2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/klist.h>
39 #include <linux/elf.h>
40 #include <linux/virtio_ids.h>
41 #include <linux/virtio_ring.h>
42 #include <asm/byteorder.h>
44 #include "remoteproc_internal.h"
46 static void klist_rproc_get(struct klist_node
*n
);
47 static void klist_rproc_put(struct klist_node
*n
);
50 * klist of the available remote processors.
52 * We need this in order to support name-based lookups (needed by the
53 * rproc_get_by_name()).
55 * That said, we don't use rproc_get_by_name() at this point.
56 * The use cases that do require its existence should be
57 * scrutinized, and hopefully migrated to rproc_boot() using device-based
60 * If/when this materializes, we could drop the klist (and the by_name
63 static DEFINE_KLIST(rprocs
, klist_rproc_get
, klist_rproc_put
);
65 typedef int (*rproc_handle_resources_t
)(struct rproc
*rproc
,
66 struct resource_table
*table
, int len
);
67 typedef int (*rproc_handle_resource_t
)(struct rproc
*rproc
, void *, int avail
);
70 * This is the IOMMU fault handler we register with the IOMMU API
71 * (when relevant; not all remote processors access memory through
74 * IOMMU core will invoke this handler whenever the remote processor
75 * will try to access an unmapped device address.
77 * Currently this is mostly a stub, but it will be later used to trigger
78 * the recovery of the remote processor.
80 static int rproc_iommu_fault(struct iommu_domain
*domain
, struct device
*dev
,
81 unsigned long iova
, int flags
)
83 dev_err(dev
, "iommu fault: da 0x%lx flags 0x%x\n", iova
, flags
);
86 * Let the iommu core know we're not really handling this fault;
87 * we just plan to use this as a recovery trigger.
92 static int rproc_enable_iommu(struct rproc
*rproc
)
94 struct iommu_domain
*domain
;
95 struct device
*dev
= rproc
->dev
;
99 * We currently use iommu_present() to decide if an IOMMU
102 * This works for simple cases, but will easily fail with
103 * platforms that do have an IOMMU, but not for this specific
106 * This will be easily solved by introducing hw capabilities
107 * that will be set by the remoteproc driver.
109 if (!iommu_present(dev
->bus
)) {
110 dev_dbg(dev
, "iommu not found\n");
114 domain
= iommu_domain_alloc(dev
->bus
);
116 dev_err(dev
, "can't alloc iommu domain\n");
120 iommu_set_fault_handler(domain
, rproc_iommu_fault
);
122 ret
= iommu_attach_device(domain
, dev
);
124 dev_err(dev
, "can't attach iommu device: %d\n", ret
);
128 rproc
->domain
= domain
;
133 iommu_domain_free(domain
);
137 static void rproc_disable_iommu(struct rproc
*rproc
)
139 struct iommu_domain
*domain
= rproc
->domain
;
140 struct device
*dev
= rproc
->dev
;
145 iommu_detach_device(domain
, dev
);
146 iommu_domain_free(domain
);
152 * Some remote processors will ask us to allocate them physically contiguous
153 * memory regions (which we call "carveouts"), and map them to specific
154 * device addresses (which are hardcoded in the firmware).
156 * They may then ask us to copy objects into specific device addresses (e.g.
157 * code/data sections) or expose us certain symbols in other device address
158 * (e.g. their trace buffer).
160 * This function is an internal helper with which we can go over the allocated
161 * carveouts and translate specific device address to kernel virtual addresses
162 * so we can access the referenced memory.
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API, which should be more correct.
168 static void *rproc_da_to_va(struct rproc
*rproc
, u64 da
, int len
)
170 struct rproc_mem_entry
*carveout
;
173 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
174 int offset
= da
- carveout
->da
;
176 /* try next carveout if da is too small */
180 /* try next carveout if da is too large */
181 if (offset
+ len
> carveout
->len
)
184 ptr
= carveout
->va
+ offset
;
193 * rproc_load_segments() - load firmware segments to memory
194 * @rproc: remote processor which will be booted using these fw segments
195 * @elf_data: the content of the ELF firmware image
196 * @len: firmware size (in bytes)
198 * This function loads the firmware segments to memory, where the remote
199 * processor expects them.
201 * Some remote processors will expect their code and data to be placed
202 * in specific device addresses, and can't have them dynamically assigned.
204 * We currently support only those kind of remote processors, and expect
205 * the program header's paddr member to contain those addresses. We then go
206 * through the physically contiguous "carveout" memory regions which we
207 * allocated (and mapped) earlier on behalf of the remote processor,
208 * and "translate" device address to kernel addresses, so we can copy the
209 * segments where they are expected.
211 * Currently we only support remote processors that required carveout
212 * allocations and got them mapped onto their iommus. Some processors
213 * might be different: they might not have iommus, and would prefer to
214 * directly allocate memory for every segment/resource. This is not yet
218 rproc_load_segments(struct rproc
*rproc
, const u8
*elf_data
, size_t len
)
220 struct device
*dev
= rproc
->dev
;
221 struct elf32_hdr
*ehdr
;
222 struct elf32_phdr
*phdr
;
225 ehdr
= (struct elf32_hdr
*)elf_data
;
226 phdr
= (struct elf32_phdr
*)(elf_data
+ ehdr
->e_phoff
);
228 /* go through the available ELF segments */
229 for (i
= 0; i
< ehdr
->e_phnum
; i
++, phdr
++) {
230 u32 da
= phdr
->p_paddr
;
231 u32 memsz
= phdr
->p_memsz
;
232 u32 filesz
= phdr
->p_filesz
;
233 u32 offset
= phdr
->p_offset
;
236 if (phdr
->p_type
!= PT_LOAD
)
239 dev_dbg(dev
, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
240 phdr
->p_type
, da
, memsz
, filesz
);
242 if (filesz
> memsz
) {
243 dev_err(dev
, "bad phdr filesz 0x%x memsz 0x%x\n",
249 if (offset
+ filesz
> len
) {
250 dev_err(dev
, "truncated fw: need 0x%x avail 0x%zx\n",
251 offset
+ filesz
, len
);
256 /* grab the kernel address for this device address */
257 ptr
= rproc_da_to_va(rproc
, da
, memsz
);
259 dev_err(dev
, "bad phdr da 0x%x mem 0x%x\n", da
, memsz
);
264 /* put the segment where the remote processor expects it */
266 memcpy(ptr
, elf_data
+ phdr
->p_offset
, filesz
);
269 * Zero out remaining memory for this segment.
271 * This isn't strictly required since dma_alloc_coherent already
272 * did this for us. albeit harmless, we may consider removing
276 memset(ptr
+ filesz
, 0, memsz
- filesz
);
283 __rproc_handle_vring(struct rproc_vdev
*rvdev
, struct fw_rsc_vdev
*rsc
, int i
)
285 struct rproc
*rproc
= rvdev
->rproc
;
286 struct device
*dev
= rproc
->dev
;
287 struct fw_rsc_vdev_vring
*vring
= &rsc
->vring
[i
];
290 int ret
, size
, notifyid
;
292 dev_dbg(dev
, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
293 i
, vring
->da
, vring
->num
, vring
->align
);
295 /* make sure reserved bytes are zeroes */
296 if (vring
->reserved
) {
297 dev_err(dev
, "vring rsc has non zero reserved bytes\n");
301 /* verify queue size and vring alignment are sane */
302 if (!vring
->num
|| !vring
->align
) {
303 dev_err(dev
, "invalid qsz (%d) or alignment (%d)\n",
304 vring
->num
, vring
->align
);
308 /* actual size of vring (in bytes) */
309 size
= PAGE_ALIGN(vring_size(vring
->num
, vring
->align
));
311 if (!idr_pre_get(&rproc
->notifyids
, GFP_KERNEL
)) {
312 dev_err(dev
, "idr_pre_get failed\n");
317 * Allocate non-cacheable memory for the vring. In the future
318 * this call will also configure the IOMMU for us
320 va
= dma_alloc_coherent(dev
, size
, &dma
, GFP_KERNEL
);
322 dev_err(dev
, "dma_alloc_coherent failed\n");
326 /* assign an rproc-wide unique index for this vring */
327 /* TODO: assign a notifyid for rvdev updates as well */
328 ret
= idr_get_new(&rproc
->notifyids
, &rvdev
->vring
[i
], ¬ifyid
);
330 dev_err(dev
, "idr_get_new failed: %d\n", ret
);
331 dma_free_coherent(dev
, size
, va
, dma
);
335 /* let the rproc know the da and notifyid of this vring */
336 /* TODO: expose this to remote processor */
338 vring
->notifyid
= notifyid
;
340 dev_dbg(dev
, "vring%d: va %p dma %x size %x idr %d\n", i
, va
,
341 dma
, size
, notifyid
);
343 rvdev
->vring
[i
].len
= vring
->num
;
344 rvdev
->vring
[i
].align
= vring
->align
;
345 rvdev
->vring
[i
].va
= va
;
346 rvdev
->vring
[i
].dma
= dma
;
347 rvdev
->vring
[i
].notifyid
= notifyid
;
348 rvdev
->vring
[i
].rvdev
= rvdev
;
353 static void __rproc_free_vrings(struct rproc_vdev
*rvdev
, int i
)
355 struct rproc
*rproc
= rvdev
->rproc
;
357 for (i
--; i
>= 0; i
--) {
358 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
359 int size
= PAGE_ALIGN(vring_size(rvring
->len
, rvring
->align
));
361 dma_free_coherent(rproc
->dev
, size
, rvring
->va
, rvring
->dma
);
362 idr_remove(&rproc
->notifyids
, rvring
->notifyid
);
367 * rproc_handle_vdev() - handle a vdev fw resource
368 * @rproc: the remote processor
369 * @rsc: the vring resource descriptor
370 * @avail: size of available data (for sanity checking the image)
372 * This resource entry requests the host to statically register a virtio
373 * device (vdev), and setup everything needed to support it. It contains
374 * everything needed to make it possible: the virtio device id, virtio
375 * device features, vrings information, virtio config space, etc...
377 * Before registering the vdev, the vrings are allocated from non-cacheable
378 * physically contiguous memory. Currently we only support two vrings per
379 * remote processor (temporary limitation). We might also want to consider
380 * doing the vring allocation only later when ->find_vqs() is invoked, and
381 * then release them upon ->del_vqs().
383 * Note: @da is currently not really handled correctly: we dynamically
384 * allocate it using the DMA API, ignoring requested hard coded addresses,
385 * and we don't take care of any required IOMMU programming. This is all
386 * going to be taken care of when the generic iommu-based DMA API will be
387 * merged. Meanwhile, statically-addressed iommu-based firmware images should
388 * use RSC_DEVMEM resource entries to map their required @da to the physical
389 * address of their base CMA region (ouch, hacky!).
391 * Returns 0 on success, or an appropriate error code otherwise
393 static int rproc_handle_vdev(struct rproc
*rproc
, struct fw_rsc_vdev
*rsc
,
396 struct device
*dev
= rproc
->dev
;
397 struct rproc_vdev
*rvdev
;
400 /* make sure resource isn't truncated */
401 if (sizeof(*rsc
) + rsc
->num_of_vrings
* sizeof(struct fw_rsc_vdev_vring
)
402 + rsc
->config_len
> avail
) {
403 dev_err(rproc
->dev
, "vdev rsc is truncated\n");
407 /* make sure reserved bytes are zeroes */
408 if (rsc
->reserved
[0] || rsc
->reserved
[1]) {
409 dev_err(dev
, "vdev rsc has non zero reserved bytes\n");
413 dev_dbg(dev
, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
414 rsc
->id
, rsc
->dfeatures
, rsc
->config_len
, rsc
->num_of_vrings
);
416 /* we currently support only two vrings per rvdev */
417 if (rsc
->num_of_vrings
> ARRAY_SIZE(rvdev
->vring
)) {
418 dev_err(dev
, "too many vrings: %d\n", rsc
->num_of_vrings
);
422 rvdev
= kzalloc(sizeof(struct rproc_vdev
), GFP_KERNEL
);
426 rvdev
->rproc
= rproc
;
428 /* allocate the vrings */
429 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
430 ret
= __rproc_handle_vring(rvdev
, rsc
, i
);
435 /* remember the device features */
436 rvdev
->dfeatures
= rsc
->dfeatures
;
438 list_add_tail(&rvdev
->node
, &rproc
->rvdevs
);
440 /* it is now safe to add the virtio device */
441 ret
= rproc_add_virtio_dev(rvdev
, rsc
->id
);
448 __rproc_free_vrings(rvdev
, i
);
454 * rproc_handle_trace() - handle a shared trace buffer resource
455 * @rproc: the remote processor
456 * @rsc: the trace resource descriptor
457 * @avail: size of available data (for sanity checking the image)
459 * In case the remote processor dumps trace logs into memory,
460 * export it via debugfs.
462 * Currently, the 'da' member of @rsc should contain the device address
463 * where the remote processor is dumping the traces. Later we could also
464 * support dynamically allocating this address using the generic
465 * DMA API (but currently there isn't a use case for that).
467 * Returns 0 on success, or an appropriate error code otherwise
469 static int rproc_handle_trace(struct rproc
*rproc
, struct fw_rsc_trace
*rsc
,
472 struct rproc_mem_entry
*trace
;
473 struct device
*dev
= rproc
->dev
;
477 if (sizeof(*rsc
) > avail
) {
478 dev_err(rproc
->dev
, "trace rsc is truncated\n");
482 /* make sure reserved bytes are zeroes */
484 dev_err(dev
, "trace rsc has non zero reserved bytes\n");
488 /* what's the kernel address of this resource ? */
489 ptr
= rproc_da_to_va(rproc
, rsc
->da
, rsc
->len
);
491 dev_err(dev
, "erroneous trace resource entry\n");
495 trace
= kzalloc(sizeof(*trace
), GFP_KERNEL
);
497 dev_err(dev
, "kzalloc trace failed\n");
501 /* set the trace buffer dma properties */
502 trace
->len
= rsc
->len
;
505 /* make sure snprintf always null terminates, even if truncating */
506 snprintf(name
, sizeof(name
), "trace%d", rproc
->num_traces
);
508 /* create the debugfs entry */
509 trace
->priv
= rproc_create_trace_file(name
, rproc
, trace
);
516 list_add_tail(&trace
->node
, &rproc
->traces
);
520 dev_dbg(dev
, "%s added: va %p, da 0x%x, len 0x%x\n", name
, ptr
,
527 * rproc_handle_devmem() - handle devmem resource entry
528 * @rproc: remote processor handle
529 * @rsc: the devmem resource entry
530 * @avail: size of available data (for sanity checking the image)
532 * Remote processors commonly need to access certain on-chip peripherals.
534 * Some of these remote processors access memory via an iommu device,
535 * and might require us to configure their iommu before they can access
536 * the on-chip peripherals they need.
538 * This resource entry is a request to map such a peripheral device.
540 * These devmem entries will contain the physical address of the device in
541 * the 'pa' member. If a specific device address is expected, then 'da' will
542 * contain it (currently this is the only use case supported). 'len' will
543 * contain the size of the physical region we need to map.
545 * Currently we just "trust" those devmem entries to contain valid physical
546 * addresses, but this is going to change: we want the implementations to
547 * tell us ranges of physical addresses the firmware is allowed to request,
548 * and not allow firmwares to request access to physical addresses that
549 * are outside those ranges.
551 static int rproc_handle_devmem(struct rproc
*rproc
, struct fw_rsc_devmem
*rsc
,
554 struct rproc_mem_entry
*mapping
;
557 /* no point in handling this resource without a valid iommu domain */
561 if (sizeof(*rsc
) > avail
) {
562 dev_err(rproc
->dev
, "devmem rsc is truncated\n");
566 /* make sure reserved bytes are zeroes */
568 dev_err(rproc
->dev
, "devmem rsc has non zero reserved bytes\n");
572 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
574 dev_err(rproc
->dev
, "kzalloc mapping failed\n");
578 ret
= iommu_map(rproc
->domain
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
580 dev_err(rproc
->dev
, "failed to map devmem: %d\n", ret
);
585 * We'll need this info later when we'll want to unmap everything
586 * (e.g. on shutdown).
588 * We can't trust the remote processor not to change the resource
589 * table, so we must maintain this info independently.
591 mapping
->da
= rsc
->da
;
592 mapping
->len
= rsc
->len
;
593 list_add_tail(&mapping
->node
, &rproc
->mappings
);
595 dev_dbg(rproc
->dev
, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
596 rsc
->pa
, rsc
->da
, rsc
->len
);
606 * rproc_handle_carveout() - handle phys contig memory allocation requests
607 * @rproc: rproc handle
608 * @rsc: the resource entry
609 * @avail: size of available data (for image validation)
611 * This function will handle firmware requests for allocation of physically
612 * contiguous memory regions.
614 * These request entries should come first in the firmware's resource table,
615 * as other firmware entries might request placing other data objects inside
616 * these memory regions (e.g. data/code segments, trace resource entries, ...).
618 * Allocating memory this way helps utilizing the reserved physical memory
619 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
620 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
621 * pressure is important; it may have a substantial impact on performance.
623 static int rproc_handle_carveout(struct rproc
*rproc
,
624 struct fw_rsc_carveout
*rsc
, int avail
)
626 struct rproc_mem_entry
*carveout
, *mapping
;
627 struct device
*dev
= rproc
->dev
;
632 if (sizeof(*rsc
) > avail
) {
633 dev_err(rproc
->dev
, "carveout rsc is truncated\n");
637 /* make sure reserved bytes are zeroes */
639 dev_err(dev
, "carveout rsc has non zero reserved bytes\n");
643 dev_dbg(dev
, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
644 rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
646 carveout
= kzalloc(sizeof(*carveout
), GFP_KERNEL
);
648 dev_err(dev
, "kzalloc carveout failed\n");
652 va
= dma_alloc_coherent(dev
, rsc
->len
, &dma
, GFP_KERNEL
);
654 dev_err(dev
, "failed to dma alloc carveout: %d\n", rsc
->len
);
659 dev_dbg(dev
, "carveout va %p, dma %x, len 0x%x\n", va
, dma
, rsc
->len
);
662 * Ok, this is non-standard.
664 * Sometimes we can't rely on the generic iommu-based DMA API
665 * to dynamically allocate the device address and then set the IOMMU
666 * tables accordingly, because some remote processors might
667 * _require_ us to use hard coded device addresses that their
668 * firmware was compiled with.
670 * In this case, we must use the IOMMU API directly and map
671 * the memory to the device address as expected by the remote
674 * Obviously such remote processor devices should not be configured
675 * to use the iommu-based DMA API: we expect 'dma' to contain the
676 * physical address in this case.
679 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
681 dev_err(dev
, "kzalloc mapping failed\n");
686 ret
= iommu_map(rproc
->domain
, rsc
->da
, dma
, rsc
->len
,
689 dev_err(dev
, "iommu_map failed: %d\n", ret
);
694 * We'll need this info later when we'll want to unmap
695 * everything (e.g. on shutdown).
697 * We can't trust the remote processor not to change the
698 * resource table, so we must maintain this info independently.
700 mapping
->da
= rsc
->da
;
701 mapping
->len
= rsc
->len
;
702 list_add_tail(&mapping
->node
, &rproc
->mappings
);
704 dev_dbg(dev
, "carveout mapped 0x%x to 0x%x\n", rsc
->da
, dma
);
707 * Some remote processors might need to know the pa
708 * even though they are behind an IOMMU. E.g., OMAP4's
709 * remote M3 processor needs this so it can control
710 * on-chip hardware accelerators that are not behind
711 * the IOMMU, and therefor must know the pa.
713 * Generally we don't want to expose physical addresses
714 * if we don't have to (remote processors are generally
715 * _not_ trusted), so we might want to do this only for
716 * remote processor that _must_ have this (e.g. OMAP4's
717 * dual M3 subsystem).
723 carveout
->len
= rsc
->len
;
725 carveout
->da
= rsc
->da
;
727 list_add_tail(&carveout
->node
, &rproc
->carveouts
);
734 dma_free_coherent(dev
, rsc
->len
, va
, dma
);
741 * A lookup table for resource handlers. The indices are defined in
742 * enum fw_resource_type.
744 static rproc_handle_resource_t rproc_handle_rsc
[] = {
745 [RSC_CARVEOUT
] = (rproc_handle_resource_t
)rproc_handle_carveout
,
746 [RSC_DEVMEM
] = (rproc_handle_resource_t
)rproc_handle_devmem
,
747 [RSC_TRACE
] = (rproc_handle_resource_t
)rproc_handle_trace
,
748 [RSC_VDEV
] = NULL
, /* VDEVs were handled upon registrarion */
751 /* handle firmware resource entries before booting the remote processor */
753 rproc_handle_boot_rsc(struct rproc
*rproc
, struct resource_table
*table
, int len
)
755 struct device
*dev
= rproc
->dev
;
756 rproc_handle_resource_t handler
;
759 for (i
= 0; i
< table
->num
; i
++) {
760 int offset
= table
->offset
[i
];
761 struct fw_rsc_hdr
*hdr
= (void *)table
+ offset
;
762 int avail
= len
- offset
- sizeof(*hdr
);
763 void *rsc
= (void *)hdr
+ sizeof(*hdr
);
765 /* make sure table isn't truncated */
767 dev_err(dev
, "rsc table is truncated\n");
771 dev_dbg(dev
, "rsc: type %d\n", hdr
->type
);
773 if (hdr
->type
>= RSC_LAST
) {
774 dev_warn(dev
, "unsupported resource %d\n", hdr
->type
);
778 handler
= rproc_handle_rsc
[hdr
->type
];
782 ret
= handler(rproc
, rsc
, avail
);
790 /* handle firmware resource entries while registering the remote processor */
792 rproc_handle_virtio_rsc(struct rproc
*rproc
, struct resource_table
*table
, int len
)
794 struct device
*dev
= rproc
->dev
;
797 for (i
= 0; i
< table
->num
; i
++) {
798 int offset
= table
->offset
[i
];
799 struct fw_rsc_hdr
*hdr
= (void *)table
+ offset
;
800 int avail
= len
- offset
- sizeof(*hdr
);
801 struct fw_rsc_vdev
*vrsc
;
803 /* make sure table isn't truncated */
805 dev_err(dev
, "rsc table is truncated\n");
809 dev_dbg(dev
, "%s: rsc type %d\n", __func__
, hdr
->type
);
811 if (hdr
->type
!= RSC_VDEV
)
814 vrsc
= (struct fw_rsc_vdev
*)hdr
->data
;
816 ret
= rproc_handle_vdev(rproc
, vrsc
, avail
);
825 * rproc_find_rsc_table() - find the resource table
826 * @rproc: the rproc handle
827 * @elf_data: the content of the ELF firmware image
828 * @len: firmware size (in bytes)
829 * @tablesz: place holder for providing back the table size
831 * This function finds the resource table inside the remote processor's
832 * firmware. It is used both upon the registration of @rproc (in order
833 * to look for and register the supported virito devices), and when the
836 * Returns the pointer to the resource table if it is found, and write its
837 * size into @tablesz. If a valid table isn't found, NULL is returned
838 * (and @tablesz isn't set).
840 static struct resource_table
*
841 rproc_find_rsc_table(struct rproc
*rproc
, const u8
*elf_data
, size_t len
,
844 struct elf32_hdr
*ehdr
;
845 struct elf32_shdr
*shdr
;
846 const char *name_table
;
847 struct device
*dev
= rproc
->dev
;
848 struct resource_table
*table
= NULL
;
851 ehdr
= (struct elf32_hdr
*)elf_data
;
852 shdr
= (struct elf32_shdr
*)(elf_data
+ ehdr
->e_shoff
);
853 name_table
= elf_data
+ shdr
[ehdr
->e_shstrndx
].sh_offset
;
855 /* look for the resource table and handle it */
856 for (i
= 0; i
< ehdr
->e_shnum
; i
++, shdr
++) {
857 int size
= shdr
->sh_size
;
858 int offset
= shdr
->sh_offset
;
860 if (strcmp(name_table
+ shdr
->sh_name
, ".resource_table"))
863 table
= (struct resource_table
*)(elf_data
+ offset
);
865 /* make sure we have the entire table */
866 if (offset
+ size
> len
) {
867 dev_err(dev
, "resource table truncated\n");
871 /* make sure table has at least the header */
872 if (sizeof(struct resource_table
) > size
) {
873 dev_err(dev
, "header-less resource table\n");
877 /* we don't support any version beyond the first */
878 if (table
->ver
!= 1) {
879 dev_err(dev
, "unsupported fw ver: %d\n", table
->ver
);
883 /* make sure reserved bytes are zeroes */
884 if (table
->reserved
[0] || table
->reserved
[1]) {
885 dev_err(dev
, "non zero reserved bytes\n");
889 /* make sure the offsets array isn't truncated */
890 if (table
->num
* sizeof(table
->offset
[0]) +
891 sizeof(struct resource_table
) > size
) {
892 dev_err(dev
, "resource table incomplete\n");
896 *tablesz
= shdr
->sh_size
;
904 * rproc_resource_cleanup() - clean up and free all acquired resources
905 * @rproc: rproc handle
907 * This function will free all resources acquired for @rproc, and it
908 * is called whenever @rproc either shuts down or fails to boot.
910 static void rproc_resource_cleanup(struct rproc
*rproc
)
912 struct rproc_mem_entry
*entry
, *tmp
;
913 struct device
*dev
= rproc
->dev
;
915 /* clean up debugfs trace entries */
916 list_for_each_entry_safe(entry
, tmp
, &rproc
->traces
, node
) {
917 rproc_remove_trace_file(entry
->priv
);
919 list_del(&entry
->node
);
923 /* clean up carveout allocations */
924 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
925 dma_free_coherent(dev
, entry
->len
, entry
->va
, entry
->dma
);
926 list_del(&entry
->node
);
930 /* clean up iommu mapping entries */
931 list_for_each_entry_safe(entry
, tmp
, &rproc
->mappings
, node
) {
934 unmapped
= iommu_unmap(rproc
->domain
, entry
->da
, entry
->len
);
935 if (unmapped
!= entry
->len
) {
936 /* nothing much to do besides complaining */
937 dev_err(dev
, "failed to unmap %u/%zu\n", entry
->len
,
941 list_del(&entry
->node
);
946 /* make sure this fw image is sane */
947 static int rproc_fw_sanity_check(struct rproc
*rproc
, const struct firmware
*fw
)
949 const char *name
= rproc
->firmware
;
950 struct device
*dev
= rproc
->dev
;
951 struct elf32_hdr
*ehdr
;
955 dev_err(dev
, "failed to load %s\n", name
);
959 if (fw
->size
< sizeof(struct elf32_hdr
)) {
960 dev_err(dev
, "Image is too small\n");
964 ehdr
= (struct elf32_hdr
*)fw
->data
;
966 /* We only support ELF32 at this point */
967 class = ehdr
->e_ident
[EI_CLASS
];
968 if (class != ELFCLASS32
) {
969 dev_err(dev
, "Unsupported class: %d\n", class);
973 /* We assume the firmware has the same endianess as the host */
974 # ifdef __LITTLE_ENDIAN
975 if (ehdr
->e_ident
[EI_DATA
] != ELFDATA2LSB
) {
976 # else /* BIG ENDIAN */
977 if (ehdr
->e_ident
[EI_DATA
] != ELFDATA2MSB
) {
979 dev_err(dev
, "Unsupported firmware endianess\n");
983 if (fw
->size
< ehdr
->e_shoff
+ sizeof(struct elf32_shdr
)) {
984 dev_err(dev
, "Image is too small\n");
988 if (memcmp(ehdr
->e_ident
, ELFMAG
, SELFMAG
)) {
989 dev_err(dev
, "Image is corrupted (bad magic)\n");
993 if (ehdr
->e_phnum
== 0) {
994 dev_err(dev
, "No loadable segments\n");
998 if (ehdr
->e_phoff
> fw
->size
) {
999 dev_err(dev
, "Firmware size is too small\n");
1007 * take a firmware and boot a remote processor with it.
1009 static int rproc_fw_boot(struct rproc
*rproc
, const struct firmware
*fw
)
1011 struct device
*dev
= rproc
->dev
;
1012 const char *name
= rproc
->firmware
;
1013 struct elf32_hdr
*ehdr
;
1014 struct resource_table
*table
;
1017 ret
= rproc_fw_sanity_check(rproc
, fw
);
1021 ehdr
= (struct elf32_hdr
*)fw
->data
;
1023 dev_info(dev
, "Booting fw image %s, size %zd\n", name
, fw
->size
);
1026 * if enabling an IOMMU isn't relevant for this rproc, this is
1029 ret
= rproc_enable_iommu(rproc
);
1031 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1036 * The ELF entry point is the rproc's boot addr (though this is not
1037 * a configurable property of all remote processors: some will always
1038 * boot at a specific hardcoded address).
1040 rproc
->bootaddr
= ehdr
->e_entry
;
1042 /* look for the resource table */
1043 table
= rproc_find_rsc_table(rproc
, fw
->data
, fw
->size
, &tablesz
);
1049 /* handle fw resources which are required to boot rproc */
1050 ret
= rproc_handle_boot_rsc(rproc
, table
, tablesz
);
1052 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1056 /* load the ELF segments to memory */
1057 ret
= rproc_load_segments(rproc
, fw
->data
, fw
->size
);
1059 dev_err(dev
, "Failed to load program segments: %d\n", ret
);
1063 /* power up the remote processor */
1064 ret
= rproc
->ops
->start(rproc
);
1066 dev_err(dev
, "can't start rproc %s: %d\n", rproc
->name
, ret
);
1070 rproc
->state
= RPROC_RUNNING
;
1072 dev_info(dev
, "remote processor %s is now up\n", rproc
->name
);
1077 rproc_resource_cleanup(rproc
);
1078 rproc_disable_iommu(rproc
);
1083 * take a firmware and look for virtio devices to register.
1085 * Note: this function is called asynchronously upon registration of the
1086 * remote processor (so we must wait until it completes before we try
1087 * to unregister the device. one other option is just to use kref here,
1088 * that might be cleaner).
1090 static void rproc_fw_config_virtio(const struct firmware
*fw
, void *context
)
1092 struct rproc
*rproc
= context
;
1093 struct resource_table
*table
;
1096 if (rproc_fw_sanity_check(rproc
, fw
) < 0)
1099 /* look for the resource table */
1100 table
= rproc_find_rsc_table(rproc
, fw
->data
, fw
->size
, &tablesz
);
1104 /* look for virtio devices and register them */
1105 ret
= rproc_handle_virtio_rsc(rproc
, table
, tablesz
);
1111 release_firmware(fw
);
1112 /* allow rproc_unregister() contexts, if any, to proceed */
1113 complete_all(&rproc
->firmware_loading_complete
);
1117 * rproc_boot() - boot a remote processor
1118 * @rproc: handle of a remote processor
1120 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1122 * If the remote processor is already powered on, this function immediately
1123 * returns (successfully).
1125 * Returns 0 on success, and an appropriate error value otherwise.
1127 int rproc_boot(struct rproc
*rproc
)
1129 const struct firmware
*firmware_p
;
1134 pr_err("invalid rproc handle\n");
1140 ret
= mutex_lock_interruptible(&rproc
->lock
);
1142 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1146 /* loading a firmware is required */
1147 if (!rproc
->firmware
) {
1148 dev_err(dev
, "%s: no firmware to load\n", __func__
);
1153 /* prevent underlying implementation from being removed */
1154 if (!try_module_get(dev
->driver
->owner
)) {
1155 dev_err(dev
, "%s: can't get owner\n", __func__
);
1160 /* skip the boot process if rproc is already powered up */
1161 if (atomic_inc_return(&rproc
->power
) > 1) {
1166 dev_info(dev
, "powering up %s\n", rproc
->name
);
1169 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1171 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1175 ret
= rproc_fw_boot(rproc
, firmware_p
);
1177 release_firmware(firmware_p
);
1181 module_put(dev
->driver
->owner
);
1182 atomic_dec(&rproc
->power
);
1185 mutex_unlock(&rproc
->lock
);
1188 EXPORT_SYMBOL(rproc_boot
);
1191 * rproc_shutdown() - power off the remote processor
1192 * @rproc: the remote processor
1194 * Power off a remote processor (previously booted with rproc_boot()).
1196 * In case @rproc is still being used by an additional user(s), then
1197 * this function will just decrement the power refcount and exit,
1198 * without really powering off the device.
1200 * Every call to rproc_boot() must (eventually) be accompanied by a call
1201 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1204 * - we're not decrementing the rproc's refcount, only the power refcount.
1205 * which means that the @rproc handle stays valid even after rproc_shutdown()
1206 * returns, and users can still use it with a subsequent rproc_boot(), if
1208 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
1209 * because rproc_shutdown() _does not_ decrement the refcount of @rproc.
1210 * To decrement the refcount of @rproc, use rproc_put() (but _only_ if
1211 * you acquired @rproc using rproc_get_by_name()).
1213 void rproc_shutdown(struct rproc
*rproc
)
1215 struct device
*dev
= rproc
->dev
;
1218 ret
= mutex_lock_interruptible(&rproc
->lock
);
1220 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1224 /* if the remote proc is still needed, bail out */
1225 if (!atomic_dec_and_test(&rproc
->power
))
1228 /* power off the remote processor */
1229 ret
= rproc
->ops
->stop(rproc
);
1231 atomic_inc(&rproc
->power
);
1232 dev_err(dev
, "can't stop rproc: %d\n", ret
);
1236 /* clean up all acquired resources */
1237 rproc_resource_cleanup(rproc
);
1239 rproc_disable_iommu(rproc
);
1241 rproc
->state
= RPROC_OFFLINE
;
1243 dev_info(dev
, "stopped remote processor %s\n", rproc
->name
);
1246 mutex_unlock(&rproc
->lock
);
1248 module_put(dev
->driver
->owner
);
1250 EXPORT_SYMBOL(rproc_shutdown
);
1253 * rproc_release() - completely deletes the existence of a remote processor
1254 * @kref: the rproc's kref
1256 * This function should _never_ be called directly.
1258 * The only reasonable location to use it is as an argument when kref_put'ing
1259 * @rproc's refcount.
1261 * This way it will be called when no one holds a valid pointer to this @rproc
1262 * anymore (and obviously after it is removed from the rprocs klist).
1264 * Note: this function is not static because rproc_vdev_release() needs it when
1265 * it decrements @rproc's refcount.
1267 void rproc_release(struct kref
*kref
)
1269 struct rproc
*rproc
= container_of(kref
, struct rproc
, refcount
);
1270 struct rproc_vdev
*rvdev
, *rvtmp
;
1272 dev_info(rproc
->dev
, "removing %s\n", rproc
->name
);
1274 rproc_delete_debug_dir(rproc
);
1276 /* clean up remote vdev entries */
1277 list_for_each_entry_safe(rvdev
, rvtmp
, &rproc
->rvdevs
, node
) {
1278 __rproc_free_vrings(rvdev
, RVDEV_NUM_VRINGS
);
1279 list_del(&rvdev
->node
);
1283 * At this point no one holds a reference to rproc anymore,
1284 * so we can directly unroll rproc_alloc()
1289 /* will be called when an rproc is added to the rprocs klist */
1290 static void klist_rproc_get(struct klist_node
*n
)
1292 struct rproc
*rproc
= container_of(n
, struct rproc
, node
);
1294 kref_get(&rproc
->refcount
);
1297 /* will be called when an rproc is removed from the rprocs klist */
1298 static void klist_rproc_put(struct klist_node
*n
)
1300 struct rproc
*rproc
= container_of(n
, struct rproc
, node
);
1302 kref_put(&rproc
->refcount
, rproc_release
);
1305 static struct rproc
*next_rproc(struct klist_iter
*i
)
1307 struct klist_node
*n
;
1313 return container_of(n
, struct rproc
, node
);
1317 * rproc_get_by_name() - find a remote processor by name and boot it
1318 * @name: name of the remote processor
1320 * Finds an rproc handle using the remote processor's name, and then
1321 * boot it. If it's already powered on, then just immediately return
1324 * Returns the rproc handle on success, and NULL on failure.
1326 * This function increments the remote processor's refcount, so always
1327 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1329 * Note: currently this function (and its counterpart rproc_put()) are not
1330 * being used. We need to scrutinize the use cases
1331 * that still need them, and see if we can migrate them to use the non
1332 * name-based boot/shutdown interface.
1334 struct rproc
*rproc_get_by_name(const char *name
)
1336 struct rproc
*rproc
;
1337 struct klist_iter i
;
1340 /* find the remote processor, and upref its refcount */
1341 klist_iter_init(&rprocs
, &i
);
1342 while ((rproc
= next_rproc(&i
)) != NULL
)
1343 if (!strcmp(rproc
->name
, name
)) {
1344 kref_get(&rproc
->refcount
);
1347 klist_iter_exit(&i
);
1349 /* can't find this rproc ? */
1351 pr_err("can't find remote processor %s\n", name
);
1355 ret
= rproc_boot(rproc
);
1357 kref_put(&rproc
->refcount
, rproc_release
);
1363 EXPORT_SYMBOL(rproc_get_by_name
);
1366 * rproc_put() - decrement the refcount of a remote processor, and shut it down
1367 * @rproc: the remote processor
1369 * This function tries to shutdown @rproc, and it then decrements its
1372 * After this function returns, @rproc may _not_ be used anymore, and its
1373 * handle should be considered invalid.
1375 * This function should be called _iff_ the @rproc handle was grabbed by
1376 * calling rproc_get_by_name().
1378 void rproc_put(struct rproc
*rproc
)
1380 /* try to power off the remote processor */
1381 rproc_shutdown(rproc
);
1383 /* downref rproc's refcount */
1384 kref_put(&rproc
->refcount
, rproc_release
);
1386 EXPORT_SYMBOL(rproc_put
);
1389 * rproc_register() - register a remote processor
1390 * @rproc: the remote processor handle to register
1392 * Registers @rproc with the remoteproc framework, after it has been
1393 * allocated with rproc_alloc().
1395 * This is called by the platform-specific rproc implementation, whenever
1396 * a new remote processor device is probed.
1398 * Returns 0 on success and an appropriate error code otherwise.
1400 * Note: this function initiates an asynchronous firmware loading
1401 * context, which will look for virtio devices supported by the rproc's
1404 * If found, those virtio devices will be created and added, so as a result
1405 * of registering this remote processor, additional virtio drivers might be
1408 int rproc_register(struct rproc
*rproc
)
1410 struct device
*dev
= rproc
->dev
;
1413 /* expose to rproc_get_by_name users */
1414 klist_add_tail(&rproc
->node
, &rprocs
);
1416 dev_info(rproc
->dev
, "%s is available\n", rproc
->name
);
1418 dev_info(dev
, "Note: remoteproc is still under development and considered experimental.\n");
1419 dev_info(dev
, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1421 /* create debugfs entries */
1422 rproc_create_debug_dir(rproc
);
1424 /* rproc_unregister() calls must wait until async loader completes */
1425 init_completion(&rproc
->firmware_loading_complete
);
1428 * We must retrieve early virtio configuration info from
1429 * the firmware (e.g. whether to register a virtio device,
1430 * what virtio features does it support, ...).
1432 * We're initiating an asynchronous firmware loading, so we can
1433 * be built-in kernel code, without hanging the boot process.
1435 ret
= request_firmware_nowait(THIS_MODULE
, FW_ACTION_HOTPLUG
,
1436 rproc
->firmware
, dev
, GFP_KERNEL
,
1437 rproc
, rproc_fw_config_virtio
);
1439 dev_err(dev
, "request_firmware_nowait failed: %d\n", ret
);
1440 complete_all(&rproc
->firmware_loading_complete
);
1441 klist_remove(&rproc
->node
);
1446 EXPORT_SYMBOL(rproc_register
);
1449 * rproc_alloc() - allocate a remote processor handle
1450 * @dev: the underlying device
1451 * @name: name of this remote processor
1452 * @ops: platform-specific handlers (mainly start/stop)
1453 * @firmware: name of firmware file to load
1454 * @len: length of private data needed by the rproc driver (in bytes)
1456 * Allocates a new remote processor handle, but does not register
1459 * This function should be used by rproc implementations during initialization
1460 * of the remote processor.
1462 * After creating an rproc handle using this function, and when ready,
1463 * implementations should then call rproc_register() to complete
1464 * the registration of the remote processor.
1466 * On success the new rproc is returned, and on failure, NULL.
1468 * Note: _never_ directly deallocate @rproc, even if it was not registered
1469 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
1471 struct rproc
*rproc_alloc(struct device
*dev
, const char *name
,
1472 const struct rproc_ops
*ops
,
1473 const char *firmware
, int len
)
1475 struct rproc
*rproc
;
1477 if (!dev
|| !name
|| !ops
)
1480 rproc
= kzalloc(sizeof(struct rproc
) + len
, GFP_KERNEL
);
1482 dev_err(dev
, "%s: kzalloc failed\n", __func__
);
1489 rproc
->firmware
= firmware
;
1490 rproc
->priv
= &rproc
[1];
1492 atomic_set(&rproc
->power
, 0);
1494 kref_init(&rproc
->refcount
);
1496 mutex_init(&rproc
->lock
);
1498 idr_init(&rproc
->notifyids
);
1500 INIT_LIST_HEAD(&rproc
->carveouts
);
1501 INIT_LIST_HEAD(&rproc
->mappings
);
1502 INIT_LIST_HEAD(&rproc
->traces
);
1503 INIT_LIST_HEAD(&rproc
->rvdevs
);
1505 rproc
->state
= RPROC_OFFLINE
;
1509 EXPORT_SYMBOL(rproc_alloc
);
1512 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
1513 * @rproc: the remote processor handle
1515 * This function should _only_ be used if @rproc was only allocated,
1516 * but not registered yet.
1518 * If @rproc was already successfully registered (by calling rproc_register()),
1519 * then use rproc_unregister() instead.
1521 void rproc_free(struct rproc
*rproc
)
1523 idr_remove_all(&rproc
->notifyids
);
1524 idr_destroy(&rproc
->notifyids
);
1528 EXPORT_SYMBOL(rproc_free
);
1531 * rproc_unregister() - unregister a remote processor
1532 * @rproc: rproc handle to unregister
1534 * Unregisters a remote processor, and decrements its refcount.
1535 * If its refcount drops to zero, then @rproc will be freed. If not,
1536 * it will be freed later once the last reference is dropped.
1538 * This function should be called when the platform specific rproc
1539 * implementation decides to remove the rproc device. it should
1540 * _only_ be called if a previous invocation of rproc_register()
1541 * has completed successfully.
1543 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
1544 * it shouldn't be used. More specifically, don't call rproc_free()
1545 * or try to directly free @rproc after rproc_unregister() returns;
1546 * none of these are needed, and calling them is a bug.
1548 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1550 int rproc_unregister(struct rproc
*rproc
)
1552 struct rproc_vdev
*rvdev
;
1557 /* if rproc is just being registered, wait */
1558 wait_for_completion(&rproc
->firmware_loading_complete
);
1560 /* clean up remote vdev entries */
1561 list_for_each_entry(rvdev
, &rproc
->rvdevs
, node
)
1562 rproc_remove_virtio_dev(rvdev
);
1564 /* the rproc is downref'ed as soon as it's removed from the klist */
1565 klist_del(&rproc
->node
);
1567 /* the rproc will only be released after its refcount drops to zero */
1568 kref_put(&rproc
->refcount
, rproc_release
);
1572 EXPORT_SYMBOL(rproc_unregister
);
1574 static int __init
remoteproc_init(void)
1576 rproc_init_debugfs();
1579 module_init(remoteproc_init
);
1581 static void __exit
remoteproc_exit(void)
1583 rproc_exit_debugfs();
1585 module_exit(remoteproc_exit
);
1587 MODULE_LICENSE("GPL v2");
1588 MODULE_DESCRIPTION("Generic Remote Processor Framework");