2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Add isolated pages on the list back to the LRU under page lock
76 * to avoid leaking evictable pages back onto unevictable list.
78 void putback_lru_pages(struct list_head
*l
)
83 list_for_each_entry_safe(page
, page2
, l
, lru
) {
85 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
86 page_is_file_cache(page
));
87 putback_lru_page(page
);
92 * Put previously isolated pages back onto the appropriate lists
93 * from where they were once taken off for compaction/migration.
95 * This function shall be used instead of putback_lru_pages(),
96 * whenever the isolated pageset has been built by isolate_migratepages_range()
98 void putback_movable_pages(struct list_head
*l
)
103 list_for_each_entry_safe(page
, page2
, l
, lru
) {
104 if (unlikely(PageHuge(page
))) {
105 putback_active_hugepage(page
);
108 list_del(&page
->lru
);
109 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
110 page_is_file_cache(page
));
111 if (unlikely(isolated_balloon_page(page
)))
112 balloon_page_putback(page
);
114 putback_lru_page(page
);
119 * Restore a potential migration pte to a working pte entry
121 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
122 unsigned long addr
, void *old
)
124 struct mm_struct
*mm
= vma
->vm_mm
;
130 if (unlikely(PageHuge(new))) {
131 ptep
= huge_pte_offset(mm
, addr
);
134 ptl
= &mm
->page_table_lock
;
136 pmd
= mm_find_pmd(mm
, addr
);
140 ptep
= pte_offset_map(pmd
, addr
);
143 * Peek to check is_swap_pte() before taking ptlock? No, we
144 * can race mremap's move_ptes(), which skips anon_vma lock.
147 ptl
= pte_lockptr(mm
, pmd
);
152 if (!is_swap_pte(pte
))
155 entry
= pte_to_swp_entry(pte
);
157 if (!is_migration_entry(entry
) ||
158 migration_entry_to_page(entry
) != old
)
162 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
163 if (pte_swp_soft_dirty(*ptep
))
164 pte
= pte_mksoft_dirty(pte
);
166 /* Recheck VMA as permissions can change since migration started */
167 if (is_write_migration_entry(entry
))
168 pte
= maybe_mkwrite(pte
, vma
);
170 #ifdef CONFIG_HUGETLB_PAGE
172 pte
= pte_mkhuge(pte
);
173 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
176 flush_dcache_page(new);
177 set_pte_at(mm
, addr
, ptep
, pte
);
181 hugepage_add_anon_rmap(new, vma
, addr
);
184 } else if (PageAnon(new))
185 page_add_anon_rmap(new, vma
, addr
);
187 page_add_file_rmap(new);
189 /* No need to invalidate - it was non-present before */
190 update_mmu_cache(vma
, addr
, ptep
);
192 pte_unmap_unlock(ptep
, ptl
);
198 * Get rid of all migration entries and replace them by
199 * references to the indicated page.
201 static void remove_migration_ptes(struct page
*old
, struct page
*new)
203 rmap_walk(new, remove_migration_pte
, old
);
207 * Something used the pte of a page under migration. We need to
208 * get to the page and wait until migration is finished.
209 * When we return from this function the fault will be retried.
211 void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
220 if (!is_swap_pte(pte
))
223 entry
= pte_to_swp_entry(pte
);
224 if (!is_migration_entry(entry
))
227 page
= migration_entry_to_page(entry
);
230 * Once radix-tree replacement of page migration started, page_count
231 * *must* be zero. And, we don't want to call wait_on_page_locked()
232 * against a page without get_page().
233 * So, we use get_page_unless_zero(), here. Even failed, page fault
236 if (!get_page_unless_zero(page
))
238 pte_unmap_unlock(ptep
, ptl
);
239 wait_on_page_locked(page
);
243 pte_unmap_unlock(ptep
, ptl
);
246 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
247 unsigned long address
)
249 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
250 pte_t
*ptep
= pte_offset_map(pmd
, address
);
251 __migration_entry_wait(mm
, ptep
, ptl
);
254 void migration_entry_wait_huge(struct mm_struct
*mm
, pte_t
*pte
)
256 spinlock_t
*ptl
= &(mm
)->page_table_lock
;
257 __migration_entry_wait(mm
, pte
, ptl
);
261 /* Returns true if all buffers are successfully locked */
262 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
263 enum migrate_mode mode
)
265 struct buffer_head
*bh
= head
;
267 /* Simple case, sync compaction */
268 if (mode
!= MIGRATE_ASYNC
) {
272 bh
= bh
->b_this_page
;
274 } while (bh
!= head
);
279 /* async case, we cannot block on lock_buffer so use trylock_buffer */
282 if (!trylock_buffer(bh
)) {
284 * We failed to lock the buffer and cannot stall in
285 * async migration. Release the taken locks
287 struct buffer_head
*failed_bh
= bh
;
290 while (bh
!= failed_bh
) {
293 bh
= bh
->b_this_page
;
298 bh
= bh
->b_this_page
;
299 } while (bh
!= head
);
303 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
304 enum migrate_mode mode
)
308 #endif /* CONFIG_BLOCK */
311 * Replace the page in the mapping.
313 * The number of remaining references must be:
314 * 1 for anonymous pages without a mapping
315 * 2 for pages with a mapping
316 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
318 int migrate_page_move_mapping(struct address_space
*mapping
,
319 struct page
*newpage
, struct page
*page
,
320 struct buffer_head
*head
, enum migrate_mode mode
,
323 int expected_count
= 1 + extra_count
;
327 /* Anonymous page without mapping */
328 if (page_count(page
) != expected_count
)
330 return MIGRATEPAGE_SUCCESS
;
333 spin_lock_irq(&mapping
->tree_lock
);
335 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
338 expected_count
+= 1 + page_has_private(page
);
339 if (page_count(page
) != expected_count
||
340 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
341 spin_unlock_irq(&mapping
->tree_lock
);
345 if (!page_freeze_refs(page
, expected_count
)) {
346 spin_unlock_irq(&mapping
->tree_lock
);
351 * In the async migration case of moving a page with buffers, lock the
352 * buffers using trylock before the mapping is moved. If the mapping
353 * was moved, we later failed to lock the buffers and could not move
354 * the mapping back due to an elevated page count, we would have to
355 * block waiting on other references to be dropped.
357 if (mode
== MIGRATE_ASYNC
&& head
&&
358 !buffer_migrate_lock_buffers(head
, mode
)) {
359 page_unfreeze_refs(page
, expected_count
);
360 spin_unlock_irq(&mapping
->tree_lock
);
365 * Now we know that no one else is looking at the page.
367 get_page(newpage
); /* add cache reference */
368 if (PageSwapCache(page
)) {
369 SetPageSwapCache(newpage
);
370 set_page_private(newpage
, page_private(page
));
373 radix_tree_replace_slot(pslot
, newpage
);
376 * Drop cache reference from old page by unfreezing
377 * to one less reference.
378 * We know this isn't the last reference.
380 page_unfreeze_refs(page
, expected_count
- 1);
383 * If moved to a different zone then also account
384 * the page for that zone. Other VM counters will be
385 * taken care of when we establish references to the
386 * new page and drop references to the old page.
388 * Note that anonymous pages are accounted for
389 * via NR_FILE_PAGES and NR_ANON_PAGES if they
390 * are mapped to swap space.
392 __dec_zone_page_state(page
, NR_FILE_PAGES
);
393 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
394 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
395 __dec_zone_page_state(page
, NR_SHMEM
);
396 __inc_zone_page_state(newpage
, NR_SHMEM
);
398 spin_unlock_irq(&mapping
->tree_lock
);
400 return MIGRATEPAGE_SUCCESS
;
404 * The expected number of remaining references is the same as that
405 * of migrate_page_move_mapping().
407 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
408 struct page
*newpage
, struct page
*page
)
414 if (page_count(page
) != 1)
416 return MIGRATEPAGE_SUCCESS
;
419 spin_lock_irq(&mapping
->tree_lock
);
421 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
424 expected_count
= 2 + page_has_private(page
);
425 if (page_count(page
) != expected_count
||
426 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
427 spin_unlock_irq(&mapping
->tree_lock
);
431 if (!page_freeze_refs(page
, expected_count
)) {
432 spin_unlock_irq(&mapping
->tree_lock
);
438 radix_tree_replace_slot(pslot
, newpage
);
440 page_unfreeze_refs(page
, expected_count
- 1);
442 spin_unlock_irq(&mapping
->tree_lock
);
443 return MIGRATEPAGE_SUCCESS
;
447 * Copy the page to its new location
449 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
451 if (PageHuge(page
) || PageTransHuge(page
))
452 copy_huge_page(newpage
, page
);
454 copy_highpage(newpage
, page
);
457 SetPageError(newpage
);
458 if (PageReferenced(page
))
459 SetPageReferenced(newpage
);
460 if (PageUptodate(page
))
461 SetPageUptodate(newpage
);
462 if (TestClearPageActive(page
)) {
463 VM_BUG_ON(PageUnevictable(page
));
464 SetPageActive(newpage
);
465 } else if (TestClearPageUnevictable(page
))
466 SetPageUnevictable(newpage
);
467 if (PageChecked(page
))
468 SetPageChecked(newpage
);
469 if (PageMappedToDisk(page
))
470 SetPageMappedToDisk(newpage
);
472 if (PageDirty(page
)) {
473 clear_page_dirty_for_io(page
);
475 * Want to mark the page and the radix tree as dirty, and
476 * redo the accounting that clear_page_dirty_for_io undid,
477 * but we can't use set_page_dirty because that function
478 * is actually a signal that all of the page has become dirty.
479 * Whereas only part of our page may be dirty.
481 if (PageSwapBacked(page
))
482 SetPageDirty(newpage
);
484 __set_page_dirty_nobuffers(newpage
);
487 mlock_migrate_page(newpage
, page
);
488 ksm_migrate_page(newpage
, page
);
490 * Please do not reorder this without considering how mm/ksm.c's
491 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
493 ClearPageSwapCache(page
);
494 ClearPagePrivate(page
);
495 set_page_private(page
, 0);
498 * If any waiters have accumulated on the new page then
501 if (PageWriteback(newpage
))
502 end_page_writeback(newpage
);
505 /************************************************************
506 * Migration functions
507 ***********************************************************/
509 /* Always fail migration. Used for mappings that are not movable */
510 int fail_migrate_page(struct address_space
*mapping
,
511 struct page
*newpage
, struct page
*page
)
515 EXPORT_SYMBOL(fail_migrate_page
);
518 * Common logic to directly migrate a single page suitable for
519 * pages that do not use PagePrivate/PagePrivate2.
521 * Pages are locked upon entry and exit.
523 int migrate_page(struct address_space
*mapping
,
524 struct page
*newpage
, struct page
*page
,
525 enum migrate_mode mode
)
529 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
531 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
533 if (rc
!= MIGRATEPAGE_SUCCESS
)
536 migrate_page_copy(newpage
, page
);
537 return MIGRATEPAGE_SUCCESS
;
539 EXPORT_SYMBOL(migrate_page
);
543 * Migration function for pages with buffers. This function can only be used
544 * if the underlying filesystem guarantees that no other references to "page"
547 int buffer_migrate_page(struct address_space
*mapping
,
548 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
550 struct buffer_head
*bh
, *head
;
553 if (!page_has_buffers(page
))
554 return migrate_page(mapping
, newpage
, page
, mode
);
556 head
= page_buffers(page
);
558 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
560 if (rc
!= MIGRATEPAGE_SUCCESS
)
564 * In the async case, migrate_page_move_mapping locked the buffers
565 * with an IRQ-safe spinlock held. In the sync case, the buffers
566 * need to be locked now
568 if (mode
!= MIGRATE_ASYNC
)
569 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
571 ClearPagePrivate(page
);
572 set_page_private(newpage
, page_private(page
));
573 set_page_private(page
, 0);
579 set_bh_page(bh
, newpage
, bh_offset(bh
));
580 bh
= bh
->b_this_page
;
582 } while (bh
!= head
);
584 SetPagePrivate(newpage
);
586 migrate_page_copy(newpage
, page
);
592 bh
= bh
->b_this_page
;
594 } while (bh
!= head
);
596 return MIGRATEPAGE_SUCCESS
;
598 EXPORT_SYMBOL(buffer_migrate_page
);
602 * Writeback a page to clean the dirty state
604 static int writeout(struct address_space
*mapping
, struct page
*page
)
606 struct writeback_control wbc
= {
607 .sync_mode
= WB_SYNC_NONE
,
610 .range_end
= LLONG_MAX
,
615 if (!mapping
->a_ops
->writepage
)
616 /* No write method for the address space */
619 if (!clear_page_dirty_for_io(page
))
620 /* Someone else already triggered a write */
624 * A dirty page may imply that the underlying filesystem has
625 * the page on some queue. So the page must be clean for
626 * migration. Writeout may mean we loose the lock and the
627 * page state is no longer what we checked for earlier.
628 * At this point we know that the migration attempt cannot
631 remove_migration_ptes(page
, page
);
633 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
635 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
636 /* unlocked. Relock */
639 return (rc
< 0) ? -EIO
: -EAGAIN
;
643 * Default handling if a filesystem does not provide a migration function.
645 static int fallback_migrate_page(struct address_space
*mapping
,
646 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
648 if (PageDirty(page
)) {
649 /* Only writeback pages in full synchronous migration */
650 if (mode
!= MIGRATE_SYNC
)
652 return writeout(mapping
, page
);
656 * Buffers may be managed in a filesystem specific way.
657 * We must have no buffers or drop them.
659 if (page_has_private(page
) &&
660 !try_to_release_page(page
, GFP_KERNEL
))
663 return migrate_page(mapping
, newpage
, page
, mode
);
667 * Move a page to a newly allocated page
668 * The page is locked and all ptes have been successfully removed.
670 * The new page will have replaced the old page if this function
675 * MIGRATEPAGE_SUCCESS - success
677 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
678 int remap_swapcache
, enum migrate_mode mode
)
680 struct address_space
*mapping
;
684 * Block others from accessing the page when we get around to
685 * establishing additional references. We are the only one
686 * holding a reference to the new page at this point.
688 if (!trylock_page(newpage
))
691 /* Prepare mapping for the new page.*/
692 newpage
->index
= page
->index
;
693 newpage
->mapping
= page
->mapping
;
694 if (PageSwapBacked(page
))
695 SetPageSwapBacked(newpage
);
697 mapping
= page_mapping(page
);
699 rc
= migrate_page(mapping
, newpage
, page
, mode
);
700 else if (mapping
->a_ops
->migratepage
)
702 * Most pages have a mapping and most filesystems provide a
703 * migratepage callback. Anonymous pages are part of swap
704 * space which also has its own migratepage callback. This
705 * is the most common path for page migration.
707 rc
= mapping
->a_ops
->migratepage(mapping
,
708 newpage
, page
, mode
);
710 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
712 if (rc
!= MIGRATEPAGE_SUCCESS
) {
713 newpage
->mapping
= NULL
;
716 remove_migration_ptes(page
, newpage
);
717 page
->mapping
= NULL
;
720 unlock_page(newpage
);
725 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
726 int force
, enum migrate_mode mode
)
729 int remap_swapcache
= 1;
730 struct mem_cgroup
*mem
;
731 struct anon_vma
*anon_vma
= NULL
;
733 if (!trylock_page(page
)) {
734 if (!force
|| mode
== MIGRATE_ASYNC
)
738 * It's not safe for direct compaction to call lock_page.
739 * For example, during page readahead pages are added locked
740 * to the LRU. Later, when the IO completes the pages are
741 * marked uptodate and unlocked. However, the queueing
742 * could be merging multiple pages for one bio (e.g.
743 * mpage_readpages). If an allocation happens for the
744 * second or third page, the process can end up locking
745 * the same page twice and deadlocking. Rather than
746 * trying to be clever about what pages can be locked,
747 * avoid the use of lock_page for direct compaction
750 if (current
->flags
& PF_MEMALLOC
)
756 /* charge against new page */
757 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
759 if (PageWriteback(page
)) {
761 * Only in the case of a full synchronous migration is it
762 * necessary to wait for PageWriteback. In the async case,
763 * the retry loop is too short and in the sync-light case,
764 * the overhead of stalling is too much
766 if (mode
!= MIGRATE_SYNC
) {
772 wait_on_page_writeback(page
);
775 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
776 * we cannot notice that anon_vma is freed while we migrates a page.
777 * This get_anon_vma() delays freeing anon_vma pointer until the end
778 * of migration. File cache pages are no problem because of page_lock()
779 * File Caches may use write_page() or lock_page() in migration, then,
780 * just care Anon page here.
782 if (PageAnon(page
) && !PageKsm(page
)) {
784 * Only page_lock_anon_vma_read() understands the subtleties of
785 * getting a hold on an anon_vma from outside one of its mms.
787 anon_vma
= page_get_anon_vma(page
);
792 } else if (PageSwapCache(page
)) {
794 * We cannot be sure that the anon_vma of an unmapped
795 * swapcache page is safe to use because we don't
796 * know in advance if the VMA that this page belonged
797 * to still exists. If the VMA and others sharing the
798 * data have been freed, then the anon_vma could
799 * already be invalid.
801 * To avoid this possibility, swapcache pages get
802 * migrated but are not remapped when migration
811 if (unlikely(balloon_page_movable(page
))) {
813 * A ballooned page does not need any special attention from
814 * physical to virtual reverse mapping procedures.
815 * Skip any attempt to unmap PTEs or to remap swap cache,
816 * in order to avoid burning cycles at rmap level, and perform
817 * the page migration right away (proteced by page lock).
819 rc
= balloon_page_migrate(newpage
, page
, mode
);
824 * Corner case handling:
825 * 1. When a new swap-cache page is read into, it is added to the LRU
826 * and treated as swapcache but it has no rmap yet.
827 * Calling try_to_unmap() against a page->mapping==NULL page will
828 * trigger a BUG. So handle it here.
829 * 2. An orphaned page (see truncate_complete_page) might have
830 * fs-private metadata. The page can be picked up due to memory
831 * offlining. Everywhere else except page reclaim, the page is
832 * invisible to the vm, so the page can not be migrated. So try to
833 * free the metadata, so the page can be freed.
835 if (!page
->mapping
) {
836 VM_BUG_ON(PageAnon(page
));
837 if (page_has_private(page
)) {
838 try_to_free_buffers(page
);
844 /* Establish migration ptes or remove ptes */
845 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
848 if (!page_mapped(page
))
849 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
851 if (rc
&& remap_swapcache
)
852 remove_migration_ptes(page
, page
);
854 /* Drop an anon_vma reference if we took one */
856 put_anon_vma(anon_vma
);
859 mem_cgroup_end_migration(mem
, page
, newpage
,
860 (rc
== MIGRATEPAGE_SUCCESS
||
861 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
868 * Obtain the lock on page, remove all ptes and migrate the page
869 * to the newly allocated page in newpage.
871 static int unmap_and_move(new_page_t get_new_page
, free_page_t put_new_page
,
872 unsigned long private, struct page
*page
, int force
,
873 enum migrate_mode mode
)
877 struct page
*newpage
= get_new_page(page
, private, &result
);
882 if (page_count(page
) == 1) {
883 /* page was freed from under us. So we are done. */
887 if (unlikely(PageTransHuge(page
)))
888 if (unlikely(split_huge_page(page
)))
891 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
893 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
895 * A ballooned page has been migrated already.
896 * Now, it's the time to wrap-up counters,
897 * handle the page back to Buddy and return.
899 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
900 page_is_file_cache(page
));
901 balloon_page_free(page
);
902 return MIGRATEPAGE_SUCCESS
;
907 * A page that has been migrated has all references
908 * removed and will be freed. A page that has not been
909 * migrated will have kepts its references and be
912 list_del(&page
->lru
);
913 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
914 page_is_file_cache(page
));
915 putback_lru_page(page
);
919 * If migration was not successful and there's a freeing callback, use
920 * it. Otherwise, putback_lru_page() will drop the reference grabbed
923 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
) {
924 ClearPageSwapBacked(newpage
);
925 put_new_page(newpage
, private);
927 putback_lru_page(newpage
);
933 *result
= page_to_nid(newpage
);
939 * Counterpart of unmap_and_move_page() for hugepage migration.
941 * This function doesn't wait the completion of hugepage I/O
942 * because there is no race between I/O and migration for hugepage.
943 * Note that currently hugepage I/O occurs only in direct I/O
944 * where no lock is held and PG_writeback is irrelevant,
945 * and writeback status of all subpages are counted in the reference
946 * count of the head page (i.e. if all subpages of a 2MB hugepage are
947 * under direct I/O, the reference of the head page is 512 and a bit more.)
948 * This means that when we try to migrate hugepage whose subpages are
949 * doing direct I/O, some references remain after try_to_unmap() and
950 * hugepage migration fails without data corruption.
952 * There is also no race when direct I/O is issued on the page under migration,
953 * because then pte is replaced with migration swap entry and direct I/O code
954 * will wait in the page fault for migration to complete.
956 static int unmap_and_move_huge_page(new_page_t get_new_page
,
957 free_page_t put_new_page
, unsigned long private,
958 struct page
*hpage
, int force
,
959 enum migrate_mode mode
)
963 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
964 struct anon_vma
*anon_vma
= NULL
;
967 * Movability of hugepages depends on architectures and hugepage size.
968 * This check is necessary because some callers of hugepage migration
969 * like soft offline and memory hotremove don't walk through page
970 * tables or check whether the hugepage is pmd-based or not before
973 if (!hugepage_migration_support(page_hstate(hpage
)))
981 if (!trylock_page(hpage
)) {
982 if (!force
|| mode
!= MIGRATE_SYNC
)
988 anon_vma
= page_get_anon_vma(hpage
);
990 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
992 if (!page_mapped(hpage
))
993 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
995 if (rc
!= MIGRATEPAGE_SUCCESS
)
996 remove_migration_ptes(hpage
, hpage
);
999 put_anon_vma(anon_vma
);
1001 if (rc
== MIGRATEPAGE_SUCCESS
)
1002 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1007 putback_active_hugepage(hpage
);
1010 * If migration was not successful and there's a freeing callback, use
1011 * it. Otherwise, put_page() will drop the reference grabbed during
1014 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
)
1015 put_new_page(new_hpage
, private);
1017 put_page(new_hpage
);
1023 *result
= page_to_nid(new_hpage
);
1029 * migrate_pages - migrate the pages specified in a list, to the free pages
1030 * supplied as the target for the page migration
1032 * @from: The list of pages to be migrated.
1033 * @get_new_page: The function used to allocate free pages to be used
1034 * as the target of the page migration.
1035 * @put_new_page: The function used to free target pages if migration
1036 * fails, or NULL if no special handling is necessary.
1037 * @private: Private data to be passed on to get_new_page()
1038 * @mode: The migration mode that specifies the constraints for
1039 * page migration, if any.
1040 * @reason: The reason for page migration.
1042 * The function returns after 10 attempts or if no pages are movable any more
1043 * because the list has become empty or no retryable pages exist any more.
1044 * The caller should call putback_lru_pages() to return pages to the LRU
1045 * or free list only if ret != 0.
1047 * Returns the number of pages that were not migrated, or an error code.
1049 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1050 free_page_t put_new_page
, unsigned long private,
1051 enum migrate_mode mode
, int reason
)
1055 int nr_succeeded
= 0;
1059 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1063 current
->flags
|= PF_SWAPWRITE
;
1065 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1068 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1072 rc
= unmap_and_move_huge_page(get_new_page
,
1073 put_new_page
, private, page
,
1076 rc
= unmap_and_move(get_new_page
, put_new_page
,
1077 private, page
, pass
> 2, mode
);
1085 case MIGRATEPAGE_SUCCESS
:
1089 /* Permanent failure */
1095 rc
= nr_failed
+ retry
;
1098 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1100 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1101 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1104 current
->flags
&= ~PF_SWAPWRITE
;
1111 * Move a list of individual pages
1113 struct page_to_node
{
1120 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1123 struct page_to_node
*pm
= (struct page_to_node
*)private;
1125 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1128 if (pm
->node
== MAX_NUMNODES
)
1131 *result
= &pm
->status
;
1134 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1137 return alloc_pages_exact_node(pm
->node
,
1138 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1142 * Move a set of pages as indicated in the pm array. The addr
1143 * field must be set to the virtual address of the page to be moved
1144 * and the node number must contain a valid target node.
1145 * The pm array ends with node = MAX_NUMNODES.
1147 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1148 struct page_to_node
*pm
,
1152 struct page_to_node
*pp
;
1153 LIST_HEAD(pagelist
);
1155 down_read(&mm
->mmap_sem
);
1158 * Build a list of pages to migrate
1160 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1161 struct vm_area_struct
*vma
;
1165 vma
= find_vma(mm
, pp
->addr
);
1166 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1169 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1171 err
= PTR_ERR(page
);
1179 /* Use PageReserved to check for zero page */
1180 if (PageReserved(page
))
1184 err
= page_to_nid(page
);
1186 if (err
== pp
->node
)
1188 * Node already in the right place
1193 if (page_mapcount(page
) > 1 &&
1197 if (PageHuge(page
)) {
1199 isolate_huge_page(page
, &pagelist
);
1203 err
= isolate_lru_page(page
);
1205 list_add_tail(&page
->lru
, &pagelist
);
1206 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1207 page_is_file_cache(page
));
1211 * Either remove the duplicate refcount from
1212 * isolate_lru_page() or drop the page ref if it was
1221 if (!list_empty(&pagelist
)) {
1222 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1223 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1225 putback_movable_pages(&pagelist
);
1228 up_read(&mm
->mmap_sem
);
1233 * Migrate an array of page address onto an array of nodes and fill
1234 * the corresponding array of status.
1236 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1237 unsigned long nr_pages
,
1238 const void __user
* __user
*pages
,
1239 const int __user
*nodes
,
1240 int __user
*status
, int flags
)
1242 struct page_to_node
*pm
;
1243 unsigned long chunk_nr_pages
;
1244 unsigned long chunk_start
;
1248 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1255 * Store a chunk of page_to_node array in a page,
1256 * but keep the last one as a marker
1258 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1260 for (chunk_start
= 0;
1261 chunk_start
< nr_pages
;
1262 chunk_start
+= chunk_nr_pages
) {
1265 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1266 chunk_nr_pages
= nr_pages
- chunk_start
;
1268 /* fill the chunk pm with addrs and nodes from user-space */
1269 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1270 const void __user
*p
;
1274 if (get_user(p
, pages
+ j
+ chunk_start
))
1276 pm
[j
].addr
= (unsigned long) p
;
1278 if (get_user(node
, nodes
+ j
+ chunk_start
))
1282 if (node
< 0 || node
>= MAX_NUMNODES
)
1285 if (!node_state(node
, N_MEMORY
))
1289 if (!node_isset(node
, task_nodes
))
1295 /* End marker for this chunk */
1296 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1298 /* Migrate this chunk */
1299 err
= do_move_page_to_node_array(mm
, pm
,
1300 flags
& MPOL_MF_MOVE_ALL
);
1304 /* Return status information */
1305 for (j
= 0; j
< chunk_nr_pages
; j
++)
1306 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1314 free_page((unsigned long)pm
);
1320 * Determine the nodes of an array of pages and store it in an array of status.
1322 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1323 const void __user
**pages
, int *status
)
1327 down_read(&mm
->mmap_sem
);
1329 for (i
= 0; i
< nr_pages
; i
++) {
1330 unsigned long addr
= (unsigned long)(*pages
);
1331 struct vm_area_struct
*vma
;
1335 vma
= find_vma(mm
, addr
);
1336 if (!vma
|| addr
< vma
->vm_start
)
1339 page
= follow_page(vma
, addr
, 0);
1341 err
= PTR_ERR(page
);
1346 /* Use PageReserved to check for zero page */
1347 if (!page
|| PageReserved(page
))
1350 err
= page_to_nid(page
);
1358 up_read(&mm
->mmap_sem
);
1362 * Determine the nodes of a user array of pages and store it in
1363 * a user array of status.
1365 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1366 const void __user
* __user
*pages
,
1369 #define DO_PAGES_STAT_CHUNK_NR 16
1370 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1371 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1374 unsigned long chunk_nr
;
1376 chunk_nr
= nr_pages
;
1377 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1378 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1380 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1383 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1385 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1390 nr_pages
-= chunk_nr
;
1392 return nr_pages
? -EFAULT
: 0;
1396 * Move a list of pages in the address space of the currently executing
1399 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1400 const void __user
* __user
*, pages
,
1401 const int __user
*, nodes
,
1402 int __user
*, status
, int, flags
)
1404 const struct cred
*cred
= current_cred(), *tcred
;
1405 struct task_struct
*task
;
1406 struct mm_struct
*mm
;
1408 nodemask_t task_nodes
;
1411 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1414 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1417 /* Find the mm_struct */
1419 task
= pid
? find_task_by_vpid(pid
) : current
;
1424 get_task_struct(task
);
1427 * Check if this process has the right to modify the specified
1428 * process. The right exists if the process has administrative
1429 * capabilities, superuser privileges or the same
1430 * userid as the target process.
1432 tcred
= __task_cred(task
);
1433 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1434 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1435 !capable(CAP_SYS_NICE
)) {
1442 err
= security_task_movememory(task
);
1446 task_nodes
= cpuset_mems_allowed(task
);
1447 mm
= get_task_mm(task
);
1448 put_task_struct(task
);
1454 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1455 nodes
, status
, flags
);
1457 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1463 put_task_struct(task
);
1468 * Call migration functions in the vma_ops that may prepare
1469 * memory in a vm for migration. migration functions may perform
1470 * the migration for vmas that do not have an underlying page struct.
1472 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1473 const nodemask_t
*from
, unsigned long flags
)
1475 struct vm_area_struct
*vma
;
1478 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1479 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1480 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1488 #ifdef CONFIG_NUMA_BALANCING
1490 * Returns true if this is a safe migration target node for misplaced NUMA
1491 * pages. Currently it only checks the watermarks which crude
1493 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1494 unsigned long nr_migrate_pages
)
1497 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1498 struct zone
*zone
= pgdat
->node_zones
+ z
;
1500 if (!populated_zone(zone
))
1503 if (!zone_reclaimable(zone
))
1506 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1507 if (!zone_watermark_ok(zone
, 0,
1508 high_wmark_pages(zone
) +
1517 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1521 int nid
= (int) data
;
1522 struct page
*newpage
;
1524 newpage
= alloc_pages_exact_node(nid
,
1525 (GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
|
1526 __GFP_NOMEMALLOC
| __GFP_NORETRY
|
1530 page_nid_xchg_last(newpage
, page_nid_last(page
));
1536 * page migration rate limiting control.
1537 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1538 * window of time. Default here says do not migrate more than 1280M per second.
1539 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1540 * as it is faults that reset the window, pte updates will happen unconditionally
1541 * if there has not been a fault since @pteupdate_interval_millisecs after the
1542 * throttle window closed.
1544 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1545 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1546 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1548 /* Returns true if NUMA migration is currently rate limited */
1549 bool migrate_ratelimited(int node
)
1551 pg_data_t
*pgdat
= NODE_DATA(node
);
1553 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1554 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1557 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1563 /* Returns true if the node is migrate rate-limited after the update */
1564 bool numamigrate_update_ratelimit(pg_data_t
*pgdat
, unsigned long nr_pages
)
1566 bool rate_limited
= false;
1569 * Rate-limit the amount of data that is being migrated to a node.
1570 * Optimal placement is no good if the memory bus is saturated and
1571 * all the time is being spent migrating!
1573 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1574 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1575 pgdat
->numabalancing_migrate_nr_pages
= 0;
1576 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1577 msecs_to_jiffies(migrate_interval_millisecs
);
1579 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
)
1580 rate_limited
= true;
1582 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1583 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1585 return rate_limited
;
1588 int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1592 VM_BUG_ON(compound_order(page
) && !PageTransHuge(page
));
1594 /* Avoid migrating to a node that is nearly full */
1595 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1598 if (isolate_lru_page(page
))
1602 * migrate_misplaced_transhuge_page() skips page migration's usual
1603 * check on page_count(), so we must do it here, now that the page
1604 * has been isolated: a GUP pin, or any other pin, prevents migration.
1605 * The expected page count is 3: 1 for page's mapcount and 1 for the
1606 * caller's pin and 1 for the reference taken by isolate_lru_page().
1608 if (PageTransHuge(page
) && page_count(page
) != 3) {
1609 putback_lru_page(page
);
1613 page_lru
= page_is_file_cache(page
);
1614 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1615 hpage_nr_pages(page
));
1618 * Isolating the page has taken another reference, so the
1619 * caller's reference can be safely dropped without the page
1620 * disappearing underneath us during migration.
1626 bool pmd_trans_migrating(pmd_t pmd
)
1628 struct page
*page
= pmd_page(pmd
);
1629 return PageLocked(page
);
1632 void wait_migrate_huge_page(struct anon_vma
*anon_vma
, pmd_t
*pmd
)
1634 struct page
*page
= pmd_page(*pmd
);
1635 wait_on_page_locked(page
);
1639 * Attempt to migrate a misplaced page to the specified destination
1640 * node. Caller is expected to have an elevated reference count on
1641 * the page that will be dropped by this function before returning.
1643 int migrate_misplaced_page(struct page
*page
, int node
)
1645 pg_data_t
*pgdat
= NODE_DATA(node
);
1648 LIST_HEAD(migratepages
);
1651 * Don't migrate pages that are mapped in multiple processes.
1652 * TODO: Handle false sharing detection instead of this hammer
1654 if (page_mapcount(page
) != 1)
1658 * Rate-limit the amount of data that is being migrated to a node.
1659 * Optimal placement is no good if the memory bus is saturated and
1660 * all the time is being spent migrating!
1662 if (numamigrate_update_ratelimit(pgdat
, 1))
1665 isolated
= numamigrate_isolate_page(pgdat
, page
);
1669 list_add(&page
->lru
, &migratepages
);
1670 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1671 NULL
, node
, MIGRATE_ASYNC
,
1674 putback_lru_pages(&migratepages
);
1677 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1678 BUG_ON(!list_empty(&migratepages
));
1685 #endif /* CONFIG_NUMA_BALANCING */
1687 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1689 * Migrates a THP to a given target node. page must be locked and is unlocked
1692 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1693 struct vm_area_struct
*vma
,
1694 pmd_t
*pmd
, pmd_t entry
,
1695 unsigned long address
,
1696 struct page
*page
, int node
)
1698 pg_data_t
*pgdat
= NODE_DATA(node
);
1700 struct page
*new_page
= NULL
;
1701 struct mem_cgroup
*memcg
= NULL
;
1702 int page_lru
= page_is_file_cache(page
);
1703 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1704 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1708 * Don't migrate pages that are mapped in multiple processes.
1709 * TODO: Handle false sharing detection instead of this hammer
1711 if (page_mapcount(page
) != 1)
1715 * Rate-limit the amount of data that is being migrated to a node.
1716 * Optimal placement is no good if the memory bus is saturated and
1717 * all the time is being spent migrating!
1719 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1722 new_page
= alloc_pages_node(node
,
1723 (GFP_TRANSHUGE
| GFP_THISNODE
) & ~__GFP_WAIT
, HPAGE_PMD_ORDER
);
1727 page_nid_xchg_last(new_page
, page_nid_last(page
));
1729 isolated
= numamigrate_isolate_page(pgdat
, page
);
1735 if (mm_tlb_flush_pending(mm
))
1736 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1738 /* Prepare a page as a migration target */
1739 __set_page_locked(new_page
);
1740 SetPageSwapBacked(new_page
);
1742 /* anon mapping, we can simply copy page->mapping to the new page: */
1743 new_page
->mapping
= page
->mapping
;
1744 new_page
->index
= page
->index
;
1745 migrate_page_copy(new_page
, page
);
1746 WARN_ON(PageLRU(new_page
));
1748 /* Recheck the target PMD */
1749 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1750 spin_lock(&mm
->page_table_lock
);
1751 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1753 spin_unlock(&mm
->page_table_lock
);
1754 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1756 /* Reverse changes made by migrate_page_copy() */
1757 if (TestClearPageActive(new_page
))
1758 SetPageActive(page
);
1759 if (TestClearPageUnevictable(new_page
))
1760 SetPageUnevictable(page
);
1761 mlock_migrate_page(page
, new_page
);
1763 unlock_page(new_page
);
1764 put_page(new_page
); /* Free it */
1766 /* Retake the callers reference and putback on LRU */
1768 putback_lru_page(page
);
1769 mod_zone_page_state(page_zone(page
),
1770 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1776 * Traditional migration needs to prepare the memcg charge
1777 * transaction early to prevent the old page from being
1778 * uncharged when installing migration entries. Here we can
1779 * save the potential rollback and start the charge transfer
1780 * only when migration is already known to end successfully.
1782 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1785 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1786 entry
= pmd_mkhuge(entry
);
1787 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1790 * Clear the old entry under pagetable lock and establish the new PTE.
1791 * Any parallel GUP will either observe the old page blocking on the
1792 * page lock, block on the page table lock or observe the new page.
1793 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1794 * guarantee the copy is visible before the pagetable update.
1796 flush_cache_range(vma
, mmun_start
, mmun_end
);
1797 page_add_new_anon_rmap(new_page
, vma
, mmun_start
);
1798 pmdp_clear_flush(vma
, mmun_start
, pmd
);
1799 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1800 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1801 update_mmu_cache_pmd(vma
, address
, &entry
);
1803 if (page_count(page
) != 2) {
1804 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1805 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1806 update_mmu_cache_pmd(vma
, address
, &entry
);
1807 page_remove_rmap(new_page
);
1811 page_remove_rmap(page
);
1814 * Finish the charge transaction under the page table lock to
1815 * prevent split_huge_page() from dividing up the charge
1816 * before it's fully transferred to the new page.
1818 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1819 spin_unlock(&mm
->page_table_lock
);
1820 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1822 unlock_page(new_page
);
1824 put_page(page
); /* Drop the rmap reference */
1825 put_page(page
); /* Drop the LRU isolation reference */
1827 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1828 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1830 mod_zone_page_state(page_zone(page
),
1831 NR_ISOLATED_ANON
+ page_lru
,
1836 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1838 spin_lock(&mm
->page_table_lock
);
1839 if (pmd_same(*pmd
, entry
)) {
1840 entry
= pmd_mknonnuma(entry
);
1841 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1842 update_mmu_cache_pmd(vma
, address
, &entry
);
1844 spin_unlock(&mm
->page_table_lock
);
1851 #endif /* CONFIG_NUMA_BALANCING */
1853 #endif /* CONFIG_NUMA */