2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
47 int migrate_prep(void)
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
72 void putback_lru_pages(struct list_head
*l
)
77 list_for_each_entry_safe(page
, page2
, l
, lru
) {
79 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
80 page_is_file_cache(page
));
81 putback_lru_page(page
);
86 * Restore a potential migration pte to a working pte entry
88 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
89 unsigned long addr
, void *old
)
91 struct mm_struct
*mm
= vma
->vm_mm
;
99 if (unlikely(PageHuge(new))) {
100 ptep
= huge_pte_offset(mm
, addr
);
103 ptl
= &mm
->page_table_lock
;
105 pgd
= pgd_offset(mm
, addr
);
106 if (!pgd_present(*pgd
))
109 pud
= pud_offset(pgd
, addr
);
110 if (!pud_present(*pud
))
113 pmd
= pmd_offset(pud
, addr
);
114 if (pmd_trans_huge(*pmd
))
116 if (!pmd_present(*pmd
))
119 ptep
= pte_offset_map(pmd
, addr
);
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
126 ptl
= pte_lockptr(mm
, pmd
);
131 if (!is_swap_pte(pte
))
134 entry
= pte_to_swp_entry(pte
);
136 if (!is_migration_entry(entry
) ||
137 migration_entry_to_page(entry
) != old
)
141 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
142 if (is_write_migration_entry(entry
))
143 pte
= pte_mkwrite(pte
);
144 #ifdef CONFIG_HUGETLB_PAGE
146 pte
= pte_mkhuge(pte
);
148 flush_cache_page(vma
, addr
, pte_pfn(pte
));
149 set_pte_at(mm
, addr
, ptep
, pte
);
153 hugepage_add_anon_rmap(new, vma
, addr
);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma
, addr
);
159 page_add_file_rmap(new);
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma
, addr
, ptep
);
164 pte_unmap_unlock(ptep
, ptl
);
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
173 static void remove_migration_ptes(struct page
*old
, struct page
*new)
175 rmap_walk(new, remove_migration_pte
, old
);
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
183 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
184 unsigned long address
)
191 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
193 if (!is_swap_pte(pte
))
196 entry
= pte_to_swp_entry(pte
);
197 if (!is_migration_entry(entry
))
200 page
= migration_entry_to_page(entry
);
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
209 if (!get_page_unless_zero(page
))
211 pte_unmap_unlock(ptep
, ptl
);
212 wait_on_page_locked(page
);
216 pte_unmap_unlock(ptep
, ptl
);
220 /* Returns true if all buffers are successfully locked */
221 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
222 enum migrate_mode mode
)
224 struct buffer_head
*bh
= head
;
226 /* Simple case, sync compaction */
227 if (mode
!= MIGRATE_ASYNC
) {
231 bh
= bh
->b_this_page
;
233 } while (bh
!= head
);
238 /* async case, we cannot block on lock_buffer so use trylock_buffer */
241 if (!trylock_buffer(bh
)) {
243 * We failed to lock the buffer and cannot stall in
244 * async migration. Release the taken locks
246 struct buffer_head
*failed_bh
= bh
;
249 while (bh
!= failed_bh
) {
252 bh
= bh
->b_this_page
;
257 bh
= bh
->b_this_page
;
258 } while (bh
!= head
);
262 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
263 enum migrate_mode mode
)
267 #endif /* CONFIG_BLOCK */
270 * Replace the page in the mapping.
272 * The number of remaining references must be:
273 * 1 for anonymous pages without a mapping
274 * 2 for pages with a mapping
275 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
277 static int migrate_page_move_mapping(struct address_space
*mapping
,
278 struct page
*newpage
, struct page
*page
,
279 struct buffer_head
*head
, enum migrate_mode mode
)
285 /* Anonymous page without mapping */
286 if (page_count(page
) != 1)
291 spin_lock_irq(&mapping
->tree_lock
);
293 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
296 expected_count
= 2 + page_has_private(page
);
297 if (page_count(page
) != expected_count
||
298 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
299 spin_unlock_irq(&mapping
->tree_lock
);
303 if (!page_freeze_refs(page
, expected_count
)) {
304 spin_unlock_irq(&mapping
->tree_lock
);
309 * In the async migration case of moving a page with buffers, lock the
310 * buffers using trylock before the mapping is moved. If the mapping
311 * was moved, we later failed to lock the buffers and could not move
312 * the mapping back due to an elevated page count, we would have to
313 * block waiting on other references to be dropped.
315 if (mode
== MIGRATE_ASYNC
&& head
&&
316 !buffer_migrate_lock_buffers(head
, mode
)) {
317 page_unfreeze_refs(page
, expected_count
);
318 spin_unlock_irq(&mapping
->tree_lock
);
323 * Now we know that no one else is looking at the page.
325 get_page(newpage
); /* add cache reference */
326 if (PageSwapCache(page
)) {
327 SetPageSwapCache(newpage
);
328 set_page_private(newpage
, page_private(page
));
331 radix_tree_replace_slot(pslot
, newpage
);
334 * Drop cache reference from old page by unfreezing
335 * to one less reference.
336 * We know this isn't the last reference.
338 page_unfreeze_refs(page
, expected_count
- 1);
341 * If moved to a different zone then also account
342 * the page for that zone. Other VM counters will be
343 * taken care of when we establish references to the
344 * new page and drop references to the old page.
346 * Note that anonymous pages are accounted for
347 * via NR_FILE_PAGES and NR_ANON_PAGES if they
348 * are mapped to swap space.
350 __dec_zone_page_state(page
, NR_FILE_PAGES
);
351 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
352 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
353 __dec_zone_page_state(page
, NR_SHMEM
);
354 __inc_zone_page_state(newpage
, NR_SHMEM
);
356 spin_unlock_irq(&mapping
->tree_lock
);
362 * The expected number of remaining references is the same as that
363 * of migrate_page_move_mapping().
365 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
366 struct page
*newpage
, struct page
*page
)
372 if (page_count(page
) != 1)
377 spin_lock_irq(&mapping
->tree_lock
);
379 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
382 expected_count
= 2 + page_has_private(page
);
383 if (page_count(page
) != expected_count
||
384 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
385 spin_unlock_irq(&mapping
->tree_lock
);
389 if (!page_freeze_refs(page
, expected_count
)) {
390 spin_unlock_irq(&mapping
->tree_lock
);
396 radix_tree_replace_slot(pslot
, newpage
);
398 page_unfreeze_refs(page
, expected_count
- 1);
400 spin_unlock_irq(&mapping
->tree_lock
);
405 * Copy the page to its new location
407 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
410 copy_huge_page(newpage
, page
);
412 copy_highpage(newpage
, page
);
415 SetPageError(newpage
);
416 if (PageReferenced(page
))
417 SetPageReferenced(newpage
);
418 if (PageUptodate(page
))
419 SetPageUptodate(newpage
);
420 if (TestClearPageActive(page
)) {
421 VM_BUG_ON(PageUnevictable(page
));
422 SetPageActive(newpage
);
423 } else if (TestClearPageUnevictable(page
))
424 SetPageUnevictable(newpage
);
425 if (PageChecked(page
))
426 SetPageChecked(newpage
);
427 if (PageMappedToDisk(page
))
428 SetPageMappedToDisk(newpage
);
430 if (PageDirty(page
)) {
431 clear_page_dirty_for_io(page
);
433 * Want to mark the page and the radix tree as dirty, and
434 * redo the accounting that clear_page_dirty_for_io undid,
435 * but we can't use set_page_dirty because that function
436 * is actually a signal that all of the page has become dirty.
437 * Whereas only part of our page may be dirty.
439 __set_page_dirty_nobuffers(newpage
);
442 mlock_migrate_page(newpage
, page
);
443 ksm_migrate_page(newpage
, page
);
445 ClearPageSwapCache(page
);
446 ClearPagePrivate(page
);
447 set_page_private(page
, 0);
450 * If any waiters have accumulated on the new page then
453 if (PageWriteback(newpage
))
454 end_page_writeback(newpage
);
457 /************************************************************
458 * Migration functions
459 ***********************************************************/
461 /* Always fail migration. Used for mappings that are not movable */
462 int fail_migrate_page(struct address_space
*mapping
,
463 struct page
*newpage
, struct page
*page
)
467 EXPORT_SYMBOL(fail_migrate_page
);
470 * Common logic to directly migrate a single page suitable for
471 * pages that do not use PagePrivate/PagePrivate2.
473 * Pages are locked upon entry and exit.
475 int migrate_page(struct address_space
*mapping
,
476 struct page
*newpage
, struct page
*page
,
477 enum migrate_mode mode
)
481 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
483 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
);
488 migrate_page_copy(newpage
, page
);
491 EXPORT_SYMBOL(migrate_page
);
495 * Migration function for pages with buffers. This function can only be used
496 * if the underlying filesystem guarantees that no other references to "page"
499 int buffer_migrate_page(struct address_space
*mapping
,
500 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
502 struct buffer_head
*bh
, *head
;
505 if (!page_has_buffers(page
))
506 return migrate_page(mapping
, newpage
, page
, mode
);
508 head
= page_buffers(page
);
510 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
);
516 * In the async case, migrate_page_move_mapping locked the buffers
517 * with an IRQ-safe spinlock held. In the sync case, the buffers
518 * need to be locked now
520 if (mode
!= MIGRATE_ASYNC
)
521 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
523 ClearPagePrivate(page
);
524 set_page_private(newpage
, page_private(page
));
525 set_page_private(page
, 0);
531 set_bh_page(bh
, newpage
, bh_offset(bh
));
532 bh
= bh
->b_this_page
;
534 } while (bh
!= head
);
536 SetPagePrivate(newpage
);
538 migrate_page_copy(newpage
, page
);
544 bh
= bh
->b_this_page
;
546 } while (bh
!= head
);
550 EXPORT_SYMBOL(buffer_migrate_page
);
554 * Writeback a page to clean the dirty state
556 static int writeout(struct address_space
*mapping
, struct page
*page
)
558 struct writeback_control wbc
= {
559 .sync_mode
= WB_SYNC_NONE
,
562 .range_end
= LLONG_MAX
,
567 if (!mapping
->a_ops
->writepage
)
568 /* No write method for the address space */
571 if (!clear_page_dirty_for_io(page
))
572 /* Someone else already triggered a write */
576 * A dirty page may imply that the underlying filesystem has
577 * the page on some queue. So the page must be clean for
578 * migration. Writeout may mean we loose the lock and the
579 * page state is no longer what we checked for earlier.
580 * At this point we know that the migration attempt cannot
583 remove_migration_ptes(page
, page
);
585 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
587 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
588 /* unlocked. Relock */
591 return (rc
< 0) ? -EIO
: -EAGAIN
;
595 * Default handling if a filesystem does not provide a migration function.
597 static int fallback_migrate_page(struct address_space
*mapping
,
598 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
600 if (PageDirty(page
)) {
601 /* Only writeback pages in full synchronous migration */
602 if (mode
!= MIGRATE_SYNC
)
604 return writeout(mapping
, page
);
608 * Buffers may be managed in a filesystem specific way.
609 * We must have no buffers or drop them.
611 if (page_has_private(page
) &&
612 !try_to_release_page(page
, GFP_KERNEL
))
615 return migrate_page(mapping
, newpage
, page
, mode
);
619 * Move a page to a newly allocated page
620 * The page is locked and all ptes have been successfully removed.
622 * The new page will have replaced the old page if this function
629 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
630 int remap_swapcache
, enum migrate_mode mode
)
632 struct address_space
*mapping
;
636 * Block others from accessing the page when we get around to
637 * establishing additional references. We are the only one
638 * holding a reference to the new page at this point.
640 if (!trylock_page(newpage
))
643 /* Prepare mapping for the new page.*/
644 newpage
->index
= page
->index
;
645 newpage
->mapping
= page
->mapping
;
646 if (PageSwapBacked(page
))
647 SetPageSwapBacked(newpage
);
649 mapping
= page_mapping(page
);
651 rc
= migrate_page(mapping
, newpage
, page
, mode
);
652 else if (mapping
->a_ops
->migratepage
)
654 * Most pages have a mapping and most filesystems provide a
655 * migratepage callback. Anonymous pages are part of swap
656 * space which also has its own migratepage callback. This
657 * is the most common path for page migration.
659 rc
= mapping
->a_ops
->migratepage(mapping
,
660 newpage
, page
, mode
);
662 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
665 newpage
->mapping
= NULL
;
668 remove_migration_ptes(page
, newpage
);
669 page
->mapping
= NULL
;
672 unlock_page(newpage
);
677 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
678 int force
, bool offlining
, enum migrate_mode mode
)
681 int remap_swapcache
= 1;
683 struct mem_cgroup
*mem
;
684 struct anon_vma
*anon_vma
= NULL
;
686 if (!trylock_page(page
)) {
687 if (!force
|| mode
== MIGRATE_ASYNC
)
691 * It's not safe for direct compaction to call lock_page.
692 * For example, during page readahead pages are added locked
693 * to the LRU. Later, when the IO completes the pages are
694 * marked uptodate and unlocked. However, the queueing
695 * could be merging multiple pages for one bio (e.g.
696 * mpage_readpages). If an allocation happens for the
697 * second or third page, the process can end up locking
698 * the same page twice and deadlocking. Rather than
699 * trying to be clever about what pages can be locked,
700 * avoid the use of lock_page for direct compaction
703 if (current
->flags
& PF_MEMALLOC
)
710 * Only memory hotplug's offline_pages() caller has locked out KSM,
711 * and can safely migrate a KSM page. The other cases have skipped
712 * PageKsm along with PageReserved - but it is only now when we have
713 * the page lock that we can be certain it will not go KSM beneath us
714 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
715 * its pagecount raised, but only here do we take the page lock which
718 if (PageKsm(page
) && !offlining
) {
723 /* charge against new page */
724 charge
= mem_cgroup_prepare_migration(page
, newpage
, &mem
, GFP_KERNEL
);
725 if (charge
== -ENOMEM
) {
731 if (PageWriteback(page
)) {
733 * Only in the case of a full syncronous migration is it
734 * necessary to wait for PageWriteback. In the async case,
735 * the retry loop is too short and in the sync-light case,
736 * the overhead of stalling is too much
738 if (mode
!= MIGRATE_SYNC
) {
744 wait_on_page_writeback(page
);
747 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
748 * we cannot notice that anon_vma is freed while we migrates a page.
749 * This get_anon_vma() delays freeing anon_vma pointer until the end
750 * of migration. File cache pages are no problem because of page_lock()
751 * File Caches may use write_page() or lock_page() in migration, then,
752 * just care Anon page here.
754 if (PageAnon(page
)) {
756 * Only page_lock_anon_vma() understands the subtleties of
757 * getting a hold on an anon_vma from outside one of its mms.
759 anon_vma
= page_get_anon_vma(page
);
764 } else if (PageSwapCache(page
)) {
766 * We cannot be sure that the anon_vma of an unmapped
767 * swapcache page is safe to use because we don't
768 * know in advance if the VMA that this page belonged
769 * to still exists. If the VMA and others sharing the
770 * data have been freed, then the anon_vma could
771 * already be invalid.
773 * To avoid this possibility, swapcache pages get
774 * migrated but are not remapped when migration
784 * Corner case handling:
785 * 1. When a new swap-cache page is read into, it is added to the LRU
786 * and treated as swapcache but it has no rmap yet.
787 * Calling try_to_unmap() against a page->mapping==NULL page will
788 * trigger a BUG. So handle it here.
789 * 2. An orphaned page (see truncate_complete_page) might have
790 * fs-private metadata. The page can be picked up due to memory
791 * offlining. Everywhere else except page reclaim, the page is
792 * invisible to the vm, so the page can not be migrated. So try to
793 * free the metadata, so the page can be freed.
795 if (!page
->mapping
) {
796 VM_BUG_ON(PageAnon(page
));
797 if (page_has_private(page
)) {
798 try_to_free_buffers(page
);
804 /* Establish migration ptes or remove ptes */
805 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
808 if (!page_mapped(page
))
809 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
811 if (rc
&& remap_swapcache
)
812 remove_migration_ptes(page
, page
);
814 /* Drop an anon_vma reference if we took one */
816 put_anon_vma(anon_vma
);
820 mem_cgroup_end_migration(mem
, page
, newpage
, rc
== 0);
828 * Obtain the lock on page, remove all ptes and migrate the page
829 * to the newly allocated page in newpage.
831 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
832 struct page
*page
, int force
, bool offlining
,
833 enum migrate_mode mode
)
837 struct page
*newpage
= get_new_page(page
, private, &result
);
842 if (page_count(page
) == 1) {
843 /* page was freed from under us. So we are done. */
847 if (unlikely(PageTransHuge(page
)))
848 if (unlikely(split_huge_page(page
)))
851 rc
= __unmap_and_move(page
, newpage
, force
, offlining
, mode
);
855 * A page that has been migrated has all references
856 * removed and will be freed. A page that has not been
857 * migrated will have kepts its references and be
860 list_del(&page
->lru
);
861 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
862 page_is_file_cache(page
));
863 putback_lru_page(page
);
866 * Move the new page to the LRU. If migration was not successful
867 * then this will free the page.
869 putback_lru_page(newpage
);
874 *result
= page_to_nid(newpage
);
880 * Counterpart of unmap_and_move_page() for hugepage migration.
882 * This function doesn't wait the completion of hugepage I/O
883 * because there is no race between I/O and migration for hugepage.
884 * Note that currently hugepage I/O occurs only in direct I/O
885 * where no lock is held and PG_writeback is irrelevant,
886 * and writeback status of all subpages are counted in the reference
887 * count of the head page (i.e. if all subpages of a 2MB hugepage are
888 * under direct I/O, the reference of the head page is 512 and a bit more.)
889 * This means that when we try to migrate hugepage whose subpages are
890 * doing direct I/O, some references remain after try_to_unmap() and
891 * hugepage migration fails without data corruption.
893 * There is also no race when direct I/O is issued on the page under migration,
894 * because then pte is replaced with migration swap entry and direct I/O code
895 * will wait in the page fault for migration to complete.
897 static int unmap_and_move_huge_page(new_page_t get_new_page
,
898 unsigned long private, struct page
*hpage
,
899 int force
, bool offlining
,
900 enum migrate_mode mode
)
904 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
905 struct anon_vma
*anon_vma
= NULL
;
912 if (!trylock_page(hpage
)) {
913 if (!force
|| mode
!= MIGRATE_SYNC
)
919 anon_vma
= page_get_anon_vma(hpage
);
921 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
923 if (!page_mapped(hpage
))
924 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
927 remove_migration_ptes(hpage
, hpage
);
930 put_anon_vma(anon_vma
);
935 list_del(&hpage
->lru
);
945 *result
= page_to_nid(new_hpage
);
953 * The function takes one list of pages to migrate and a function
954 * that determines from the page to be migrated and the private data
955 * the target of the move and allocates the page.
957 * The function returns after 10 attempts or if no pages
958 * are movable anymore because to has become empty
959 * or no retryable pages exist anymore.
960 * Caller should call putback_lru_pages to return pages to the LRU
961 * or free list only if ret != 0.
963 * Return: Number of pages not migrated or error code.
965 int migrate_pages(struct list_head
*from
,
966 new_page_t get_new_page
, unsigned long private, bool offlining
,
967 enum migrate_mode mode
)
974 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
978 current
->flags
|= PF_SWAPWRITE
;
980 for(pass
= 0; pass
< 10 && retry
; pass
++) {
983 list_for_each_entry_safe(page
, page2
, from
, lru
) {
986 rc
= unmap_and_move(get_new_page
, private,
987 page
, pass
> 2, offlining
,
999 /* Permanent failure */
1008 current
->flags
&= ~PF_SWAPWRITE
;
1013 return nr_failed
+ retry
;
1016 int migrate_huge_pages(struct list_head
*from
,
1017 new_page_t get_new_page
, unsigned long private, bool offlining
,
1018 enum migrate_mode mode
)
1027 for (pass
= 0; pass
< 10 && retry
; pass
++) {
1030 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1033 rc
= unmap_and_move_huge_page(get_new_page
,
1034 private, page
, pass
> 2, offlining
,
1046 /* Permanent failure */
1057 return nr_failed
+ retry
;
1062 * Move a list of individual pages
1064 struct page_to_node
{
1071 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1074 struct page_to_node
*pm
= (struct page_to_node
*)private;
1076 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1079 if (pm
->node
== MAX_NUMNODES
)
1082 *result
= &pm
->status
;
1084 return alloc_pages_exact_node(pm
->node
,
1085 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1089 * Move a set of pages as indicated in the pm array. The addr
1090 * field must be set to the virtual address of the page to be moved
1091 * and the node number must contain a valid target node.
1092 * The pm array ends with node = MAX_NUMNODES.
1094 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1095 struct page_to_node
*pm
,
1099 struct page_to_node
*pp
;
1100 LIST_HEAD(pagelist
);
1102 down_read(&mm
->mmap_sem
);
1105 * Build a list of pages to migrate
1107 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1108 struct vm_area_struct
*vma
;
1112 vma
= find_vma(mm
, pp
->addr
);
1113 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1116 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1118 err
= PTR_ERR(page
);
1126 /* Use PageReserved to check for zero page */
1127 if (PageReserved(page
) || PageKsm(page
))
1131 err
= page_to_nid(page
);
1133 if (err
== pp
->node
)
1135 * Node already in the right place
1140 if (page_mapcount(page
) > 1 &&
1144 err
= isolate_lru_page(page
);
1146 list_add_tail(&page
->lru
, &pagelist
);
1147 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1148 page_is_file_cache(page
));
1152 * Either remove the duplicate refcount from
1153 * isolate_lru_page() or drop the page ref if it was
1162 if (!list_empty(&pagelist
)) {
1163 err
= migrate_pages(&pagelist
, new_page_node
,
1164 (unsigned long)pm
, 0, MIGRATE_SYNC
);
1166 putback_lru_pages(&pagelist
);
1169 up_read(&mm
->mmap_sem
);
1174 * Migrate an array of page address onto an array of nodes and fill
1175 * the corresponding array of status.
1177 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1178 unsigned long nr_pages
,
1179 const void __user
* __user
*pages
,
1180 const int __user
*nodes
,
1181 int __user
*status
, int flags
)
1183 struct page_to_node
*pm
;
1184 unsigned long chunk_nr_pages
;
1185 unsigned long chunk_start
;
1189 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1196 * Store a chunk of page_to_node array in a page,
1197 * but keep the last one as a marker
1199 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1201 for (chunk_start
= 0;
1202 chunk_start
< nr_pages
;
1203 chunk_start
+= chunk_nr_pages
) {
1206 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1207 chunk_nr_pages
= nr_pages
- chunk_start
;
1209 /* fill the chunk pm with addrs and nodes from user-space */
1210 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1211 const void __user
*p
;
1215 if (get_user(p
, pages
+ j
+ chunk_start
))
1217 pm
[j
].addr
= (unsigned long) p
;
1219 if (get_user(node
, nodes
+ j
+ chunk_start
))
1223 if (node
< 0 || node
>= MAX_NUMNODES
)
1226 if (!node_state(node
, N_HIGH_MEMORY
))
1230 if (!node_isset(node
, task_nodes
))
1236 /* End marker for this chunk */
1237 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1239 /* Migrate this chunk */
1240 err
= do_move_page_to_node_array(mm
, pm
,
1241 flags
& MPOL_MF_MOVE_ALL
);
1245 /* Return status information */
1246 for (j
= 0; j
< chunk_nr_pages
; j
++)
1247 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1255 free_page((unsigned long)pm
);
1261 * Determine the nodes of an array of pages and store it in an array of status.
1263 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1264 const void __user
**pages
, int *status
)
1268 down_read(&mm
->mmap_sem
);
1270 for (i
= 0; i
< nr_pages
; i
++) {
1271 unsigned long addr
= (unsigned long)(*pages
);
1272 struct vm_area_struct
*vma
;
1276 vma
= find_vma(mm
, addr
);
1277 if (!vma
|| addr
< vma
->vm_start
)
1280 page
= follow_page(vma
, addr
, 0);
1282 err
= PTR_ERR(page
);
1287 /* Use PageReserved to check for zero page */
1288 if (!page
|| PageReserved(page
) || PageKsm(page
))
1291 err
= page_to_nid(page
);
1299 up_read(&mm
->mmap_sem
);
1303 * Determine the nodes of a user array of pages and store it in
1304 * a user array of status.
1306 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1307 const void __user
* __user
*pages
,
1310 #define DO_PAGES_STAT_CHUNK_NR 16
1311 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1312 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1315 unsigned long chunk_nr
;
1317 chunk_nr
= nr_pages
;
1318 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1319 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1321 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1324 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1326 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1331 nr_pages
-= chunk_nr
;
1333 return nr_pages
? -EFAULT
: 0;
1337 * Move a list of pages in the address space of the currently executing
1340 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1341 const void __user
* __user
*, pages
,
1342 const int __user
*, nodes
,
1343 int __user
*, status
, int, flags
)
1345 const struct cred
*cred
= current_cred(), *tcred
;
1346 struct task_struct
*task
;
1347 struct mm_struct
*mm
;
1349 nodemask_t task_nodes
;
1352 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1355 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1358 /* Find the mm_struct */
1360 task
= pid
? find_task_by_vpid(pid
) : current
;
1365 get_task_struct(task
);
1368 * Check if this process has the right to modify the specified
1369 * process. The right exists if the process has administrative
1370 * capabilities, superuser privileges or the same
1371 * userid as the target process.
1373 tcred
= __task_cred(task
);
1374 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1375 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1376 !capable(CAP_SYS_NICE
)) {
1383 err
= security_task_movememory(task
);
1387 task_nodes
= cpuset_mems_allowed(task
);
1388 mm
= get_task_mm(task
);
1389 put_task_struct(task
);
1393 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1394 nodes
, status
, flags
);
1396 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1404 put_task_struct(task
);
1409 * Call migration functions in the vma_ops that may prepare
1410 * memory in a vm for migration. migration functions may perform
1411 * the migration for vmas that do not have an underlying page struct.
1413 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1414 const nodemask_t
*from
, unsigned long flags
)
1416 struct vm_area_struct
*vma
;
1419 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1420 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1421 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);