1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
77 #include "page_reporting.h"
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock
);
81 #define MIN_PERCPU_PAGELIST_FRACTION (8)
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node
);
85 EXPORT_PER_CPU_SYMBOL(numa_node
);
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
97 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
101 /* work_structs for global per-cpu drains */
104 struct work_struct work
;
106 static DEFINE_MUTEX(pcpu_drain_mutex
);
107 static DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy
;
111 EXPORT_SYMBOL(latent_entropy
);
115 * Array of node states.
117 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
118 [N_POSSIBLE
] = NODE_MASK_ALL
,
119 [N_ONLINE
] = { { [0] = 1UL } },
121 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
125 [N_MEMORY
] = { { [0] = 1UL } },
126 [N_CPU
] = { { [0] = 1UL } },
129 EXPORT_SYMBOL(node_states
);
131 atomic_long_t _totalram_pages __read_mostly
;
132 EXPORT_SYMBOL(_totalram_pages
);
133 unsigned long totalreserve_pages __read_mostly
;
134 unsigned long totalcma_pages __read_mostly
;
136 int percpu_pagelist_fraction
;
137 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc
);
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc
);
143 EXPORT_SYMBOL(init_on_alloc
);
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free
);
148 DEFINE_STATIC_KEY_FALSE(init_on_free
);
150 EXPORT_SYMBOL(init_on_free
);
152 static int __init
early_init_on_alloc(char *buf
)
159 ret
= kstrtobool(buf
, &bool_result
);
160 if (bool_result
&& page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 static_branch_enable(&init_on_alloc
);
165 static_branch_disable(&init_on_alloc
);
168 early_param("init_on_alloc", early_init_on_alloc
);
170 static int __init
early_init_on_free(char *buf
)
177 ret
= kstrtobool(buf
, &bool_result
);
178 if (bool_result
&& page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 static_branch_enable(&init_on_free
);
183 static_branch_disable(&init_on_free
);
186 early_param("init_on_free", early_init_on_free
);
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
196 static inline int get_pcppage_migratetype(struct page
*page
)
201 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
203 page
->index
= migratetype
;
206 #ifdef CONFIG_PM_SLEEP
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
217 static gfp_t saved_gfp_mask
;
219 void pm_restore_gfp_mask(void)
221 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
222 if (saved_gfp_mask
) {
223 gfp_allowed_mask
= saved_gfp_mask
;
228 void pm_restrict_gfp_mask(void)
230 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
231 WARN_ON(saved_gfp_mask
);
232 saved_gfp_mask
= gfp_allowed_mask
;
233 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
236 bool pm_suspended_storage(void)
238 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
242 #endif /* CONFIG_PM_SLEEP */
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly
;
248 static void __free_pages_ok(struct page
*page
, unsigned int order
);
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
261 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
262 #ifdef CONFIG_ZONE_DMA
265 #ifdef CONFIG_ZONE_DMA32
269 #ifdef CONFIG_HIGHMEM
275 static char * const zone_names
[MAX_NR_ZONES
] = {
276 #ifdef CONFIG_ZONE_DMA
279 #ifdef CONFIG_ZONE_DMA32
283 #ifdef CONFIG_HIGHMEM
287 #ifdef CONFIG_ZONE_DEVICE
292 const char * const migratetype_names
[MIGRATE_TYPES
] = {
300 #ifdef CONFIG_MEMORY_ISOLATION
305 compound_page_dtor
* const compound_page_dtors
[] = {
308 #ifdef CONFIG_HUGETLB_PAGE
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
316 int min_free_kbytes
= 1024;
317 int user_min_free_kbytes
= -1;
318 #ifdef CONFIG_DISCONTIGMEM
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
328 int watermark_boost_factor __read_mostly
;
330 int watermark_boost_factor __read_mostly
= 15000;
332 int watermark_scale_factor
= 10;
334 static unsigned long nr_kernel_pages __initdata
;
335 static unsigned long nr_all_pages __initdata
;
336 static unsigned long dma_reserve __initdata
;
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
340 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
341 static unsigned long required_kernelcore __initdata
;
342 static unsigned long required_kernelcore_percent __initdata
;
343 static unsigned long required_movablecore __initdata
;
344 static unsigned long required_movablecore_percent __initdata
;
345 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
346 static bool mirrored_kernelcore __meminitdata
;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone
);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
354 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
355 unsigned int nr_online_nodes __read_mostly
= 1;
356 EXPORT_SYMBOL(nr_node_ids
);
357 EXPORT_SYMBOL(nr_online_nodes
);
360 int page_group_by_mobility_disabled __read_mostly
;
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
383 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
385 if (!static_branch_unlikely(&deferred_pages
))
386 kasan_free_pages(page
, order
);
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
392 int nid
= early_pfn_to_nid(pfn
);
394 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
404 static bool __meminit
405 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
407 static unsigned long prev_end_pfn
, nr_initialised
;
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
413 if (prev_end_pfn
!= end_pfn
) {
414 prev_end_pfn
= end_pfn
;
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
427 if ((nr_initialised
> PAGES_PER_SECTION
) &&
428 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
429 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437 static inline bool early_page_uninitialised(unsigned long pfn
)
442 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn
));
455 return page_zone(page
)->pageblock_flags
;
456 #endif /* CONFIG_SPARSEMEM */
459 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
461 #ifdef CONFIG_SPARSEMEM
462 pfn
&= (PAGES_PER_SECTION
-1);
463 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
465 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
466 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
467 #endif /* CONFIG_SPARSEMEM */
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
477 * Return: pageblock_bits flags
479 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
481 unsigned long end_bitidx
,
484 unsigned long *bitmap
;
485 unsigned long bitidx
, word_bitidx
;
488 bitmap
= get_pageblock_bitmap(page
, pfn
);
489 bitidx
= pfn_to_bitidx(page
, pfn
);
490 word_bitidx
= bitidx
/ BITS_PER_LONG
;
491 bitidx
&= (BITS_PER_LONG
-1);
493 word
= bitmap
[word_bitidx
];
494 bitidx
+= end_bitidx
;
495 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
498 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
499 unsigned long end_bitidx
,
502 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
505 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
507 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
518 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
520 unsigned long end_bitidx
,
523 unsigned long *bitmap
;
524 unsigned long bitidx
, word_bitidx
;
525 unsigned long old_word
, word
;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
528 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
530 bitmap
= get_pageblock_bitmap(page
, pfn
);
531 bitidx
= pfn_to_bitidx(page
, pfn
);
532 word_bitidx
= bitidx
/ BITS_PER_LONG
;
533 bitidx
&= (BITS_PER_LONG
-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
537 bitidx
+= end_bitidx
;
538 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
539 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
541 word
= READ_ONCE(bitmap
[word_bitidx
]);
543 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
544 if (word
== old_word
)
550 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
552 if (unlikely(page_group_by_mobility_disabled
&&
553 migratetype
< MIGRATE_PCPTYPES
))
554 migratetype
= MIGRATE_UNMOVABLE
;
556 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
557 PB_migrate
, PB_migrate_end
);
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
565 unsigned long pfn
= page_to_pfn(page
);
566 unsigned long sp
, start_pfn
;
569 seq
= zone_span_seqbegin(zone
);
570 start_pfn
= zone
->zone_start_pfn
;
571 sp
= zone
->spanned_pages
;
572 if (!zone_spans_pfn(zone
, pfn
))
574 } while (zone_span_seqretry(zone
, seq
));
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn
, zone_to_nid(zone
), zone
->name
,
579 start_pfn
, start_pfn
+ sp
);
584 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
586 if (!pfn_valid_within(page_to_pfn(page
)))
588 if (zone
!= page_zone(page
))
594 * Temporary debugging check for pages not lying within a given zone.
596 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
598 if (page_outside_zone_boundaries(zone
, page
))
600 if (!page_is_consistent(zone
, page
))
606 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
612 static void bad_page(struct page
*page
, const char *reason
,
613 unsigned long bad_flags
)
615 static unsigned long resume
;
616 static unsigned long nr_shown
;
617 static unsigned long nr_unshown
;
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
623 if (nr_shown
== 60) {
624 if (time_before(jiffies
, resume
)) {
630 "BUG: Bad page state: %lu messages suppressed\n",
637 resume
= jiffies
+ 60 * HZ
;
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current
->comm
, page_to_pfn(page
));
641 __dump_page(page
, reason
);
642 bad_flags
&= page
->flags
;
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags
, &bad_flags
);
646 dump_page_owner(page
);
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page
); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
657 * Higher-order pages are called "compound pages". They are structured thusly:
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
671 void free_compound_page(struct page
*page
)
673 mem_cgroup_uncharge(page
);
674 __free_pages_ok(page
, compound_order(page
));
677 void prep_compound_page(struct page
*page
, unsigned int order
)
680 int nr_pages
= 1 << order
;
682 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
683 set_compound_order(page
, order
);
685 for (i
= 1; i
< nr_pages
; i
++) {
686 struct page
*p
= page
+ i
;
687 set_page_count(p
, 0);
688 p
->mapping
= TAIL_MAPPING
;
689 set_compound_head(p
, page
);
691 atomic_set(compound_mapcount_ptr(page
), -1);
692 if (hpage_pincount_available(page
))
693 atomic_set(compound_pincount_ptr(page
), 0);
696 #ifdef CONFIG_DEBUG_PAGEALLOC
697 unsigned int _debug_guardpage_minorder
;
699 bool _debug_pagealloc_enabled_early __read_mostly
700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early
);
702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
703 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
707 static int __init
early_debug_pagealloc(char *buf
)
709 return kstrtobool(buf
, &_debug_pagealloc_enabled_early
);
711 early_param("debug_pagealloc", early_debug_pagealloc
);
713 void init_debug_pagealloc(void)
715 if (!debug_pagealloc_enabled())
718 static_branch_enable(&_debug_pagealloc_enabled
);
720 if (!debug_guardpage_minorder())
723 static_branch_enable(&_debug_guardpage_enabled
);
726 static int __init
debug_guardpage_minorder_setup(char *buf
)
730 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
731 pr_err("Bad debug_guardpage_minorder value\n");
734 _debug_guardpage_minorder
= res
;
735 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
740 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
741 unsigned int order
, int migratetype
)
743 if (!debug_guardpage_enabled())
746 if (order
>= debug_guardpage_minorder())
749 __SetPageGuard(page
);
750 INIT_LIST_HEAD(&page
->lru
);
751 set_page_private(page
, order
);
752 /* Guard pages are not available for any usage */
753 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
758 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
759 unsigned int order
, int migratetype
)
761 if (!debug_guardpage_enabled())
764 __ClearPageGuard(page
);
766 set_page_private(page
, 0);
767 if (!is_migrate_isolate(migratetype
))
768 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
771 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
772 unsigned int order
, int migratetype
) { return false; }
773 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
774 unsigned int order
, int migratetype
) {}
777 static inline void set_page_order(struct page
*page
, unsigned int order
)
779 set_page_private(page
, order
);
780 __SetPageBuddy(page
);
784 * This function checks whether a page is free && is the buddy
785 * we can coalesce a page and its buddy if
786 * (a) the buddy is not in a hole (check before calling!) &&
787 * (b) the buddy is in the buddy system &&
788 * (c) a page and its buddy have the same order &&
789 * (d) a page and its buddy are in the same zone.
791 * For recording whether a page is in the buddy system, we set PageBuddy.
792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
794 * For recording page's order, we use page_private(page).
796 static inline bool page_is_buddy(struct page
*page
, struct page
*buddy
,
799 if (!page_is_guard(buddy
) && !PageBuddy(buddy
))
802 if (page_order(buddy
) != order
)
806 * zone check is done late to avoid uselessly calculating
807 * zone/node ids for pages that could never merge.
809 if (page_zone_id(page
) != page_zone_id(buddy
))
812 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
817 #ifdef CONFIG_COMPACTION
818 static inline struct capture_control
*task_capc(struct zone
*zone
)
820 struct capture_control
*capc
= current
->capture_control
;
823 !(current
->flags
& PF_KTHREAD
) &&
825 capc
->cc
->zone
== zone
&&
826 capc
->cc
->direct_compaction
? capc
: NULL
;
830 compaction_capture(struct capture_control
*capc
, struct page
*page
,
831 int order
, int migratetype
)
833 if (!capc
|| order
!= capc
->cc
->order
)
836 /* Do not accidentally pollute CMA or isolated regions*/
837 if (is_migrate_cma(migratetype
) ||
838 is_migrate_isolate(migratetype
))
842 * Do not let lower order allocations polluate a movable pageblock.
843 * This might let an unmovable request use a reclaimable pageblock
844 * and vice-versa but no more than normal fallback logic which can
845 * have trouble finding a high-order free page.
847 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
855 static inline struct capture_control
*task_capc(struct zone
*zone
)
861 compaction_capture(struct capture_control
*capc
, struct page
*page
,
862 int order
, int migratetype
)
866 #endif /* CONFIG_COMPACTION */
868 /* Used for pages not on another list */
869 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
870 unsigned int order
, int migratetype
)
872 struct free_area
*area
= &zone
->free_area
[order
];
874 list_add(&page
->lru
, &area
->free_list
[migratetype
]);
878 /* Used for pages not on another list */
879 static inline void add_to_free_list_tail(struct page
*page
, struct zone
*zone
,
880 unsigned int order
, int migratetype
)
882 struct free_area
*area
= &zone
->free_area
[order
];
884 list_add_tail(&page
->lru
, &area
->free_list
[migratetype
]);
888 /* Used for pages which are on another list */
889 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
890 unsigned int order
, int migratetype
)
892 struct free_area
*area
= &zone
->free_area
[order
];
894 list_move(&page
->lru
, &area
->free_list
[migratetype
]);
897 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
900 /* clear reported state and update reported page count */
901 if (page_reported(page
))
902 __ClearPageReported(page
);
904 list_del(&page
->lru
);
905 __ClearPageBuddy(page
);
906 set_page_private(page
, 0);
907 zone
->free_area
[order
].nr_free
--;
911 * If this is not the largest possible page, check if the buddy
912 * of the next-highest order is free. If it is, it's possible
913 * that pages are being freed that will coalesce soon. In case,
914 * that is happening, add the free page to the tail of the list
915 * so it's less likely to be used soon and more likely to be merged
916 * as a higher order page
919 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
920 struct page
*page
, unsigned int order
)
922 struct page
*higher_page
, *higher_buddy
;
923 unsigned long combined_pfn
;
925 if (order
>= MAX_ORDER
- 2)
928 if (!pfn_valid_within(buddy_pfn
))
931 combined_pfn
= buddy_pfn
& pfn
;
932 higher_page
= page
+ (combined_pfn
- pfn
);
933 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
934 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
936 return pfn_valid_within(buddy_pfn
) &&
937 page_is_buddy(higher_page
, higher_buddy
, order
+ 1);
941 * Freeing function for a buddy system allocator.
943 * The concept of a buddy system is to maintain direct-mapped table
944 * (containing bit values) for memory blocks of various "orders".
945 * The bottom level table contains the map for the smallest allocatable
946 * units of memory (here, pages), and each level above it describes
947 * pairs of units from the levels below, hence, "buddies".
948 * At a high level, all that happens here is marking the table entry
949 * at the bottom level available, and propagating the changes upward
950 * as necessary, plus some accounting needed to play nicely with other
951 * parts of the VM system.
952 * At each level, we keep a list of pages, which are heads of continuous
953 * free pages of length of (1 << order) and marked with PageBuddy.
954 * Page's order is recorded in page_private(page) field.
955 * So when we are allocating or freeing one, we can derive the state of the
956 * other. That is, if we allocate a small block, and both were
957 * free, the remainder of the region must be split into blocks.
958 * If a block is freed, and its buddy is also free, then this
959 * triggers coalescing into a block of larger size.
964 static inline void __free_one_page(struct page
*page
,
966 struct zone
*zone
, unsigned int order
,
967 int migratetype
, bool report
)
969 struct capture_control
*capc
= task_capc(zone
);
970 unsigned long uninitialized_var(buddy_pfn
);
971 unsigned long combined_pfn
;
972 unsigned int max_order
;
976 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
978 VM_BUG_ON(!zone_is_initialized(zone
));
979 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
981 VM_BUG_ON(migratetype
== -1);
982 if (likely(!is_migrate_isolate(migratetype
)))
983 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
985 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
986 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
989 while (order
< max_order
- 1) {
990 if (compaction_capture(capc
, page
, order
, migratetype
)) {
991 __mod_zone_freepage_state(zone
, -(1 << order
),
995 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
996 buddy
= page
+ (buddy_pfn
- pfn
);
998 if (!pfn_valid_within(buddy_pfn
))
1000 if (!page_is_buddy(page
, buddy
, order
))
1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 * merge with it and move up one order.
1006 if (page_is_guard(buddy
))
1007 clear_page_guard(zone
, buddy
, order
, migratetype
);
1009 del_page_from_free_list(buddy
, zone
, order
);
1010 combined_pfn
= buddy_pfn
& pfn
;
1011 page
= page
+ (combined_pfn
- pfn
);
1015 if (max_order
< MAX_ORDER
) {
1016 /* If we are here, it means order is >= pageblock_order.
1017 * We want to prevent merge between freepages on isolate
1018 * pageblock and normal pageblock. Without this, pageblock
1019 * isolation could cause incorrect freepage or CMA accounting.
1021 * We don't want to hit this code for the more frequent
1022 * low-order merging.
1024 if (unlikely(has_isolate_pageblock(zone
))) {
1027 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
1028 buddy
= page
+ (buddy_pfn
- pfn
);
1029 buddy_mt
= get_pageblock_migratetype(buddy
);
1031 if (migratetype
!= buddy_mt
1032 && (is_migrate_isolate(migratetype
) ||
1033 is_migrate_isolate(buddy_mt
)))
1037 goto continue_merging
;
1041 set_page_order(page
, order
);
1043 if (is_shuffle_order(order
))
1044 to_tail
= shuffle_pick_tail();
1046 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
1049 add_to_free_list_tail(page
, zone
, order
, migratetype
);
1051 add_to_free_list(page
, zone
, order
, migratetype
);
1053 /* Notify page reporting subsystem of freed page */
1055 page_reporting_notify_free(order
);
1059 * A bad page could be due to a number of fields. Instead of multiple branches,
1060 * try and check multiple fields with one check. The caller must do a detailed
1061 * check if necessary.
1063 static inline bool page_expected_state(struct page
*page
,
1064 unsigned long check_flags
)
1066 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1069 if (unlikely((unsigned long)page
->mapping
|
1070 page_ref_count(page
) |
1072 (unsigned long)page
->mem_cgroup
|
1074 (page
->flags
& check_flags
)))
1080 static void free_pages_check_bad(struct page
*page
)
1082 const char *bad_reason
;
1083 unsigned long bad_flags
;
1088 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1089 bad_reason
= "nonzero mapcount";
1090 if (unlikely(page
->mapping
!= NULL
))
1091 bad_reason
= "non-NULL mapping";
1092 if (unlikely(page_ref_count(page
) != 0))
1093 bad_reason
= "nonzero _refcount";
1094 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
1095 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
1099 if (unlikely(page
->mem_cgroup
))
1100 bad_reason
= "page still charged to cgroup";
1102 bad_page(page
, bad_reason
, bad_flags
);
1105 static inline int free_pages_check(struct page
*page
)
1107 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1110 /* Something has gone sideways, find it */
1111 free_pages_check_bad(page
);
1115 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1120 * We rely page->lru.next never has bit 0 set, unless the page
1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1123 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1125 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1129 switch (page
- head_page
) {
1131 /* the first tail page: ->mapping may be compound_mapcount() */
1132 if (unlikely(compound_mapcount(page
))) {
1133 bad_page(page
, "nonzero compound_mapcount", 0);
1139 * the second tail page: ->mapping is
1140 * deferred_list.next -- ignore value.
1144 if (page
->mapping
!= TAIL_MAPPING
) {
1145 bad_page(page
, "corrupted mapping in tail page", 0);
1150 if (unlikely(!PageTail(page
))) {
1151 bad_page(page
, "PageTail not set", 0);
1154 if (unlikely(compound_head(page
) != head_page
)) {
1155 bad_page(page
, "compound_head not consistent", 0);
1160 page
->mapping
= NULL
;
1161 clear_compound_head(page
);
1165 static void kernel_init_free_pages(struct page
*page
, int numpages
)
1169 for (i
= 0; i
< numpages
; i
++)
1170 clear_highpage(page
+ i
);
1173 static __always_inline
bool free_pages_prepare(struct page
*page
,
1174 unsigned int order
, bool check_free
)
1178 VM_BUG_ON_PAGE(PageTail(page
), page
);
1180 trace_mm_page_free(page
, order
);
1183 * Check tail pages before head page information is cleared to
1184 * avoid checking PageCompound for order-0 pages.
1186 if (unlikely(order
)) {
1187 bool compound
= PageCompound(page
);
1190 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1193 ClearPageDoubleMap(page
);
1194 for (i
= 1; i
< (1 << order
); i
++) {
1196 bad
+= free_tail_pages_check(page
, page
+ i
);
1197 if (unlikely(free_pages_check(page
+ i
))) {
1201 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1204 if (PageMappingFlags(page
))
1205 page
->mapping
= NULL
;
1206 if (memcg_kmem_enabled() && PageKmemcg(page
))
1207 __memcg_kmem_uncharge_page(page
, order
);
1209 bad
+= free_pages_check(page
);
1213 page_cpupid_reset_last(page
);
1214 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1215 reset_page_owner(page
, order
);
1217 if (!PageHighMem(page
)) {
1218 debug_check_no_locks_freed(page_address(page
),
1219 PAGE_SIZE
<< order
);
1220 debug_check_no_obj_freed(page_address(page
),
1221 PAGE_SIZE
<< order
);
1223 if (want_init_on_free())
1224 kernel_init_free_pages(page
, 1 << order
);
1226 kernel_poison_pages(page
, 1 << order
, 0);
1228 * arch_free_page() can make the page's contents inaccessible. s390
1229 * does this. So nothing which can access the page's contents should
1230 * happen after this.
1232 arch_free_page(page
, order
);
1234 if (debug_pagealloc_enabled_static())
1235 kernel_map_pages(page
, 1 << order
, 0);
1237 kasan_free_nondeferred_pages(page
, order
);
1242 #ifdef CONFIG_DEBUG_VM
1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246 * moved from pcp lists to free lists.
1248 static bool free_pcp_prepare(struct page
*page
)
1250 return free_pages_prepare(page
, 0, true);
1253 static bool bulkfree_pcp_prepare(struct page
*page
)
1255 if (debug_pagealloc_enabled_static())
1256 return free_pages_check(page
);
1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263 * moving from pcp lists to free list in order to reduce overhead. With
1264 * debug_pagealloc enabled, they are checked also immediately when being freed
1267 static bool free_pcp_prepare(struct page
*page
)
1269 if (debug_pagealloc_enabled_static())
1270 return free_pages_prepare(page
, 0, true);
1272 return free_pages_prepare(page
, 0, false);
1275 static bool bulkfree_pcp_prepare(struct page
*page
)
1277 return free_pages_check(page
);
1279 #endif /* CONFIG_DEBUG_VM */
1281 static inline void prefetch_buddy(struct page
*page
)
1283 unsigned long pfn
= page_to_pfn(page
);
1284 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1285 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1291 * Frees a number of pages from the PCP lists
1292 * Assumes all pages on list are in same zone, and of same order.
1293 * count is the number of pages to free.
1295 * If the zone was previously in an "all pages pinned" state then look to
1296 * see if this freeing clears that state.
1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299 * pinned" detection logic.
1301 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1302 struct per_cpu_pages
*pcp
)
1304 int migratetype
= 0;
1306 int prefetch_nr
= 0;
1307 bool isolated_pageblocks
;
1308 struct page
*page
, *tmp
;
1312 struct list_head
*list
;
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1323 if (++migratetype
== MIGRATE_PCPTYPES
)
1325 list
= &pcp
->lists
[migratetype
];
1326 } while (list_empty(list
));
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free
== MIGRATE_PCPTYPES
)
1333 page
= list_last_entry(list
, struct page
, lru
);
1334 /* must delete to avoid corrupting pcp list */
1335 list_del(&page
->lru
);
1338 if (bulkfree_pcp_prepare(page
))
1341 list_add_tail(&page
->lru
, &head
);
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1352 if (prefetch_nr
++ < pcp
->batch
)
1353 prefetch_buddy(page
);
1354 } while (--count
&& --batch_free
&& !list_empty(list
));
1357 spin_lock(&zone
->lock
);
1358 isolated_pageblocks
= has_isolate_pageblock(zone
);
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1364 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1365 int mt
= get_pcppage_migratetype(page
);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks
))
1370 mt
= get_pageblock_migratetype(page
);
1372 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
, true);
1373 trace_mm_page_pcpu_drain(page
, 0, mt
);
1375 spin_unlock(&zone
->lock
);
1378 static void free_one_page(struct zone
*zone
,
1379 struct page
*page
, unsigned long pfn
,
1383 spin_lock(&zone
->lock
);
1384 if (unlikely(has_isolate_pageblock(zone
) ||
1385 is_migrate_isolate(migratetype
))) {
1386 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1388 __free_one_page(page
, pfn
, zone
, order
, migratetype
, true);
1389 spin_unlock(&zone
->lock
);
1392 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1393 unsigned long zone
, int nid
)
1395 mm_zero_struct_page(page
);
1396 set_page_links(page
, zone
, nid
, pfn
);
1397 init_page_count(page
);
1398 page_mapcount_reset(page
);
1399 page_cpupid_reset_last(page
);
1400 page_kasan_tag_reset(page
);
1402 INIT_LIST_HEAD(&page
->lru
);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone
))
1406 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit
init_reserved_page(unsigned long pfn
)
1416 if (!early_page_uninitialised(pfn
))
1419 nid
= early_pfn_to_nid(pfn
);
1420 pgdat
= NODE_DATA(nid
);
1422 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1423 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1425 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1428 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1431 static inline void init_reserved_page(unsigned long pfn
)
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1442 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1444 unsigned long start_pfn
= PFN_DOWN(start
);
1445 unsigned long end_pfn
= PFN_UP(end
);
1447 for (; start_pfn
< end_pfn
; start_pfn
++) {
1448 if (pfn_valid(start_pfn
)) {
1449 struct page
*page
= pfn_to_page(start_pfn
);
1451 init_reserved_page(start_pfn
);
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page
->lru
);
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1461 __SetPageReserved(page
);
1466 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1468 unsigned long flags
;
1470 unsigned long pfn
= page_to_pfn(page
);
1472 if (!free_pages_prepare(page
, order
, true))
1475 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1476 local_irq_save(flags
);
1477 __count_vm_events(PGFREE
, 1 << order
);
1478 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1479 local_irq_restore(flags
);
1482 void __free_pages_core(struct page
*page
, unsigned int order
)
1484 unsigned int nr_pages
= 1 << order
;
1485 struct page
*p
= page
;
1489 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1491 __ClearPageReserved(p
);
1492 set_page_count(p
, 0);
1494 __ClearPageReserved(p
);
1495 set_page_count(p
, 0);
1497 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1498 set_page_refcounted(page
);
1499 __free_pages(page
, order
);
1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1507 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1509 static DEFINE_SPINLOCK(early_pfn_lock
);
1512 spin_lock(&early_pfn_lock
);
1513 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1515 nid
= first_online_node
;
1516 spin_unlock(&early_pfn_lock
);
1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1523 /* Only safe to use early in boot when initialisation is single-threaded */
1524 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1528 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1529 if (nid
>= 0 && nid
!= node
)
1535 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1542 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1545 if (early_page_uninitialised(pfn
))
1547 __free_pages_core(page
, order
);
1551 * Check that the whole (or subset of) a pageblock given by the interval of
1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553 * with the migration of free compaction scanner. The scanners then need to
1554 * use only pfn_valid_within() check for arches that allow holes within
1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1559 * It's possible on some configurations to have a setup like node0 node1 node0
1560 * i.e. it's possible that all pages within a zones range of pages do not
1561 * belong to a single zone. We assume that a border between node0 and node1
1562 * can occur within a single pageblock, but not a node0 node1 node0
1563 * interleaving within a single pageblock. It is therefore sufficient to check
1564 * the first and last page of a pageblock and avoid checking each individual
1565 * page in a pageblock.
1567 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1568 unsigned long end_pfn
, struct zone
*zone
)
1570 struct page
*start_page
;
1571 struct page
*end_page
;
1573 /* end_pfn is one past the range we are checking */
1576 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1579 start_page
= pfn_to_online_page(start_pfn
);
1583 if (page_zone(start_page
) != zone
)
1586 end_page
= pfn_to_page(end_pfn
);
1588 /* This gives a shorter code than deriving page_zone(end_page) */
1589 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1595 void set_zone_contiguous(struct zone
*zone
)
1597 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1598 unsigned long block_end_pfn
;
1600 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1601 for (; block_start_pfn
< zone_end_pfn(zone
);
1602 block_start_pfn
= block_end_pfn
,
1603 block_end_pfn
+= pageblock_nr_pages
) {
1605 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1607 if (!__pageblock_pfn_to_page(block_start_pfn
,
1608 block_end_pfn
, zone
))
1613 /* We confirm that there is no hole */
1614 zone
->contiguous
= true;
1617 void clear_zone_contiguous(struct zone
*zone
)
1619 zone
->contiguous
= false;
1622 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1623 static void __init
deferred_free_range(unsigned long pfn
,
1624 unsigned long nr_pages
)
1632 page
= pfn_to_page(pfn
);
1634 /* Free a large naturally-aligned chunk if possible */
1635 if (nr_pages
== pageblock_nr_pages
&&
1636 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1637 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1638 __free_pages_core(page
, pageblock_order
);
1642 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1643 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1644 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1645 __free_pages_core(page
, 0);
1649 /* Completion tracking for deferred_init_memmap() threads */
1650 static atomic_t pgdat_init_n_undone __initdata
;
1651 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1653 static inline void __init
pgdat_init_report_one_done(void)
1655 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1656 complete(&pgdat_init_all_done_comp
);
1660 * Returns true if page needs to be initialized or freed to buddy allocator.
1662 * First we check if pfn is valid on architectures where it is possible to have
1663 * holes within pageblock_nr_pages. On systems where it is not possible, this
1664 * function is optimized out.
1666 * Then, we check if a current large page is valid by only checking the validity
1669 static inline bool __init
deferred_pfn_valid(unsigned long pfn
)
1671 if (!pfn_valid_within(pfn
))
1673 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1679 * Free pages to buddy allocator. Try to free aligned pages in
1680 * pageblock_nr_pages sizes.
1682 static void __init
deferred_free_pages(unsigned long pfn
,
1683 unsigned long end_pfn
)
1685 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1686 unsigned long nr_free
= 0;
1688 for (; pfn
< end_pfn
; pfn
++) {
1689 if (!deferred_pfn_valid(pfn
)) {
1690 deferred_free_range(pfn
- nr_free
, nr_free
);
1692 } else if (!(pfn
& nr_pgmask
)) {
1693 deferred_free_range(pfn
- nr_free
, nr_free
);
1699 /* Free the last block of pages to allocator */
1700 deferred_free_range(pfn
- nr_free
, nr_free
);
1704 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1705 * by performing it only once every pageblock_nr_pages.
1706 * Return number of pages initialized.
1708 static unsigned long __init
deferred_init_pages(struct zone
*zone
,
1710 unsigned long end_pfn
)
1712 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1713 int nid
= zone_to_nid(zone
);
1714 unsigned long nr_pages
= 0;
1715 int zid
= zone_idx(zone
);
1716 struct page
*page
= NULL
;
1718 for (; pfn
< end_pfn
; pfn
++) {
1719 if (!deferred_pfn_valid(pfn
)) {
1722 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1723 page
= pfn_to_page(pfn
);
1727 __init_single_page(page
, pfn
, zid
, nid
);
1734 * This function is meant to pre-load the iterator for the zone init.
1735 * Specifically it walks through the ranges until we are caught up to the
1736 * first_init_pfn value and exits there. If we never encounter the value we
1737 * return false indicating there are no valid ranges left.
1740 deferred_init_mem_pfn_range_in_zone(u64
*i
, struct zone
*zone
,
1741 unsigned long *spfn
, unsigned long *epfn
,
1742 unsigned long first_init_pfn
)
1747 * Start out by walking through the ranges in this zone that have
1748 * already been initialized. We don't need to do anything with them
1749 * so we just need to flush them out of the system.
1751 for_each_free_mem_pfn_range_in_zone(j
, zone
, spfn
, epfn
) {
1752 if (*epfn
<= first_init_pfn
)
1754 if (*spfn
< first_init_pfn
)
1755 *spfn
= first_init_pfn
;
1764 * Initialize and free pages. We do it in two loops: first we initialize
1765 * struct page, then free to buddy allocator, because while we are
1766 * freeing pages we can access pages that are ahead (computing buddy
1767 * page in __free_one_page()).
1769 * In order to try and keep some memory in the cache we have the loop
1770 * broken along max page order boundaries. This way we will not cause
1771 * any issues with the buddy page computation.
1773 static unsigned long __init
1774 deferred_init_maxorder(u64
*i
, struct zone
*zone
, unsigned long *start_pfn
,
1775 unsigned long *end_pfn
)
1777 unsigned long mo_pfn
= ALIGN(*start_pfn
+ 1, MAX_ORDER_NR_PAGES
);
1778 unsigned long spfn
= *start_pfn
, epfn
= *end_pfn
;
1779 unsigned long nr_pages
= 0;
1782 /* First we loop through and initialize the page values */
1783 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, start_pfn
, end_pfn
) {
1786 if (mo_pfn
<= *start_pfn
)
1789 t
= min(mo_pfn
, *end_pfn
);
1790 nr_pages
+= deferred_init_pages(zone
, *start_pfn
, t
);
1792 if (mo_pfn
< *end_pfn
) {
1793 *start_pfn
= mo_pfn
;
1798 /* Reset values and now loop through freeing pages as needed */
1801 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, &spfn
, &epfn
) {
1807 t
= min(mo_pfn
, epfn
);
1808 deferred_free_pages(spfn
, t
);
1817 /* Initialise remaining memory on a node */
1818 static int __init
deferred_init_memmap(void *data
)
1820 pg_data_t
*pgdat
= data
;
1821 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1822 unsigned long spfn
= 0, epfn
= 0, nr_pages
= 0;
1823 unsigned long first_init_pfn
, flags
;
1824 unsigned long start
= jiffies
;
1829 /* Bind memory initialisation thread to a local node if possible */
1830 if (!cpumask_empty(cpumask
))
1831 set_cpus_allowed_ptr(current
, cpumask
);
1833 pgdat_resize_lock(pgdat
, &flags
);
1834 first_init_pfn
= pgdat
->first_deferred_pfn
;
1835 if (first_init_pfn
== ULONG_MAX
) {
1836 pgdat_resize_unlock(pgdat
, &flags
);
1837 pgdat_init_report_one_done();
1841 /* Sanity check boundaries */
1842 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1843 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1844 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1847 * Once we unlock here, the zone cannot be grown anymore, thus if an
1848 * interrupt thread must allocate this early in boot, zone must be
1849 * pre-grown prior to start of deferred page initialization.
1851 pgdat_resize_unlock(pgdat
, &flags
);
1853 /* Only the highest zone is deferred so find it */
1854 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1855 zone
= pgdat
->node_zones
+ zid
;
1856 if (first_init_pfn
< zone_end_pfn(zone
))
1860 /* If the zone is empty somebody else may have cleared out the zone */
1861 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1866 * Initialize and free pages in MAX_ORDER sized increments so
1867 * that we can avoid introducing any issues with the buddy
1870 while (spfn
< epfn
) {
1871 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1875 /* Sanity check that the next zone really is unpopulated */
1876 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1878 pr_info("node %d initialised, %lu pages in %ums\n",
1879 pgdat
->node_id
, nr_pages
, jiffies_to_msecs(jiffies
- start
));
1881 pgdat_init_report_one_done();
1886 * If this zone has deferred pages, try to grow it by initializing enough
1887 * deferred pages to satisfy the allocation specified by order, rounded up to
1888 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1889 * of SECTION_SIZE bytes by initializing struct pages in increments of
1890 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1892 * Return true when zone was grown, otherwise return false. We return true even
1893 * when we grow less than requested, to let the caller decide if there are
1894 * enough pages to satisfy the allocation.
1896 * Note: We use noinline because this function is needed only during boot, and
1897 * it is called from a __ref function _deferred_grow_zone. This way we are
1898 * making sure that it is not inlined into permanent text section.
1900 static noinline
bool __init
1901 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1903 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
1904 pg_data_t
*pgdat
= zone
->zone_pgdat
;
1905 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
1906 unsigned long spfn
, epfn
, flags
;
1907 unsigned long nr_pages
= 0;
1910 /* Only the last zone may have deferred pages */
1911 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
1914 pgdat_resize_lock(pgdat
, &flags
);
1917 * If someone grew this zone while we were waiting for spinlock, return
1918 * true, as there might be enough pages already.
1920 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
1921 pgdat_resize_unlock(pgdat
, &flags
);
1925 /* If the zone is empty somebody else may have cleared out the zone */
1926 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1927 first_deferred_pfn
)) {
1928 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1929 pgdat_resize_unlock(pgdat
, &flags
);
1930 /* Retry only once. */
1931 return first_deferred_pfn
!= ULONG_MAX
;
1935 * Initialize and free pages in MAX_ORDER sized increments so
1936 * that we can avoid introducing any issues with the buddy
1939 while (spfn
< epfn
) {
1940 /* update our first deferred PFN for this section */
1941 first_deferred_pfn
= spfn
;
1943 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1944 touch_nmi_watchdog();
1946 /* We should only stop along section boundaries */
1947 if ((first_deferred_pfn
^ spfn
) < PAGES_PER_SECTION
)
1950 /* If our quota has been met we can stop here */
1951 if (nr_pages
>= nr_pages_needed
)
1955 pgdat
->first_deferred_pfn
= spfn
;
1956 pgdat_resize_unlock(pgdat
, &flags
);
1958 return nr_pages
> 0;
1962 * deferred_grow_zone() is __init, but it is called from
1963 * get_page_from_freelist() during early boot until deferred_pages permanently
1964 * disables this call. This is why we have refdata wrapper to avoid warning,
1965 * and to ensure that the function body gets unloaded.
1968 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
1970 return deferred_grow_zone(zone
, order
);
1973 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1975 void __init
page_alloc_init_late(void)
1980 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1982 /* There will be num_node_state(N_MEMORY) threads */
1983 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1984 for_each_node_state(nid
, N_MEMORY
) {
1985 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1988 /* Block until all are initialised */
1989 wait_for_completion(&pgdat_init_all_done_comp
);
1992 * The number of managed pages has changed due to the initialisation
1993 * so the pcpu batch and high limits needs to be updated or the limits
1994 * will be artificially small.
1996 for_each_populated_zone(zone
)
1997 zone_pcp_update(zone
);
2000 * We initialized the rest of the deferred pages. Permanently disable
2001 * on-demand struct page initialization.
2003 static_branch_disable(&deferred_pages
);
2005 /* Reinit limits that are based on free pages after the kernel is up */
2006 files_maxfiles_init();
2009 /* Discard memblock private memory */
2012 for_each_node_state(nid
, N_MEMORY
)
2013 shuffle_free_memory(NODE_DATA(nid
));
2015 for_each_populated_zone(zone
)
2016 set_zone_contiguous(zone
);
2020 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2021 void __init
init_cma_reserved_pageblock(struct page
*page
)
2023 unsigned i
= pageblock_nr_pages
;
2024 struct page
*p
= page
;
2027 __ClearPageReserved(p
);
2028 set_page_count(p
, 0);
2031 set_pageblock_migratetype(page
, MIGRATE_CMA
);
2033 if (pageblock_order
>= MAX_ORDER
) {
2034 i
= pageblock_nr_pages
;
2037 set_page_refcounted(p
);
2038 __free_pages(p
, MAX_ORDER
- 1);
2039 p
+= MAX_ORDER_NR_PAGES
;
2040 } while (i
-= MAX_ORDER_NR_PAGES
);
2042 set_page_refcounted(page
);
2043 __free_pages(page
, pageblock_order
);
2046 adjust_managed_page_count(page
, pageblock_nr_pages
);
2051 * The order of subdivision here is critical for the IO subsystem.
2052 * Please do not alter this order without good reasons and regression
2053 * testing. Specifically, as large blocks of memory are subdivided,
2054 * the order in which smaller blocks are delivered depends on the order
2055 * they're subdivided in this function. This is the primary factor
2056 * influencing the order in which pages are delivered to the IO
2057 * subsystem according to empirical testing, and this is also justified
2058 * by considering the behavior of a buddy system containing a single
2059 * large block of memory acted on by a series of small allocations.
2060 * This behavior is a critical factor in sglist merging's success.
2064 static inline void expand(struct zone
*zone
, struct page
*page
,
2065 int low
, int high
, int migratetype
)
2067 unsigned long size
= 1 << high
;
2069 while (high
> low
) {
2072 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
2075 * Mark as guard pages (or page), that will allow to
2076 * merge back to allocator when buddy will be freed.
2077 * Corresponding page table entries will not be touched,
2078 * pages will stay not present in virtual address space
2080 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
2083 add_to_free_list(&page
[size
], zone
, high
, migratetype
);
2084 set_page_order(&page
[size
], high
);
2088 static void check_new_page_bad(struct page
*page
)
2090 const char *bad_reason
= NULL
;
2091 unsigned long bad_flags
= 0;
2093 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
2094 bad_reason
= "nonzero mapcount";
2095 if (unlikely(page
->mapping
!= NULL
))
2096 bad_reason
= "non-NULL mapping";
2097 if (unlikely(page_ref_count(page
) != 0))
2098 bad_reason
= "nonzero _refcount";
2099 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
2100 bad_reason
= "HWPoisoned (hardware-corrupted)";
2101 bad_flags
= __PG_HWPOISON
;
2102 /* Don't complain about hwpoisoned pages */
2103 page_mapcount_reset(page
); /* remove PageBuddy */
2106 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
2107 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
2108 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
2111 if (unlikely(page
->mem_cgroup
))
2112 bad_reason
= "page still charged to cgroup";
2114 bad_page(page
, bad_reason
, bad_flags
);
2118 * This page is about to be returned from the page allocator
2120 static inline int check_new_page(struct page
*page
)
2122 if (likely(page_expected_state(page
,
2123 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
2126 check_new_page_bad(page
);
2130 static inline bool free_pages_prezeroed(void)
2132 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
2133 page_poisoning_enabled()) || want_init_on_free();
2136 #ifdef CONFIG_DEBUG_VM
2138 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2139 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2140 * also checked when pcp lists are refilled from the free lists.
2142 static inline bool check_pcp_refill(struct page
*page
)
2144 if (debug_pagealloc_enabled_static())
2145 return check_new_page(page
);
2150 static inline bool check_new_pcp(struct page
*page
)
2152 return check_new_page(page
);
2156 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2157 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2158 * enabled, they are also checked when being allocated from the pcp lists.
2160 static inline bool check_pcp_refill(struct page
*page
)
2162 return check_new_page(page
);
2164 static inline bool check_new_pcp(struct page
*page
)
2166 if (debug_pagealloc_enabled_static())
2167 return check_new_page(page
);
2171 #endif /* CONFIG_DEBUG_VM */
2173 static bool check_new_pages(struct page
*page
, unsigned int order
)
2176 for (i
= 0; i
< (1 << order
); i
++) {
2177 struct page
*p
= page
+ i
;
2179 if (unlikely(check_new_page(p
)))
2186 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2189 set_page_private(page
, 0);
2190 set_page_refcounted(page
);
2192 arch_alloc_page(page
, order
);
2193 if (debug_pagealloc_enabled_static())
2194 kernel_map_pages(page
, 1 << order
, 1);
2195 kasan_alloc_pages(page
, order
);
2196 kernel_poison_pages(page
, 1 << order
, 1);
2197 set_page_owner(page
, order
, gfp_flags
);
2200 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2201 unsigned int alloc_flags
)
2203 post_alloc_hook(page
, order
, gfp_flags
);
2205 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags
))
2206 kernel_init_free_pages(page
, 1 << order
);
2208 if (order
&& (gfp_flags
& __GFP_COMP
))
2209 prep_compound_page(page
, order
);
2212 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2213 * allocate the page. The expectation is that the caller is taking
2214 * steps that will free more memory. The caller should avoid the page
2215 * being used for !PFMEMALLOC purposes.
2217 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2218 set_page_pfmemalloc(page
);
2220 clear_page_pfmemalloc(page
);
2224 * Go through the free lists for the given migratetype and remove
2225 * the smallest available page from the freelists
2227 static __always_inline
2228 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2231 unsigned int current_order
;
2232 struct free_area
*area
;
2235 /* Find a page of the appropriate size in the preferred list */
2236 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2237 area
= &(zone
->free_area
[current_order
]);
2238 page
= get_page_from_free_area(area
, migratetype
);
2241 del_page_from_free_list(page
, zone
, current_order
);
2242 expand(zone
, page
, order
, current_order
, migratetype
);
2243 set_pcppage_migratetype(page
, migratetype
);
2252 * This array describes the order lists are fallen back to when
2253 * the free lists for the desirable migrate type are depleted
2255 static int fallbacks
[MIGRATE_TYPES
][4] = {
2256 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2257 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2258 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2260 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2262 #ifdef CONFIG_MEMORY_ISOLATION
2263 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2268 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2271 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2274 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2275 unsigned int order
) { return NULL
; }
2279 * Move the free pages in a range to the free lists of the requested type.
2280 * Note that start_page and end_pages are not aligned on a pageblock
2281 * boundary. If alignment is required, use move_freepages_block()
2283 static int move_freepages(struct zone
*zone
,
2284 struct page
*start_page
, struct page
*end_page
,
2285 int migratetype
, int *num_movable
)
2289 int pages_moved
= 0;
2291 for (page
= start_page
; page
<= end_page
;) {
2292 if (!pfn_valid_within(page_to_pfn(page
))) {
2297 if (!PageBuddy(page
)) {
2299 * We assume that pages that could be isolated for
2300 * migration are movable. But we don't actually try
2301 * isolating, as that would be expensive.
2304 (PageLRU(page
) || __PageMovable(page
)))
2311 /* Make sure we are not inadvertently changing nodes */
2312 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2313 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
2315 order
= page_order(page
);
2316 move_to_free_list(page
, zone
, order
, migratetype
);
2318 pages_moved
+= 1 << order
;
2324 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2325 int migratetype
, int *num_movable
)
2327 unsigned long start_pfn
, end_pfn
;
2328 struct page
*start_page
, *end_page
;
2333 start_pfn
= page_to_pfn(page
);
2334 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2335 start_page
= pfn_to_page(start_pfn
);
2336 end_page
= start_page
+ pageblock_nr_pages
- 1;
2337 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2339 /* Do not cross zone boundaries */
2340 if (!zone_spans_pfn(zone
, start_pfn
))
2342 if (!zone_spans_pfn(zone
, end_pfn
))
2345 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2349 static void change_pageblock_range(struct page
*pageblock_page
,
2350 int start_order
, int migratetype
)
2352 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2354 while (nr_pageblocks
--) {
2355 set_pageblock_migratetype(pageblock_page
, migratetype
);
2356 pageblock_page
+= pageblock_nr_pages
;
2361 * When we are falling back to another migratetype during allocation, try to
2362 * steal extra free pages from the same pageblocks to satisfy further
2363 * allocations, instead of polluting multiple pageblocks.
2365 * If we are stealing a relatively large buddy page, it is likely there will
2366 * be more free pages in the pageblock, so try to steal them all. For
2367 * reclaimable and unmovable allocations, we steal regardless of page size,
2368 * as fragmentation caused by those allocations polluting movable pageblocks
2369 * is worse than movable allocations stealing from unmovable and reclaimable
2372 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2375 * Leaving this order check is intended, although there is
2376 * relaxed order check in next check. The reason is that
2377 * we can actually steal whole pageblock if this condition met,
2378 * but, below check doesn't guarantee it and that is just heuristic
2379 * so could be changed anytime.
2381 if (order
>= pageblock_order
)
2384 if (order
>= pageblock_order
/ 2 ||
2385 start_mt
== MIGRATE_RECLAIMABLE
||
2386 start_mt
== MIGRATE_UNMOVABLE
||
2387 page_group_by_mobility_disabled
)
2393 static inline void boost_watermark(struct zone
*zone
)
2395 unsigned long max_boost
;
2397 if (!watermark_boost_factor
)
2400 * Don't bother in zones that are unlikely to produce results.
2401 * On small machines, including kdump capture kernels running
2402 * in a small area, boosting the watermark can cause an out of
2403 * memory situation immediately.
2405 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
2408 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2409 watermark_boost_factor
, 10000);
2412 * high watermark may be uninitialised if fragmentation occurs
2413 * very early in boot so do not boost. We do not fall
2414 * through and boost by pageblock_nr_pages as failing
2415 * allocations that early means that reclaim is not going
2416 * to help and it may even be impossible to reclaim the
2417 * boosted watermark resulting in a hang.
2422 max_boost
= max(pageblock_nr_pages
, max_boost
);
2424 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2429 * This function implements actual steal behaviour. If order is large enough,
2430 * we can steal whole pageblock. If not, we first move freepages in this
2431 * pageblock to our migratetype and determine how many already-allocated pages
2432 * are there in the pageblock with a compatible migratetype. If at least half
2433 * of pages are free or compatible, we can change migratetype of the pageblock
2434 * itself, so pages freed in the future will be put on the correct free list.
2436 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2437 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2439 unsigned int current_order
= page_order(page
);
2440 int free_pages
, movable_pages
, alike_pages
;
2443 old_block_type
= get_pageblock_migratetype(page
);
2446 * This can happen due to races and we want to prevent broken
2447 * highatomic accounting.
2449 if (is_migrate_highatomic(old_block_type
))
2452 /* Take ownership for orders >= pageblock_order */
2453 if (current_order
>= pageblock_order
) {
2454 change_pageblock_range(page
, current_order
, start_type
);
2459 * Boost watermarks to increase reclaim pressure to reduce the
2460 * likelihood of future fallbacks. Wake kswapd now as the node
2461 * may be balanced overall and kswapd will not wake naturally.
2463 boost_watermark(zone
);
2464 if (alloc_flags
& ALLOC_KSWAPD
)
2465 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2467 /* We are not allowed to try stealing from the whole block */
2471 free_pages
= move_freepages_block(zone
, page
, start_type
,
2474 * Determine how many pages are compatible with our allocation.
2475 * For movable allocation, it's the number of movable pages which
2476 * we just obtained. For other types it's a bit more tricky.
2478 if (start_type
== MIGRATE_MOVABLE
) {
2479 alike_pages
= movable_pages
;
2482 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2483 * to MOVABLE pageblock, consider all non-movable pages as
2484 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2485 * vice versa, be conservative since we can't distinguish the
2486 * exact migratetype of non-movable pages.
2488 if (old_block_type
== MIGRATE_MOVABLE
)
2489 alike_pages
= pageblock_nr_pages
2490 - (free_pages
+ movable_pages
);
2495 /* moving whole block can fail due to zone boundary conditions */
2500 * If a sufficient number of pages in the block are either free or of
2501 * comparable migratability as our allocation, claim the whole block.
2503 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2504 page_group_by_mobility_disabled
)
2505 set_pageblock_migratetype(page
, start_type
);
2510 move_to_free_list(page
, zone
, current_order
, start_type
);
2514 * Check whether there is a suitable fallback freepage with requested order.
2515 * If only_stealable is true, this function returns fallback_mt only if
2516 * we can steal other freepages all together. This would help to reduce
2517 * fragmentation due to mixed migratetype pages in one pageblock.
2519 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2520 int migratetype
, bool only_stealable
, bool *can_steal
)
2525 if (area
->nr_free
== 0)
2530 fallback_mt
= fallbacks
[migratetype
][i
];
2531 if (fallback_mt
== MIGRATE_TYPES
)
2534 if (free_area_empty(area
, fallback_mt
))
2537 if (can_steal_fallback(order
, migratetype
))
2540 if (!only_stealable
)
2551 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2552 * there are no empty page blocks that contain a page with a suitable order
2554 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2555 unsigned int alloc_order
)
2558 unsigned long max_managed
, flags
;
2561 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2562 * Check is race-prone but harmless.
2564 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2565 if (zone
->nr_reserved_highatomic
>= max_managed
)
2568 spin_lock_irqsave(&zone
->lock
, flags
);
2570 /* Recheck the nr_reserved_highatomic limit under the lock */
2571 if (zone
->nr_reserved_highatomic
>= max_managed
)
2575 mt
= get_pageblock_migratetype(page
);
2576 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2577 && !is_migrate_cma(mt
)) {
2578 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2579 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2580 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2584 spin_unlock_irqrestore(&zone
->lock
, flags
);
2588 * Used when an allocation is about to fail under memory pressure. This
2589 * potentially hurts the reliability of high-order allocations when under
2590 * intense memory pressure but failed atomic allocations should be easier
2591 * to recover from than an OOM.
2593 * If @force is true, try to unreserve a pageblock even though highatomic
2594 * pageblock is exhausted.
2596 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2599 struct zonelist
*zonelist
= ac
->zonelist
;
2600 unsigned long flags
;
2607 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2610 * Preserve at least one pageblock unless memory pressure
2613 if (!force
&& zone
->nr_reserved_highatomic
<=
2617 spin_lock_irqsave(&zone
->lock
, flags
);
2618 for (order
= 0; order
< MAX_ORDER
; order
++) {
2619 struct free_area
*area
= &(zone
->free_area
[order
]);
2621 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2626 * In page freeing path, migratetype change is racy so
2627 * we can counter several free pages in a pageblock
2628 * in this loop althoug we changed the pageblock type
2629 * from highatomic to ac->migratetype. So we should
2630 * adjust the count once.
2632 if (is_migrate_highatomic_page(page
)) {
2634 * It should never happen but changes to
2635 * locking could inadvertently allow a per-cpu
2636 * drain to add pages to MIGRATE_HIGHATOMIC
2637 * while unreserving so be safe and watch for
2640 zone
->nr_reserved_highatomic
-= min(
2642 zone
->nr_reserved_highatomic
);
2646 * Convert to ac->migratetype and avoid the normal
2647 * pageblock stealing heuristics. Minimally, the caller
2648 * is doing the work and needs the pages. More
2649 * importantly, if the block was always converted to
2650 * MIGRATE_UNMOVABLE or another type then the number
2651 * of pageblocks that cannot be completely freed
2654 set_pageblock_migratetype(page
, ac
->migratetype
);
2655 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2658 spin_unlock_irqrestore(&zone
->lock
, flags
);
2662 spin_unlock_irqrestore(&zone
->lock
, flags
);
2669 * Try finding a free buddy page on the fallback list and put it on the free
2670 * list of requested migratetype, possibly along with other pages from the same
2671 * block, depending on fragmentation avoidance heuristics. Returns true if
2672 * fallback was found so that __rmqueue_smallest() can grab it.
2674 * The use of signed ints for order and current_order is a deliberate
2675 * deviation from the rest of this file, to make the for loop
2676 * condition simpler.
2678 static __always_inline
bool
2679 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2680 unsigned int alloc_flags
)
2682 struct free_area
*area
;
2684 int min_order
= order
;
2690 * Do not steal pages from freelists belonging to other pageblocks
2691 * i.e. orders < pageblock_order. If there are no local zones free,
2692 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2694 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2695 min_order
= pageblock_order
;
2698 * Find the largest available free page in the other list. This roughly
2699 * approximates finding the pageblock with the most free pages, which
2700 * would be too costly to do exactly.
2702 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2704 area
= &(zone
->free_area
[current_order
]);
2705 fallback_mt
= find_suitable_fallback(area
, current_order
,
2706 start_migratetype
, false, &can_steal
);
2707 if (fallback_mt
== -1)
2711 * We cannot steal all free pages from the pageblock and the
2712 * requested migratetype is movable. In that case it's better to
2713 * steal and split the smallest available page instead of the
2714 * largest available page, because even if the next movable
2715 * allocation falls back into a different pageblock than this
2716 * one, it won't cause permanent fragmentation.
2718 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2719 && current_order
> order
)
2728 for (current_order
= order
; current_order
< MAX_ORDER
;
2730 area
= &(zone
->free_area
[current_order
]);
2731 fallback_mt
= find_suitable_fallback(area
, current_order
,
2732 start_migratetype
, false, &can_steal
);
2733 if (fallback_mt
!= -1)
2738 * This should not happen - we already found a suitable fallback
2739 * when looking for the largest page.
2741 VM_BUG_ON(current_order
== MAX_ORDER
);
2744 page
= get_page_from_free_area(area
, fallback_mt
);
2746 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2749 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2750 start_migratetype
, fallback_mt
);
2757 * Do the hard work of removing an element from the buddy allocator.
2758 * Call me with the zone->lock already held.
2760 static __always_inline
struct page
*
2761 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2762 unsigned int alloc_flags
)
2767 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2768 if (unlikely(!page
)) {
2769 if (migratetype
== MIGRATE_MOVABLE
)
2770 page
= __rmqueue_cma_fallback(zone
, order
);
2772 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2777 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2782 * Obtain a specified number of elements from the buddy allocator, all under
2783 * a single hold of the lock, for efficiency. Add them to the supplied list.
2784 * Returns the number of new pages which were placed at *list.
2786 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2787 unsigned long count
, struct list_head
*list
,
2788 int migratetype
, unsigned int alloc_flags
)
2792 spin_lock(&zone
->lock
);
2793 for (i
= 0; i
< count
; ++i
) {
2794 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2796 if (unlikely(page
== NULL
))
2799 if (unlikely(check_pcp_refill(page
)))
2803 * Split buddy pages returned by expand() are received here in
2804 * physical page order. The page is added to the tail of
2805 * caller's list. From the callers perspective, the linked list
2806 * is ordered by page number under some conditions. This is
2807 * useful for IO devices that can forward direction from the
2808 * head, thus also in the physical page order. This is useful
2809 * for IO devices that can merge IO requests if the physical
2810 * pages are ordered properly.
2812 list_add_tail(&page
->lru
, list
);
2814 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2815 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2820 * i pages were removed from the buddy list even if some leak due
2821 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2822 * on i. Do not confuse with 'alloced' which is the number of
2823 * pages added to the pcp list.
2825 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2826 spin_unlock(&zone
->lock
);
2832 * Called from the vmstat counter updater to drain pagesets of this
2833 * currently executing processor on remote nodes after they have
2836 * Note that this function must be called with the thread pinned to
2837 * a single processor.
2839 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2841 unsigned long flags
;
2842 int to_drain
, batch
;
2844 local_irq_save(flags
);
2845 batch
= READ_ONCE(pcp
->batch
);
2846 to_drain
= min(pcp
->count
, batch
);
2848 free_pcppages_bulk(zone
, to_drain
, pcp
);
2849 local_irq_restore(flags
);
2854 * Drain pcplists of the indicated processor and zone.
2856 * The processor must either be the current processor and the
2857 * thread pinned to the current processor or a processor that
2860 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2862 unsigned long flags
;
2863 struct per_cpu_pageset
*pset
;
2864 struct per_cpu_pages
*pcp
;
2866 local_irq_save(flags
);
2867 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2871 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2872 local_irq_restore(flags
);
2876 * Drain pcplists of all zones on the indicated processor.
2878 * The processor must either be the current processor and the
2879 * thread pinned to the current processor or a processor that
2882 static void drain_pages(unsigned int cpu
)
2886 for_each_populated_zone(zone
) {
2887 drain_pages_zone(cpu
, zone
);
2892 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2894 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2895 * the single zone's pages.
2897 void drain_local_pages(struct zone
*zone
)
2899 int cpu
= smp_processor_id();
2902 drain_pages_zone(cpu
, zone
);
2907 static void drain_local_pages_wq(struct work_struct
*work
)
2909 struct pcpu_drain
*drain
;
2911 drain
= container_of(work
, struct pcpu_drain
, work
);
2914 * drain_all_pages doesn't use proper cpu hotplug protection so
2915 * we can race with cpu offline when the WQ can move this from
2916 * a cpu pinned worker to an unbound one. We can operate on a different
2917 * cpu which is allright but we also have to make sure to not move to
2921 drain_local_pages(drain
->zone
);
2926 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2928 * When zone parameter is non-NULL, spill just the single zone's pages.
2930 * Note that this can be extremely slow as the draining happens in a workqueue.
2932 void drain_all_pages(struct zone
*zone
)
2937 * Allocate in the BSS so we wont require allocation in
2938 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2940 static cpumask_t cpus_with_pcps
;
2943 * Make sure nobody triggers this path before mm_percpu_wq is fully
2946 if (WARN_ON_ONCE(!mm_percpu_wq
))
2950 * Do not drain if one is already in progress unless it's specific to
2951 * a zone. Such callers are primarily CMA and memory hotplug and need
2952 * the drain to be complete when the call returns.
2954 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2957 mutex_lock(&pcpu_drain_mutex
);
2961 * We don't care about racing with CPU hotplug event
2962 * as offline notification will cause the notified
2963 * cpu to drain that CPU pcps and on_each_cpu_mask
2964 * disables preemption as part of its processing
2966 for_each_online_cpu(cpu
) {
2967 struct per_cpu_pageset
*pcp
;
2969 bool has_pcps
= false;
2972 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2976 for_each_populated_zone(z
) {
2977 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2978 if (pcp
->pcp
.count
) {
2986 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2988 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2991 for_each_cpu(cpu
, &cpus_with_pcps
) {
2992 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
2995 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
2996 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
2998 for_each_cpu(cpu
, &cpus_with_pcps
)
2999 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
3001 mutex_unlock(&pcpu_drain_mutex
);
3004 #ifdef CONFIG_HIBERNATION
3007 * Touch the watchdog for every WD_PAGE_COUNT pages.
3009 #define WD_PAGE_COUNT (128*1024)
3011 void mark_free_pages(struct zone
*zone
)
3013 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
3014 unsigned long flags
;
3015 unsigned int order
, t
;
3018 if (zone_is_empty(zone
))
3021 spin_lock_irqsave(&zone
->lock
, flags
);
3023 max_zone_pfn
= zone_end_pfn(zone
);
3024 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
3025 if (pfn_valid(pfn
)) {
3026 page
= pfn_to_page(pfn
);
3028 if (!--page_count
) {
3029 touch_nmi_watchdog();
3030 page_count
= WD_PAGE_COUNT
;
3033 if (page_zone(page
) != zone
)
3036 if (!swsusp_page_is_forbidden(page
))
3037 swsusp_unset_page_free(page
);
3040 for_each_migratetype_order(order
, t
) {
3041 list_for_each_entry(page
,
3042 &zone
->free_area
[order
].free_list
[t
], lru
) {
3045 pfn
= page_to_pfn(page
);
3046 for (i
= 0; i
< (1UL << order
); i
++) {
3047 if (!--page_count
) {
3048 touch_nmi_watchdog();
3049 page_count
= WD_PAGE_COUNT
;
3051 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
3055 spin_unlock_irqrestore(&zone
->lock
, flags
);
3057 #endif /* CONFIG_PM */
3059 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
3063 if (!free_pcp_prepare(page
))
3066 migratetype
= get_pfnblock_migratetype(page
, pfn
);
3067 set_pcppage_migratetype(page
, migratetype
);
3071 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
3073 struct zone
*zone
= page_zone(page
);
3074 struct per_cpu_pages
*pcp
;
3077 migratetype
= get_pcppage_migratetype(page
);
3078 __count_vm_event(PGFREE
);
3081 * We only track unmovable, reclaimable and movable on pcp lists.
3082 * Free ISOLATE pages back to the allocator because they are being
3083 * offlined but treat HIGHATOMIC as movable pages so we can get those
3084 * areas back if necessary. Otherwise, we may have to free
3085 * excessively into the page allocator
3087 if (migratetype
>= MIGRATE_PCPTYPES
) {
3088 if (unlikely(is_migrate_isolate(migratetype
))) {
3089 free_one_page(zone
, page
, pfn
, 0, migratetype
);
3092 migratetype
= MIGRATE_MOVABLE
;
3095 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3096 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
3098 if (pcp
->count
>= pcp
->high
) {
3099 unsigned long batch
= READ_ONCE(pcp
->batch
);
3100 free_pcppages_bulk(zone
, batch
, pcp
);
3105 * Free a 0-order page
3107 void free_unref_page(struct page
*page
)
3109 unsigned long flags
;
3110 unsigned long pfn
= page_to_pfn(page
);
3112 if (!free_unref_page_prepare(page
, pfn
))
3115 local_irq_save(flags
);
3116 free_unref_page_commit(page
, pfn
);
3117 local_irq_restore(flags
);
3121 * Free a list of 0-order pages
3123 void free_unref_page_list(struct list_head
*list
)
3125 struct page
*page
, *next
;
3126 unsigned long flags
, pfn
;
3127 int batch_count
= 0;
3129 /* Prepare pages for freeing */
3130 list_for_each_entry_safe(page
, next
, list
, lru
) {
3131 pfn
= page_to_pfn(page
);
3132 if (!free_unref_page_prepare(page
, pfn
))
3133 list_del(&page
->lru
);
3134 set_page_private(page
, pfn
);
3137 local_irq_save(flags
);
3138 list_for_each_entry_safe(page
, next
, list
, lru
) {
3139 unsigned long pfn
= page_private(page
);
3141 set_page_private(page
, 0);
3142 trace_mm_page_free_batched(page
);
3143 free_unref_page_commit(page
, pfn
);
3146 * Guard against excessive IRQ disabled times when we get
3147 * a large list of pages to free.
3149 if (++batch_count
== SWAP_CLUSTER_MAX
) {
3150 local_irq_restore(flags
);
3152 local_irq_save(flags
);
3155 local_irq_restore(flags
);
3159 * split_page takes a non-compound higher-order page, and splits it into
3160 * n (1<<order) sub-pages: page[0..n]
3161 * Each sub-page must be freed individually.
3163 * Note: this is probably too low level an operation for use in drivers.
3164 * Please consult with lkml before using this in your driver.
3166 void split_page(struct page
*page
, unsigned int order
)
3170 VM_BUG_ON_PAGE(PageCompound(page
), page
);
3171 VM_BUG_ON_PAGE(!page_count(page
), page
);
3173 for (i
= 1; i
< (1 << order
); i
++)
3174 set_page_refcounted(page
+ i
);
3175 split_page_owner(page
, order
);
3177 EXPORT_SYMBOL_GPL(split_page
);
3179 int __isolate_free_page(struct page
*page
, unsigned int order
)
3181 unsigned long watermark
;
3185 BUG_ON(!PageBuddy(page
));
3187 zone
= page_zone(page
);
3188 mt
= get_pageblock_migratetype(page
);
3190 if (!is_migrate_isolate(mt
)) {
3192 * Obey watermarks as if the page was being allocated. We can
3193 * emulate a high-order watermark check with a raised order-0
3194 * watermark, because we already know our high-order page
3197 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3198 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3201 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3204 /* Remove page from free list */
3206 del_page_from_free_list(page
, zone
, order
);
3209 * Set the pageblock if the isolated page is at least half of a
3212 if (order
>= pageblock_order
- 1) {
3213 struct page
*endpage
= page
+ (1 << order
) - 1;
3214 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3215 int mt
= get_pageblock_migratetype(page
);
3216 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3217 && !is_migrate_highatomic(mt
))
3218 set_pageblock_migratetype(page
,
3224 return 1UL << order
;
3228 * __putback_isolated_page - Return a now-isolated page back where we got it
3229 * @page: Page that was isolated
3230 * @order: Order of the isolated page
3231 * @mt: The page's pageblock's migratetype
3233 * This function is meant to return a page pulled from the free lists via
3234 * __isolate_free_page back to the free lists they were pulled from.
3236 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
3238 struct zone
*zone
= page_zone(page
);
3240 /* zone lock should be held when this function is called */
3241 lockdep_assert_held(&zone
->lock
);
3243 /* Return isolated page to tail of freelist. */
3244 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
, false);
3248 * Update NUMA hit/miss statistics
3250 * Must be called with interrupts disabled.
3252 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3255 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3257 /* skip numa counters update if numa stats is disabled */
3258 if (!static_branch_likely(&vm_numa_stat_key
))
3261 if (zone_to_nid(z
) != numa_node_id())
3262 local_stat
= NUMA_OTHER
;
3264 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3265 __inc_numa_state(z
, NUMA_HIT
);
3267 __inc_numa_state(z
, NUMA_MISS
);
3268 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3270 __inc_numa_state(z
, local_stat
);
3274 /* Remove page from the per-cpu list, caller must protect the list */
3275 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3276 unsigned int alloc_flags
,
3277 struct per_cpu_pages
*pcp
,
3278 struct list_head
*list
)
3283 if (list_empty(list
)) {
3284 pcp
->count
+= rmqueue_bulk(zone
, 0,
3286 migratetype
, alloc_flags
);
3287 if (unlikely(list_empty(list
)))
3291 page
= list_first_entry(list
, struct page
, lru
);
3292 list_del(&page
->lru
);
3294 } while (check_new_pcp(page
));
3299 /* Lock and remove page from the per-cpu list */
3300 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3301 struct zone
*zone
, gfp_t gfp_flags
,
3302 int migratetype
, unsigned int alloc_flags
)
3304 struct per_cpu_pages
*pcp
;
3305 struct list_head
*list
;
3307 unsigned long flags
;
3309 local_irq_save(flags
);
3310 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3311 list
= &pcp
->lists
[migratetype
];
3312 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3314 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1);
3315 zone_statistics(preferred_zone
, zone
);
3317 local_irq_restore(flags
);
3322 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3325 struct page
*rmqueue(struct zone
*preferred_zone
,
3326 struct zone
*zone
, unsigned int order
,
3327 gfp_t gfp_flags
, unsigned int alloc_flags
,
3330 unsigned long flags
;
3333 if (likely(order
== 0)) {
3334 page
= rmqueue_pcplist(preferred_zone
, zone
, gfp_flags
,
3335 migratetype
, alloc_flags
);
3340 * We most definitely don't want callers attempting to
3341 * allocate greater than order-1 page units with __GFP_NOFAIL.
3343 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3344 spin_lock_irqsave(&zone
->lock
, flags
);
3348 if (alloc_flags
& ALLOC_HARDER
) {
3349 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3351 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3354 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3355 } while (page
&& check_new_pages(page
, order
));
3356 spin_unlock(&zone
->lock
);
3359 __mod_zone_freepage_state(zone
, -(1 << order
),
3360 get_pcppage_migratetype(page
));
3362 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3363 zone_statistics(preferred_zone
, zone
);
3364 local_irq_restore(flags
);
3367 /* Separate test+clear to avoid unnecessary atomics */
3368 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3369 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3370 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3373 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3377 local_irq_restore(flags
);
3381 #ifdef CONFIG_FAIL_PAGE_ALLOC
3384 struct fault_attr attr
;
3386 bool ignore_gfp_highmem
;
3387 bool ignore_gfp_reclaim
;
3389 } fail_page_alloc
= {
3390 .attr
= FAULT_ATTR_INITIALIZER
,
3391 .ignore_gfp_reclaim
= true,
3392 .ignore_gfp_highmem
= true,
3396 static int __init
setup_fail_page_alloc(char *str
)
3398 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3400 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3402 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3404 if (order
< fail_page_alloc
.min_order
)
3406 if (gfp_mask
& __GFP_NOFAIL
)
3408 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3410 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3411 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3414 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3417 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3419 static int __init
fail_page_alloc_debugfs(void)
3421 umode_t mode
= S_IFREG
| 0600;
3424 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3425 &fail_page_alloc
.attr
);
3427 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3428 &fail_page_alloc
.ignore_gfp_reclaim
);
3429 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3430 &fail_page_alloc
.ignore_gfp_highmem
);
3431 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3436 late_initcall(fail_page_alloc_debugfs
);
3438 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3440 #else /* CONFIG_FAIL_PAGE_ALLOC */
3442 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3447 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3449 static noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3451 return __should_fail_alloc_page(gfp_mask
, order
);
3453 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3456 * Return true if free base pages are above 'mark'. For high-order checks it
3457 * will return true of the order-0 watermark is reached and there is at least
3458 * one free page of a suitable size. Checking now avoids taking the zone lock
3459 * to check in the allocation paths if no pages are free.
3461 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3462 int classzone_idx
, unsigned int alloc_flags
,
3467 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3469 /* free_pages may go negative - that's OK */
3470 free_pages
-= (1 << order
) - 1;
3472 if (alloc_flags
& ALLOC_HIGH
)
3476 * If the caller does not have rights to ALLOC_HARDER then subtract
3477 * the high-atomic reserves. This will over-estimate the size of the
3478 * atomic reserve but it avoids a search.
3480 if (likely(!alloc_harder
)) {
3481 free_pages
-= z
->nr_reserved_highatomic
;
3484 * OOM victims can try even harder than normal ALLOC_HARDER
3485 * users on the grounds that it's definitely going to be in
3486 * the exit path shortly and free memory. Any allocation it
3487 * makes during the free path will be small and short-lived.
3489 if (alloc_flags
& ALLOC_OOM
)
3497 /* If allocation can't use CMA areas don't use free CMA pages */
3498 if (!(alloc_flags
& ALLOC_CMA
))
3499 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3503 * Check watermarks for an order-0 allocation request. If these
3504 * are not met, then a high-order request also cannot go ahead
3505 * even if a suitable page happened to be free.
3507 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3510 /* If this is an order-0 request then the watermark is fine */
3514 /* For a high-order request, check at least one suitable page is free */
3515 for (o
= order
; o
< MAX_ORDER
; o
++) {
3516 struct free_area
*area
= &z
->free_area
[o
];
3522 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3523 if (!free_area_empty(area
, mt
))
3528 if ((alloc_flags
& ALLOC_CMA
) &&
3529 !free_area_empty(area
, MIGRATE_CMA
)) {
3533 if (alloc_harder
&& !free_area_empty(area
, MIGRATE_HIGHATOMIC
))
3539 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3540 int classzone_idx
, unsigned int alloc_flags
)
3542 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3543 zone_page_state(z
, NR_FREE_PAGES
));
3546 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3547 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3549 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3553 /* If allocation can't use CMA areas don't use free CMA pages */
3554 if (!(alloc_flags
& ALLOC_CMA
))
3555 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3559 * Fast check for order-0 only. If this fails then the reserves
3560 * need to be calculated. There is a corner case where the check
3561 * passes but only the high-order atomic reserve are free. If
3562 * the caller is !atomic then it'll uselessly search the free
3563 * list. That corner case is then slower but it is harmless.
3565 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3568 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3572 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3573 unsigned long mark
, int classzone_idx
)
3575 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3577 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3578 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3580 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3585 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3587 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3588 node_reclaim_distance
;
3590 #else /* CONFIG_NUMA */
3591 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3595 #endif /* CONFIG_NUMA */
3598 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3599 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3600 * premature use of a lower zone may cause lowmem pressure problems that
3601 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3602 * probably too small. It only makes sense to spread allocations to avoid
3603 * fragmentation between the Normal and DMA32 zones.
3605 static inline unsigned int
3606 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3608 unsigned int alloc_flags
;
3611 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3614 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3616 #ifdef CONFIG_ZONE_DMA32
3620 if (zone_idx(zone
) != ZONE_NORMAL
)
3624 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3625 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3626 * on UMA that if Normal is populated then so is DMA32.
3628 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3629 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3632 alloc_flags
|= ALLOC_NOFRAGMENT
;
3633 #endif /* CONFIG_ZONE_DMA32 */
3638 * get_page_from_freelist goes through the zonelist trying to allocate
3641 static struct page
*
3642 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3643 const struct alloc_context
*ac
)
3647 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3652 * Scan zonelist, looking for a zone with enough free.
3653 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3655 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3656 z
= ac
->preferred_zoneref
;
3657 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3662 if (cpusets_enabled() &&
3663 (alloc_flags
& ALLOC_CPUSET
) &&
3664 !__cpuset_zone_allowed(zone
, gfp_mask
))
3667 * When allocating a page cache page for writing, we
3668 * want to get it from a node that is within its dirty
3669 * limit, such that no single node holds more than its
3670 * proportional share of globally allowed dirty pages.
3671 * The dirty limits take into account the node's
3672 * lowmem reserves and high watermark so that kswapd
3673 * should be able to balance it without having to
3674 * write pages from its LRU list.
3676 * XXX: For now, allow allocations to potentially
3677 * exceed the per-node dirty limit in the slowpath
3678 * (spread_dirty_pages unset) before going into reclaim,
3679 * which is important when on a NUMA setup the allowed
3680 * nodes are together not big enough to reach the
3681 * global limit. The proper fix for these situations
3682 * will require awareness of nodes in the
3683 * dirty-throttling and the flusher threads.
3685 if (ac
->spread_dirty_pages
) {
3686 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3689 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3690 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3695 if (no_fallback
&& nr_online_nodes
> 1 &&
3696 zone
!= ac
->preferred_zoneref
->zone
) {
3700 * If moving to a remote node, retry but allow
3701 * fragmenting fallbacks. Locality is more important
3702 * than fragmentation avoidance.
3704 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3705 if (zone_to_nid(zone
) != local_nid
) {
3706 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3711 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3712 if (!zone_watermark_fast(zone
, order
, mark
,
3713 ac_classzone_idx(ac
), alloc_flags
)) {
3716 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3718 * Watermark failed for this zone, but see if we can
3719 * grow this zone if it contains deferred pages.
3721 if (static_branch_unlikely(&deferred_pages
)) {
3722 if (_deferred_grow_zone(zone
, order
))
3726 /* Checked here to keep the fast path fast */
3727 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3728 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3731 if (node_reclaim_mode
== 0 ||
3732 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3735 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3737 case NODE_RECLAIM_NOSCAN
:
3740 case NODE_RECLAIM_FULL
:
3741 /* scanned but unreclaimable */
3744 /* did we reclaim enough */
3745 if (zone_watermark_ok(zone
, order
, mark
,
3746 ac_classzone_idx(ac
), alloc_flags
))
3754 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3755 gfp_mask
, alloc_flags
, ac
->migratetype
);
3757 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3760 * If this is a high-order atomic allocation then check
3761 * if the pageblock should be reserved for the future
3763 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3764 reserve_highatomic_pageblock(page
, zone
, order
);
3768 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3769 /* Try again if zone has deferred pages */
3770 if (static_branch_unlikely(&deferred_pages
)) {
3771 if (_deferred_grow_zone(zone
, order
))
3779 * It's possible on a UMA machine to get through all zones that are
3780 * fragmented. If avoiding fragmentation, reset and try again.
3783 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3790 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3792 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3795 * This documents exceptions given to allocations in certain
3796 * contexts that are allowed to allocate outside current's set
3799 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3800 if (tsk_is_oom_victim(current
) ||
3801 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3802 filter
&= ~SHOW_MEM_FILTER_NODES
;
3803 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3804 filter
&= ~SHOW_MEM_FILTER_NODES
;
3806 show_mem(filter
, nodemask
);
3809 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3811 struct va_format vaf
;
3813 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3815 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3818 va_start(args
, fmt
);
3821 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3822 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3823 nodemask_pr_args(nodemask
));
3826 cpuset_print_current_mems_allowed();
3829 warn_alloc_show_mem(gfp_mask
, nodemask
);
3832 static inline struct page
*
3833 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3834 unsigned int alloc_flags
,
3835 const struct alloc_context
*ac
)
3839 page
= get_page_from_freelist(gfp_mask
, order
,
3840 alloc_flags
|ALLOC_CPUSET
, ac
);
3842 * fallback to ignore cpuset restriction if our nodes
3846 page
= get_page_from_freelist(gfp_mask
, order
,
3852 static inline struct page
*
3853 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3854 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3856 struct oom_control oc
= {
3857 .zonelist
= ac
->zonelist
,
3858 .nodemask
= ac
->nodemask
,
3860 .gfp_mask
= gfp_mask
,
3865 *did_some_progress
= 0;
3868 * Acquire the oom lock. If that fails, somebody else is
3869 * making progress for us.
3871 if (!mutex_trylock(&oom_lock
)) {
3872 *did_some_progress
= 1;
3873 schedule_timeout_uninterruptible(1);
3878 * Go through the zonelist yet one more time, keep very high watermark
3879 * here, this is only to catch a parallel oom killing, we must fail if
3880 * we're still under heavy pressure. But make sure that this reclaim
3881 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3882 * allocation which will never fail due to oom_lock already held.
3884 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3885 ~__GFP_DIRECT_RECLAIM
, order
,
3886 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3890 /* Coredumps can quickly deplete all memory reserves */
3891 if (current
->flags
& PF_DUMPCORE
)
3893 /* The OOM killer will not help higher order allocs */
3894 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3897 * We have already exhausted all our reclaim opportunities without any
3898 * success so it is time to admit defeat. We will skip the OOM killer
3899 * because it is very likely that the caller has a more reasonable
3900 * fallback than shooting a random task.
3902 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3904 /* The OOM killer does not needlessly kill tasks for lowmem */
3905 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3907 if (pm_suspended_storage())
3910 * XXX: GFP_NOFS allocations should rather fail than rely on
3911 * other request to make a forward progress.
3912 * We are in an unfortunate situation where out_of_memory cannot
3913 * do much for this context but let's try it to at least get
3914 * access to memory reserved if the current task is killed (see
3915 * out_of_memory). Once filesystems are ready to handle allocation
3916 * failures more gracefully we should just bail out here.
3919 /* The OOM killer may not free memory on a specific node */
3920 if (gfp_mask
& __GFP_THISNODE
)
3923 /* Exhausted what can be done so it's blame time */
3924 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3925 *did_some_progress
= 1;
3928 * Help non-failing allocations by giving them access to memory
3931 if (gfp_mask
& __GFP_NOFAIL
)
3932 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3933 ALLOC_NO_WATERMARKS
, ac
);
3936 mutex_unlock(&oom_lock
);
3941 * Maximum number of compaction retries wit a progress before OOM
3942 * killer is consider as the only way to move forward.
3944 #define MAX_COMPACT_RETRIES 16
3946 #ifdef CONFIG_COMPACTION
3947 /* Try memory compaction for high-order allocations before reclaim */
3948 static struct page
*
3949 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3950 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3951 enum compact_priority prio
, enum compact_result
*compact_result
)
3953 struct page
*page
= NULL
;
3954 unsigned long pflags
;
3955 unsigned int noreclaim_flag
;
3960 psi_memstall_enter(&pflags
);
3961 noreclaim_flag
= memalloc_noreclaim_save();
3963 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3966 memalloc_noreclaim_restore(noreclaim_flag
);
3967 psi_memstall_leave(&pflags
);
3970 * At least in one zone compaction wasn't deferred or skipped, so let's
3971 * count a compaction stall
3973 count_vm_event(COMPACTSTALL
);
3975 /* Prep a captured page if available */
3977 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3979 /* Try get a page from the freelist if available */
3981 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3984 struct zone
*zone
= page_zone(page
);
3986 zone
->compact_blockskip_flush
= false;
3987 compaction_defer_reset(zone
, order
, true);
3988 count_vm_event(COMPACTSUCCESS
);
3993 * It's bad if compaction run occurs and fails. The most likely reason
3994 * is that pages exist, but not enough to satisfy watermarks.
3996 count_vm_event(COMPACTFAIL
);
4004 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
4005 enum compact_result compact_result
,
4006 enum compact_priority
*compact_priority
,
4007 int *compaction_retries
)
4009 int max_retries
= MAX_COMPACT_RETRIES
;
4012 int retries
= *compaction_retries
;
4013 enum compact_priority priority
= *compact_priority
;
4018 if (compaction_made_progress(compact_result
))
4019 (*compaction_retries
)++;
4022 * compaction considers all the zone as desperately out of memory
4023 * so it doesn't really make much sense to retry except when the
4024 * failure could be caused by insufficient priority
4026 if (compaction_failed(compact_result
))
4027 goto check_priority
;
4030 * compaction was skipped because there are not enough order-0 pages
4031 * to work with, so we retry only if it looks like reclaim can help.
4033 if (compaction_needs_reclaim(compact_result
)) {
4034 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
4039 * make sure the compaction wasn't deferred or didn't bail out early
4040 * due to locks contention before we declare that we should give up.
4041 * But the next retry should use a higher priority if allowed, so
4042 * we don't just keep bailing out endlessly.
4044 if (compaction_withdrawn(compact_result
)) {
4045 goto check_priority
;
4049 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4050 * costly ones because they are de facto nofail and invoke OOM
4051 * killer to move on while costly can fail and users are ready
4052 * to cope with that. 1/4 retries is rather arbitrary but we
4053 * would need much more detailed feedback from compaction to
4054 * make a better decision.
4056 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
4058 if (*compaction_retries
<= max_retries
) {
4064 * Make sure there are attempts at the highest priority if we exhausted
4065 * all retries or failed at the lower priorities.
4068 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
4069 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
4071 if (*compact_priority
> min_priority
) {
4072 (*compact_priority
)--;
4073 *compaction_retries
= 0;
4077 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
4081 static inline struct page
*
4082 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4083 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4084 enum compact_priority prio
, enum compact_result
*compact_result
)
4086 *compact_result
= COMPACT_SKIPPED
;
4091 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
4092 enum compact_result compact_result
,
4093 enum compact_priority
*compact_priority
,
4094 int *compaction_retries
)
4099 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
4103 * There are setups with compaction disabled which would prefer to loop
4104 * inside the allocator rather than hit the oom killer prematurely.
4105 * Let's give them a good hope and keep retrying while the order-0
4106 * watermarks are OK.
4108 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4110 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
4111 ac_classzone_idx(ac
), alloc_flags
))
4116 #endif /* CONFIG_COMPACTION */
4118 #ifdef CONFIG_LOCKDEP
4119 static struct lockdep_map __fs_reclaim_map
=
4120 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
4122 static bool __need_fs_reclaim(gfp_t gfp_mask
)
4124 gfp_mask
= current_gfp_context(gfp_mask
);
4126 /* no reclaim without waiting on it */
4127 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
4130 /* this guy won't enter reclaim */
4131 if (current
->flags
& PF_MEMALLOC
)
4134 /* We're only interested __GFP_FS allocations for now */
4135 if (!(gfp_mask
& __GFP_FS
))
4138 if (gfp_mask
& __GFP_NOLOCKDEP
)
4144 void __fs_reclaim_acquire(void)
4146 lock_map_acquire(&__fs_reclaim_map
);
4149 void __fs_reclaim_release(void)
4151 lock_map_release(&__fs_reclaim_map
);
4154 void fs_reclaim_acquire(gfp_t gfp_mask
)
4156 if (__need_fs_reclaim(gfp_mask
))
4157 __fs_reclaim_acquire();
4159 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
4161 void fs_reclaim_release(gfp_t gfp_mask
)
4163 if (__need_fs_reclaim(gfp_mask
))
4164 __fs_reclaim_release();
4166 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
4169 /* Perform direct synchronous page reclaim */
4171 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
4172 const struct alloc_context
*ac
)
4175 unsigned int noreclaim_flag
;
4176 unsigned long pflags
;
4180 /* We now go into synchronous reclaim */
4181 cpuset_memory_pressure_bump();
4182 psi_memstall_enter(&pflags
);
4183 fs_reclaim_acquire(gfp_mask
);
4184 noreclaim_flag
= memalloc_noreclaim_save();
4186 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
4189 memalloc_noreclaim_restore(noreclaim_flag
);
4190 fs_reclaim_release(gfp_mask
);
4191 psi_memstall_leave(&pflags
);
4198 /* The really slow allocator path where we enter direct reclaim */
4199 static inline struct page
*
4200 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4201 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4202 unsigned long *did_some_progress
)
4204 struct page
*page
= NULL
;
4205 bool drained
= false;
4207 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4208 if (unlikely(!(*did_some_progress
)))
4212 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4215 * If an allocation failed after direct reclaim, it could be because
4216 * pages are pinned on the per-cpu lists or in high alloc reserves.
4217 * Shrink them them and try again
4219 if (!page
&& !drained
) {
4220 unreserve_highatomic_pageblock(ac
, false);
4221 drain_all_pages(NULL
);
4229 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4230 const struct alloc_context
*ac
)
4234 pg_data_t
*last_pgdat
= NULL
;
4235 enum zone_type high_zoneidx
= ac
->high_zoneidx
;
4237 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, high_zoneidx
,
4239 if (last_pgdat
!= zone
->zone_pgdat
)
4240 wakeup_kswapd(zone
, gfp_mask
, order
, high_zoneidx
);
4241 last_pgdat
= zone
->zone_pgdat
;
4245 static inline unsigned int
4246 gfp_to_alloc_flags(gfp_t gfp_mask
)
4248 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4251 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4252 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4253 * to save two branches.
4255 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4256 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
4259 * The caller may dip into page reserves a bit more if the caller
4260 * cannot run direct reclaim, or if the caller has realtime scheduling
4261 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4262 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4264 alloc_flags
|= (__force
int)
4265 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
4267 if (gfp_mask
& __GFP_ATOMIC
) {
4269 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4270 * if it can't schedule.
4272 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4273 alloc_flags
|= ALLOC_HARDER
;
4275 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4276 * comment for __cpuset_node_allowed().
4278 alloc_flags
&= ~ALLOC_CPUSET
;
4279 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4280 alloc_flags
|= ALLOC_HARDER
;
4283 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
4284 alloc_flags
|= ALLOC_CMA
;
4289 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4291 if (!tsk_is_oom_victim(tsk
))
4295 * !MMU doesn't have oom reaper so give access to memory reserves
4296 * only to the thread with TIF_MEMDIE set
4298 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4305 * Distinguish requests which really need access to full memory
4306 * reserves from oom victims which can live with a portion of it
4308 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4310 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4312 if (gfp_mask
& __GFP_MEMALLOC
)
4313 return ALLOC_NO_WATERMARKS
;
4314 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4315 return ALLOC_NO_WATERMARKS
;
4316 if (!in_interrupt()) {
4317 if (current
->flags
& PF_MEMALLOC
)
4318 return ALLOC_NO_WATERMARKS
;
4319 else if (oom_reserves_allowed(current
))
4326 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4328 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4332 * Checks whether it makes sense to retry the reclaim to make a forward progress
4333 * for the given allocation request.
4335 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4336 * without success, or when we couldn't even meet the watermark if we
4337 * reclaimed all remaining pages on the LRU lists.
4339 * Returns true if a retry is viable or false to enter the oom path.
4342 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4343 struct alloc_context
*ac
, int alloc_flags
,
4344 bool did_some_progress
, int *no_progress_loops
)
4351 * Costly allocations might have made a progress but this doesn't mean
4352 * their order will become available due to high fragmentation so
4353 * always increment the no progress counter for them
4355 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4356 *no_progress_loops
= 0;
4358 (*no_progress_loops
)++;
4361 * Make sure we converge to OOM if we cannot make any progress
4362 * several times in the row.
4364 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4365 /* Before OOM, exhaust highatomic_reserve */
4366 return unreserve_highatomic_pageblock(ac
, true);
4370 * Keep reclaiming pages while there is a chance this will lead
4371 * somewhere. If none of the target zones can satisfy our allocation
4372 * request even if all reclaimable pages are considered then we are
4373 * screwed and have to go OOM.
4375 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
4377 unsigned long available
;
4378 unsigned long reclaimable
;
4379 unsigned long min_wmark
= min_wmark_pages(zone
);
4382 available
= reclaimable
= zone_reclaimable_pages(zone
);
4383 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4386 * Would the allocation succeed if we reclaimed all
4387 * reclaimable pages?
4389 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4390 ac_classzone_idx(ac
), alloc_flags
, available
);
4391 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4392 available
, min_wmark
, *no_progress_loops
, wmark
);
4395 * If we didn't make any progress and have a lot of
4396 * dirty + writeback pages then we should wait for
4397 * an IO to complete to slow down the reclaim and
4398 * prevent from pre mature OOM
4400 if (!did_some_progress
) {
4401 unsigned long write_pending
;
4403 write_pending
= zone_page_state_snapshot(zone
,
4404 NR_ZONE_WRITE_PENDING
);
4406 if (2 * write_pending
> reclaimable
) {
4407 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4419 * Memory allocation/reclaim might be called from a WQ context and the
4420 * current implementation of the WQ concurrency control doesn't
4421 * recognize that a particular WQ is congested if the worker thread is
4422 * looping without ever sleeping. Therefore we have to do a short sleep
4423 * here rather than calling cond_resched().
4425 if (current
->flags
& PF_WQ_WORKER
)
4426 schedule_timeout_uninterruptible(1);
4433 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4436 * It's possible that cpuset's mems_allowed and the nodemask from
4437 * mempolicy don't intersect. This should be normally dealt with by
4438 * policy_nodemask(), but it's possible to race with cpuset update in
4439 * such a way the check therein was true, and then it became false
4440 * before we got our cpuset_mems_cookie here.
4441 * This assumes that for all allocations, ac->nodemask can come only
4442 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4443 * when it does not intersect with the cpuset restrictions) or the
4444 * caller can deal with a violated nodemask.
4446 if (cpusets_enabled() && ac
->nodemask
&&
4447 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4448 ac
->nodemask
= NULL
;
4453 * When updating a task's mems_allowed or mempolicy nodemask, it is
4454 * possible to race with parallel threads in such a way that our
4455 * allocation can fail while the mask is being updated. If we are about
4456 * to fail, check if the cpuset changed during allocation and if so,
4459 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4465 static inline struct page
*
4466 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4467 struct alloc_context
*ac
)
4469 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4470 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4471 struct page
*page
= NULL
;
4472 unsigned int alloc_flags
;
4473 unsigned long did_some_progress
;
4474 enum compact_priority compact_priority
;
4475 enum compact_result compact_result
;
4476 int compaction_retries
;
4477 int no_progress_loops
;
4478 unsigned int cpuset_mems_cookie
;
4482 * We also sanity check to catch abuse of atomic reserves being used by
4483 * callers that are not in atomic context.
4485 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4486 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4487 gfp_mask
&= ~__GFP_ATOMIC
;
4490 compaction_retries
= 0;
4491 no_progress_loops
= 0;
4492 compact_priority
= DEF_COMPACT_PRIORITY
;
4493 cpuset_mems_cookie
= read_mems_allowed_begin();
4496 * The fast path uses conservative alloc_flags to succeed only until
4497 * kswapd needs to be woken up, and to avoid the cost of setting up
4498 * alloc_flags precisely. So we do that now.
4500 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4503 * We need to recalculate the starting point for the zonelist iterator
4504 * because we might have used different nodemask in the fast path, or
4505 * there was a cpuset modification and we are retrying - otherwise we
4506 * could end up iterating over non-eligible zones endlessly.
4508 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4509 ac
->high_zoneidx
, ac
->nodemask
);
4510 if (!ac
->preferred_zoneref
->zone
)
4513 if (alloc_flags
& ALLOC_KSWAPD
)
4514 wake_all_kswapds(order
, gfp_mask
, ac
);
4517 * The adjusted alloc_flags might result in immediate success, so try
4520 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4525 * For costly allocations, try direct compaction first, as it's likely
4526 * that we have enough base pages and don't need to reclaim. For non-
4527 * movable high-order allocations, do that as well, as compaction will
4528 * try prevent permanent fragmentation by migrating from blocks of the
4530 * Don't try this for allocations that are allowed to ignore
4531 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4533 if (can_direct_reclaim
&&
4535 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4536 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4537 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4539 INIT_COMPACT_PRIORITY
,
4545 * Checks for costly allocations with __GFP_NORETRY, which
4546 * includes some THP page fault allocations
4548 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4550 * If allocating entire pageblock(s) and compaction
4551 * failed because all zones are below low watermarks
4552 * or is prohibited because it recently failed at this
4553 * order, fail immediately unless the allocator has
4554 * requested compaction and reclaim retry.
4557 * - potentially very expensive because zones are far
4558 * below their low watermarks or this is part of very
4559 * bursty high order allocations,
4560 * - not guaranteed to help because isolate_freepages()
4561 * may not iterate over freed pages as part of its
4563 * - unlikely to make entire pageblocks free on its
4566 if (compact_result
== COMPACT_SKIPPED
||
4567 compact_result
== COMPACT_DEFERRED
)
4571 * Looks like reclaim/compaction is worth trying, but
4572 * sync compaction could be very expensive, so keep
4573 * using async compaction.
4575 compact_priority
= INIT_COMPACT_PRIORITY
;
4580 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4581 if (alloc_flags
& ALLOC_KSWAPD
)
4582 wake_all_kswapds(order
, gfp_mask
, ac
);
4584 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4586 alloc_flags
= reserve_flags
;
4589 * Reset the nodemask and zonelist iterators if memory policies can be
4590 * ignored. These allocations are high priority and system rather than
4593 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4594 ac
->nodemask
= NULL
;
4595 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4596 ac
->high_zoneidx
, ac
->nodemask
);
4599 /* Attempt with potentially adjusted zonelist and alloc_flags */
4600 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4604 /* Caller is not willing to reclaim, we can't balance anything */
4605 if (!can_direct_reclaim
)
4608 /* Avoid recursion of direct reclaim */
4609 if (current
->flags
& PF_MEMALLOC
)
4612 /* Try direct reclaim and then allocating */
4613 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4614 &did_some_progress
);
4618 /* Try direct compaction and then allocating */
4619 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4620 compact_priority
, &compact_result
);
4624 /* Do not loop if specifically requested */
4625 if (gfp_mask
& __GFP_NORETRY
)
4629 * Do not retry costly high order allocations unless they are
4630 * __GFP_RETRY_MAYFAIL
4632 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4635 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4636 did_some_progress
> 0, &no_progress_loops
))
4640 * It doesn't make any sense to retry for the compaction if the order-0
4641 * reclaim is not able to make any progress because the current
4642 * implementation of the compaction depends on the sufficient amount
4643 * of free memory (see __compaction_suitable)
4645 if (did_some_progress
> 0 &&
4646 should_compact_retry(ac
, order
, alloc_flags
,
4647 compact_result
, &compact_priority
,
4648 &compaction_retries
))
4652 /* Deal with possible cpuset update races before we start OOM killing */
4653 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4656 /* Reclaim has failed us, start killing things */
4657 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4661 /* Avoid allocations with no watermarks from looping endlessly */
4662 if (tsk_is_oom_victim(current
) &&
4663 (alloc_flags
== ALLOC_OOM
||
4664 (gfp_mask
& __GFP_NOMEMALLOC
)))
4667 /* Retry as long as the OOM killer is making progress */
4668 if (did_some_progress
) {
4669 no_progress_loops
= 0;
4674 /* Deal with possible cpuset update races before we fail */
4675 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4679 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4682 if (gfp_mask
& __GFP_NOFAIL
) {
4684 * All existing users of the __GFP_NOFAIL are blockable, so warn
4685 * of any new users that actually require GFP_NOWAIT
4687 if (WARN_ON_ONCE(!can_direct_reclaim
))
4691 * PF_MEMALLOC request from this context is rather bizarre
4692 * because we cannot reclaim anything and only can loop waiting
4693 * for somebody to do a work for us
4695 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4698 * non failing costly orders are a hard requirement which we
4699 * are not prepared for much so let's warn about these users
4700 * so that we can identify them and convert them to something
4703 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4706 * Help non-failing allocations by giving them access to memory
4707 * reserves but do not use ALLOC_NO_WATERMARKS because this
4708 * could deplete whole memory reserves which would just make
4709 * the situation worse
4711 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4719 warn_alloc(gfp_mask
, ac
->nodemask
,
4720 "page allocation failure: order:%u", order
);
4725 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4726 int preferred_nid
, nodemask_t
*nodemask
,
4727 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4728 unsigned int *alloc_flags
)
4730 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4731 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4732 ac
->nodemask
= nodemask
;
4733 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4735 if (cpusets_enabled()) {
4736 *alloc_mask
|= __GFP_HARDWALL
;
4738 ac
->nodemask
= &cpuset_current_mems_allowed
;
4740 *alloc_flags
|= ALLOC_CPUSET
;
4743 fs_reclaim_acquire(gfp_mask
);
4744 fs_reclaim_release(gfp_mask
);
4746 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4748 if (should_fail_alloc_page(gfp_mask
, order
))
4751 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4752 *alloc_flags
|= ALLOC_CMA
;
4757 /* Determine whether to spread dirty pages and what the first usable zone */
4758 static inline void finalise_ac(gfp_t gfp_mask
, struct alloc_context
*ac
)
4760 /* Dirty zone balancing only done in the fast path */
4761 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4764 * The preferred zone is used for statistics but crucially it is
4765 * also used as the starting point for the zonelist iterator. It
4766 * may get reset for allocations that ignore memory policies.
4768 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4769 ac
->high_zoneidx
, ac
->nodemask
);
4773 * This is the 'heart' of the zoned buddy allocator.
4776 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4777 nodemask_t
*nodemask
)
4780 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4781 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4782 struct alloc_context ac
= { };
4785 * There are several places where we assume that the order value is sane
4786 * so bail out early if the request is out of bound.
4788 if (unlikely(order
>= MAX_ORDER
)) {
4789 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4793 gfp_mask
&= gfp_allowed_mask
;
4794 alloc_mask
= gfp_mask
;
4795 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4798 finalise_ac(gfp_mask
, &ac
);
4801 * Forbid the first pass from falling back to types that fragment
4802 * memory until all local zones are considered.
4804 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4806 /* First allocation attempt */
4807 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4812 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4813 * resp. GFP_NOIO which has to be inherited for all allocation requests
4814 * from a particular context which has been marked by
4815 * memalloc_no{fs,io}_{save,restore}.
4817 alloc_mask
= current_gfp_context(gfp_mask
);
4818 ac
.spread_dirty_pages
= false;
4821 * Restore the original nodemask if it was potentially replaced with
4822 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4824 ac
.nodemask
= nodemask
;
4826 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4829 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4830 unlikely(__memcg_kmem_charge_page(page
, gfp_mask
, order
) != 0)) {
4831 __free_pages(page
, order
);
4835 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4839 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4842 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4843 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4844 * you need to access high mem.
4846 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4850 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4853 return (unsigned long) page_address(page
);
4855 EXPORT_SYMBOL(__get_free_pages
);
4857 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4859 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4861 EXPORT_SYMBOL(get_zeroed_page
);
4863 static inline void free_the_page(struct page
*page
, unsigned int order
)
4865 if (order
== 0) /* Via pcp? */
4866 free_unref_page(page
);
4868 __free_pages_ok(page
, order
);
4871 void __free_pages(struct page
*page
, unsigned int order
)
4873 if (put_page_testzero(page
))
4874 free_the_page(page
, order
);
4876 EXPORT_SYMBOL(__free_pages
);
4878 void free_pages(unsigned long addr
, unsigned int order
)
4881 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4882 __free_pages(virt_to_page((void *)addr
), order
);
4886 EXPORT_SYMBOL(free_pages
);
4890 * An arbitrary-length arbitrary-offset area of memory which resides
4891 * within a 0 or higher order page. Multiple fragments within that page
4892 * are individually refcounted, in the page's reference counter.
4894 * The page_frag functions below provide a simple allocation framework for
4895 * page fragments. This is used by the network stack and network device
4896 * drivers to provide a backing region of memory for use as either an
4897 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4899 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4902 struct page
*page
= NULL
;
4903 gfp_t gfp
= gfp_mask
;
4905 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4906 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4908 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4909 PAGE_FRAG_CACHE_MAX_ORDER
);
4910 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4912 if (unlikely(!page
))
4913 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4915 nc
->va
= page
? page_address(page
) : NULL
;
4920 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4922 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4924 if (page_ref_sub_and_test(page
, count
))
4925 free_the_page(page
, compound_order(page
));
4927 EXPORT_SYMBOL(__page_frag_cache_drain
);
4929 void *page_frag_alloc(struct page_frag_cache
*nc
,
4930 unsigned int fragsz
, gfp_t gfp_mask
)
4932 unsigned int size
= PAGE_SIZE
;
4936 if (unlikely(!nc
->va
)) {
4938 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4942 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4943 /* if size can vary use size else just use PAGE_SIZE */
4946 /* Even if we own the page, we do not use atomic_set().
4947 * This would break get_page_unless_zero() users.
4949 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
4951 /* reset page count bias and offset to start of new frag */
4952 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4953 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4957 offset
= nc
->offset
- fragsz
;
4958 if (unlikely(offset
< 0)) {
4959 page
= virt_to_page(nc
->va
);
4961 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4964 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4965 /* if size can vary use size else just use PAGE_SIZE */
4968 /* OK, page count is 0, we can safely set it */
4969 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
4971 /* reset page count bias and offset to start of new frag */
4972 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
4973 offset
= size
- fragsz
;
4977 nc
->offset
= offset
;
4979 return nc
->va
+ offset
;
4981 EXPORT_SYMBOL(page_frag_alloc
);
4984 * Frees a page fragment allocated out of either a compound or order 0 page.
4986 void page_frag_free(void *addr
)
4988 struct page
*page
= virt_to_head_page(addr
);
4990 if (unlikely(put_page_testzero(page
)))
4991 free_the_page(page
, compound_order(page
));
4993 EXPORT_SYMBOL(page_frag_free
);
4995 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4999 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
5000 unsigned long used
= addr
+ PAGE_ALIGN(size
);
5002 split_page(virt_to_page((void *)addr
), order
);
5003 while (used
< alloc_end
) {
5008 return (void *)addr
;
5012 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5013 * @size: the number of bytes to allocate
5014 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5016 * This function is similar to alloc_pages(), except that it allocates the
5017 * minimum number of pages to satisfy the request. alloc_pages() can only
5018 * allocate memory in power-of-two pages.
5020 * This function is also limited by MAX_ORDER.
5022 * Memory allocated by this function must be released by free_pages_exact().
5024 * Return: pointer to the allocated area or %NULL in case of error.
5026 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
5028 unsigned int order
= get_order(size
);
5031 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5032 gfp_mask
&= ~__GFP_COMP
;
5034 addr
= __get_free_pages(gfp_mask
, order
);
5035 return make_alloc_exact(addr
, order
, size
);
5037 EXPORT_SYMBOL(alloc_pages_exact
);
5040 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5042 * @nid: the preferred node ID where memory should be allocated
5043 * @size: the number of bytes to allocate
5044 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5046 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5049 * Return: pointer to the allocated area or %NULL in case of error.
5051 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
5053 unsigned int order
= get_order(size
);
5056 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5057 gfp_mask
&= ~__GFP_COMP
;
5059 p
= alloc_pages_node(nid
, gfp_mask
, order
);
5062 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
5066 * free_pages_exact - release memory allocated via alloc_pages_exact()
5067 * @virt: the value returned by alloc_pages_exact.
5068 * @size: size of allocation, same value as passed to alloc_pages_exact().
5070 * Release the memory allocated by a previous call to alloc_pages_exact.
5072 void free_pages_exact(void *virt
, size_t size
)
5074 unsigned long addr
= (unsigned long)virt
;
5075 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5077 while (addr
< end
) {
5082 EXPORT_SYMBOL(free_pages_exact
);
5085 * nr_free_zone_pages - count number of pages beyond high watermark
5086 * @offset: The zone index of the highest zone
5088 * nr_free_zone_pages() counts the number of pages which are beyond the
5089 * high watermark within all zones at or below a given zone index. For each
5090 * zone, the number of pages is calculated as:
5092 * nr_free_zone_pages = managed_pages - high_pages
5094 * Return: number of pages beyond high watermark.
5096 static unsigned long nr_free_zone_pages(int offset
)
5101 /* Just pick one node, since fallback list is circular */
5102 unsigned long sum
= 0;
5104 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5106 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5107 unsigned long size
= zone_managed_pages(zone
);
5108 unsigned long high
= high_wmark_pages(zone
);
5117 * nr_free_buffer_pages - count number of pages beyond high watermark
5119 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5120 * watermark within ZONE_DMA and ZONE_NORMAL.
5122 * Return: number of pages beyond high watermark within ZONE_DMA and
5125 unsigned long nr_free_buffer_pages(void)
5127 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5129 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5132 * nr_free_pagecache_pages - count number of pages beyond high watermark
5134 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5135 * high watermark within all zones.
5137 * Return: number of pages beyond high watermark within all zones.
5139 unsigned long nr_free_pagecache_pages(void)
5141 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5144 static inline void show_node(struct zone
*zone
)
5146 if (IS_ENABLED(CONFIG_NUMA
))
5147 printk("Node %d ", zone_to_nid(zone
));
5150 long si_mem_available(void)
5153 unsigned long pagecache
;
5154 unsigned long wmark_low
= 0;
5155 unsigned long pages
[NR_LRU_LISTS
];
5156 unsigned long reclaimable
;
5160 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
5161 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
5164 wmark_low
+= low_wmark_pages(zone
);
5167 * Estimate the amount of memory available for userspace allocations,
5168 * without causing swapping.
5170 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
5173 * Not all the page cache can be freed, otherwise the system will
5174 * start swapping. Assume at least half of the page cache, or the
5175 * low watermark worth of cache, needs to stay.
5177 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
5178 pagecache
-= min(pagecache
/ 2, wmark_low
);
5179 available
+= pagecache
;
5182 * Part of the reclaimable slab and other kernel memory consists of
5183 * items that are in use, and cannot be freed. Cap this estimate at the
5186 reclaimable
= global_node_page_state(NR_SLAB_RECLAIMABLE
) +
5187 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
5188 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
5194 EXPORT_SYMBOL_GPL(si_mem_available
);
5196 void si_meminfo(struct sysinfo
*val
)
5198 val
->totalram
= totalram_pages();
5199 val
->sharedram
= global_node_page_state(NR_SHMEM
);
5200 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
5201 val
->bufferram
= nr_blockdev_pages();
5202 val
->totalhigh
= totalhigh_pages();
5203 val
->freehigh
= nr_free_highpages();
5204 val
->mem_unit
= PAGE_SIZE
;
5207 EXPORT_SYMBOL(si_meminfo
);
5210 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5212 int zone_type
; /* needs to be signed */
5213 unsigned long managed_pages
= 0;
5214 unsigned long managed_highpages
= 0;
5215 unsigned long free_highpages
= 0;
5216 pg_data_t
*pgdat
= NODE_DATA(nid
);
5218 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5219 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5220 val
->totalram
= managed_pages
;
5221 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5222 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5223 #ifdef CONFIG_HIGHMEM
5224 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5225 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5227 if (is_highmem(zone
)) {
5228 managed_highpages
+= zone_managed_pages(zone
);
5229 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5232 val
->totalhigh
= managed_highpages
;
5233 val
->freehigh
= free_highpages
;
5235 val
->totalhigh
= managed_highpages
;
5236 val
->freehigh
= free_highpages
;
5238 val
->mem_unit
= PAGE_SIZE
;
5243 * Determine whether the node should be displayed or not, depending on whether
5244 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5246 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5248 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5252 * no node mask - aka implicit memory numa policy. Do not bother with
5253 * the synchronization - read_mems_allowed_begin - because we do not
5254 * have to be precise here.
5257 nodemask
= &cpuset_current_mems_allowed
;
5259 return !node_isset(nid
, *nodemask
);
5262 #define K(x) ((x) << (PAGE_SHIFT-10))
5264 static void show_migration_types(unsigned char type
)
5266 static const char types
[MIGRATE_TYPES
] = {
5267 [MIGRATE_UNMOVABLE
] = 'U',
5268 [MIGRATE_MOVABLE
] = 'M',
5269 [MIGRATE_RECLAIMABLE
] = 'E',
5270 [MIGRATE_HIGHATOMIC
] = 'H',
5272 [MIGRATE_CMA
] = 'C',
5274 #ifdef CONFIG_MEMORY_ISOLATION
5275 [MIGRATE_ISOLATE
] = 'I',
5278 char tmp
[MIGRATE_TYPES
+ 1];
5282 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5283 if (type
& (1 << i
))
5288 printk(KERN_CONT
"(%s) ", tmp
);
5292 * Show free area list (used inside shift_scroll-lock stuff)
5293 * We also calculate the percentage fragmentation. We do this by counting the
5294 * memory on each free list with the exception of the first item on the list.
5297 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5300 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5302 unsigned long free_pcp
= 0;
5307 for_each_populated_zone(zone
) {
5308 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5311 for_each_online_cpu(cpu
)
5312 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5315 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5316 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5317 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5318 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5319 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5320 " free:%lu free_pcp:%lu free_cma:%lu\n",
5321 global_node_page_state(NR_ACTIVE_ANON
),
5322 global_node_page_state(NR_INACTIVE_ANON
),
5323 global_node_page_state(NR_ISOLATED_ANON
),
5324 global_node_page_state(NR_ACTIVE_FILE
),
5325 global_node_page_state(NR_INACTIVE_FILE
),
5326 global_node_page_state(NR_ISOLATED_FILE
),
5327 global_node_page_state(NR_UNEVICTABLE
),
5328 global_node_page_state(NR_FILE_DIRTY
),
5329 global_node_page_state(NR_WRITEBACK
),
5330 global_node_page_state(NR_UNSTABLE_NFS
),
5331 global_node_page_state(NR_SLAB_RECLAIMABLE
),
5332 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
5333 global_node_page_state(NR_FILE_MAPPED
),
5334 global_node_page_state(NR_SHMEM
),
5335 global_zone_page_state(NR_PAGETABLE
),
5336 global_zone_page_state(NR_BOUNCE
),
5337 global_zone_page_state(NR_FREE_PAGES
),
5339 global_zone_page_state(NR_FREE_CMA_PAGES
));
5341 for_each_online_pgdat(pgdat
) {
5342 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5346 " active_anon:%lukB"
5347 " inactive_anon:%lukB"
5348 " active_file:%lukB"
5349 " inactive_file:%lukB"
5350 " unevictable:%lukB"
5351 " isolated(anon):%lukB"
5352 " isolated(file):%lukB"
5357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5359 " shmem_pmdmapped: %lukB"
5362 " writeback_tmp:%lukB"
5364 " all_unreclaimable? %s"
5367 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5368 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5369 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5370 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5371 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5372 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5373 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5374 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5375 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5376 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5377 K(node_page_state(pgdat
, NR_SHMEM
)),
5378 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5379 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5380 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5382 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5384 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5385 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
5386 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5390 for_each_populated_zone(zone
) {
5393 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5397 for_each_online_cpu(cpu
)
5398 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5407 " reserved_highatomic:%luKB"
5408 " active_anon:%lukB"
5409 " inactive_anon:%lukB"
5410 " active_file:%lukB"
5411 " inactive_file:%lukB"
5412 " unevictable:%lukB"
5413 " writepending:%lukB"
5417 " kernel_stack:%lukB"
5425 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5426 K(min_wmark_pages(zone
)),
5427 K(low_wmark_pages(zone
)),
5428 K(high_wmark_pages(zone
)),
5429 K(zone
->nr_reserved_highatomic
),
5430 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5431 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5432 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5433 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5434 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5435 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5436 K(zone
->present_pages
),
5437 K(zone_managed_pages(zone
)),
5438 K(zone_page_state(zone
, NR_MLOCK
)),
5439 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
5440 K(zone_page_state(zone
, NR_PAGETABLE
)),
5441 K(zone_page_state(zone
, NR_BOUNCE
)),
5443 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5444 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5445 printk("lowmem_reserve[]:");
5446 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5447 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5448 printk(KERN_CONT
"\n");
5451 for_each_populated_zone(zone
) {
5453 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5454 unsigned char types
[MAX_ORDER
];
5456 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5459 printk(KERN_CONT
"%s: ", zone
->name
);
5461 spin_lock_irqsave(&zone
->lock
, flags
);
5462 for (order
= 0; order
< MAX_ORDER
; order
++) {
5463 struct free_area
*area
= &zone
->free_area
[order
];
5466 nr
[order
] = area
->nr_free
;
5467 total
+= nr
[order
] << order
;
5470 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5471 if (!free_area_empty(area
, type
))
5472 types
[order
] |= 1 << type
;
5475 spin_unlock_irqrestore(&zone
->lock
, flags
);
5476 for (order
= 0; order
< MAX_ORDER
; order
++) {
5477 printk(KERN_CONT
"%lu*%lukB ",
5478 nr
[order
], K(1UL) << order
);
5480 show_migration_types(types
[order
]);
5482 printk(KERN_CONT
"= %lukB\n", K(total
));
5485 hugetlb_show_meminfo();
5487 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5489 show_swap_cache_info();
5492 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5494 zoneref
->zone
= zone
;
5495 zoneref
->zone_idx
= zone_idx(zone
);
5499 * Builds allocation fallback zone lists.
5501 * Add all populated zones of a node to the zonelist.
5503 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5506 enum zone_type zone_type
= MAX_NR_ZONES
;
5511 zone
= pgdat
->node_zones
+ zone_type
;
5512 if (managed_zone(zone
)) {
5513 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5514 check_highest_zone(zone_type
);
5516 } while (zone_type
);
5523 static int __parse_numa_zonelist_order(char *s
)
5526 * We used to support different zonlists modes but they turned
5527 * out to be just not useful. Let's keep the warning in place
5528 * if somebody still use the cmd line parameter so that we do
5529 * not fail it silently
5531 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5532 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5538 static __init
int setup_numa_zonelist_order(char *s
)
5543 return __parse_numa_zonelist_order(s
);
5545 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
5547 char numa_zonelist_order
[] = "Node";
5550 * sysctl handler for numa_zonelist_order
5552 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5553 void __user
*buffer
, size_t *length
,
5560 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5561 str
= memdup_user_nul(buffer
, 16);
5563 return PTR_ERR(str
);
5565 ret
= __parse_numa_zonelist_order(str
);
5571 #define MAX_NODE_LOAD (nr_online_nodes)
5572 static int node_load
[MAX_NUMNODES
];
5575 * find_next_best_node - find the next node that should appear in a given node's fallback list
5576 * @node: node whose fallback list we're appending
5577 * @used_node_mask: nodemask_t of already used nodes
5579 * We use a number of factors to determine which is the next node that should
5580 * appear on a given node's fallback list. The node should not have appeared
5581 * already in @node's fallback list, and it should be the next closest node
5582 * according to the distance array (which contains arbitrary distance values
5583 * from each node to each node in the system), and should also prefer nodes
5584 * with no CPUs, since presumably they'll have very little allocation pressure
5585 * on them otherwise.
5587 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5589 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5592 int min_val
= INT_MAX
;
5593 int best_node
= NUMA_NO_NODE
;
5594 const struct cpumask
*tmp
= cpumask_of_node(0);
5596 /* Use the local node if we haven't already */
5597 if (!node_isset(node
, *used_node_mask
)) {
5598 node_set(node
, *used_node_mask
);
5602 for_each_node_state(n
, N_MEMORY
) {
5604 /* Don't want a node to appear more than once */
5605 if (node_isset(n
, *used_node_mask
))
5608 /* Use the distance array to find the distance */
5609 val
= node_distance(node
, n
);
5611 /* Penalize nodes under us ("prefer the next node") */
5614 /* Give preference to headless and unused nodes */
5615 tmp
= cpumask_of_node(n
);
5616 if (!cpumask_empty(tmp
))
5617 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5619 /* Slight preference for less loaded node */
5620 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5621 val
+= node_load
[n
];
5623 if (val
< min_val
) {
5630 node_set(best_node
, *used_node_mask
);
5637 * Build zonelists ordered by node and zones within node.
5638 * This results in maximum locality--normal zone overflows into local
5639 * DMA zone, if any--but risks exhausting DMA zone.
5641 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5644 struct zoneref
*zonerefs
;
5647 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5649 for (i
= 0; i
< nr_nodes
; i
++) {
5652 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5654 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5655 zonerefs
+= nr_zones
;
5657 zonerefs
->zone
= NULL
;
5658 zonerefs
->zone_idx
= 0;
5662 * Build gfp_thisnode zonelists
5664 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5666 struct zoneref
*zonerefs
;
5669 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5670 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5671 zonerefs
+= nr_zones
;
5672 zonerefs
->zone
= NULL
;
5673 zonerefs
->zone_idx
= 0;
5677 * Build zonelists ordered by zone and nodes within zones.
5678 * This results in conserving DMA zone[s] until all Normal memory is
5679 * exhausted, but results in overflowing to remote node while memory
5680 * may still exist in local DMA zone.
5683 static void build_zonelists(pg_data_t
*pgdat
)
5685 static int node_order
[MAX_NUMNODES
];
5686 int node
, load
, nr_nodes
= 0;
5687 nodemask_t used_mask
;
5688 int local_node
, prev_node
;
5690 /* NUMA-aware ordering of nodes */
5691 local_node
= pgdat
->node_id
;
5692 load
= nr_online_nodes
;
5693 prev_node
= local_node
;
5694 nodes_clear(used_mask
);
5696 memset(node_order
, 0, sizeof(node_order
));
5697 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5699 * We don't want to pressure a particular node.
5700 * So adding penalty to the first node in same
5701 * distance group to make it round-robin.
5703 if (node_distance(local_node
, node
) !=
5704 node_distance(local_node
, prev_node
))
5705 node_load
[node
] = load
;
5707 node_order
[nr_nodes
++] = node
;
5712 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5713 build_thisnode_zonelists(pgdat
);
5716 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5718 * Return node id of node used for "local" allocations.
5719 * I.e., first node id of first zone in arg node's generic zonelist.
5720 * Used for initializing percpu 'numa_mem', which is used primarily
5721 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5723 int local_memory_node(int node
)
5727 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5728 gfp_zone(GFP_KERNEL
),
5730 return zone_to_nid(z
->zone
);
5734 static void setup_min_unmapped_ratio(void);
5735 static void setup_min_slab_ratio(void);
5736 #else /* CONFIG_NUMA */
5738 static void build_zonelists(pg_data_t
*pgdat
)
5740 int node
, local_node
;
5741 struct zoneref
*zonerefs
;
5744 local_node
= pgdat
->node_id
;
5746 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5747 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5748 zonerefs
+= nr_zones
;
5751 * Now we build the zonelist so that it contains the zones
5752 * of all the other nodes.
5753 * We don't want to pressure a particular node, so when
5754 * building the zones for node N, we make sure that the
5755 * zones coming right after the local ones are those from
5756 * node N+1 (modulo N)
5758 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5759 if (!node_online(node
))
5761 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5762 zonerefs
+= nr_zones
;
5764 for (node
= 0; node
< local_node
; node
++) {
5765 if (!node_online(node
))
5767 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5768 zonerefs
+= nr_zones
;
5771 zonerefs
->zone
= NULL
;
5772 zonerefs
->zone_idx
= 0;
5775 #endif /* CONFIG_NUMA */
5778 * Boot pageset table. One per cpu which is going to be used for all
5779 * zones and all nodes. The parameters will be set in such a way
5780 * that an item put on a list will immediately be handed over to
5781 * the buddy list. This is safe since pageset manipulation is done
5782 * with interrupts disabled.
5784 * The boot_pagesets must be kept even after bootup is complete for
5785 * unused processors and/or zones. They do play a role for bootstrapping
5786 * hotplugged processors.
5788 * zoneinfo_show() and maybe other functions do
5789 * not check if the processor is online before following the pageset pointer.
5790 * Other parts of the kernel may not check if the zone is available.
5792 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5793 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5794 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5796 static void __build_all_zonelists(void *data
)
5799 int __maybe_unused cpu
;
5800 pg_data_t
*self
= data
;
5801 static DEFINE_SPINLOCK(lock
);
5806 memset(node_load
, 0, sizeof(node_load
));
5810 * This node is hotadded and no memory is yet present. So just
5811 * building zonelists is fine - no need to touch other nodes.
5813 if (self
&& !node_online(self
->node_id
)) {
5814 build_zonelists(self
);
5816 for_each_online_node(nid
) {
5817 pg_data_t
*pgdat
= NODE_DATA(nid
);
5819 build_zonelists(pgdat
);
5822 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5824 * We now know the "local memory node" for each node--
5825 * i.e., the node of the first zone in the generic zonelist.
5826 * Set up numa_mem percpu variable for on-line cpus. During
5827 * boot, only the boot cpu should be on-line; we'll init the
5828 * secondary cpus' numa_mem as they come on-line. During
5829 * node/memory hotplug, we'll fixup all on-line cpus.
5831 for_each_online_cpu(cpu
)
5832 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5839 static noinline
void __init
5840 build_all_zonelists_init(void)
5844 __build_all_zonelists(NULL
);
5847 * Initialize the boot_pagesets that are going to be used
5848 * for bootstrapping processors. The real pagesets for
5849 * each zone will be allocated later when the per cpu
5850 * allocator is available.
5852 * boot_pagesets are used also for bootstrapping offline
5853 * cpus if the system is already booted because the pagesets
5854 * are needed to initialize allocators on a specific cpu too.
5855 * F.e. the percpu allocator needs the page allocator which
5856 * needs the percpu allocator in order to allocate its pagesets
5857 * (a chicken-egg dilemma).
5859 for_each_possible_cpu(cpu
)
5860 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5862 mminit_verify_zonelist();
5863 cpuset_init_current_mems_allowed();
5867 * unless system_state == SYSTEM_BOOTING.
5869 * __ref due to call of __init annotated helper build_all_zonelists_init
5870 * [protected by SYSTEM_BOOTING].
5872 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5874 if (system_state
== SYSTEM_BOOTING
) {
5875 build_all_zonelists_init();
5877 __build_all_zonelists(pgdat
);
5878 /* cpuset refresh routine should be here */
5880 vm_total_pages
= nr_free_pagecache_pages();
5882 * Disable grouping by mobility if the number of pages in the
5883 * system is too low to allow the mechanism to work. It would be
5884 * more accurate, but expensive to check per-zone. This check is
5885 * made on memory-hotadd so a system can start with mobility
5886 * disabled and enable it later
5888 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5889 page_group_by_mobility_disabled
= 1;
5891 page_group_by_mobility_disabled
= 0;
5893 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5895 page_group_by_mobility_disabled
? "off" : "on",
5898 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5902 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5903 static bool __meminit
5904 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
5906 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5907 static struct memblock_region
*r
;
5909 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5910 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
5911 for_each_memblock(memory
, r
) {
5912 if (*pfn
< memblock_region_memory_end_pfn(r
))
5916 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
5917 memblock_is_mirror(r
)) {
5918 *pfn
= memblock_region_memory_end_pfn(r
);
5926 #ifdef CONFIG_SPARSEMEM
5927 /* Skip PFNs that belong to non-present sections */
5928 static inline __meminit
unsigned long next_pfn(unsigned long pfn
)
5930 const unsigned long section_nr
= pfn_to_section_nr(++pfn
);
5932 if (present_section_nr(section_nr
))
5934 return section_nr_to_pfn(next_present_section_nr(section_nr
));
5937 static inline __meminit
unsigned long next_pfn(unsigned long pfn
)
5944 * Initially all pages are reserved - free ones are freed
5945 * up by memblock_free_all() once the early boot process is
5946 * done. Non-atomic initialization, single-pass.
5948 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5949 unsigned long start_pfn
, enum memmap_context context
,
5950 struct vmem_altmap
*altmap
)
5952 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
5955 if (highest_memmap_pfn
< end_pfn
- 1)
5956 highest_memmap_pfn
= end_pfn
- 1;
5958 #ifdef CONFIG_ZONE_DEVICE
5960 * Honor reservation requested by the driver for this ZONE_DEVICE
5961 * memory. We limit the total number of pages to initialize to just
5962 * those that might contain the memory mapping. We will defer the
5963 * ZONE_DEVICE page initialization until after we have released
5966 if (zone
== ZONE_DEVICE
) {
5970 if (start_pfn
== altmap
->base_pfn
)
5971 start_pfn
+= altmap
->reserve
;
5972 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
5976 for (pfn
= start_pfn
; pfn
< end_pfn
; ) {
5978 * There can be holes in boot-time mem_map[]s handed to this
5979 * function. They do not exist on hotplugged memory.
5981 if (context
== MEMMAP_EARLY
) {
5982 if (!early_pfn_valid(pfn
)) {
5983 pfn
= next_pfn(pfn
);
5986 if (!early_pfn_in_nid(pfn
, nid
)) {
5990 if (overlap_memmap_init(zone
, &pfn
))
5992 if (defer_init(nid
, pfn
, end_pfn
))
5996 page
= pfn_to_page(pfn
);
5997 __init_single_page(page
, pfn
, zone
, nid
);
5998 if (context
== MEMMAP_HOTPLUG
)
5999 __SetPageReserved(page
);
6002 * Mark the block movable so that blocks are reserved for
6003 * movable at startup. This will force kernel allocations
6004 * to reserve their blocks rather than leaking throughout
6005 * the address space during boot when many long-lived
6006 * kernel allocations are made.
6008 * bitmap is created for zone's valid pfn range. but memmap
6009 * can be created for invalid pages (for alignment)
6010 * check here not to call set_pageblock_migratetype() against
6013 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6014 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6021 #ifdef CONFIG_ZONE_DEVICE
6022 void __ref
memmap_init_zone_device(struct zone
*zone
,
6023 unsigned long start_pfn
,
6024 unsigned long nr_pages
,
6025 struct dev_pagemap
*pgmap
)
6027 unsigned long pfn
, end_pfn
= start_pfn
+ nr_pages
;
6028 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6029 struct vmem_altmap
*altmap
= pgmap_altmap(pgmap
);
6030 unsigned long zone_idx
= zone_idx(zone
);
6031 unsigned long start
= jiffies
;
6032 int nid
= pgdat
->node_id
;
6034 if (WARN_ON_ONCE(!pgmap
|| zone_idx(zone
) != ZONE_DEVICE
))
6038 * The call to memmap_init_zone should have already taken care
6039 * of the pages reserved for the memmap, so we can just jump to
6040 * the end of that region and start processing the device pages.
6043 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6044 nr_pages
= end_pfn
- start_pfn
;
6047 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
6048 struct page
*page
= pfn_to_page(pfn
);
6050 __init_single_page(page
, pfn
, zone_idx
, nid
);
6053 * Mark page reserved as it will need to wait for onlining
6054 * phase for it to be fully associated with a zone.
6056 * We can use the non-atomic __set_bit operation for setting
6057 * the flag as we are still initializing the pages.
6059 __SetPageReserved(page
);
6062 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6063 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6064 * ever freed or placed on a driver-private list.
6066 page
->pgmap
= pgmap
;
6067 page
->zone_device_data
= NULL
;
6070 * Mark the block movable so that blocks are reserved for
6071 * movable at startup. This will force kernel allocations
6072 * to reserve their blocks rather than leaking throughout
6073 * the address space during boot when many long-lived
6074 * kernel allocations are made.
6076 * bitmap is created for zone's valid pfn range. but memmap
6077 * can be created for invalid pages (for alignment)
6078 * check here not to call set_pageblock_migratetype() against
6081 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6082 * because this is done early in section_activate()
6084 if (!(pfn
& (pageblock_nr_pages
- 1))) {
6085 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6090 pr_info("%s initialised %lu pages in %ums\n", __func__
,
6091 nr_pages
, jiffies_to_msecs(jiffies
- start
));
6095 static void __meminit
zone_init_free_lists(struct zone
*zone
)
6097 unsigned int order
, t
;
6098 for_each_migratetype_order(order
, t
) {
6099 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
6100 zone
->free_area
[order
].nr_free
= 0;
6104 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
6105 unsigned long zone
, unsigned long start_pfn
)
6107 memmap_init_zone(size
, nid
, zone
, start_pfn
, MEMMAP_EARLY
, NULL
);
6110 static int zone_batchsize(struct zone
*zone
)
6116 * The per-cpu-pages pools are set to around 1000th of the
6119 batch
= zone_managed_pages(zone
) / 1024;
6120 /* But no more than a meg. */
6121 if (batch
* PAGE_SIZE
> 1024 * 1024)
6122 batch
= (1024 * 1024) / PAGE_SIZE
;
6123 batch
/= 4; /* We effectively *= 4 below */
6128 * Clamp the batch to a 2^n - 1 value. Having a power
6129 * of 2 value was found to be more likely to have
6130 * suboptimal cache aliasing properties in some cases.
6132 * For example if 2 tasks are alternately allocating
6133 * batches of pages, one task can end up with a lot
6134 * of pages of one half of the possible page colors
6135 * and the other with pages of the other colors.
6137 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
6142 /* The deferral and batching of frees should be suppressed under NOMMU
6145 * The problem is that NOMMU needs to be able to allocate large chunks
6146 * of contiguous memory as there's no hardware page translation to
6147 * assemble apparent contiguous memory from discontiguous pages.
6149 * Queueing large contiguous runs of pages for batching, however,
6150 * causes the pages to actually be freed in smaller chunks. As there
6151 * can be a significant delay between the individual batches being
6152 * recycled, this leads to the once large chunks of space being
6153 * fragmented and becoming unavailable for high-order allocations.
6160 * pcp->high and pcp->batch values are related and dependent on one another:
6161 * ->batch must never be higher then ->high.
6162 * The following function updates them in a safe manner without read side
6165 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6166 * those fields changing asynchronously (acording the the above rule).
6168 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6169 * outside of boot time (or some other assurance that no concurrent updaters
6172 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
6173 unsigned long batch
)
6175 /* start with a fail safe value for batch */
6179 /* Update high, then batch, in order */
6186 /* a companion to pageset_set_high() */
6187 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
6189 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
6192 static void pageset_init(struct per_cpu_pageset
*p
)
6194 struct per_cpu_pages
*pcp
;
6197 memset(p
, 0, sizeof(*p
));
6200 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
6201 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
6204 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
6207 pageset_set_batch(p
, batch
);
6211 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6212 * to the value high for the pageset p.
6214 static void pageset_set_high(struct per_cpu_pageset
*p
,
6217 unsigned long batch
= max(1UL, high
/ 4);
6218 if ((high
/ 4) > (PAGE_SHIFT
* 8))
6219 batch
= PAGE_SHIFT
* 8;
6221 pageset_update(&p
->pcp
, high
, batch
);
6224 static void pageset_set_high_and_batch(struct zone
*zone
,
6225 struct per_cpu_pageset
*pcp
)
6227 if (percpu_pagelist_fraction
)
6228 pageset_set_high(pcp
,
6229 (zone_managed_pages(zone
) /
6230 percpu_pagelist_fraction
));
6232 pageset_set_batch(pcp
, zone_batchsize(zone
));
6235 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
6237 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
6240 pageset_set_high_and_batch(zone
, pcp
);
6243 void __meminit
setup_zone_pageset(struct zone
*zone
)
6246 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6247 for_each_possible_cpu(cpu
)
6248 zone_pageset_init(zone
, cpu
);
6252 * Allocate per cpu pagesets and initialize them.
6253 * Before this call only boot pagesets were available.
6255 void __init
setup_per_cpu_pageset(void)
6257 struct pglist_data
*pgdat
;
6260 for_each_populated_zone(zone
)
6261 setup_zone_pageset(zone
);
6263 for_each_online_pgdat(pgdat
)
6264 pgdat
->per_cpu_nodestats
=
6265 alloc_percpu(struct per_cpu_nodestat
);
6268 static __meminit
void zone_pcp_init(struct zone
*zone
)
6271 * per cpu subsystem is not up at this point. The following code
6272 * relies on the ability of the linker to provide the
6273 * offset of a (static) per cpu variable into the per cpu area.
6275 zone
->pageset
= &boot_pageset
;
6277 if (populated_zone(zone
))
6278 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6279 zone
->name
, zone
->present_pages
,
6280 zone_batchsize(zone
));
6283 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6284 unsigned long zone_start_pfn
,
6287 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6288 int zone_idx
= zone_idx(zone
) + 1;
6290 if (zone_idx
> pgdat
->nr_zones
)
6291 pgdat
->nr_zones
= zone_idx
;
6293 zone
->zone_start_pfn
= zone_start_pfn
;
6295 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6296 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6298 (unsigned long)zone_idx(zone
),
6299 zone_start_pfn
, (zone_start_pfn
+ size
));
6301 zone_init_free_lists(zone
);
6302 zone
->initialized
= 1;
6305 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6306 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6309 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6311 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
6312 struct mminit_pfnnid_cache
*state
)
6314 unsigned long start_pfn
, end_pfn
;
6317 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
6318 return state
->last_nid
;
6320 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
6321 if (nid
!= NUMA_NO_NODE
) {
6322 state
->last_start
= start_pfn
;
6323 state
->last_end
= end_pfn
;
6324 state
->last_nid
= nid
;
6329 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6332 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6333 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6334 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6336 * If an architecture guarantees that all ranges registered contain no holes
6337 * and may be freed, this this function may be used instead of calling
6338 * memblock_free_early_nid() manually.
6340 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
6342 unsigned long start_pfn
, end_pfn
;
6345 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
6346 start_pfn
= min(start_pfn
, max_low_pfn
);
6347 end_pfn
= min(end_pfn
, max_low_pfn
);
6349 if (start_pfn
< end_pfn
)
6350 memblock_free_early_nid(PFN_PHYS(start_pfn
),
6351 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
6357 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6358 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6360 * If an architecture guarantees that all ranges registered contain no holes and may
6361 * be freed, this function may be used instead of calling memory_present() manually.
6363 void __init
sparse_memory_present_with_active_regions(int nid
)
6365 unsigned long start_pfn
, end_pfn
;
6368 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
6369 memory_present(this_nid
, start_pfn
, end_pfn
);
6373 * get_pfn_range_for_nid - Return the start and end page frames for a node
6374 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6375 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6376 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6378 * It returns the start and end page frame of a node based on information
6379 * provided by memblock_set_node(). If called for a node
6380 * with no available memory, a warning is printed and the start and end
6383 void __init
get_pfn_range_for_nid(unsigned int nid
,
6384 unsigned long *start_pfn
, unsigned long *end_pfn
)
6386 unsigned long this_start_pfn
, this_end_pfn
;
6392 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6393 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6394 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6397 if (*start_pfn
== -1UL)
6402 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6403 * assumption is made that zones within a node are ordered in monotonic
6404 * increasing memory addresses so that the "highest" populated zone is used
6406 static void __init
find_usable_zone_for_movable(void)
6409 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6410 if (zone_index
== ZONE_MOVABLE
)
6413 if (arch_zone_highest_possible_pfn
[zone_index
] >
6414 arch_zone_lowest_possible_pfn
[zone_index
])
6418 VM_BUG_ON(zone_index
== -1);
6419 movable_zone
= zone_index
;
6423 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6424 * because it is sized independent of architecture. Unlike the other zones,
6425 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6426 * in each node depending on the size of each node and how evenly kernelcore
6427 * is distributed. This helper function adjusts the zone ranges
6428 * provided by the architecture for a given node by using the end of the
6429 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6430 * zones within a node are in order of monotonic increases memory addresses
6432 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6433 unsigned long zone_type
,
6434 unsigned long node_start_pfn
,
6435 unsigned long node_end_pfn
,
6436 unsigned long *zone_start_pfn
,
6437 unsigned long *zone_end_pfn
)
6439 /* Only adjust if ZONE_MOVABLE is on this node */
6440 if (zone_movable_pfn
[nid
]) {
6441 /* Size ZONE_MOVABLE */
6442 if (zone_type
== ZONE_MOVABLE
) {
6443 *zone_start_pfn
= zone_movable_pfn
[nid
];
6444 *zone_end_pfn
= min(node_end_pfn
,
6445 arch_zone_highest_possible_pfn
[movable_zone
]);
6447 /* Adjust for ZONE_MOVABLE starting within this range */
6448 } else if (!mirrored_kernelcore
&&
6449 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6450 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6451 *zone_end_pfn
= zone_movable_pfn
[nid
];
6453 /* Check if this whole range is within ZONE_MOVABLE */
6454 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6455 *zone_start_pfn
= *zone_end_pfn
;
6460 * Return the number of pages a zone spans in a node, including holes
6461 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6463 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6464 unsigned long zone_type
,
6465 unsigned long node_start_pfn
,
6466 unsigned long node_end_pfn
,
6467 unsigned long *zone_start_pfn
,
6468 unsigned long *zone_end_pfn
,
6469 unsigned long *ignored
)
6471 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6472 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6473 /* When hotadd a new node from cpu_up(), the node should be empty */
6474 if (!node_start_pfn
&& !node_end_pfn
)
6477 /* Get the start and end of the zone */
6478 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6479 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6480 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6481 node_start_pfn
, node_end_pfn
,
6482 zone_start_pfn
, zone_end_pfn
);
6484 /* Check that this node has pages within the zone's required range */
6485 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6488 /* Move the zone boundaries inside the node if necessary */
6489 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6490 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6492 /* Return the spanned pages */
6493 return *zone_end_pfn
- *zone_start_pfn
;
6497 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6498 * then all holes in the requested range will be accounted for.
6500 unsigned long __init
__absent_pages_in_range(int nid
,
6501 unsigned long range_start_pfn
,
6502 unsigned long range_end_pfn
)
6504 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6505 unsigned long start_pfn
, end_pfn
;
6508 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6509 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6510 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6511 nr_absent
-= end_pfn
- start_pfn
;
6517 * absent_pages_in_range - Return number of page frames in holes within a range
6518 * @start_pfn: The start PFN to start searching for holes
6519 * @end_pfn: The end PFN to stop searching for holes
6521 * Return: the number of pages frames in memory holes within a range.
6523 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6524 unsigned long end_pfn
)
6526 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6529 /* Return the number of page frames in holes in a zone on a node */
6530 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6531 unsigned long zone_type
,
6532 unsigned long node_start_pfn
,
6533 unsigned long node_end_pfn
,
6534 unsigned long *ignored
)
6536 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6537 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6538 unsigned long zone_start_pfn
, zone_end_pfn
;
6539 unsigned long nr_absent
;
6541 /* When hotadd a new node from cpu_up(), the node should be empty */
6542 if (!node_start_pfn
&& !node_end_pfn
)
6545 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6546 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6548 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6549 node_start_pfn
, node_end_pfn
,
6550 &zone_start_pfn
, &zone_end_pfn
);
6551 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6554 * ZONE_MOVABLE handling.
6555 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6558 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6559 unsigned long start_pfn
, end_pfn
;
6560 struct memblock_region
*r
;
6562 for_each_memblock(memory
, r
) {
6563 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6564 zone_start_pfn
, zone_end_pfn
);
6565 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6566 zone_start_pfn
, zone_end_pfn
);
6568 if (zone_type
== ZONE_MOVABLE
&&
6569 memblock_is_mirror(r
))
6570 nr_absent
+= end_pfn
- start_pfn
;
6572 if (zone_type
== ZONE_NORMAL
&&
6573 !memblock_is_mirror(r
))
6574 nr_absent
+= end_pfn
- start_pfn
;
6581 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6582 static inline unsigned long __init
zone_spanned_pages_in_node(int nid
,
6583 unsigned long zone_type
,
6584 unsigned long node_start_pfn
,
6585 unsigned long node_end_pfn
,
6586 unsigned long *zone_start_pfn
,
6587 unsigned long *zone_end_pfn
,
6588 unsigned long *zones_size
)
6592 *zone_start_pfn
= node_start_pfn
;
6593 for (zone
= 0; zone
< zone_type
; zone
++)
6594 *zone_start_pfn
+= zones_size
[zone
];
6596 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
6598 return zones_size
[zone_type
];
6601 static inline unsigned long __init
zone_absent_pages_in_node(int nid
,
6602 unsigned long zone_type
,
6603 unsigned long node_start_pfn
,
6604 unsigned long node_end_pfn
,
6605 unsigned long *zholes_size
)
6610 return zholes_size
[zone_type
];
6613 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6615 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6616 unsigned long node_start_pfn
,
6617 unsigned long node_end_pfn
,
6618 unsigned long *zones_size
,
6619 unsigned long *zholes_size
)
6621 unsigned long realtotalpages
= 0, totalpages
= 0;
6624 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6625 struct zone
*zone
= pgdat
->node_zones
+ i
;
6626 unsigned long zone_start_pfn
, zone_end_pfn
;
6627 unsigned long size
, real_size
;
6629 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6635 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
6636 node_start_pfn
, node_end_pfn
,
6639 zone
->zone_start_pfn
= zone_start_pfn
;
6641 zone
->zone_start_pfn
= 0;
6642 zone
->spanned_pages
= size
;
6643 zone
->present_pages
= real_size
;
6646 realtotalpages
+= real_size
;
6649 pgdat
->node_spanned_pages
= totalpages
;
6650 pgdat
->node_present_pages
= realtotalpages
;
6651 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6655 #ifndef CONFIG_SPARSEMEM
6657 * Calculate the size of the zone->blockflags rounded to an unsigned long
6658 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6659 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6660 * round what is now in bits to nearest long in bits, then return it in
6663 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6665 unsigned long usemapsize
;
6667 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6668 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6669 usemapsize
= usemapsize
>> pageblock_order
;
6670 usemapsize
*= NR_PAGEBLOCK_BITS
;
6671 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6673 return usemapsize
/ 8;
6676 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6678 unsigned long zone_start_pfn
,
6679 unsigned long zonesize
)
6681 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6682 zone
->pageblock_flags
= NULL
;
6684 zone
->pageblock_flags
=
6685 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6687 if (!zone
->pageblock_flags
)
6688 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6689 usemapsize
, zone
->name
, pgdat
->node_id
);
6693 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6694 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6695 #endif /* CONFIG_SPARSEMEM */
6697 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6699 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6700 void __init
set_pageblock_order(void)
6704 /* Check that pageblock_nr_pages has not already been setup */
6705 if (pageblock_order
)
6708 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6709 order
= HUGETLB_PAGE_ORDER
;
6711 order
= MAX_ORDER
- 1;
6714 * Assume the largest contiguous order of interest is a huge page.
6715 * This value may be variable depending on boot parameters on IA64 and
6718 pageblock_order
= order
;
6720 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6723 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6724 * is unused as pageblock_order is set at compile-time. See
6725 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6728 void __init
set_pageblock_order(void)
6732 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6734 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6735 unsigned long present_pages
)
6737 unsigned long pages
= spanned_pages
;
6740 * Provide a more accurate estimation if there are holes within
6741 * the zone and SPARSEMEM is in use. If there are holes within the
6742 * zone, each populated memory region may cost us one or two extra
6743 * memmap pages due to alignment because memmap pages for each
6744 * populated regions may not be naturally aligned on page boundary.
6745 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6747 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6748 IS_ENABLED(CONFIG_SPARSEMEM
))
6749 pages
= present_pages
;
6751 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6755 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6757 struct deferred_split
*ds_queue
= &pgdat
->deferred_split_queue
;
6759 spin_lock_init(&ds_queue
->split_queue_lock
);
6760 INIT_LIST_HEAD(&ds_queue
->split_queue
);
6761 ds_queue
->split_queue_len
= 0;
6764 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6767 #ifdef CONFIG_COMPACTION
6768 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6770 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6773 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6776 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6778 pgdat_resize_init(pgdat
);
6780 pgdat_init_split_queue(pgdat
);
6781 pgdat_init_kcompactd(pgdat
);
6783 init_waitqueue_head(&pgdat
->kswapd_wait
);
6784 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6786 pgdat_page_ext_init(pgdat
);
6787 spin_lock_init(&pgdat
->lru_lock
);
6788 lruvec_init(&pgdat
->__lruvec
);
6791 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6792 unsigned long remaining_pages
)
6794 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6795 zone_set_nid(zone
, nid
);
6796 zone
->name
= zone_names
[idx
];
6797 zone
->zone_pgdat
= NODE_DATA(nid
);
6798 spin_lock_init(&zone
->lock
);
6799 zone_seqlock_init(zone
);
6800 zone_pcp_init(zone
);
6804 * Set up the zone data structures
6805 * - init pgdat internals
6806 * - init all zones belonging to this node
6808 * NOTE: this function is only called during memory hotplug
6810 #ifdef CONFIG_MEMORY_HOTPLUG
6811 void __ref
free_area_init_core_hotplug(int nid
)
6814 pg_data_t
*pgdat
= NODE_DATA(nid
);
6816 pgdat_init_internals(pgdat
);
6817 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6818 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6823 * Set up the zone data structures:
6824 * - mark all pages reserved
6825 * - mark all memory queues empty
6826 * - clear the memory bitmaps
6828 * NOTE: pgdat should get zeroed by caller.
6829 * NOTE: this function is only called during early init.
6831 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6834 int nid
= pgdat
->node_id
;
6836 pgdat_init_internals(pgdat
);
6837 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6839 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6840 struct zone
*zone
= pgdat
->node_zones
+ j
;
6841 unsigned long size
, freesize
, memmap_pages
;
6842 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6844 size
= zone
->spanned_pages
;
6845 freesize
= zone
->present_pages
;
6848 * Adjust freesize so that it accounts for how much memory
6849 * is used by this zone for memmap. This affects the watermark
6850 * and per-cpu initialisations
6852 memmap_pages
= calc_memmap_size(size
, freesize
);
6853 if (!is_highmem_idx(j
)) {
6854 if (freesize
>= memmap_pages
) {
6855 freesize
-= memmap_pages
;
6858 " %s zone: %lu pages used for memmap\n",
6859 zone_names
[j
], memmap_pages
);
6861 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6862 zone_names
[j
], memmap_pages
, freesize
);
6865 /* Account for reserved pages */
6866 if (j
== 0 && freesize
> dma_reserve
) {
6867 freesize
-= dma_reserve
;
6868 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6869 zone_names
[0], dma_reserve
);
6872 if (!is_highmem_idx(j
))
6873 nr_kernel_pages
+= freesize
;
6874 /* Charge for highmem memmap if there are enough kernel pages */
6875 else if (nr_kernel_pages
> memmap_pages
* 2)
6876 nr_kernel_pages
-= memmap_pages
;
6877 nr_all_pages
+= freesize
;
6880 * Set an approximate value for lowmem here, it will be adjusted
6881 * when the bootmem allocator frees pages into the buddy system.
6882 * And all highmem pages will be managed by the buddy system.
6884 zone_init_internals(zone
, j
, nid
, freesize
);
6889 set_pageblock_order();
6890 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6891 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6892 memmap_init(size
, nid
, j
, zone_start_pfn
);
6896 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6897 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6899 unsigned long __maybe_unused start
= 0;
6900 unsigned long __maybe_unused offset
= 0;
6902 /* Skip empty nodes */
6903 if (!pgdat
->node_spanned_pages
)
6906 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6907 offset
= pgdat
->node_start_pfn
- start
;
6908 /* ia64 gets its own node_mem_map, before this, without bootmem */
6909 if (!pgdat
->node_mem_map
) {
6910 unsigned long size
, end
;
6914 * The zone's endpoints aren't required to be MAX_ORDER
6915 * aligned but the node_mem_map endpoints must be in order
6916 * for the buddy allocator to function correctly.
6918 end
= pgdat_end_pfn(pgdat
);
6919 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6920 size
= (end
- start
) * sizeof(struct page
);
6921 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
6924 panic("Failed to allocate %ld bytes for node %d memory map\n",
6925 size
, pgdat
->node_id
);
6926 pgdat
->node_mem_map
= map
+ offset
;
6928 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6929 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6930 (unsigned long)pgdat
->node_mem_map
);
6931 #ifndef CONFIG_NEED_MULTIPLE_NODES
6933 * With no DISCONTIG, the global mem_map is just set as node 0's
6935 if (pgdat
== NODE_DATA(0)) {
6936 mem_map
= NODE_DATA(0)->node_mem_map
;
6937 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6938 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6940 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6945 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6946 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6948 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6949 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
6951 pgdat
->first_deferred_pfn
= ULONG_MAX
;
6954 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
6957 void __init
free_area_init_node(int nid
, unsigned long *zones_size
,
6958 unsigned long node_start_pfn
,
6959 unsigned long *zholes_size
)
6961 pg_data_t
*pgdat
= NODE_DATA(nid
);
6962 unsigned long start_pfn
= 0;
6963 unsigned long end_pfn
= 0;
6965 /* pg_data_t should be reset to zero when it's allocated */
6966 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6968 pgdat
->node_id
= nid
;
6969 pgdat
->node_start_pfn
= node_start_pfn
;
6970 pgdat
->per_cpu_nodestats
= NULL
;
6971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6972 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6973 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6974 (u64
)start_pfn
<< PAGE_SHIFT
,
6975 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6977 start_pfn
= node_start_pfn
;
6979 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6980 zones_size
, zholes_size
);
6982 alloc_node_mem_map(pgdat
);
6983 pgdat_set_deferred_range(pgdat
);
6985 free_area_init_core(pgdat
);
6988 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6990 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6991 * PageReserved(). Return the number of struct pages that were initialized.
6993 static u64 __init
init_unavailable_range(unsigned long spfn
, unsigned long epfn
)
6998 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
6999 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
7000 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
7001 + pageblock_nr_pages
- 1;
7005 * Use a fake node/zone (0) for now. Some of these pages
7006 * (in memblock.reserved but not in memblock.memory) will
7007 * get re-initialized via reserve_bootmem_region() later.
7009 __init_single_page(pfn_to_page(pfn
), pfn
, 0, 0);
7010 __SetPageReserved(pfn_to_page(pfn
));
7018 * Only struct pages that are backed by physical memory are zeroed and
7019 * initialized by going through __init_single_page(). But, there are some
7020 * struct pages which are reserved in memblock allocator and their fields
7021 * may be accessed (for example page_to_pfn() on some configuration accesses
7022 * flags). We must explicitly initialize those struct pages.
7024 * This function also addresses a similar issue where struct pages are left
7025 * uninitialized because the physical address range is not covered by
7026 * memblock.memory or memblock.reserved. That could happen when memblock
7027 * layout is manually configured via memmap=, or when the highest physical
7028 * address (max_pfn) does not end on a section boundary.
7030 static void __init
init_unavailable_mem(void)
7032 phys_addr_t start
, end
;
7034 phys_addr_t next
= 0;
7037 * Loop through unavailable ranges not covered by memblock.memory.
7040 for_each_mem_range(i
, &memblock
.memory
, NULL
,
7041 NUMA_NO_NODE
, MEMBLOCK_NONE
, &start
, &end
, NULL
) {
7043 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7049 * Early sections always have a fully populated memmap for the whole
7050 * section - see pfn_valid(). If the last section has holes at the
7051 * end and that section is marked "online", the memmap will be
7052 * considered initialized. Make sure that memmap has a well defined
7055 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7056 round_up(max_pfn
, PAGES_PER_SECTION
));
7059 * Struct pages that do not have backing memory. This could be because
7060 * firmware is using some of this memory, or for some other reasons.
7063 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
7066 static inline void __init
init_unavailable_mem(void)
7069 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7071 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7073 #if MAX_NUMNODES > 1
7075 * Figure out the number of possible node ids.
7077 void __init
setup_nr_node_ids(void)
7079 unsigned int highest
;
7081 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
7082 nr_node_ids
= highest
+ 1;
7087 * node_map_pfn_alignment - determine the maximum internode alignment
7089 * This function should be called after node map is populated and sorted.
7090 * It calculates the maximum power of two alignment which can distinguish
7093 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7094 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7095 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7096 * shifted, 1GiB is enough and this function will indicate so.
7098 * This is used to test whether pfn -> nid mapping of the chosen memory
7099 * model has fine enough granularity to avoid incorrect mapping for the
7100 * populated node map.
7102 * Return: the determined alignment in pfn's. 0 if there is no alignment
7103 * requirement (single node).
7105 unsigned long __init
node_map_pfn_alignment(void)
7107 unsigned long accl_mask
= 0, last_end
= 0;
7108 unsigned long start
, end
, mask
;
7109 int last_nid
= NUMA_NO_NODE
;
7112 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
7113 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
7120 * Start with a mask granular enough to pin-point to the
7121 * start pfn and tick off bits one-by-one until it becomes
7122 * too coarse to separate the current node from the last.
7124 mask
= ~((1 << __ffs(start
)) - 1);
7125 while (mask
&& last_end
<= (start
& (mask
<< 1)))
7128 /* accumulate all internode masks */
7132 /* convert mask to number of pages */
7133 return ~accl_mask
+ 1;
7136 /* Find the lowest pfn for a node */
7137 static unsigned long __init
find_min_pfn_for_node(int nid
)
7139 unsigned long min_pfn
= ULONG_MAX
;
7140 unsigned long start_pfn
;
7143 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
7144 min_pfn
= min(min_pfn
, start_pfn
);
7146 if (min_pfn
== ULONG_MAX
) {
7147 pr_warn("Could not find start_pfn for node %d\n", nid
);
7155 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7157 * Return: the minimum PFN based on information provided via
7158 * memblock_set_node().
7160 unsigned long __init
find_min_pfn_with_active_regions(void)
7162 return find_min_pfn_for_node(MAX_NUMNODES
);
7166 * early_calculate_totalpages()
7167 * Sum pages in active regions for movable zone.
7168 * Populate N_MEMORY for calculating usable_nodes.
7170 static unsigned long __init
early_calculate_totalpages(void)
7172 unsigned long totalpages
= 0;
7173 unsigned long start_pfn
, end_pfn
;
7176 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7177 unsigned long pages
= end_pfn
- start_pfn
;
7179 totalpages
+= pages
;
7181 node_set_state(nid
, N_MEMORY
);
7187 * Find the PFN the Movable zone begins in each node. Kernel memory
7188 * is spread evenly between nodes as long as the nodes have enough
7189 * memory. When they don't, some nodes will have more kernelcore than
7192 static void __init
find_zone_movable_pfns_for_nodes(void)
7195 unsigned long usable_startpfn
;
7196 unsigned long kernelcore_node
, kernelcore_remaining
;
7197 /* save the state before borrow the nodemask */
7198 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
7199 unsigned long totalpages
= early_calculate_totalpages();
7200 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
7201 struct memblock_region
*r
;
7203 /* Need to find movable_zone earlier when movable_node is specified. */
7204 find_usable_zone_for_movable();
7207 * If movable_node is specified, ignore kernelcore and movablecore
7210 if (movable_node_is_enabled()) {
7211 for_each_memblock(memory
, r
) {
7212 if (!memblock_is_hotpluggable(r
))
7217 usable_startpfn
= PFN_DOWN(r
->base
);
7218 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7219 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7227 * If kernelcore=mirror is specified, ignore movablecore option
7229 if (mirrored_kernelcore
) {
7230 bool mem_below_4gb_not_mirrored
= false;
7232 for_each_memblock(memory
, r
) {
7233 if (memblock_is_mirror(r
))
7238 usable_startpfn
= memblock_region_memory_base_pfn(r
);
7240 if (usable_startpfn
< 0x100000) {
7241 mem_below_4gb_not_mirrored
= true;
7245 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7246 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7250 if (mem_below_4gb_not_mirrored
)
7251 pr_warn("This configuration results in unmirrored kernel memory.");
7257 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7258 * amount of necessary memory.
7260 if (required_kernelcore_percent
)
7261 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7263 if (required_movablecore_percent
)
7264 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7268 * If movablecore= was specified, calculate what size of
7269 * kernelcore that corresponds so that memory usable for
7270 * any allocation type is evenly spread. If both kernelcore
7271 * and movablecore are specified, then the value of kernelcore
7272 * will be used for required_kernelcore if it's greater than
7273 * what movablecore would have allowed.
7275 if (required_movablecore
) {
7276 unsigned long corepages
;
7279 * Round-up so that ZONE_MOVABLE is at least as large as what
7280 * was requested by the user
7282 required_movablecore
=
7283 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7284 required_movablecore
= min(totalpages
, required_movablecore
);
7285 corepages
= totalpages
- required_movablecore
;
7287 required_kernelcore
= max(required_kernelcore
, corepages
);
7291 * If kernelcore was not specified or kernelcore size is larger
7292 * than totalpages, there is no ZONE_MOVABLE.
7294 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7297 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7298 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7301 /* Spread kernelcore memory as evenly as possible throughout nodes */
7302 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7303 for_each_node_state(nid
, N_MEMORY
) {
7304 unsigned long start_pfn
, end_pfn
;
7307 * Recalculate kernelcore_node if the division per node
7308 * now exceeds what is necessary to satisfy the requested
7309 * amount of memory for the kernel
7311 if (required_kernelcore
< kernelcore_node
)
7312 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7315 * As the map is walked, we track how much memory is usable
7316 * by the kernel using kernelcore_remaining. When it is
7317 * 0, the rest of the node is usable by ZONE_MOVABLE
7319 kernelcore_remaining
= kernelcore_node
;
7321 /* Go through each range of PFNs within this node */
7322 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7323 unsigned long size_pages
;
7325 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7326 if (start_pfn
>= end_pfn
)
7329 /* Account for what is only usable for kernelcore */
7330 if (start_pfn
< usable_startpfn
) {
7331 unsigned long kernel_pages
;
7332 kernel_pages
= min(end_pfn
, usable_startpfn
)
7335 kernelcore_remaining
-= min(kernel_pages
,
7336 kernelcore_remaining
);
7337 required_kernelcore
-= min(kernel_pages
,
7338 required_kernelcore
);
7340 /* Continue if range is now fully accounted */
7341 if (end_pfn
<= usable_startpfn
) {
7344 * Push zone_movable_pfn to the end so
7345 * that if we have to rebalance
7346 * kernelcore across nodes, we will
7347 * not double account here
7349 zone_movable_pfn
[nid
] = end_pfn
;
7352 start_pfn
= usable_startpfn
;
7356 * The usable PFN range for ZONE_MOVABLE is from
7357 * start_pfn->end_pfn. Calculate size_pages as the
7358 * number of pages used as kernelcore
7360 size_pages
= end_pfn
- start_pfn
;
7361 if (size_pages
> kernelcore_remaining
)
7362 size_pages
= kernelcore_remaining
;
7363 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7366 * Some kernelcore has been met, update counts and
7367 * break if the kernelcore for this node has been
7370 required_kernelcore
-= min(required_kernelcore
,
7372 kernelcore_remaining
-= size_pages
;
7373 if (!kernelcore_remaining
)
7379 * If there is still required_kernelcore, we do another pass with one
7380 * less node in the count. This will push zone_movable_pfn[nid] further
7381 * along on the nodes that still have memory until kernelcore is
7385 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7389 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7390 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7391 zone_movable_pfn
[nid
] =
7392 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7395 /* restore the node_state */
7396 node_states
[N_MEMORY
] = saved_node_state
;
7399 /* Any regular or high memory on that node ? */
7400 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7402 enum zone_type zone_type
;
7404 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7405 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7406 if (populated_zone(zone
)) {
7407 if (IS_ENABLED(CONFIG_HIGHMEM
))
7408 node_set_state(nid
, N_HIGH_MEMORY
);
7409 if (zone_type
<= ZONE_NORMAL
)
7410 node_set_state(nid
, N_NORMAL_MEMORY
);
7417 * free_area_init_nodes - Initialise all pg_data_t and zone data
7418 * @max_zone_pfn: an array of max PFNs for each zone
7420 * This will call free_area_init_node() for each active node in the system.
7421 * Using the page ranges provided by memblock_set_node(), the size of each
7422 * zone in each node and their holes is calculated. If the maximum PFN
7423 * between two adjacent zones match, it is assumed that the zone is empty.
7424 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7425 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7426 * starts where the previous one ended. For example, ZONE_DMA32 starts
7427 * at arch_max_dma_pfn.
7429 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
7431 unsigned long start_pfn
, end_pfn
;
7434 /* Record where the zone boundaries are */
7435 memset(arch_zone_lowest_possible_pfn
, 0,
7436 sizeof(arch_zone_lowest_possible_pfn
));
7437 memset(arch_zone_highest_possible_pfn
, 0,
7438 sizeof(arch_zone_highest_possible_pfn
));
7440 start_pfn
= find_min_pfn_with_active_regions();
7442 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7443 if (i
== ZONE_MOVABLE
)
7446 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
7447 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
7448 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
7450 start_pfn
= end_pfn
;
7453 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7454 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7455 find_zone_movable_pfns_for_nodes();
7457 /* Print out the zone ranges */
7458 pr_info("Zone ranges:\n");
7459 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7460 if (i
== ZONE_MOVABLE
)
7462 pr_info(" %-8s ", zone_names
[i
]);
7463 if (arch_zone_lowest_possible_pfn
[i
] ==
7464 arch_zone_highest_possible_pfn
[i
])
7467 pr_cont("[mem %#018Lx-%#018Lx]\n",
7468 (u64
)arch_zone_lowest_possible_pfn
[i
]
7470 ((u64
)arch_zone_highest_possible_pfn
[i
]
7471 << PAGE_SHIFT
) - 1);
7474 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7475 pr_info("Movable zone start for each node\n");
7476 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7477 if (zone_movable_pfn
[i
])
7478 pr_info(" Node %d: %#018Lx\n", i
,
7479 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7483 * Print out the early node map, and initialize the
7484 * subsection-map relative to active online memory ranges to
7485 * enable future "sub-section" extensions of the memory map.
7487 pr_info("Early memory node ranges\n");
7488 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7489 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7490 (u64
)start_pfn
<< PAGE_SHIFT
,
7491 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7492 subsection_map_init(start_pfn
, end_pfn
- start_pfn
);
7495 /* Initialise every node */
7496 mminit_verify_pageflags_layout();
7497 setup_nr_node_ids();
7498 init_unavailable_mem();
7499 for_each_online_node(nid
) {
7500 pg_data_t
*pgdat
= NODE_DATA(nid
);
7501 free_area_init_node(nid
, NULL
,
7502 find_min_pfn_for_node(nid
), NULL
);
7504 /* Any memory on that node */
7505 if (pgdat
->node_present_pages
)
7506 node_set_state(nid
, N_MEMORY
);
7507 check_for_memory(pgdat
, nid
);
7511 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7512 unsigned long *percent
)
7514 unsigned long long coremem
;
7520 /* Value may be a percentage of total memory, otherwise bytes */
7521 coremem
= simple_strtoull(p
, &endptr
, 0);
7522 if (*endptr
== '%') {
7523 /* Paranoid check for percent values greater than 100 */
7524 WARN_ON(coremem
> 100);
7528 coremem
= memparse(p
, &p
);
7529 /* Paranoid check that UL is enough for the coremem value */
7530 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7532 *core
= coremem
>> PAGE_SHIFT
;
7539 * kernelcore=size sets the amount of memory for use for allocations that
7540 * cannot be reclaimed or migrated.
7542 static int __init
cmdline_parse_kernelcore(char *p
)
7544 /* parse kernelcore=mirror */
7545 if (parse_option_str(p
, "mirror")) {
7546 mirrored_kernelcore
= true;
7550 return cmdline_parse_core(p
, &required_kernelcore
,
7551 &required_kernelcore_percent
);
7555 * movablecore=size sets the amount of memory for use for allocations that
7556 * can be reclaimed or migrated.
7558 static int __init
cmdline_parse_movablecore(char *p
)
7560 return cmdline_parse_core(p
, &required_movablecore
,
7561 &required_movablecore_percent
);
7564 early_param("kernelcore", cmdline_parse_kernelcore
);
7565 early_param("movablecore", cmdline_parse_movablecore
);
7567 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7569 void adjust_managed_page_count(struct page
*page
, long count
)
7571 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7572 totalram_pages_add(count
);
7573 #ifdef CONFIG_HIGHMEM
7574 if (PageHighMem(page
))
7575 totalhigh_pages_add(count
);
7578 EXPORT_SYMBOL(adjust_managed_page_count
);
7580 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7583 unsigned long pages
= 0;
7585 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7586 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7587 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7588 struct page
*page
= virt_to_page(pos
);
7589 void *direct_map_addr
;
7592 * 'direct_map_addr' might be different from 'pos'
7593 * because some architectures' virt_to_page()
7594 * work with aliases. Getting the direct map
7595 * address ensures that we get a _writeable_
7596 * alias for the memset().
7598 direct_map_addr
= page_address(page
);
7599 if ((unsigned int)poison
<= 0xFF)
7600 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7602 free_reserved_page(page
);
7606 pr_info("Freeing %s memory: %ldK\n",
7607 s
, pages
<< (PAGE_SHIFT
- 10));
7612 #ifdef CONFIG_HIGHMEM
7613 void free_highmem_page(struct page
*page
)
7615 __free_reserved_page(page
);
7616 totalram_pages_inc();
7617 atomic_long_inc(&page_zone(page
)->managed_pages
);
7618 totalhigh_pages_inc();
7623 void __init
mem_init_print_info(const char *str
)
7625 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7626 unsigned long init_code_size
, init_data_size
;
7628 physpages
= get_num_physpages();
7629 codesize
= _etext
- _stext
;
7630 datasize
= _edata
- _sdata
;
7631 rosize
= __end_rodata
- __start_rodata
;
7632 bss_size
= __bss_stop
- __bss_start
;
7633 init_data_size
= __init_end
- __init_begin
;
7634 init_code_size
= _einittext
- _sinittext
;
7637 * Detect special cases and adjust section sizes accordingly:
7638 * 1) .init.* may be embedded into .data sections
7639 * 2) .init.text.* may be out of [__init_begin, __init_end],
7640 * please refer to arch/tile/kernel/vmlinux.lds.S.
7641 * 3) .rodata.* may be embedded into .text or .data sections.
7643 #define adj_init_size(start, end, size, pos, adj) \
7645 if (start <= pos && pos < end && size > adj) \
7649 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7650 _sinittext
, init_code_size
);
7651 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7652 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7653 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7654 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7656 #undef adj_init_size
7658 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7659 #ifdef CONFIG_HIGHMEM
7663 nr_free_pages() << (PAGE_SHIFT
- 10),
7664 physpages
<< (PAGE_SHIFT
- 10),
7665 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7666 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7667 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7668 totalcma_pages
<< (PAGE_SHIFT
- 10),
7669 #ifdef CONFIG_HIGHMEM
7670 totalhigh_pages() << (PAGE_SHIFT
- 10),
7672 str
? ", " : "", str
? str
: "");
7676 * set_dma_reserve - set the specified number of pages reserved in the first zone
7677 * @new_dma_reserve: The number of pages to mark reserved
7679 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7680 * In the DMA zone, a significant percentage may be consumed by kernel image
7681 * and other unfreeable allocations which can skew the watermarks badly. This
7682 * function may optionally be used to account for unfreeable pages in the
7683 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7684 * smaller per-cpu batchsize.
7686 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7688 dma_reserve
= new_dma_reserve
;
7691 void __init
free_area_init(unsigned long *zones_size
)
7693 init_unavailable_mem();
7694 free_area_init_node(0, zones_size
,
7695 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
7698 static int page_alloc_cpu_dead(unsigned int cpu
)
7701 lru_add_drain_cpu(cpu
);
7705 * Spill the event counters of the dead processor
7706 * into the current processors event counters.
7707 * This artificially elevates the count of the current
7710 vm_events_fold_cpu(cpu
);
7713 * Zero the differential counters of the dead processor
7714 * so that the vm statistics are consistent.
7716 * This is only okay since the processor is dead and cannot
7717 * race with what we are doing.
7719 cpu_vm_stats_fold(cpu
);
7724 int hashdist
= HASHDIST_DEFAULT
;
7726 static int __init
set_hashdist(char *str
)
7730 hashdist
= simple_strtoul(str
, &str
, 0);
7733 __setup("hashdist=", set_hashdist
);
7736 void __init
page_alloc_init(void)
7741 if (num_node_state(N_MEMORY
) == 1)
7745 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7746 "mm/page_alloc:dead", NULL
,
7747 page_alloc_cpu_dead
);
7752 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7753 * or min_free_kbytes changes.
7755 static void calculate_totalreserve_pages(void)
7757 struct pglist_data
*pgdat
;
7758 unsigned long reserve_pages
= 0;
7759 enum zone_type i
, j
;
7761 for_each_online_pgdat(pgdat
) {
7763 pgdat
->totalreserve_pages
= 0;
7765 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7766 struct zone
*zone
= pgdat
->node_zones
+ i
;
7768 unsigned long managed_pages
= zone_managed_pages(zone
);
7770 /* Find valid and maximum lowmem_reserve in the zone */
7771 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7772 if (zone
->lowmem_reserve
[j
] > max
)
7773 max
= zone
->lowmem_reserve
[j
];
7776 /* we treat the high watermark as reserved pages. */
7777 max
+= high_wmark_pages(zone
);
7779 if (max
> managed_pages
)
7780 max
= managed_pages
;
7782 pgdat
->totalreserve_pages
+= max
;
7784 reserve_pages
+= max
;
7787 totalreserve_pages
= reserve_pages
;
7791 * setup_per_zone_lowmem_reserve - called whenever
7792 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7793 * has a correct pages reserved value, so an adequate number of
7794 * pages are left in the zone after a successful __alloc_pages().
7796 static void setup_per_zone_lowmem_reserve(void)
7798 struct pglist_data
*pgdat
;
7799 enum zone_type j
, idx
;
7801 for_each_online_pgdat(pgdat
) {
7802 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
7803 struct zone
*zone
= pgdat
->node_zones
+ j
;
7804 unsigned long managed_pages
= zone_managed_pages(zone
);
7806 zone
->lowmem_reserve
[j
] = 0;
7810 struct zone
*lower_zone
;
7813 lower_zone
= pgdat
->node_zones
+ idx
;
7815 if (sysctl_lowmem_reserve_ratio
[idx
] < 1) {
7816 sysctl_lowmem_reserve_ratio
[idx
] = 0;
7817 lower_zone
->lowmem_reserve
[j
] = 0;
7819 lower_zone
->lowmem_reserve
[j
] =
7820 managed_pages
/ sysctl_lowmem_reserve_ratio
[idx
];
7822 managed_pages
+= zone_managed_pages(lower_zone
);
7827 /* update totalreserve_pages */
7828 calculate_totalreserve_pages();
7831 static void __setup_per_zone_wmarks(void)
7833 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7834 unsigned long lowmem_pages
= 0;
7836 unsigned long flags
;
7838 /* Calculate total number of !ZONE_HIGHMEM pages */
7839 for_each_zone(zone
) {
7840 if (!is_highmem(zone
))
7841 lowmem_pages
+= zone_managed_pages(zone
);
7844 for_each_zone(zone
) {
7847 spin_lock_irqsave(&zone
->lock
, flags
);
7848 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7849 do_div(tmp
, lowmem_pages
);
7850 if (is_highmem(zone
)) {
7852 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7853 * need highmem pages, so cap pages_min to a small
7856 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7857 * deltas control async page reclaim, and so should
7858 * not be capped for highmem.
7860 unsigned long min_pages
;
7862 min_pages
= zone_managed_pages(zone
) / 1024;
7863 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7864 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7867 * If it's a lowmem zone, reserve a number of pages
7868 * proportionate to the zone's size.
7870 zone
->_watermark
[WMARK_MIN
] = tmp
;
7874 * Set the kswapd watermarks distance according to the
7875 * scale factor in proportion to available memory, but
7876 * ensure a minimum size on small systems.
7878 tmp
= max_t(u64
, tmp
>> 2,
7879 mult_frac(zone_managed_pages(zone
),
7880 watermark_scale_factor
, 10000));
7882 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7883 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7884 zone
->watermark_boost
= 0;
7886 spin_unlock_irqrestore(&zone
->lock
, flags
);
7889 /* update totalreserve_pages */
7890 calculate_totalreserve_pages();
7894 * setup_per_zone_wmarks - called when min_free_kbytes changes
7895 * or when memory is hot-{added|removed}
7897 * Ensures that the watermark[min,low,high] values for each zone are set
7898 * correctly with respect to min_free_kbytes.
7900 void setup_per_zone_wmarks(void)
7902 static DEFINE_SPINLOCK(lock
);
7905 __setup_per_zone_wmarks();
7910 * Initialise min_free_kbytes.
7912 * For small machines we want it small (128k min). For large machines
7913 * we want it large (64MB max). But it is not linear, because network
7914 * bandwidth does not increase linearly with machine size. We use
7916 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7917 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7933 int __meminit
init_per_zone_wmark_min(void)
7935 unsigned long lowmem_kbytes
;
7936 int new_min_free_kbytes
;
7938 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7939 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7941 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7942 min_free_kbytes
= new_min_free_kbytes
;
7943 if (min_free_kbytes
< 128)
7944 min_free_kbytes
= 128;
7945 if (min_free_kbytes
> 262144)
7946 min_free_kbytes
= 262144;
7948 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7949 new_min_free_kbytes
, user_min_free_kbytes
);
7951 setup_per_zone_wmarks();
7952 refresh_zone_stat_thresholds();
7953 setup_per_zone_lowmem_reserve();
7956 setup_min_unmapped_ratio();
7957 setup_min_slab_ratio();
7962 core_initcall(init_per_zone_wmark_min
)
7965 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7966 * that we can call two helper functions whenever min_free_kbytes
7969 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7970 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7974 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7979 user_min_free_kbytes
= min_free_kbytes
;
7980 setup_per_zone_wmarks();
7985 int watermark_boost_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7986 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7990 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7997 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7998 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8002 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8007 setup_per_zone_wmarks();
8013 static void setup_min_unmapped_ratio(void)
8018 for_each_online_pgdat(pgdat
)
8019 pgdat
->min_unmapped_pages
= 0;
8022 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
8023 sysctl_min_unmapped_ratio
) / 100;
8027 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8028 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8032 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8036 setup_min_unmapped_ratio();
8041 static void setup_min_slab_ratio(void)
8046 for_each_online_pgdat(pgdat
)
8047 pgdat
->min_slab_pages
= 0;
8050 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
8051 sysctl_min_slab_ratio
) / 100;
8054 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8055 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8059 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8063 setup_min_slab_ratio();
8070 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8071 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8072 * whenever sysctl_lowmem_reserve_ratio changes.
8074 * The reserve ratio obviously has absolutely no relation with the
8075 * minimum watermarks. The lowmem reserve ratio can only make sense
8076 * if in function of the boot time zone sizes.
8078 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8079 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8081 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8082 setup_per_zone_lowmem_reserve();
8086 static void __zone_pcp_update(struct zone
*zone
)
8090 for_each_possible_cpu(cpu
)
8091 pageset_set_high_and_batch(zone
,
8092 per_cpu_ptr(zone
->pageset
, cpu
));
8096 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8097 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8098 * pagelist can have before it gets flushed back to buddy allocator.
8100 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
8101 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
8104 int old_percpu_pagelist_fraction
;
8107 mutex_lock(&pcp_batch_high_lock
);
8108 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
8110 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8111 if (!write
|| ret
< 0)
8114 /* Sanity checking to avoid pcp imbalance */
8115 if (percpu_pagelist_fraction
&&
8116 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
8117 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
8123 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
8126 for_each_populated_zone(zone
)
8127 __zone_pcp_update(zone
);
8129 mutex_unlock(&pcp_batch_high_lock
);
8133 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8135 * Returns the number of pages that arch has reserved but
8136 * is not known to alloc_large_system_hash().
8138 static unsigned long __init
arch_reserved_kernel_pages(void)
8145 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8146 * machines. As memory size is increased the scale is also increased but at
8147 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8148 * quadruples the scale is increased by one, which means the size of hash table
8149 * only doubles, instead of quadrupling as well.
8150 * Because 32-bit systems cannot have large physical memory, where this scaling
8151 * makes sense, it is disabled on such platforms.
8153 #if __BITS_PER_LONG > 32
8154 #define ADAPT_SCALE_BASE (64ul << 30)
8155 #define ADAPT_SCALE_SHIFT 2
8156 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8160 * allocate a large system hash table from bootmem
8161 * - it is assumed that the hash table must contain an exact power-of-2
8162 * quantity of entries
8163 * - limit is the number of hash buckets, not the total allocation size
8165 void *__init
alloc_large_system_hash(const char *tablename
,
8166 unsigned long bucketsize
,
8167 unsigned long numentries
,
8170 unsigned int *_hash_shift
,
8171 unsigned int *_hash_mask
,
8172 unsigned long low_limit
,
8173 unsigned long high_limit
)
8175 unsigned long long max
= high_limit
;
8176 unsigned long log2qty
, size
;
8181 /* allow the kernel cmdline to have a say */
8183 /* round applicable memory size up to nearest megabyte */
8184 numentries
= nr_kernel_pages
;
8185 numentries
-= arch_reserved_kernel_pages();
8187 /* It isn't necessary when PAGE_SIZE >= 1MB */
8188 if (PAGE_SHIFT
< 20)
8189 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
8191 #if __BITS_PER_LONG > 32
8193 unsigned long adapt
;
8195 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
8196 adapt
<<= ADAPT_SCALE_SHIFT
)
8201 /* limit to 1 bucket per 2^scale bytes of low memory */
8202 if (scale
> PAGE_SHIFT
)
8203 numentries
>>= (scale
- PAGE_SHIFT
);
8205 numentries
<<= (PAGE_SHIFT
- scale
);
8207 /* Make sure we've got at least a 0-order allocation.. */
8208 if (unlikely(flags
& HASH_SMALL
)) {
8209 /* Makes no sense without HASH_EARLY */
8210 WARN_ON(!(flags
& HASH_EARLY
));
8211 if (!(numentries
>> *_hash_shift
)) {
8212 numentries
= 1UL << *_hash_shift
;
8213 BUG_ON(!numentries
);
8215 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
8216 numentries
= PAGE_SIZE
/ bucketsize
;
8218 numentries
= roundup_pow_of_two(numentries
);
8220 /* limit allocation size to 1/16 total memory by default */
8222 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
8223 do_div(max
, bucketsize
);
8225 max
= min(max
, 0x80000000ULL
);
8227 if (numentries
< low_limit
)
8228 numentries
= low_limit
;
8229 if (numentries
> max
)
8232 log2qty
= ilog2(numentries
);
8234 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
8237 size
= bucketsize
<< log2qty
;
8238 if (flags
& HASH_EARLY
) {
8239 if (flags
& HASH_ZERO
)
8240 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
8242 table
= memblock_alloc_raw(size
,
8244 } else if (get_order(size
) >= MAX_ORDER
|| hashdist
) {
8245 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
8249 * If bucketsize is not a power-of-two, we may free
8250 * some pages at the end of hash table which
8251 * alloc_pages_exact() automatically does
8253 table
= alloc_pages_exact(size
, gfp_flags
);
8254 kmemleak_alloc(table
, size
, 1, gfp_flags
);
8256 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
8259 panic("Failed to allocate %s hash table\n", tablename
);
8261 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8262 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
,
8263 virt
? "vmalloc" : "linear");
8266 *_hash_shift
= log2qty
;
8268 *_hash_mask
= (1 << log2qty
) - 1;
8274 * This function checks whether pageblock includes unmovable pages or not.
8276 * PageLRU check without isolation or lru_lock could race so that
8277 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8278 * check without lock_page also may miss some movable non-lru pages at
8279 * race condition. So you can't expect this function should be exact.
8281 * Returns a page without holding a reference. If the caller wants to
8282 * dereference that page (e.g., dumping), it has to make sure that that it
8283 * cannot get removed (e.g., via memory unplug) concurrently.
8286 struct page
*has_unmovable_pages(struct zone
*zone
, struct page
*page
,
8287 int migratetype
, int flags
)
8289 unsigned long iter
= 0;
8290 unsigned long pfn
= page_to_pfn(page
);
8293 * TODO we could make this much more efficient by not checking every
8294 * page in the range if we know all of them are in MOVABLE_ZONE and
8295 * that the movable zone guarantees that pages are migratable but
8296 * the later is not the case right now unfortunatelly. E.g. movablecore
8297 * can still lead to having bootmem allocations in zone_movable.
8300 if (is_migrate_cma_page(page
)) {
8302 * CMA allocations (alloc_contig_range) really need to mark
8303 * isolate CMA pageblocks even when they are not movable in fact
8304 * so consider them movable here.
8306 if (is_migrate_cma(migratetype
))
8312 for (; iter
< pageblock_nr_pages
; iter
++) {
8313 if (!pfn_valid_within(pfn
+ iter
))
8316 page
= pfn_to_page(pfn
+ iter
);
8318 if (PageReserved(page
))
8322 * If the zone is movable and we have ruled out all reserved
8323 * pages then it should be reasonably safe to assume the rest
8326 if (zone_idx(zone
) == ZONE_MOVABLE
)
8330 * Hugepages are not in LRU lists, but they're movable.
8331 * THPs are on the LRU, but need to be counted as #small pages.
8332 * We need not scan over tail pages because we don't
8333 * handle each tail page individually in migration.
8335 if (PageHuge(page
) || PageTransCompound(page
)) {
8336 struct page
*head
= compound_head(page
);
8337 unsigned int skip_pages
;
8339 if (PageHuge(page
)) {
8340 if (!hugepage_migration_supported(page_hstate(head
)))
8342 } else if (!PageLRU(head
) && !__PageMovable(head
)) {
8346 skip_pages
= compound_nr(head
) - (page
- head
);
8347 iter
+= skip_pages
- 1;
8352 * We can't use page_count without pin a page
8353 * because another CPU can free compound page.
8354 * This check already skips compound tails of THP
8355 * because their page->_refcount is zero at all time.
8357 if (!page_ref_count(page
)) {
8358 if (PageBuddy(page
))
8359 iter
+= (1 << page_order(page
)) - 1;
8364 * The HWPoisoned page may be not in buddy system, and
8365 * page_count() is not 0.
8367 if ((flags
& MEMORY_OFFLINE
) && PageHWPoison(page
))
8370 if (__PageMovable(page
) || PageLRU(page
))
8374 * If there are RECLAIMABLE pages, we need to check
8375 * it. But now, memory offline itself doesn't call
8376 * shrink_node_slabs() and it still to be fixed.
8379 * If the page is not RAM, page_count()should be 0.
8380 * we don't need more check. This is an _used_ not-movable page.
8382 * The problematic thing here is PG_reserved pages. PG_reserved
8383 * is set to both of a memory hole page and a _used_ kernel
8391 #ifdef CONFIG_CONTIG_ALLOC
8392 static unsigned long pfn_max_align_down(unsigned long pfn
)
8394 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8395 pageblock_nr_pages
) - 1);
8398 static unsigned long pfn_max_align_up(unsigned long pfn
)
8400 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8401 pageblock_nr_pages
));
8404 /* [start, end) must belong to a single zone. */
8405 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8406 unsigned long start
, unsigned long end
)
8408 /* This function is based on compact_zone() from compaction.c. */
8409 unsigned long nr_reclaimed
;
8410 unsigned long pfn
= start
;
8411 unsigned int tries
= 0;
8416 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8417 if (fatal_signal_pending(current
)) {
8422 if (list_empty(&cc
->migratepages
)) {
8423 cc
->nr_migratepages
= 0;
8424 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8430 } else if (++tries
== 5) {
8431 ret
= ret
< 0 ? ret
: -EBUSY
;
8435 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8437 cc
->nr_migratepages
-= nr_reclaimed
;
8439 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
8440 NULL
, 0, cc
->mode
, MR_CONTIG_RANGE
);
8443 putback_movable_pages(&cc
->migratepages
);
8450 * alloc_contig_range() -- tries to allocate given range of pages
8451 * @start: start PFN to allocate
8452 * @end: one-past-the-last PFN to allocate
8453 * @migratetype: migratetype of the underlaying pageblocks (either
8454 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8455 * in range must have the same migratetype and it must
8456 * be either of the two.
8457 * @gfp_mask: GFP mask to use during compaction
8459 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8460 * aligned. The PFN range must belong to a single zone.
8462 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8463 * pageblocks in the range. Once isolated, the pageblocks should not
8464 * be modified by others.
8466 * Return: zero on success or negative error code. On success all
8467 * pages which PFN is in [start, end) are allocated for the caller and
8468 * need to be freed with free_contig_range().
8470 int alloc_contig_range(unsigned long start
, unsigned long end
,
8471 unsigned migratetype
, gfp_t gfp_mask
)
8473 unsigned long outer_start
, outer_end
;
8477 struct compact_control cc
= {
8478 .nr_migratepages
= 0,
8480 .zone
= page_zone(pfn_to_page(start
)),
8481 .mode
= MIGRATE_SYNC
,
8482 .ignore_skip_hint
= true,
8483 .no_set_skip_hint
= true,
8484 .gfp_mask
= current_gfp_context(gfp_mask
),
8485 .alloc_contig
= true,
8487 INIT_LIST_HEAD(&cc
.migratepages
);
8490 * What we do here is we mark all pageblocks in range as
8491 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8492 * have different sizes, and due to the way page allocator
8493 * work, we align the range to biggest of the two pages so
8494 * that page allocator won't try to merge buddies from
8495 * different pageblocks and change MIGRATE_ISOLATE to some
8496 * other migration type.
8498 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8499 * migrate the pages from an unaligned range (ie. pages that
8500 * we are interested in). This will put all the pages in
8501 * range back to page allocator as MIGRATE_ISOLATE.
8503 * When this is done, we take the pages in range from page
8504 * allocator removing them from the buddy system. This way
8505 * page allocator will never consider using them.
8507 * This lets us mark the pageblocks back as
8508 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8509 * aligned range but not in the unaligned, original range are
8510 * put back to page allocator so that buddy can use them.
8513 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8514 pfn_max_align_up(end
), migratetype
, 0);
8519 * In case of -EBUSY, we'd like to know which page causes problem.
8520 * So, just fall through. test_pages_isolated() has a tracepoint
8521 * which will report the busy page.
8523 * It is possible that busy pages could become available before
8524 * the call to test_pages_isolated, and the range will actually be
8525 * allocated. So, if we fall through be sure to clear ret so that
8526 * -EBUSY is not accidentally used or returned to caller.
8528 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8529 if (ret
&& ret
!= -EBUSY
)
8534 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8535 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8536 * more, all pages in [start, end) are free in page allocator.
8537 * What we are going to do is to allocate all pages from
8538 * [start, end) (that is remove them from page allocator).
8540 * The only problem is that pages at the beginning and at the
8541 * end of interesting range may be not aligned with pages that
8542 * page allocator holds, ie. they can be part of higher order
8543 * pages. Because of this, we reserve the bigger range and
8544 * once this is done free the pages we are not interested in.
8546 * We don't have to hold zone->lock here because the pages are
8547 * isolated thus they won't get removed from buddy.
8550 lru_add_drain_all();
8553 outer_start
= start
;
8554 while (!PageBuddy(pfn_to_page(outer_start
))) {
8555 if (++order
>= MAX_ORDER
) {
8556 outer_start
= start
;
8559 outer_start
&= ~0UL << order
;
8562 if (outer_start
!= start
) {
8563 order
= page_order(pfn_to_page(outer_start
));
8566 * outer_start page could be small order buddy page and
8567 * it doesn't include start page. Adjust outer_start
8568 * in this case to report failed page properly
8569 * on tracepoint in test_pages_isolated()
8571 if (outer_start
+ (1UL << order
) <= start
)
8572 outer_start
= start
;
8575 /* Make sure the range is really isolated. */
8576 if (test_pages_isolated(outer_start
, end
, 0)) {
8577 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8578 __func__
, outer_start
, end
);
8583 /* Grab isolated pages from freelists. */
8584 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8590 /* Free head and tail (if any) */
8591 if (start
!= outer_start
)
8592 free_contig_range(outer_start
, start
- outer_start
);
8593 if (end
!= outer_end
)
8594 free_contig_range(end
, outer_end
- end
);
8597 undo_isolate_page_range(pfn_max_align_down(start
),
8598 pfn_max_align_up(end
), migratetype
);
8602 static int __alloc_contig_pages(unsigned long start_pfn
,
8603 unsigned long nr_pages
, gfp_t gfp_mask
)
8605 unsigned long end_pfn
= start_pfn
+ nr_pages
;
8607 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
8611 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
8612 unsigned long nr_pages
)
8614 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
8617 for (i
= start_pfn
; i
< end_pfn
; i
++) {
8618 page
= pfn_to_online_page(i
);
8622 if (page_zone(page
) != z
)
8625 if (PageReserved(page
))
8628 if (page_count(page
) > 0)
8637 static bool zone_spans_last_pfn(const struct zone
*zone
,
8638 unsigned long start_pfn
, unsigned long nr_pages
)
8640 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
8642 return zone_spans_pfn(zone
, last_pfn
);
8646 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8647 * @nr_pages: Number of contiguous pages to allocate
8648 * @gfp_mask: GFP mask to limit search and used during compaction
8650 * @nodemask: Mask for other possible nodes
8652 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8653 * on an applicable zonelist to find a contiguous pfn range which can then be
8654 * tried for allocation with alloc_contig_range(). This routine is intended
8655 * for allocation requests which can not be fulfilled with the buddy allocator.
8657 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8658 * power of two then the alignment is guaranteed to be to the given nr_pages
8659 * (e.g. 1GB request would be aligned to 1GB).
8661 * Allocated pages can be freed with free_contig_range() or by manually calling
8662 * __free_page() on each allocated page.
8664 * Return: pointer to contiguous pages on success, or NULL if not successful.
8666 struct page
*alloc_contig_pages(unsigned long nr_pages
, gfp_t gfp_mask
,
8667 int nid
, nodemask_t
*nodemask
)
8669 unsigned long ret
, pfn
, flags
;
8670 struct zonelist
*zonelist
;
8674 zonelist
= node_zonelist(nid
, gfp_mask
);
8675 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
8676 gfp_zone(gfp_mask
), nodemask
) {
8677 spin_lock_irqsave(&zone
->lock
, flags
);
8679 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
8680 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
8681 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
8683 * We release the zone lock here because
8684 * alloc_contig_range() will also lock the zone
8685 * at some point. If there's an allocation
8686 * spinning on this lock, it may win the race
8687 * and cause alloc_contig_range() to fail...
8689 spin_unlock_irqrestore(&zone
->lock
, flags
);
8690 ret
= __alloc_contig_pages(pfn
, nr_pages
,
8693 return pfn_to_page(pfn
);
8694 spin_lock_irqsave(&zone
->lock
, flags
);
8698 spin_unlock_irqrestore(&zone
->lock
, flags
);
8702 #endif /* CONFIG_CONTIG_ALLOC */
8704 void free_contig_range(unsigned long pfn
, unsigned int nr_pages
)
8706 unsigned int count
= 0;
8708 for (; nr_pages
--; pfn
++) {
8709 struct page
*page
= pfn_to_page(pfn
);
8711 count
+= page_count(page
) != 1;
8714 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8718 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8719 * page high values need to be recalulated.
8721 void __meminit
zone_pcp_update(struct zone
*zone
)
8723 mutex_lock(&pcp_batch_high_lock
);
8724 __zone_pcp_update(zone
);
8725 mutex_unlock(&pcp_batch_high_lock
);
8728 void zone_pcp_reset(struct zone
*zone
)
8730 unsigned long flags
;
8732 struct per_cpu_pageset
*pset
;
8734 /* avoid races with drain_pages() */
8735 local_irq_save(flags
);
8736 if (zone
->pageset
!= &boot_pageset
) {
8737 for_each_online_cpu(cpu
) {
8738 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8739 drain_zonestat(zone
, pset
);
8741 free_percpu(zone
->pageset
);
8742 zone
->pageset
= &boot_pageset
;
8744 local_irq_restore(flags
);
8747 #ifdef CONFIG_MEMORY_HOTREMOVE
8749 * All pages in the range must be in a single zone and isolated
8750 * before calling this.
8753 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8759 unsigned long flags
;
8760 unsigned long offlined_pages
= 0;
8762 /* find the first valid pfn */
8763 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
8767 return offlined_pages
;
8769 offline_mem_sections(pfn
, end_pfn
);
8770 zone
= page_zone(pfn_to_page(pfn
));
8771 spin_lock_irqsave(&zone
->lock
, flags
);
8773 while (pfn
< end_pfn
) {
8774 if (!pfn_valid(pfn
)) {
8778 page
= pfn_to_page(pfn
);
8780 * The HWPoisoned page may be not in buddy system, and
8781 * page_count() is not 0.
8783 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8789 BUG_ON(page_count(page
));
8790 BUG_ON(!PageBuddy(page
));
8791 order
= page_order(page
);
8792 offlined_pages
+= 1 << order
;
8793 del_page_from_free_list(page
, zone
, order
);
8794 pfn
+= (1 << order
);
8796 spin_unlock_irqrestore(&zone
->lock
, flags
);
8798 return offlined_pages
;
8802 bool is_free_buddy_page(struct page
*page
)
8804 struct zone
*zone
= page_zone(page
);
8805 unsigned long pfn
= page_to_pfn(page
);
8806 unsigned long flags
;
8809 spin_lock_irqsave(&zone
->lock
, flags
);
8810 for (order
= 0; order
< MAX_ORDER
; order
++) {
8811 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8813 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
8816 spin_unlock_irqrestore(&zone
->lock
, flags
);
8818 return order
< MAX_ORDER
;
8821 #ifdef CONFIG_MEMORY_FAILURE
8823 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8824 * test is performed under the zone lock to prevent a race against page
8827 bool set_hwpoison_free_buddy_page(struct page
*page
)
8829 struct zone
*zone
= page_zone(page
);
8830 unsigned long pfn
= page_to_pfn(page
);
8831 unsigned long flags
;
8833 bool hwpoisoned
= false;
8835 spin_lock_irqsave(&zone
->lock
, flags
);
8836 for (order
= 0; order
< MAX_ORDER
; order
++) {
8837 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8839 if (PageBuddy(page_head
) && page_order(page_head
) >= order
) {
8840 if (!TestSetPageHWPoison(page
))
8845 spin_unlock_irqrestore(&zone
->lock
, flags
);