Linux 3.4.102
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blobbc88cabcfd433bc801920a836602b23da1789d51
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 "Use 'simple mode' rather than 'performant mode'");
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1920},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334d},
111 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
112 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113 {0,}
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
118 /* board_id = Subsystem Device ID & Vendor ID
119 * product = Marketing Name for the board
120 * access = Address of the struct of function pointers
122 static struct board_type products[] = {
123 {0x3241103C, "Smart Array P212", &SA5_access},
124 {0x3243103C, "Smart Array P410", &SA5_access},
125 {0x3245103C, "Smart Array P410i", &SA5_access},
126 {0x3247103C, "Smart Array P411", &SA5_access},
127 {0x3249103C, "Smart Array P812", &SA5_access},
128 {0x324a103C, "Smart Array P712m", &SA5_access},
129 {0x324b103C, "Smart Array P711m", &SA5_access},
130 {0x3350103C, "Smart Array P222", &SA5_access},
131 {0x3351103C, "Smart Array P420", &SA5_access},
132 {0x3352103C, "Smart Array P421", &SA5_access},
133 {0x3353103C, "Smart Array P822", &SA5_access},
134 {0x3354103C, "Smart Array P420i", &SA5_access},
135 {0x3355103C, "Smart Array P220i", &SA5_access},
136 {0x3356103C, "Smart Array P721m", &SA5_access},
137 {0x1920103C, "Smart Array", &SA5_access},
138 {0x1921103C, "Smart Array", &SA5_access},
139 {0x1922103C, "Smart Array", &SA5_access},
140 {0x1923103C, "Smart Array", &SA5_access},
141 {0x1924103C, "Smart Array", &SA5_access},
142 {0x1925103C, "Smart Array", &SA5_access},
143 {0x1926103C, "Smart Array", &SA5_access},
144 {0x1928103C, "Smart Array", &SA5_access},
145 {0x334d103C, "Smart Array P822se", &SA5_access},
146 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
149 static int number_of_controllers;
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170 int cmd_type);
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175 unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177 int qdepth, int reason);
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_slave_alloc(struct scsi_device *sdev);
181 static void hpsa_slave_destroy(struct scsi_device *sdev);
183 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
184 static int check_for_unit_attention(struct ctlr_info *h,
185 struct CommandList *c);
186 static void check_ioctl_unit_attention(struct ctlr_info *h,
187 struct CommandList *c);
188 /* performant mode helper functions */
189 static void calc_bucket_map(int *bucket, int num_buckets,
190 int nsgs, int *bucket_map);
191 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
192 static inline u32 next_command(struct ctlr_info *h);
193 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
194 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
195 u64 *cfg_offset);
196 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
197 unsigned long *memory_bar);
198 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
199 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
200 void __iomem *vaddr, int wait_for_ready);
201 #define BOARD_NOT_READY 0
202 #define BOARD_READY 1
204 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
206 unsigned long *priv = shost_priv(sdev->host);
207 return (struct ctlr_info *) *priv;
210 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
212 unsigned long *priv = shost_priv(sh);
213 return (struct ctlr_info *) *priv;
216 static int check_for_unit_attention(struct ctlr_info *h,
217 struct CommandList *c)
219 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
220 return 0;
222 switch (c->err_info->SenseInfo[12]) {
223 case STATE_CHANGED:
224 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
225 "detected, command retried\n", h->ctlr);
226 break;
227 case LUN_FAILED:
228 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
229 "detected, action required\n", h->ctlr);
230 break;
231 case REPORT_LUNS_CHANGED:
232 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
233 "changed, action required\n", h->ctlr);
235 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
236 * target (array) devices.
238 break;
239 case POWER_OR_RESET:
240 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
241 "or device reset detected\n", h->ctlr);
242 break;
243 case UNIT_ATTENTION_CLEARED:
244 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
245 "cleared by another initiator\n", h->ctlr);
246 break;
247 default:
248 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
249 "unit attention detected\n", h->ctlr);
250 break;
252 return 1;
255 static ssize_t host_store_rescan(struct device *dev,
256 struct device_attribute *attr,
257 const char *buf, size_t count)
259 struct ctlr_info *h;
260 struct Scsi_Host *shost = class_to_shost(dev);
261 h = shost_to_hba(shost);
262 hpsa_scan_start(h->scsi_host);
263 return count;
266 static ssize_t host_show_firmware_revision(struct device *dev,
267 struct device_attribute *attr, char *buf)
269 struct ctlr_info *h;
270 struct Scsi_Host *shost = class_to_shost(dev);
271 unsigned char *fwrev;
273 h = shost_to_hba(shost);
274 if (!h->hba_inquiry_data)
275 return 0;
276 fwrev = &h->hba_inquiry_data[32];
277 return snprintf(buf, 20, "%c%c%c%c\n",
278 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
281 static ssize_t host_show_commands_outstanding(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct Scsi_Host *shost = class_to_shost(dev);
285 struct ctlr_info *h = shost_to_hba(shost);
287 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
290 static ssize_t host_show_transport_mode(struct device *dev,
291 struct device_attribute *attr, char *buf)
293 struct ctlr_info *h;
294 struct Scsi_Host *shost = class_to_shost(dev);
296 h = shost_to_hba(shost);
297 return snprintf(buf, 20, "%s\n",
298 h->transMethod & CFGTBL_Trans_Performant ?
299 "performant" : "simple");
302 /* List of controllers which cannot be hard reset on kexec with reset_devices */
303 static u32 unresettable_controller[] = {
304 0x324a103C, /* Smart Array P712m */
305 0x324b103C, /* SmartArray P711m */
306 0x3223103C, /* Smart Array P800 */
307 0x3234103C, /* Smart Array P400 */
308 0x3235103C, /* Smart Array P400i */
309 0x3211103C, /* Smart Array E200i */
310 0x3212103C, /* Smart Array E200 */
311 0x3213103C, /* Smart Array E200i */
312 0x3214103C, /* Smart Array E200i */
313 0x3215103C, /* Smart Array E200i */
314 0x3237103C, /* Smart Array E500 */
315 0x323D103C, /* Smart Array P700m */
316 0x40800E11, /* Smart Array 5i */
317 0x409C0E11, /* Smart Array 6400 */
318 0x409D0E11, /* Smart Array 6400 EM */
319 0x40700E11, /* Smart Array 5300 */
320 0x40820E11, /* Smart Array 532 */
321 0x40830E11, /* Smart Array 5312 */
322 0x409A0E11, /* Smart Array 641 */
323 0x409B0E11, /* Smart Array 642 */
324 0x40910E11, /* Smart Array 6i */
327 /* List of controllers which cannot even be soft reset */
328 static u32 soft_unresettable_controller[] = {
329 0x40800E11, /* Smart Array 5i */
330 0x40700E11, /* Smart Array 5300 */
331 0x40820E11, /* Smart Array 532 */
332 0x40830E11, /* Smart Array 5312 */
333 0x409A0E11, /* Smart Array 641 */
334 0x409B0E11, /* Smart Array 642 */
335 0x40910E11, /* Smart Array 6i */
336 /* Exclude 640x boards. These are two pci devices in one slot
337 * which share a battery backed cache module. One controls the
338 * cache, the other accesses the cache through the one that controls
339 * it. If we reset the one controlling the cache, the other will
340 * likely not be happy. Just forbid resetting this conjoined mess.
341 * The 640x isn't really supported by hpsa anyway.
343 0x409C0E11, /* Smart Array 6400 */
344 0x409D0E11, /* Smart Array 6400 EM */
347 static int ctlr_is_hard_resettable(u32 board_id)
349 int i;
351 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
352 if (unresettable_controller[i] == board_id)
353 return 0;
354 return 1;
357 static int ctlr_is_soft_resettable(u32 board_id)
359 int i;
361 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
362 if (soft_unresettable_controller[i] == board_id)
363 return 0;
364 return 1;
367 static int ctlr_is_resettable(u32 board_id)
369 return ctlr_is_hard_resettable(board_id) ||
370 ctlr_is_soft_resettable(board_id);
373 static ssize_t host_show_resettable(struct device *dev,
374 struct device_attribute *attr, char *buf)
376 struct ctlr_info *h;
377 struct Scsi_Host *shost = class_to_shost(dev);
379 h = shost_to_hba(shost);
380 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
383 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
385 return (scsi3addr[3] & 0xC0) == 0x40;
388 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
389 "UNKNOWN"
391 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
393 static ssize_t raid_level_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
396 ssize_t l = 0;
397 unsigned char rlevel;
398 struct ctlr_info *h;
399 struct scsi_device *sdev;
400 struct hpsa_scsi_dev_t *hdev;
401 unsigned long flags;
403 sdev = to_scsi_device(dev);
404 h = sdev_to_hba(sdev);
405 spin_lock_irqsave(&h->lock, flags);
406 hdev = sdev->hostdata;
407 if (!hdev) {
408 spin_unlock_irqrestore(&h->lock, flags);
409 return -ENODEV;
412 /* Is this even a logical drive? */
413 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
414 spin_unlock_irqrestore(&h->lock, flags);
415 l = snprintf(buf, PAGE_SIZE, "N/A\n");
416 return l;
419 rlevel = hdev->raid_level;
420 spin_unlock_irqrestore(&h->lock, flags);
421 if (rlevel > RAID_UNKNOWN)
422 rlevel = RAID_UNKNOWN;
423 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
424 return l;
427 static ssize_t lunid_show(struct device *dev,
428 struct device_attribute *attr, char *buf)
430 struct ctlr_info *h;
431 struct scsi_device *sdev;
432 struct hpsa_scsi_dev_t *hdev;
433 unsigned long flags;
434 unsigned char lunid[8];
436 sdev = to_scsi_device(dev);
437 h = sdev_to_hba(sdev);
438 spin_lock_irqsave(&h->lock, flags);
439 hdev = sdev->hostdata;
440 if (!hdev) {
441 spin_unlock_irqrestore(&h->lock, flags);
442 return -ENODEV;
444 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
445 spin_unlock_irqrestore(&h->lock, flags);
446 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
447 lunid[0], lunid[1], lunid[2], lunid[3],
448 lunid[4], lunid[5], lunid[6], lunid[7]);
451 static ssize_t unique_id_show(struct device *dev,
452 struct device_attribute *attr, char *buf)
454 struct ctlr_info *h;
455 struct scsi_device *sdev;
456 struct hpsa_scsi_dev_t *hdev;
457 unsigned long flags;
458 unsigned char sn[16];
460 sdev = to_scsi_device(dev);
461 h = sdev_to_hba(sdev);
462 spin_lock_irqsave(&h->lock, flags);
463 hdev = sdev->hostdata;
464 if (!hdev) {
465 spin_unlock_irqrestore(&h->lock, flags);
466 return -ENODEV;
468 memcpy(sn, hdev->device_id, sizeof(sn));
469 spin_unlock_irqrestore(&h->lock, flags);
470 return snprintf(buf, 16 * 2 + 2,
471 "%02X%02X%02X%02X%02X%02X%02X%02X"
472 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
473 sn[0], sn[1], sn[2], sn[3],
474 sn[4], sn[5], sn[6], sn[7],
475 sn[8], sn[9], sn[10], sn[11],
476 sn[12], sn[13], sn[14], sn[15]);
479 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
480 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
481 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
482 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
483 static DEVICE_ATTR(firmware_revision, S_IRUGO,
484 host_show_firmware_revision, NULL);
485 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
486 host_show_commands_outstanding, NULL);
487 static DEVICE_ATTR(transport_mode, S_IRUGO,
488 host_show_transport_mode, NULL);
489 static DEVICE_ATTR(resettable, S_IRUGO,
490 host_show_resettable, NULL);
492 static struct device_attribute *hpsa_sdev_attrs[] = {
493 &dev_attr_raid_level,
494 &dev_attr_lunid,
495 &dev_attr_unique_id,
496 NULL,
499 static struct device_attribute *hpsa_shost_attrs[] = {
500 &dev_attr_rescan,
501 &dev_attr_firmware_revision,
502 &dev_attr_commands_outstanding,
503 &dev_attr_transport_mode,
504 &dev_attr_resettable,
505 NULL,
508 static struct scsi_host_template hpsa_driver_template = {
509 .module = THIS_MODULE,
510 .name = HPSA,
511 .proc_name = HPSA,
512 .queuecommand = hpsa_scsi_queue_command,
513 .scan_start = hpsa_scan_start,
514 .scan_finished = hpsa_scan_finished,
515 .change_queue_depth = hpsa_change_queue_depth,
516 .this_id = -1,
517 .use_clustering = ENABLE_CLUSTERING,
518 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
519 .ioctl = hpsa_ioctl,
520 .slave_alloc = hpsa_slave_alloc,
521 .slave_destroy = hpsa_slave_destroy,
522 #ifdef CONFIG_COMPAT
523 .compat_ioctl = hpsa_compat_ioctl,
524 #endif
525 .sdev_attrs = hpsa_sdev_attrs,
526 .shost_attrs = hpsa_shost_attrs,
527 .max_sectors = 8192,
531 /* Enqueuing and dequeuing functions for cmdlists. */
532 static inline void addQ(struct list_head *list, struct CommandList *c)
534 list_add_tail(&c->list, list);
537 static inline u32 next_command(struct ctlr_info *h)
539 u32 a;
541 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
542 return h->access.command_completed(h);
544 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
545 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
546 (h->reply_pool_head)++;
547 h->commands_outstanding--;
548 } else {
549 a = FIFO_EMPTY;
551 /* Check for wraparound */
552 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
553 h->reply_pool_head = h->reply_pool;
554 h->reply_pool_wraparound ^= 1;
556 return a;
559 /* set_performant_mode: Modify the tag for cciss performant
560 * set bit 0 for pull model, bits 3-1 for block fetch
561 * register number
563 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
565 if (likely(h->transMethod & CFGTBL_Trans_Performant))
566 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
569 static int is_firmware_flash_cmd(u8 *cdb)
571 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
575 * During firmware flash, the heartbeat register may not update as frequently
576 * as it should. So we dial down lockup detection during firmware flash. and
577 * dial it back up when firmware flash completes.
579 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
580 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
581 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
582 struct CommandList *c)
584 if (!is_firmware_flash_cmd(c->Request.CDB))
585 return;
586 atomic_inc(&h->firmware_flash_in_progress);
587 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
590 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
591 struct CommandList *c)
593 if (is_firmware_flash_cmd(c->Request.CDB) &&
594 atomic_dec_and_test(&h->firmware_flash_in_progress))
595 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
598 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
599 struct CommandList *c)
601 unsigned long flags;
603 set_performant_mode(h, c);
604 dial_down_lockup_detection_during_fw_flash(h, c);
605 spin_lock_irqsave(&h->lock, flags);
606 addQ(&h->reqQ, c);
607 h->Qdepth++;
608 start_io(h);
609 spin_unlock_irqrestore(&h->lock, flags);
612 static inline void removeQ(struct CommandList *c)
614 if (WARN_ON(list_empty(&c->list)))
615 return;
616 list_del_init(&c->list);
619 static inline int is_hba_lunid(unsigned char scsi3addr[])
621 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
624 static inline int is_scsi_rev_5(struct ctlr_info *h)
626 if (!h->hba_inquiry_data)
627 return 0;
628 if ((h->hba_inquiry_data[2] & 0x07) == 5)
629 return 1;
630 return 0;
633 static int hpsa_find_target_lun(struct ctlr_info *h,
634 unsigned char scsi3addr[], int bus, int *target, int *lun)
636 /* finds an unused bus, target, lun for a new physical device
637 * assumes h->devlock is held
639 int i, found = 0;
640 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
642 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
644 for (i = 0; i < h->ndevices; i++) {
645 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
646 __set_bit(h->dev[i]->target, lun_taken);
649 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
650 if (i < HPSA_MAX_DEVICES) {
651 /* *bus = 1; */
652 *target = i;
653 *lun = 0;
654 found = 1;
656 return !found;
659 /* Add an entry into h->dev[] array. */
660 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
661 struct hpsa_scsi_dev_t *device,
662 struct hpsa_scsi_dev_t *added[], int *nadded)
664 /* assumes h->devlock is held */
665 int n = h->ndevices;
666 int i;
667 unsigned char addr1[8], addr2[8];
668 struct hpsa_scsi_dev_t *sd;
670 if (n >= HPSA_MAX_DEVICES) {
671 dev_err(&h->pdev->dev, "too many devices, some will be "
672 "inaccessible.\n");
673 return -1;
676 /* physical devices do not have lun or target assigned until now. */
677 if (device->lun != -1)
678 /* Logical device, lun is already assigned. */
679 goto lun_assigned;
681 /* If this device a non-zero lun of a multi-lun device
682 * byte 4 of the 8-byte LUN addr will contain the logical
683 * unit no, zero otherise.
685 if (device->scsi3addr[4] == 0) {
686 /* This is not a non-zero lun of a multi-lun device */
687 if (hpsa_find_target_lun(h, device->scsi3addr,
688 device->bus, &device->target, &device->lun) != 0)
689 return -1;
690 goto lun_assigned;
693 /* This is a non-zero lun of a multi-lun device.
694 * Search through our list and find the device which
695 * has the same 8 byte LUN address, excepting byte 4.
696 * Assign the same bus and target for this new LUN.
697 * Use the logical unit number from the firmware.
699 memcpy(addr1, device->scsi3addr, 8);
700 addr1[4] = 0;
701 for (i = 0; i < n; i++) {
702 sd = h->dev[i];
703 memcpy(addr2, sd->scsi3addr, 8);
704 addr2[4] = 0;
705 /* differ only in byte 4? */
706 if (memcmp(addr1, addr2, 8) == 0) {
707 device->bus = sd->bus;
708 device->target = sd->target;
709 device->lun = device->scsi3addr[4];
710 break;
713 if (device->lun == -1) {
714 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
715 " suspect firmware bug or unsupported hardware "
716 "configuration.\n");
717 return -1;
720 lun_assigned:
722 h->dev[n] = device;
723 h->ndevices++;
724 added[*nadded] = device;
725 (*nadded)++;
727 /* initially, (before registering with scsi layer) we don't
728 * know our hostno and we don't want to print anything first
729 * time anyway (the scsi layer's inquiries will show that info)
731 /* if (hostno != -1) */
732 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
733 scsi_device_type(device->devtype), hostno,
734 device->bus, device->target, device->lun);
735 return 0;
738 /* Update an entry in h->dev[] array. */
739 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
740 int entry, struct hpsa_scsi_dev_t *new_entry)
742 /* assumes h->devlock is held */
743 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
745 /* Raid level changed. */
746 h->dev[entry]->raid_level = new_entry->raid_level;
747 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
748 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
749 new_entry->target, new_entry->lun);
752 /* Replace an entry from h->dev[] array. */
753 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
754 int entry, struct hpsa_scsi_dev_t *new_entry,
755 struct hpsa_scsi_dev_t *added[], int *nadded,
756 struct hpsa_scsi_dev_t *removed[], int *nremoved)
758 /* assumes h->devlock is held */
759 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
760 removed[*nremoved] = h->dev[entry];
761 (*nremoved)++;
764 * New physical devices won't have target/lun assigned yet
765 * so we need to preserve the values in the slot we are replacing.
767 if (new_entry->target == -1) {
768 new_entry->target = h->dev[entry]->target;
769 new_entry->lun = h->dev[entry]->lun;
772 h->dev[entry] = new_entry;
773 added[*nadded] = new_entry;
774 (*nadded)++;
775 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
776 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
777 new_entry->target, new_entry->lun);
780 /* Remove an entry from h->dev[] array. */
781 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
782 struct hpsa_scsi_dev_t *removed[], int *nremoved)
784 /* assumes h->devlock is held */
785 int i;
786 struct hpsa_scsi_dev_t *sd;
788 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
790 sd = h->dev[entry];
791 removed[*nremoved] = h->dev[entry];
792 (*nremoved)++;
794 for (i = entry; i < h->ndevices-1; i++)
795 h->dev[i] = h->dev[i+1];
796 h->ndevices--;
797 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
798 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
799 sd->lun);
802 #define SCSI3ADDR_EQ(a, b) ( \
803 (a)[7] == (b)[7] && \
804 (a)[6] == (b)[6] && \
805 (a)[5] == (b)[5] && \
806 (a)[4] == (b)[4] && \
807 (a)[3] == (b)[3] && \
808 (a)[2] == (b)[2] && \
809 (a)[1] == (b)[1] && \
810 (a)[0] == (b)[0])
812 static void fixup_botched_add(struct ctlr_info *h,
813 struct hpsa_scsi_dev_t *added)
815 /* called when scsi_add_device fails in order to re-adjust
816 * h->dev[] to match the mid layer's view.
818 unsigned long flags;
819 int i, j;
821 spin_lock_irqsave(&h->lock, flags);
822 for (i = 0; i < h->ndevices; i++) {
823 if (h->dev[i] == added) {
824 for (j = i; j < h->ndevices-1; j++)
825 h->dev[j] = h->dev[j+1];
826 h->ndevices--;
827 break;
830 spin_unlock_irqrestore(&h->lock, flags);
831 kfree(added);
834 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
835 struct hpsa_scsi_dev_t *dev2)
837 /* we compare everything except lun and target as these
838 * are not yet assigned. Compare parts likely
839 * to differ first
841 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
842 sizeof(dev1->scsi3addr)) != 0)
843 return 0;
844 if (memcmp(dev1->device_id, dev2->device_id,
845 sizeof(dev1->device_id)) != 0)
846 return 0;
847 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
848 return 0;
849 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
850 return 0;
851 if (dev1->devtype != dev2->devtype)
852 return 0;
853 if (dev1->bus != dev2->bus)
854 return 0;
855 return 1;
858 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
859 struct hpsa_scsi_dev_t *dev2)
861 /* Device attributes that can change, but don't mean
862 * that the device is a different device, nor that the OS
863 * needs to be told anything about the change.
865 if (dev1->raid_level != dev2->raid_level)
866 return 1;
867 return 0;
870 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
871 * and return needle location in *index. If scsi3addr matches, but not
872 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
873 * location in *index.
874 * In the case of a minor device attribute change, such as RAID level, just
875 * return DEVICE_UPDATED, along with the updated device's location in index.
876 * If needle not found, return DEVICE_NOT_FOUND.
878 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
879 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
880 int *index)
882 int i;
883 #define DEVICE_NOT_FOUND 0
884 #define DEVICE_CHANGED 1
885 #define DEVICE_SAME 2
886 #define DEVICE_UPDATED 3
887 for (i = 0; i < haystack_size; i++) {
888 if (haystack[i] == NULL) /* previously removed. */
889 continue;
890 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
891 *index = i;
892 if (device_is_the_same(needle, haystack[i])) {
893 if (device_updated(needle, haystack[i]))
894 return DEVICE_UPDATED;
895 return DEVICE_SAME;
896 } else {
897 return DEVICE_CHANGED;
901 *index = -1;
902 return DEVICE_NOT_FOUND;
905 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
906 struct hpsa_scsi_dev_t *sd[], int nsds)
908 /* sd contains scsi3 addresses and devtypes, and inquiry
909 * data. This function takes what's in sd to be the current
910 * reality and updates h->dev[] to reflect that reality.
912 int i, entry, device_change, changes = 0;
913 struct hpsa_scsi_dev_t *csd;
914 unsigned long flags;
915 struct hpsa_scsi_dev_t **added, **removed;
916 int nadded, nremoved;
917 struct Scsi_Host *sh = NULL;
919 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
920 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
922 if (!added || !removed) {
923 dev_warn(&h->pdev->dev, "out of memory in "
924 "adjust_hpsa_scsi_table\n");
925 goto free_and_out;
928 spin_lock_irqsave(&h->devlock, flags);
930 /* find any devices in h->dev[] that are not in
931 * sd[] and remove them from h->dev[], and for any
932 * devices which have changed, remove the old device
933 * info and add the new device info.
934 * If minor device attributes change, just update
935 * the existing device structure.
937 i = 0;
938 nremoved = 0;
939 nadded = 0;
940 while (i < h->ndevices) {
941 csd = h->dev[i];
942 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
943 if (device_change == DEVICE_NOT_FOUND) {
944 changes++;
945 hpsa_scsi_remove_entry(h, hostno, i,
946 removed, &nremoved);
947 continue; /* remove ^^^, hence i not incremented */
948 } else if (device_change == DEVICE_CHANGED) {
949 changes++;
950 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
951 added, &nadded, removed, &nremoved);
952 /* Set it to NULL to prevent it from being freed
953 * at the bottom of hpsa_update_scsi_devices()
955 sd[entry] = NULL;
956 } else if (device_change == DEVICE_UPDATED) {
957 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
959 i++;
962 /* Now, make sure every device listed in sd[] is also
963 * listed in h->dev[], adding them if they aren't found
966 for (i = 0; i < nsds; i++) {
967 if (!sd[i]) /* if already added above. */
968 continue;
969 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
970 h->ndevices, &entry);
971 if (device_change == DEVICE_NOT_FOUND) {
972 changes++;
973 if (hpsa_scsi_add_entry(h, hostno, sd[i],
974 added, &nadded) != 0)
975 break;
976 sd[i] = NULL; /* prevent from being freed later. */
977 } else if (device_change == DEVICE_CHANGED) {
978 /* should never happen... */
979 changes++;
980 dev_warn(&h->pdev->dev,
981 "device unexpectedly changed.\n");
982 /* but if it does happen, we just ignore that device */
985 spin_unlock_irqrestore(&h->devlock, flags);
987 /* Don't notify scsi mid layer of any changes the first time through
988 * (or if there are no changes) scsi_scan_host will do it later the
989 * first time through.
991 if (hostno == -1 || !changes)
992 goto free_and_out;
994 sh = h->scsi_host;
995 /* Notify scsi mid layer of any removed devices */
996 for (i = 0; i < nremoved; i++) {
997 struct scsi_device *sdev =
998 scsi_device_lookup(sh, removed[i]->bus,
999 removed[i]->target, removed[i]->lun);
1000 if (sdev != NULL) {
1001 scsi_remove_device(sdev);
1002 scsi_device_put(sdev);
1003 } else {
1004 /* We don't expect to get here.
1005 * future cmds to this device will get selection
1006 * timeout as if the device was gone.
1008 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1009 " for removal.", hostno, removed[i]->bus,
1010 removed[i]->target, removed[i]->lun);
1012 kfree(removed[i]);
1013 removed[i] = NULL;
1016 /* Notify scsi mid layer of any added devices */
1017 for (i = 0; i < nadded; i++) {
1018 if (scsi_add_device(sh, added[i]->bus,
1019 added[i]->target, added[i]->lun) == 0)
1020 continue;
1021 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1022 "device not added.\n", hostno, added[i]->bus,
1023 added[i]->target, added[i]->lun);
1024 /* now we have to remove it from h->dev,
1025 * since it didn't get added to scsi mid layer
1027 fixup_botched_add(h, added[i]);
1030 free_and_out:
1031 kfree(added);
1032 kfree(removed);
1036 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1037 * Assume's h->devlock is held.
1039 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1040 int bus, int target, int lun)
1042 int i;
1043 struct hpsa_scsi_dev_t *sd;
1045 for (i = 0; i < h->ndevices; i++) {
1046 sd = h->dev[i];
1047 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1048 return sd;
1050 return NULL;
1053 /* link sdev->hostdata to our per-device structure. */
1054 static int hpsa_slave_alloc(struct scsi_device *sdev)
1056 struct hpsa_scsi_dev_t *sd;
1057 unsigned long flags;
1058 struct ctlr_info *h;
1060 h = sdev_to_hba(sdev);
1061 spin_lock_irqsave(&h->devlock, flags);
1062 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1063 sdev_id(sdev), sdev->lun);
1064 if (sd != NULL)
1065 sdev->hostdata = sd;
1066 spin_unlock_irqrestore(&h->devlock, flags);
1067 return 0;
1070 static void hpsa_slave_destroy(struct scsi_device *sdev)
1072 /* nothing to do. */
1075 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1077 int i;
1079 if (!h->cmd_sg_list)
1080 return;
1081 for (i = 0; i < h->nr_cmds; i++) {
1082 kfree(h->cmd_sg_list[i]);
1083 h->cmd_sg_list[i] = NULL;
1085 kfree(h->cmd_sg_list);
1086 h->cmd_sg_list = NULL;
1089 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1091 int i;
1093 if (h->chainsize <= 0)
1094 return 0;
1096 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1097 GFP_KERNEL);
1098 if (!h->cmd_sg_list)
1099 return -ENOMEM;
1100 for (i = 0; i < h->nr_cmds; i++) {
1101 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1102 h->chainsize, GFP_KERNEL);
1103 if (!h->cmd_sg_list[i])
1104 goto clean;
1106 return 0;
1108 clean:
1109 hpsa_free_sg_chain_blocks(h);
1110 return -ENOMEM;
1113 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1114 struct CommandList *c)
1116 struct SGDescriptor *chain_sg, *chain_block;
1117 u64 temp64;
1119 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1120 chain_block = h->cmd_sg_list[c->cmdindex];
1121 chain_sg->Ext = HPSA_SG_CHAIN;
1122 chain_sg->Len = sizeof(*chain_sg) *
1123 (c->Header.SGTotal - h->max_cmd_sg_entries);
1124 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1125 PCI_DMA_TODEVICE);
1126 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1127 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1130 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1131 struct CommandList *c)
1133 struct SGDescriptor *chain_sg;
1134 union u64bit temp64;
1136 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1137 return;
1139 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1140 temp64.val32.lower = chain_sg->Addr.lower;
1141 temp64.val32.upper = chain_sg->Addr.upper;
1142 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1145 static void complete_scsi_command(struct CommandList *cp)
1147 struct scsi_cmnd *cmd;
1148 struct ctlr_info *h;
1149 struct ErrorInfo *ei;
1151 unsigned char sense_key;
1152 unsigned char asc; /* additional sense code */
1153 unsigned char ascq; /* additional sense code qualifier */
1154 unsigned long sense_data_size;
1156 ei = cp->err_info;
1157 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1158 h = cp->h;
1160 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1161 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1162 hpsa_unmap_sg_chain_block(h, cp);
1164 cmd->result = (DID_OK << 16); /* host byte */
1165 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1166 cmd->result |= ei->ScsiStatus;
1168 /* copy the sense data whether we need to or not. */
1169 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1170 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1171 else
1172 sense_data_size = sizeof(ei->SenseInfo);
1173 if (ei->SenseLen < sense_data_size)
1174 sense_data_size = ei->SenseLen;
1176 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1177 scsi_set_resid(cmd, ei->ResidualCnt);
1179 if (ei->CommandStatus == 0) {
1180 cmd->scsi_done(cmd);
1181 cmd_free(h, cp);
1182 return;
1185 /* an error has occurred */
1186 switch (ei->CommandStatus) {
1188 case CMD_TARGET_STATUS:
1189 if (ei->ScsiStatus) {
1190 /* Get sense key */
1191 sense_key = 0xf & ei->SenseInfo[2];
1192 /* Get additional sense code */
1193 asc = ei->SenseInfo[12];
1194 /* Get addition sense code qualifier */
1195 ascq = ei->SenseInfo[13];
1198 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1199 if (check_for_unit_attention(h, cp)) {
1200 cmd->result = DID_SOFT_ERROR << 16;
1201 break;
1203 if (sense_key == ILLEGAL_REQUEST) {
1205 * SCSI REPORT_LUNS is commonly unsupported on
1206 * Smart Array. Suppress noisy complaint.
1208 if (cp->Request.CDB[0] == REPORT_LUNS)
1209 break;
1211 /* If ASC/ASCQ indicate Logical Unit
1212 * Not Supported condition,
1214 if ((asc == 0x25) && (ascq == 0x0)) {
1215 dev_warn(&h->pdev->dev, "cp %p "
1216 "has check condition\n", cp);
1217 break;
1221 if (sense_key == NOT_READY) {
1222 /* If Sense is Not Ready, Logical Unit
1223 * Not ready, Manual Intervention
1224 * required
1226 if ((asc == 0x04) && (ascq == 0x03)) {
1227 dev_warn(&h->pdev->dev, "cp %p "
1228 "has check condition: unit "
1229 "not ready, manual "
1230 "intervention required\n", cp);
1231 break;
1234 if (sense_key == ABORTED_COMMAND) {
1235 /* Aborted command is retryable */
1236 dev_warn(&h->pdev->dev, "cp %p "
1237 "has check condition: aborted command: "
1238 "ASC: 0x%x, ASCQ: 0x%x\n",
1239 cp, asc, ascq);
1240 cmd->result |= DID_SOFT_ERROR << 16;
1241 break;
1243 /* Must be some other type of check condition */
1244 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1245 "unknown type: "
1246 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1247 "Returning result: 0x%x, "
1248 "cmd=[%02x %02x %02x %02x %02x "
1249 "%02x %02x %02x %02x %02x %02x "
1250 "%02x %02x %02x %02x %02x]\n",
1251 cp, sense_key, asc, ascq,
1252 cmd->result,
1253 cmd->cmnd[0], cmd->cmnd[1],
1254 cmd->cmnd[2], cmd->cmnd[3],
1255 cmd->cmnd[4], cmd->cmnd[5],
1256 cmd->cmnd[6], cmd->cmnd[7],
1257 cmd->cmnd[8], cmd->cmnd[9],
1258 cmd->cmnd[10], cmd->cmnd[11],
1259 cmd->cmnd[12], cmd->cmnd[13],
1260 cmd->cmnd[14], cmd->cmnd[15]);
1261 break;
1265 /* Problem was not a check condition
1266 * Pass it up to the upper layers...
1268 if (ei->ScsiStatus) {
1269 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1270 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1271 "Returning result: 0x%x\n",
1272 cp, ei->ScsiStatus,
1273 sense_key, asc, ascq,
1274 cmd->result);
1275 } else { /* scsi status is zero??? How??? */
1276 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1277 "Returning no connection.\n", cp),
1279 /* Ordinarily, this case should never happen,
1280 * but there is a bug in some released firmware
1281 * revisions that allows it to happen if, for
1282 * example, a 4100 backplane loses power and
1283 * the tape drive is in it. We assume that
1284 * it's a fatal error of some kind because we
1285 * can't show that it wasn't. We will make it
1286 * look like selection timeout since that is
1287 * the most common reason for this to occur,
1288 * and it's severe enough.
1291 cmd->result = DID_NO_CONNECT << 16;
1293 break;
1295 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1296 break;
1297 case CMD_DATA_OVERRUN:
1298 dev_warn(&h->pdev->dev, "cp %p has"
1299 " completed with data overrun "
1300 "reported\n", cp);
1301 break;
1302 case CMD_INVALID: {
1303 /* print_bytes(cp, sizeof(*cp), 1, 0);
1304 print_cmd(cp); */
1305 /* We get CMD_INVALID if you address a non-existent device
1306 * instead of a selection timeout (no response). You will
1307 * see this if you yank out a drive, then try to access it.
1308 * This is kind of a shame because it means that any other
1309 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1310 * missing target. */
1311 cmd->result = DID_NO_CONNECT << 16;
1313 break;
1314 case CMD_PROTOCOL_ERR:
1315 cmd->result = DID_ERROR << 16;
1316 dev_warn(&h->pdev->dev, "cp %p has "
1317 "protocol error\n", cp);
1318 break;
1319 case CMD_HARDWARE_ERR:
1320 cmd->result = DID_ERROR << 16;
1321 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1322 break;
1323 case CMD_CONNECTION_LOST:
1324 cmd->result = DID_ERROR << 16;
1325 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1326 break;
1327 case CMD_ABORTED:
1328 cmd->result = DID_ABORT << 16;
1329 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1330 cp, ei->ScsiStatus);
1331 break;
1332 case CMD_ABORT_FAILED:
1333 cmd->result = DID_ERROR << 16;
1334 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1335 break;
1336 case CMD_UNSOLICITED_ABORT:
1337 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1338 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1339 "abort\n", cp);
1340 break;
1341 case CMD_TIMEOUT:
1342 cmd->result = DID_TIME_OUT << 16;
1343 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1344 break;
1345 case CMD_UNABORTABLE:
1346 cmd->result = DID_ERROR << 16;
1347 dev_warn(&h->pdev->dev, "Command unabortable\n");
1348 break;
1349 default:
1350 cmd->result = DID_ERROR << 16;
1351 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1352 cp, ei->CommandStatus);
1354 cmd->scsi_done(cmd);
1355 cmd_free(h, cp);
1358 static void hpsa_pci_unmap(struct pci_dev *pdev,
1359 struct CommandList *c, int sg_used, int data_direction)
1361 int i;
1362 union u64bit addr64;
1364 for (i = 0; i < sg_used; i++) {
1365 addr64.val32.lower = c->SG[i].Addr.lower;
1366 addr64.val32.upper = c->SG[i].Addr.upper;
1367 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1368 data_direction);
1372 static void hpsa_map_one(struct pci_dev *pdev,
1373 struct CommandList *cp,
1374 unsigned char *buf,
1375 size_t buflen,
1376 int data_direction)
1378 u64 addr64;
1380 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1381 cp->Header.SGList = 0;
1382 cp->Header.SGTotal = 0;
1383 return;
1386 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1387 cp->SG[0].Addr.lower =
1388 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1389 cp->SG[0].Addr.upper =
1390 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1391 cp->SG[0].Len = buflen;
1392 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1393 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1396 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1397 struct CommandList *c)
1399 DECLARE_COMPLETION_ONSTACK(wait);
1401 c->waiting = &wait;
1402 enqueue_cmd_and_start_io(h, c);
1403 wait_for_completion(&wait);
1406 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1407 struct CommandList *c)
1409 unsigned long flags;
1411 /* If controller lockup detected, fake a hardware error. */
1412 spin_lock_irqsave(&h->lock, flags);
1413 if (unlikely(h->lockup_detected)) {
1414 spin_unlock_irqrestore(&h->lock, flags);
1415 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1416 } else {
1417 spin_unlock_irqrestore(&h->lock, flags);
1418 hpsa_scsi_do_simple_cmd_core(h, c);
1422 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1423 struct CommandList *c, int data_direction)
1425 int retry_count = 0;
1427 do {
1428 memset(c->err_info, 0, sizeof(*c->err_info));
1429 hpsa_scsi_do_simple_cmd_core(h, c);
1430 retry_count++;
1431 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1432 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1435 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1437 struct ErrorInfo *ei;
1438 struct device *d = &cp->h->pdev->dev;
1440 ei = cp->err_info;
1441 switch (ei->CommandStatus) {
1442 case CMD_TARGET_STATUS:
1443 dev_warn(d, "cmd %p has completed with errors\n", cp);
1444 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1445 ei->ScsiStatus);
1446 if (ei->ScsiStatus == 0)
1447 dev_warn(d, "SCSI status is abnormally zero. "
1448 "(probably indicates selection timeout "
1449 "reported incorrectly due to a known "
1450 "firmware bug, circa July, 2001.)\n");
1451 break;
1452 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1453 dev_info(d, "UNDERRUN\n");
1454 break;
1455 case CMD_DATA_OVERRUN:
1456 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1457 break;
1458 case CMD_INVALID: {
1459 /* controller unfortunately reports SCSI passthru's
1460 * to non-existent targets as invalid commands.
1462 dev_warn(d, "cp %p is reported invalid (probably means "
1463 "target device no longer present)\n", cp);
1464 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1465 print_cmd(cp); */
1467 break;
1468 case CMD_PROTOCOL_ERR:
1469 dev_warn(d, "cp %p has protocol error \n", cp);
1470 break;
1471 case CMD_HARDWARE_ERR:
1472 /* cmd->result = DID_ERROR << 16; */
1473 dev_warn(d, "cp %p had hardware error\n", cp);
1474 break;
1475 case CMD_CONNECTION_LOST:
1476 dev_warn(d, "cp %p had connection lost\n", cp);
1477 break;
1478 case CMD_ABORTED:
1479 dev_warn(d, "cp %p was aborted\n", cp);
1480 break;
1481 case CMD_ABORT_FAILED:
1482 dev_warn(d, "cp %p reports abort failed\n", cp);
1483 break;
1484 case CMD_UNSOLICITED_ABORT:
1485 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1486 break;
1487 case CMD_TIMEOUT:
1488 dev_warn(d, "cp %p timed out\n", cp);
1489 break;
1490 case CMD_UNABORTABLE:
1491 dev_warn(d, "Command unabortable\n");
1492 break;
1493 default:
1494 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1495 ei->CommandStatus);
1499 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1500 unsigned char page, unsigned char *buf,
1501 unsigned char bufsize)
1503 int rc = IO_OK;
1504 struct CommandList *c;
1505 struct ErrorInfo *ei;
1507 c = cmd_special_alloc(h);
1509 if (c == NULL) { /* trouble... */
1510 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1511 return -ENOMEM;
1514 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1515 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1516 ei = c->err_info;
1517 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1518 hpsa_scsi_interpret_error(c);
1519 rc = -1;
1521 cmd_special_free(h, c);
1522 return rc;
1525 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1527 int rc = IO_OK;
1528 struct CommandList *c;
1529 struct ErrorInfo *ei;
1531 c = cmd_special_alloc(h);
1533 if (c == NULL) { /* trouble... */
1534 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1535 return -ENOMEM;
1538 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1539 hpsa_scsi_do_simple_cmd_core(h, c);
1540 /* no unmap needed here because no data xfer. */
1542 ei = c->err_info;
1543 if (ei->CommandStatus != 0) {
1544 hpsa_scsi_interpret_error(c);
1545 rc = -1;
1547 cmd_special_free(h, c);
1548 return rc;
1551 static void hpsa_get_raid_level(struct ctlr_info *h,
1552 unsigned char *scsi3addr, unsigned char *raid_level)
1554 int rc;
1555 unsigned char *buf;
1557 *raid_level = RAID_UNKNOWN;
1558 buf = kzalloc(64, GFP_KERNEL);
1559 if (!buf)
1560 return;
1561 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1562 if (rc == 0)
1563 *raid_level = buf[8];
1564 if (*raid_level > RAID_UNKNOWN)
1565 *raid_level = RAID_UNKNOWN;
1566 kfree(buf);
1567 return;
1570 /* Get the device id from inquiry page 0x83 */
1571 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1572 unsigned char *device_id, int buflen)
1574 int rc;
1575 unsigned char *buf;
1577 if (buflen > 16)
1578 buflen = 16;
1579 buf = kzalloc(64, GFP_KERNEL);
1580 if (!buf)
1581 return -1;
1582 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1583 if (rc == 0)
1584 memcpy(device_id, &buf[8], buflen);
1585 kfree(buf);
1586 return rc != 0;
1589 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1590 struct ReportLUNdata *buf, int bufsize,
1591 int extended_response)
1593 int rc = IO_OK;
1594 struct CommandList *c;
1595 unsigned char scsi3addr[8];
1596 struct ErrorInfo *ei;
1598 c = cmd_special_alloc(h);
1599 if (c == NULL) { /* trouble... */
1600 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1601 return -1;
1603 /* address the controller */
1604 memset(scsi3addr, 0, sizeof(scsi3addr));
1605 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1606 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1607 if (extended_response)
1608 c->Request.CDB[1] = extended_response;
1609 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1610 ei = c->err_info;
1611 if (ei->CommandStatus != 0 &&
1612 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1613 hpsa_scsi_interpret_error(c);
1614 rc = -1;
1616 cmd_special_free(h, c);
1617 return rc;
1620 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1621 struct ReportLUNdata *buf,
1622 int bufsize, int extended_response)
1624 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1627 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1628 struct ReportLUNdata *buf, int bufsize)
1630 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1633 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1634 int bus, int target, int lun)
1636 device->bus = bus;
1637 device->target = target;
1638 device->lun = lun;
1641 static int hpsa_update_device_info(struct ctlr_info *h,
1642 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1643 unsigned char *is_OBDR_device)
1646 #define OBDR_SIG_OFFSET 43
1647 #define OBDR_TAPE_SIG "$DR-10"
1648 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1649 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1651 unsigned char *inq_buff;
1652 unsigned char *obdr_sig;
1654 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1655 if (!inq_buff)
1656 goto bail_out;
1658 /* Do an inquiry to the device to see what it is. */
1659 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1660 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1661 /* Inquiry failed (msg printed already) */
1662 dev_err(&h->pdev->dev,
1663 "hpsa_update_device_info: inquiry failed\n");
1664 goto bail_out;
1667 this_device->devtype = (inq_buff[0] & 0x1f);
1668 memcpy(this_device->scsi3addr, scsi3addr, 8);
1669 memcpy(this_device->vendor, &inq_buff[8],
1670 sizeof(this_device->vendor));
1671 memcpy(this_device->model, &inq_buff[16],
1672 sizeof(this_device->model));
1673 memset(this_device->device_id, 0,
1674 sizeof(this_device->device_id));
1675 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1676 sizeof(this_device->device_id));
1678 if (this_device->devtype == TYPE_DISK &&
1679 is_logical_dev_addr_mode(scsi3addr))
1680 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1681 else
1682 this_device->raid_level = RAID_UNKNOWN;
1684 if (is_OBDR_device) {
1685 /* See if this is a One-Button-Disaster-Recovery device
1686 * by looking for "$DR-10" at offset 43 in inquiry data.
1688 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1689 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1690 strncmp(obdr_sig, OBDR_TAPE_SIG,
1691 OBDR_SIG_LEN) == 0);
1694 kfree(inq_buff);
1695 return 0;
1697 bail_out:
1698 kfree(inq_buff);
1699 return 1;
1702 static unsigned char *ext_target_model[] = {
1703 "MSA2012",
1704 "MSA2024",
1705 "MSA2312",
1706 "MSA2324",
1707 "P2000 G3 SAS",
1708 NULL,
1711 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1713 int i;
1715 for (i = 0; ext_target_model[i]; i++)
1716 if (strncmp(device->model, ext_target_model[i],
1717 strlen(ext_target_model[i])) == 0)
1718 return 1;
1719 return 0;
1722 /* Helper function to assign bus, target, lun mapping of devices.
1723 * Puts non-external target logical volumes on bus 0, external target logical
1724 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1725 * Logical drive target and lun are assigned at this time, but
1726 * physical device lun and target assignment are deferred (assigned
1727 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1729 static void figure_bus_target_lun(struct ctlr_info *h,
1730 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1732 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1734 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1735 /* physical device, target and lun filled in later */
1736 if (is_hba_lunid(lunaddrbytes))
1737 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1738 else
1739 /* defer target, lun assignment for physical devices */
1740 hpsa_set_bus_target_lun(device, 2, -1, -1);
1741 return;
1743 /* It's a logical device */
1744 if (is_ext_target(h, device)) {
1745 /* external target way, put logicals on bus 1
1746 * and match target/lun numbers box
1747 * reports, other smart array, bus 0, target 0, match lunid
1749 hpsa_set_bus_target_lun(device,
1750 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1751 return;
1753 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1757 * If there is no lun 0 on a target, linux won't find any devices.
1758 * For the external targets (arrays), we have to manually detect the enclosure
1759 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1760 * it for some reason. *tmpdevice is the target we're adding,
1761 * this_device is a pointer into the current element of currentsd[]
1762 * that we're building up in update_scsi_devices(), below.
1763 * lunzerobits is a bitmap that tracks which targets already have a
1764 * lun 0 assigned.
1765 * Returns 1 if an enclosure was added, 0 if not.
1767 static int add_ext_target_dev(struct ctlr_info *h,
1768 struct hpsa_scsi_dev_t *tmpdevice,
1769 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1770 unsigned long lunzerobits[], int *n_ext_target_devs)
1772 unsigned char scsi3addr[8];
1774 if (test_bit(tmpdevice->target, lunzerobits))
1775 return 0; /* There is already a lun 0 on this target. */
1777 if (!is_logical_dev_addr_mode(lunaddrbytes))
1778 return 0; /* It's the logical targets that may lack lun 0. */
1780 if (!is_ext_target(h, tmpdevice))
1781 return 0; /* Only external target devices have this problem. */
1783 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1784 return 0;
1786 memset(scsi3addr, 0, 8);
1787 scsi3addr[3] = tmpdevice->target;
1788 if (is_hba_lunid(scsi3addr))
1789 return 0; /* Don't add the RAID controller here. */
1791 if (is_scsi_rev_5(h))
1792 return 0; /* p1210m doesn't need to do this. */
1794 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1795 dev_warn(&h->pdev->dev, "Maximum number of external "
1796 "target devices exceeded. Check your hardware "
1797 "configuration.");
1798 return 0;
1801 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1802 return 0;
1803 (*n_ext_target_devs)++;
1804 hpsa_set_bus_target_lun(this_device,
1805 tmpdevice->bus, tmpdevice->target, 0);
1806 set_bit(tmpdevice->target, lunzerobits);
1807 return 1;
1811 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1812 * logdev. The number of luns in physdev and logdev are returned in
1813 * *nphysicals and *nlogicals, respectively.
1814 * Returns 0 on success, -1 otherwise.
1816 static int hpsa_gather_lun_info(struct ctlr_info *h,
1817 int reportlunsize,
1818 struct ReportLUNdata *physdev, u32 *nphysicals,
1819 struct ReportLUNdata *logdev, u32 *nlogicals)
1821 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1822 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1823 return -1;
1825 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1826 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1827 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1828 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1829 *nphysicals - HPSA_MAX_PHYS_LUN);
1830 *nphysicals = HPSA_MAX_PHYS_LUN;
1832 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1833 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1834 return -1;
1836 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1837 /* Reject Logicals in excess of our max capability. */
1838 if (*nlogicals > HPSA_MAX_LUN) {
1839 dev_warn(&h->pdev->dev,
1840 "maximum logical LUNs (%d) exceeded. "
1841 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1842 *nlogicals - HPSA_MAX_LUN);
1843 *nlogicals = HPSA_MAX_LUN;
1845 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1846 dev_warn(&h->pdev->dev,
1847 "maximum logical + physical LUNs (%d) exceeded. "
1848 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1849 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1850 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1852 return 0;
1855 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1856 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1857 struct ReportLUNdata *logdev_list)
1859 /* Helper function, figure out where the LUN ID info is coming from
1860 * given index i, lists of physical and logical devices, where in
1861 * the list the raid controller is supposed to appear (first or last)
1864 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1865 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1867 if (i == raid_ctlr_position)
1868 return RAID_CTLR_LUNID;
1870 if (i < logicals_start)
1871 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1873 if (i < last_device)
1874 return &logdev_list->LUN[i - nphysicals -
1875 (raid_ctlr_position == 0)][0];
1876 BUG();
1877 return NULL;
1880 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1882 /* the idea here is we could get notified
1883 * that some devices have changed, so we do a report
1884 * physical luns and report logical luns cmd, and adjust
1885 * our list of devices accordingly.
1887 * The scsi3addr's of devices won't change so long as the
1888 * adapter is not reset. That means we can rescan and
1889 * tell which devices we already know about, vs. new
1890 * devices, vs. disappearing devices.
1892 struct ReportLUNdata *physdev_list = NULL;
1893 struct ReportLUNdata *logdev_list = NULL;
1894 u32 nphysicals = 0;
1895 u32 nlogicals = 0;
1896 u32 ndev_allocated = 0;
1897 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1898 int ncurrent = 0;
1899 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1900 int i, n_ext_target_devs, ndevs_to_allocate;
1901 int raid_ctlr_position;
1902 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1904 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1905 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1906 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1907 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1909 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1910 dev_err(&h->pdev->dev, "out of memory\n");
1911 goto out;
1913 memset(lunzerobits, 0, sizeof(lunzerobits));
1915 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1916 logdev_list, &nlogicals))
1917 goto out;
1919 /* We might see up to the maximum number of logical and physical disks
1920 * plus external target devices, and a device for the local RAID
1921 * controller.
1923 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1925 /* Allocate the per device structures */
1926 for (i = 0; i < ndevs_to_allocate; i++) {
1927 if (i >= HPSA_MAX_DEVICES) {
1928 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1929 " %d devices ignored.\n", HPSA_MAX_DEVICES,
1930 ndevs_to_allocate - HPSA_MAX_DEVICES);
1931 break;
1934 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1935 if (!currentsd[i]) {
1936 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1937 __FILE__, __LINE__);
1938 goto out;
1940 ndev_allocated++;
1943 if (unlikely(is_scsi_rev_5(h)))
1944 raid_ctlr_position = 0;
1945 else
1946 raid_ctlr_position = nphysicals + nlogicals;
1948 /* adjust our table of devices */
1949 n_ext_target_devs = 0;
1950 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1951 u8 *lunaddrbytes, is_OBDR = 0;
1953 /* Figure out where the LUN ID info is coming from */
1954 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1955 i, nphysicals, nlogicals, physdev_list, logdev_list);
1956 /* skip masked physical devices. */
1957 if (lunaddrbytes[3] & 0xC0 &&
1958 i < nphysicals + (raid_ctlr_position == 0))
1959 continue;
1961 /* Get device type, vendor, model, device id */
1962 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1963 &is_OBDR))
1964 continue; /* skip it if we can't talk to it. */
1965 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1966 this_device = currentsd[ncurrent];
1969 * For external target devices, we have to insert a LUN 0 which
1970 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1971 * is nonetheless an enclosure device there. We have to
1972 * present that otherwise linux won't find anything if
1973 * there is no lun 0.
1975 if (add_ext_target_dev(h, tmpdevice, this_device,
1976 lunaddrbytes, lunzerobits,
1977 &n_ext_target_devs)) {
1978 ncurrent++;
1979 this_device = currentsd[ncurrent];
1982 *this_device = *tmpdevice;
1984 switch (this_device->devtype) {
1985 case TYPE_ROM:
1986 /* We don't *really* support actual CD-ROM devices,
1987 * just "One Button Disaster Recovery" tape drive
1988 * which temporarily pretends to be a CD-ROM drive.
1989 * So we check that the device is really an OBDR tape
1990 * device by checking for "$DR-10" in bytes 43-48 of
1991 * the inquiry data.
1993 if (is_OBDR)
1994 ncurrent++;
1995 break;
1996 case TYPE_DISK:
1997 if (i < nphysicals)
1998 break;
1999 ncurrent++;
2000 break;
2001 case TYPE_TAPE:
2002 case TYPE_MEDIUM_CHANGER:
2003 ncurrent++;
2004 break;
2005 case TYPE_RAID:
2006 /* Only present the Smartarray HBA as a RAID controller.
2007 * If it's a RAID controller other than the HBA itself
2008 * (an external RAID controller, MSA500 or similar)
2009 * don't present it.
2011 if (!is_hba_lunid(lunaddrbytes))
2012 break;
2013 ncurrent++;
2014 break;
2015 default:
2016 break;
2018 if (ncurrent >= HPSA_MAX_DEVICES)
2019 break;
2021 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2022 out:
2023 kfree(tmpdevice);
2024 for (i = 0; i < ndev_allocated; i++)
2025 kfree(currentsd[i]);
2026 kfree(currentsd);
2027 kfree(physdev_list);
2028 kfree(logdev_list);
2031 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2032 * dma mapping and fills in the scatter gather entries of the
2033 * hpsa command, cp.
2035 static int hpsa_scatter_gather(struct ctlr_info *h,
2036 struct CommandList *cp,
2037 struct scsi_cmnd *cmd)
2039 unsigned int len;
2040 struct scatterlist *sg;
2041 u64 addr64;
2042 int use_sg, i, sg_index, chained;
2043 struct SGDescriptor *curr_sg;
2045 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2047 use_sg = scsi_dma_map(cmd);
2048 if (use_sg < 0)
2049 return use_sg;
2051 if (!use_sg)
2052 goto sglist_finished;
2054 curr_sg = cp->SG;
2055 chained = 0;
2056 sg_index = 0;
2057 scsi_for_each_sg(cmd, sg, use_sg, i) {
2058 if (i == h->max_cmd_sg_entries - 1 &&
2059 use_sg > h->max_cmd_sg_entries) {
2060 chained = 1;
2061 curr_sg = h->cmd_sg_list[cp->cmdindex];
2062 sg_index = 0;
2064 addr64 = (u64) sg_dma_address(sg);
2065 len = sg_dma_len(sg);
2066 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2067 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2068 curr_sg->Len = len;
2069 curr_sg->Ext = 0; /* we are not chaining */
2070 curr_sg++;
2073 if (use_sg + chained > h->maxSG)
2074 h->maxSG = use_sg + chained;
2076 if (chained) {
2077 cp->Header.SGList = h->max_cmd_sg_entries;
2078 cp->Header.SGTotal = (u16) (use_sg + 1);
2079 hpsa_map_sg_chain_block(h, cp);
2080 return 0;
2083 sglist_finished:
2085 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2086 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2087 return 0;
2091 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2092 void (*done)(struct scsi_cmnd *))
2094 struct ctlr_info *h;
2095 struct hpsa_scsi_dev_t *dev;
2096 unsigned char scsi3addr[8];
2097 struct CommandList *c;
2098 unsigned long flags;
2100 /* Get the ptr to our adapter structure out of cmd->host. */
2101 h = sdev_to_hba(cmd->device);
2102 dev = cmd->device->hostdata;
2103 if (!dev) {
2104 cmd->result = DID_NO_CONNECT << 16;
2105 done(cmd);
2106 return 0;
2108 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2110 spin_lock_irqsave(&h->lock, flags);
2111 if (unlikely(h->lockup_detected)) {
2112 spin_unlock_irqrestore(&h->lock, flags);
2113 cmd->result = DID_ERROR << 16;
2114 done(cmd);
2115 return 0;
2117 /* Need a lock as this is being allocated from the pool */
2118 c = cmd_alloc(h);
2119 spin_unlock_irqrestore(&h->lock, flags);
2120 if (c == NULL) { /* trouble... */
2121 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2122 return SCSI_MLQUEUE_HOST_BUSY;
2125 /* Fill in the command list header */
2127 cmd->scsi_done = done; /* save this for use by completion code */
2129 /* save c in case we have to abort it */
2130 cmd->host_scribble = (unsigned char *) c;
2132 c->cmd_type = CMD_SCSI;
2133 c->scsi_cmd = cmd;
2134 c->Header.ReplyQueue = 0; /* unused in simple mode */
2135 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2136 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2137 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2139 /* Fill in the request block... */
2141 c->Request.Timeout = 0;
2142 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2143 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2144 c->Request.CDBLen = cmd->cmd_len;
2145 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2146 c->Request.Type.Type = TYPE_CMD;
2147 c->Request.Type.Attribute = ATTR_SIMPLE;
2148 switch (cmd->sc_data_direction) {
2149 case DMA_TO_DEVICE:
2150 c->Request.Type.Direction = XFER_WRITE;
2151 break;
2152 case DMA_FROM_DEVICE:
2153 c->Request.Type.Direction = XFER_READ;
2154 break;
2155 case DMA_NONE:
2156 c->Request.Type.Direction = XFER_NONE;
2157 break;
2158 case DMA_BIDIRECTIONAL:
2159 /* This can happen if a buggy application does a scsi passthru
2160 * and sets both inlen and outlen to non-zero. ( see
2161 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2164 c->Request.Type.Direction = XFER_RSVD;
2165 /* This is technically wrong, and hpsa controllers should
2166 * reject it with CMD_INVALID, which is the most correct
2167 * response, but non-fibre backends appear to let it
2168 * slide by, and give the same results as if this field
2169 * were set correctly. Either way is acceptable for
2170 * our purposes here.
2173 break;
2175 default:
2176 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2177 cmd->sc_data_direction);
2178 BUG();
2179 break;
2182 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2183 cmd_free(h, c);
2184 return SCSI_MLQUEUE_HOST_BUSY;
2186 enqueue_cmd_and_start_io(h, c);
2187 /* the cmd'll come back via intr handler in complete_scsi_command() */
2188 return 0;
2191 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2193 static void hpsa_scan_start(struct Scsi_Host *sh)
2195 struct ctlr_info *h = shost_to_hba(sh);
2196 unsigned long flags;
2198 /* wait until any scan already in progress is finished. */
2199 while (1) {
2200 spin_lock_irqsave(&h->scan_lock, flags);
2201 if (h->scan_finished)
2202 break;
2203 spin_unlock_irqrestore(&h->scan_lock, flags);
2204 wait_event(h->scan_wait_queue, h->scan_finished);
2205 /* Note: We don't need to worry about a race between this
2206 * thread and driver unload because the midlayer will
2207 * have incremented the reference count, so unload won't
2208 * happen if we're in here.
2211 h->scan_finished = 0; /* mark scan as in progress */
2212 spin_unlock_irqrestore(&h->scan_lock, flags);
2214 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2216 spin_lock_irqsave(&h->scan_lock, flags);
2217 h->scan_finished = 1; /* mark scan as finished. */
2218 wake_up_all(&h->scan_wait_queue);
2219 spin_unlock_irqrestore(&h->scan_lock, flags);
2222 static int hpsa_scan_finished(struct Scsi_Host *sh,
2223 unsigned long elapsed_time)
2225 struct ctlr_info *h = shost_to_hba(sh);
2226 unsigned long flags;
2227 int finished;
2229 spin_lock_irqsave(&h->scan_lock, flags);
2230 finished = h->scan_finished;
2231 spin_unlock_irqrestore(&h->scan_lock, flags);
2232 return finished;
2235 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2236 int qdepth, int reason)
2238 struct ctlr_info *h = sdev_to_hba(sdev);
2240 if (reason != SCSI_QDEPTH_DEFAULT)
2241 return -ENOTSUPP;
2243 if (qdepth < 1)
2244 qdepth = 1;
2245 else
2246 if (qdepth > h->nr_cmds)
2247 qdepth = h->nr_cmds;
2248 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2249 return sdev->queue_depth;
2252 static void hpsa_unregister_scsi(struct ctlr_info *h)
2254 /* we are being forcibly unloaded, and may not refuse. */
2255 scsi_remove_host(h->scsi_host);
2256 scsi_host_put(h->scsi_host);
2257 h->scsi_host = NULL;
2260 static int hpsa_register_scsi(struct ctlr_info *h)
2262 struct Scsi_Host *sh;
2263 int error;
2265 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2266 if (sh == NULL)
2267 goto fail;
2269 sh->io_port = 0;
2270 sh->n_io_port = 0;
2271 sh->this_id = -1;
2272 sh->max_channel = 3;
2273 sh->max_cmd_len = MAX_COMMAND_SIZE;
2274 sh->max_lun = HPSA_MAX_LUN;
2275 sh->max_id = HPSA_MAX_LUN;
2276 sh->can_queue = h->nr_cmds;
2277 sh->cmd_per_lun = h->nr_cmds;
2278 sh->sg_tablesize = h->maxsgentries;
2279 h->scsi_host = sh;
2280 sh->hostdata[0] = (unsigned long) h;
2281 sh->irq = h->intr[h->intr_mode];
2282 sh->unique_id = sh->irq;
2283 error = scsi_add_host(sh, &h->pdev->dev);
2284 if (error)
2285 goto fail_host_put;
2286 scsi_scan_host(sh);
2287 return 0;
2289 fail_host_put:
2290 dev_err(&h->pdev->dev, "%s: scsi_add_host"
2291 " failed for controller %d\n", __func__, h->ctlr);
2292 scsi_host_put(sh);
2293 return error;
2294 fail:
2295 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2296 " failed for controller %d\n", __func__, h->ctlr);
2297 return -ENOMEM;
2300 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2301 unsigned char lunaddr[])
2303 int rc = 0;
2304 int count = 0;
2305 int waittime = 1; /* seconds */
2306 struct CommandList *c;
2308 c = cmd_special_alloc(h);
2309 if (!c) {
2310 dev_warn(&h->pdev->dev, "out of memory in "
2311 "wait_for_device_to_become_ready.\n");
2312 return IO_ERROR;
2315 /* Send test unit ready until device ready, or give up. */
2316 while (count < HPSA_TUR_RETRY_LIMIT) {
2318 /* Wait for a bit. do this first, because if we send
2319 * the TUR right away, the reset will just abort it.
2321 msleep(1000 * waittime);
2322 count++;
2324 /* Increase wait time with each try, up to a point. */
2325 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2326 waittime = waittime * 2;
2328 /* Send the Test Unit Ready */
2329 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2330 hpsa_scsi_do_simple_cmd_core(h, c);
2331 /* no unmap needed here because no data xfer. */
2333 if (c->err_info->CommandStatus == CMD_SUCCESS)
2334 break;
2336 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2337 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2338 (c->err_info->SenseInfo[2] == NO_SENSE ||
2339 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2340 break;
2342 dev_warn(&h->pdev->dev, "waiting %d secs "
2343 "for device to become ready.\n", waittime);
2344 rc = 1; /* device not ready. */
2347 if (rc)
2348 dev_warn(&h->pdev->dev, "giving up on device.\n");
2349 else
2350 dev_warn(&h->pdev->dev, "device is ready.\n");
2352 cmd_special_free(h, c);
2353 return rc;
2356 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2357 * complaining. Doing a host- or bus-reset can't do anything good here.
2359 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2361 int rc;
2362 struct ctlr_info *h;
2363 struct hpsa_scsi_dev_t *dev;
2365 /* find the controller to which the command to be aborted was sent */
2366 h = sdev_to_hba(scsicmd->device);
2367 if (h == NULL) /* paranoia */
2368 return FAILED;
2369 dev = scsicmd->device->hostdata;
2370 if (!dev) {
2371 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2372 "device lookup failed.\n");
2373 return FAILED;
2375 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2376 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2377 /* send a reset to the SCSI LUN which the command was sent to */
2378 rc = hpsa_send_reset(h, dev->scsi3addr);
2379 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2380 return SUCCESS;
2382 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2383 return FAILED;
2387 * For operations that cannot sleep, a command block is allocated at init,
2388 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2389 * which ones are free or in use. Lock must be held when calling this.
2390 * cmd_free() is the complement.
2392 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2394 struct CommandList *c;
2395 int i;
2396 union u64bit temp64;
2397 dma_addr_t cmd_dma_handle, err_dma_handle;
2399 do {
2400 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2401 if (i == h->nr_cmds)
2402 return NULL;
2403 } while (test_and_set_bit
2404 (i & (BITS_PER_LONG - 1),
2405 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2406 c = h->cmd_pool + i;
2407 memset(c, 0, sizeof(*c));
2408 cmd_dma_handle = h->cmd_pool_dhandle
2409 + i * sizeof(*c);
2410 c->err_info = h->errinfo_pool + i;
2411 memset(c->err_info, 0, sizeof(*c->err_info));
2412 err_dma_handle = h->errinfo_pool_dhandle
2413 + i * sizeof(*c->err_info);
2414 h->nr_allocs++;
2416 c->cmdindex = i;
2418 INIT_LIST_HEAD(&c->list);
2419 c->busaddr = (u32) cmd_dma_handle;
2420 temp64.val = (u64) err_dma_handle;
2421 c->ErrDesc.Addr.lower = temp64.val32.lower;
2422 c->ErrDesc.Addr.upper = temp64.val32.upper;
2423 c->ErrDesc.Len = sizeof(*c->err_info);
2425 c->h = h;
2426 return c;
2429 /* For operations that can wait for kmalloc to possibly sleep,
2430 * this routine can be called. Lock need not be held to call
2431 * cmd_special_alloc. cmd_special_free() is the complement.
2433 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2435 struct CommandList *c;
2436 union u64bit temp64;
2437 dma_addr_t cmd_dma_handle, err_dma_handle;
2439 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2440 if (c == NULL)
2441 return NULL;
2442 memset(c, 0, sizeof(*c));
2444 c->cmdindex = -1;
2446 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2447 &err_dma_handle);
2449 if (c->err_info == NULL) {
2450 pci_free_consistent(h->pdev,
2451 sizeof(*c), c, cmd_dma_handle);
2452 return NULL;
2454 memset(c->err_info, 0, sizeof(*c->err_info));
2456 INIT_LIST_HEAD(&c->list);
2457 c->busaddr = (u32) cmd_dma_handle;
2458 temp64.val = (u64) err_dma_handle;
2459 c->ErrDesc.Addr.lower = temp64.val32.lower;
2460 c->ErrDesc.Addr.upper = temp64.val32.upper;
2461 c->ErrDesc.Len = sizeof(*c->err_info);
2463 c->h = h;
2464 return c;
2467 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2469 int i;
2471 i = c - h->cmd_pool;
2472 clear_bit(i & (BITS_PER_LONG - 1),
2473 h->cmd_pool_bits + (i / BITS_PER_LONG));
2474 h->nr_frees++;
2477 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2479 union u64bit temp64;
2481 temp64.val32.lower = c->ErrDesc.Addr.lower;
2482 temp64.val32.upper = c->ErrDesc.Addr.upper;
2483 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2484 c->err_info, (dma_addr_t) temp64.val);
2485 pci_free_consistent(h->pdev, sizeof(*c),
2486 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2489 #ifdef CONFIG_COMPAT
2491 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2493 IOCTL32_Command_struct __user *arg32 =
2494 (IOCTL32_Command_struct __user *) arg;
2495 IOCTL_Command_struct arg64;
2496 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2497 int err;
2498 u32 cp;
2500 memset(&arg64, 0, sizeof(arg64));
2501 err = 0;
2502 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2503 sizeof(arg64.LUN_info));
2504 err |= copy_from_user(&arg64.Request, &arg32->Request,
2505 sizeof(arg64.Request));
2506 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2507 sizeof(arg64.error_info));
2508 err |= get_user(arg64.buf_size, &arg32->buf_size);
2509 err |= get_user(cp, &arg32->buf);
2510 arg64.buf = compat_ptr(cp);
2511 err |= copy_to_user(p, &arg64, sizeof(arg64));
2513 if (err)
2514 return -EFAULT;
2516 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2517 if (err)
2518 return err;
2519 err |= copy_in_user(&arg32->error_info, &p->error_info,
2520 sizeof(arg32->error_info));
2521 if (err)
2522 return -EFAULT;
2523 return err;
2526 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2527 int cmd, void *arg)
2529 BIG_IOCTL32_Command_struct __user *arg32 =
2530 (BIG_IOCTL32_Command_struct __user *) arg;
2531 BIG_IOCTL_Command_struct arg64;
2532 BIG_IOCTL_Command_struct __user *p =
2533 compat_alloc_user_space(sizeof(arg64));
2534 int err;
2535 u32 cp;
2537 memset(&arg64, 0, sizeof(arg64));
2538 err = 0;
2539 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2540 sizeof(arg64.LUN_info));
2541 err |= copy_from_user(&arg64.Request, &arg32->Request,
2542 sizeof(arg64.Request));
2543 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2544 sizeof(arg64.error_info));
2545 err |= get_user(arg64.buf_size, &arg32->buf_size);
2546 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2547 err |= get_user(cp, &arg32->buf);
2548 arg64.buf = compat_ptr(cp);
2549 err |= copy_to_user(p, &arg64, sizeof(arg64));
2551 if (err)
2552 return -EFAULT;
2554 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2555 if (err)
2556 return err;
2557 err |= copy_in_user(&arg32->error_info, &p->error_info,
2558 sizeof(arg32->error_info));
2559 if (err)
2560 return -EFAULT;
2561 return err;
2564 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2566 switch (cmd) {
2567 case CCISS_GETPCIINFO:
2568 case CCISS_GETINTINFO:
2569 case CCISS_SETINTINFO:
2570 case CCISS_GETNODENAME:
2571 case CCISS_SETNODENAME:
2572 case CCISS_GETHEARTBEAT:
2573 case CCISS_GETBUSTYPES:
2574 case CCISS_GETFIRMVER:
2575 case CCISS_GETDRIVVER:
2576 case CCISS_REVALIDVOLS:
2577 case CCISS_DEREGDISK:
2578 case CCISS_REGNEWDISK:
2579 case CCISS_REGNEWD:
2580 case CCISS_RESCANDISK:
2581 case CCISS_GETLUNINFO:
2582 return hpsa_ioctl(dev, cmd, arg);
2584 case CCISS_PASSTHRU32:
2585 return hpsa_ioctl32_passthru(dev, cmd, arg);
2586 case CCISS_BIG_PASSTHRU32:
2587 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2589 default:
2590 return -ENOIOCTLCMD;
2593 #endif
2595 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2597 struct hpsa_pci_info pciinfo;
2599 if (!argp)
2600 return -EINVAL;
2601 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2602 pciinfo.bus = h->pdev->bus->number;
2603 pciinfo.dev_fn = h->pdev->devfn;
2604 pciinfo.board_id = h->board_id;
2605 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2606 return -EFAULT;
2607 return 0;
2610 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2612 DriverVer_type DriverVer;
2613 unsigned char vmaj, vmin, vsubmin;
2614 int rc;
2616 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2617 &vmaj, &vmin, &vsubmin);
2618 if (rc != 3) {
2619 dev_info(&h->pdev->dev, "driver version string '%s' "
2620 "unrecognized.", HPSA_DRIVER_VERSION);
2621 vmaj = 0;
2622 vmin = 0;
2623 vsubmin = 0;
2625 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2626 if (!argp)
2627 return -EINVAL;
2628 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2629 return -EFAULT;
2630 return 0;
2633 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2635 IOCTL_Command_struct iocommand;
2636 struct CommandList *c;
2637 char *buff = NULL;
2638 union u64bit temp64;
2640 if (!argp)
2641 return -EINVAL;
2642 if (!capable(CAP_SYS_RAWIO))
2643 return -EPERM;
2644 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2645 return -EFAULT;
2646 if ((iocommand.buf_size < 1) &&
2647 (iocommand.Request.Type.Direction != XFER_NONE)) {
2648 return -EINVAL;
2650 if (iocommand.buf_size > 0) {
2651 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2652 if (buff == NULL)
2653 return -EFAULT;
2654 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2655 /* Copy the data into the buffer we created */
2656 if (copy_from_user(buff, iocommand.buf,
2657 iocommand.buf_size)) {
2658 kfree(buff);
2659 return -EFAULT;
2661 } else {
2662 memset(buff, 0, iocommand.buf_size);
2665 c = cmd_special_alloc(h);
2666 if (c == NULL) {
2667 kfree(buff);
2668 return -ENOMEM;
2670 /* Fill in the command type */
2671 c->cmd_type = CMD_IOCTL_PEND;
2672 /* Fill in Command Header */
2673 c->Header.ReplyQueue = 0; /* unused in simple mode */
2674 if (iocommand.buf_size > 0) { /* buffer to fill */
2675 c->Header.SGList = 1;
2676 c->Header.SGTotal = 1;
2677 } else { /* no buffers to fill */
2678 c->Header.SGList = 0;
2679 c->Header.SGTotal = 0;
2681 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2682 /* use the kernel address the cmd block for tag */
2683 c->Header.Tag.lower = c->busaddr;
2685 /* Fill in Request block */
2686 memcpy(&c->Request, &iocommand.Request,
2687 sizeof(c->Request));
2689 /* Fill in the scatter gather information */
2690 if (iocommand.buf_size > 0) {
2691 temp64.val = pci_map_single(h->pdev, buff,
2692 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2693 c->SG[0].Addr.lower = temp64.val32.lower;
2694 c->SG[0].Addr.upper = temp64.val32.upper;
2695 c->SG[0].Len = iocommand.buf_size;
2696 c->SG[0].Ext = 0; /* we are not chaining*/
2698 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2699 if (iocommand.buf_size > 0)
2700 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2701 check_ioctl_unit_attention(h, c);
2703 /* Copy the error information out */
2704 memcpy(&iocommand.error_info, c->err_info,
2705 sizeof(iocommand.error_info));
2706 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2707 kfree(buff);
2708 cmd_special_free(h, c);
2709 return -EFAULT;
2711 if (iocommand.Request.Type.Direction == XFER_READ &&
2712 iocommand.buf_size > 0) {
2713 /* Copy the data out of the buffer we created */
2714 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2715 kfree(buff);
2716 cmd_special_free(h, c);
2717 return -EFAULT;
2720 kfree(buff);
2721 cmd_special_free(h, c);
2722 return 0;
2725 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2727 BIG_IOCTL_Command_struct *ioc;
2728 struct CommandList *c;
2729 unsigned char **buff = NULL;
2730 int *buff_size = NULL;
2731 union u64bit temp64;
2732 BYTE sg_used = 0;
2733 int status = 0;
2734 int i;
2735 u32 left;
2736 u32 sz;
2737 BYTE __user *data_ptr;
2739 if (!argp)
2740 return -EINVAL;
2741 if (!capable(CAP_SYS_RAWIO))
2742 return -EPERM;
2743 ioc = (BIG_IOCTL_Command_struct *)
2744 kmalloc(sizeof(*ioc), GFP_KERNEL);
2745 if (!ioc) {
2746 status = -ENOMEM;
2747 goto cleanup1;
2749 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2750 status = -EFAULT;
2751 goto cleanup1;
2753 if ((ioc->buf_size < 1) &&
2754 (ioc->Request.Type.Direction != XFER_NONE)) {
2755 status = -EINVAL;
2756 goto cleanup1;
2758 /* Check kmalloc limits using all SGs */
2759 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2760 status = -EINVAL;
2761 goto cleanup1;
2763 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2764 status = -EINVAL;
2765 goto cleanup1;
2767 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2768 if (!buff) {
2769 status = -ENOMEM;
2770 goto cleanup1;
2772 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
2773 if (!buff_size) {
2774 status = -ENOMEM;
2775 goto cleanup1;
2777 left = ioc->buf_size;
2778 data_ptr = ioc->buf;
2779 while (left) {
2780 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2781 buff_size[sg_used] = sz;
2782 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2783 if (buff[sg_used] == NULL) {
2784 status = -ENOMEM;
2785 goto cleanup1;
2787 if (ioc->Request.Type.Direction == XFER_WRITE) {
2788 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2789 status = -ENOMEM;
2790 goto cleanup1;
2792 } else
2793 memset(buff[sg_used], 0, sz);
2794 left -= sz;
2795 data_ptr += sz;
2796 sg_used++;
2798 c = cmd_special_alloc(h);
2799 if (c == NULL) {
2800 status = -ENOMEM;
2801 goto cleanup1;
2803 c->cmd_type = CMD_IOCTL_PEND;
2804 c->Header.ReplyQueue = 0;
2805 c->Header.SGList = c->Header.SGTotal = sg_used;
2806 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2807 c->Header.Tag.lower = c->busaddr;
2808 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2809 if (ioc->buf_size > 0) {
2810 int i;
2811 for (i = 0; i < sg_used; i++) {
2812 temp64.val = pci_map_single(h->pdev, buff[i],
2813 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2814 c->SG[i].Addr.lower = temp64.val32.lower;
2815 c->SG[i].Addr.upper = temp64.val32.upper;
2816 c->SG[i].Len = buff_size[i];
2817 /* we are not chaining */
2818 c->SG[i].Ext = 0;
2821 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2822 if (sg_used)
2823 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2824 check_ioctl_unit_attention(h, c);
2825 /* Copy the error information out */
2826 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2827 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2828 cmd_special_free(h, c);
2829 status = -EFAULT;
2830 goto cleanup1;
2832 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2833 /* Copy the data out of the buffer we created */
2834 BYTE __user *ptr = ioc->buf;
2835 for (i = 0; i < sg_used; i++) {
2836 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2837 cmd_special_free(h, c);
2838 status = -EFAULT;
2839 goto cleanup1;
2841 ptr += buff_size[i];
2844 cmd_special_free(h, c);
2845 status = 0;
2846 cleanup1:
2847 if (buff) {
2848 for (i = 0; i < sg_used; i++)
2849 kfree(buff[i]);
2850 kfree(buff);
2852 kfree(buff_size);
2853 kfree(ioc);
2854 return status;
2857 static void check_ioctl_unit_attention(struct ctlr_info *h,
2858 struct CommandList *c)
2860 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2861 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2862 (void) check_for_unit_attention(h, c);
2865 * ioctl
2867 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2869 struct ctlr_info *h;
2870 void __user *argp = (void __user *)arg;
2872 h = sdev_to_hba(dev);
2874 switch (cmd) {
2875 case CCISS_DEREGDISK:
2876 case CCISS_REGNEWDISK:
2877 case CCISS_REGNEWD:
2878 hpsa_scan_start(h->scsi_host);
2879 return 0;
2880 case CCISS_GETPCIINFO:
2881 return hpsa_getpciinfo_ioctl(h, argp);
2882 case CCISS_GETDRIVVER:
2883 return hpsa_getdrivver_ioctl(h, argp);
2884 case CCISS_PASSTHRU:
2885 return hpsa_passthru_ioctl(h, argp);
2886 case CCISS_BIG_PASSTHRU:
2887 return hpsa_big_passthru_ioctl(h, argp);
2888 default:
2889 return -ENOTTY;
2893 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2894 unsigned char *scsi3addr, u8 reset_type)
2896 struct CommandList *c;
2898 c = cmd_alloc(h);
2899 if (!c)
2900 return -ENOMEM;
2901 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2902 RAID_CTLR_LUNID, TYPE_MSG);
2903 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2904 c->waiting = NULL;
2905 enqueue_cmd_and_start_io(h, c);
2906 /* Don't wait for completion, the reset won't complete. Don't free
2907 * the command either. This is the last command we will send before
2908 * re-initializing everything, so it doesn't matter and won't leak.
2910 return 0;
2913 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2914 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2915 int cmd_type)
2917 int pci_dir = XFER_NONE;
2919 c->cmd_type = CMD_IOCTL_PEND;
2920 c->Header.ReplyQueue = 0;
2921 if (buff != NULL && size > 0) {
2922 c->Header.SGList = 1;
2923 c->Header.SGTotal = 1;
2924 } else {
2925 c->Header.SGList = 0;
2926 c->Header.SGTotal = 0;
2928 c->Header.Tag.lower = c->busaddr;
2929 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2931 c->Request.Type.Type = cmd_type;
2932 if (cmd_type == TYPE_CMD) {
2933 switch (cmd) {
2934 case HPSA_INQUIRY:
2935 /* are we trying to read a vital product page */
2936 if (page_code != 0) {
2937 c->Request.CDB[1] = 0x01;
2938 c->Request.CDB[2] = page_code;
2940 c->Request.CDBLen = 6;
2941 c->Request.Type.Attribute = ATTR_SIMPLE;
2942 c->Request.Type.Direction = XFER_READ;
2943 c->Request.Timeout = 0;
2944 c->Request.CDB[0] = HPSA_INQUIRY;
2945 c->Request.CDB[4] = size & 0xFF;
2946 break;
2947 case HPSA_REPORT_LOG:
2948 case HPSA_REPORT_PHYS:
2949 /* Talking to controller so It's a physical command
2950 mode = 00 target = 0. Nothing to write.
2952 c->Request.CDBLen = 12;
2953 c->Request.Type.Attribute = ATTR_SIMPLE;
2954 c->Request.Type.Direction = XFER_READ;
2955 c->Request.Timeout = 0;
2956 c->Request.CDB[0] = cmd;
2957 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2958 c->Request.CDB[7] = (size >> 16) & 0xFF;
2959 c->Request.CDB[8] = (size >> 8) & 0xFF;
2960 c->Request.CDB[9] = size & 0xFF;
2961 break;
2962 case HPSA_CACHE_FLUSH:
2963 c->Request.CDBLen = 12;
2964 c->Request.Type.Attribute = ATTR_SIMPLE;
2965 c->Request.Type.Direction = XFER_WRITE;
2966 c->Request.Timeout = 0;
2967 c->Request.CDB[0] = BMIC_WRITE;
2968 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2969 c->Request.CDB[7] = (size >> 8) & 0xFF;
2970 c->Request.CDB[8] = size & 0xFF;
2971 break;
2972 case TEST_UNIT_READY:
2973 c->Request.CDBLen = 6;
2974 c->Request.Type.Attribute = ATTR_SIMPLE;
2975 c->Request.Type.Direction = XFER_NONE;
2976 c->Request.Timeout = 0;
2977 break;
2978 default:
2979 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2980 BUG();
2981 return;
2983 } else if (cmd_type == TYPE_MSG) {
2984 switch (cmd) {
2986 case HPSA_DEVICE_RESET_MSG:
2987 c->Request.CDBLen = 16;
2988 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2989 c->Request.Type.Attribute = ATTR_SIMPLE;
2990 c->Request.Type.Direction = XFER_NONE;
2991 c->Request.Timeout = 0; /* Don't time out */
2992 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2993 c->Request.CDB[0] = cmd;
2994 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
2995 /* If bytes 4-7 are zero, it means reset the */
2996 /* LunID device */
2997 c->Request.CDB[4] = 0x00;
2998 c->Request.CDB[5] = 0x00;
2999 c->Request.CDB[6] = 0x00;
3000 c->Request.CDB[7] = 0x00;
3001 break;
3003 default:
3004 dev_warn(&h->pdev->dev, "unknown message type %d\n",
3005 cmd);
3006 BUG();
3008 } else {
3009 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3010 BUG();
3013 switch (c->Request.Type.Direction) {
3014 case XFER_READ:
3015 pci_dir = PCI_DMA_FROMDEVICE;
3016 break;
3017 case XFER_WRITE:
3018 pci_dir = PCI_DMA_TODEVICE;
3019 break;
3020 case XFER_NONE:
3021 pci_dir = PCI_DMA_NONE;
3022 break;
3023 default:
3024 pci_dir = PCI_DMA_BIDIRECTIONAL;
3027 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3029 return;
3033 * Map (physical) PCI mem into (virtual) kernel space
3035 static void __iomem *remap_pci_mem(ulong base, ulong size)
3037 ulong page_base = ((ulong) base) & PAGE_MASK;
3038 ulong page_offs = ((ulong) base) - page_base;
3039 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3041 return page_remapped ? (page_remapped + page_offs) : NULL;
3044 /* Takes cmds off the submission queue and sends them to the hardware,
3045 * then puts them on the queue of cmds waiting for completion.
3047 static void start_io(struct ctlr_info *h)
3049 struct CommandList *c;
3051 while (!list_empty(&h->reqQ)) {
3052 c = list_entry(h->reqQ.next, struct CommandList, list);
3053 /* can't do anything if fifo is full */
3054 if ((h->access.fifo_full(h))) {
3055 dev_warn(&h->pdev->dev, "fifo full\n");
3056 break;
3059 /* Get the first entry from the Request Q */
3060 removeQ(c);
3061 h->Qdepth--;
3063 /* Tell the controller execute command */
3064 h->access.submit_command(h, c);
3066 /* Put job onto the completed Q */
3067 addQ(&h->cmpQ, c);
3071 static inline unsigned long get_next_completion(struct ctlr_info *h)
3073 return h->access.command_completed(h);
3076 static inline bool interrupt_pending(struct ctlr_info *h)
3078 return h->access.intr_pending(h);
3081 static inline long interrupt_not_for_us(struct ctlr_info *h)
3083 return (h->access.intr_pending(h) == 0) ||
3084 (h->interrupts_enabled == 0);
3087 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3088 u32 raw_tag)
3090 if (unlikely(tag_index >= h->nr_cmds)) {
3091 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3092 return 1;
3094 return 0;
3097 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3099 removeQ(c);
3100 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3101 if (likely(c->cmd_type == CMD_SCSI))
3102 complete_scsi_command(c);
3103 else if (c->cmd_type == CMD_IOCTL_PEND)
3104 complete(c->waiting);
3107 static inline u32 hpsa_tag_contains_index(u32 tag)
3109 return tag & DIRECT_LOOKUP_BIT;
3112 static inline u32 hpsa_tag_to_index(u32 tag)
3114 return tag >> DIRECT_LOOKUP_SHIFT;
3118 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3120 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3121 #define HPSA_SIMPLE_ERROR_BITS 0x03
3122 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3123 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3124 return tag & ~HPSA_PERF_ERROR_BITS;
3127 /* process completion of an indexed ("direct lookup") command */
3128 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3129 u32 raw_tag)
3131 u32 tag_index;
3132 struct CommandList *c;
3134 tag_index = hpsa_tag_to_index(raw_tag);
3135 if (bad_tag(h, tag_index, raw_tag))
3136 return next_command(h);
3137 c = h->cmd_pool + tag_index;
3138 finish_cmd(c, raw_tag);
3139 return next_command(h);
3142 /* process completion of a non-indexed command */
3143 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3144 u32 raw_tag)
3146 u32 tag;
3147 struct CommandList *c = NULL;
3149 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3150 list_for_each_entry(c, &h->cmpQ, list) {
3151 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3152 finish_cmd(c, raw_tag);
3153 return next_command(h);
3156 bad_tag(h, h->nr_cmds + 1, raw_tag);
3157 return next_command(h);
3160 /* Some controllers, like p400, will give us one interrupt
3161 * after a soft reset, even if we turned interrupts off.
3162 * Only need to check for this in the hpsa_xxx_discard_completions
3163 * functions.
3165 static int ignore_bogus_interrupt(struct ctlr_info *h)
3167 if (likely(!reset_devices))
3168 return 0;
3170 if (likely(h->interrupts_enabled))
3171 return 0;
3173 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3174 "(known firmware bug.) Ignoring.\n");
3176 return 1;
3179 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3181 struct ctlr_info *h = dev_id;
3182 unsigned long flags;
3183 u32 raw_tag;
3185 if (ignore_bogus_interrupt(h))
3186 return IRQ_NONE;
3188 if (interrupt_not_for_us(h))
3189 return IRQ_NONE;
3190 spin_lock_irqsave(&h->lock, flags);
3191 h->last_intr_timestamp = get_jiffies_64();
3192 while (interrupt_pending(h)) {
3193 raw_tag = get_next_completion(h);
3194 while (raw_tag != FIFO_EMPTY)
3195 raw_tag = next_command(h);
3197 spin_unlock_irqrestore(&h->lock, flags);
3198 return IRQ_HANDLED;
3201 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3203 struct ctlr_info *h = dev_id;
3204 unsigned long flags;
3205 u32 raw_tag;
3207 if (ignore_bogus_interrupt(h))
3208 return IRQ_NONE;
3210 spin_lock_irqsave(&h->lock, flags);
3211 h->last_intr_timestamp = get_jiffies_64();
3212 raw_tag = get_next_completion(h);
3213 while (raw_tag != FIFO_EMPTY)
3214 raw_tag = next_command(h);
3215 spin_unlock_irqrestore(&h->lock, flags);
3216 return IRQ_HANDLED;
3219 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3221 struct ctlr_info *h = dev_id;
3222 unsigned long flags;
3223 u32 raw_tag;
3225 if (interrupt_not_for_us(h))
3226 return IRQ_NONE;
3227 spin_lock_irqsave(&h->lock, flags);
3228 h->last_intr_timestamp = get_jiffies_64();
3229 while (interrupt_pending(h)) {
3230 raw_tag = get_next_completion(h);
3231 while (raw_tag != FIFO_EMPTY) {
3232 if (hpsa_tag_contains_index(raw_tag))
3233 raw_tag = process_indexed_cmd(h, raw_tag);
3234 else
3235 raw_tag = process_nonindexed_cmd(h, raw_tag);
3238 spin_unlock_irqrestore(&h->lock, flags);
3239 return IRQ_HANDLED;
3242 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3244 struct ctlr_info *h = dev_id;
3245 unsigned long flags;
3246 u32 raw_tag;
3248 spin_lock_irqsave(&h->lock, flags);
3249 h->last_intr_timestamp = get_jiffies_64();
3250 raw_tag = get_next_completion(h);
3251 while (raw_tag != FIFO_EMPTY) {
3252 if (hpsa_tag_contains_index(raw_tag))
3253 raw_tag = process_indexed_cmd(h, raw_tag);
3254 else
3255 raw_tag = process_nonindexed_cmd(h, raw_tag);
3257 spin_unlock_irqrestore(&h->lock, flags);
3258 return IRQ_HANDLED;
3261 /* Send a message CDB to the firmware. Careful, this only works
3262 * in simple mode, not performant mode due to the tag lookup.
3263 * We only ever use this immediately after a controller reset.
3265 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3266 unsigned char type)
3268 struct Command {
3269 struct CommandListHeader CommandHeader;
3270 struct RequestBlock Request;
3271 struct ErrDescriptor ErrorDescriptor;
3273 struct Command *cmd;
3274 static const size_t cmd_sz = sizeof(*cmd) +
3275 sizeof(cmd->ErrorDescriptor);
3276 dma_addr_t paddr64;
3277 uint32_t paddr32, tag;
3278 void __iomem *vaddr;
3279 int i, err;
3281 vaddr = pci_ioremap_bar(pdev, 0);
3282 if (vaddr == NULL)
3283 return -ENOMEM;
3285 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3286 * CCISS commands, so they must be allocated from the lower 4GiB of
3287 * memory.
3289 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3290 if (err) {
3291 iounmap(vaddr);
3292 return -ENOMEM;
3295 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3296 if (cmd == NULL) {
3297 iounmap(vaddr);
3298 return -ENOMEM;
3301 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3302 * although there's no guarantee, we assume that the address is at
3303 * least 4-byte aligned (most likely, it's page-aligned).
3305 paddr32 = paddr64;
3307 cmd->CommandHeader.ReplyQueue = 0;
3308 cmd->CommandHeader.SGList = 0;
3309 cmd->CommandHeader.SGTotal = 0;
3310 cmd->CommandHeader.Tag.lower = paddr32;
3311 cmd->CommandHeader.Tag.upper = 0;
3312 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3314 cmd->Request.CDBLen = 16;
3315 cmd->Request.Type.Type = TYPE_MSG;
3316 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3317 cmd->Request.Type.Direction = XFER_NONE;
3318 cmd->Request.Timeout = 0; /* Don't time out */
3319 cmd->Request.CDB[0] = opcode;
3320 cmd->Request.CDB[1] = type;
3321 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3322 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3323 cmd->ErrorDescriptor.Addr.upper = 0;
3324 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3326 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3328 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3329 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3330 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3331 break;
3332 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3335 iounmap(vaddr);
3337 /* we leak the DMA buffer here ... no choice since the controller could
3338 * still complete the command.
3340 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3341 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3342 opcode, type);
3343 return -ETIMEDOUT;
3346 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3348 if (tag & HPSA_ERROR_BIT) {
3349 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3350 opcode, type);
3351 return -EIO;
3354 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3355 opcode, type);
3356 return 0;
3359 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3361 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3362 void * __iomem vaddr, u32 use_doorbell)
3364 u16 pmcsr;
3365 int pos;
3367 if (use_doorbell) {
3368 /* For everything after the P600, the PCI power state method
3369 * of resetting the controller doesn't work, so we have this
3370 * other way using the doorbell register.
3372 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3373 writel(use_doorbell, vaddr + SA5_DOORBELL);
3374 } else { /* Try to do it the PCI power state way */
3376 /* Quoting from the Open CISS Specification: "The Power
3377 * Management Control/Status Register (CSR) controls the power
3378 * state of the device. The normal operating state is D0,
3379 * CSR=00h. The software off state is D3, CSR=03h. To reset
3380 * the controller, place the interface device in D3 then to D0,
3381 * this causes a secondary PCI reset which will reset the
3382 * controller." */
3384 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3385 if (pos == 0) {
3386 dev_err(&pdev->dev,
3387 "hpsa_reset_controller: "
3388 "PCI PM not supported\n");
3389 return -ENODEV;
3391 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3392 /* enter the D3hot power management state */
3393 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3394 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3395 pmcsr |= PCI_D3hot;
3396 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3398 msleep(500);
3400 /* enter the D0 power management state */
3401 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3402 pmcsr |= PCI_D0;
3403 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3406 * The P600 requires a small delay when changing states.
3407 * Otherwise we may think the board did not reset and we bail.
3408 * This for kdump only and is particular to the P600.
3410 msleep(500);
3412 return 0;
3415 static __devinit void init_driver_version(char *driver_version, int len)
3417 memset(driver_version, 0, len);
3418 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3421 static __devinit int write_driver_ver_to_cfgtable(
3422 struct CfgTable __iomem *cfgtable)
3424 char *driver_version;
3425 int i, size = sizeof(cfgtable->driver_version);
3427 driver_version = kmalloc(size, GFP_KERNEL);
3428 if (!driver_version)
3429 return -ENOMEM;
3431 init_driver_version(driver_version, size);
3432 for (i = 0; i < size; i++)
3433 writeb(driver_version[i], &cfgtable->driver_version[i]);
3434 kfree(driver_version);
3435 return 0;
3438 static __devinit void read_driver_ver_from_cfgtable(
3439 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3441 int i;
3443 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3444 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3447 static __devinit int controller_reset_failed(
3448 struct CfgTable __iomem *cfgtable)
3451 char *driver_ver, *old_driver_ver;
3452 int rc, size = sizeof(cfgtable->driver_version);
3454 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3455 if (!old_driver_ver)
3456 return -ENOMEM;
3457 driver_ver = old_driver_ver + size;
3459 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3460 * should have been changed, otherwise we know the reset failed.
3462 init_driver_version(old_driver_ver, size);
3463 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3464 rc = !memcmp(driver_ver, old_driver_ver, size);
3465 kfree(old_driver_ver);
3466 return rc;
3468 /* This does a hard reset of the controller using PCI power management
3469 * states or the using the doorbell register.
3471 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3473 u64 cfg_offset;
3474 u32 cfg_base_addr;
3475 u64 cfg_base_addr_index;
3476 void __iomem *vaddr;
3477 unsigned long paddr;
3478 u32 misc_fw_support;
3479 int rc;
3480 struct CfgTable __iomem *cfgtable;
3481 u32 use_doorbell;
3482 u32 board_id;
3483 u16 command_register;
3485 /* For controllers as old as the P600, this is very nearly
3486 * the same thing as
3488 * pci_save_state(pci_dev);
3489 * pci_set_power_state(pci_dev, PCI_D3hot);
3490 * pci_set_power_state(pci_dev, PCI_D0);
3491 * pci_restore_state(pci_dev);
3493 * For controllers newer than the P600, the pci power state
3494 * method of resetting doesn't work so we have another way
3495 * using the doorbell register.
3498 rc = hpsa_lookup_board_id(pdev, &board_id);
3499 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3500 dev_warn(&pdev->dev, "Not resetting device.\n");
3501 return -ENODEV;
3504 /* if controller is soft- but not hard resettable... */
3505 if (!ctlr_is_hard_resettable(board_id))
3506 return -ENOTSUPP; /* try soft reset later. */
3508 /* Save the PCI command register */
3509 pci_read_config_word(pdev, 4, &command_register);
3510 /* Turn the board off. This is so that later pci_restore_state()
3511 * won't turn the board on before the rest of config space is ready.
3513 pci_disable_device(pdev);
3514 pci_save_state(pdev);
3516 /* find the first memory BAR, so we can find the cfg table */
3517 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3518 if (rc)
3519 return rc;
3520 vaddr = remap_pci_mem(paddr, 0x250);
3521 if (!vaddr)
3522 return -ENOMEM;
3524 /* find cfgtable in order to check if reset via doorbell is supported */
3525 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3526 &cfg_base_addr_index, &cfg_offset);
3527 if (rc)
3528 goto unmap_vaddr;
3529 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3530 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3531 if (!cfgtable) {
3532 rc = -ENOMEM;
3533 goto unmap_vaddr;
3535 rc = write_driver_ver_to_cfgtable(cfgtable);
3536 if (rc)
3537 goto unmap_vaddr;
3539 /* If reset via doorbell register is supported, use that.
3540 * There are two such methods. Favor the newest method.
3542 misc_fw_support = readl(&cfgtable->misc_fw_support);
3543 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3544 if (use_doorbell) {
3545 use_doorbell = DOORBELL_CTLR_RESET2;
3546 } else {
3547 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3548 if (use_doorbell) {
3549 dev_warn(&pdev->dev, "Soft reset not supported. "
3550 "Firmware update is required.\n");
3551 rc = -ENOTSUPP; /* try soft reset */
3552 goto unmap_cfgtable;
3556 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3557 if (rc)
3558 goto unmap_cfgtable;
3560 pci_restore_state(pdev);
3561 rc = pci_enable_device(pdev);
3562 if (rc) {
3563 dev_warn(&pdev->dev, "failed to enable device.\n");
3564 goto unmap_cfgtable;
3566 pci_write_config_word(pdev, 4, command_register);
3568 /* Some devices (notably the HP Smart Array 5i Controller)
3569 need a little pause here */
3570 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3572 /* Wait for board to become not ready, then ready. */
3573 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3574 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3575 if (rc) {
3576 dev_warn(&pdev->dev,
3577 "failed waiting for board to reset."
3578 " Will try soft reset.\n");
3579 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3580 goto unmap_cfgtable;
3582 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3583 if (rc) {
3584 dev_warn(&pdev->dev,
3585 "failed waiting for board to become ready "
3586 "after hard reset\n");
3587 goto unmap_cfgtable;
3590 rc = controller_reset_failed(vaddr);
3591 if (rc < 0)
3592 goto unmap_cfgtable;
3593 if (rc) {
3594 dev_warn(&pdev->dev, "Unable to successfully reset "
3595 "controller. Will try soft reset.\n");
3596 rc = -ENOTSUPP;
3597 } else {
3598 dev_info(&pdev->dev, "board ready after hard reset.\n");
3601 unmap_cfgtable:
3602 iounmap(cfgtable);
3604 unmap_vaddr:
3605 iounmap(vaddr);
3606 return rc;
3610 * We cannot read the structure directly, for portability we must use
3611 * the io functions.
3612 * This is for debug only.
3614 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3616 #ifdef HPSA_DEBUG
3617 int i;
3618 char temp_name[17];
3620 dev_info(dev, "Controller Configuration information\n");
3621 dev_info(dev, "------------------------------------\n");
3622 for (i = 0; i < 4; i++)
3623 temp_name[i] = readb(&(tb->Signature[i]));
3624 temp_name[4] = '\0';
3625 dev_info(dev, " Signature = %s\n", temp_name);
3626 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3627 dev_info(dev, " Transport methods supported = 0x%x\n",
3628 readl(&(tb->TransportSupport)));
3629 dev_info(dev, " Transport methods active = 0x%x\n",
3630 readl(&(tb->TransportActive)));
3631 dev_info(dev, " Requested transport Method = 0x%x\n",
3632 readl(&(tb->HostWrite.TransportRequest)));
3633 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3634 readl(&(tb->HostWrite.CoalIntDelay)));
3635 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3636 readl(&(tb->HostWrite.CoalIntCount)));
3637 dev_info(dev, " Max outstanding commands = 0x%d\n",
3638 readl(&(tb->CmdsOutMax)));
3639 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3640 for (i = 0; i < 16; i++)
3641 temp_name[i] = readb(&(tb->ServerName[i]));
3642 temp_name[16] = '\0';
3643 dev_info(dev, " Server Name = %s\n", temp_name);
3644 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3645 readl(&(tb->HeartBeat)));
3646 #endif /* HPSA_DEBUG */
3649 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3651 int i, offset, mem_type, bar_type;
3653 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3654 return 0;
3655 offset = 0;
3656 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3657 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3658 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3659 offset += 4;
3660 else {
3661 mem_type = pci_resource_flags(pdev, i) &
3662 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3663 switch (mem_type) {
3664 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3665 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3666 offset += 4; /* 32 bit */
3667 break;
3668 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3669 offset += 8;
3670 break;
3671 default: /* reserved in PCI 2.2 */
3672 dev_warn(&pdev->dev,
3673 "base address is invalid\n");
3674 return -1;
3675 break;
3678 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3679 return i + 1;
3681 return -1;
3684 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3685 * controllers that are capable. If not, we use IO-APIC mode.
3688 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3690 #ifdef CONFIG_PCI_MSI
3691 int err;
3692 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3693 {0, 2}, {0, 3}
3696 /* Some boards advertise MSI but don't really support it */
3697 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3698 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3699 goto default_int_mode;
3700 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3701 dev_info(&h->pdev->dev, "MSIX\n");
3702 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3703 if (!err) {
3704 h->intr[0] = hpsa_msix_entries[0].vector;
3705 h->intr[1] = hpsa_msix_entries[1].vector;
3706 h->intr[2] = hpsa_msix_entries[2].vector;
3707 h->intr[3] = hpsa_msix_entries[3].vector;
3708 h->msix_vector = 1;
3709 return;
3711 if (err > 0) {
3712 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3713 "available\n", err);
3714 goto default_int_mode;
3715 } else {
3716 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3717 err);
3718 goto default_int_mode;
3721 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3722 dev_info(&h->pdev->dev, "MSI\n");
3723 if (!pci_enable_msi(h->pdev))
3724 h->msi_vector = 1;
3725 else
3726 dev_warn(&h->pdev->dev, "MSI init failed\n");
3728 default_int_mode:
3729 #endif /* CONFIG_PCI_MSI */
3730 /* if we get here we're going to use the default interrupt mode */
3731 h->intr[h->intr_mode] = h->pdev->irq;
3734 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3736 int i;
3737 u32 subsystem_vendor_id, subsystem_device_id;
3739 subsystem_vendor_id = pdev->subsystem_vendor;
3740 subsystem_device_id = pdev->subsystem_device;
3741 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3742 subsystem_vendor_id;
3744 for (i = 0; i < ARRAY_SIZE(products); i++)
3745 if (*board_id == products[i].board_id)
3746 return i;
3748 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3749 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3750 !hpsa_allow_any) {
3751 dev_warn(&pdev->dev, "unrecognized board ID: "
3752 "0x%08x, ignoring.\n", *board_id);
3753 return -ENODEV;
3755 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3758 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3760 u16 command;
3762 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3763 return ((command & PCI_COMMAND_MEMORY) == 0);
3766 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3767 unsigned long *memory_bar)
3769 int i;
3771 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3772 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3773 /* addressing mode bits already removed */
3774 *memory_bar = pci_resource_start(pdev, i);
3775 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3776 *memory_bar);
3777 return 0;
3779 dev_warn(&pdev->dev, "no memory BAR found\n");
3780 return -ENODEV;
3783 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3784 void __iomem *vaddr, int wait_for_ready)
3786 int i, iterations;
3787 u32 scratchpad;
3788 if (wait_for_ready)
3789 iterations = HPSA_BOARD_READY_ITERATIONS;
3790 else
3791 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3793 for (i = 0; i < iterations; i++) {
3794 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3795 if (wait_for_ready) {
3796 if (scratchpad == HPSA_FIRMWARE_READY)
3797 return 0;
3798 } else {
3799 if (scratchpad != HPSA_FIRMWARE_READY)
3800 return 0;
3802 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3804 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3805 return -ENODEV;
3808 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3809 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3810 u64 *cfg_offset)
3812 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3813 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3814 *cfg_base_addr &= (u32) 0x0000ffff;
3815 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3816 if (*cfg_base_addr_index == -1) {
3817 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3818 return -ENODEV;
3820 return 0;
3823 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3825 u64 cfg_offset;
3826 u32 cfg_base_addr;
3827 u64 cfg_base_addr_index;
3828 u32 trans_offset;
3829 int rc;
3831 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3832 &cfg_base_addr_index, &cfg_offset);
3833 if (rc)
3834 return rc;
3835 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3836 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3837 if (!h->cfgtable)
3838 return -ENOMEM;
3839 rc = write_driver_ver_to_cfgtable(h->cfgtable);
3840 if (rc)
3841 return rc;
3842 /* Find performant mode table. */
3843 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3844 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3845 cfg_base_addr_index)+cfg_offset+trans_offset,
3846 sizeof(*h->transtable));
3847 if (!h->transtable)
3848 return -ENOMEM;
3849 return 0;
3852 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3854 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3856 /* Limit commands in memory limited kdump scenario. */
3857 if (reset_devices && h->max_commands > 32)
3858 h->max_commands = 32;
3860 if (h->max_commands < 16) {
3861 dev_warn(&h->pdev->dev, "Controller reports "
3862 "max supported commands of %d, an obvious lie. "
3863 "Using 16. Ensure that firmware is up to date.\n",
3864 h->max_commands);
3865 h->max_commands = 16;
3869 /* Interrogate the hardware for some limits:
3870 * max commands, max SG elements without chaining, and with chaining,
3871 * SG chain block size, etc.
3873 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3875 hpsa_get_max_perf_mode_cmds(h);
3876 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3877 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3879 * Limit in-command s/g elements to 32 save dma'able memory.
3880 * Howvever spec says if 0, use 31
3882 h->max_cmd_sg_entries = 31;
3883 if (h->maxsgentries > 512) {
3884 h->max_cmd_sg_entries = 32;
3885 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3886 h->maxsgentries--; /* save one for chain pointer */
3887 } else {
3888 h->maxsgentries = 31; /* default to traditional values */
3889 h->chainsize = 0;
3893 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3895 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3896 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3897 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3898 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3899 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3900 return false;
3902 return true;
3905 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3906 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3908 #ifdef CONFIG_X86
3909 u32 prefetch;
3911 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3912 prefetch |= 0x100;
3913 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3914 #endif
3917 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3918 * in a prefetch beyond physical memory.
3920 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3922 u32 dma_prefetch;
3924 if (h->board_id != 0x3225103C)
3925 return;
3926 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3927 dma_prefetch |= 0x8000;
3928 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3931 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3933 int i;
3934 u32 doorbell_value;
3935 unsigned long flags;
3937 /* under certain very rare conditions, this can take awhile.
3938 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3939 * as we enter this code.)
3941 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3942 spin_lock_irqsave(&h->lock, flags);
3943 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3944 spin_unlock_irqrestore(&h->lock, flags);
3945 if (!(doorbell_value & CFGTBL_ChangeReq))
3946 break;
3947 /* delay and try again */
3948 usleep_range(10000, 20000);
3952 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3954 u32 trans_support;
3956 trans_support = readl(&(h->cfgtable->TransportSupport));
3957 if (!(trans_support & SIMPLE_MODE))
3958 return -ENOTSUPP;
3960 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3961 /* Update the field, and then ring the doorbell */
3962 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3963 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3964 hpsa_wait_for_mode_change_ack(h);
3965 print_cfg_table(&h->pdev->dev, h->cfgtable);
3966 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3967 dev_warn(&h->pdev->dev,
3968 "unable to get board into simple mode\n");
3969 return -ENODEV;
3971 h->transMethod = CFGTBL_Trans_Simple;
3972 return 0;
3975 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3977 int prod_index, err;
3979 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3980 if (prod_index < 0)
3981 return -ENODEV;
3982 h->product_name = products[prod_index].product_name;
3983 h->access = *(products[prod_index].access);
3985 if (hpsa_board_disabled(h->pdev)) {
3986 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3987 return -ENODEV;
3990 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3991 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3993 err = pci_enable_device(h->pdev);
3994 if (err) {
3995 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3996 return err;
3999 err = pci_request_regions(h->pdev, HPSA);
4000 if (err) {
4001 dev_err(&h->pdev->dev,
4002 "cannot obtain PCI resources, aborting\n");
4003 return err;
4005 hpsa_interrupt_mode(h);
4006 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4007 if (err)
4008 goto err_out_free_res;
4009 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4010 if (!h->vaddr) {
4011 err = -ENOMEM;
4012 goto err_out_free_res;
4014 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4015 if (err)
4016 goto err_out_free_res;
4017 err = hpsa_find_cfgtables(h);
4018 if (err)
4019 goto err_out_free_res;
4020 hpsa_find_board_params(h);
4022 if (!hpsa_CISS_signature_present(h)) {
4023 err = -ENODEV;
4024 goto err_out_free_res;
4026 hpsa_enable_scsi_prefetch(h);
4027 hpsa_p600_dma_prefetch_quirk(h);
4028 err = hpsa_enter_simple_mode(h);
4029 if (err)
4030 goto err_out_free_res;
4031 return 0;
4033 err_out_free_res:
4034 if (h->transtable)
4035 iounmap(h->transtable);
4036 if (h->cfgtable)
4037 iounmap(h->cfgtable);
4038 if (h->vaddr)
4039 iounmap(h->vaddr);
4041 * Deliberately omit pci_disable_device(): it does something nasty to
4042 * Smart Array controllers that pci_enable_device does not undo
4044 pci_release_regions(h->pdev);
4045 return err;
4048 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4050 int rc;
4052 #define HBA_INQUIRY_BYTE_COUNT 64
4053 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4054 if (!h->hba_inquiry_data)
4055 return;
4056 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4057 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4058 if (rc != 0) {
4059 kfree(h->hba_inquiry_data);
4060 h->hba_inquiry_data = NULL;
4064 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4066 int rc, i;
4068 if (!reset_devices)
4069 return 0;
4071 /* Reset the controller with a PCI power-cycle or via doorbell */
4072 rc = hpsa_kdump_hard_reset_controller(pdev);
4074 /* -ENOTSUPP here means we cannot reset the controller
4075 * but it's already (and still) up and running in
4076 * "performant mode". Or, it might be 640x, which can't reset
4077 * due to concerns about shared bbwc between 6402/6404 pair.
4079 if (rc == -ENOTSUPP)
4080 return rc; /* just try to do the kdump anyhow. */
4081 if (rc)
4082 return -ENODEV;
4084 /* Now try to get the controller to respond to a no-op */
4085 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4086 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4087 if (hpsa_noop(pdev) == 0)
4088 break;
4089 else
4090 dev_warn(&pdev->dev, "no-op failed%s\n",
4091 (i < 11 ? "; re-trying" : ""));
4093 return 0;
4096 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4098 h->cmd_pool_bits = kzalloc(
4099 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4100 sizeof(unsigned long), GFP_KERNEL);
4101 h->cmd_pool = pci_alloc_consistent(h->pdev,
4102 h->nr_cmds * sizeof(*h->cmd_pool),
4103 &(h->cmd_pool_dhandle));
4104 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4105 h->nr_cmds * sizeof(*h->errinfo_pool),
4106 &(h->errinfo_pool_dhandle));
4107 if ((h->cmd_pool_bits == NULL)
4108 || (h->cmd_pool == NULL)
4109 || (h->errinfo_pool == NULL)) {
4110 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4111 return -ENOMEM;
4113 return 0;
4116 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4118 kfree(h->cmd_pool_bits);
4119 if (h->cmd_pool)
4120 pci_free_consistent(h->pdev,
4121 h->nr_cmds * sizeof(struct CommandList),
4122 h->cmd_pool, h->cmd_pool_dhandle);
4123 if (h->errinfo_pool)
4124 pci_free_consistent(h->pdev,
4125 h->nr_cmds * sizeof(struct ErrorInfo),
4126 h->errinfo_pool,
4127 h->errinfo_pool_dhandle);
4130 static int hpsa_request_irq(struct ctlr_info *h,
4131 irqreturn_t (*msixhandler)(int, void *),
4132 irqreturn_t (*intxhandler)(int, void *))
4134 int rc;
4136 if (h->msix_vector || h->msi_vector)
4137 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4138 0, h->devname, h);
4139 else
4140 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4141 IRQF_SHARED, h->devname, h);
4142 if (rc) {
4143 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4144 h->intr[h->intr_mode], h->devname);
4145 return -ENODEV;
4147 return 0;
4150 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4152 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4153 HPSA_RESET_TYPE_CONTROLLER)) {
4154 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4155 return -EIO;
4158 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4159 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4160 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4161 return -1;
4164 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4165 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4166 dev_warn(&h->pdev->dev, "Board failed to become ready "
4167 "after soft reset.\n");
4168 return -1;
4171 return 0;
4174 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4176 free_irq(h->intr[h->intr_mode], h);
4177 #ifdef CONFIG_PCI_MSI
4178 if (h->msix_vector)
4179 pci_disable_msix(h->pdev);
4180 else if (h->msi_vector)
4181 pci_disable_msi(h->pdev);
4182 #endif /* CONFIG_PCI_MSI */
4183 hpsa_free_sg_chain_blocks(h);
4184 hpsa_free_cmd_pool(h);
4185 kfree(h->blockFetchTable);
4186 pci_free_consistent(h->pdev, h->reply_pool_size,
4187 h->reply_pool, h->reply_pool_dhandle);
4188 if (h->vaddr)
4189 iounmap(h->vaddr);
4190 if (h->transtable)
4191 iounmap(h->transtable);
4192 if (h->cfgtable)
4193 iounmap(h->cfgtable);
4194 pci_release_regions(h->pdev);
4195 kfree(h);
4198 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4200 assert_spin_locked(&lockup_detector_lock);
4201 if (!hpsa_lockup_detector)
4202 return;
4203 if (h->lockup_detected)
4204 return; /* already stopped the lockup detector */
4205 list_del(&h->lockup_list);
4208 /* Called when controller lockup detected. */
4209 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4211 struct CommandList *c = NULL;
4213 assert_spin_locked(&h->lock);
4214 /* Mark all outstanding commands as failed and complete them. */
4215 while (!list_empty(list)) {
4216 c = list_entry(list->next, struct CommandList, list);
4217 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4218 finish_cmd(c, c->Header.Tag.lower);
4222 static void controller_lockup_detected(struct ctlr_info *h)
4224 unsigned long flags;
4226 assert_spin_locked(&lockup_detector_lock);
4227 remove_ctlr_from_lockup_detector_list(h);
4228 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4229 spin_lock_irqsave(&h->lock, flags);
4230 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4231 spin_unlock_irqrestore(&h->lock, flags);
4232 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4233 h->lockup_detected);
4234 pci_disable_device(h->pdev);
4235 spin_lock_irqsave(&h->lock, flags);
4236 fail_all_cmds_on_list(h, &h->cmpQ);
4237 fail_all_cmds_on_list(h, &h->reqQ);
4238 spin_unlock_irqrestore(&h->lock, flags);
4241 static void detect_controller_lockup(struct ctlr_info *h)
4243 u64 now;
4244 u32 heartbeat;
4245 unsigned long flags;
4247 assert_spin_locked(&lockup_detector_lock);
4248 now = get_jiffies_64();
4249 /* If we've received an interrupt recently, we're ok. */
4250 if (time_after64(h->last_intr_timestamp +
4251 (h->heartbeat_sample_interval), now))
4252 return;
4255 * If we've already checked the heartbeat recently, we're ok.
4256 * This could happen if someone sends us a signal. We
4257 * otherwise don't care about signals in this thread.
4259 if (time_after64(h->last_heartbeat_timestamp +
4260 (h->heartbeat_sample_interval), now))
4261 return;
4263 /* If heartbeat has not changed since we last looked, we're not ok. */
4264 spin_lock_irqsave(&h->lock, flags);
4265 heartbeat = readl(&h->cfgtable->HeartBeat);
4266 spin_unlock_irqrestore(&h->lock, flags);
4267 if (h->last_heartbeat == heartbeat) {
4268 controller_lockup_detected(h);
4269 return;
4272 /* We're ok. */
4273 h->last_heartbeat = heartbeat;
4274 h->last_heartbeat_timestamp = now;
4277 static int detect_controller_lockup_thread(void *notused)
4279 struct ctlr_info *h;
4280 unsigned long flags;
4282 while (1) {
4283 struct list_head *this, *tmp;
4285 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4286 if (kthread_should_stop())
4287 break;
4288 spin_lock_irqsave(&lockup_detector_lock, flags);
4289 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4290 h = list_entry(this, struct ctlr_info, lockup_list);
4291 detect_controller_lockup(h);
4293 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4295 return 0;
4298 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4300 unsigned long flags;
4302 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4303 spin_lock_irqsave(&lockup_detector_lock, flags);
4304 list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4305 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4308 static void start_controller_lockup_detector(struct ctlr_info *h)
4310 /* Start the lockup detector thread if not already started */
4311 if (!hpsa_lockup_detector) {
4312 spin_lock_init(&lockup_detector_lock);
4313 hpsa_lockup_detector =
4314 kthread_run(detect_controller_lockup_thread,
4315 NULL, HPSA);
4317 if (!hpsa_lockup_detector) {
4318 dev_warn(&h->pdev->dev,
4319 "Could not start lockup detector thread\n");
4320 return;
4322 add_ctlr_to_lockup_detector_list(h);
4325 static void stop_controller_lockup_detector(struct ctlr_info *h)
4327 unsigned long flags;
4329 spin_lock_irqsave(&lockup_detector_lock, flags);
4330 remove_ctlr_from_lockup_detector_list(h);
4331 /* If the list of ctlr's to monitor is empty, stop the thread */
4332 if (list_empty(&hpsa_ctlr_list)) {
4333 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4334 kthread_stop(hpsa_lockup_detector);
4335 spin_lock_irqsave(&lockup_detector_lock, flags);
4336 hpsa_lockup_detector = NULL;
4338 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4341 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4342 const struct pci_device_id *ent)
4344 int dac, rc;
4345 struct ctlr_info *h;
4346 int try_soft_reset = 0;
4347 unsigned long flags;
4349 if (number_of_controllers == 0)
4350 printk(KERN_INFO DRIVER_NAME "\n");
4352 rc = hpsa_init_reset_devices(pdev);
4353 if (rc) {
4354 if (rc != -ENOTSUPP)
4355 return rc;
4356 /* If the reset fails in a particular way (it has no way to do
4357 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4358 * a soft reset once we get the controller configured up to the
4359 * point that it can accept a command.
4361 try_soft_reset = 1;
4362 rc = 0;
4365 reinit_after_soft_reset:
4367 /* Command structures must be aligned on a 32-byte boundary because
4368 * the 5 lower bits of the address are used by the hardware. and by
4369 * the driver. See comments in hpsa.h for more info.
4371 #define COMMANDLIST_ALIGNMENT 32
4372 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4373 h = kzalloc(sizeof(*h), GFP_KERNEL);
4374 if (!h)
4375 return -ENOMEM;
4377 h->pdev = pdev;
4378 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4379 INIT_LIST_HEAD(&h->cmpQ);
4380 INIT_LIST_HEAD(&h->reqQ);
4381 spin_lock_init(&h->lock);
4382 spin_lock_init(&h->scan_lock);
4383 rc = hpsa_pci_init(h);
4384 if (rc != 0)
4385 goto clean1;
4387 sprintf(h->devname, HPSA "%d", number_of_controllers);
4388 h->ctlr = number_of_controllers;
4389 number_of_controllers++;
4391 /* configure PCI DMA stuff */
4392 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4393 if (rc == 0) {
4394 dac = 1;
4395 } else {
4396 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4397 if (rc == 0) {
4398 dac = 0;
4399 } else {
4400 dev_err(&pdev->dev, "no suitable DMA available\n");
4401 goto clean1;
4405 /* make sure the board interrupts are off */
4406 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4408 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4409 goto clean2;
4410 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4411 h->devname, pdev->device,
4412 h->intr[h->intr_mode], dac ? "" : " not");
4413 if (hpsa_allocate_cmd_pool(h))
4414 goto clean4;
4415 if (hpsa_allocate_sg_chain_blocks(h))
4416 goto clean4;
4417 init_waitqueue_head(&h->scan_wait_queue);
4418 h->scan_finished = 1; /* no scan currently in progress */
4420 pci_set_drvdata(pdev, h);
4421 h->ndevices = 0;
4422 h->scsi_host = NULL;
4423 spin_lock_init(&h->devlock);
4424 hpsa_put_ctlr_into_performant_mode(h);
4426 /* At this point, the controller is ready to take commands.
4427 * Now, if reset_devices and the hard reset didn't work, try
4428 * the soft reset and see if that works.
4430 if (try_soft_reset) {
4432 /* This is kind of gross. We may or may not get a completion
4433 * from the soft reset command, and if we do, then the value
4434 * from the fifo may or may not be valid. So, we wait 10 secs
4435 * after the reset throwing away any completions we get during
4436 * that time. Unregister the interrupt handler and register
4437 * fake ones to scoop up any residual completions.
4439 spin_lock_irqsave(&h->lock, flags);
4440 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4441 spin_unlock_irqrestore(&h->lock, flags);
4442 free_irq(h->intr[h->intr_mode], h);
4443 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4444 hpsa_intx_discard_completions);
4445 if (rc) {
4446 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4447 "soft reset.\n");
4448 goto clean4;
4451 rc = hpsa_kdump_soft_reset(h);
4452 if (rc)
4453 /* Neither hard nor soft reset worked, we're hosed. */
4454 goto clean4;
4456 dev_info(&h->pdev->dev, "Board READY.\n");
4457 dev_info(&h->pdev->dev,
4458 "Waiting for stale completions to drain.\n");
4459 h->access.set_intr_mask(h, HPSA_INTR_ON);
4460 msleep(10000);
4461 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4463 rc = controller_reset_failed(h->cfgtable);
4464 if (rc)
4465 dev_info(&h->pdev->dev,
4466 "Soft reset appears to have failed.\n");
4468 /* since the controller's reset, we have to go back and re-init
4469 * everything. Easiest to just forget what we've done and do it
4470 * all over again.
4472 hpsa_undo_allocations_after_kdump_soft_reset(h);
4473 try_soft_reset = 0;
4474 if (rc)
4475 /* don't go to clean4, we already unallocated */
4476 return -ENODEV;
4478 goto reinit_after_soft_reset;
4481 /* Turn the interrupts on so we can service requests */
4482 h->access.set_intr_mask(h, HPSA_INTR_ON);
4484 hpsa_hba_inquiry(h);
4485 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4486 start_controller_lockup_detector(h);
4487 return 0;
4489 clean4:
4490 hpsa_free_sg_chain_blocks(h);
4491 hpsa_free_cmd_pool(h);
4492 free_irq(h->intr[h->intr_mode], h);
4493 clean2:
4494 clean1:
4495 kfree(h);
4496 return rc;
4499 static void hpsa_flush_cache(struct ctlr_info *h)
4501 char *flush_buf;
4502 struct CommandList *c;
4504 flush_buf = kzalloc(4, GFP_KERNEL);
4505 if (!flush_buf)
4506 return;
4508 c = cmd_special_alloc(h);
4509 if (!c) {
4510 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4511 goto out_of_memory;
4513 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4514 RAID_CTLR_LUNID, TYPE_CMD);
4515 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4516 if (c->err_info->CommandStatus != 0)
4517 dev_warn(&h->pdev->dev,
4518 "error flushing cache on controller\n");
4519 cmd_special_free(h, c);
4520 out_of_memory:
4521 kfree(flush_buf);
4524 static void hpsa_shutdown(struct pci_dev *pdev)
4526 struct ctlr_info *h;
4528 h = pci_get_drvdata(pdev);
4529 /* Turn board interrupts off and send the flush cache command
4530 * sendcmd will turn off interrupt, and send the flush...
4531 * To write all data in the battery backed cache to disks
4533 hpsa_flush_cache(h);
4534 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4535 free_irq(h->intr[h->intr_mode], h);
4536 #ifdef CONFIG_PCI_MSI
4537 if (h->msix_vector)
4538 pci_disable_msix(h->pdev);
4539 else if (h->msi_vector)
4540 pci_disable_msi(h->pdev);
4541 #endif /* CONFIG_PCI_MSI */
4544 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4546 int i;
4548 for (i = 0; i < h->ndevices; i++)
4549 kfree(h->dev[i]);
4552 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4554 struct ctlr_info *h;
4556 if (pci_get_drvdata(pdev) == NULL) {
4557 dev_err(&pdev->dev, "unable to remove device\n");
4558 return;
4560 h = pci_get_drvdata(pdev);
4561 stop_controller_lockup_detector(h);
4562 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4563 hpsa_shutdown(pdev);
4564 iounmap(h->vaddr);
4565 iounmap(h->transtable);
4566 iounmap(h->cfgtable);
4567 hpsa_free_device_info(h);
4568 hpsa_free_sg_chain_blocks(h);
4569 pci_free_consistent(h->pdev,
4570 h->nr_cmds * sizeof(struct CommandList),
4571 h->cmd_pool, h->cmd_pool_dhandle);
4572 pci_free_consistent(h->pdev,
4573 h->nr_cmds * sizeof(struct ErrorInfo),
4574 h->errinfo_pool, h->errinfo_pool_dhandle);
4575 pci_free_consistent(h->pdev, h->reply_pool_size,
4576 h->reply_pool, h->reply_pool_dhandle);
4577 kfree(h->cmd_pool_bits);
4578 kfree(h->blockFetchTable);
4579 kfree(h->hba_inquiry_data);
4581 * Deliberately omit pci_disable_device(): it does something nasty to
4582 * Smart Array controllers that pci_enable_device does not undo
4584 pci_release_regions(pdev);
4585 pci_set_drvdata(pdev, NULL);
4586 kfree(h);
4589 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4590 __attribute__((unused)) pm_message_t state)
4592 return -ENOSYS;
4595 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4597 return -ENOSYS;
4600 static struct pci_driver hpsa_pci_driver = {
4601 .name = HPSA,
4602 .probe = hpsa_init_one,
4603 .remove = __devexit_p(hpsa_remove_one),
4604 .id_table = hpsa_pci_device_id, /* id_table */
4605 .shutdown = hpsa_shutdown,
4606 .suspend = hpsa_suspend,
4607 .resume = hpsa_resume,
4610 /* Fill in bucket_map[], given nsgs (the max number of
4611 * scatter gather elements supported) and bucket[],
4612 * which is an array of 8 integers. The bucket[] array
4613 * contains 8 different DMA transfer sizes (in 16
4614 * byte increments) which the controller uses to fetch
4615 * commands. This function fills in bucket_map[], which
4616 * maps a given number of scatter gather elements to one of
4617 * the 8 DMA transfer sizes. The point of it is to allow the
4618 * controller to only do as much DMA as needed to fetch the
4619 * command, with the DMA transfer size encoded in the lower
4620 * bits of the command address.
4622 static void calc_bucket_map(int bucket[], int num_buckets,
4623 int nsgs, int *bucket_map)
4625 int i, j, b, size;
4627 /* even a command with 0 SGs requires 4 blocks */
4628 #define MINIMUM_TRANSFER_BLOCKS 4
4629 #define NUM_BUCKETS 8
4630 /* Note, bucket_map must have nsgs+1 entries. */
4631 for (i = 0; i <= nsgs; i++) {
4632 /* Compute size of a command with i SG entries */
4633 size = i + MINIMUM_TRANSFER_BLOCKS;
4634 b = num_buckets; /* Assume the biggest bucket */
4635 /* Find the bucket that is just big enough */
4636 for (j = 0; j < 8; j++) {
4637 if (bucket[j] >= size) {
4638 b = j;
4639 break;
4642 /* for a command with i SG entries, use bucket b. */
4643 bucket_map[i] = b;
4647 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4648 u32 use_short_tags)
4650 int i;
4651 unsigned long register_value;
4653 /* This is a bit complicated. There are 8 registers on
4654 * the controller which we write to to tell it 8 different
4655 * sizes of commands which there may be. It's a way of
4656 * reducing the DMA done to fetch each command. Encoded into
4657 * each command's tag are 3 bits which communicate to the controller
4658 * which of the eight sizes that command fits within. The size of
4659 * each command depends on how many scatter gather entries there are.
4660 * Each SG entry requires 16 bytes. The eight registers are programmed
4661 * with the number of 16-byte blocks a command of that size requires.
4662 * The smallest command possible requires 5 such 16 byte blocks.
4663 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4664 * blocks. Note, this only extends to the SG entries contained
4665 * within the command block, and does not extend to chained blocks
4666 * of SG elements. bft[] contains the eight values we write to
4667 * the registers. They are not evenly distributed, but have more
4668 * sizes for small commands, and fewer sizes for larger commands.
4670 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4671 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4672 /* 5 = 1 s/g entry or 4k
4673 * 6 = 2 s/g entry or 8k
4674 * 8 = 4 s/g entry or 16k
4675 * 10 = 6 s/g entry or 24k
4678 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4680 /* Controller spec: zero out this buffer. */
4681 memset(h->reply_pool, 0, h->reply_pool_size);
4682 h->reply_pool_head = h->reply_pool;
4684 bft[7] = SG_ENTRIES_IN_CMD + 4;
4685 calc_bucket_map(bft, ARRAY_SIZE(bft),
4686 SG_ENTRIES_IN_CMD, h->blockFetchTable);
4687 for (i = 0; i < 8; i++)
4688 writel(bft[i], &h->transtable->BlockFetch[i]);
4690 /* size of controller ring buffer */
4691 writel(h->max_commands, &h->transtable->RepQSize);
4692 writel(1, &h->transtable->RepQCount);
4693 writel(0, &h->transtable->RepQCtrAddrLow32);
4694 writel(0, &h->transtable->RepQCtrAddrHigh32);
4695 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4696 writel(0, &h->transtable->RepQAddr0High32);
4697 writel(CFGTBL_Trans_Performant | use_short_tags,
4698 &(h->cfgtable->HostWrite.TransportRequest));
4699 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4700 hpsa_wait_for_mode_change_ack(h);
4701 register_value = readl(&(h->cfgtable->TransportActive));
4702 if (!(register_value & CFGTBL_Trans_Performant)) {
4703 dev_warn(&h->pdev->dev, "unable to get board into"
4704 " performant mode\n");
4705 return;
4707 /* Change the access methods to the performant access methods */
4708 h->access = SA5_performant_access;
4709 h->transMethod = CFGTBL_Trans_Performant;
4712 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4714 u32 trans_support;
4716 if (hpsa_simple_mode)
4717 return;
4719 trans_support = readl(&(h->cfgtable->TransportSupport));
4720 if (!(trans_support & PERFORMANT_MODE))
4721 return;
4723 hpsa_get_max_perf_mode_cmds(h);
4724 /* Performant mode ring buffer and supporting data structures */
4725 h->reply_pool_size = h->max_commands * sizeof(u64);
4726 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4727 &(h->reply_pool_dhandle));
4729 /* Need a block fetch table for performant mode */
4730 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4731 sizeof(u32)), GFP_KERNEL);
4733 if ((h->reply_pool == NULL)
4734 || (h->blockFetchTable == NULL))
4735 goto clean_up;
4737 hpsa_enter_performant_mode(h,
4738 trans_support & CFGTBL_Trans_use_short_tags);
4740 return;
4742 clean_up:
4743 if (h->reply_pool)
4744 pci_free_consistent(h->pdev, h->reply_pool_size,
4745 h->reply_pool, h->reply_pool_dhandle);
4746 kfree(h->blockFetchTable);
4750 * This is it. Register the PCI driver information for the cards we control
4751 * the OS will call our registered routines when it finds one of our cards.
4753 static int __init hpsa_init(void)
4755 return pci_register_driver(&hpsa_pci_driver);
4758 static void __exit hpsa_cleanup(void)
4760 pci_unregister_driver(&hpsa_pci_driver);
4763 module_init(hpsa_init);
4764 module_exit(hpsa_cleanup);