158 strlcat(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2159 strlcat(drvinfo->bus_info, pci_name(priv->pdev),
2160 sizeof(drvinfo->bus_info));
2162 drvinfo->n_stats = ((priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0);
2163 drvinfo->testinfo_len = 0;
2164 drvinfo->regdump_len = 0;
2165 drvinfo->eedump_len = 0;
2169 * bdx_get_coalesce - get interrupt coalescing parameters
2170 * @netdev
2171 * @ecoal
2173 static int
2174 bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2176 u32 rdintcm;
2177 u32 tdintcm;
2178 struct bdx_priv *priv = netdev_priv(netdev);
2180 rdintcm = priv->rdintcm;
2181 tdintcm = priv->tdintcm;
2183 /* PCK_TH measures in multiples of FIFO bytes
2184 We translate to packets */
2185 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2186 ecoal->rx_max_coalesced_frames =
2187 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2189 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2190 ecoal->tx_max_coalesced_frames =
2191 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2193 /* adaptive parameters ignored */
2194 return 0;
2198 * bdx_set_coalesce - set interrupt coalescing parameters
2199 * @netdev
2200 * @ecoal
2202 static int
2203 bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2205 u32 rdintcm;
2206 u32 tdintcm;
2207 struct bdx_priv *priv = netdev_priv(netdev);
2208 int rx_coal;
2209 int tx_coal;
2210 int rx_max_coal;
2211 int tx_max_coal;
2213 /* Check for valid input */
2214 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2215 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2216 rx_max_coal = ecoal->rx_max_coalesced_frames;
2217 tx_max_coal = ecoal->tx_max_coalesced_frames;
2219 /* Translate from packets to multiples of FIFO bytes */
2220 rx_max_coal =
2221 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2222 / PCK_TH_MULT);
2223 tx_max_coal =
2224 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2225 / PCK_TH_MULT);
2227 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2228 (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2229 return -EINVAL;
2231 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2232 GET_RXF_TH(priv->rdintcm), rx_max_coal);
2233 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2234 tx_max_coal);
2236 priv->rdintcm = rdintcm;
2237 priv->tdintcm = tdintcm;
2239 WRITE_REG(priv, regRDINTCM0, rdintcm);
2240 WRITE_REG(priv, regTDINTCM0, tdintcm);
2242 return 0;
2245 /* Convert RX fifo size to number of pending packets */
2246 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2248 return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2251 /* Convert TX fifo size to number of pending packets */
2252 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2254 return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2258 * bdx_get_ringparam - report ring sizes
2259 * @netdev
2260 * @ring
2262 static void
2263 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2265 struct bdx_priv *priv = netdev_priv(netdev);
2267 /*max_pending - the maximum-sized FIFO we allow */
2268 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2269 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2270 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2271 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2275 * bdx_set_ringparam - set ring sizes
2276 * @netdev
2277 * @ring
2279 static int
2280 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2282 struct bdx_priv *priv = netdev_priv(netdev);
2283 int rx_size = 0;
2284 int tx_size = 0;
2286 for (; rx_size < 4; rx_size++) {
2287 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2288 break;
2290 if (rx_size == 4)
2291 rx_size = 3;
2293 for (; tx_size < 4; tx_size++) {
2294 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2295 break;
2297 if (tx_size == 4)
2298 tx_size = 3;
2300 /*Is there anything to do? */
2301 if ((rx_size == priv->rxf_size) &&
2302 (tx_size == priv->txd_size))
2303 return 0;
2305 priv->rxf_size = rx_size;
2306 if (rx_size > 1)
2307 priv->rxd_size = rx_size - 1;
2308 else
2309 priv->rxd_size = rx_size;
2311 priv->txf_size = priv->txd_size = tx_size;
2313 if (netif_running(netdev)) {
2314 bdx_close(netdev);
2315 bdx_open(netdev);
2317 return 0;
2321 * bdx_get_strings - return a set of strings that describe the requested objects
2322 * @netdev
2323 * @data
2325 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2327 switch (stringset) {
2328 case ETH_SS_STATS:
2329 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2330 break;
2335 * bdx_get_sset_count - return number of statistics or tests
2336 * @netdev
2338 static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2340 struct bdx_priv *priv = netdev_priv(netdev);
2342 switch (stringset) {
2343 case ETH_SS_STATS:
2344 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2345 != sizeof(struct bdx_stats) / sizeof(u64));
2346 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
2349 return -EINVAL;
2353 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2354 * @netdev
2355 * @stats
2356 * @data
2358 static void bdx_get_ethtool_stats(struct net_device *netdev,
2359 struct ethtool_stats *stats, u64 *data)
2361 struct bdx_priv *priv = netdev_priv(netdev);
2363 if (priv->stats_flag) {
2365 /* Update stats from HW */
2366 bdx_update_stats(priv);
2368 /* Copy data to user buffer */
2369 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2374 * bdx_set_ethtool_ops - ethtool interface implementation
2375 * @netdev
2377 static void bdx_set_ethtool_ops(struct net_device *netdev)
2379 static const struct ethtool_ops bdx_ethtool_ops = {
2380 .get_settings = bdx_get_settings,
2381 .get_drvinfo = bdx_get_drvinfo,
2382 .get_link = ethtool_op_get_link,
2383 .get_coalesce = bdx_get_coalesce,
2384 .set_coalesce = bdx_set_coalesce,
2385 .get_ringparam = bdx_get_ringparam,
2386 .set_ringparam = bdx_set_ringparam,
2387 .get_strings = bdx_get_strings,
2388 .get_sset_count = bdx_get_sset_count,
2389 .get_ethtool_stats = bdx_get_ethtool_stats,
2392 SET_ETHTOOL_OPS(netdev, &bdx_ethtool_ops);
2396 * bdx_remove - Device Removal Routine
2397 * @pdev: PCI device information struct
2399 * bdx_remove is called by the PCI subsystem to alert the driver
2400 * that it should release a PCI device. The could be caused by a
2401 * Hot-Plug event, or because the driver is going to be removed from
2402 * memory.
2404 static void __devexit bdx_remove(struct pci_dev *pdev)
2406 struct pci_nic *nic = pci_get_drvdata(pdev);
2407 struct net_device *ndev;
2408 int port;
2410 for (port = 0; port < nic->port_num; port++) {
2411 ndev = nic->priv[port]->ndev;
2412 unregister_netdev(ndev);
2413 free_netdev(ndev);
2416 /*bdx_hw_reset_direct(nic->regs); */
2417 #ifdef BDX_MSI
2418 if (nic->irq_type == IRQ_MSI)
2419 pci_disable_msi(pdev);
2420 #endif
2422 iounmap(nic->regs);
2423 pci_release_regions(pdev);
2424 pci_disable_device(pdev);
2425 pci_set_drvdata(pdev, NULL);
2426 vfree(nic);
2428 RET();
2431 static struct pci_driver bdx_pci_driver = {
2432 .name = BDX_DRV_NAME,
2433 .id_table = bdx_pci_tbl,
2434 .probe = bdx_probe,
2435 .remove = __devexit_p(bdx_remove),
2439 * print_driver_id - print parameters of the driver build
2441 static void __init print_driver_id(void)
2443 pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2444 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2447 static int __init bdx_module_init(void)
2449 ENTER;
2450 init_txd_sizes();
2451 print_driver_id();
2452 RET(pci_register_driver(&bdx_pci_driver));
2455 module_init(bdx_module_init);
2457 static void __exit bdx_module_exit(void)
2459 ENTER;
2460 pci_unregister_driver(&bdx_pci_driver);
2461 RET();
2464 module_exit(bdx_module_exit);
2466 MODULE_LICENSE("GPL");
2467 MODULE_AUTHOR(DRIVER_AUTHOR);
2468 MODULE_DESCRIPTION(BDX_DRV_DESC);
2469 MODULE_FIRMWARE("tehuti/bdx.bin");