2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock
);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node
);
76 EXPORT_PER_CPU_SYMBOL(numa_node
);
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
86 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
91 * Array of node states.
93 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
94 [N_POSSIBLE
] = NODE_MASK_ALL
,
95 [N_ONLINE
] = { { [0] = 1UL } },
97 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
99 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY
] = { { [0] = 1UL } },
104 [N_CPU
] = { { [0] = 1UL } },
107 EXPORT_SYMBOL(node_states
);
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock
);
112 unsigned long totalram_pages __read_mostly
;
113 unsigned long totalreserve_pages __read_mostly
;
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
120 unsigned long dirty_balance_reserve __read_mostly
;
122 int percpu_pagelist_fraction
;
123 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
125 #ifdef CONFIG_PM_SLEEP
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
135 static gfp_t saved_gfp_mask
;
137 void pm_restore_gfp_mask(void)
139 WARN_ON(!mutex_is_locked(&pm_mutex
));
140 if (saved_gfp_mask
) {
141 gfp_allowed_mask
= saved_gfp_mask
;
146 void pm_restrict_gfp_mask(void)
148 WARN_ON(!mutex_is_locked(&pm_mutex
));
149 WARN_ON(saved_gfp_mask
);
150 saved_gfp_mask
= gfp_allowed_mask
;
151 gfp_allowed_mask
&= ~GFP_IOFS
;
154 bool pm_suspended_storage(void)
156 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
160 #endif /* CONFIG_PM_SLEEP */
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly
;
166 static void __free_pages_ok(struct page
*page
, unsigned int order
);
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
179 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
180 #ifdef CONFIG_ZONE_DMA
183 #ifdef CONFIG_ZONE_DMA32
186 #ifdef CONFIG_HIGHMEM
192 EXPORT_SYMBOL(totalram_pages
);
194 static char * const zone_names
[MAX_NR_ZONES
] = {
195 #ifdef CONFIG_ZONE_DMA
198 #ifdef CONFIG_ZONE_DMA32
202 #ifdef CONFIG_HIGHMEM
208 int min_free_kbytes
= 1024;
209 int user_min_free_kbytes
;
211 static unsigned long __meminitdata nr_kernel_pages
;
212 static unsigned long __meminitdata nr_all_pages
;
213 static unsigned long __meminitdata dma_reserve
;
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
218 static unsigned long __initdata required_kernelcore
;
219 static unsigned long __initdata required_movablecore
;
220 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 EXPORT_SYMBOL(movable_zone
);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
229 int nr_online_nodes __read_mostly
= 1;
230 EXPORT_SYMBOL(nr_node_ids
);
231 EXPORT_SYMBOL(nr_online_nodes
);
234 int page_group_by_mobility_disabled __read_mostly
;
236 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
239 if (unlikely(page_group_by_mobility_disabled
))
240 migratetype
= MIGRATE_UNMOVABLE
;
242 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
243 PB_migrate
, PB_migrate_end
);
246 bool oom_killer_disabled __read_mostly
;
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
253 unsigned long pfn
= page_to_pfn(page
);
254 unsigned long sp
, start_pfn
;
257 seq
= zone_span_seqbegin(zone
);
258 start_pfn
= zone
->zone_start_pfn
;
259 sp
= zone
->spanned_pages
;
260 if (!zone_spans_pfn(zone
, pfn
))
262 } while (zone_span_seqretry(zone
, seq
));
265 pr_err("page %lu outside zone [ %lu - %lu ]\n",
266 pfn
, start_pfn
, start_pfn
+ sp
);
271 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
273 if (!pfn_valid_within(page_to_pfn(page
)))
275 if (zone
!= page_zone(page
))
281 * Temporary debugging check for pages not lying within a given zone.
283 static int bad_range(struct zone
*zone
, struct page
*page
)
285 if (page_outside_zone_boundaries(zone
, page
))
287 if (!page_is_consistent(zone
, page
))
293 static inline int bad_range(struct zone
*zone
, struct page
*page
)
299 static void bad_page(struct page
*page
)
301 static unsigned long resume
;
302 static unsigned long nr_shown
;
303 static unsigned long nr_unshown
;
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page
)) {
307 page_mapcount_reset(page
); /* remove PageBuddy */
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
315 if (nr_shown
== 60) {
316 if (time_before(jiffies
, resume
)) {
322 "BUG: Bad page state: %lu messages suppressed\n",
329 resume
= jiffies
+ 60 * HZ
;
331 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
332 current
->comm
, page_to_pfn(page
));
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 page_mapcount_reset(page
); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
344 * Higher-order pages are called "compound pages". They are structured thusly:
346 * The first PAGE_SIZE page is called the "head page".
348 * The remaining PAGE_SIZE pages are called "tail pages".
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
358 static void free_compound_page(struct page
*page
)
360 __free_pages_ok(page
, compound_order(page
));
363 void prep_compound_page(struct page
*page
, unsigned long order
)
366 int nr_pages
= 1 << order
;
368 set_compound_page_dtor(page
, free_compound_page
);
369 set_compound_order(page
, order
);
371 for (i
= 1; i
< nr_pages
; i
++) {
372 struct page
*p
= page
+ i
;
373 set_page_count(p
, 0);
374 p
->first_page
= page
;
375 /* Make sure p->first_page is always valid for PageTail() */
381 /* update __split_huge_page_refcount if you change this function */
382 static int destroy_compound_page(struct page
*page
, unsigned long order
)
385 int nr_pages
= 1 << order
;
388 if (unlikely(compound_order(page
) != order
)) {
393 __ClearPageHead(page
);
395 for (i
= 1; i
< nr_pages
; i
++) {
396 struct page
*p
= page
+ i
;
398 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
408 static inline void prep_zero_page(struct page
*page
, unsigned int order
,
414 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
415 * and __GFP_HIGHMEM from hard or soft interrupt context.
417 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
418 for (i
= 0; i
< (1 << order
); i
++)
419 clear_highpage(page
+ i
);
422 #ifdef CONFIG_DEBUG_PAGEALLOC
423 unsigned int _debug_guardpage_minorder
;
425 static int __init
debug_guardpage_minorder_setup(char *buf
)
429 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
430 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
433 _debug_guardpage_minorder
= res
;
434 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
437 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
439 static inline void set_page_guard_flag(struct page
*page
)
441 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
444 static inline void clear_page_guard_flag(struct page
*page
)
446 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
449 static inline void set_page_guard_flag(struct page
*page
) { }
450 static inline void clear_page_guard_flag(struct page
*page
) { }
453 static inline void set_page_order(struct page
*page
, unsigned int order
)
455 set_page_private(page
, order
);
456 __SetPageBuddy(page
);
459 static inline void rmv_page_order(struct page
*page
)
461 __ClearPageBuddy(page
);
462 set_page_private(page
, 0);
466 * Locate the struct page for both the matching buddy in our
467 * pair (buddy1) and the combined O(n+1) page they form (page).
469 * 1) Any buddy B1 will have an order O twin B2 which satisfies
470 * the following equation:
472 * For example, if the starting buddy (buddy2) is #8 its order
474 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
476 * 2) Any buddy B will have an order O+1 parent P which
477 * satisfies the following equation:
480 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
482 static inline unsigned long
483 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
485 return page_idx
^ (1 << order
);
489 * This function checks whether a page is free && is the buddy
490 * we can do coalesce a page and its buddy if
491 * (a) the buddy is not in a hole &&
492 * (b) the buddy is in the buddy system &&
493 * (c) a page and its buddy have the same order &&
494 * (d) a page and its buddy are in the same zone.
496 * For recording whether a page is in the buddy system, we set ->_mapcount
497 * PAGE_BUDDY_MAPCOUNT_VALUE.
498 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
499 * serialized by zone->lock.
501 * For recording page's order, we use page_private(page).
503 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
506 if (!pfn_valid_within(page_to_pfn(buddy
)))
509 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
510 VM_BUG_ON(page_count(buddy
) != 0);
512 if (page_zone_id(page
) != page_zone_id(buddy
))
518 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
519 VM_BUG_ON(page_count(buddy
) != 0);
522 * zone check is done late to avoid uselessly
523 * calculating zone/node ids for pages that could
526 if (page_zone_id(page
) != page_zone_id(buddy
))
535 * Freeing function for a buddy system allocator.
537 * The concept of a buddy system is to maintain direct-mapped table
538 * (containing bit values) for memory blocks of various "orders".
539 * The bottom level table contains the map for the smallest allocatable
540 * units of memory (here, pages), and each level above it describes
541 * pairs of units from the levels below, hence, "buddies".
542 * At a high level, all that happens here is marking the table entry
543 * at the bottom level available, and propagating the changes upward
544 * as necessary, plus some accounting needed to play nicely with other
545 * parts of the VM system.
546 * At each level, we keep a list of pages, which are heads of continuous
547 * free pages of length of (1 << order) and marked with _mapcount
548 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
550 * So when we are allocating or freeing one, we can derive the state of the
551 * other. That is, if we allocate a small block, and both were
552 * free, the remainder of the region must be split into blocks.
553 * If a block is freed, and its buddy is also free, then this
554 * triggers coalescing into a block of larger size.
559 static inline void __free_one_page(struct page
*page
,
561 struct zone
*zone
, unsigned int order
,
564 unsigned long page_idx
;
565 unsigned long combined_idx
;
566 unsigned long uninitialized_var(buddy_idx
);
569 VM_BUG_ON(!zone_is_initialized(zone
));
571 if (unlikely(PageCompound(page
)))
572 if (unlikely(destroy_compound_page(page
, order
)))
575 VM_BUG_ON(migratetype
== -1);
577 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
579 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
580 VM_BUG_ON(bad_range(zone
, page
));
582 while (order
< MAX_ORDER
-1) {
583 buddy_idx
= __find_buddy_index(page_idx
, order
);
584 buddy
= page
+ (buddy_idx
- page_idx
);
585 if (!page_is_buddy(page
, buddy
, order
))
588 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
589 * merge with it and move up one order.
591 if (page_is_guard(buddy
)) {
592 clear_page_guard_flag(buddy
);
593 set_page_private(page
, 0);
594 __mod_zone_freepage_state(zone
, 1 << order
,
597 list_del(&buddy
->lru
);
598 zone
->free_area
[order
].nr_free
--;
599 rmv_page_order(buddy
);
601 combined_idx
= buddy_idx
& page_idx
;
602 page
= page
+ (combined_idx
- page_idx
);
603 page_idx
= combined_idx
;
606 set_page_order(page
, order
);
609 * If this is not the largest possible page, check if the buddy
610 * of the next-highest order is free. If it is, it's possible
611 * that pages are being freed that will coalesce soon. In case,
612 * that is happening, add the free page to the tail of the list
613 * so it's less likely to be used soon and more likely to be merged
614 * as a higher order page
616 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
617 struct page
*higher_page
, *higher_buddy
;
618 combined_idx
= buddy_idx
& page_idx
;
619 higher_page
= page
+ (combined_idx
- page_idx
);
620 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
621 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
622 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
623 list_add_tail(&page
->lru
,
624 &zone
->free_area
[order
].free_list
[migratetype
]);
629 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
631 zone
->free_area
[order
].nr_free
++;
634 static inline int free_pages_check(struct page
*page
)
636 if (unlikely(page_mapcount(page
) |
637 (page
->mapping
!= NULL
) |
638 (atomic_read(&page
->_count
) != 0) |
639 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
640 (mem_cgroup_bad_page_check(page
)))) {
644 page_nid_reset_last(page
);
645 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
646 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
651 * Frees a number of pages from the PCP lists
652 * Assumes all pages on list are in same zone, and of same order.
653 * count is the number of pages to free.
655 * If the zone was previously in an "all pages pinned" state then look to
656 * see if this freeing clears that state.
658 * And clear the zone's pages_scanned counter, to hold off the "all pages are
659 * pinned" detection logic.
661 static void free_pcppages_bulk(struct zone
*zone
, int count
,
662 struct per_cpu_pages
*pcp
)
667 unsigned long nr_scanned
;
669 spin_lock(&zone
->lock
);
670 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
672 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
676 struct list_head
*list
;
679 * Remove pages from lists in a round-robin fashion. A
680 * batch_free count is maintained that is incremented when an
681 * empty list is encountered. This is so more pages are freed
682 * off fuller lists instead of spinning excessively around empty
687 if (++migratetype
== MIGRATE_PCPTYPES
)
689 list
= &pcp
->lists
[migratetype
];
690 } while (list_empty(list
));
692 /* This is the only non-empty list. Free them all. */
693 if (batch_free
== MIGRATE_PCPTYPES
)
694 batch_free
= to_free
;
697 int mt
; /* migratetype of the to-be-freed page */
699 page
= list_entry(list
->prev
, struct page
, lru
);
700 /* must delete as __free_one_page list manipulates */
701 list_del(&page
->lru
);
702 mt
= get_freepage_migratetype(page
);
703 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
704 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
705 trace_mm_page_pcpu_drain(page
, 0, mt
);
706 if (likely(!is_migrate_isolate_page(page
))) {
707 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
708 if (is_migrate_cma(mt
))
709 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
711 } while (--to_free
&& --batch_free
&& !list_empty(list
));
713 spin_unlock(&zone
->lock
);
716 static void free_one_page(struct zone
*zone
,
717 struct page
*page
, unsigned long pfn
,
721 unsigned long nr_scanned
;
722 spin_lock(&zone
->lock
);
723 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
725 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
727 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
728 if (unlikely(!is_migrate_isolate(migratetype
)))
729 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
730 spin_unlock(&zone
->lock
);
733 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
738 trace_mm_page_free(page
, order
);
739 kmemcheck_free_shadow(page
, order
);
742 page
->mapping
= NULL
;
743 for (i
= 0; i
< (1 << order
); i
++)
744 bad
+= free_pages_check(page
+ i
);
748 if (!PageHighMem(page
)) {
749 debug_check_no_locks_freed(page_address(page
),
751 debug_check_no_obj_freed(page_address(page
),
754 arch_free_page(page
, order
);
755 kernel_map_pages(page
, 1 << order
, 0);
760 static void __free_pages_ok(struct page
*page
, unsigned int order
)
764 unsigned long pfn
= page_to_pfn(page
);
766 if (!free_pages_prepare(page
, order
))
769 migratetype
= get_pfnblock_migratetype(page
, pfn
);
770 local_irq_save(flags
);
771 __count_vm_events(PGFREE
, 1 << order
);
772 set_freepage_migratetype(page
, migratetype
);
773 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
774 local_irq_restore(flags
);
777 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
779 unsigned int nr_pages
= 1 << order
;
780 struct page
*p
= page
;
784 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
786 __ClearPageReserved(p
);
787 set_page_count(p
, 0);
789 __ClearPageReserved(p
);
790 set_page_count(p
, 0);
792 page_zone(page
)->managed_pages
+= nr_pages
;
793 set_page_refcounted(page
);
794 __free_pages(page
, order
);
798 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
799 void __init
init_cma_reserved_pageblock(struct page
*page
)
801 unsigned i
= pageblock_nr_pages
;
802 struct page
*p
= page
;
805 __ClearPageReserved(p
);
806 set_page_count(p
, 0);
809 set_pageblock_migratetype(page
, MIGRATE_CMA
);
811 if (pageblock_order
>= MAX_ORDER
) {
812 i
= pageblock_nr_pages
;
815 set_page_refcounted(p
);
816 __free_pages(p
, MAX_ORDER
- 1);
817 p
+= MAX_ORDER_NR_PAGES
;
818 } while (i
-= MAX_ORDER_NR_PAGES
);
820 set_page_refcounted(page
);
821 __free_pages(page
, pageblock_order
);
824 adjust_managed_page_count(page
, pageblock_nr_pages
);
829 * The order of subdivision here is critical for the IO subsystem.
830 * Please do not alter this order without good reasons and regression
831 * testing. Specifically, as large blocks of memory are subdivided,
832 * the order in which smaller blocks are delivered depends on the order
833 * they're subdivided in this function. This is the primary factor
834 * influencing the order in which pages are delivered to the IO
835 * subsystem according to empirical testing, and this is also justified
836 * by considering the behavior of a buddy system containing a single
837 * large block of memory acted on by a series of small allocations.
838 * This behavior is a critical factor in sglist merging's success.
842 static inline void expand(struct zone
*zone
, struct page
*page
,
843 int low
, int high
, struct free_area
*area
,
846 unsigned long size
= 1 << high
;
852 VM_BUG_ON(bad_range(zone
, &page
[size
]));
854 #ifdef CONFIG_DEBUG_PAGEALLOC
855 if (high
< debug_guardpage_minorder()) {
857 * Mark as guard pages (or page), that will allow to
858 * merge back to allocator when buddy will be freed.
859 * Corresponding page table entries will not be touched,
860 * pages will stay not present in virtual address space
862 INIT_LIST_HEAD(&page
[size
].lru
);
863 set_page_guard_flag(&page
[size
]);
864 set_page_private(&page
[size
], high
);
865 /* Guard pages are not available for any usage */
866 __mod_zone_freepage_state(zone
, -(1 << high
),
871 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
873 set_page_order(&page
[size
], high
);
878 * This page is about to be returned from the page allocator
880 static inline int check_new_page(struct page
*page
)
882 if (unlikely(page_mapcount(page
) |
883 (page
->mapping
!= NULL
) |
884 (atomic_read(&page
->_count
) != 0) |
885 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
886 (mem_cgroup_bad_page_check(page
)))) {
893 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
)
897 for (i
= 0; i
< (1 << order
); i
++) {
898 struct page
*p
= page
+ i
;
899 if (unlikely(check_new_page(p
)))
903 set_page_private(page
, 0);
904 set_page_refcounted(page
);
906 arch_alloc_page(page
, order
);
907 kernel_map_pages(page
, 1 << order
, 1);
909 if (gfp_flags
& __GFP_ZERO
)
910 prep_zero_page(page
, order
, gfp_flags
);
912 if (order
&& (gfp_flags
& __GFP_COMP
))
913 prep_compound_page(page
, order
);
919 * Go through the free lists for the given migratetype and remove
920 * the smallest available page from the freelists
923 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
926 unsigned int current_order
;
927 struct free_area
*area
;
930 /* Find a page of the appropriate size in the preferred list */
931 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
932 area
= &(zone
->free_area
[current_order
]);
933 if (list_empty(&area
->free_list
[migratetype
]))
936 page
= list_entry(area
->free_list
[migratetype
].next
,
938 list_del(&page
->lru
);
939 rmv_page_order(page
);
941 expand(zone
, page
, order
, current_order
, area
, migratetype
);
942 set_freepage_migratetype(page
, migratetype
);
951 * This array describes the order lists are fallen back to when
952 * the free lists for the desirable migrate type are depleted
954 static int fallbacks
[MIGRATE_TYPES
][4] = {
955 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
956 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
958 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
959 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
961 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
963 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
964 #ifdef CONFIG_MEMORY_ISOLATION
965 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
970 * Move the free pages in a range to the free lists of the requested type.
971 * Note that start_page and end_pages are not aligned on a pageblock
972 * boundary. If alignment is required, use move_freepages_block()
974 int move_freepages(struct zone
*zone
,
975 struct page
*start_page
, struct page
*end_page
,
982 #ifndef CONFIG_HOLES_IN_ZONE
984 * page_zone is not safe to call in this context when
985 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
986 * anyway as we check zone boundaries in move_freepages_block().
987 * Remove at a later date when no bug reports exist related to
988 * grouping pages by mobility
990 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
993 for (page
= start_page
; page
<= end_page
;) {
994 /* Make sure we are not inadvertently changing nodes */
995 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
997 if (!pfn_valid_within(page_to_pfn(page
))) {
1002 if (!PageBuddy(page
)) {
1007 order
= page_order(page
);
1008 list_move(&page
->lru
,
1009 &zone
->free_area
[order
].free_list
[migratetype
]);
1010 set_freepage_migratetype(page
, migratetype
);
1012 pages_moved
+= 1 << order
;
1018 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1021 unsigned long start_pfn
, end_pfn
;
1022 struct page
*start_page
, *end_page
;
1024 start_pfn
= page_to_pfn(page
);
1025 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1026 start_page
= pfn_to_page(start_pfn
);
1027 end_page
= start_page
+ pageblock_nr_pages
- 1;
1028 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1030 /* Do not cross zone boundaries */
1031 if (!zone_spans_pfn(zone
, start_pfn
))
1033 if (!zone_spans_pfn(zone
, end_pfn
))
1036 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1039 static void change_pageblock_range(struct page
*pageblock_page
,
1040 int start_order
, int migratetype
)
1042 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1044 while (nr_pageblocks
--) {
1045 set_pageblock_migratetype(pageblock_page
, migratetype
);
1046 pageblock_page
+= pageblock_nr_pages
;
1051 * If breaking a large block of pages, move all free pages to the preferred
1052 * allocation list. If falling back for a reclaimable kernel allocation, be
1053 * more aggressive about taking ownership of free pages.
1055 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1056 * nor move CMA pages to different free lists. We don't want unmovable pages
1057 * to be allocated from MIGRATE_CMA areas.
1059 * Returns the new migratetype of the pageblock (or the same old migratetype
1060 * if it was unchanged).
1062 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1063 int start_type
, int fallback_type
)
1065 int current_order
= page_order(page
);
1068 * When borrowing from MIGRATE_CMA, we need to release the excess
1069 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1070 * is set to CMA so it is returned to the correct freelist in case
1071 * the page ends up being not actually allocated from the pcp lists.
1073 if (is_migrate_cma(fallback_type
))
1074 return fallback_type
;
1076 /* Take ownership for orders >= pageblock_order */
1077 if (current_order
>= pageblock_order
) {
1078 change_pageblock_range(page
, current_order
, start_type
);
1082 if (current_order
>= pageblock_order
/ 2 ||
1083 start_type
== MIGRATE_RECLAIMABLE
||
1084 page_group_by_mobility_disabled
) {
1087 pages
= move_freepages_block(zone
, page
, start_type
);
1089 /* Claim the whole block if over half of it is free */
1090 if (pages
>= (1 << (pageblock_order
-1)) ||
1091 page_group_by_mobility_disabled
) {
1093 set_pageblock_migratetype(page
, start_type
);
1099 return fallback_type
;
1102 /* Remove an element from the buddy allocator from the fallback list */
1103 static inline struct page
*
1104 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1106 struct free_area
*area
;
1107 unsigned int current_order
;
1109 int migratetype
, new_type
, i
;
1111 /* Find the largest possible block of pages in the other list */
1112 for (current_order
= MAX_ORDER
-1;
1113 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1116 migratetype
= fallbacks
[start_migratetype
][i
];
1118 /* MIGRATE_RESERVE handled later if necessary */
1119 if (migratetype
== MIGRATE_RESERVE
)
1122 area
= &(zone
->free_area
[current_order
]);
1123 if (list_empty(&area
->free_list
[migratetype
]))
1126 page
= list_entry(area
->free_list
[migratetype
].next
,
1130 new_type
= try_to_steal_freepages(zone
, page
,
1134 /* Remove the page from the freelists */
1135 list_del(&page
->lru
);
1136 rmv_page_order(page
);
1138 expand(zone
, page
, order
, current_order
, area
,
1140 /* The freepage_migratetype may differ from pageblock's
1141 * migratetype depending on the decisions in
1142 * try_to_steal_freepages. This is OK as long as it does
1143 * not differ for MIGRATE_CMA type.
1145 set_freepage_migratetype(page
, new_type
);
1147 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1148 start_migratetype
, migratetype
, new_type
);
1158 * Do the hard work of removing an element from the buddy allocator.
1159 * Call me with the zone->lock already held.
1161 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1167 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1169 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1170 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1173 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1174 * is used because __rmqueue_smallest is an inline function
1175 * and we want just one call site
1178 migratetype
= MIGRATE_RESERVE
;
1183 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1188 * Obtain a specified number of elements from the buddy allocator, all under
1189 * a single hold of the lock, for efficiency. Add them to the supplied list.
1190 * Returns the number of new pages which were placed at *list.
1192 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1193 unsigned long count
, struct list_head
*list
,
1194 int migratetype
, bool cold
)
1198 spin_lock(&zone
->lock
);
1199 for (i
= 0; i
< count
; ++i
) {
1200 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1201 if (unlikely(page
== NULL
))
1205 * Split buddy pages returned by expand() are received here
1206 * in physical page order. The page is added to the callers and
1207 * list and the list head then moves forward. From the callers
1208 * perspective, the linked list is ordered by page number in
1209 * some conditions. This is useful for IO devices that can
1210 * merge IO requests if the physical pages are ordered
1214 list_add(&page
->lru
, list
);
1216 list_add_tail(&page
->lru
, list
);
1218 if (is_migrate_cma(get_freepage_migratetype(page
)))
1219 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1222 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1223 spin_unlock(&zone
->lock
);
1229 * Called from the vmstat counter updater to drain pagesets of this
1230 * currently executing processor on remote nodes after they have
1233 * Note that this function must be called with the thread pinned to
1234 * a single processor.
1236 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1238 unsigned long flags
;
1240 unsigned long batch
;
1242 local_irq_save(flags
);
1243 batch
= ACCESS_ONCE(pcp
->batch
);
1244 if (pcp
->count
>= batch
)
1247 to_drain
= pcp
->count
;
1249 free_pcppages_bulk(zone
, to_drain
, pcp
);
1250 pcp
->count
-= to_drain
;
1252 local_irq_restore(flags
);
1257 * Drain pages of the indicated processor.
1259 * The processor must either be the current processor and the
1260 * thread pinned to the current processor or a processor that
1263 static void drain_pages(unsigned int cpu
)
1265 unsigned long flags
;
1268 for_each_populated_zone(zone
) {
1269 struct per_cpu_pageset
*pset
;
1270 struct per_cpu_pages
*pcp
;
1272 local_irq_save(flags
);
1273 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1277 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1280 local_irq_restore(flags
);
1285 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1287 void drain_local_pages(void *arg
)
1289 drain_pages(smp_processor_id());
1293 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1295 * Note that this code is protected against sending an IPI to an offline
1296 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1297 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1298 * nothing keeps CPUs from showing up after we populated the cpumask and
1299 * before the call to on_each_cpu_mask().
1301 void drain_all_pages(void)
1304 struct per_cpu_pageset
*pcp
;
1308 * Allocate in the BSS so we wont require allocation in
1309 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1311 static cpumask_t cpus_with_pcps
;
1314 * We don't care about racing with CPU hotplug event
1315 * as offline notification will cause the notified
1316 * cpu to drain that CPU pcps and on_each_cpu_mask
1317 * disables preemption as part of its processing
1319 for_each_online_cpu(cpu
) {
1320 bool has_pcps
= false;
1321 for_each_populated_zone(zone
) {
1322 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1323 if (pcp
->pcp
.count
) {
1329 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1331 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1333 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1336 #ifdef CONFIG_HIBERNATION
1338 void mark_free_pages(struct zone
*zone
)
1340 unsigned long pfn
, max_zone_pfn
;
1341 unsigned long flags
;
1342 unsigned int order
, t
;
1343 struct list_head
*curr
;
1345 if (zone_is_empty(zone
))
1348 spin_lock_irqsave(&zone
->lock
, flags
);
1350 max_zone_pfn
= zone_end_pfn(zone
);
1351 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1352 if (pfn_valid(pfn
)) {
1353 struct page
*page
= pfn_to_page(pfn
);
1355 if (!swsusp_page_is_forbidden(page
))
1356 swsusp_unset_page_free(page
);
1359 for_each_migratetype_order(order
, t
) {
1360 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1363 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1364 for (i
= 0; i
< (1UL << order
); i
++)
1365 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1368 spin_unlock_irqrestore(&zone
->lock
, flags
);
1370 #endif /* CONFIG_PM */
1373 * Free a 0-order page
1374 * cold == true ? free a cold page : free a hot page
1376 void free_hot_cold_page(struct page
*page
, bool cold
)
1378 struct zone
*zone
= page_zone(page
);
1379 struct per_cpu_pages
*pcp
;
1380 unsigned long flags
;
1381 unsigned long pfn
= page_to_pfn(page
);
1384 if (!free_pages_prepare(page
, 0))
1387 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1388 set_freepage_migratetype(page
, migratetype
);
1389 local_irq_save(flags
);
1390 __count_vm_event(PGFREE
);
1393 * We only track unmovable, reclaimable and movable on pcp lists.
1394 * Free ISOLATE pages back to the allocator because they are being
1395 * offlined but treat RESERVE as movable pages so we can get those
1396 * areas back if necessary. Otherwise, we may have to free
1397 * excessively into the page allocator
1399 if (migratetype
>= MIGRATE_PCPTYPES
) {
1400 if (unlikely(is_migrate_isolate(migratetype
))) {
1401 free_one_page(zone
, page
, pfn
, 0, migratetype
);
1404 migratetype
= MIGRATE_MOVABLE
;
1407 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1409 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1411 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1413 if (pcp
->count
>= pcp
->high
) {
1414 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1415 free_pcppages_bulk(zone
, batch
, pcp
);
1416 pcp
->count
-= batch
;
1420 local_irq_restore(flags
);
1424 * Free a list of 0-order pages
1426 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
1428 struct page
*page
, *next
;
1430 list_for_each_entry_safe(page
, next
, list
, lru
) {
1431 trace_mm_page_free_batched(page
, cold
);
1432 free_hot_cold_page(page
, cold
);
1437 * split_page takes a non-compound higher-order page, and splits it into
1438 * n (1<<order) sub-pages: page[0..n]
1439 * Each sub-page must be freed individually.
1441 * Note: this is probably too low level an operation for use in drivers.
1442 * Please consult with lkml before using this in your driver.
1444 void split_page(struct page
*page
, unsigned int order
)
1448 VM_BUG_ON(PageCompound(page
));
1449 VM_BUG_ON(!page_count(page
));
1451 #ifdef CONFIG_KMEMCHECK
1453 * Split shadow pages too, because free(page[0]) would
1454 * otherwise free the whole shadow.
1456 if (kmemcheck_page_is_tracked(page
))
1457 split_page(virt_to_page(page
[0].shadow
), order
);
1460 for (i
= 1; i
< (1 << order
); i
++)
1461 set_page_refcounted(page
+ i
);
1463 EXPORT_SYMBOL_GPL(split_page
);
1465 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1467 unsigned long watermark
;
1471 BUG_ON(!PageBuddy(page
));
1473 zone
= page_zone(page
);
1474 mt
= get_pageblock_migratetype(page
);
1476 if (!is_migrate_isolate(mt
)) {
1477 /* Obey watermarks as if the page was being allocated */
1478 watermark
= low_wmark_pages(zone
) + (1 << order
);
1479 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1482 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1485 /* Remove page from free list */
1486 list_del(&page
->lru
);
1487 zone
->free_area
[order
].nr_free
--;
1488 rmv_page_order(page
);
1490 /* Set the pageblock if the isolated page is at least a pageblock */
1491 if (order
>= pageblock_order
- 1) {
1492 struct page
*endpage
= page
+ (1 << order
) - 1;
1493 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1494 int mt
= get_pageblock_migratetype(page
);
1495 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1496 set_pageblock_migratetype(page
,
1501 return 1UL << order
;
1505 * Similar to split_page except the page is already free. As this is only
1506 * being used for migration, the migratetype of the block also changes.
1507 * As this is called with interrupts disabled, the caller is responsible
1508 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1511 * Note: this is probably too low level an operation for use in drivers.
1512 * Please consult with lkml before using this in your driver.
1514 int split_free_page(struct page
*page
)
1519 order
= page_order(page
);
1521 nr_pages
= __isolate_free_page(page
, order
);
1525 /* Split into individual pages */
1526 set_page_refcounted(page
);
1527 split_page(page
, order
);
1532 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1533 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1537 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1538 struct zone
*zone
, unsigned int order
,
1539 gfp_t gfp_flags
, int migratetype
)
1541 unsigned long flags
;
1543 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
1546 if (likely(order
== 0)) {
1547 struct per_cpu_pages
*pcp
;
1548 struct list_head
*list
;
1550 local_irq_save(flags
);
1551 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1552 list
= &pcp
->lists
[migratetype
];
1553 if (list_empty(list
)) {
1554 pcp
->count
+= rmqueue_bulk(zone
, 0,
1557 if (unlikely(list_empty(list
)))
1562 page
= list_entry(list
->prev
, struct page
, lru
);
1564 page
= list_entry(list
->next
, struct page
, lru
);
1566 list_del(&page
->lru
);
1569 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1571 * __GFP_NOFAIL is not to be used in new code.
1573 * All __GFP_NOFAIL callers should be fixed so that they
1574 * properly detect and handle allocation failures.
1576 * We most definitely don't want callers attempting to
1577 * allocate greater than order-1 page units with
1580 WARN_ON_ONCE(order
> 1);
1582 spin_lock_irqsave(&zone
->lock
, flags
);
1583 page
= __rmqueue(zone
, order
, migratetype
);
1584 spin_unlock(&zone
->lock
);
1587 __mod_zone_freepage_state(zone
, -(1 << order
),
1588 get_freepage_migratetype(page
));
1591 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1592 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
1593 !zone_is_fair_depleted(zone
))
1594 zone_set_flag(zone
, ZONE_FAIR_DEPLETED
);
1596 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1597 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1598 local_irq_restore(flags
);
1600 VM_BUG_ON(bad_range(zone
, page
));
1601 if (prep_new_page(page
, order
, gfp_flags
))
1606 local_irq_restore(flags
);
1610 #ifdef CONFIG_FAIL_PAGE_ALLOC
1613 struct fault_attr attr
;
1615 u32 ignore_gfp_highmem
;
1616 u32 ignore_gfp_wait
;
1618 } fail_page_alloc
= {
1619 .attr
= FAULT_ATTR_INITIALIZER
,
1620 .ignore_gfp_wait
= 1,
1621 .ignore_gfp_highmem
= 1,
1625 static int __init
setup_fail_page_alloc(char *str
)
1627 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1629 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1631 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1633 if (order
< fail_page_alloc
.min_order
)
1635 if (gfp_mask
& __GFP_NOFAIL
)
1637 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1639 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1642 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1645 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1647 static int __init
fail_page_alloc_debugfs(void)
1649 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1652 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1653 &fail_page_alloc
.attr
);
1655 return PTR_ERR(dir
);
1657 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1658 &fail_page_alloc
.ignore_gfp_wait
))
1660 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1661 &fail_page_alloc
.ignore_gfp_highmem
))
1663 if (!debugfs_create_u32("min-order", mode
, dir
,
1664 &fail_page_alloc
.min_order
))
1669 debugfs_remove_recursive(dir
);
1674 late_initcall(fail_page_alloc_debugfs
);
1676 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1678 #else /* CONFIG_FAIL_PAGE_ALLOC */
1680 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1685 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1688 * Return true if free pages are above 'mark'. This takes into account the order
1689 * of the allocation.
1691 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
1692 unsigned long mark
, int classzone_idx
, int alloc_flags
,
1695 /* free_pages my go negative - that's OK */
1700 free_pages
-= (1 << order
) - 1;
1701 if (alloc_flags
& ALLOC_HIGH
)
1703 if (alloc_flags
& ALLOC_HARDER
)
1706 /* If allocation can't use CMA areas don't use free CMA pages */
1707 if (!(alloc_flags
& ALLOC_CMA
))
1708 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1711 if (free_pages
- free_cma
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1713 for (o
= 0; o
< order
; o
++) {
1714 /* At the next order, this order's pages become unavailable */
1715 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1717 /* Require fewer higher order pages to be free */
1720 if (free_pages
<= min
)
1726 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
1727 int classzone_idx
, int alloc_flags
)
1729 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1730 zone_page_state(z
, NR_FREE_PAGES
));
1733 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
1734 unsigned long mark
, int classzone_idx
, int alloc_flags
)
1736 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1738 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1739 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1741 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1747 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1748 * skip over zones that are not allowed by the cpuset, or that have
1749 * been recently (in last second) found to be nearly full. See further
1750 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1751 * that have to skip over a lot of full or unallowed zones.
1753 * If the zonelist cache is present in the passed in zonelist, then
1754 * returns a pointer to the allowed node mask (either the current
1755 * tasks mems_allowed, or node_states[N_MEMORY].)
1757 * If the zonelist cache is not available for this zonelist, does
1758 * nothing and returns NULL.
1760 * If the fullzones BITMAP in the zonelist cache is stale (more than
1761 * a second since last zap'd) then we zap it out (clear its bits.)
1763 * We hold off even calling zlc_setup, until after we've checked the
1764 * first zone in the zonelist, on the theory that most allocations will
1765 * be satisfied from that first zone, so best to examine that zone as
1766 * quickly as we can.
1768 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1770 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1771 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1773 zlc
= zonelist
->zlcache_ptr
;
1777 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1778 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1779 zlc
->last_full_zap
= jiffies
;
1782 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1783 &cpuset_current_mems_allowed
:
1784 &node_states
[N_MEMORY
];
1785 return allowednodes
;
1789 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1790 * if it is worth looking at further for free memory:
1791 * 1) Check that the zone isn't thought to be full (doesn't have its
1792 * bit set in the zonelist_cache fullzones BITMAP).
1793 * 2) Check that the zones node (obtained from the zonelist_cache
1794 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1795 * Return true (non-zero) if zone is worth looking at further, or
1796 * else return false (zero) if it is not.
1798 * This check -ignores- the distinction between various watermarks,
1799 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1800 * found to be full for any variation of these watermarks, it will
1801 * be considered full for up to one second by all requests, unless
1802 * we are so low on memory on all allowed nodes that we are forced
1803 * into the second scan of the zonelist.
1805 * In the second scan we ignore this zonelist cache and exactly
1806 * apply the watermarks to all zones, even it is slower to do so.
1807 * We are low on memory in the second scan, and should leave no stone
1808 * unturned looking for a free page.
1810 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1811 nodemask_t
*allowednodes
)
1813 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1814 int i
; /* index of *z in zonelist zones */
1815 int n
; /* node that zone *z is on */
1817 zlc
= zonelist
->zlcache_ptr
;
1821 i
= z
- zonelist
->_zonerefs
;
1824 /* This zone is worth trying if it is allowed but not full */
1825 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1829 * Given 'z' scanning a zonelist, set the corresponding bit in
1830 * zlc->fullzones, so that subsequent attempts to allocate a page
1831 * from that zone don't waste time re-examining it.
1833 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1835 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1836 int i
; /* index of *z in zonelist zones */
1838 zlc
= zonelist
->zlcache_ptr
;
1842 i
= z
- zonelist
->_zonerefs
;
1844 set_bit(i
, zlc
->fullzones
);
1848 * clear all zones full, called after direct reclaim makes progress so that
1849 * a zone that was recently full is not skipped over for up to a second
1851 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1853 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1855 zlc
= zonelist
->zlcache_ptr
;
1859 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1862 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1864 return local_zone
->node
== zone
->node
;
1867 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1869 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1872 static void __paginginit
init_zone_allows_reclaim(int nid
)
1876 for_each_node_state(i
, N_MEMORY
)
1877 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1878 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1880 zone_reclaim_mode
= 1;
1883 #else /* CONFIG_NUMA */
1885 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1890 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1891 nodemask_t
*allowednodes
)
1896 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1900 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1904 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1909 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1914 static inline void init_zone_allows_reclaim(int nid
)
1917 #endif /* CONFIG_NUMA */
1919 static void reset_alloc_batches(struct zone
*preferred_zone
)
1921 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
1924 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
1925 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
1926 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
1927 zone_clear_flag(zone
, ZONE_FAIR_DEPLETED
);
1928 } while (zone
++ != preferred_zone
);
1932 * get_page_from_freelist goes through the zonelist trying to allocate
1935 static struct page
*
1936 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1937 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1938 struct zone
*preferred_zone
, int classzone_idx
, int migratetype
)
1941 struct page
*page
= NULL
;
1943 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1944 int zlc_active
= 0; /* set if using zonelist_cache */
1945 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1946 bool consider_zone_dirty
= (alloc_flags
& ALLOC_WMARK_LOW
) &&
1947 (gfp_mask
& __GFP_WRITE
);
1948 int nr_fair_skipped
= 0;
1949 bool zonelist_rescan
;
1952 zonelist_rescan
= false;
1955 * Scan zonelist, looking for a zone with enough free.
1956 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1958 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1959 high_zoneidx
, nodemask
) {
1962 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1963 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1965 if (cpusets_enabled() &&
1966 (alloc_flags
& ALLOC_CPUSET
) &&
1967 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1970 * Distribute pages in proportion to the individual
1971 * zone size to ensure fair page aging. The zone a
1972 * page was allocated in should have no effect on the
1973 * time the page has in memory before being reclaimed.
1975 if (alloc_flags
& ALLOC_FAIR
) {
1976 if (!zone_local(preferred_zone
, zone
))
1978 if (zone_is_fair_depleted(zone
)) {
1984 * When allocating a page cache page for writing, we
1985 * want to get it from a zone that is within its dirty
1986 * limit, such that no single zone holds more than its
1987 * proportional share of globally allowed dirty pages.
1988 * The dirty limits take into account the zone's
1989 * lowmem reserves and high watermark so that kswapd
1990 * should be able to balance it without having to
1991 * write pages from its LRU list.
1993 * This may look like it could increase pressure on
1994 * lower zones by failing allocations in higher zones
1995 * before they are full. But the pages that do spill
1996 * over are limited as the lower zones are protected
1997 * by this very same mechanism. It should not become
1998 * a practical burden to them.
2000 * XXX: For now, allow allocations to potentially
2001 * exceed the per-zone dirty limit in the slowpath
2002 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2003 * which is important when on a NUMA setup the allowed
2004 * zones are together not big enough to reach the
2005 * global limit. The proper fix for these situations
2006 * will require awareness of zones in the
2007 * dirty-throttling and the flusher threads.
2009 if (consider_zone_dirty
&& !zone_dirty_ok(zone
))
2012 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2013 if (!zone_watermark_ok(zone
, order
, mark
,
2014 classzone_idx
, alloc_flags
)) {
2017 /* Checked here to keep the fast path fast */
2018 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2019 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2022 if (IS_ENABLED(CONFIG_NUMA
) &&
2023 !did_zlc_setup
&& nr_online_nodes
> 1) {
2025 * we do zlc_setup if there are multiple nodes
2026 * and before considering the first zone allowed
2029 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2034 if (zone_reclaim_mode
== 0 ||
2035 !zone_allows_reclaim(preferred_zone
, zone
))
2036 goto this_zone_full
;
2039 * As we may have just activated ZLC, check if the first
2040 * eligible zone has failed zone_reclaim recently.
2042 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2043 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2046 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2048 case ZONE_RECLAIM_NOSCAN
:
2051 case ZONE_RECLAIM_FULL
:
2052 /* scanned but unreclaimable */
2055 /* did we reclaim enough */
2056 if (zone_watermark_ok(zone
, order
, mark
,
2057 classzone_idx
, alloc_flags
))
2061 * Failed to reclaim enough to meet watermark.
2062 * Only mark the zone full if checking the min
2063 * watermark or if we failed to reclaim just
2064 * 1<<order pages or else the page allocator
2065 * fastpath will prematurely mark zones full
2066 * when the watermark is between the low and
2069 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2070 ret
== ZONE_RECLAIM_SOME
)
2071 goto this_zone_full
;
2078 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2079 gfp_mask
, migratetype
);
2083 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
)
2084 zlc_mark_zone_full(zonelist
, z
);
2089 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2090 * necessary to allocate the page. The expectation is
2091 * that the caller is taking steps that will free more
2092 * memory. The caller should avoid the page being used
2093 * for !PFMEMALLOC purposes.
2095 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2100 * The first pass makes sure allocations are spread fairly within the
2101 * local node. However, the local node might have free pages left
2102 * after the fairness batches are exhausted, and remote zones haven't
2103 * even been considered yet. Try once more without fairness, and
2104 * include remote zones now, before entering the slowpath and waking
2105 * kswapd: prefer spilling to a remote zone over swapping locally.
2107 if (alloc_flags
& ALLOC_FAIR
) {
2108 alloc_flags
&= ~ALLOC_FAIR
;
2109 if (nr_fair_skipped
) {
2110 zonelist_rescan
= true;
2111 reset_alloc_batches(preferred_zone
);
2113 if (nr_online_nodes
> 1)
2114 zonelist_rescan
= true;
2117 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && zlc_active
)) {
2118 /* Disable zlc cache for second zonelist scan */
2120 zonelist_rescan
= true;
2123 if (zonelist_rescan
)
2130 * Large machines with many possible nodes should not always dump per-node
2131 * meminfo in irq context.
2133 static inline bool should_suppress_show_mem(void)
2138 ret
= in_interrupt();
2143 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2144 DEFAULT_RATELIMIT_INTERVAL
,
2145 DEFAULT_RATELIMIT_BURST
);
2147 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2149 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2151 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2152 debug_guardpage_minorder() > 0)
2156 * Walking all memory to count page types is very expensive and should
2157 * be inhibited in non-blockable contexts.
2159 if (!(gfp_mask
& __GFP_WAIT
))
2160 filter
|= SHOW_MEM_FILTER_PAGE_COUNT
;
2163 * This documents exceptions given to allocations in certain
2164 * contexts that are allowed to allocate outside current's set
2167 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2168 if (test_thread_flag(TIF_MEMDIE
) ||
2169 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2170 filter
&= ~SHOW_MEM_FILTER_NODES
;
2171 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2172 filter
&= ~SHOW_MEM_FILTER_NODES
;
2175 struct va_format vaf
;
2178 va_start(args
, fmt
);
2183 pr_warn("%pV", &vaf
);
2188 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2189 current
->comm
, order
, gfp_mask
);
2192 if (!should_suppress_show_mem())
2197 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2198 unsigned long did_some_progress
,
2199 unsigned long pages_reclaimed
)
2201 /* Do not loop if specifically requested */
2202 if (gfp_mask
& __GFP_NORETRY
)
2205 /* Always retry if specifically requested */
2206 if (gfp_mask
& __GFP_NOFAIL
)
2210 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2211 * making forward progress without invoking OOM. Suspend also disables
2212 * storage devices so kswapd will not help. Bail if we are suspending.
2214 if (!did_some_progress
&& pm_suspended_storage())
2218 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2219 * means __GFP_NOFAIL, but that may not be true in other
2222 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2226 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2227 * specified, then we retry until we no longer reclaim any pages
2228 * (above), or we've reclaimed an order of pages at least as
2229 * large as the allocation's order. In both cases, if the
2230 * allocation still fails, we stop retrying.
2232 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2238 static inline struct page
*
2239 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2240 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2241 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2242 int classzone_idx
, int migratetype
)
2246 /* Acquire the OOM killer lock for the zones in zonelist */
2247 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2248 schedule_timeout_uninterruptible(1);
2253 * PM-freezer should be notified that there might be an OOM killer on
2254 * its way to kill and wake somebody up. This is too early and we might
2255 * end up not killing anything but false positives are acceptable.
2256 * See freeze_processes.
2261 * Go through the zonelist yet one more time, keep very high watermark
2262 * here, this is only to catch a parallel oom killing, we must fail if
2263 * we're still under heavy pressure.
2265 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2266 order
, zonelist
, high_zoneidx
,
2267 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2268 preferred_zone
, classzone_idx
, migratetype
);
2272 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2273 /* The OOM killer will not help higher order allocs */
2274 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2276 /* The OOM killer does not needlessly kill tasks for lowmem */
2277 if (high_zoneidx
< ZONE_NORMAL
)
2280 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2281 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2282 * The caller should handle page allocation failure by itself if
2283 * it specifies __GFP_THISNODE.
2284 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2286 if (gfp_mask
& __GFP_THISNODE
)
2289 /* Exhausted what can be done so it's blamo time */
2290 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2293 clear_zonelist_oom(zonelist
, gfp_mask
);
2297 #ifdef CONFIG_COMPACTION
2298 /* Try memory compaction for high-order allocations before reclaim */
2299 static struct page
*
2300 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2301 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2302 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2303 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2304 bool *contended_compaction
, bool *deferred_compaction
,
2305 unsigned long *did_some_progress
)
2310 if (compaction_deferred(preferred_zone
, order
)) {
2311 *deferred_compaction
= true;
2315 current
->flags
|= PF_MEMALLOC
;
2316 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2318 contended_compaction
);
2319 current
->flags
&= ~PF_MEMALLOC
;
2321 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2324 /* Page migration frees to the PCP lists but we want merging */
2325 drain_pages(get_cpu());
2328 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2329 order
, zonelist
, high_zoneidx
,
2330 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2331 preferred_zone
, classzone_idx
, migratetype
);
2333 preferred_zone
->compact_blockskip_flush
= false;
2334 compaction_defer_reset(preferred_zone
, order
, true);
2335 count_vm_event(COMPACTSUCCESS
);
2340 * It's bad if compaction run occurs and fails.
2341 * The most likely reason is that pages exist,
2342 * but not enough to satisfy watermarks.
2344 count_vm_event(COMPACTFAIL
);
2347 * As async compaction considers a subset of pageblocks, only
2348 * defer if the failure was a sync compaction failure.
2350 if (mode
!= MIGRATE_ASYNC
)
2351 defer_compaction(preferred_zone
, order
);
2359 static inline struct page
*
2360 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2361 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2362 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2363 int classzone_idx
, int migratetype
,
2364 enum migrate_mode mode
, bool *contended_compaction
,
2365 bool *deferred_compaction
, unsigned long *did_some_progress
)
2369 #endif /* CONFIG_COMPACTION */
2371 /* Perform direct synchronous page reclaim */
2373 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2374 nodemask_t
*nodemask
)
2376 struct reclaim_state reclaim_state
;
2381 /* We now go into synchronous reclaim */
2382 cpuset_memory_pressure_bump();
2383 current
->flags
|= PF_MEMALLOC
;
2384 lockdep_set_current_reclaim_state(gfp_mask
);
2385 reclaim_state
.reclaimed_slab
= 0;
2386 current
->reclaim_state
= &reclaim_state
;
2388 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2390 current
->reclaim_state
= NULL
;
2391 lockdep_clear_current_reclaim_state();
2392 current
->flags
&= ~PF_MEMALLOC
;
2399 /* The really slow allocator path where we enter direct reclaim */
2400 static inline struct page
*
2401 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2402 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2403 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2404 int classzone_idx
, int migratetype
, unsigned long *did_some_progress
)
2406 struct page
*page
= NULL
;
2407 bool drained
= false;
2409 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2411 if (unlikely(!(*did_some_progress
)))
2414 /* After successful reclaim, reconsider all zones for allocation */
2415 if (IS_ENABLED(CONFIG_NUMA
))
2416 zlc_clear_zones_full(zonelist
);
2419 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2420 zonelist
, high_zoneidx
,
2421 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2422 preferred_zone
, classzone_idx
,
2426 * If an allocation failed after direct reclaim, it could be because
2427 * pages are pinned on the per-cpu lists. Drain them and try again
2429 if (!page
&& !drained
) {
2439 * This is called in the allocator slow-path if the allocation request is of
2440 * sufficient urgency to ignore watermarks and take other desperate measures
2442 static inline struct page
*
2443 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2444 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2445 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2446 int classzone_idx
, int migratetype
)
2451 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2452 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2453 preferred_zone
, classzone_idx
, migratetype
);
2455 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2456 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2457 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2462 static void wake_all_kswapds(unsigned int order
,
2463 struct zonelist
*zonelist
,
2464 enum zone_type high_zoneidx
,
2465 struct zone
*preferred_zone
)
2470 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2471 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2475 gfp_to_alloc_flags(gfp_t gfp_mask
)
2477 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2478 const bool atomic
= !(gfp_mask
& (__GFP_WAIT
| __GFP_NO_KSWAPD
));
2480 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2481 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2484 * The caller may dip into page reserves a bit more if the caller
2485 * cannot run direct reclaim, or if the caller has realtime scheduling
2486 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2487 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2489 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2493 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2494 * if it can't schedule.
2496 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2497 alloc_flags
|= ALLOC_HARDER
;
2499 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2500 * comment for __cpuset_node_allowed_softwall().
2502 alloc_flags
&= ~ALLOC_CPUSET
;
2503 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2504 alloc_flags
|= ALLOC_HARDER
;
2506 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2507 if (gfp_mask
& __GFP_MEMALLOC
)
2508 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2509 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2510 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2511 else if (!in_interrupt() &&
2512 ((current
->flags
& PF_MEMALLOC
) ||
2513 unlikely(test_thread_flag(TIF_MEMDIE
))))
2514 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2517 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2518 alloc_flags
|= ALLOC_CMA
;
2523 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2525 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2528 static inline struct page
*
2529 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2530 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2531 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2532 int classzone_idx
, int migratetype
)
2534 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2535 struct page
*page
= NULL
;
2537 unsigned long pages_reclaimed
= 0;
2538 unsigned long did_some_progress
;
2539 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2540 bool deferred_compaction
= false;
2541 bool contended_compaction
= false;
2544 * In the slowpath, we sanity check order to avoid ever trying to
2545 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2546 * be using allocators in order of preference for an area that is
2549 if (order
>= MAX_ORDER
) {
2550 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2555 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2556 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2557 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2558 * using a larger set of nodes after it has established that the
2559 * allowed per node queues are empty and that nodes are
2562 if (IS_ENABLED(CONFIG_NUMA
) &&
2563 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2567 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2568 wake_all_kswapds(order
, zonelist
, high_zoneidx
, preferred_zone
);
2571 * OK, we're below the kswapd watermark and have kicked background
2572 * reclaim. Now things get more complex, so set up alloc_flags according
2573 * to how we want to proceed.
2575 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2578 * Find the true preferred zone if the allocation is unconstrained by
2581 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
) {
2582 struct zoneref
*preferred_zoneref
;
2583 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2586 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2590 /* This is the last chance, in general, before the goto nopage. */
2591 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2592 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2593 preferred_zone
, classzone_idx
, migratetype
);
2597 /* Allocate without watermarks if the context allows */
2598 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2600 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2601 * the allocation is high priority and these type of
2602 * allocations are system rather than user orientated
2604 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2606 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2607 zonelist
, high_zoneidx
, nodemask
,
2608 preferred_zone
, classzone_idx
, migratetype
);
2614 /* Atomic allocations - we can't balance anything */
2618 /* Avoid recursion of direct reclaim */
2619 if (current
->flags
& PF_MEMALLOC
)
2622 /* Avoid allocations with no watermarks from looping endlessly */
2623 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2627 * Try direct compaction. The first pass is asynchronous. Subsequent
2628 * attempts after direct reclaim are synchronous
2630 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2631 high_zoneidx
, nodemask
, alloc_flags
,
2633 classzone_idx
, migratetype
,
2634 migration_mode
, &contended_compaction
,
2635 &deferred_compaction
,
2636 &did_some_progress
);
2639 migration_mode
= MIGRATE_SYNC_LIGHT
;
2642 * If compaction is deferred for high-order allocations, it is because
2643 * sync compaction recently failed. In this is the case and the caller
2644 * requested a movable allocation that does not heavily disrupt the
2645 * system then fail the allocation instead of entering direct reclaim.
2647 if ((deferred_compaction
|| contended_compaction
) &&
2648 (gfp_mask
& __GFP_NO_KSWAPD
))
2651 /* Try direct reclaim and then allocating */
2652 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2653 zonelist
, high_zoneidx
,
2655 alloc_flags
, preferred_zone
,
2656 classzone_idx
, migratetype
,
2657 &did_some_progress
);
2662 * If we failed to make any progress reclaiming, then we are
2663 * running out of options and have to consider going OOM
2665 if (!did_some_progress
) {
2666 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2667 if (oom_killer_disabled
)
2669 /* Coredumps can quickly deplete all memory reserves */
2670 if ((current
->flags
& PF_DUMPCORE
) &&
2671 !(gfp_mask
& __GFP_NOFAIL
))
2673 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2674 zonelist
, high_zoneidx
,
2675 nodemask
, preferred_zone
,
2676 classzone_idx
, migratetype
);
2680 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2682 * The oom killer is not called for high-order
2683 * allocations that may fail, so if no progress
2684 * is being made, there are no other options and
2685 * retrying is unlikely to help.
2687 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2690 * The oom killer is not called for lowmem
2691 * allocations to prevent needlessly killing
2694 if (high_zoneidx
< ZONE_NORMAL
)
2702 /* Check if we should retry the allocation */
2703 pages_reclaimed
+= did_some_progress
;
2704 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2706 /* Wait for some write requests to complete then retry */
2707 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2711 * High-order allocations do not necessarily loop after
2712 * direct reclaim and reclaim/compaction depends on compaction
2713 * being called after reclaim so call directly if necessary
2715 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2716 high_zoneidx
, nodemask
, alloc_flags
,
2718 classzone_idx
, migratetype
,
2719 migration_mode
, &contended_compaction
,
2720 &deferred_compaction
,
2721 &did_some_progress
);
2727 warn_alloc_failed(gfp_mask
, order
, NULL
);
2730 if (kmemcheck_enabled
)
2731 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2737 * This is the 'heart' of the zoned buddy allocator.
2740 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2741 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2743 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2744 struct zone
*preferred_zone
;
2745 struct zoneref
*preferred_zoneref
;
2746 struct page
*page
= NULL
;
2747 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2748 unsigned int cpuset_mems_cookie
;
2749 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2750 struct mem_cgroup
*memcg
= NULL
;
2753 gfp_mask
&= gfp_allowed_mask
;
2755 lockdep_trace_alloc(gfp_mask
);
2757 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2759 if (should_fail_alloc_page(gfp_mask
, order
))
2763 * Check the zones suitable for the gfp_mask contain at least one
2764 * valid zone. It's possible to have an empty zonelist as a result
2765 * of GFP_THISNODE and a memoryless node
2767 if (unlikely(!zonelist
->_zonerefs
->zone
))
2771 * Will only have any effect when __GFP_KMEMCG is set. This is
2772 * verified in the (always inline) callee
2774 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2778 cpuset_mems_cookie
= read_mems_allowed_begin();
2780 /* The preferred zone is used for statistics later */
2781 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2782 nodemask
? : &cpuset_current_mems_allowed
,
2784 if (!preferred_zone
)
2786 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2789 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2790 alloc_flags
|= ALLOC_CMA
;
2792 /* First allocation attempt */
2793 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2794 zonelist
, high_zoneidx
, alloc_flags
,
2795 preferred_zone
, classzone_idx
, migratetype
);
2796 if (unlikely(!page
)) {
2798 * Runtime PM, block IO and its error handling path
2799 * can deadlock because I/O on the device might not
2802 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2803 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2804 zonelist
, high_zoneidx
, nodemask
,
2805 preferred_zone
, classzone_idx
, migratetype
);
2808 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2812 * When updating a task's mems_allowed, it is possible to race with
2813 * parallel threads in such a way that an allocation can fail while
2814 * the mask is being updated. If a page allocation is about to fail,
2815 * check if the cpuset changed during allocation and if so, retry.
2817 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2820 memcg_kmem_commit_charge(page
, memcg
, order
);
2824 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2827 * Common helper functions.
2829 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2834 * __get_free_pages() returns a 32-bit address, which cannot represent
2837 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2839 page
= alloc_pages(gfp_mask
, order
);
2842 return (unsigned long) page_address(page
);
2844 EXPORT_SYMBOL(__get_free_pages
);
2846 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2848 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2850 EXPORT_SYMBOL(get_zeroed_page
);
2852 void __free_pages(struct page
*page
, unsigned int order
)
2854 if (put_page_testzero(page
)) {
2856 free_hot_cold_page(page
, false);
2858 __free_pages_ok(page
, order
);
2862 EXPORT_SYMBOL(__free_pages
);
2864 void free_pages(unsigned long addr
, unsigned int order
)
2867 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2868 __free_pages(virt_to_page((void *)addr
), order
);
2872 EXPORT_SYMBOL(free_pages
);
2875 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2876 * pages allocated with __GFP_KMEMCG.
2878 * Those pages are accounted to a particular memcg, embedded in the
2879 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2880 * for that information only to find out that it is NULL for users who have no
2881 * interest in that whatsoever, we provide these functions.
2883 * The caller knows better which flags it relies on.
2885 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2887 memcg_kmem_uncharge_pages(page
, order
);
2888 __free_pages(page
, order
);
2891 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2894 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2895 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2899 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2902 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2903 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2905 split_page(virt_to_page((void *)addr
), order
);
2906 while (used
< alloc_end
) {
2911 return (void *)addr
;
2915 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2916 * @size: the number of bytes to allocate
2917 * @gfp_mask: GFP flags for the allocation
2919 * This function is similar to alloc_pages(), except that it allocates the
2920 * minimum number of pages to satisfy the request. alloc_pages() can only
2921 * allocate memory in power-of-two pages.
2923 * This function is also limited by MAX_ORDER.
2925 * Memory allocated by this function must be released by free_pages_exact().
2927 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2929 unsigned int order
= get_order(size
);
2932 addr
= __get_free_pages(gfp_mask
, order
);
2933 return make_alloc_exact(addr
, order
, size
);
2935 EXPORT_SYMBOL(alloc_pages_exact
);
2938 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2940 * @nid: the preferred node ID where memory should be allocated
2941 * @size: the number of bytes to allocate
2942 * @gfp_mask: GFP flags for the allocation
2944 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2946 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2949 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2951 unsigned order
= get_order(size
);
2952 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2955 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2957 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2960 * free_pages_exact - release memory allocated via alloc_pages_exact()
2961 * @virt: the value returned by alloc_pages_exact.
2962 * @size: size of allocation, same value as passed to alloc_pages_exact().
2964 * Release the memory allocated by a previous call to alloc_pages_exact.
2966 void free_pages_exact(void *virt
, size_t size
)
2968 unsigned long addr
= (unsigned long)virt
;
2969 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2971 while (addr
< end
) {
2976 EXPORT_SYMBOL(free_pages_exact
);
2979 * nr_free_zone_pages - count number of pages beyond high watermark
2980 * @offset: The zone index of the highest zone
2982 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2983 * high watermark within all zones at or below a given zone index. For each
2984 * zone, the number of pages is calculated as:
2985 * managed_pages - high_pages
2987 static unsigned long nr_free_zone_pages(int offset
)
2992 /* Just pick one node, since fallback list is circular */
2993 unsigned long sum
= 0;
2995 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2997 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2998 unsigned long size
= zone
->managed_pages
;
2999 unsigned long high
= high_wmark_pages(zone
);
3008 * nr_free_buffer_pages - count number of pages beyond high watermark
3010 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3011 * watermark within ZONE_DMA and ZONE_NORMAL.
3013 unsigned long nr_free_buffer_pages(void)
3015 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3017 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3020 * nr_free_pagecache_pages - count number of pages beyond high watermark
3022 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3023 * high watermark within all zones.
3025 unsigned long nr_free_pagecache_pages(void)
3027 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3030 static inline void show_node(struct zone
*zone
)
3032 if (IS_ENABLED(CONFIG_NUMA
))
3033 printk("Node %d ", zone_to_nid(zone
));
3036 void si_meminfo(struct sysinfo
*val
)
3038 val
->totalram
= totalram_pages
;
3040 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3041 val
->bufferram
= nr_blockdev_pages();
3042 val
->totalhigh
= totalhigh_pages
;
3043 val
->freehigh
= nr_free_highpages();
3044 val
->mem_unit
= PAGE_SIZE
;
3047 EXPORT_SYMBOL(si_meminfo
);
3050 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3052 int zone_type
; /* needs to be signed */
3053 unsigned long managed_pages
= 0;
3054 pg_data_t
*pgdat
= NODE_DATA(nid
);
3056 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3057 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3058 val
->totalram
= managed_pages
;
3059 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3060 #ifdef CONFIG_HIGHMEM
3061 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3062 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3068 val
->mem_unit
= PAGE_SIZE
;
3073 * Determine whether the node should be displayed or not, depending on whether
3074 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3076 bool skip_free_areas_node(unsigned int flags
, int nid
)
3079 unsigned int cpuset_mems_cookie
;
3081 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3085 cpuset_mems_cookie
= read_mems_allowed_begin();
3086 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3087 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3092 #define K(x) ((x) << (PAGE_SHIFT-10))
3094 static void show_migration_types(unsigned char type
)
3096 static const char types
[MIGRATE_TYPES
] = {
3097 [MIGRATE_UNMOVABLE
] = 'U',
3098 [MIGRATE_RECLAIMABLE
] = 'E',
3099 [MIGRATE_MOVABLE
] = 'M',
3100 [MIGRATE_RESERVE
] = 'R',
3102 [MIGRATE_CMA
] = 'C',
3104 #ifdef CONFIG_MEMORY_ISOLATION
3105 [MIGRATE_ISOLATE
] = 'I',
3108 char tmp
[MIGRATE_TYPES
+ 1];
3112 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3113 if (type
& (1 << i
))
3118 printk("(%s) ", tmp
);
3122 * Show free area list (used inside shift_scroll-lock stuff)
3123 * We also calculate the percentage fragmentation. We do this by counting the
3124 * memory on each free list with the exception of the first item on the list.
3125 * Suppresses nodes that are not allowed by current's cpuset if
3126 * SHOW_MEM_FILTER_NODES is passed.
3128 void show_free_areas(unsigned int filter
)
3133 for_each_populated_zone(zone
) {
3134 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3137 printk("%s per-cpu:\n", zone
->name
);
3139 for_each_online_cpu(cpu
) {
3140 struct per_cpu_pageset
*pageset
;
3142 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3144 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3145 cpu
, pageset
->pcp
.high
,
3146 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3150 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3151 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3153 " dirty:%lu writeback:%lu unstable:%lu\n"
3154 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3155 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3157 global_page_state(NR_ACTIVE_ANON
),
3158 global_page_state(NR_INACTIVE_ANON
),
3159 global_page_state(NR_ISOLATED_ANON
),
3160 global_page_state(NR_ACTIVE_FILE
),
3161 global_page_state(NR_INACTIVE_FILE
),
3162 global_page_state(NR_ISOLATED_FILE
),
3163 global_page_state(NR_UNEVICTABLE
),
3164 global_page_state(NR_FILE_DIRTY
),
3165 global_page_state(NR_WRITEBACK
),
3166 global_page_state(NR_UNSTABLE_NFS
),
3167 global_page_state(NR_FREE_PAGES
),
3168 global_page_state(NR_SLAB_RECLAIMABLE
),
3169 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3170 global_page_state(NR_FILE_MAPPED
),
3171 global_page_state(NR_SHMEM
),
3172 global_page_state(NR_PAGETABLE
),
3173 global_page_state(NR_BOUNCE
),
3174 global_page_state(NR_FREE_CMA_PAGES
));
3176 for_each_populated_zone(zone
) {
3179 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3187 " active_anon:%lukB"
3188 " inactive_anon:%lukB"
3189 " active_file:%lukB"
3190 " inactive_file:%lukB"
3191 " unevictable:%lukB"
3192 " isolated(anon):%lukB"
3193 " isolated(file):%lukB"
3201 " slab_reclaimable:%lukB"
3202 " slab_unreclaimable:%lukB"
3203 " kernel_stack:%lukB"
3208 " writeback_tmp:%lukB"
3209 " pages_scanned:%lu"
3210 " all_unreclaimable? %s"
3213 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3214 K(min_wmark_pages(zone
)),
3215 K(low_wmark_pages(zone
)),
3216 K(high_wmark_pages(zone
)),
3217 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3218 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3219 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3220 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3221 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3222 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3223 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3224 K(zone
->present_pages
),
3225 K(zone
->managed_pages
),
3226 K(zone_page_state(zone
, NR_MLOCK
)),
3227 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3228 K(zone_page_state(zone
, NR_WRITEBACK
)),
3229 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3230 K(zone_page_state(zone
, NR_SHMEM
)),
3231 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3232 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3233 zone_page_state(zone
, NR_KERNEL_STACK
) *
3235 K(zone_page_state(zone
, NR_PAGETABLE
)),
3236 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3237 K(zone_page_state(zone
, NR_BOUNCE
)),
3238 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3239 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3240 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3241 (!zone_reclaimable(zone
) ? "yes" : "no")
3243 printk("lowmem_reserve[]:");
3244 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3245 printk(" %ld", zone
->lowmem_reserve
[i
]);
3249 for_each_populated_zone(zone
) {
3250 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3251 unsigned char types
[MAX_ORDER
];
3253 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3256 printk("%s: ", zone
->name
);
3258 spin_lock_irqsave(&zone
->lock
, flags
);
3259 for (order
= 0; order
< MAX_ORDER
; order
++) {
3260 struct free_area
*area
= &zone
->free_area
[order
];
3263 nr
[order
] = area
->nr_free
;
3264 total
+= nr
[order
] << order
;
3267 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3268 if (!list_empty(&area
->free_list
[type
]))
3269 types
[order
] |= 1 << type
;
3272 spin_unlock_irqrestore(&zone
->lock
, flags
);
3273 for (order
= 0; order
< MAX_ORDER
; order
++) {
3274 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3276 show_migration_types(types
[order
]);
3278 printk("= %lukB\n", K(total
));
3281 hugetlb_show_meminfo();
3283 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3285 show_swap_cache_info();
3288 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3290 zoneref
->zone
= zone
;
3291 zoneref
->zone_idx
= zone_idx(zone
);
3295 * Builds allocation fallback zone lists.
3297 * Add all populated zones of a node to the zonelist.
3299 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3303 enum zone_type zone_type
= MAX_NR_ZONES
;
3307 zone
= pgdat
->node_zones
+ zone_type
;
3308 if (populated_zone(zone
)) {
3309 zoneref_set_zone(zone
,
3310 &zonelist
->_zonerefs
[nr_zones
++]);
3311 check_highest_zone(zone_type
);
3313 } while (zone_type
);
3321 * 0 = automatic detection of better ordering.
3322 * 1 = order by ([node] distance, -zonetype)
3323 * 2 = order by (-zonetype, [node] distance)
3325 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3326 * the same zonelist. So only NUMA can configure this param.
3328 #define ZONELIST_ORDER_DEFAULT 0
3329 #define ZONELIST_ORDER_NODE 1
3330 #define ZONELIST_ORDER_ZONE 2
3332 /* zonelist order in the kernel.
3333 * set_zonelist_order() will set this to NODE or ZONE.
3335 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3336 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3340 /* The value user specified ....changed by config */
3341 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3342 /* string for sysctl */
3343 #define NUMA_ZONELIST_ORDER_LEN 16
3344 char numa_zonelist_order
[16] = "default";
3347 * interface for configure zonelist ordering.
3348 * command line option "numa_zonelist_order"
3349 * = "[dD]efault - default, automatic configuration.
3350 * = "[nN]ode - order by node locality, then by zone within node
3351 * = "[zZ]one - order by zone, then by locality within zone
3354 static int __parse_numa_zonelist_order(char *s
)
3356 if (*s
== 'd' || *s
== 'D') {
3357 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3358 } else if (*s
== 'n' || *s
== 'N') {
3359 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3360 } else if (*s
== 'z' || *s
== 'Z') {
3361 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3364 "Ignoring invalid numa_zonelist_order value: "
3371 static __init
int setup_numa_zonelist_order(char *s
)
3378 ret
= __parse_numa_zonelist_order(s
);
3380 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3384 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3387 * sysctl handler for numa_zonelist_order
3389 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3390 void __user
*buffer
, size_t *length
,
3393 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3395 static DEFINE_MUTEX(zl_order_mutex
);
3397 mutex_lock(&zl_order_mutex
);
3399 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3403 strcpy(saved_string
, (char *)table
->data
);
3405 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3409 int oldval
= user_zonelist_order
;
3411 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3414 * bogus value. restore saved string
3416 strncpy((char *)table
->data
, saved_string
,
3417 NUMA_ZONELIST_ORDER_LEN
);
3418 user_zonelist_order
= oldval
;
3419 } else if (oldval
!= user_zonelist_order
) {
3420 mutex_lock(&zonelists_mutex
);
3421 build_all_zonelists(NULL
, NULL
);
3422 mutex_unlock(&zonelists_mutex
);
3426 mutex_unlock(&zl_order_mutex
);
3431 #define MAX_NODE_LOAD (nr_online_nodes)
3432 static int node_load
[MAX_NUMNODES
];
3435 * find_next_best_node - find the next node that should appear in a given node's fallback list
3436 * @node: node whose fallback list we're appending
3437 * @used_node_mask: nodemask_t of already used nodes
3439 * We use a number of factors to determine which is the next node that should
3440 * appear on a given node's fallback list. The node should not have appeared
3441 * already in @node's fallback list, and it should be the next closest node
3442 * according to the distance array (which contains arbitrary distance values
3443 * from each node to each node in the system), and should also prefer nodes
3444 * with no CPUs, since presumably they'll have very little allocation pressure
3445 * on them otherwise.
3446 * It returns -1 if no node is found.
3448 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3451 int min_val
= INT_MAX
;
3452 int best_node
= NUMA_NO_NODE
;
3453 const struct cpumask
*tmp
= cpumask_of_node(0);
3455 /* Use the local node if we haven't already */
3456 if (!node_isset(node
, *used_node_mask
)) {
3457 node_set(node
, *used_node_mask
);
3461 for_each_node_state(n
, N_MEMORY
) {
3463 /* Don't want a node to appear more than once */
3464 if (node_isset(n
, *used_node_mask
))
3467 /* Use the distance array to find the distance */
3468 val
= node_distance(node
, n
);
3470 /* Penalize nodes under us ("prefer the next node") */
3473 /* Give preference to headless and unused nodes */
3474 tmp
= cpumask_of_node(n
);
3475 if (!cpumask_empty(tmp
))
3476 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3478 /* Slight preference for less loaded node */
3479 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3480 val
+= node_load
[n
];
3482 if (val
< min_val
) {
3489 node_set(best_node
, *used_node_mask
);
3496 * Build zonelists ordered by node and zones within node.
3497 * This results in maximum locality--normal zone overflows into local
3498 * DMA zone, if any--but risks exhausting DMA zone.
3500 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3503 struct zonelist
*zonelist
;
3505 zonelist
= &pgdat
->node_zonelists
[0];
3506 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3508 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3509 zonelist
->_zonerefs
[j
].zone
= NULL
;
3510 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3514 * Build gfp_thisnode zonelists
3516 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3519 struct zonelist
*zonelist
;
3521 zonelist
= &pgdat
->node_zonelists
[1];
3522 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3523 zonelist
->_zonerefs
[j
].zone
= NULL
;
3524 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3528 * Build zonelists ordered by zone and nodes within zones.
3529 * This results in conserving DMA zone[s] until all Normal memory is
3530 * exhausted, but results in overflowing to remote node while memory
3531 * may still exist in local DMA zone.
3533 static int node_order
[MAX_NUMNODES
];
3535 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3538 int zone_type
; /* needs to be signed */
3540 struct zonelist
*zonelist
;
3542 zonelist
= &pgdat
->node_zonelists
[0];
3544 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3545 for (j
= 0; j
< nr_nodes
; j
++) {
3546 node
= node_order
[j
];
3547 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3548 if (populated_zone(z
)) {
3550 &zonelist
->_zonerefs
[pos
++]);
3551 check_highest_zone(zone_type
);
3555 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3556 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3559 static int default_zonelist_order(void)
3562 unsigned long low_kmem_size
, total_size
;
3566 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3567 * If they are really small and used heavily, the system can fall
3568 * into OOM very easily.
3569 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3571 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3574 for_each_online_node(nid
) {
3575 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3576 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3577 if (populated_zone(z
)) {
3578 if (zone_type
< ZONE_NORMAL
)
3579 low_kmem_size
+= z
->managed_pages
;
3580 total_size
+= z
->managed_pages
;
3581 } else if (zone_type
== ZONE_NORMAL
) {
3583 * If any node has only lowmem, then node order
3584 * is preferred to allow kernel allocations
3585 * locally; otherwise, they can easily infringe
3586 * on other nodes when there is an abundance of
3587 * lowmem available to allocate from.
3589 return ZONELIST_ORDER_NODE
;
3593 if (!low_kmem_size
|| /* there are no DMA area. */
3594 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3595 return ZONELIST_ORDER_NODE
;
3597 * look into each node's config.
3598 * If there is a node whose DMA/DMA32 memory is very big area on
3599 * local memory, NODE_ORDER may be suitable.
3601 average_size
= total_size
/
3602 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3603 for_each_online_node(nid
) {
3606 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3607 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3608 if (populated_zone(z
)) {
3609 if (zone_type
< ZONE_NORMAL
)
3610 low_kmem_size
+= z
->present_pages
;
3611 total_size
+= z
->present_pages
;
3614 if (low_kmem_size
&&
3615 total_size
> average_size
&& /* ignore small node */
3616 low_kmem_size
> total_size
* 70/100)
3617 return ZONELIST_ORDER_NODE
;
3619 return ZONELIST_ORDER_ZONE
;
3622 static void set_zonelist_order(void)
3624 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3625 current_zonelist_order
= default_zonelist_order();
3627 current_zonelist_order
= user_zonelist_order
;
3630 static void build_zonelists(pg_data_t
*pgdat
)
3634 nodemask_t used_mask
;
3635 int local_node
, prev_node
;
3636 struct zonelist
*zonelist
;
3637 int order
= current_zonelist_order
;
3639 /* initialize zonelists */
3640 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3641 zonelist
= pgdat
->node_zonelists
+ i
;
3642 zonelist
->_zonerefs
[0].zone
= NULL
;
3643 zonelist
->_zonerefs
[0].zone_idx
= 0;
3646 /* NUMA-aware ordering of nodes */
3647 local_node
= pgdat
->node_id
;
3648 load
= nr_online_nodes
;
3649 prev_node
= local_node
;
3650 nodes_clear(used_mask
);
3652 memset(node_order
, 0, sizeof(node_order
));
3655 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3657 * We don't want to pressure a particular node.
3658 * So adding penalty to the first node in same
3659 * distance group to make it round-robin.
3661 if (node_distance(local_node
, node
) !=
3662 node_distance(local_node
, prev_node
))
3663 node_load
[node
] = load
;
3667 if (order
== ZONELIST_ORDER_NODE
)
3668 build_zonelists_in_node_order(pgdat
, node
);
3670 node_order
[j
++] = node
; /* remember order */
3673 if (order
== ZONELIST_ORDER_ZONE
) {
3674 /* calculate node order -- i.e., DMA last! */
3675 build_zonelists_in_zone_order(pgdat
, j
);
3678 build_thisnode_zonelists(pgdat
);
3681 /* Construct the zonelist performance cache - see further mmzone.h */
3682 static void build_zonelist_cache(pg_data_t
*pgdat
)
3684 struct zonelist
*zonelist
;
3685 struct zonelist_cache
*zlc
;
3688 zonelist
= &pgdat
->node_zonelists
[0];
3689 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3690 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3691 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3692 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3695 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3697 * Return node id of node used for "local" allocations.
3698 * I.e., first node id of first zone in arg node's generic zonelist.
3699 * Used for initializing percpu 'numa_mem', which is used primarily
3700 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3702 int local_memory_node(int node
)
3706 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3707 gfp_zone(GFP_KERNEL
),
3714 #else /* CONFIG_NUMA */
3716 static void set_zonelist_order(void)
3718 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3721 static void build_zonelists(pg_data_t
*pgdat
)
3723 int node
, local_node
;
3725 struct zonelist
*zonelist
;
3727 local_node
= pgdat
->node_id
;
3729 zonelist
= &pgdat
->node_zonelists
[0];
3730 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3733 * Now we build the zonelist so that it contains the zones
3734 * of all the other nodes.
3735 * We don't want to pressure a particular node, so when
3736 * building the zones for node N, we make sure that the
3737 * zones coming right after the local ones are those from
3738 * node N+1 (modulo N)
3740 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3741 if (!node_online(node
))
3743 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3745 for (node
= 0; node
< local_node
; node
++) {
3746 if (!node_online(node
))
3748 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3751 zonelist
->_zonerefs
[j
].zone
= NULL
;
3752 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3755 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3756 static void build_zonelist_cache(pg_data_t
*pgdat
)
3758 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3761 #endif /* CONFIG_NUMA */
3764 * Boot pageset table. One per cpu which is going to be used for all
3765 * zones and all nodes. The parameters will be set in such a way
3766 * that an item put on a list will immediately be handed over to
3767 * the buddy list. This is safe since pageset manipulation is done
3768 * with interrupts disabled.
3770 * The boot_pagesets must be kept even after bootup is complete for
3771 * unused processors and/or zones. They do play a role for bootstrapping
3772 * hotplugged processors.
3774 * zoneinfo_show() and maybe other functions do
3775 * not check if the processor is online before following the pageset pointer.
3776 * Other parts of the kernel may not check if the zone is available.
3778 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3779 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3780 static void setup_zone_pageset(struct zone
*zone
);
3783 * Global mutex to protect against size modification of zonelists
3784 * as well as to serialize pageset setup for the new populated zone.
3786 DEFINE_MUTEX(zonelists_mutex
);
3788 /* return values int ....just for stop_machine() */
3789 static int __build_all_zonelists(void *data
)
3793 pg_data_t
*self
= data
;
3796 memset(node_load
, 0, sizeof(node_load
));
3799 if (self
&& !node_online(self
->node_id
)) {
3800 build_zonelists(self
);
3801 build_zonelist_cache(self
);
3804 for_each_online_node(nid
) {
3805 pg_data_t
*pgdat
= NODE_DATA(nid
);
3807 build_zonelists(pgdat
);
3808 build_zonelist_cache(pgdat
);
3812 * Initialize the boot_pagesets that are going to be used
3813 * for bootstrapping processors. The real pagesets for
3814 * each zone will be allocated later when the per cpu
3815 * allocator is available.
3817 * boot_pagesets are used also for bootstrapping offline
3818 * cpus if the system is already booted because the pagesets
3819 * are needed to initialize allocators on a specific cpu too.
3820 * F.e. the percpu allocator needs the page allocator which
3821 * needs the percpu allocator in order to allocate its pagesets
3822 * (a chicken-egg dilemma).
3824 for_each_possible_cpu(cpu
) {
3825 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3827 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3829 * We now know the "local memory node" for each node--
3830 * i.e., the node of the first zone in the generic zonelist.
3831 * Set up numa_mem percpu variable for on-line cpus. During
3832 * boot, only the boot cpu should be on-line; we'll init the
3833 * secondary cpus' numa_mem as they come on-line. During
3834 * node/memory hotplug, we'll fixup all on-line cpus.
3836 if (cpu_online(cpu
))
3837 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3845 * Called with zonelists_mutex held always
3846 * unless system_state == SYSTEM_BOOTING.
3848 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3850 set_zonelist_order();
3852 if (system_state
== SYSTEM_BOOTING
) {
3853 __build_all_zonelists(NULL
);
3854 mminit_verify_zonelist();
3855 cpuset_init_current_mems_allowed();
3857 #ifdef CONFIG_MEMORY_HOTPLUG
3859 setup_zone_pageset(zone
);
3861 /* we have to stop all cpus to guarantee there is no user
3863 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3864 /* cpuset refresh routine should be here */
3866 vm_total_pages
= nr_free_pagecache_pages();
3868 * Disable grouping by mobility if the number of pages in the
3869 * system is too low to allow the mechanism to work. It would be
3870 * more accurate, but expensive to check per-zone. This check is
3871 * made on memory-hotadd so a system can start with mobility
3872 * disabled and enable it later
3874 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3875 page_group_by_mobility_disabled
= 1;
3877 page_group_by_mobility_disabled
= 0;
3879 printk("Built %i zonelists in %s order, mobility grouping %s. "
3880 "Total pages: %ld\n",
3882 zonelist_order_name
[current_zonelist_order
],
3883 page_group_by_mobility_disabled
? "off" : "on",
3886 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3891 * Helper functions to size the waitqueue hash table.
3892 * Essentially these want to choose hash table sizes sufficiently
3893 * large so that collisions trying to wait on pages are rare.
3894 * But in fact, the number of active page waitqueues on typical
3895 * systems is ridiculously low, less than 200. So this is even
3896 * conservative, even though it seems large.
3898 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3899 * waitqueues, i.e. the size of the waitq table given the number of pages.
3901 #define PAGES_PER_WAITQUEUE 256
3903 #ifndef CONFIG_MEMORY_HOTPLUG
3904 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3906 unsigned long size
= 1;
3908 pages
/= PAGES_PER_WAITQUEUE
;
3910 while (size
< pages
)
3914 * Once we have dozens or even hundreds of threads sleeping
3915 * on IO we've got bigger problems than wait queue collision.
3916 * Limit the size of the wait table to a reasonable size.
3918 size
= min(size
, 4096UL);
3920 return max(size
, 4UL);
3924 * A zone's size might be changed by hot-add, so it is not possible to determine
3925 * a suitable size for its wait_table. So we use the maximum size now.
3927 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3929 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3930 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3931 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3933 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3934 * or more by the traditional way. (See above). It equals:
3936 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3937 * ia64(16K page size) : = ( 8G + 4M)byte.
3938 * powerpc (64K page size) : = (32G +16M)byte.
3940 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3947 * This is an integer logarithm so that shifts can be used later
3948 * to extract the more random high bits from the multiplicative
3949 * hash function before the remainder is taken.
3951 static inline unsigned long wait_table_bits(unsigned long size
)
3956 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3959 * Check if a pageblock contains reserved pages
3961 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3965 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3966 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3973 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3974 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3975 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3976 * higher will lead to a bigger reserve which will get freed as contiguous
3977 * blocks as reclaim kicks in
3979 static void setup_zone_migrate_reserve(struct zone
*zone
)
3981 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3983 unsigned long block_migratetype
;
3988 * Get the start pfn, end pfn and the number of blocks to reserve
3989 * We have to be careful to be aligned to pageblock_nr_pages to
3990 * make sure that we always check pfn_valid for the first page in
3993 start_pfn
= zone
->zone_start_pfn
;
3994 end_pfn
= zone_end_pfn(zone
);
3995 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3996 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
4000 * Reserve blocks are generally in place to help high-order atomic
4001 * allocations that are short-lived. A min_free_kbytes value that
4002 * would result in more than 2 reserve blocks for atomic allocations
4003 * is assumed to be in place to help anti-fragmentation for the
4004 * future allocation of hugepages at runtime.
4006 reserve
= min(2, reserve
);
4007 old_reserve
= zone
->nr_migrate_reserve_block
;
4009 /* When memory hot-add, we almost always need to do nothing */
4010 if (reserve
== old_reserve
)
4012 zone
->nr_migrate_reserve_block
= reserve
;
4014 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
4015 if (!pfn_valid(pfn
))
4017 page
= pfn_to_page(pfn
);
4019 /* Watch out for overlapping nodes */
4020 if (page_to_nid(page
) != zone_to_nid(zone
))
4023 block_migratetype
= get_pageblock_migratetype(page
);
4025 /* Only test what is necessary when the reserves are not met */
4028 * Blocks with reserved pages will never free, skip
4031 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
4032 if (pageblock_is_reserved(pfn
, block_end_pfn
))
4035 /* If this block is reserved, account for it */
4036 if (block_migratetype
== MIGRATE_RESERVE
) {
4041 /* Suitable for reserving if this block is movable */
4042 if (block_migratetype
== MIGRATE_MOVABLE
) {
4043 set_pageblock_migratetype(page
,
4045 move_freepages_block(zone
, page
,
4050 } else if (!old_reserve
) {
4052 * At boot time we don't need to scan the whole zone
4053 * for turning off MIGRATE_RESERVE.
4059 * If the reserve is met and this is a previous reserved block,
4062 if (block_migratetype
== MIGRATE_RESERVE
) {
4063 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4064 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4070 * Initially all pages are reserved - free ones are freed
4071 * up by free_all_bootmem() once the early boot process is
4072 * done. Non-atomic initialization, single-pass.
4074 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4075 unsigned long start_pfn
, enum memmap_context context
)
4078 unsigned long end_pfn
= start_pfn
+ size
;
4082 if (highest_memmap_pfn
< end_pfn
- 1)
4083 highest_memmap_pfn
= end_pfn
- 1;
4085 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4086 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4088 * There can be holes in boot-time mem_map[]s
4089 * handed to this function. They do not
4090 * exist on hotplugged memory.
4092 if (context
== MEMMAP_EARLY
) {
4093 if (!early_pfn_valid(pfn
))
4095 if (!early_pfn_in_nid(pfn
, nid
))
4098 page
= pfn_to_page(pfn
);
4099 set_page_links(page
, zone
, nid
, pfn
);
4100 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4101 init_page_count(page
);
4102 page_mapcount_reset(page
);
4103 page_nid_reset_last(page
);
4104 SetPageReserved(page
);
4106 * Mark the block movable so that blocks are reserved for
4107 * movable at startup. This will force kernel allocations
4108 * to reserve their blocks rather than leaking throughout
4109 * the address space during boot when many long-lived
4110 * kernel allocations are made. Later some blocks near
4111 * the start are marked MIGRATE_RESERVE by
4112 * setup_zone_migrate_reserve()
4114 * bitmap is created for zone's valid pfn range. but memmap
4115 * can be created for invalid pages (for alignment)
4116 * check here not to call set_pageblock_migratetype() against
4119 if ((z
->zone_start_pfn
<= pfn
)
4120 && (pfn
< zone_end_pfn(z
))
4121 && !(pfn
& (pageblock_nr_pages
- 1)))
4122 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4124 INIT_LIST_HEAD(&page
->lru
);
4125 #ifdef WANT_PAGE_VIRTUAL
4126 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4127 if (!is_highmem_idx(zone
))
4128 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4133 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4135 unsigned int order
, t
;
4136 for_each_migratetype_order(order
, t
) {
4137 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4138 zone
->free_area
[order
].nr_free
= 0;
4142 #ifndef __HAVE_ARCH_MEMMAP_INIT
4143 #define memmap_init(size, nid, zone, start_pfn) \
4144 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4147 static int zone_batchsize(struct zone
*zone
)
4153 * The per-cpu-pages pools are set to around 1000th of the
4154 * size of the zone. But no more than 1/2 of a meg.
4156 * OK, so we don't know how big the cache is. So guess.
4158 batch
= zone
->managed_pages
/ 1024;
4159 if (batch
* PAGE_SIZE
> 512 * 1024)
4160 batch
= (512 * 1024) / PAGE_SIZE
;
4161 batch
/= 4; /* We effectively *= 4 below */
4166 * Clamp the batch to a 2^n - 1 value. Having a power
4167 * of 2 value was found to be more likely to have
4168 * suboptimal cache aliasing properties in some cases.
4170 * For example if 2 tasks are alternately allocating
4171 * batches of pages, one task can end up with a lot
4172 * of pages of one half of the possible page colors
4173 * and the other with pages of the other colors.
4175 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4180 /* The deferral and batching of frees should be suppressed under NOMMU
4183 * The problem is that NOMMU needs to be able to allocate large chunks
4184 * of contiguous memory as there's no hardware page translation to
4185 * assemble apparent contiguous memory from discontiguous pages.
4187 * Queueing large contiguous runs of pages for batching, however,
4188 * causes the pages to actually be freed in smaller chunks. As there
4189 * can be a significant delay between the individual batches being
4190 * recycled, this leads to the once large chunks of space being
4191 * fragmented and becoming unavailable for high-order allocations.
4198 * pcp->high and pcp->batch values are related and dependent on one another:
4199 * ->batch must never be higher then ->high.
4200 * The following function updates them in a safe manner without read side
4203 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4204 * those fields changing asynchronously (acording the the above rule).
4206 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4207 * outside of boot time (or some other assurance that no concurrent updaters
4210 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4211 unsigned long batch
)
4213 /* start with a fail safe value for batch */
4217 /* Update high, then batch, in order */
4224 /* a companion to pageset_set_high() */
4225 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4227 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4230 static void pageset_init(struct per_cpu_pageset
*p
)
4232 struct per_cpu_pages
*pcp
;
4235 memset(p
, 0, sizeof(*p
));
4239 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4240 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4243 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4246 pageset_set_batch(p
, batch
);
4250 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4251 * to the value high for the pageset p.
4253 static void pageset_set_high(struct per_cpu_pageset
*p
,
4256 unsigned long batch
= max(1UL, high
/ 4);
4257 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4258 batch
= PAGE_SHIFT
* 8;
4260 pageset_update(&p
->pcp
, high
, batch
);
4263 static void pageset_set_high_and_batch(struct zone
*zone
,
4264 struct per_cpu_pageset
*pcp
)
4266 if (percpu_pagelist_fraction
)
4267 pageset_set_high(pcp
,
4268 (zone
->managed_pages
/
4269 percpu_pagelist_fraction
));
4271 pageset_set_batch(pcp
, zone_batchsize(zone
));
4274 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4276 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4279 pageset_set_high_and_batch(zone
, pcp
);
4282 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4285 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4286 for_each_possible_cpu(cpu
)
4287 zone_pageset_init(zone
, cpu
);
4291 * Allocate per cpu pagesets and initialize them.
4292 * Before this call only boot pagesets were available.
4294 void __init
setup_per_cpu_pageset(void)
4298 for_each_populated_zone(zone
)
4299 setup_zone_pageset(zone
);
4302 static noinline __init_refok
4303 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4306 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4310 * The per-page waitqueue mechanism uses hashed waitqueues
4313 zone
->wait_table_hash_nr_entries
=
4314 wait_table_hash_nr_entries(zone_size_pages
);
4315 zone
->wait_table_bits
=
4316 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4317 alloc_size
= zone
->wait_table_hash_nr_entries
4318 * sizeof(wait_queue_head_t
);
4320 if (!slab_is_available()) {
4321 zone
->wait_table
= (wait_queue_head_t
*)
4322 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
4325 * This case means that a zone whose size was 0 gets new memory
4326 * via memory hot-add.
4327 * But it may be the case that a new node was hot-added. In
4328 * this case vmalloc() will not be able to use this new node's
4329 * memory - this wait_table must be initialized to use this new
4330 * node itself as well.
4331 * To use this new node's memory, further consideration will be
4334 zone
->wait_table
= vmalloc(alloc_size
);
4336 if (!zone
->wait_table
)
4339 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4340 init_waitqueue_head(zone
->wait_table
+ i
);
4345 static __meminit
void zone_pcp_init(struct zone
*zone
)
4348 * per cpu subsystem is not up at this point. The following code
4349 * relies on the ability of the linker to provide the
4350 * offset of a (static) per cpu variable into the per cpu area.
4352 zone
->pageset
= &boot_pageset
;
4354 if (zone
->present_pages
)
4355 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4356 zone
->name
, zone
->present_pages
,
4357 zone_batchsize(zone
));
4360 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4361 unsigned long zone_start_pfn
,
4363 enum memmap_context context
)
4365 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4367 ret
= zone_wait_table_init(zone
, size
);
4370 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4372 zone
->zone_start_pfn
= zone_start_pfn
;
4374 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4375 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4377 (unsigned long)zone_idx(zone
),
4378 zone_start_pfn
, (zone_start_pfn
+ size
));
4380 zone_init_free_lists(zone
);
4385 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4386 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4388 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4389 * Architectures may implement their own version but if add_active_range()
4390 * was used and there are no special requirements, this is a convenient
4393 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4395 unsigned long start_pfn
, end_pfn
;
4398 * NOTE: The following SMP-unsafe globals are only used early in boot
4399 * when the kernel is running single-threaded.
4401 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4402 static int __meminitdata last_nid
;
4404 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4407 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4409 last_start_pfn
= start_pfn
;
4410 last_end_pfn
= end_pfn
;
4416 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4418 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4422 nid
= __early_pfn_to_nid(pfn
);
4425 /* just returns 0 */
4429 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4430 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4434 nid
= __early_pfn_to_nid(pfn
);
4435 if (nid
>= 0 && nid
!= node
)
4442 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4443 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4444 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4446 * If an architecture guarantees that all ranges registered with
4447 * add_active_ranges() contain no holes and may be freed, this
4448 * this function may be used instead of calling free_bootmem() manually.
4450 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4452 unsigned long start_pfn
, end_pfn
;
4455 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4456 start_pfn
= min(start_pfn
, max_low_pfn
);
4457 end_pfn
= min(end_pfn
, max_low_pfn
);
4459 if (start_pfn
< end_pfn
)
4460 free_bootmem_node(NODE_DATA(this_nid
),
4461 PFN_PHYS(start_pfn
),
4462 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4467 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4468 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4470 * If an architecture guarantees that all ranges registered with
4471 * add_active_ranges() contain no holes and may be freed, this
4472 * function may be used instead of calling memory_present() manually.
4474 void __init
sparse_memory_present_with_active_regions(int nid
)
4476 unsigned long start_pfn
, end_pfn
;
4479 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4480 memory_present(this_nid
, start_pfn
, end_pfn
);
4484 * get_pfn_range_for_nid - Return the start and end page frames for a node
4485 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4486 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4487 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4489 * It returns the start and end page frame of a node based on information
4490 * provided by an arch calling add_active_range(). If called for a node
4491 * with no available memory, a warning is printed and the start and end
4494 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4495 unsigned long *start_pfn
, unsigned long *end_pfn
)
4497 unsigned long this_start_pfn
, this_end_pfn
;
4503 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4504 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4505 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4508 if (*start_pfn
== -1UL)
4513 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4514 * assumption is made that zones within a node are ordered in monotonic
4515 * increasing memory addresses so that the "highest" populated zone is used
4517 static void __init
find_usable_zone_for_movable(void)
4520 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4521 if (zone_index
== ZONE_MOVABLE
)
4524 if (arch_zone_highest_possible_pfn
[zone_index
] >
4525 arch_zone_lowest_possible_pfn
[zone_index
])
4529 VM_BUG_ON(zone_index
== -1);
4530 movable_zone
= zone_index
;
4534 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4535 * because it is sized independent of architecture. Unlike the other zones,
4536 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4537 * in each node depending on the size of each node and how evenly kernelcore
4538 * is distributed. This helper function adjusts the zone ranges
4539 * provided by the architecture for a given node by using the end of the
4540 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4541 * zones within a node are in order of monotonic increases memory addresses
4543 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4544 unsigned long zone_type
,
4545 unsigned long node_start_pfn
,
4546 unsigned long node_end_pfn
,
4547 unsigned long *zone_start_pfn
,
4548 unsigned long *zone_end_pfn
)
4550 /* Only adjust if ZONE_MOVABLE is on this node */
4551 if (zone_movable_pfn
[nid
]) {
4552 /* Size ZONE_MOVABLE */
4553 if (zone_type
== ZONE_MOVABLE
) {
4554 *zone_start_pfn
= zone_movable_pfn
[nid
];
4555 *zone_end_pfn
= min(node_end_pfn
,
4556 arch_zone_highest_possible_pfn
[movable_zone
]);
4558 /* Adjust for ZONE_MOVABLE starting within this range */
4559 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4560 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4561 *zone_end_pfn
= zone_movable_pfn
[nid
];
4563 /* Check if this whole range is within ZONE_MOVABLE */
4564 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4565 *zone_start_pfn
= *zone_end_pfn
;
4570 * Return the number of pages a zone spans in a node, including holes
4571 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4573 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4574 unsigned long zone_type
,
4575 unsigned long node_start_pfn
,
4576 unsigned long node_end_pfn
,
4577 unsigned long *ignored
)
4579 unsigned long zone_start_pfn
, zone_end_pfn
;
4581 /* Get the start and end of the zone */
4582 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4583 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4584 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4585 node_start_pfn
, node_end_pfn
,
4586 &zone_start_pfn
, &zone_end_pfn
);
4588 /* Check that this node has pages within the zone's required range */
4589 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4592 /* Move the zone boundaries inside the node if necessary */
4593 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4594 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4596 /* Return the spanned pages */
4597 return zone_end_pfn
- zone_start_pfn
;
4601 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4602 * then all holes in the requested range will be accounted for.
4604 unsigned long __meminit
__absent_pages_in_range(int nid
,
4605 unsigned long range_start_pfn
,
4606 unsigned long range_end_pfn
)
4608 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4609 unsigned long start_pfn
, end_pfn
;
4612 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4613 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4614 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4615 nr_absent
-= end_pfn
- start_pfn
;
4621 * absent_pages_in_range - Return number of page frames in holes within a range
4622 * @start_pfn: The start PFN to start searching for holes
4623 * @end_pfn: The end PFN to stop searching for holes
4625 * It returns the number of pages frames in memory holes within a range.
4627 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4628 unsigned long end_pfn
)
4630 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4633 /* Return the number of page frames in holes in a zone on a node */
4634 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4635 unsigned long zone_type
,
4636 unsigned long node_start_pfn
,
4637 unsigned long node_end_pfn
,
4638 unsigned long *ignored
)
4640 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4641 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4642 unsigned long zone_start_pfn
, zone_end_pfn
;
4644 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4645 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4647 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4648 node_start_pfn
, node_end_pfn
,
4649 &zone_start_pfn
, &zone_end_pfn
);
4650 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4653 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4654 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4655 unsigned long zone_type
,
4656 unsigned long node_start_pfn
,
4657 unsigned long node_end_pfn
,
4658 unsigned long *zones_size
)
4660 return zones_size
[zone_type
];
4663 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4664 unsigned long zone_type
,
4665 unsigned long node_start_pfn
,
4666 unsigned long node_end_pfn
,
4667 unsigned long *zholes_size
)
4672 return zholes_size
[zone_type
];
4675 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4677 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4678 unsigned long node_start_pfn
,
4679 unsigned long node_end_pfn
,
4680 unsigned long *zones_size
,
4681 unsigned long *zholes_size
)
4683 unsigned long realtotalpages
, totalpages
= 0;
4686 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4687 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4691 pgdat
->node_spanned_pages
= totalpages
;
4693 realtotalpages
= totalpages
;
4694 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4696 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4697 node_start_pfn
, node_end_pfn
,
4699 pgdat
->node_present_pages
= realtotalpages
;
4700 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4704 #ifndef CONFIG_SPARSEMEM
4706 * Calculate the size of the zone->blockflags rounded to an unsigned long
4707 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4708 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4709 * round what is now in bits to nearest long in bits, then return it in
4712 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4714 unsigned long usemapsize
;
4716 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4717 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4718 usemapsize
= usemapsize
>> pageblock_order
;
4719 usemapsize
*= NR_PAGEBLOCK_BITS
;
4720 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4722 return usemapsize
/ 8;
4725 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4727 unsigned long zone_start_pfn
,
4728 unsigned long zonesize
)
4730 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4731 zone
->pageblock_flags
= NULL
;
4733 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4737 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4738 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4739 #endif /* CONFIG_SPARSEMEM */
4741 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4743 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4744 void __paginginit
set_pageblock_order(void)
4748 /* Check that pageblock_nr_pages has not already been setup */
4749 if (pageblock_order
)
4752 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4753 order
= HUGETLB_PAGE_ORDER
;
4755 order
= MAX_ORDER
- 1;
4758 * Assume the largest contiguous order of interest is a huge page.
4759 * This value may be variable depending on boot parameters on IA64 and
4762 pageblock_order
= order
;
4764 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4767 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4768 * is unused as pageblock_order is set at compile-time. See
4769 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4772 void __paginginit
set_pageblock_order(void)
4776 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4778 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4779 unsigned long present_pages
)
4781 unsigned long pages
= spanned_pages
;
4784 * Provide a more accurate estimation if there are holes within
4785 * the zone and SPARSEMEM is in use. If there are holes within the
4786 * zone, each populated memory region may cost us one or two extra
4787 * memmap pages due to alignment because memmap pages for each
4788 * populated regions may not naturally algined on page boundary.
4789 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4791 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4792 IS_ENABLED(CONFIG_SPARSEMEM
))
4793 pages
= present_pages
;
4795 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4799 * Set up the zone data structures:
4800 * - mark all pages reserved
4801 * - mark all memory queues empty
4802 * - clear the memory bitmaps
4804 * NOTE: pgdat should get zeroed by caller.
4806 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4807 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4808 unsigned long *zones_size
, unsigned long *zholes_size
)
4811 int nid
= pgdat
->node_id
;
4812 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4815 pgdat_resize_init(pgdat
);
4816 #ifdef CONFIG_NUMA_BALANCING
4817 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4818 pgdat
->numabalancing_migrate_nr_pages
= 0;
4819 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4821 init_waitqueue_head(&pgdat
->kswapd_wait
);
4822 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4823 pgdat_page_cgroup_init(pgdat
);
4825 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4826 struct zone
*zone
= pgdat
->node_zones
+ j
;
4827 unsigned long size
, realsize
, freesize
, memmap_pages
;
4829 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4830 node_end_pfn
, zones_size
);
4831 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4837 * Adjust freesize so that it accounts for how much memory
4838 * is used by this zone for memmap. This affects the watermark
4839 * and per-cpu initialisations
4841 memmap_pages
= calc_memmap_size(size
, realsize
);
4842 if (freesize
>= memmap_pages
) {
4843 freesize
-= memmap_pages
;
4846 " %s zone: %lu pages used for memmap\n",
4847 zone_names
[j
], memmap_pages
);
4850 " %s zone: %lu pages exceeds freesize %lu\n",
4851 zone_names
[j
], memmap_pages
, freesize
);
4853 /* Account for reserved pages */
4854 if (j
== 0 && freesize
> dma_reserve
) {
4855 freesize
-= dma_reserve
;
4856 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4857 zone_names
[0], dma_reserve
);
4860 if (!is_highmem_idx(j
))
4861 nr_kernel_pages
+= freesize
;
4862 /* Charge for highmem memmap if there are enough kernel pages */
4863 else if (nr_kernel_pages
> memmap_pages
* 2)
4864 nr_kernel_pages
-= memmap_pages
;
4865 nr_all_pages
+= freesize
;
4867 zone
->spanned_pages
= size
;
4868 zone
->present_pages
= realsize
;
4870 * Set an approximate value for lowmem here, it will be adjusted
4871 * when the bootmem allocator frees pages into the buddy system.
4872 * And all highmem pages will be managed by the buddy system.
4874 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4877 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4879 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4881 zone
->name
= zone_names
[j
];
4882 spin_lock_init(&zone
->lock
);
4883 spin_lock_init(&zone
->lru_lock
);
4884 zone_seqlock_init(zone
);
4885 zone
->zone_pgdat
= pgdat
;
4886 zone_pcp_init(zone
);
4888 /* For bootup, initialized properly in watermark setup */
4889 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4891 lruvec_init(&zone
->lruvec
);
4895 set_pageblock_order();
4896 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4897 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4898 size
, MEMMAP_EARLY
);
4900 memmap_init(size
, nid
, j
, zone_start_pfn
);
4901 zone_start_pfn
+= size
;
4905 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4907 /* Skip empty nodes */
4908 if (!pgdat
->node_spanned_pages
)
4911 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4912 /* ia64 gets its own node_mem_map, before this, without bootmem */
4913 if (!pgdat
->node_mem_map
) {
4914 unsigned long size
, start
, end
;
4918 * The zone's endpoints aren't required to be MAX_ORDER
4919 * aligned but the node_mem_map endpoints must be in order
4920 * for the buddy allocator to function correctly.
4922 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4923 end
= pgdat_end_pfn(pgdat
);
4924 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4925 size
= (end
- start
) * sizeof(struct page
);
4926 map
= alloc_remap(pgdat
->node_id
, size
);
4928 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4929 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4931 #ifndef CONFIG_NEED_MULTIPLE_NODES
4933 * With no DISCONTIG, the global mem_map is just set as node 0's
4935 if (pgdat
== NODE_DATA(0)) {
4936 mem_map
= NODE_DATA(0)->node_mem_map
;
4937 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4938 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4939 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4940 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4943 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4946 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4947 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4949 pg_data_t
*pgdat
= NODE_DATA(nid
);
4950 unsigned long start_pfn
= 0;
4951 unsigned long end_pfn
= 0;
4953 /* pg_data_t should be reset to zero when it's allocated */
4954 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4956 pgdat
->node_id
= nid
;
4957 pgdat
->node_start_pfn
= node_start_pfn
;
4958 if (node_state(nid
, N_MEMORY
))
4959 init_zone_allows_reclaim(nid
);
4960 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4961 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4963 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4964 zones_size
, zholes_size
);
4966 alloc_node_mem_map(pgdat
);
4967 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4968 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4969 nid
, (unsigned long)pgdat
,
4970 (unsigned long)pgdat
->node_mem_map
);
4973 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4974 zones_size
, zholes_size
);
4977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4979 #if MAX_NUMNODES > 1
4981 * Figure out the number of possible node ids.
4983 void __init
setup_nr_node_ids(void)
4986 unsigned int highest
= 0;
4988 for_each_node_mask(node
, node_possible_map
)
4990 nr_node_ids
= highest
+ 1;
4995 * node_map_pfn_alignment - determine the maximum internode alignment
4997 * This function should be called after node map is populated and sorted.
4998 * It calculates the maximum power of two alignment which can distinguish
5001 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5002 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5003 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5004 * shifted, 1GiB is enough and this function will indicate so.
5006 * This is used to test whether pfn -> nid mapping of the chosen memory
5007 * model has fine enough granularity to avoid incorrect mapping for the
5008 * populated node map.
5010 * Returns the determined alignment in pfn's. 0 if there is no alignment
5011 * requirement (single node).
5013 unsigned long __init
node_map_pfn_alignment(void)
5015 unsigned long accl_mask
= 0, last_end
= 0;
5016 unsigned long start
, end
, mask
;
5020 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5021 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5028 * Start with a mask granular enough to pin-point to the
5029 * start pfn and tick off bits one-by-one until it becomes
5030 * too coarse to separate the current node from the last.
5032 mask
= ~((1 << __ffs(start
)) - 1);
5033 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5036 /* accumulate all internode masks */
5040 /* convert mask to number of pages */
5041 return ~accl_mask
+ 1;
5044 /* Find the lowest pfn for a node */
5045 static unsigned long __init
find_min_pfn_for_node(int nid
)
5047 unsigned long min_pfn
= ULONG_MAX
;
5048 unsigned long start_pfn
;
5051 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5052 min_pfn
= min(min_pfn
, start_pfn
);
5054 if (min_pfn
== ULONG_MAX
) {
5056 "Could not find start_pfn for node %d\n", nid
);
5064 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5066 * It returns the minimum PFN based on information provided via
5067 * add_active_range().
5069 unsigned long __init
find_min_pfn_with_active_regions(void)
5071 return find_min_pfn_for_node(MAX_NUMNODES
);
5075 * early_calculate_totalpages()
5076 * Sum pages in active regions for movable zone.
5077 * Populate N_MEMORY for calculating usable_nodes.
5079 static unsigned long __init
early_calculate_totalpages(void)
5081 unsigned long totalpages
= 0;
5082 unsigned long start_pfn
, end_pfn
;
5085 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5086 unsigned long pages
= end_pfn
- start_pfn
;
5088 totalpages
+= pages
;
5090 node_set_state(nid
, N_MEMORY
);
5096 * Find the PFN the Movable zone begins in each node. Kernel memory
5097 * is spread evenly between nodes as long as the nodes have enough
5098 * memory. When they don't, some nodes will have more kernelcore than
5101 static void __init
find_zone_movable_pfns_for_nodes(void)
5104 unsigned long usable_startpfn
;
5105 unsigned long kernelcore_node
, kernelcore_remaining
;
5106 /* save the state before borrow the nodemask */
5107 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5108 unsigned long totalpages
= early_calculate_totalpages();
5109 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5112 * If movablecore was specified, calculate what size of
5113 * kernelcore that corresponds so that memory usable for
5114 * any allocation type is evenly spread. If both kernelcore
5115 * and movablecore are specified, then the value of kernelcore
5116 * will be used for required_kernelcore if it's greater than
5117 * what movablecore would have allowed.
5119 if (required_movablecore
) {
5120 unsigned long corepages
;
5123 * Round-up so that ZONE_MOVABLE is at least as large as what
5124 * was requested by the user
5126 required_movablecore
=
5127 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5128 corepages
= totalpages
- required_movablecore
;
5130 required_kernelcore
= max(required_kernelcore
, corepages
);
5133 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5134 if (!required_kernelcore
)
5137 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5138 find_usable_zone_for_movable();
5139 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5142 /* Spread kernelcore memory as evenly as possible throughout nodes */
5143 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5144 for_each_node_state(nid
, N_MEMORY
) {
5145 unsigned long start_pfn
, end_pfn
;
5148 * Recalculate kernelcore_node if the division per node
5149 * now exceeds what is necessary to satisfy the requested
5150 * amount of memory for the kernel
5152 if (required_kernelcore
< kernelcore_node
)
5153 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5156 * As the map is walked, we track how much memory is usable
5157 * by the kernel using kernelcore_remaining. When it is
5158 * 0, the rest of the node is usable by ZONE_MOVABLE
5160 kernelcore_remaining
= kernelcore_node
;
5162 /* Go through each range of PFNs within this node */
5163 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5164 unsigned long size_pages
;
5166 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5167 if (start_pfn
>= end_pfn
)
5170 /* Account for what is only usable for kernelcore */
5171 if (start_pfn
< usable_startpfn
) {
5172 unsigned long kernel_pages
;
5173 kernel_pages
= min(end_pfn
, usable_startpfn
)
5176 kernelcore_remaining
-= min(kernel_pages
,
5177 kernelcore_remaining
);
5178 required_kernelcore
-= min(kernel_pages
,
5179 required_kernelcore
);
5181 /* Continue if range is now fully accounted */
5182 if (end_pfn
<= usable_startpfn
) {
5185 * Push zone_movable_pfn to the end so
5186 * that if we have to rebalance
5187 * kernelcore across nodes, we will
5188 * not double account here
5190 zone_movable_pfn
[nid
] = end_pfn
;
5193 start_pfn
= usable_startpfn
;
5197 * The usable PFN range for ZONE_MOVABLE is from
5198 * start_pfn->end_pfn. Calculate size_pages as the
5199 * number of pages used as kernelcore
5201 size_pages
= end_pfn
- start_pfn
;
5202 if (size_pages
> kernelcore_remaining
)
5203 size_pages
= kernelcore_remaining
;
5204 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5207 * Some kernelcore has been met, update counts and
5208 * break if the kernelcore for this node has been
5211 required_kernelcore
-= min(required_kernelcore
,
5213 kernelcore_remaining
-= size_pages
;
5214 if (!kernelcore_remaining
)
5220 * If there is still required_kernelcore, we do another pass with one
5221 * less node in the count. This will push zone_movable_pfn[nid] further
5222 * along on the nodes that still have memory until kernelcore is
5226 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5229 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5230 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5231 zone_movable_pfn
[nid
] =
5232 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5235 /* restore the node_state */
5236 node_states
[N_MEMORY
] = saved_node_state
;
5239 /* Any regular or high memory on that node ? */
5240 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5242 enum zone_type zone_type
;
5244 if (N_MEMORY
== N_NORMAL_MEMORY
)
5247 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5248 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5249 if (zone
->present_pages
) {
5250 node_set_state(nid
, N_HIGH_MEMORY
);
5251 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5252 zone_type
<= ZONE_NORMAL
)
5253 node_set_state(nid
, N_NORMAL_MEMORY
);
5260 * free_area_init_nodes - Initialise all pg_data_t and zone data
5261 * @max_zone_pfn: an array of max PFNs for each zone
5263 * This will call free_area_init_node() for each active node in the system.
5264 * Using the page ranges provided by add_active_range(), the size of each
5265 * zone in each node and their holes is calculated. If the maximum PFN
5266 * between two adjacent zones match, it is assumed that the zone is empty.
5267 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5268 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5269 * starts where the previous one ended. For example, ZONE_DMA32 starts
5270 * at arch_max_dma_pfn.
5272 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5274 unsigned long start_pfn
, end_pfn
;
5277 /* Record where the zone boundaries are */
5278 memset(arch_zone_lowest_possible_pfn
, 0,
5279 sizeof(arch_zone_lowest_possible_pfn
));
5280 memset(arch_zone_highest_possible_pfn
, 0,
5281 sizeof(arch_zone_highest_possible_pfn
));
5282 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5283 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5284 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5285 if (i
== ZONE_MOVABLE
)
5287 arch_zone_lowest_possible_pfn
[i
] =
5288 arch_zone_highest_possible_pfn
[i
-1];
5289 arch_zone_highest_possible_pfn
[i
] =
5290 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5292 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5293 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5295 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5296 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5297 find_zone_movable_pfns_for_nodes();
5299 /* Print out the zone ranges */
5300 printk("Zone ranges:\n");
5301 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5302 if (i
== ZONE_MOVABLE
)
5304 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5305 if (arch_zone_lowest_possible_pfn
[i
] ==
5306 arch_zone_highest_possible_pfn
[i
])
5307 printk(KERN_CONT
"empty\n");
5309 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5310 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5311 (arch_zone_highest_possible_pfn
[i
]
5312 << PAGE_SHIFT
) - 1);
5315 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5316 printk("Movable zone start for each node\n");
5317 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5318 if (zone_movable_pfn
[i
])
5319 printk(" Node %d: %#010lx\n", i
,
5320 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5323 /* Print out the early node map */
5324 printk("Early memory node ranges\n");
5325 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5326 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5327 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5329 /* Initialise every node */
5330 mminit_verify_pageflags_layout();
5331 setup_nr_node_ids();
5332 for_each_online_node(nid
) {
5333 pg_data_t
*pgdat
= NODE_DATA(nid
);
5334 free_area_init_node(nid
, NULL
,
5335 find_min_pfn_for_node(nid
), NULL
);
5337 /* Any memory on that node */
5338 if (pgdat
->node_present_pages
)
5339 node_set_state(nid
, N_MEMORY
);
5340 check_for_memory(pgdat
, nid
);
5344 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5346 unsigned long long coremem
;
5350 coremem
= memparse(p
, &p
);
5351 *core
= coremem
>> PAGE_SHIFT
;
5353 /* Paranoid check that UL is enough for the coremem value */
5354 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5360 * kernelcore=size sets the amount of memory for use for allocations that
5361 * cannot be reclaimed or migrated.
5363 static int __init
cmdline_parse_kernelcore(char *p
)
5365 return cmdline_parse_core(p
, &required_kernelcore
);
5369 * movablecore=size sets the amount of memory for use for allocations that
5370 * can be reclaimed or migrated.
5372 static int __init
cmdline_parse_movablecore(char *p
)
5374 return cmdline_parse_core(p
, &required_movablecore
);
5377 early_param("kernelcore", cmdline_parse_kernelcore
);
5378 early_param("movablecore", cmdline_parse_movablecore
);
5380 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5382 void adjust_managed_page_count(struct page
*page
, long count
)
5384 spin_lock(&managed_page_count_lock
);
5385 page_zone(page
)->managed_pages
+= count
;
5386 totalram_pages
+= count
;
5387 #ifdef CONFIG_HIGHMEM
5388 if (PageHighMem(page
))
5389 totalhigh_pages
+= count
;
5391 spin_unlock(&managed_page_count_lock
);
5393 EXPORT_SYMBOL(adjust_managed_page_count
);
5395 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5398 unsigned long pages
= 0;
5400 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5401 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5402 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5403 if ((unsigned int)poison
<= 0xFF)
5404 memset(pos
, poison
, PAGE_SIZE
);
5405 free_reserved_page(virt_to_page(pos
));
5409 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5410 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5414 EXPORT_SYMBOL(free_reserved_area
);
5416 #ifdef CONFIG_HIGHMEM
5417 void free_highmem_page(struct page
*page
)
5419 __free_reserved_page(page
);
5421 page_zone(page
)->managed_pages
++;
5427 void __init
mem_init_print_info(const char *str
)
5429 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5430 unsigned long init_code_size
, init_data_size
;
5432 physpages
= get_num_physpages();
5433 codesize
= _etext
- _stext
;
5434 datasize
= _edata
- _sdata
;
5435 rosize
= __end_rodata
- __start_rodata
;
5436 bss_size
= __bss_stop
- __bss_start
;
5437 init_data_size
= __init_end
- __init_begin
;
5438 init_code_size
= _einittext
- _sinittext
;
5441 * Detect special cases and adjust section sizes accordingly:
5442 * 1) .init.* may be embedded into .data sections
5443 * 2) .init.text.* may be out of [__init_begin, __init_end],
5444 * please refer to arch/tile/kernel/vmlinux.lds.S.
5445 * 3) .rodata.* may be embedded into .text or .data sections.
5447 #define adj_init_size(start, end, size, pos, adj) \
5449 if (start <= pos && pos < end && size > adj) \
5453 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5454 _sinittext
, init_code_size
);
5455 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5456 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5457 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5458 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5460 #undef adj_init_size
5462 printk("Memory: %luK/%luK available "
5463 "(%luK kernel code, %luK rwdata, %luK rodata, "
5464 "%luK init, %luK bss, %luK reserved"
5465 #ifdef CONFIG_HIGHMEM
5469 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5470 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5471 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5472 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5473 #ifdef CONFIG_HIGHMEM
5474 totalhigh_pages
<< (PAGE_SHIFT
-10),
5476 str
? ", " : "", str
? str
: "");
5480 * set_dma_reserve - set the specified number of pages reserved in the first zone
5481 * @new_dma_reserve: The number of pages to mark reserved
5483 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5484 * In the DMA zone, a significant percentage may be consumed by kernel image
5485 * and other unfreeable allocations which can skew the watermarks badly. This
5486 * function may optionally be used to account for unfreeable pages in the
5487 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5488 * smaller per-cpu batchsize.
5490 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5492 dma_reserve
= new_dma_reserve
;
5495 void __init
free_area_init(unsigned long *zones_size
)
5497 free_area_init_node(0, zones_size
,
5498 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5501 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5502 unsigned long action
, void *hcpu
)
5504 int cpu
= (unsigned long)hcpu
;
5506 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5507 lru_add_drain_cpu(cpu
);
5511 * Spill the event counters of the dead processor
5512 * into the current processors event counters.
5513 * This artificially elevates the count of the current
5516 vm_events_fold_cpu(cpu
);
5519 * Zero the differential counters of the dead processor
5520 * so that the vm statistics are consistent.
5522 * This is only okay since the processor is dead and cannot
5523 * race with what we are doing.
5525 cpu_vm_stats_fold(cpu
);
5530 void __init
page_alloc_init(void)
5532 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5536 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5537 * or min_free_kbytes changes.
5539 static void calculate_totalreserve_pages(void)
5541 struct pglist_data
*pgdat
;
5542 unsigned long reserve_pages
= 0;
5543 enum zone_type i
, j
;
5545 for_each_online_pgdat(pgdat
) {
5546 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5547 struct zone
*zone
= pgdat
->node_zones
+ i
;
5550 /* Find valid and maximum lowmem_reserve in the zone */
5551 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5552 if (zone
->lowmem_reserve
[j
] > max
)
5553 max
= zone
->lowmem_reserve
[j
];
5556 /* we treat the high watermark as reserved pages. */
5557 max
+= high_wmark_pages(zone
);
5559 if (max
> zone
->managed_pages
)
5560 max
= zone
->managed_pages
;
5561 reserve_pages
+= max
;
5563 * Lowmem reserves are not available to
5564 * GFP_HIGHUSER page cache allocations and
5565 * kswapd tries to balance zones to their high
5566 * watermark. As a result, neither should be
5567 * regarded as dirtyable memory, to prevent a
5568 * situation where reclaim has to clean pages
5569 * in order to balance the zones.
5571 zone
->dirty_balance_reserve
= max
;
5574 dirty_balance_reserve
= reserve_pages
;
5575 totalreserve_pages
= reserve_pages
;
5579 * setup_per_zone_lowmem_reserve - called whenever
5580 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5581 * has a correct pages reserved value, so an adequate number of
5582 * pages are left in the zone after a successful __alloc_pages().
5584 static void setup_per_zone_lowmem_reserve(void)
5586 struct pglist_data
*pgdat
;
5587 enum zone_type j
, idx
;
5589 for_each_online_pgdat(pgdat
) {
5590 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5591 struct zone
*zone
= pgdat
->node_zones
+ j
;
5592 unsigned long managed_pages
= zone
->managed_pages
;
5594 zone
->lowmem_reserve
[j
] = 0;
5598 struct zone
*lower_zone
;
5602 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5603 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5605 lower_zone
= pgdat
->node_zones
+ idx
;
5606 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5607 sysctl_lowmem_reserve_ratio
[idx
];
5608 managed_pages
+= lower_zone
->managed_pages
;
5613 /* update totalreserve_pages */
5614 calculate_totalreserve_pages();
5617 static void __setup_per_zone_wmarks(void)
5619 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5620 unsigned long lowmem_pages
= 0;
5622 unsigned long flags
;
5624 /* Calculate total number of !ZONE_HIGHMEM pages */
5625 for_each_zone(zone
) {
5626 if (!is_highmem(zone
))
5627 lowmem_pages
+= zone
->managed_pages
;
5630 for_each_zone(zone
) {
5633 spin_lock_irqsave(&zone
->lock
, flags
);
5634 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5635 do_div(tmp
, lowmem_pages
);
5636 if (is_highmem(zone
)) {
5638 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5639 * need highmem pages, so cap pages_min to a small
5642 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5643 * deltas controls asynch page reclaim, and so should
5644 * not be capped for highmem.
5646 unsigned long min_pages
;
5648 min_pages
= zone
->managed_pages
/ 1024;
5649 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5650 zone
->watermark
[WMARK_MIN
] = min_pages
;
5653 * If it's a lowmem zone, reserve a number of pages
5654 * proportionate to the zone's size.
5656 zone
->watermark
[WMARK_MIN
] = tmp
;
5659 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5660 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5662 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5663 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
5664 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
5666 setup_zone_migrate_reserve(zone
);
5667 spin_unlock_irqrestore(&zone
->lock
, flags
);
5670 /* update totalreserve_pages */
5671 calculate_totalreserve_pages();
5675 * setup_per_zone_wmarks - called when min_free_kbytes changes
5676 * or when memory is hot-{added|removed}
5678 * Ensures that the watermark[min,low,high] values for each zone are set
5679 * correctly with respect to min_free_kbytes.
5681 void setup_per_zone_wmarks(void)
5683 mutex_lock(&zonelists_mutex
);
5684 __setup_per_zone_wmarks();
5685 mutex_unlock(&zonelists_mutex
);
5689 * The inactive anon list should be small enough that the VM never has to
5690 * do too much work, but large enough that each inactive page has a chance
5691 * to be referenced again before it is swapped out.
5693 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5694 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5695 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5696 * the anonymous pages are kept on the inactive list.
5699 * memory ratio inactive anon
5700 * -------------------------------------
5709 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5711 unsigned int gb
, ratio
;
5713 /* Zone size in gigabytes */
5714 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5716 ratio
= int_sqrt(10 * gb
);
5720 zone
->inactive_ratio
= ratio
;
5723 static void __meminit
setup_per_zone_inactive_ratio(void)
5728 calculate_zone_inactive_ratio(zone
);
5732 * Initialise min_free_kbytes.
5734 * For small machines we want it small (128k min). For large machines
5735 * we want it large (64MB max). But it is not linear, because network
5736 * bandwidth does not increase linearly with machine size. We use
5738 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5739 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5755 int __meminit
init_per_zone_wmark_min(void)
5757 unsigned long lowmem_kbytes
;
5758 int new_min_free_kbytes
;
5760 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5761 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5763 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5764 min_free_kbytes
= new_min_free_kbytes
;
5765 if (min_free_kbytes
< 128)
5766 min_free_kbytes
= 128;
5767 if (min_free_kbytes
> 65536)
5768 min_free_kbytes
= 65536;
5770 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5771 new_min_free_kbytes
, user_min_free_kbytes
);
5773 setup_per_zone_wmarks();
5774 refresh_zone_stat_thresholds();
5775 setup_per_zone_lowmem_reserve();
5776 setup_per_zone_inactive_ratio();
5779 module_init(init_per_zone_wmark_min
)
5782 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5783 * that we can call two helper functions whenever min_free_kbytes
5786 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5787 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5791 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5796 user_min_free_kbytes
= min_free_kbytes
;
5797 setup_per_zone_wmarks();
5803 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5804 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5809 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5814 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5815 sysctl_min_unmapped_ratio
) / 100;
5819 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5820 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5825 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5830 zone
->min_slab_pages
= (zone
->managed_pages
*
5831 sysctl_min_slab_ratio
) / 100;
5837 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5838 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5839 * whenever sysctl_lowmem_reserve_ratio changes.
5841 * The reserve ratio obviously has absolutely no relation with the
5842 * minimum watermarks. The lowmem reserve ratio can only make sense
5843 * if in function of the boot time zone sizes.
5845 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5846 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5848 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5849 setup_per_zone_lowmem_reserve();
5854 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5855 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5856 * pagelist can have before it gets flushed back to buddy allocator.
5858 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5859 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5862 int old_percpu_pagelist_fraction
;
5865 mutex_lock(&pcp_batch_high_lock
);
5866 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
5868 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5869 if (!write
|| ret
< 0)
5872 /* Sanity checking to avoid pcp imbalance */
5873 if (percpu_pagelist_fraction
&&
5874 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
5875 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
5881 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
5884 for_each_populated_zone(zone
) {
5887 for_each_possible_cpu(cpu
)
5888 pageset_set_high_and_batch(zone
,
5889 per_cpu_ptr(zone
->pageset
, cpu
));
5892 mutex_unlock(&pcp_batch_high_lock
);
5896 int hashdist
= HASHDIST_DEFAULT
;
5899 static int __init
set_hashdist(char *str
)
5903 hashdist
= simple_strtoul(str
, &str
, 0);
5906 __setup("hashdist=", set_hashdist
);
5910 * allocate a large system hash table from bootmem
5911 * - it is assumed that the hash table must contain an exact power-of-2
5912 * quantity of entries
5913 * - limit is the number of hash buckets, not the total allocation size
5915 void *__init
alloc_large_system_hash(const char *tablename
,
5916 unsigned long bucketsize
,
5917 unsigned long numentries
,
5920 unsigned int *_hash_shift
,
5921 unsigned int *_hash_mask
,
5922 unsigned long low_limit
,
5923 unsigned long high_limit
)
5925 unsigned long long max
= high_limit
;
5926 unsigned long log2qty
, size
;
5929 /* allow the kernel cmdline to have a say */
5931 /* round applicable memory size up to nearest megabyte */
5932 numentries
= nr_kernel_pages
;
5934 /* It isn't necessary when PAGE_SIZE >= 1MB */
5935 if (PAGE_SHIFT
< 20)
5936 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
5938 /* limit to 1 bucket per 2^scale bytes of low memory */
5939 if (scale
> PAGE_SHIFT
)
5940 numentries
>>= (scale
- PAGE_SHIFT
);
5942 numentries
<<= (PAGE_SHIFT
- scale
);
5944 /* Make sure we've got at least a 0-order allocation.. */
5945 if (unlikely(flags
& HASH_SMALL
)) {
5946 /* Makes no sense without HASH_EARLY */
5947 WARN_ON(!(flags
& HASH_EARLY
));
5948 if (!(numentries
>> *_hash_shift
)) {
5949 numentries
= 1UL << *_hash_shift
;
5950 BUG_ON(!numentries
);
5952 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5953 numentries
= PAGE_SIZE
/ bucketsize
;
5955 numentries
= roundup_pow_of_two(numentries
);
5957 /* limit allocation size to 1/16 total memory by default */
5959 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5960 do_div(max
, bucketsize
);
5962 max
= min(max
, 0x80000000ULL
);
5964 if (numentries
< low_limit
)
5965 numentries
= low_limit
;
5966 if (numentries
> max
)
5969 log2qty
= ilog2(numentries
);
5972 size
= bucketsize
<< log2qty
;
5973 if (flags
& HASH_EARLY
)
5974 table
= alloc_bootmem_nopanic(size
);
5976 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5979 * If bucketsize is not a power-of-two, we may free
5980 * some pages at the end of hash table which
5981 * alloc_pages_exact() automatically does
5983 if (get_order(size
) < MAX_ORDER
) {
5984 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5985 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5988 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5991 panic("Failed to allocate %s hash table\n", tablename
);
5993 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5996 ilog2(size
) - PAGE_SHIFT
,
6000 *_hash_shift
= log2qty
;
6002 *_hash_mask
= (1 << log2qty
) - 1;
6007 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6008 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6011 #ifdef CONFIG_SPARSEMEM
6012 return __pfn_to_section(pfn
)->pageblock_flags
;
6014 return zone
->pageblock_flags
;
6015 #endif /* CONFIG_SPARSEMEM */
6018 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6020 #ifdef CONFIG_SPARSEMEM
6021 pfn
&= (PAGES_PER_SECTION
-1);
6022 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6024 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6025 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6026 #endif /* CONFIG_SPARSEMEM */
6030 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6031 * @page: The page within the block of interest
6032 * @start_bitidx: The first bit of interest to retrieve
6033 * @end_bitidx: The last bit of interest
6034 * returns pageblock_bits flags
6036 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6037 unsigned long end_bitidx
,
6041 unsigned long *bitmap
;
6042 unsigned long bitidx
, word_bitidx
;
6045 zone
= page_zone(page
);
6046 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6047 bitidx
= pfn_to_bitidx(zone
, pfn
);
6048 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6049 bitidx
&= (BITS_PER_LONG
-1);
6051 word
= bitmap
[word_bitidx
];
6052 bitidx
+= end_bitidx
;
6053 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6057 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6058 * @page: The page within the block of interest
6059 * @start_bitidx: The first bit of interest
6060 * @end_bitidx: The last bit of interest
6061 * @flags: The flags to set
6063 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6065 unsigned long end_bitidx
,
6069 unsigned long *bitmap
;
6070 unsigned long bitidx
, word_bitidx
;
6071 unsigned long old_word
, word
;
6073 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6075 zone
= page_zone(page
);
6076 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6077 bitidx
= pfn_to_bitidx(zone
, pfn
);
6078 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6079 bitidx
&= (BITS_PER_LONG
-1);
6081 VM_BUG_ON(!zone_spans_pfn(zone
, pfn
));
6083 bitidx
+= end_bitidx
;
6084 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6085 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6087 word
= ACCESS_ONCE(bitmap
[word_bitidx
]);
6089 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6090 if (word
== old_word
)
6097 * This function checks whether pageblock includes unmovable pages or not.
6098 * If @count is not zero, it is okay to include less @count unmovable pages
6100 * PageLRU check without isolation or lru_lock could race so that
6101 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6102 * expect this function should be exact.
6104 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6105 bool skip_hwpoisoned_pages
)
6107 unsigned long pfn
, iter
, found
;
6111 * For avoiding noise data, lru_add_drain_all() should be called
6112 * If ZONE_MOVABLE, the zone never contains unmovable pages
6114 if (zone_idx(zone
) == ZONE_MOVABLE
)
6116 mt
= get_pageblock_migratetype(page
);
6117 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6120 pfn
= page_to_pfn(page
);
6121 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6122 unsigned long check
= pfn
+ iter
;
6124 if (!pfn_valid_within(check
))
6127 page
= pfn_to_page(check
);
6130 * Hugepages are not in LRU lists, but they're movable.
6131 * We need not scan over tail pages bacause we don't
6132 * handle each tail page individually in migration.
6134 if (PageHuge(page
)) {
6135 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6140 * We can't use page_count without pin a page
6141 * because another CPU can free compound page.
6142 * This check already skips compound tails of THP
6143 * because their page->_count is zero at all time.
6145 if (!atomic_read(&page
->_count
)) {
6146 if (PageBuddy(page
))
6147 iter
+= (1 << page_order(page
)) - 1;
6152 * The HWPoisoned page may be not in buddy system, and
6153 * page_count() is not 0.
6155 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6161 * If there are RECLAIMABLE pages, we need to check it.
6162 * But now, memory offline itself doesn't call shrink_slab()
6163 * and it still to be fixed.
6166 * If the page is not RAM, page_count()should be 0.
6167 * we don't need more check. This is an _used_ not-movable page.
6169 * The problematic thing here is PG_reserved pages. PG_reserved
6170 * is set to both of a memory hole page and a _used_ kernel
6179 bool is_pageblock_removable_nolock(struct page
*page
)
6185 * We have to be careful here because we are iterating over memory
6186 * sections which are not zone aware so we might end up outside of
6187 * the zone but still within the section.
6188 * We have to take care about the node as well. If the node is offline
6189 * its NODE_DATA will be NULL - see page_zone.
6191 if (!node_online(page_to_nid(page
)))
6194 zone
= page_zone(page
);
6195 pfn
= page_to_pfn(page
);
6196 if (!zone_spans_pfn(zone
, pfn
))
6199 return !has_unmovable_pages(zone
, page
, 0, true);
6204 static unsigned long pfn_max_align_down(unsigned long pfn
)
6206 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6207 pageblock_nr_pages
) - 1);
6210 static unsigned long pfn_max_align_up(unsigned long pfn
)
6212 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6213 pageblock_nr_pages
));
6216 /* [start, end) must belong to a single zone. */
6217 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6218 unsigned long start
, unsigned long end
)
6220 /* This function is based on compact_zone() from compaction.c. */
6221 unsigned long nr_reclaimed
;
6222 unsigned long pfn
= start
;
6223 unsigned int tries
= 0;
6228 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6229 if (fatal_signal_pending(current
)) {
6234 if (list_empty(&cc
->migratepages
)) {
6235 cc
->nr_migratepages
= 0;
6236 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6243 } else if (++tries
== 5) {
6244 ret
= ret
< 0 ? ret
: -EBUSY
;
6248 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6250 cc
->nr_migratepages
-= nr_reclaimed
;
6252 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6253 NULL
, 0, cc
->mode
, MR_CMA
);
6256 putback_movable_pages(&cc
->migratepages
);
6263 * alloc_contig_range() -- tries to allocate given range of pages
6264 * @start: start PFN to allocate
6265 * @end: one-past-the-last PFN to allocate
6266 * @migratetype: migratetype of the underlaying pageblocks (either
6267 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6268 * in range must have the same migratetype and it must
6269 * be either of the two.
6271 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6272 * aligned, however it's the caller's responsibility to guarantee that
6273 * we are the only thread that changes migrate type of pageblocks the
6276 * The PFN range must belong to a single zone.
6278 * Returns zero on success or negative error code. On success all
6279 * pages which PFN is in [start, end) are allocated for the caller and
6280 * need to be freed with free_contig_range().
6282 int alloc_contig_range(unsigned long start
, unsigned long end
,
6283 unsigned migratetype
)
6285 unsigned long outer_start
, outer_end
;
6288 struct compact_control cc
= {
6289 .nr_migratepages
= 0,
6291 .zone
= page_zone(pfn_to_page(start
)),
6292 .mode
= MIGRATE_SYNC
,
6293 .ignore_skip_hint
= true,
6295 INIT_LIST_HEAD(&cc
.migratepages
);
6298 * What we do here is we mark all pageblocks in range as
6299 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6300 * have different sizes, and due to the way page allocator
6301 * work, we align the range to biggest of the two pages so
6302 * that page allocator won't try to merge buddies from
6303 * different pageblocks and change MIGRATE_ISOLATE to some
6304 * other migration type.
6306 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6307 * migrate the pages from an unaligned range (ie. pages that
6308 * we are interested in). This will put all the pages in
6309 * range back to page allocator as MIGRATE_ISOLATE.
6311 * When this is done, we take the pages in range from page
6312 * allocator removing them from the buddy system. This way
6313 * page allocator will never consider using them.
6315 * This lets us mark the pageblocks back as
6316 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6317 * aligned range but not in the unaligned, original range are
6318 * put back to page allocator so that buddy can use them.
6321 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6322 pfn_max_align_up(end
), migratetype
,
6327 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6332 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6333 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6334 * more, all pages in [start, end) are free in page allocator.
6335 * What we are going to do is to allocate all pages from
6336 * [start, end) (that is remove them from page allocator).
6338 * The only problem is that pages at the beginning and at the
6339 * end of interesting range may be not aligned with pages that
6340 * page allocator holds, ie. they can be part of higher order
6341 * pages. Because of this, we reserve the bigger range and
6342 * once this is done free the pages we are not interested in.
6344 * We don't have to hold zone->lock here because the pages are
6345 * isolated thus they won't get removed from buddy.
6348 lru_add_drain_all();
6352 outer_start
= start
;
6353 while (!PageBuddy(pfn_to_page(outer_start
))) {
6354 if (++order
>= MAX_ORDER
) {
6358 outer_start
&= ~0UL << order
;
6361 /* Make sure the range is really isolated. */
6362 if (test_pages_isolated(outer_start
, end
, false)) {
6363 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6370 /* Grab isolated pages from freelists. */
6371 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6377 /* Free head and tail (if any) */
6378 if (start
!= outer_start
)
6379 free_contig_range(outer_start
, start
- outer_start
);
6380 if (end
!= outer_end
)
6381 free_contig_range(end
, outer_end
- end
);
6384 undo_isolate_page_range(pfn_max_align_down(start
),
6385 pfn_max_align_up(end
), migratetype
);
6389 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6391 unsigned int count
= 0;
6393 for (; nr_pages
--; pfn
++) {
6394 struct page
*page
= pfn_to_page(pfn
);
6396 count
+= page_count(page
) != 1;
6399 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6403 #ifdef CONFIG_MEMORY_HOTPLUG
6405 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6406 * page high values need to be recalulated.
6408 void __meminit
zone_pcp_update(struct zone
*zone
)
6411 mutex_lock(&pcp_batch_high_lock
);
6412 for_each_possible_cpu(cpu
)
6413 pageset_set_high_and_batch(zone
,
6414 per_cpu_ptr(zone
->pageset
, cpu
));
6415 mutex_unlock(&pcp_batch_high_lock
);
6419 void zone_pcp_reset(struct zone
*zone
)
6421 unsigned long flags
;
6423 struct per_cpu_pageset
*pset
;
6425 /* avoid races with drain_pages() */
6426 local_irq_save(flags
);
6427 if (zone
->pageset
!= &boot_pageset
) {
6428 for_each_online_cpu(cpu
) {
6429 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6430 drain_zonestat(zone
, pset
);
6432 free_percpu(zone
->pageset
);
6433 zone
->pageset
= &boot_pageset
;
6435 local_irq_restore(flags
);
6438 #ifdef CONFIG_MEMORY_HOTREMOVE
6440 * All pages in the range must be isolated before calling this.
6443 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6447 unsigned int order
, i
;
6449 unsigned long flags
;
6450 /* find the first valid pfn */
6451 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6456 zone
= page_zone(pfn_to_page(pfn
));
6457 spin_lock_irqsave(&zone
->lock
, flags
);
6459 while (pfn
< end_pfn
) {
6460 if (!pfn_valid(pfn
)) {
6464 page
= pfn_to_page(pfn
);
6466 * The HWPoisoned page may be not in buddy system, and
6467 * page_count() is not 0.
6469 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6471 SetPageReserved(page
);
6475 BUG_ON(page_count(page
));
6476 BUG_ON(!PageBuddy(page
));
6477 order
= page_order(page
);
6478 #ifdef CONFIG_DEBUG_VM
6479 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6480 pfn
, 1 << order
, end_pfn
);
6482 list_del(&page
->lru
);
6483 rmv_page_order(page
);
6484 zone
->free_area
[order
].nr_free
--;
6485 for (i
= 0; i
< (1 << order
); i
++)
6486 SetPageReserved((page
+i
));
6487 pfn
+= (1 << order
);
6489 spin_unlock_irqrestore(&zone
->lock
, flags
);
6493 #ifdef CONFIG_MEMORY_FAILURE
6494 bool is_free_buddy_page(struct page
*page
)
6496 struct zone
*zone
= page_zone(page
);
6497 unsigned long pfn
= page_to_pfn(page
);
6498 unsigned long flags
;
6501 spin_lock_irqsave(&zone
->lock
, flags
);
6502 for (order
= 0; order
< MAX_ORDER
; order
++) {
6503 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6505 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6508 spin_unlock_irqrestore(&zone
->lock
, flags
);
6510 return order
< MAX_ORDER
;
6514 static const struct trace_print_flags pageflag_names
[] = {
6515 {1UL << PG_locked
, "locked" },
6516 {1UL << PG_error
, "error" },
6517 {1UL << PG_referenced
, "referenced" },
6518 {1UL << PG_uptodate
, "uptodate" },
6519 {1UL << PG_dirty
, "dirty" },
6520 {1UL << PG_lru
, "lru" },
6521 {1UL << PG_active
, "active" },
6522 {1UL << PG_slab
, "slab" },
6523 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6524 {1UL << PG_arch_1
, "arch_1" },
6525 {1UL << PG_reserved
, "reserved" },
6526 {1UL << PG_private
, "private" },
6527 {1UL << PG_private_2
, "private_2" },
6528 {1UL << PG_writeback
, "writeback" },
6529 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6530 {1UL << PG_head
, "head" },
6531 {1UL << PG_tail
, "tail" },
6533 {1UL << PG_compound
, "compound" },
6535 {1UL << PG_swapcache
, "swapcache" },
6536 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6537 {1UL << PG_reclaim
, "reclaim" },
6538 {1UL << PG_swapbacked
, "swapbacked" },
6539 {1UL << PG_unevictable
, "unevictable" },
6541 {1UL << PG_mlocked
, "mlocked" },
6543 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6544 {1UL << PG_uncached
, "uncached" },
6546 #ifdef CONFIG_MEMORY_FAILURE
6547 {1UL << PG_hwpoison
, "hwpoison" },
6549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6550 {1UL << PG_compound_lock
, "compound_lock" },
6554 static void dump_page_flags(unsigned long flags
)
6556 const char *delim
= "";
6560 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6562 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6564 /* remove zone id */
6565 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6567 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6569 mask
= pageflag_names
[i
].mask
;
6570 if ((flags
& mask
) != mask
)
6574 printk("%s%s", delim
, pageflag_names
[i
].name
);
6578 /* check for left over flags */
6580 printk("%s%#lx", delim
, flags
);
6585 void dump_page(struct page
*page
)
6588 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6589 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6590 page
->mapping
, page
->index
);
6591 dump_page_flags(page
->flags
);
6592 mem_cgroup_print_bad_page(page
);