arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / powerpc / kernel / process.c
blobfad50db9dcf2388ab4ad11bcf375f87b1fc256c2
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
78 extern unsigned long _get_SP(void);
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
86 bool tm_suspend_disabled __ro_after_init = false;
88 static void check_if_tm_restore_required(struct task_struct *tsk)
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
96 if (tsk == current && tsk->thread.regs &&
97 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 !test_thread_flag(TIF_RESTORE_TM)) {
99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 set_thread_flag(TIF_RESTORE_TM);
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
111 static int __init enable_strict_msr_control(char *str)
113 strict_msr_control = true;
114 pr_info("Enabling strict facility control\n");
116 return 0;
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
123 unsigned long oldmsr = mfmsr();
124 unsigned long newmsr;
126 newmsr = oldmsr | bits;
128 #ifdef CONFIG_VSX
129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130 newmsr |= MSR_VSX;
131 #endif
133 if (oldmsr != newmsr)
134 mtmsr_isync(newmsr);
136 return newmsr;
138 EXPORT_SYMBOL_GPL(msr_check_and_set);
140 /* notrace because it's called by restore_math */
141 void notrace __msr_check_and_clear(unsigned long bits)
143 unsigned long oldmsr = mfmsr();
144 unsigned long newmsr;
146 newmsr = oldmsr & ~bits;
148 #ifdef CONFIG_VSX
149 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
150 newmsr &= ~MSR_VSX;
151 #endif
153 if (oldmsr != newmsr)
154 mtmsr_isync(newmsr);
156 EXPORT_SYMBOL(__msr_check_and_clear);
158 #ifdef CONFIG_PPC_FPU
159 static void __giveup_fpu(struct task_struct *tsk)
161 unsigned long msr;
163 save_fpu(tsk);
164 msr = tsk->thread.regs->msr;
165 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
166 #ifdef CONFIG_VSX
167 if (cpu_has_feature(CPU_FTR_VSX))
168 msr &= ~MSR_VSX;
169 #endif
170 tsk->thread.regs->msr = msr;
173 void giveup_fpu(struct task_struct *tsk)
175 check_if_tm_restore_required(tsk);
177 msr_check_and_set(MSR_FP);
178 __giveup_fpu(tsk);
179 msr_check_and_clear(MSR_FP);
181 EXPORT_SYMBOL(giveup_fpu);
184 * Make sure the floating-point register state in the
185 * the thread_struct is up to date for task tsk.
187 void flush_fp_to_thread(struct task_struct *tsk)
189 if (tsk->thread.regs) {
191 * We need to disable preemption here because if we didn't,
192 * another process could get scheduled after the regs->msr
193 * test but before we have finished saving the FP registers
194 * to the thread_struct. That process could take over the
195 * FPU, and then when we get scheduled again we would store
196 * bogus values for the remaining FP registers.
198 preempt_disable();
199 if (tsk->thread.regs->msr & MSR_FP) {
201 * This should only ever be called for current or
202 * for a stopped child process. Since we save away
203 * the FP register state on context switch,
204 * there is something wrong if a stopped child appears
205 * to still have its FP state in the CPU registers.
207 BUG_ON(tsk != current);
208 giveup_fpu(tsk);
210 preempt_enable();
213 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
215 void enable_kernel_fp(void)
217 unsigned long cpumsr;
219 WARN_ON(preemptible());
221 cpumsr = msr_check_and_set(MSR_FP);
223 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
224 check_if_tm_restore_required(current);
226 * If a thread has already been reclaimed then the
227 * checkpointed registers are on the CPU but have definitely
228 * been saved by the reclaim code. Don't need to and *cannot*
229 * giveup as this would save to the 'live' structure not the
230 * checkpointed structure.
232 if (!MSR_TM_ACTIVE(cpumsr) &&
233 MSR_TM_ACTIVE(current->thread.regs->msr))
234 return;
235 __giveup_fpu(current);
238 EXPORT_SYMBOL(enable_kernel_fp);
240 static int restore_fp(struct task_struct *tsk)
242 if (tsk->thread.load_fp) {
243 load_fp_state(&current->thread.fp_state);
244 current->thread.load_fp++;
245 return 1;
247 return 0;
249 #else
250 static int restore_fp(struct task_struct *tsk) { return 0; }
251 #endif /* CONFIG_PPC_FPU */
253 #ifdef CONFIG_ALTIVEC
254 #define loadvec(thr) ((thr).load_vec)
256 static void __giveup_altivec(struct task_struct *tsk)
258 unsigned long msr;
260 save_altivec(tsk);
261 msr = tsk->thread.regs->msr;
262 msr &= ~MSR_VEC;
263 #ifdef CONFIG_VSX
264 if (cpu_has_feature(CPU_FTR_VSX))
265 msr &= ~MSR_VSX;
266 #endif
267 tsk->thread.regs->msr = msr;
270 void giveup_altivec(struct task_struct *tsk)
272 check_if_tm_restore_required(tsk);
274 msr_check_and_set(MSR_VEC);
275 __giveup_altivec(tsk);
276 msr_check_and_clear(MSR_VEC);
278 EXPORT_SYMBOL(giveup_altivec);
280 void enable_kernel_altivec(void)
282 unsigned long cpumsr;
284 WARN_ON(preemptible());
286 cpumsr = msr_check_and_set(MSR_VEC);
288 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
289 check_if_tm_restore_required(current);
291 * If a thread has already been reclaimed then the
292 * checkpointed registers are on the CPU but have definitely
293 * been saved by the reclaim code. Don't need to and *cannot*
294 * giveup as this would save to the 'live' structure not the
295 * checkpointed structure.
297 if (!MSR_TM_ACTIVE(cpumsr) &&
298 MSR_TM_ACTIVE(current->thread.regs->msr))
299 return;
300 __giveup_altivec(current);
303 EXPORT_SYMBOL(enable_kernel_altivec);
306 * Make sure the VMX/Altivec register state in the
307 * the thread_struct is up to date for task tsk.
309 void flush_altivec_to_thread(struct task_struct *tsk)
311 if (tsk->thread.regs) {
312 preempt_disable();
313 if (tsk->thread.regs->msr & MSR_VEC) {
314 BUG_ON(tsk != current);
315 giveup_altivec(tsk);
317 preempt_enable();
320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
322 static int restore_altivec(struct task_struct *tsk)
324 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
325 load_vr_state(&tsk->thread.vr_state);
326 tsk->thread.used_vr = 1;
327 tsk->thread.load_vec++;
329 return 1;
331 return 0;
333 #else
334 #define loadvec(thr) 0
335 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
336 #endif /* CONFIG_ALTIVEC */
338 #ifdef CONFIG_VSX
339 static void __giveup_vsx(struct task_struct *tsk)
341 unsigned long msr = tsk->thread.regs->msr;
344 * We should never be ssetting MSR_VSX without also setting
345 * MSR_FP and MSR_VEC
347 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
349 /* __giveup_fpu will clear MSR_VSX */
350 if (msr & MSR_FP)
351 __giveup_fpu(tsk);
352 if (msr & MSR_VEC)
353 __giveup_altivec(tsk);
356 static void giveup_vsx(struct task_struct *tsk)
358 check_if_tm_restore_required(tsk);
360 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361 __giveup_vsx(tsk);
362 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
365 void enable_kernel_vsx(void)
367 unsigned long cpumsr;
369 WARN_ON(preemptible());
371 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
373 if (current->thread.regs &&
374 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
375 check_if_tm_restore_required(current);
377 * If a thread has already been reclaimed then the
378 * checkpointed registers are on the CPU but have definitely
379 * been saved by the reclaim code. Don't need to and *cannot*
380 * giveup as this would save to the 'live' structure not the
381 * checkpointed structure.
383 if (!MSR_TM_ACTIVE(cpumsr) &&
384 MSR_TM_ACTIVE(current->thread.regs->msr))
385 return;
386 __giveup_vsx(current);
389 EXPORT_SYMBOL(enable_kernel_vsx);
391 void flush_vsx_to_thread(struct task_struct *tsk)
393 if (tsk->thread.regs) {
394 preempt_disable();
395 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
396 BUG_ON(tsk != current);
397 giveup_vsx(tsk);
399 preempt_enable();
402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
404 static int restore_vsx(struct task_struct *tsk)
406 if (cpu_has_feature(CPU_FTR_VSX)) {
407 tsk->thread.used_vsr = 1;
408 return 1;
411 return 0;
413 #else
414 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
415 #endif /* CONFIG_VSX */
417 #ifdef CONFIG_SPE
418 void giveup_spe(struct task_struct *tsk)
420 check_if_tm_restore_required(tsk);
422 msr_check_and_set(MSR_SPE);
423 __giveup_spe(tsk);
424 msr_check_and_clear(MSR_SPE);
426 EXPORT_SYMBOL(giveup_spe);
428 void enable_kernel_spe(void)
430 WARN_ON(preemptible());
432 msr_check_and_set(MSR_SPE);
434 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
435 check_if_tm_restore_required(current);
436 __giveup_spe(current);
439 EXPORT_SYMBOL(enable_kernel_spe);
441 void flush_spe_to_thread(struct task_struct *tsk)
443 if (tsk->thread.regs) {
444 preempt_disable();
445 if (tsk->thread.regs->msr & MSR_SPE) {
446 BUG_ON(tsk != current);
447 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
448 giveup_spe(tsk);
450 preempt_enable();
453 #endif /* CONFIG_SPE */
455 static unsigned long msr_all_available;
457 static int __init init_msr_all_available(void)
459 #ifdef CONFIG_PPC_FPU
460 msr_all_available |= MSR_FP;
461 #endif
462 #ifdef CONFIG_ALTIVEC
463 if (cpu_has_feature(CPU_FTR_ALTIVEC))
464 msr_all_available |= MSR_VEC;
465 #endif
466 #ifdef CONFIG_VSX
467 if (cpu_has_feature(CPU_FTR_VSX))
468 msr_all_available |= MSR_VSX;
469 #endif
470 #ifdef CONFIG_SPE
471 if (cpu_has_feature(CPU_FTR_SPE))
472 msr_all_available |= MSR_SPE;
473 #endif
475 return 0;
477 early_initcall(init_msr_all_available);
479 void giveup_all(struct task_struct *tsk)
481 unsigned long usermsr;
483 if (!tsk->thread.regs)
484 return;
486 check_if_tm_restore_required(tsk);
488 usermsr = tsk->thread.regs->msr;
490 if ((usermsr & msr_all_available) == 0)
491 return;
493 msr_check_and_set(msr_all_available);
495 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
497 #ifdef CONFIG_PPC_FPU
498 if (usermsr & MSR_FP)
499 __giveup_fpu(tsk);
500 #endif
501 #ifdef CONFIG_ALTIVEC
502 if (usermsr & MSR_VEC)
503 __giveup_altivec(tsk);
504 #endif
505 #ifdef CONFIG_SPE
506 if (usermsr & MSR_SPE)
507 __giveup_spe(tsk);
508 #endif
510 msr_check_and_clear(msr_all_available);
512 EXPORT_SYMBOL(giveup_all);
515 * The exception exit path calls restore_math() with interrupts hard disabled
516 * but the soft irq state not "reconciled". ftrace code that calls
517 * local_irq_save/restore causes warnings.
519 * Rather than complicate the exit path, just don't trace restore_math. This
520 * could be done by having ftrace entry code check for this un-reconciled
521 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
522 * temporarily fix it up for the duration of the ftrace call.
524 void notrace restore_math(struct pt_regs *regs)
526 unsigned long msr;
528 if (!MSR_TM_ACTIVE(regs->msr) &&
529 !current->thread.load_fp && !loadvec(current->thread))
530 return;
532 msr = regs->msr;
533 msr_check_and_set(msr_all_available);
536 * Only reload if the bit is not set in the user MSR, the bit BEING set
537 * indicates that the registers are hot
539 if ((!(msr & MSR_FP)) && restore_fp(current))
540 msr |= MSR_FP | current->thread.fpexc_mode;
542 if ((!(msr & MSR_VEC)) && restore_altivec(current))
543 msr |= MSR_VEC;
545 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
546 restore_vsx(current)) {
547 msr |= MSR_VSX;
550 msr_check_and_clear(msr_all_available);
552 regs->msr = msr;
555 static void save_all(struct task_struct *tsk)
557 unsigned long usermsr;
559 if (!tsk->thread.regs)
560 return;
562 usermsr = tsk->thread.regs->msr;
564 if ((usermsr & msr_all_available) == 0)
565 return;
567 msr_check_and_set(msr_all_available);
569 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
571 if (usermsr & MSR_FP)
572 save_fpu(tsk);
574 if (usermsr & MSR_VEC)
575 save_altivec(tsk);
577 if (usermsr & MSR_SPE)
578 __giveup_spe(tsk);
580 msr_check_and_clear(msr_all_available);
581 thread_pkey_regs_save(&tsk->thread);
584 void flush_all_to_thread(struct task_struct *tsk)
586 if (tsk->thread.regs) {
587 preempt_disable();
588 BUG_ON(tsk != current);
589 #ifdef CONFIG_SPE
590 if (tsk->thread.regs->msr & MSR_SPE)
591 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
592 #endif
593 save_all(tsk);
595 preempt_enable();
598 EXPORT_SYMBOL(flush_all_to_thread);
600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
601 void do_send_trap(struct pt_regs *regs, unsigned long address,
602 unsigned long error_code, int breakpt)
604 current->thread.trap_nr = TRAP_HWBKPT;
605 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
606 11, SIGSEGV) == NOTIFY_STOP)
607 return;
609 /* Deliver the signal to userspace */
610 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
611 (void __user *)address);
613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
614 void do_break (struct pt_regs *regs, unsigned long address,
615 unsigned long error_code)
617 current->thread.trap_nr = TRAP_HWBKPT;
618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 11, SIGSEGV) == NOTIFY_STOP)
620 return;
622 if (debugger_break_match(regs))
623 return;
625 /* Clear the breakpoint */
626 hw_breakpoint_disable();
628 /* Deliver the signal to userspace */
629 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
637 * Set the debug registers back to their default "safe" values.
639 static void set_debug_reg_defaults(struct thread_struct *thread)
641 thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645 thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649 thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655 DBCR1_IAC3US | DBCR1_IAC4US;
657 * Force Data Address Compare User/Supervisor bits to be User-only
658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662 thread->debug.dbcr1 = 0;
663 #endif
666 static void prime_debug_regs(struct debug_reg *debug)
669 * We could have inherited MSR_DE from userspace, since
670 * it doesn't get cleared on exception entry. Make sure
671 * MSR_DE is clear before we enable any debug events.
673 mtmsr(mfmsr() & ~MSR_DE);
675 mtspr(SPRN_IAC1, debug->iac1);
676 mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 mtspr(SPRN_IAC3, debug->iac3);
679 mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681 mtspr(SPRN_DAC1, debug->dac1);
682 mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 mtspr(SPRN_DVC1, debug->dvc1);
685 mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687 mtspr(SPRN_DBCR0, debug->dbcr0);
688 mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690 mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
694 * Unless neither the old or new thread are making use of the
695 * debug registers, set the debug registers from the values
696 * stored in the new thread.
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
700 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701 || (new_debug->dbcr0 & DBCR0_IDM))
702 prime_debug_regs(new_debug);
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_breakpoint(struct arch_hw_breakpoint *brk)
709 preempt_disable();
710 __set_breakpoint(brk);
711 preempt_enable();
714 static void set_debug_reg_defaults(struct thread_struct *thread)
716 thread->hw_brk.address = 0;
717 thread->hw_brk.type = 0;
718 thread->hw_brk.len = 0;
719 thread->hw_brk.hw_len = 0;
720 if (ppc_breakpoint_available())
721 set_breakpoint(&thread->hw_brk);
723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
724 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
729 mtspr(SPRN_DAC1, dabr);
730 #ifdef CONFIG_PPC_47x
731 isync();
732 #endif
733 return 0;
735 #elif defined(CONFIG_PPC_BOOK3S)
736 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 mtspr(SPRN_DABR, dabr);
739 if (cpu_has_feature(CPU_FTR_DABRX))
740 mtspr(SPRN_DABRX, dabrx);
741 return 0;
743 #else
744 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
746 return -EINVAL;
748 #endif
750 static inline int set_dabr(struct arch_hw_breakpoint *brk)
752 unsigned long dabr, dabrx;
754 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
755 dabrx = ((brk->type >> 3) & 0x7);
757 if (ppc_md.set_dabr)
758 return ppc_md.set_dabr(dabr, dabrx);
760 return __set_dabr(dabr, dabrx);
763 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
765 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
766 LCTRL1_CRWF_RW;
767 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
768 unsigned long start_addr = brk->address & ~HW_BREAKPOINT_ALIGN;
769 unsigned long end_addr = (brk->address + brk->len - 1) | HW_BREAKPOINT_ALIGN;
771 if (start_addr == 0)
772 lctrl2 |= LCTRL2_LW0LA_F;
773 else if (end_addr == ~0U)
774 lctrl2 |= LCTRL2_LW0LA_E;
775 else
776 lctrl2 |= LCTRL2_LW0LA_EandF;
778 mtspr(SPRN_LCTRL2, 0);
780 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
781 return 0;
783 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
784 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
785 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
786 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
788 mtspr(SPRN_CMPE, start_addr - 1);
789 mtspr(SPRN_CMPF, end_addr + 1);
790 mtspr(SPRN_LCTRL1, lctrl1);
791 mtspr(SPRN_LCTRL2, lctrl2);
793 return 0;
796 void __set_breakpoint(struct arch_hw_breakpoint *brk)
798 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
800 if (dawr_enabled())
801 // Power8 or later
802 set_dawr(brk);
803 else if (IS_ENABLED(CONFIG_PPC_8xx))
804 set_breakpoint_8xx(brk);
805 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
806 // Power7 or earlier
807 set_dabr(brk);
808 else
809 // Shouldn't happen due to higher level checks
810 WARN_ON_ONCE(1);
813 /* Check if we have DAWR or DABR hardware */
814 bool ppc_breakpoint_available(void)
816 if (dawr_enabled())
817 return true; /* POWER8 DAWR or POWER9 forced DAWR */
818 if (cpu_has_feature(CPU_FTR_ARCH_207S))
819 return false; /* POWER9 with DAWR disabled */
820 /* DABR: Everything but POWER8 and POWER9 */
821 return true;
823 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
825 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
826 struct arch_hw_breakpoint *b)
828 if (a->address != b->address)
829 return false;
830 if (a->type != b->type)
831 return false;
832 if (a->len != b->len)
833 return false;
834 /* no need to check hw_len. it's calculated from address and len */
835 return true;
838 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840 static inline bool tm_enabled(struct task_struct *tsk)
842 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
845 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
848 * Use the current MSR TM suspended bit to track if we have
849 * checkpointed state outstanding.
850 * On signal delivery, we'd normally reclaim the checkpointed
851 * state to obtain stack pointer (see:get_tm_stackpointer()).
852 * This will then directly return to userspace without going
853 * through __switch_to(). However, if the stack frame is bad,
854 * we need to exit this thread which calls __switch_to() which
855 * will again attempt to reclaim the already saved tm state.
856 * Hence we need to check that we've not already reclaimed
857 * this state.
858 * We do this using the current MSR, rather tracking it in
859 * some specific thread_struct bit, as it has the additional
860 * benefit of checking for a potential TM bad thing exception.
862 if (!MSR_TM_SUSPENDED(mfmsr()))
863 return;
865 giveup_all(container_of(thr, struct task_struct, thread));
867 tm_reclaim(thr, cause);
870 * If we are in a transaction and FP is off then we can't have
871 * used FP inside that transaction. Hence the checkpointed
872 * state is the same as the live state. We need to copy the
873 * live state to the checkpointed state so that when the
874 * transaction is restored, the checkpointed state is correct
875 * and the aborted transaction sees the correct state. We use
876 * ckpt_regs.msr here as that's what tm_reclaim will use to
877 * determine if it's going to write the checkpointed state or
878 * not. So either this will write the checkpointed registers,
879 * or reclaim will. Similarly for VMX.
881 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
882 memcpy(&thr->ckfp_state, &thr->fp_state,
883 sizeof(struct thread_fp_state));
884 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
885 memcpy(&thr->ckvr_state, &thr->vr_state,
886 sizeof(struct thread_vr_state));
889 void tm_reclaim_current(uint8_t cause)
891 tm_enable();
892 tm_reclaim_thread(&current->thread, cause);
895 static inline void tm_reclaim_task(struct task_struct *tsk)
897 /* We have to work out if we're switching from/to a task that's in the
898 * middle of a transaction.
900 * In switching we need to maintain a 2nd register state as
901 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
902 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
903 * ckvr_state
905 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
907 struct thread_struct *thr = &tsk->thread;
909 if (!thr->regs)
910 return;
912 if (!MSR_TM_ACTIVE(thr->regs->msr))
913 goto out_and_saveregs;
915 WARN_ON(tm_suspend_disabled);
917 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
918 "ccr=%lx, msr=%lx, trap=%lx)\n",
919 tsk->pid, thr->regs->nip,
920 thr->regs->ccr, thr->regs->msr,
921 thr->regs->trap);
923 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
925 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
926 tsk->pid);
928 out_and_saveregs:
929 /* Always save the regs here, even if a transaction's not active.
930 * This context-switches a thread's TM info SPRs. We do it here to
931 * be consistent with the restore path (in recheckpoint) which
932 * cannot happen later in _switch().
934 tm_save_sprs(thr);
937 extern void __tm_recheckpoint(struct thread_struct *thread);
939 void tm_recheckpoint(struct thread_struct *thread)
941 unsigned long flags;
943 if (!(thread->regs->msr & MSR_TM))
944 return;
946 /* We really can't be interrupted here as the TEXASR registers can't
947 * change and later in the trecheckpoint code, we have a userspace R1.
948 * So let's hard disable over this region.
950 local_irq_save(flags);
951 hard_irq_disable();
953 /* The TM SPRs are restored here, so that TEXASR.FS can be set
954 * before the trecheckpoint and no explosion occurs.
956 tm_restore_sprs(thread);
958 __tm_recheckpoint(thread);
960 local_irq_restore(flags);
963 static inline void tm_recheckpoint_new_task(struct task_struct *new)
965 if (!cpu_has_feature(CPU_FTR_TM))
966 return;
968 /* Recheckpoint the registers of the thread we're about to switch to.
970 * If the task was using FP, we non-lazily reload both the original and
971 * the speculative FP register states. This is because the kernel
972 * doesn't see if/when a TM rollback occurs, so if we take an FP
973 * unavailable later, we are unable to determine which set of FP regs
974 * need to be restored.
976 if (!tm_enabled(new))
977 return;
979 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
980 tm_restore_sprs(&new->thread);
981 return;
983 /* Recheckpoint to restore original checkpointed register state. */
984 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
985 new->pid, new->thread.regs->msr);
987 tm_recheckpoint(&new->thread);
990 * The checkpointed state has been restored but the live state has
991 * not, ensure all the math functionality is turned off to trigger
992 * restore_math() to reload.
994 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
996 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
997 "(kernel msr 0x%lx)\n",
998 new->pid, mfmsr());
1001 static inline void __switch_to_tm(struct task_struct *prev,
1002 struct task_struct *new)
1004 if (cpu_has_feature(CPU_FTR_TM)) {
1005 if (tm_enabled(prev) || tm_enabled(new))
1006 tm_enable();
1008 if (tm_enabled(prev)) {
1009 prev->thread.load_tm++;
1010 tm_reclaim_task(prev);
1011 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1012 prev->thread.regs->msr &= ~MSR_TM;
1015 tm_recheckpoint_new_task(new);
1020 * This is called if we are on the way out to userspace and the
1021 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1022 * FP and/or vector state and does so if necessary.
1023 * If userspace is inside a transaction (whether active or
1024 * suspended) and FP/VMX/VSX instructions have ever been enabled
1025 * inside that transaction, then we have to keep them enabled
1026 * and keep the FP/VMX/VSX state loaded while ever the transaction
1027 * continues. The reason is that if we didn't, and subsequently
1028 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1029 * we don't know whether it's the same transaction, and thus we
1030 * don't know which of the checkpointed state and the transactional
1031 * state to use.
1033 void restore_tm_state(struct pt_regs *regs)
1035 unsigned long msr_diff;
1038 * This is the only moment we should clear TIF_RESTORE_TM as
1039 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1040 * again, anything else could lead to an incorrect ckpt_msr being
1041 * saved and therefore incorrect signal contexts.
1043 clear_thread_flag(TIF_RESTORE_TM);
1044 if (!MSR_TM_ACTIVE(regs->msr))
1045 return;
1047 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1048 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1050 /* Ensure that restore_math() will restore */
1051 if (msr_diff & MSR_FP)
1052 current->thread.load_fp = 1;
1053 #ifdef CONFIG_ALTIVEC
1054 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1055 current->thread.load_vec = 1;
1056 #endif
1057 restore_math(regs);
1059 regs->msr |= msr_diff;
1062 #else
1063 #define tm_recheckpoint_new_task(new)
1064 #define __switch_to_tm(prev, new)
1065 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1067 static inline void save_sprs(struct thread_struct *t)
1069 #ifdef CONFIG_ALTIVEC
1070 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1071 t->vrsave = mfspr(SPRN_VRSAVE);
1072 #endif
1073 #ifdef CONFIG_PPC_BOOK3S_64
1074 if (cpu_has_feature(CPU_FTR_DSCR))
1075 t->dscr = mfspr(SPRN_DSCR);
1077 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1078 t->bescr = mfspr(SPRN_BESCR);
1079 t->ebbhr = mfspr(SPRN_EBBHR);
1080 t->ebbrr = mfspr(SPRN_EBBRR);
1082 t->fscr = mfspr(SPRN_FSCR);
1085 * Note that the TAR is not available for use in the kernel.
1086 * (To provide this, the TAR should be backed up/restored on
1087 * exception entry/exit instead, and be in pt_regs. FIXME,
1088 * this should be in pt_regs anyway (for debug).)
1090 t->tar = mfspr(SPRN_TAR);
1092 #endif
1094 thread_pkey_regs_save(t);
1097 static inline void restore_sprs(struct thread_struct *old_thread,
1098 struct thread_struct *new_thread)
1100 #ifdef CONFIG_ALTIVEC
1101 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1102 old_thread->vrsave != new_thread->vrsave)
1103 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1104 #endif
1105 #ifdef CONFIG_PPC_BOOK3S_64
1106 if (cpu_has_feature(CPU_FTR_DSCR)) {
1107 u64 dscr = get_paca()->dscr_default;
1108 if (new_thread->dscr_inherit)
1109 dscr = new_thread->dscr;
1111 if (old_thread->dscr != dscr)
1112 mtspr(SPRN_DSCR, dscr);
1115 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1116 if (old_thread->bescr != new_thread->bescr)
1117 mtspr(SPRN_BESCR, new_thread->bescr);
1118 if (old_thread->ebbhr != new_thread->ebbhr)
1119 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1120 if (old_thread->ebbrr != new_thread->ebbrr)
1121 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1123 if (old_thread->fscr != new_thread->fscr)
1124 mtspr(SPRN_FSCR, new_thread->fscr);
1126 if (old_thread->tar != new_thread->tar)
1127 mtspr(SPRN_TAR, new_thread->tar);
1130 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1131 old_thread->tidr != new_thread->tidr)
1132 mtspr(SPRN_TIDR, new_thread->tidr);
1133 #endif
1135 thread_pkey_regs_restore(new_thread, old_thread);
1138 struct task_struct *__switch_to(struct task_struct *prev,
1139 struct task_struct *new)
1141 struct thread_struct *new_thread, *old_thread;
1142 struct task_struct *last;
1143 #ifdef CONFIG_PPC_BOOK3S_64
1144 struct ppc64_tlb_batch *batch;
1145 #endif
1147 new_thread = &new->thread;
1148 old_thread = &current->thread;
1150 WARN_ON(!irqs_disabled());
1152 #ifdef CONFIG_PPC_BOOK3S_64
1153 batch = this_cpu_ptr(&ppc64_tlb_batch);
1154 if (batch->active) {
1155 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1156 if (batch->index)
1157 __flush_tlb_pending(batch);
1158 batch->active = 0;
1160 #endif /* CONFIG_PPC_BOOK3S_64 */
1162 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1163 switch_booke_debug_regs(&new->thread.debug);
1164 #else
1166 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1167 * schedule DABR
1169 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1170 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1171 __set_breakpoint(&new->thread.hw_brk);
1172 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1173 #endif
1176 * We need to save SPRs before treclaim/trecheckpoint as these will
1177 * change a number of them.
1179 save_sprs(&prev->thread);
1181 /* Save FPU, Altivec, VSX and SPE state */
1182 giveup_all(prev);
1184 __switch_to_tm(prev, new);
1186 if (!radix_enabled()) {
1188 * We can't take a PMU exception inside _switch() since there
1189 * is a window where the kernel stack SLB and the kernel stack
1190 * are out of sync. Hard disable here.
1192 hard_irq_disable();
1196 * Call restore_sprs() before calling _switch(). If we move it after
1197 * _switch() then we miss out on calling it for new tasks. The reason
1198 * for this is we manually create a stack frame for new tasks that
1199 * directly returns through ret_from_fork() or
1200 * ret_from_kernel_thread(). See copy_thread() for details.
1202 restore_sprs(old_thread, new_thread);
1204 last = _switch(old_thread, new_thread);
1206 #ifdef CONFIG_PPC_BOOK3S_64
1207 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1208 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1209 batch = this_cpu_ptr(&ppc64_tlb_batch);
1210 batch->active = 1;
1213 if (current->thread.regs) {
1214 restore_math(current->thread.regs);
1217 * The copy-paste buffer can only store into foreign real
1218 * addresses, so unprivileged processes can not see the
1219 * data or use it in any way unless they have foreign real
1220 * mappings. If the new process has the foreign real address
1221 * mappings, we must issue a cp_abort to clear any state and
1222 * prevent snooping, corruption or a covert channel.
1224 if (current->thread.used_vas)
1225 asm volatile(PPC_CP_ABORT);
1227 #endif /* CONFIG_PPC_BOOK3S_64 */
1229 return last;
1232 #define NR_INSN_TO_PRINT 16
1234 static void show_instructions(struct pt_regs *regs)
1236 int i;
1237 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1239 printk("Instruction dump:");
1241 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1242 int instr;
1244 if (!(i % 8))
1245 pr_cont("\n");
1247 #if !defined(CONFIG_BOOKE)
1248 /* If executing with the IMMU off, adjust pc rather
1249 * than print XXXXXXXX.
1251 if (!(regs->msr & MSR_IR))
1252 pc = (unsigned long)phys_to_virt(pc);
1253 #endif
1255 if (!__kernel_text_address(pc) ||
1256 probe_kernel_address((const void *)pc, instr)) {
1257 pr_cont("XXXXXXXX ");
1258 } else {
1259 if (regs->nip == pc)
1260 pr_cont("<%08x> ", instr);
1261 else
1262 pr_cont("%08x ", instr);
1265 pc += sizeof(int);
1268 pr_cont("\n");
1271 void show_user_instructions(struct pt_regs *regs)
1273 unsigned long pc;
1274 int n = NR_INSN_TO_PRINT;
1275 struct seq_buf s;
1276 char buf[96]; /* enough for 8 times 9 + 2 chars */
1278 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1280 seq_buf_init(&s, buf, sizeof(buf));
1282 while (n) {
1283 int i;
1285 seq_buf_clear(&s);
1287 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1288 int instr;
1290 if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) {
1291 seq_buf_printf(&s, "XXXXXXXX ");
1292 continue;
1294 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1297 if (!seq_buf_has_overflowed(&s))
1298 pr_info("%s[%d]: code: %s\n", current->comm,
1299 current->pid, s.buffer);
1303 struct regbit {
1304 unsigned long bit;
1305 const char *name;
1308 static struct regbit msr_bits[] = {
1309 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1310 {MSR_SF, "SF"},
1311 {MSR_HV, "HV"},
1312 #endif
1313 {MSR_VEC, "VEC"},
1314 {MSR_VSX, "VSX"},
1315 #ifdef CONFIG_BOOKE
1316 {MSR_CE, "CE"},
1317 #endif
1318 {MSR_EE, "EE"},
1319 {MSR_PR, "PR"},
1320 {MSR_FP, "FP"},
1321 {MSR_ME, "ME"},
1322 #ifdef CONFIG_BOOKE
1323 {MSR_DE, "DE"},
1324 #else
1325 {MSR_SE, "SE"},
1326 {MSR_BE, "BE"},
1327 #endif
1328 {MSR_IR, "IR"},
1329 {MSR_DR, "DR"},
1330 {MSR_PMM, "PMM"},
1331 #ifndef CONFIG_BOOKE
1332 {MSR_RI, "RI"},
1333 {MSR_LE, "LE"},
1334 #endif
1335 {0, NULL}
1338 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1340 const char *s = "";
1342 for (; bits->bit; ++bits)
1343 if (val & bits->bit) {
1344 pr_cont("%s%s", s, bits->name);
1345 s = sep;
1349 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1350 static struct regbit msr_tm_bits[] = {
1351 {MSR_TS_T, "T"},
1352 {MSR_TS_S, "S"},
1353 {MSR_TM, "E"},
1354 {0, NULL}
1357 static void print_tm_bits(unsigned long val)
1360 * This only prints something if at least one of the TM bit is set.
1361 * Inside the TM[], the output means:
1362 * E: Enabled (bit 32)
1363 * S: Suspended (bit 33)
1364 * T: Transactional (bit 34)
1366 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1367 pr_cont(",TM[");
1368 print_bits(val, msr_tm_bits, "");
1369 pr_cont("]");
1372 #else
1373 static void print_tm_bits(unsigned long val) {}
1374 #endif
1376 static void print_msr_bits(unsigned long val)
1378 pr_cont("<");
1379 print_bits(val, msr_bits, ",");
1380 print_tm_bits(val);
1381 pr_cont(">");
1384 #ifdef CONFIG_PPC64
1385 #define REG "%016lx"
1386 #define REGS_PER_LINE 4
1387 #define LAST_VOLATILE 13
1388 #else
1389 #define REG "%08lx"
1390 #define REGS_PER_LINE 8
1391 #define LAST_VOLATILE 12
1392 #endif
1394 void show_regs(struct pt_regs * regs)
1396 int i, trap;
1398 show_regs_print_info(KERN_DEFAULT);
1400 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1401 regs->nip, regs->link, regs->ctr);
1402 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1403 regs, regs->trap, print_tainted(), init_utsname()->release);
1404 printk("MSR: "REG" ", regs->msr);
1405 print_msr_bits(regs->msr);
1406 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1407 trap = TRAP(regs);
1408 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1409 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1410 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1411 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1412 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1413 #else
1414 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1415 #endif
1416 #ifdef CONFIG_PPC64
1417 pr_cont("IRQMASK: %lx ", regs->softe);
1418 #endif
1419 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1420 if (MSR_TM_ACTIVE(regs->msr))
1421 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1422 #endif
1424 for (i = 0; i < 32; i++) {
1425 if ((i % REGS_PER_LINE) == 0)
1426 pr_cont("\nGPR%02d: ", i);
1427 pr_cont(REG " ", regs->gpr[i]);
1428 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1429 break;
1431 pr_cont("\n");
1432 #ifdef CONFIG_KALLSYMS
1434 * Lookup NIP late so we have the best change of getting the
1435 * above info out without failing
1437 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1438 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1439 #endif
1440 show_stack(current, (unsigned long *) regs->gpr[1]);
1441 if (!user_mode(regs))
1442 show_instructions(regs);
1445 void flush_thread(void)
1447 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1448 flush_ptrace_hw_breakpoint(current);
1449 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1450 set_debug_reg_defaults(&current->thread);
1451 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1454 #ifdef CONFIG_PPC_BOOK3S_64
1455 void arch_setup_new_exec(void)
1457 if (radix_enabled())
1458 return;
1459 hash__setup_new_exec();
1461 #endif
1463 int set_thread_uses_vas(void)
1465 #ifdef CONFIG_PPC_BOOK3S_64
1466 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1467 return -EINVAL;
1469 current->thread.used_vas = 1;
1472 * Even a process that has no foreign real address mapping can use
1473 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1474 * to clear any pending COPY and prevent a covert channel.
1476 * __switch_to() will issue CP_ABORT on future context switches.
1478 asm volatile(PPC_CP_ABORT);
1480 #endif /* CONFIG_PPC_BOOK3S_64 */
1481 return 0;
1484 #ifdef CONFIG_PPC64
1486 * Assign a TIDR (thread ID) for task @t and set it in the thread
1487 * structure. For now, we only support setting TIDR for 'current' task.
1489 * Since the TID value is a truncated form of it PID, it is possible
1490 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1491 * that 2 threads share the same TID and are waiting, one of the following
1492 * cases will happen:
1494 * 1. The correct thread is running, the wrong thread is not
1495 * In this situation, the correct thread is woken and proceeds to pass it's
1496 * condition check.
1498 * 2. Neither threads are running
1499 * In this situation, neither thread will be woken. When scheduled, the waiting
1500 * threads will execute either a wait, which will return immediately, followed
1501 * by a condition check, which will pass for the correct thread and fail
1502 * for the wrong thread, or they will execute the condition check immediately.
1504 * 3. The wrong thread is running, the correct thread is not
1505 * The wrong thread will be woken, but will fail it's condition check and
1506 * re-execute wait. The correct thread, when scheduled, will execute either
1507 * it's condition check (which will pass), or wait, which returns immediately
1508 * when called the first time after the thread is scheduled, followed by it's
1509 * condition check (which will pass).
1511 * 4. Both threads are running
1512 * Both threads will be woken. The wrong thread will fail it's condition check
1513 * and execute another wait, while the correct thread will pass it's condition
1514 * check.
1516 * @t: the task to set the thread ID for
1518 int set_thread_tidr(struct task_struct *t)
1520 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1521 return -EINVAL;
1523 if (t != current)
1524 return -EINVAL;
1526 if (t->thread.tidr)
1527 return 0;
1529 t->thread.tidr = (u16)task_pid_nr(t);
1530 mtspr(SPRN_TIDR, t->thread.tidr);
1532 return 0;
1534 EXPORT_SYMBOL_GPL(set_thread_tidr);
1536 #endif /* CONFIG_PPC64 */
1538 void
1539 release_thread(struct task_struct *t)
1544 * this gets called so that we can store coprocessor state into memory and
1545 * copy the current task into the new thread.
1547 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1549 flush_all_to_thread(src);
1551 * Flush TM state out so we can copy it. __switch_to_tm() does this
1552 * flush but it removes the checkpointed state from the current CPU and
1553 * transitions the CPU out of TM mode. Hence we need to call
1554 * tm_recheckpoint_new_task() (on the same task) to restore the
1555 * checkpointed state back and the TM mode.
1557 * Can't pass dst because it isn't ready. Doesn't matter, passing
1558 * dst is only important for __switch_to()
1560 __switch_to_tm(src, src);
1562 *dst = *src;
1564 clear_task_ebb(dst);
1566 return 0;
1569 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1571 #ifdef CONFIG_PPC_BOOK3S_64
1572 unsigned long sp_vsid;
1573 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1575 if (radix_enabled())
1576 return;
1578 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1579 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1580 << SLB_VSID_SHIFT_1T;
1581 else
1582 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1583 << SLB_VSID_SHIFT;
1584 sp_vsid |= SLB_VSID_KERNEL | llp;
1585 p->thread.ksp_vsid = sp_vsid;
1586 #endif
1590 * Copy a thread..
1594 * Copy architecture-specific thread state
1596 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1597 unsigned long kthread_arg, struct task_struct *p,
1598 unsigned long tls)
1600 struct pt_regs *childregs, *kregs;
1601 extern void ret_from_fork(void);
1602 extern void ret_from_kernel_thread(void);
1603 void (*f)(void);
1604 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1605 struct thread_info *ti = task_thread_info(p);
1607 klp_init_thread_info(p);
1609 /* Copy registers */
1610 sp -= sizeof(struct pt_regs);
1611 childregs = (struct pt_regs *) sp;
1612 if (unlikely(p->flags & PF_KTHREAD)) {
1613 /* kernel thread */
1614 memset(childregs, 0, sizeof(struct pt_regs));
1615 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1616 /* function */
1617 if (usp)
1618 childregs->gpr[14] = ppc_function_entry((void *)usp);
1619 #ifdef CONFIG_PPC64
1620 clear_tsk_thread_flag(p, TIF_32BIT);
1621 childregs->softe = IRQS_ENABLED;
1622 #endif
1623 childregs->gpr[15] = kthread_arg;
1624 p->thread.regs = NULL; /* no user register state */
1625 ti->flags |= _TIF_RESTOREALL;
1626 f = ret_from_kernel_thread;
1627 } else {
1628 /* user thread */
1629 struct pt_regs *regs = current_pt_regs();
1630 CHECK_FULL_REGS(regs);
1631 *childregs = *regs;
1632 if (usp)
1633 childregs->gpr[1] = usp;
1634 p->thread.regs = childregs;
1635 childregs->gpr[3] = 0; /* Result from fork() */
1636 if (clone_flags & CLONE_SETTLS) {
1637 #ifdef CONFIG_PPC64
1638 if (!is_32bit_task())
1639 childregs->gpr[13] = tls;
1640 else
1641 #endif
1642 childregs->gpr[2] = tls;
1645 f = ret_from_fork;
1647 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1648 sp -= STACK_FRAME_OVERHEAD;
1651 * The way this works is that at some point in the future
1652 * some task will call _switch to switch to the new task.
1653 * That will pop off the stack frame created below and start
1654 * the new task running at ret_from_fork. The new task will
1655 * do some house keeping and then return from the fork or clone
1656 * system call, using the stack frame created above.
1658 ((unsigned long *)sp)[0] = 0;
1659 sp -= sizeof(struct pt_regs);
1660 kregs = (struct pt_regs *) sp;
1661 sp -= STACK_FRAME_OVERHEAD;
1662 p->thread.ksp = sp;
1663 #ifdef CONFIG_PPC32
1664 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1665 #endif
1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1667 p->thread.ptrace_bps[0] = NULL;
1668 #endif
1670 p->thread.fp_save_area = NULL;
1671 #ifdef CONFIG_ALTIVEC
1672 p->thread.vr_save_area = NULL;
1673 #endif
1675 setup_ksp_vsid(p, sp);
1677 #ifdef CONFIG_PPC64
1678 if (cpu_has_feature(CPU_FTR_DSCR)) {
1679 p->thread.dscr_inherit = current->thread.dscr_inherit;
1680 p->thread.dscr = mfspr(SPRN_DSCR);
1682 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1683 childregs->ppr = DEFAULT_PPR;
1685 p->thread.tidr = 0;
1686 #endif
1687 kregs->nip = ppc_function_entry(f);
1688 return 0;
1691 void preload_new_slb_context(unsigned long start, unsigned long sp);
1694 * Set up a thread for executing a new program
1696 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1698 #ifdef CONFIG_PPC64
1699 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1701 #ifdef CONFIG_PPC_BOOK3S_64
1702 if (!radix_enabled())
1703 preload_new_slb_context(start, sp);
1704 #endif
1705 #endif
1708 * If we exec out of a kernel thread then thread.regs will not be
1709 * set. Do it now.
1711 if (!current->thread.regs) {
1712 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1713 current->thread.regs = regs - 1;
1716 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1718 * Clear any transactional state, we're exec()ing. The cause is
1719 * not important as there will never be a recheckpoint so it's not
1720 * user visible.
1722 if (MSR_TM_SUSPENDED(mfmsr()))
1723 tm_reclaim_current(0);
1724 #endif
1726 memset(regs->gpr, 0, sizeof(regs->gpr));
1727 regs->ctr = 0;
1728 regs->link = 0;
1729 regs->xer = 0;
1730 regs->ccr = 0;
1731 regs->gpr[1] = sp;
1734 * We have just cleared all the nonvolatile GPRs, so make
1735 * FULL_REGS(regs) return true. This is necessary to allow
1736 * ptrace to examine the thread immediately after exec.
1738 regs->trap &= ~1UL;
1740 #ifdef CONFIG_PPC32
1741 regs->mq = 0;
1742 regs->nip = start;
1743 regs->msr = MSR_USER;
1744 #else
1745 if (!is_32bit_task()) {
1746 unsigned long entry;
1748 if (is_elf2_task()) {
1749 /* Look ma, no function descriptors! */
1750 entry = start;
1753 * Ulrich says:
1754 * The latest iteration of the ABI requires that when
1755 * calling a function (at its global entry point),
1756 * the caller must ensure r12 holds the entry point
1757 * address (so that the function can quickly
1758 * establish addressability).
1760 regs->gpr[12] = start;
1761 /* Make sure that's restored on entry to userspace. */
1762 set_thread_flag(TIF_RESTOREALL);
1763 } else {
1764 unsigned long toc;
1766 /* start is a relocated pointer to the function
1767 * descriptor for the elf _start routine. The first
1768 * entry in the function descriptor is the entry
1769 * address of _start and the second entry is the TOC
1770 * value we need to use.
1772 __get_user(entry, (unsigned long __user *)start);
1773 __get_user(toc, (unsigned long __user *)start+1);
1775 /* Check whether the e_entry function descriptor entries
1776 * need to be relocated before we can use them.
1778 if (load_addr != 0) {
1779 entry += load_addr;
1780 toc += load_addr;
1782 regs->gpr[2] = toc;
1784 regs->nip = entry;
1785 regs->msr = MSR_USER64;
1786 } else {
1787 regs->nip = start;
1788 regs->gpr[2] = 0;
1789 regs->msr = MSR_USER32;
1791 #endif
1792 #ifdef CONFIG_VSX
1793 current->thread.used_vsr = 0;
1794 #endif
1795 current->thread.load_slb = 0;
1796 current->thread.load_fp = 0;
1797 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1798 current->thread.fp_save_area = NULL;
1799 #ifdef CONFIG_ALTIVEC
1800 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1801 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1802 current->thread.vr_save_area = NULL;
1803 current->thread.vrsave = 0;
1804 current->thread.used_vr = 0;
1805 current->thread.load_vec = 0;
1806 #endif /* CONFIG_ALTIVEC */
1807 #ifdef CONFIG_SPE
1808 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1809 current->thread.acc = 0;
1810 current->thread.spefscr = 0;
1811 current->thread.used_spe = 0;
1812 #endif /* CONFIG_SPE */
1813 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1814 current->thread.tm_tfhar = 0;
1815 current->thread.tm_texasr = 0;
1816 current->thread.tm_tfiar = 0;
1817 current->thread.load_tm = 0;
1818 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1820 thread_pkey_regs_init(&current->thread);
1822 EXPORT_SYMBOL(start_thread);
1824 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1825 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1827 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1829 struct pt_regs *regs = tsk->thread.regs;
1831 /* This is a bit hairy. If we are an SPE enabled processor
1832 * (have embedded fp) we store the IEEE exception enable flags in
1833 * fpexc_mode. fpexc_mode is also used for setting FP exception
1834 * mode (asyn, precise, disabled) for 'Classic' FP. */
1835 if (val & PR_FP_EXC_SW_ENABLE) {
1836 #ifdef CONFIG_SPE
1837 if (cpu_has_feature(CPU_FTR_SPE)) {
1839 * When the sticky exception bits are set
1840 * directly by userspace, it must call prctl
1841 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1842 * in the existing prctl settings) or
1843 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1844 * the bits being set). <fenv.h> functions
1845 * saving and restoring the whole
1846 * floating-point environment need to do so
1847 * anyway to restore the prctl settings from
1848 * the saved environment.
1850 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1851 tsk->thread.fpexc_mode = val &
1852 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1853 return 0;
1854 } else {
1855 return -EINVAL;
1857 #else
1858 return -EINVAL;
1859 #endif
1862 /* on a CONFIG_SPE this does not hurt us. The bits that
1863 * __pack_fe01 use do not overlap with bits used for
1864 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1865 * on CONFIG_SPE implementations are reserved so writing to
1866 * them does not change anything */
1867 if (val > PR_FP_EXC_PRECISE)
1868 return -EINVAL;
1869 tsk->thread.fpexc_mode = __pack_fe01(val);
1870 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1871 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1872 | tsk->thread.fpexc_mode;
1873 return 0;
1876 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1878 unsigned int val;
1880 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1881 #ifdef CONFIG_SPE
1882 if (cpu_has_feature(CPU_FTR_SPE)) {
1884 * When the sticky exception bits are set
1885 * directly by userspace, it must call prctl
1886 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1887 * in the existing prctl settings) or
1888 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1889 * the bits being set). <fenv.h> functions
1890 * saving and restoring the whole
1891 * floating-point environment need to do so
1892 * anyway to restore the prctl settings from
1893 * the saved environment.
1895 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1896 val = tsk->thread.fpexc_mode;
1897 } else
1898 return -EINVAL;
1899 #else
1900 return -EINVAL;
1901 #endif
1902 else
1903 val = __unpack_fe01(tsk->thread.fpexc_mode);
1904 return put_user(val, (unsigned int __user *) adr);
1907 int set_endian(struct task_struct *tsk, unsigned int val)
1909 struct pt_regs *regs = tsk->thread.regs;
1911 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1912 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1913 return -EINVAL;
1915 if (regs == NULL)
1916 return -EINVAL;
1918 if (val == PR_ENDIAN_BIG)
1919 regs->msr &= ~MSR_LE;
1920 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1921 regs->msr |= MSR_LE;
1922 else
1923 return -EINVAL;
1925 return 0;
1928 int get_endian(struct task_struct *tsk, unsigned long adr)
1930 struct pt_regs *regs = tsk->thread.regs;
1931 unsigned int val;
1933 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1934 !cpu_has_feature(CPU_FTR_REAL_LE))
1935 return -EINVAL;
1937 if (regs == NULL)
1938 return -EINVAL;
1940 if (regs->msr & MSR_LE) {
1941 if (cpu_has_feature(CPU_FTR_REAL_LE))
1942 val = PR_ENDIAN_LITTLE;
1943 else
1944 val = PR_ENDIAN_PPC_LITTLE;
1945 } else
1946 val = PR_ENDIAN_BIG;
1948 return put_user(val, (unsigned int __user *)adr);
1951 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1953 tsk->thread.align_ctl = val;
1954 return 0;
1957 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1959 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1962 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1963 unsigned long nbytes)
1965 unsigned long stack_page;
1966 unsigned long cpu = task_cpu(p);
1968 stack_page = (unsigned long)hardirq_ctx[cpu];
1969 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1970 return 1;
1972 stack_page = (unsigned long)softirq_ctx[cpu];
1973 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1974 return 1;
1976 return 0;
1979 int validate_sp(unsigned long sp, struct task_struct *p,
1980 unsigned long nbytes)
1982 unsigned long stack_page = (unsigned long)task_stack_page(p);
1984 if (sp < THREAD_SIZE)
1985 return 0;
1987 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1988 return 1;
1990 return valid_irq_stack(sp, p, nbytes);
1993 EXPORT_SYMBOL(validate_sp);
1995 static unsigned long __get_wchan(struct task_struct *p)
1997 unsigned long ip, sp;
1998 int count = 0;
2000 if (!p || p == current || p->state == TASK_RUNNING)
2001 return 0;
2003 sp = p->thread.ksp;
2004 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2005 return 0;
2007 do {
2008 sp = *(unsigned long *)sp;
2009 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2010 p->state == TASK_RUNNING)
2011 return 0;
2012 if (count > 0) {
2013 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2014 if (!in_sched_functions(ip))
2015 return ip;
2017 } while (count++ < 16);
2018 return 0;
2021 unsigned long get_wchan(struct task_struct *p)
2023 unsigned long ret;
2025 if (!try_get_task_stack(p))
2026 return 0;
2028 ret = __get_wchan(p);
2030 put_task_stack(p);
2032 return ret;
2035 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2037 void show_stack(struct task_struct *tsk, unsigned long *stack)
2039 unsigned long sp, ip, lr, newsp;
2040 int count = 0;
2041 int firstframe = 1;
2042 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2043 unsigned long ret_addr;
2044 int ftrace_idx = 0;
2045 #endif
2047 if (tsk == NULL)
2048 tsk = current;
2050 if (!try_get_task_stack(tsk))
2051 return;
2053 sp = (unsigned long) stack;
2054 if (sp == 0) {
2055 if (tsk == current)
2056 sp = current_stack_pointer();
2057 else
2058 sp = tsk->thread.ksp;
2061 lr = 0;
2062 printk("Call Trace:\n");
2063 do {
2064 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2065 break;
2067 stack = (unsigned long *) sp;
2068 newsp = stack[0];
2069 ip = stack[STACK_FRAME_LR_SAVE];
2070 if (!firstframe || ip != lr) {
2071 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2072 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2073 ret_addr = ftrace_graph_ret_addr(current,
2074 &ftrace_idx, ip, stack);
2075 if (ret_addr != ip)
2076 pr_cont(" (%pS)", (void *)ret_addr);
2077 #endif
2078 if (firstframe)
2079 pr_cont(" (unreliable)");
2080 pr_cont("\n");
2082 firstframe = 0;
2085 * See if this is an exception frame.
2086 * We look for the "regshere" marker in the current frame.
2088 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2089 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2090 struct pt_regs *regs = (struct pt_regs *)
2091 (sp + STACK_FRAME_OVERHEAD);
2092 lr = regs->link;
2093 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2094 regs->trap, (void *)regs->nip, (void *)lr);
2095 firstframe = 1;
2098 sp = newsp;
2099 } while (count++ < kstack_depth_to_print);
2101 put_task_stack(tsk);
2104 #ifdef CONFIG_PPC64
2105 /* Called with hard IRQs off */
2106 void notrace __ppc64_runlatch_on(void)
2108 struct thread_info *ti = current_thread_info();
2110 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2112 * Least significant bit (RUN) is the only writable bit of
2113 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2114 * earliest ISA where this is the case, but it's convenient.
2116 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2117 } else {
2118 unsigned long ctrl;
2121 * Some architectures (e.g., Cell) have writable fields other
2122 * than RUN, so do the read-modify-write.
2124 ctrl = mfspr(SPRN_CTRLF);
2125 ctrl |= CTRL_RUNLATCH;
2126 mtspr(SPRN_CTRLT, ctrl);
2129 ti->local_flags |= _TLF_RUNLATCH;
2132 /* Called with hard IRQs off */
2133 void notrace __ppc64_runlatch_off(void)
2135 struct thread_info *ti = current_thread_info();
2137 ti->local_flags &= ~_TLF_RUNLATCH;
2139 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2140 mtspr(SPRN_CTRLT, 0);
2141 } else {
2142 unsigned long ctrl;
2144 ctrl = mfspr(SPRN_CTRLF);
2145 ctrl &= ~CTRL_RUNLATCH;
2146 mtspr(SPRN_CTRLT, ctrl);
2149 #endif /* CONFIG_PPC64 */
2151 unsigned long arch_align_stack(unsigned long sp)
2153 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2154 sp -= get_random_int() & ~PAGE_MASK;
2155 return sp & ~0xf;
2158 static inline unsigned long brk_rnd(void)
2160 unsigned long rnd = 0;
2162 /* 8MB for 32bit, 1GB for 64bit */
2163 if (is_32bit_task())
2164 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2165 else
2166 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2168 return rnd << PAGE_SHIFT;
2171 unsigned long arch_randomize_brk(struct mm_struct *mm)
2173 unsigned long base = mm->brk;
2174 unsigned long ret;
2176 #ifdef CONFIG_PPC_BOOK3S_64
2178 * If we are using 1TB segments and we are allowed to randomise
2179 * the heap, we can put it above 1TB so it is backed by a 1TB
2180 * segment. Otherwise the heap will be in the bottom 1TB
2181 * which always uses 256MB segments and this may result in a
2182 * performance penalty. We don't need to worry about radix. For
2183 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2185 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2186 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2187 #endif
2189 ret = PAGE_ALIGN(base + brk_rnd());
2191 if (ret < mm->brk)
2192 return mm->brk;
2194 return ret;