1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
44 #include <asm/pgtable.h>
46 #include <asm/processor.h>
49 #include <asm/machdep.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
55 #include <asm/debug.h>
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
60 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
71 /* Transactional Memory debug */
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #define TM_DEBUG(x...) do { } while(0)
78 extern unsigned long _get_SP(void);
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
86 bool tm_suspend_disabled __ro_after_init
= false;
88 static void check_if_tm_restore_required(struct task_struct
*tsk
)
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
96 if (tsk
== current
&& tsk
->thread
.regs
&&
97 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
98 !test_thread_flag(TIF_RESTORE_TM
)) {
99 tsk
->thread
.ckpt_regs
.msr
= tsk
->thread
.regs
->msr
;
100 set_thread_flag(TIF_RESTORE_TM
);
105 static inline void check_if_tm_restore_required(struct task_struct
*tsk
) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108 bool strict_msr_control
;
109 EXPORT_SYMBOL(strict_msr_control
);
111 static int __init
enable_strict_msr_control(char *str
)
113 strict_msr_control
= true;
114 pr_info("Enabling strict facility control\n");
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control
);
120 /* notrace because it's called by restore_math */
121 unsigned long notrace
msr_check_and_set(unsigned long bits
)
123 unsigned long oldmsr
= mfmsr();
124 unsigned long newmsr
;
126 newmsr
= oldmsr
| bits
;
129 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
133 if (oldmsr
!= newmsr
)
138 EXPORT_SYMBOL_GPL(msr_check_and_set
);
140 /* notrace because it's called by restore_math */
141 void notrace
__msr_check_and_clear(unsigned long bits
)
143 unsigned long oldmsr
= mfmsr();
144 unsigned long newmsr
;
146 newmsr
= oldmsr
& ~bits
;
149 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
153 if (oldmsr
!= newmsr
)
156 EXPORT_SYMBOL(__msr_check_and_clear
);
158 #ifdef CONFIG_PPC_FPU
159 static void __giveup_fpu(struct task_struct
*tsk
)
164 msr
= tsk
->thread
.regs
->msr
;
165 msr
&= ~(MSR_FP
|MSR_FE0
|MSR_FE1
);
167 if (cpu_has_feature(CPU_FTR_VSX
))
170 tsk
->thread
.regs
->msr
= msr
;
173 void giveup_fpu(struct task_struct
*tsk
)
175 check_if_tm_restore_required(tsk
);
177 msr_check_and_set(MSR_FP
);
179 msr_check_and_clear(MSR_FP
);
181 EXPORT_SYMBOL(giveup_fpu
);
184 * Make sure the floating-point register state in the
185 * the thread_struct is up to date for task tsk.
187 void flush_fp_to_thread(struct task_struct
*tsk
)
189 if (tsk
->thread
.regs
) {
191 * We need to disable preemption here because if we didn't,
192 * another process could get scheduled after the regs->msr
193 * test but before we have finished saving the FP registers
194 * to the thread_struct. That process could take over the
195 * FPU, and then when we get scheduled again we would store
196 * bogus values for the remaining FP registers.
199 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
201 * This should only ever be called for current or
202 * for a stopped child process. Since we save away
203 * the FP register state on context switch,
204 * there is something wrong if a stopped child appears
205 * to still have its FP state in the CPU registers.
207 BUG_ON(tsk
!= current
);
213 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
215 void enable_kernel_fp(void)
217 unsigned long cpumsr
;
219 WARN_ON(preemptible());
221 cpumsr
= msr_check_and_set(MSR_FP
);
223 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
)) {
224 check_if_tm_restore_required(current
);
226 * If a thread has already been reclaimed then the
227 * checkpointed registers are on the CPU but have definitely
228 * been saved by the reclaim code. Don't need to and *cannot*
229 * giveup as this would save to the 'live' structure not the
230 * checkpointed structure.
232 if (!MSR_TM_ACTIVE(cpumsr
) &&
233 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
235 __giveup_fpu(current
);
238 EXPORT_SYMBOL(enable_kernel_fp
);
240 static int restore_fp(struct task_struct
*tsk
)
242 if (tsk
->thread
.load_fp
) {
243 load_fp_state(¤t
->thread
.fp_state
);
244 current
->thread
.load_fp
++;
250 static int restore_fp(struct task_struct
*tsk
) { return 0; }
251 #endif /* CONFIG_PPC_FPU */
253 #ifdef CONFIG_ALTIVEC
254 #define loadvec(thr) ((thr).load_vec)
256 static void __giveup_altivec(struct task_struct
*tsk
)
261 msr
= tsk
->thread
.regs
->msr
;
264 if (cpu_has_feature(CPU_FTR_VSX
))
267 tsk
->thread
.regs
->msr
= msr
;
270 void giveup_altivec(struct task_struct
*tsk
)
272 check_if_tm_restore_required(tsk
);
274 msr_check_and_set(MSR_VEC
);
275 __giveup_altivec(tsk
);
276 msr_check_and_clear(MSR_VEC
);
278 EXPORT_SYMBOL(giveup_altivec
);
280 void enable_kernel_altivec(void)
282 unsigned long cpumsr
;
284 WARN_ON(preemptible());
286 cpumsr
= msr_check_and_set(MSR_VEC
);
288 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
)) {
289 check_if_tm_restore_required(current
);
291 * If a thread has already been reclaimed then the
292 * checkpointed registers are on the CPU but have definitely
293 * been saved by the reclaim code. Don't need to and *cannot*
294 * giveup as this would save to the 'live' structure not the
295 * checkpointed structure.
297 if (!MSR_TM_ACTIVE(cpumsr
) &&
298 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
300 __giveup_altivec(current
);
303 EXPORT_SYMBOL(enable_kernel_altivec
);
306 * Make sure the VMX/Altivec register state in the
307 * the thread_struct is up to date for task tsk.
309 void flush_altivec_to_thread(struct task_struct
*tsk
)
311 if (tsk
->thread
.regs
) {
313 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
314 BUG_ON(tsk
!= current
);
320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
322 static int restore_altivec(struct task_struct
*tsk
)
324 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && (tsk
->thread
.load_vec
)) {
325 load_vr_state(&tsk
->thread
.vr_state
);
326 tsk
->thread
.used_vr
= 1;
327 tsk
->thread
.load_vec
++;
334 #define loadvec(thr) 0
335 static inline int restore_altivec(struct task_struct
*tsk
) { return 0; }
336 #endif /* CONFIG_ALTIVEC */
339 static void __giveup_vsx(struct task_struct
*tsk
)
341 unsigned long msr
= tsk
->thread
.regs
->msr
;
344 * We should never be ssetting MSR_VSX without also setting
347 WARN_ON((msr
& MSR_VSX
) && !((msr
& MSR_FP
) && (msr
& MSR_VEC
)));
349 /* __giveup_fpu will clear MSR_VSX */
353 __giveup_altivec(tsk
);
356 static void giveup_vsx(struct task_struct
*tsk
)
358 check_if_tm_restore_required(tsk
);
360 msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
362 msr_check_and_clear(MSR_FP
|MSR_VEC
|MSR_VSX
);
365 void enable_kernel_vsx(void)
367 unsigned long cpumsr
;
369 WARN_ON(preemptible());
371 cpumsr
= msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
373 if (current
->thread
.regs
&&
374 (current
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
))) {
375 check_if_tm_restore_required(current
);
377 * If a thread has already been reclaimed then the
378 * checkpointed registers are on the CPU but have definitely
379 * been saved by the reclaim code. Don't need to and *cannot*
380 * giveup as this would save to the 'live' structure not the
381 * checkpointed structure.
383 if (!MSR_TM_ACTIVE(cpumsr
) &&
384 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
386 __giveup_vsx(current
);
389 EXPORT_SYMBOL(enable_kernel_vsx
);
391 void flush_vsx_to_thread(struct task_struct
*tsk
)
393 if (tsk
->thread
.regs
) {
395 if (tsk
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
)) {
396 BUG_ON(tsk
!= current
);
402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
404 static int restore_vsx(struct task_struct
*tsk
)
406 if (cpu_has_feature(CPU_FTR_VSX
)) {
407 tsk
->thread
.used_vsr
= 1;
414 static inline int restore_vsx(struct task_struct
*tsk
) { return 0; }
415 #endif /* CONFIG_VSX */
418 void giveup_spe(struct task_struct
*tsk
)
420 check_if_tm_restore_required(tsk
);
422 msr_check_and_set(MSR_SPE
);
424 msr_check_and_clear(MSR_SPE
);
426 EXPORT_SYMBOL(giveup_spe
);
428 void enable_kernel_spe(void)
430 WARN_ON(preemptible());
432 msr_check_and_set(MSR_SPE
);
434 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
)) {
435 check_if_tm_restore_required(current
);
436 __giveup_spe(current
);
439 EXPORT_SYMBOL(enable_kernel_spe
);
441 void flush_spe_to_thread(struct task_struct
*tsk
)
443 if (tsk
->thread
.regs
) {
445 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
446 BUG_ON(tsk
!= current
);
447 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
453 #endif /* CONFIG_SPE */
455 static unsigned long msr_all_available
;
457 static int __init
init_msr_all_available(void)
459 #ifdef CONFIG_PPC_FPU
460 msr_all_available
|= MSR_FP
;
462 #ifdef CONFIG_ALTIVEC
463 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
464 msr_all_available
|= MSR_VEC
;
467 if (cpu_has_feature(CPU_FTR_VSX
))
468 msr_all_available
|= MSR_VSX
;
471 if (cpu_has_feature(CPU_FTR_SPE
))
472 msr_all_available
|= MSR_SPE
;
477 early_initcall(init_msr_all_available
);
479 void giveup_all(struct task_struct
*tsk
)
481 unsigned long usermsr
;
483 if (!tsk
->thread
.regs
)
486 check_if_tm_restore_required(tsk
);
488 usermsr
= tsk
->thread
.regs
->msr
;
490 if ((usermsr
& msr_all_available
) == 0)
493 msr_check_and_set(msr_all_available
);
495 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
497 #ifdef CONFIG_PPC_FPU
498 if (usermsr
& MSR_FP
)
501 #ifdef CONFIG_ALTIVEC
502 if (usermsr
& MSR_VEC
)
503 __giveup_altivec(tsk
);
506 if (usermsr
& MSR_SPE
)
510 msr_check_and_clear(msr_all_available
);
512 EXPORT_SYMBOL(giveup_all
);
515 * The exception exit path calls restore_math() with interrupts hard disabled
516 * but the soft irq state not "reconciled". ftrace code that calls
517 * local_irq_save/restore causes warnings.
519 * Rather than complicate the exit path, just don't trace restore_math. This
520 * could be done by having ftrace entry code check for this un-reconciled
521 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
522 * temporarily fix it up for the duration of the ftrace call.
524 void notrace
restore_math(struct pt_regs
*regs
)
528 if (!MSR_TM_ACTIVE(regs
->msr
) &&
529 !current
->thread
.load_fp
&& !loadvec(current
->thread
))
533 msr_check_and_set(msr_all_available
);
536 * Only reload if the bit is not set in the user MSR, the bit BEING set
537 * indicates that the registers are hot
539 if ((!(msr
& MSR_FP
)) && restore_fp(current
))
540 msr
|= MSR_FP
| current
->thread
.fpexc_mode
;
542 if ((!(msr
& MSR_VEC
)) && restore_altivec(current
))
545 if ((msr
& (MSR_FP
| MSR_VEC
)) == (MSR_FP
| MSR_VEC
) &&
546 restore_vsx(current
)) {
550 msr_check_and_clear(msr_all_available
);
555 static void save_all(struct task_struct
*tsk
)
557 unsigned long usermsr
;
559 if (!tsk
->thread
.regs
)
562 usermsr
= tsk
->thread
.regs
->msr
;
564 if ((usermsr
& msr_all_available
) == 0)
567 msr_check_and_set(msr_all_available
);
569 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
571 if (usermsr
& MSR_FP
)
574 if (usermsr
& MSR_VEC
)
577 if (usermsr
& MSR_SPE
)
580 msr_check_and_clear(msr_all_available
);
581 thread_pkey_regs_save(&tsk
->thread
);
584 void flush_all_to_thread(struct task_struct
*tsk
)
586 if (tsk
->thread
.regs
) {
588 BUG_ON(tsk
!= current
);
590 if (tsk
->thread
.regs
->msr
& MSR_SPE
)
591 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
598 EXPORT_SYMBOL(flush_all_to_thread
);
600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
601 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
602 unsigned long error_code
, int breakpt
)
604 current
->thread
.trap_nr
= TRAP_HWBKPT
;
605 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
606 11, SIGSEGV
) == NOTIFY_STOP
)
609 /* Deliver the signal to userspace */
610 force_sig_ptrace_errno_trap(breakpt
, /* breakpoint or watchpoint id */
611 (void __user
*)address
);
613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
614 void do_break (struct pt_regs
*regs
, unsigned long address
,
615 unsigned long error_code
)
617 current
->thread
.trap_nr
= TRAP_HWBKPT
;
618 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
619 11, SIGSEGV
) == NOTIFY_STOP
)
622 if (debugger_break_match(regs
))
625 /* Clear the breakpoint */
626 hw_breakpoint_disable();
628 /* Deliver the signal to userspace */
629 force_sig_fault(SIGTRAP
, TRAP_HWBKPT
, (void __user
*)address
);
631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
637 * Set the debug registers back to their default "safe" values.
639 static void set_debug_reg_defaults(struct thread_struct
*thread
)
641 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
645 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
649 thread
->debug
.dbcr0
= 0;
652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
654 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
655 DBCR1_IAC3US
| DBCR1_IAC4US
;
657 * Force Data Address Compare User/Supervisor bits to be User-only
658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
660 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
662 thread
->debug
.dbcr1
= 0;
666 static void prime_debug_regs(struct debug_reg
*debug
)
669 * We could have inherited MSR_DE from userspace, since
670 * it doesn't get cleared on exception entry. Make sure
671 * MSR_DE is clear before we enable any debug events.
673 mtmsr(mfmsr() & ~MSR_DE
);
675 mtspr(SPRN_IAC1
, debug
->iac1
);
676 mtspr(SPRN_IAC2
, debug
->iac2
);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 mtspr(SPRN_IAC3
, debug
->iac3
);
679 mtspr(SPRN_IAC4
, debug
->iac4
);
681 mtspr(SPRN_DAC1
, debug
->dac1
);
682 mtspr(SPRN_DAC2
, debug
->dac2
);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 mtspr(SPRN_DVC1
, debug
->dvc1
);
685 mtspr(SPRN_DVC2
, debug
->dvc2
);
687 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
688 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
690 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
694 * Unless neither the old or new thread are making use of the
695 * debug registers, set the debug registers from the values
696 * stored in the new thread.
698 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
700 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
701 || (new_debug
->dbcr0
& DBCR0_IDM
))
702 prime_debug_regs(new_debug
);
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_breakpoint(struct arch_hw_breakpoint
*brk
)
710 __set_breakpoint(brk
);
714 static void set_debug_reg_defaults(struct thread_struct
*thread
)
716 thread
->hw_brk
.address
= 0;
717 thread
->hw_brk
.type
= 0;
718 thread
->hw_brk
.len
= 0;
719 thread
->hw_brk
.hw_len
= 0;
720 if (ppc_breakpoint_available())
721 set_breakpoint(&thread
->hw_brk
);
723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
724 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
727 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
729 mtspr(SPRN_DAC1
, dabr
);
730 #ifdef CONFIG_PPC_47x
735 #elif defined(CONFIG_PPC_BOOK3S)
736 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
738 mtspr(SPRN_DABR
, dabr
);
739 if (cpu_has_feature(CPU_FTR_DABRX
))
740 mtspr(SPRN_DABRX
, dabrx
);
744 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
750 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
752 unsigned long dabr
, dabrx
;
754 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
755 dabrx
= ((brk
->type
>> 3) & 0x7);
758 return ppc_md
.set_dabr(dabr
, dabrx
);
760 return __set_dabr(dabr
, dabrx
);
763 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint
*brk
)
765 unsigned long lctrl1
= LCTRL1_CTE_GT
| LCTRL1_CTF_LT
| LCTRL1_CRWE_RW
|
767 unsigned long lctrl2
= LCTRL2_LW0EN
| LCTRL2_LW0LADC
| LCTRL2_SLW0EN
;
768 unsigned long start_addr
= brk
->address
& ~HW_BREAKPOINT_ALIGN
;
769 unsigned long end_addr
= (brk
->address
+ brk
->len
- 1) | HW_BREAKPOINT_ALIGN
;
772 lctrl2
|= LCTRL2_LW0LA_F
;
773 else if (end_addr
== ~0U)
774 lctrl2
|= LCTRL2_LW0LA_E
;
776 lctrl2
|= LCTRL2_LW0LA_EandF
;
778 mtspr(SPRN_LCTRL2
, 0);
780 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == 0)
783 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_READ
)
784 lctrl1
|= LCTRL1_CRWE_RO
| LCTRL1_CRWF_RO
;
785 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_WRITE
)
786 lctrl1
|= LCTRL1_CRWE_WO
| LCTRL1_CRWF_WO
;
788 mtspr(SPRN_CMPE
, start_addr
- 1);
789 mtspr(SPRN_CMPF
, end_addr
+ 1);
790 mtspr(SPRN_LCTRL1
, lctrl1
);
791 mtspr(SPRN_LCTRL2
, lctrl2
);
796 void __set_breakpoint(struct arch_hw_breakpoint
*brk
)
798 memcpy(this_cpu_ptr(¤t_brk
), brk
, sizeof(*brk
));
803 else if (IS_ENABLED(CONFIG_PPC_8xx
))
804 set_breakpoint_8xx(brk
);
805 else if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
809 // Shouldn't happen due to higher level checks
813 /* Check if we have DAWR or DABR hardware */
814 bool ppc_breakpoint_available(void)
817 return true; /* POWER8 DAWR or POWER9 forced DAWR */
818 if (cpu_has_feature(CPU_FTR_ARCH_207S
))
819 return false; /* POWER9 with DAWR disabled */
820 /* DABR: Everything but POWER8 and POWER9 */
823 EXPORT_SYMBOL_GPL(ppc_breakpoint_available
);
825 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
826 struct arch_hw_breakpoint
*b
)
828 if (a
->address
!= b
->address
)
830 if (a
->type
!= b
->type
)
832 if (a
->len
!= b
->len
)
834 /* no need to check hw_len. it's calculated from address and len */
838 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840 static inline bool tm_enabled(struct task_struct
*tsk
)
842 return tsk
&& tsk
->thread
.regs
&& (tsk
->thread
.regs
->msr
& MSR_TM
);
845 static void tm_reclaim_thread(struct thread_struct
*thr
, uint8_t cause
)
848 * Use the current MSR TM suspended bit to track if we have
849 * checkpointed state outstanding.
850 * On signal delivery, we'd normally reclaim the checkpointed
851 * state to obtain stack pointer (see:get_tm_stackpointer()).
852 * This will then directly return to userspace without going
853 * through __switch_to(). However, if the stack frame is bad,
854 * we need to exit this thread which calls __switch_to() which
855 * will again attempt to reclaim the already saved tm state.
856 * Hence we need to check that we've not already reclaimed
858 * We do this using the current MSR, rather tracking it in
859 * some specific thread_struct bit, as it has the additional
860 * benefit of checking for a potential TM bad thing exception.
862 if (!MSR_TM_SUSPENDED(mfmsr()))
865 giveup_all(container_of(thr
, struct task_struct
, thread
));
867 tm_reclaim(thr
, cause
);
870 * If we are in a transaction and FP is off then we can't have
871 * used FP inside that transaction. Hence the checkpointed
872 * state is the same as the live state. We need to copy the
873 * live state to the checkpointed state so that when the
874 * transaction is restored, the checkpointed state is correct
875 * and the aborted transaction sees the correct state. We use
876 * ckpt_regs.msr here as that's what tm_reclaim will use to
877 * determine if it's going to write the checkpointed state or
878 * not. So either this will write the checkpointed registers,
879 * or reclaim will. Similarly for VMX.
881 if ((thr
->ckpt_regs
.msr
& MSR_FP
) == 0)
882 memcpy(&thr
->ckfp_state
, &thr
->fp_state
,
883 sizeof(struct thread_fp_state
));
884 if ((thr
->ckpt_regs
.msr
& MSR_VEC
) == 0)
885 memcpy(&thr
->ckvr_state
, &thr
->vr_state
,
886 sizeof(struct thread_vr_state
));
889 void tm_reclaim_current(uint8_t cause
)
892 tm_reclaim_thread(¤t
->thread
, cause
);
895 static inline void tm_reclaim_task(struct task_struct
*tsk
)
897 /* We have to work out if we're switching from/to a task that's in the
898 * middle of a transaction.
900 * In switching we need to maintain a 2nd register state as
901 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
902 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
905 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
907 struct thread_struct
*thr
= &tsk
->thread
;
912 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
913 goto out_and_saveregs
;
915 WARN_ON(tm_suspend_disabled
);
917 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
918 "ccr=%lx, msr=%lx, trap=%lx)\n",
919 tsk
->pid
, thr
->regs
->nip
,
920 thr
->regs
->ccr
, thr
->regs
->msr
,
923 tm_reclaim_thread(thr
, TM_CAUSE_RESCHED
);
925 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
929 /* Always save the regs here, even if a transaction's not active.
930 * This context-switches a thread's TM info SPRs. We do it here to
931 * be consistent with the restore path (in recheckpoint) which
932 * cannot happen later in _switch().
937 extern void __tm_recheckpoint(struct thread_struct
*thread
);
939 void tm_recheckpoint(struct thread_struct
*thread
)
943 if (!(thread
->regs
->msr
& MSR_TM
))
946 /* We really can't be interrupted here as the TEXASR registers can't
947 * change and later in the trecheckpoint code, we have a userspace R1.
948 * So let's hard disable over this region.
950 local_irq_save(flags
);
953 /* The TM SPRs are restored here, so that TEXASR.FS can be set
954 * before the trecheckpoint and no explosion occurs.
956 tm_restore_sprs(thread
);
958 __tm_recheckpoint(thread
);
960 local_irq_restore(flags
);
963 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
965 if (!cpu_has_feature(CPU_FTR_TM
))
968 /* Recheckpoint the registers of the thread we're about to switch to.
970 * If the task was using FP, we non-lazily reload both the original and
971 * the speculative FP register states. This is because the kernel
972 * doesn't see if/when a TM rollback occurs, so if we take an FP
973 * unavailable later, we are unable to determine which set of FP regs
974 * need to be restored.
976 if (!tm_enabled(new))
979 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
980 tm_restore_sprs(&new->thread
);
983 /* Recheckpoint to restore original checkpointed register state. */
984 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
985 new->pid
, new->thread
.regs
->msr
);
987 tm_recheckpoint(&new->thread
);
990 * The checkpointed state has been restored but the live state has
991 * not, ensure all the math functionality is turned off to trigger
992 * restore_math() to reload.
994 new->thread
.regs
->msr
&= ~(MSR_FP
| MSR_VEC
| MSR_VSX
);
996 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
997 "(kernel msr 0x%lx)\n",
1001 static inline void __switch_to_tm(struct task_struct
*prev
,
1002 struct task_struct
*new)
1004 if (cpu_has_feature(CPU_FTR_TM
)) {
1005 if (tm_enabled(prev
) || tm_enabled(new))
1008 if (tm_enabled(prev
)) {
1009 prev
->thread
.load_tm
++;
1010 tm_reclaim_task(prev
);
1011 if (!MSR_TM_ACTIVE(prev
->thread
.regs
->msr
) && prev
->thread
.load_tm
== 0)
1012 prev
->thread
.regs
->msr
&= ~MSR_TM
;
1015 tm_recheckpoint_new_task(new);
1020 * This is called if we are on the way out to userspace and the
1021 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1022 * FP and/or vector state and does so if necessary.
1023 * If userspace is inside a transaction (whether active or
1024 * suspended) and FP/VMX/VSX instructions have ever been enabled
1025 * inside that transaction, then we have to keep them enabled
1026 * and keep the FP/VMX/VSX state loaded while ever the transaction
1027 * continues. The reason is that if we didn't, and subsequently
1028 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1029 * we don't know whether it's the same transaction, and thus we
1030 * don't know which of the checkpointed state and the transactional
1033 void restore_tm_state(struct pt_regs
*regs
)
1035 unsigned long msr_diff
;
1038 * This is the only moment we should clear TIF_RESTORE_TM as
1039 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1040 * again, anything else could lead to an incorrect ckpt_msr being
1041 * saved and therefore incorrect signal contexts.
1043 clear_thread_flag(TIF_RESTORE_TM
);
1044 if (!MSR_TM_ACTIVE(regs
->msr
))
1047 msr_diff
= current
->thread
.ckpt_regs
.msr
& ~regs
->msr
;
1048 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
1050 /* Ensure that restore_math() will restore */
1051 if (msr_diff
& MSR_FP
)
1052 current
->thread
.load_fp
= 1;
1053 #ifdef CONFIG_ALTIVEC
1054 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && msr_diff
& MSR_VEC
)
1055 current
->thread
.load_vec
= 1;
1059 regs
->msr
|= msr_diff
;
1063 #define tm_recheckpoint_new_task(new)
1064 #define __switch_to_tm(prev, new)
1065 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1067 static inline void save_sprs(struct thread_struct
*t
)
1069 #ifdef CONFIG_ALTIVEC
1070 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1071 t
->vrsave
= mfspr(SPRN_VRSAVE
);
1073 #ifdef CONFIG_PPC_BOOK3S_64
1074 if (cpu_has_feature(CPU_FTR_DSCR
))
1075 t
->dscr
= mfspr(SPRN_DSCR
);
1077 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1078 t
->bescr
= mfspr(SPRN_BESCR
);
1079 t
->ebbhr
= mfspr(SPRN_EBBHR
);
1080 t
->ebbrr
= mfspr(SPRN_EBBRR
);
1082 t
->fscr
= mfspr(SPRN_FSCR
);
1085 * Note that the TAR is not available for use in the kernel.
1086 * (To provide this, the TAR should be backed up/restored on
1087 * exception entry/exit instead, and be in pt_regs. FIXME,
1088 * this should be in pt_regs anyway (for debug).)
1090 t
->tar
= mfspr(SPRN_TAR
);
1094 thread_pkey_regs_save(t
);
1097 static inline void restore_sprs(struct thread_struct
*old_thread
,
1098 struct thread_struct
*new_thread
)
1100 #ifdef CONFIG_ALTIVEC
1101 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
1102 old_thread
->vrsave
!= new_thread
->vrsave
)
1103 mtspr(SPRN_VRSAVE
, new_thread
->vrsave
);
1105 #ifdef CONFIG_PPC_BOOK3S_64
1106 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1107 u64 dscr
= get_paca()->dscr_default
;
1108 if (new_thread
->dscr_inherit
)
1109 dscr
= new_thread
->dscr
;
1111 if (old_thread
->dscr
!= dscr
)
1112 mtspr(SPRN_DSCR
, dscr
);
1115 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1116 if (old_thread
->bescr
!= new_thread
->bescr
)
1117 mtspr(SPRN_BESCR
, new_thread
->bescr
);
1118 if (old_thread
->ebbhr
!= new_thread
->ebbhr
)
1119 mtspr(SPRN_EBBHR
, new_thread
->ebbhr
);
1120 if (old_thread
->ebbrr
!= new_thread
->ebbrr
)
1121 mtspr(SPRN_EBBRR
, new_thread
->ebbrr
);
1123 if (old_thread
->fscr
!= new_thread
->fscr
)
1124 mtspr(SPRN_FSCR
, new_thread
->fscr
);
1126 if (old_thread
->tar
!= new_thread
->tar
)
1127 mtspr(SPRN_TAR
, new_thread
->tar
);
1130 if (cpu_has_feature(CPU_FTR_P9_TIDR
) &&
1131 old_thread
->tidr
!= new_thread
->tidr
)
1132 mtspr(SPRN_TIDR
, new_thread
->tidr
);
1135 thread_pkey_regs_restore(new_thread
, old_thread
);
1138 struct task_struct
*__switch_to(struct task_struct
*prev
,
1139 struct task_struct
*new)
1141 struct thread_struct
*new_thread
, *old_thread
;
1142 struct task_struct
*last
;
1143 #ifdef CONFIG_PPC_BOOK3S_64
1144 struct ppc64_tlb_batch
*batch
;
1147 new_thread
= &new->thread
;
1148 old_thread
= ¤t
->thread
;
1150 WARN_ON(!irqs_disabled());
1152 #ifdef CONFIG_PPC_BOOK3S_64
1153 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1154 if (batch
->active
) {
1155 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
1157 __flush_tlb_pending(batch
);
1160 #endif /* CONFIG_PPC_BOOK3S_64 */
1162 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1163 switch_booke_debug_regs(&new->thread
.debug
);
1166 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1169 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1170 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk
), &new->thread
.hw_brk
)))
1171 __set_breakpoint(&new->thread
.hw_brk
);
1172 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1176 * We need to save SPRs before treclaim/trecheckpoint as these will
1177 * change a number of them.
1179 save_sprs(&prev
->thread
);
1181 /* Save FPU, Altivec, VSX and SPE state */
1184 __switch_to_tm(prev
, new);
1186 if (!radix_enabled()) {
1188 * We can't take a PMU exception inside _switch() since there
1189 * is a window where the kernel stack SLB and the kernel stack
1190 * are out of sync. Hard disable here.
1196 * Call restore_sprs() before calling _switch(). If we move it after
1197 * _switch() then we miss out on calling it for new tasks. The reason
1198 * for this is we manually create a stack frame for new tasks that
1199 * directly returns through ret_from_fork() or
1200 * ret_from_kernel_thread(). See copy_thread() for details.
1202 restore_sprs(old_thread
, new_thread
);
1204 last
= _switch(old_thread
, new_thread
);
1206 #ifdef CONFIG_PPC_BOOK3S_64
1207 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
1208 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
1209 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1213 if (current
->thread
.regs
) {
1214 restore_math(current
->thread
.regs
);
1217 * The copy-paste buffer can only store into foreign real
1218 * addresses, so unprivileged processes can not see the
1219 * data or use it in any way unless they have foreign real
1220 * mappings. If the new process has the foreign real address
1221 * mappings, we must issue a cp_abort to clear any state and
1222 * prevent snooping, corruption or a covert channel.
1224 if (current
->thread
.used_vas
)
1225 asm volatile(PPC_CP_ABORT
);
1227 #endif /* CONFIG_PPC_BOOK3S_64 */
1232 #define NR_INSN_TO_PRINT 16
1234 static void show_instructions(struct pt_regs
*regs
)
1237 unsigned long pc
= regs
->nip
- (NR_INSN_TO_PRINT
* 3 / 4 * sizeof(int));
1239 printk("Instruction dump:");
1241 for (i
= 0; i
< NR_INSN_TO_PRINT
; i
++) {
1247 #if !defined(CONFIG_BOOKE)
1248 /* If executing with the IMMU off, adjust pc rather
1249 * than print XXXXXXXX.
1251 if (!(regs
->msr
& MSR_IR
))
1252 pc
= (unsigned long)phys_to_virt(pc
);
1255 if (!__kernel_text_address(pc
) ||
1256 probe_kernel_address((const void *)pc
, instr
)) {
1257 pr_cont("XXXXXXXX ");
1259 if (regs
->nip
== pc
)
1260 pr_cont("<%08x> ", instr
);
1262 pr_cont("%08x ", instr
);
1271 void show_user_instructions(struct pt_regs
*regs
)
1274 int n
= NR_INSN_TO_PRINT
;
1276 char buf
[96]; /* enough for 8 times 9 + 2 chars */
1278 pc
= regs
->nip
- (NR_INSN_TO_PRINT
* 3 / 4 * sizeof(int));
1280 seq_buf_init(&s
, buf
, sizeof(buf
));
1287 for (i
= 0; i
< 8 && n
; i
++, n
--, pc
+= sizeof(int)) {
1290 if (probe_user_read(&instr
, (void __user
*)pc
, sizeof(instr
))) {
1291 seq_buf_printf(&s
, "XXXXXXXX ");
1294 seq_buf_printf(&s
, regs
->nip
== pc
? "<%08x> " : "%08x ", instr
);
1297 if (!seq_buf_has_overflowed(&s
))
1298 pr_info("%s[%d]: code: %s\n", current
->comm
,
1299 current
->pid
, s
.buffer
);
1308 static struct regbit msr_bits
[] = {
1309 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1331 #ifndef CONFIG_BOOKE
1338 static void print_bits(unsigned long val
, struct regbit
*bits
, const char *sep
)
1342 for (; bits
->bit
; ++bits
)
1343 if (val
& bits
->bit
) {
1344 pr_cont("%s%s", s
, bits
->name
);
1349 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1350 static struct regbit msr_tm_bits
[] = {
1357 static void print_tm_bits(unsigned long val
)
1360 * This only prints something if at least one of the TM bit is set.
1361 * Inside the TM[], the output means:
1362 * E: Enabled (bit 32)
1363 * S: Suspended (bit 33)
1364 * T: Transactional (bit 34)
1366 if (val
& (MSR_TM
| MSR_TS_S
| MSR_TS_T
)) {
1368 print_bits(val
, msr_tm_bits
, "");
1373 static void print_tm_bits(unsigned long val
) {}
1376 static void print_msr_bits(unsigned long val
)
1379 print_bits(val
, msr_bits
, ",");
1385 #define REG "%016lx"
1386 #define REGS_PER_LINE 4
1387 #define LAST_VOLATILE 13
1390 #define REGS_PER_LINE 8
1391 #define LAST_VOLATILE 12
1394 void show_regs(struct pt_regs
* regs
)
1398 show_regs_print_info(KERN_DEFAULT
);
1400 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
1401 regs
->nip
, regs
->link
, regs
->ctr
);
1402 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1403 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1404 printk("MSR: "REG
" ", regs
->msr
);
1405 print_msr_bits(regs
->msr
);
1406 pr_cont(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1408 if ((TRAP(regs
) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
1409 pr_cont("CFAR: "REG
" ", regs
->orig_gpr3
);
1410 if (trap
== 0x200 || trap
== 0x300 || trap
== 0x600)
1411 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1412 pr_cont("DEAR: "REG
" ESR: "REG
" ", regs
->dar
, regs
->dsisr
);
1414 pr_cont("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1417 pr_cont("IRQMASK: %lx ", regs
->softe
);
1419 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1420 if (MSR_TM_ACTIVE(regs
->msr
))
1421 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1424 for (i
= 0; i
< 32; i
++) {
1425 if ((i
% REGS_PER_LINE
) == 0)
1426 pr_cont("\nGPR%02d: ", i
);
1427 pr_cont(REG
" ", regs
->gpr
[i
]);
1428 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
1432 #ifdef CONFIG_KALLSYMS
1434 * Lookup NIP late so we have the best change of getting the
1435 * above info out without failing
1437 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1438 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1440 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
1441 if (!user_mode(regs
))
1442 show_instructions(regs
);
1445 void flush_thread(void)
1447 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1448 flush_ptrace_hw_breakpoint(current
);
1449 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1450 set_debug_reg_defaults(¤t
->thread
);
1451 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1454 #ifdef CONFIG_PPC_BOOK3S_64
1455 void arch_setup_new_exec(void)
1457 if (radix_enabled())
1459 hash__setup_new_exec();
1463 int set_thread_uses_vas(void)
1465 #ifdef CONFIG_PPC_BOOK3S_64
1466 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1469 current
->thread
.used_vas
= 1;
1472 * Even a process that has no foreign real address mapping can use
1473 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1474 * to clear any pending COPY and prevent a covert channel.
1476 * __switch_to() will issue CP_ABORT on future context switches.
1478 asm volatile(PPC_CP_ABORT
);
1480 #endif /* CONFIG_PPC_BOOK3S_64 */
1486 * Assign a TIDR (thread ID) for task @t and set it in the thread
1487 * structure. For now, we only support setting TIDR for 'current' task.
1489 * Since the TID value is a truncated form of it PID, it is possible
1490 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1491 * that 2 threads share the same TID and are waiting, one of the following
1492 * cases will happen:
1494 * 1. The correct thread is running, the wrong thread is not
1495 * In this situation, the correct thread is woken and proceeds to pass it's
1498 * 2. Neither threads are running
1499 * In this situation, neither thread will be woken. When scheduled, the waiting
1500 * threads will execute either a wait, which will return immediately, followed
1501 * by a condition check, which will pass for the correct thread and fail
1502 * for the wrong thread, or they will execute the condition check immediately.
1504 * 3. The wrong thread is running, the correct thread is not
1505 * The wrong thread will be woken, but will fail it's condition check and
1506 * re-execute wait. The correct thread, when scheduled, will execute either
1507 * it's condition check (which will pass), or wait, which returns immediately
1508 * when called the first time after the thread is scheduled, followed by it's
1509 * condition check (which will pass).
1511 * 4. Both threads are running
1512 * Both threads will be woken. The wrong thread will fail it's condition check
1513 * and execute another wait, while the correct thread will pass it's condition
1516 * @t: the task to set the thread ID for
1518 int set_thread_tidr(struct task_struct
*t
)
1520 if (!cpu_has_feature(CPU_FTR_P9_TIDR
))
1529 t
->thread
.tidr
= (u16
)task_pid_nr(t
);
1530 mtspr(SPRN_TIDR
, t
->thread
.tidr
);
1534 EXPORT_SYMBOL_GPL(set_thread_tidr
);
1536 #endif /* CONFIG_PPC64 */
1539 release_thread(struct task_struct
*t
)
1544 * this gets called so that we can store coprocessor state into memory and
1545 * copy the current task into the new thread.
1547 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1549 flush_all_to_thread(src
);
1551 * Flush TM state out so we can copy it. __switch_to_tm() does this
1552 * flush but it removes the checkpointed state from the current CPU and
1553 * transitions the CPU out of TM mode. Hence we need to call
1554 * tm_recheckpoint_new_task() (on the same task) to restore the
1555 * checkpointed state back and the TM mode.
1557 * Can't pass dst because it isn't ready. Doesn't matter, passing
1558 * dst is only important for __switch_to()
1560 __switch_to_tm(src
, src
);
1564 clear_task_ebb(dst
);
1569 static void setup_ksp_vsid(struct task_struct
*p
, unsigned long sp
)
1571 #ifdef CONFIG_PPC_BOOK3S_64
1572 unsigned long sp_vsid
;
1573 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1575 if (radix_enabled())
1578 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1579 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1580 << SLB_VSID_SHIFT_1T
;
1582 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1584 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1585 p
->thread
.ksp_vsid
= sp_vsid
;
1594 * Copy architecture-specific thread state
1596 int copy_thread_tls(unsigned long clone_flags
, unsigned long usp
,
1597 unsigned long kthread_arg
, struct task_struct
*p
,
1600 struct pt_regs
*childregs
, *kregs
;
1601 extern void ret_from_fork(void);
1602 extern void ret_from_kernel_thread(void);
1604 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1605 struct thread_info
*ti
= task_thread_info(p
);
1607 klp_init_thread_info(p
);
1609 /* Copy registers */
1610 sp
-= sizeof(struct pt_regs
);
1611 childregs
= (struct pt_regs
*) sp
;
1612 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1614 memset(childregs
, 0, sizeof(struct pt_regs
));
1615 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
1618 childregs
->gpr
[14] = ppc_function_entry((void *)usp
);
1620 clear_tsk_thread_flag(p
, TIF_32BIT
);
1621 childregs
->softe
= IRQS_ENABLED
;
1623 childregs
->gpr
[15] = kthread_arg
;
1624 p
->thread
.regs
= NULL
; /* no user register state */
1625 ti
->flags
|= _TIF_RESTOREALL
;
1626 f
= ret_from_kernel_thread
;
1629 struct pt_regs
*regs
= current_pt_regs();
1630 CHECK_FULL_REGS(regs
);
1633 childregs
->gpr
[1] = usp
;
1634 p
->thread
.regs
= childregs
;
1635 childregs
->gpr
[3] = 0; /* Result from fork() */
1636 if (clone_flags
& CLONE_SETTLS
) {
1638 if (!is_32bit_task())
1639 childregs
->gpr
[13] = tls
;
1642 childregs
->gpr
[2] = tls
;
1647 childregs
->msr
&= ~(MSR_FP
|MSR_VEC
|MSR_VSX
);
1648 sp
-= STACK_FRAME_OVERHEAD
;
1651 * The way this works is that at some point in the future
1652 * some task will call _switch to switch to the new task.
1653 * That will pop off the stack frame created below and start
1654 * the new task running at ret_from_fork. The new task will
1655 * do some house keeping and then return from the fork or clone
1656 * system call, using the stack frame created above.
1658 ((unsigned long *)sp
)[0] = 0;
1659 sp
-= sizeof(struct pt_regs
);
1660 kregs
= (struct pt_regs
*) sp
;
1661 sp
-= STACK_FRAME_OVERHEAD
;
1664 p
->thread
.ksp_limit
= (unsigned long)end_of_stack(p
);
1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1667 p
->thread
.ptrace_bps
[0] = NULL
;
1670 p
->thread
.fp_save_area
= NULL
;
1671 #ifdef CONFIG_ALTIVEC
1672 p
->thread
.vr_save_area
= NULL
;
1675 setup_ksp_vsid(p
, sp
);
1678 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1679 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1680 p
->thread
.dscr
= mfspr(SPRN_DSCR
);
1682 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1683 childregs
->ppr
= DEFAULT_PPR
;
1687 kregs
->nip
= ppc_function_entry(f
);
1691 void preload_new_slb_context(unsigned long start
, unsigned long sp
);
1694 * Set up a thread for executing a new program
1696 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1699 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1701 #ifdef CONFIG_PPC_BOOK3S_64
1702 if (!radix_enabled())
1703 preload_new_slb_context(start
, sp
);
1708 * If we exec out of a kernel thread then thread.regs will not be
1711 if (!current
->thread
.regs
) {
1712 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1713 current
->thread
.regs
= regs
- 1;
1716 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1718 * Clear any transactional state, we're exec()ing. The cause is
1719 * not important as there will never be a recheckpoint so it's not
1722 if (MSR_TM_SUSPENDED(mfmsr()))
1723 tm_reclaim_current(0);
1726 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1734 * We have just cleared all the nonvolatile GPRs, so make
1735 * FULL_REGS(regs) return true. This is necessary to allow
1736 * ptrace to examine the thread immediately after exec.
1743 regs
->msr
= MSR_USER
;
1745 if (!is_32bit_task()) {
1746 unsigned long entry
;
1748 if (is_elf2_task()) {
1749 /* Look ma, no function descriptors! */
1754 * The latest iteration of the ABI requires that when
1755 * calling a function (at its global entry point),
1756 * the caller must ensure r12 holds the entry point
1757 * address (so that the function can quickly
1758 * establish addressability).
1760 regs
->gpr
[12] = start
;
1761 /* Make sure that's restored on entry to userspace. */
1762 set_thread_flag(TIF_RESTOREALL
);
1766 /* start is a relocated pointer to the function
1767 * descriptor for the elf _start routine. The first
1768 * entry in the function descriptor is the entry
1769 * address of _start and the second entry is the TOC
1770 * value we need to use.
1772 __get_user(entry
, (unsigned long __user
*)start
);
1773 __get_user(toc
, (unsigned long __user
*)start
+1);
1775 /* Check whether the e_entry function descriptor entries
1776 * need to be relocated before we can use them.
1778 if (load_addr
!= 0) {
1785 regs
->msr
= MSR_USER64
;
1789 regs
->msr
= MSR_USER32
;
1793 current
->thread
.used_vsr
= 0;
1795 current
->thread
.load_slb
= 0;
1796 current
->thread
.load_fp
= 0;
1797 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1798 current
->thread
.fp_save_area
= NULL
;
1799 #ifdef CONFIG_ALTIVEC
1800 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1801 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1802 current
->thread
.vr_save_area
= NULL
;
1803 current
->thread
.vrsave
= 0;
1804 current
->thread
.used_vr
= 0;
1805 current
->thread
.load_vec
= 0;
1806 #endif /* CONFIG_ALTIVEC */
1808 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1809 current
->thread
.acc
= 0;
1810 current
->thread
.spefscr
= 0;
1811 current
->thread
.used_spe
= 0;
1812 #endif /* CONFIG_SPE */
1813 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1814 current
->thread
.tm_tfhar
= 0;
1815 current
->thread
.tm_texasr
= 0;
1816 current
->thread
.tm_tfiar
= 0;
1817 current
->thread
.load_tm
= 0;
1818 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1820 thread_pkey_regs_init(¤t
->thread
);
1822 EXPORT_SYMBOL(start_thread
);
1824 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1825 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1827 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1829 struct pt_regs
*regs
= tsk
->thread
.regs
;
1831 /* This is a bit hairy. If we are an SPE enabled processor
1832 * (have embedded fp) we store the IEEE exception enable flags in
1833 * fpexc_mode. fpexc_mode is also used for setting FP exception
1834 * mode (asyn, precise, disabled) for 'Classic' FP. */
1835 if (val
& PR_FP_EXC_SW_ENABLE
) {
1837 if (cpu_has_feature(CPU_FTR_SPE
)) {
1839 * When the sticky exception bits are set
1840 * directly by userspace, it must call prctl
1841 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1842 * in the existing prctl settings) or
1843 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1844 * the bits being set). <fenv.h> functions
1845 * saving and restoring the whole
1846 * floating-point environment need to do so
1847 * anyway to restore the prctl settings from
1848 * the saved environment.
1850 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1851 tsk
->thread
.fpexc_mode
= val
&
1852 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1862 /* on a CONFIG_SPE this does not hurt us. The bits that
1863 * __pack_fe01 use do not overlap with bits used for
1864 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1865 * on CONFIG_SPE implementations are reserved so writing to
1866 * them does not change anything */
1867 if (val
> PR_FP_EXC_PRECISE
)
1869 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1870 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1871 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1872 | tsk
->thread
.fpexc_mode
;
1876 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1880 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1882 if (cpu_has_feature(CPU_FTR_SPE
)) {
1884 * When the sticky exception bits are set
1885 * directly by userspace, it must call prctl
1886 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1887 * in the existing prctl settings) or
1888 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1889 * the bits being set). <fenv.h> functions
1890 * saving and restoring the whole
1891 * floating-point environment need to do so
1892 * anyway to restore the prctl settings from
1893 * the saved environment.
1895 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1896 val
= tsk
->thread
.fpexc_mode
;
1903 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1904 return put_user(val
, (unsigned int __user
*) adr
);
1907 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1909 struct pt_regs
*regs
= tsk
->thread
.regs
;
1911 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1912 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1918 if (val
== PR_ENDIAN_BIG
)
1919 regs
->msr
&= ~MSR_LE
;
1920 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1921 regs
->msr
|= MSR_LE
;
1928 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1930 struct pt_regs
*regs
= tsk
->thread
.regs
;
1933 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1934 !cpu_has_feature(CPU_FTR_REAL_LE
))
1940 if (regs
->msr
& MSR_LE
) {
1941 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1942 val
= PR_ENDIAN_LITTLE
;
1944 val
= PR_ENDIAN_PPC_LITTLE
;
1946 val
= PR_ENDIAN_BIG
;
1948 return put_user(val
, (unsigned int __user
*)adr
);
1951 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
1953 tsk
->thread
.align_ctl
= val
;
1957 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
1959 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
1962 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
1963 unsigned long nbytes
)
1965 unsigned long stack_page
;
1966 unsigned long cpu
= task_cpu(p
);
1968 stack_page
= (unsigned long)hardirq_ctx
[cpu
];
1969 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1972 stack_page
= (unsigned long)softirq_ctx
[cpu
];
1973 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1979 int validate_sp(unsigned long sp
, struct task_struct
*p
,
1980 unsigned long nbytes
)
1982 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
1984 if (sp
< THREAD_SIZE
)
1987 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
1990 return valid_irq_stack(sp
, p
, nbytes
);
1993 EXPORT_SYMBOL(validate_sp
);
1995 static unsigned long __get_wchan(struct task_struct
*p
)
1997 unsigned long ip
, sp
;
2000 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
2004 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
2008 sp
= *(unsigned long *)sp
;
2009 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
) ||
2010 p
->state
== TASK_RUNNING
)
2013 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
2014 if (!in_sched_functions(ip
))
2017 } while (count
++ < 16);
2021 unsigned long get_wchan(struct task_struct
*p
)
2025 if (!try_get_task_stack(p
))
2028 ret
= __get_wchan(p
);
2035 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
2037 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
2039 unsigned long sp
, ip
, lr
, newsp
;
2042 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2043 unsigned long ret_addr
;
2050 if (!try_get_task_stack(tsk
))
2053 sp
= (unsigned long) stack
;
2056 sp
= current_stack_pointer();
2058 sp
= tsk
->thread
.ksp
;
2062 printk("Call Trace:\n");
2064 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
2067 stack
= (unsigned long *) sp
;
2069 ip
= stack
[STACK_FRAME_LR_SAVE
];
2070 if (!firstframe
|| ip
!= lr
) {
2071 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
2072 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2073 ret_addr
= ftrace_graph_ret_addr(current
,
2074 &ftrace_idx
, ip
, stack
);
2076 pr_cont(" (%pS)", (void *)ret_addr
);
2079 pr_cont(" (unreliable)");
2085 * See if this is an exception frame.
2086 * We look for the "regshere" marker in the current frame.
2088 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
2089 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
2090 struct pt_regs
*regs
= (struct pt_regs
*)
2091 (sp
+ STACK_FRAME_OVERHEAD
);
2093 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2094 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
2099 } while (count
++ < kstack_depth_to_print
);
2101 put_task_stack(tsk
);
2105 /* Called with hard IRQs off */
2106 void notrace
__ppc64_runlatch_on(void)
2108 struct thread_info
*ti
= current_thread_info();
2110 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2112 * Least significant bit (RUN) is the only writable bit of
2113 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2114 * earliest ISA where this is the case, but it's convenient.
2116 mtspr(SPRN_CTRLT
, CTRL_RUNLATCH
);
2121 * Some architectures (e.g., Cell) have writable fields other
2122 * than RUN, so do the read-modify-write.
2124 ctrl
= mfspr(SPRN_CTRLF
);
2125 ctrl
|= CTRL_RUNLATCH
;
2126 mtspr(SPRN_CTRLT
, ctrl
);
2129 ti
->local_flags
|= _TLF_RUNLATCH
;
2132 /* Called with hard IRQs off */
2133 void notrace
__ppc64_runlatch_off(void)
2135 struct thread_info
*ti
= current_thread_info();
2137 ti
->local_flags
&= ~_TLF_RUNLATCH
;
2139 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2140 mtspr(SPRN_CTRLT
, 0);
2144 ctrl
= mfspr(SPRN_CTRLF
);
2145 ctrl
&= ~CTRL_RUNLATCH
;
2146 mtspr(SPRN_CTRLT
, ctrl
);
2149 #endif /* CONFIG_PPC64 */
2151 unsigned long arch_align_stack(unsigned long sp
)
2153 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
2154 sp
-= get_random_int() & ~PAGE_MASK
;
2158 static inline unsigned long brk_rnd(void)
2160 unsigned long rnd
= 0;
2162 /* 8MB for 32bit, 1GB for 64bit */
2163 if (is_32bit_task())
2164 rnd
= (get_random_long() % (1UL<<(23-PAGE_SHIFT
)));
2166 rnd
= (get_random_long() % (1UL<<(30-PAGE_SHIFT
)));
2168 return rnd
<< PAGE_SHIFT
;
2171 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
2173 unsigned long base
= mm
->brk
;
2176 #ifdef CONFIG_PPC_BOOK3S_64
2178 * If we are using 1TB segments and we are allowed to randomise
2179 * the heap, we can put it above 1TB so it is backed by a 1TB
2180 * segment. Otherwise the heap will be in the bottom 1TB
2181 * which always uses 256MB segments and this may result in a
2182 * performance penalty. We don't need to worry about radix. For
2183 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2185 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
2186 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
2189 ret
= PAGE_ALIGN(base
+ brk_rnd());