1 // SPDX-License-Identifier: GPL-2.0-only
4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 #include <linux/types.h>
8 #include <linux/string.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
32 //#define DEBUG_RESIZE_HPT 1
34 #ifdef DEBUG_RESIZE_HPT
35 #define resize_hpt_debug(resize, ...) \
37 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
38 printk(__VA_ARGS__); \
41 #define resize_hpt_debug(resize, ...) \
45 static long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
46 long pte_index
, unsigned long pteh
,
47 unsigned long ptel
, unsigned long *pte_idx_ret
);
49 struct kvm_resize_hpt
{
50 /* These fields read-only after init */
52 struct work_struct work
;
55 /* These fields protected by kvm->arch.mmu_setup_lock */
57 /* Possible values and their usage:
58 * <0 an error occurred during allocation,
59 * -EBUSY allocation is in the progress,
60 * 0 allocation made successfuly.
64 /* Private to the work thread, until error != -EBUSY,
65 * then protected by kvm->arch.mmu_setup_lock.
67 struct kvm_hpt_info hpt
;
70 int kvmppc_allocate_hpt(struct kvm_hpt_info
*info
, u32 order
)
72 unsigned long hpt
= 0;
74 struct page
*page
= NULL
;
75 struct revmap_entry
*rev
;
78 if ((order
< PPC_MIN_HPT_ORDER
) || (order
> PPC_MAX_HPT_ORDER
))
81 page
= kvm_alloc_hpt_cma(1ul << (order
- PAGE_SHIFT
));
83 hpt
= (unsigned long)pfn_to_kaddr(page_to_pfn(page
));
84 memset((void *)hpt
, 0, (1ul << order
));
89 hpt
= __get_free_pages(GFP_KERNEL
|__GFP_ZERO
|__GFP_RETRY_MAYFAIL
90 |__GFP_NOWARN
, order
- PAGE_SHIFT
);
95 /* HPTEs are 2**4 bytes long */
96 npte
= 1ul << (order
- 4);
98 /* Allocate reverse map array */
99 rev
= vmalloc(array_size(npte
, sizeof(struct revmap_entry
)));
102 kvm_free_hpt_cma(page
, 1 << (order
- PAGE_SHIFT
));
104 free_pages(hpt
, order
- PAGE_SHIFT
);
116 void kvmppc_set_hpt(struct kvm
*kvm
, struct kvm_hpt_info
*info
)
118 atomic64_set(&kvm
->arch
.mmio_update
, 0);
119 kvm
->arch
.hpt
= *info
;
120 kvm
->arch
.sdr1
= __pa(info
->virt
) | (info
->order
- 18);
122 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
123 info
->virt
, (long)info
->order
, kvm
->arch
.lpid
);
126 long kvmppc_alloc_reset_hpt(struct kvm
*kvm
, int order
)
129 struct kvm_hpt_info info
;
131 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
132 if (kvm
->arch
.mmu_ready
) {
133 kvm
->arch
.mmu_ready
= 0;
134 /* order mmu_ready vs. vcpus_running */
136 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
137 kvm
->arch
.mmu_ready
= 1;
141 if (kvm_is_radix(kvm
)) {
142 err
= kvmppc_switch_mmu_to_hpt(kvm
);
147 if (kvm
->arch
.hpt
.order
== order
) {
148 /* We already have a suitable HPT */
150 /* Set the entire HPT to 0, i.e. invalid HPTEs */
151 memset((void *)kvm
->arch
.hpt
.virt
, 0, 1ul << order
);
153 * Reset all the reverse-mapping chains for all memslots
155 kvmppc_rmap_reset(kvm
);
160 if (kvm
->arch
.hpt
.virt
) {
161 kvmppc_free_hpt(&kvm
->arch
.hpt
);
162 kvmppc_rmap_reset(kvm
);
165 err
= kvmppc_allocate_hpt(&info
, order
);
168 kvmppc_set_hpt(kvm
, &info
);
172 /* Ensure that each vcpu will flush its TLB on next entry. */
173 cpumask_setall(&kvm
->arch
.need_tlb_flush
);
175 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
179 void kvmppc_free_hpt(struct kvm_hpt_info
*info
)
184 kvm_free_hpt_cma(virt_to_page(info
->virt
),
185 1 << (info
->order
- PAGE_SHIFT
));
187 free_pages(info
->virt
, info
->order
- PAGE_SHIFT
);
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize
)
195 return (pgsize
> 0x1000) ? HPTE_V_LARGE
: 0;
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize
)
201 return (pgsize
== 0x10000) ? 0x1000 : 0;
204 void kvmppc_map_vrma(struct kvm_vcpu
*vcpu
, struct kvm_memory_slot
*memslot
,
205 unsigned long porder
)
208 unsigned long npages
;
209 unsigned long hp_v
, hp_r
;
210 unsigned long addr
, hash
;
212 unsigned long hp0
, hp1
;
213 unsigned long idx_ret
;
215 struct kvm
*kvm
= vcpu
->kvm
;
217 psize
= 1ul << porder
;
218 npages
= memslot
->npages
>> (porder
- PAGE_SHIFT
);
220 /* VRMA can't be > 1TB */
221 if (npages
> 1ul << (40 - porder
))
222 npages
= 1ul << (40 - porder
);
223 /* Can't use more than 1 HPTE per HPTEG */
224 if (npages
> kvmppc_hpt_mask(&kvm
->arch
.hpt
) + 1)
225 npages
= kvmppc_hpt_mask(&kvm
->arch
.hpt
) + 1;
227 hp0
= HPTE_V_1TB_SEG
| (VRMA_VSID
<< (40 - 16)) |
228 HPTE_V_BOLTED
| hpte0_pgsize_encoding(psize
);
229 hp1
= hpte1_pgsize_encoding(psize
) |
230 HPTE_R_R
| HPTE_R_C
| HPTE_R_M
| PP_RWXX
;
232 for (i
= 0; i
< npages
; ++i
) {
234 /* can't use hpt_hash since va > 64 bits */
235 hash
= (i
^ (VRMA_VSID
^ (VRMA_VSID
<< 25)))
236 & kvmppc_hpt_mask(&kvm
->arch
.hpt
);
238 * We assume that the hash table is empty and no
239 * vcpus are using it at this stage. Since we create
240 * at most one HPTE per HPTEG, we just assume entry 7
241 * is available and use it.
243 hash
= (hash
<< 3) + 7;
244 hp_v
= hp0
| ((addr
>> 16) & ~0x7fUL
);
246 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, hash
, hp_v
, hp_r
,
248 if (ret
!= H_SUCCESS
) {
249 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
256 int kvmppc_mmu_hv_init(void)
258 unsigned long host_lpid
, rsvd_lpid
;
260 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE
))
263 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
265 if (cpu_has_feature(CPU_FTR_HVMODE
))
266 host_lpid
= mfspr(SPRN_LPID
);
267 rsvd_lpid
= LPID_RSVD
;
269 kvmppc_init_lpid(rsvd_lpid
+ 1);
271 kvmppc_claim_lpid(host_lpid
);
272 /* rsvd_lpid is reserved for use in partition switching */
273 kvmppc_claim_lpid(rsvd_lpid
);
278 static long kvmppc_virtmode_do_h_enter(struct kvm
*kvm
, unsigned long flags
,
279 long pte_index
, unsigned long pteh
,
280 unsigned long ptel
, unsigned long *pte_idx_ret
)
284 /* Protect linux PTE lookup from page table destruction */
285 rcu_read_lock_sched(); /* this disables preemption too */
286 ret
= kvmppc_do_h_enter(kvm
, flags
, pte_index
, pteh
, ptel
,
287 kvm
->mm
->pgd
, false, pte_idx_ret
);
288 rcu_read_unlock_sched();
289 if (ret
== H_TOO_HARD
) {
290 /* this can't happen */
291 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
292 ret
= H_RESOURCE
; /* or something */
298 static struct kvmppc_slb
*kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu
*vcpu
,
304 for (i
= 0; i
< vcpu
->arch
.slb_nr
; i
++) {
305 if (!(vcpu
->arch
.slb
[i
].orige
& SLB_ESID_V
))
308 if (vcpu
->arch
.slb
[i
].origv
& SLB_VSID_B_1T
)
313 if (((vcpu
->arch
.slb
[i
].orige
^ eaddr
) & mask
) == 0)
314 return &vcpu
->arch
.slb
[i
];
319 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v
, unsigned long r
,
322 unsigned long ra_mask
;
324 ra_mask
= kvmppc_actual_pgsz(v
, r
) - 1;
325 return (r
& HPTE_R_RPN
& ~ra_mask
) | (ea
& ra_mask
);
328 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu
*vcpu
, gva_t eaddr
,
329 struct kvmppc_pte
*gpte
, bool data
, bool iswrite
)
331 struct kvm
*kvm
= vcpu
->kvm
;
332 struct kvmppc_slb
*slbe
;
334 unsigned long pp
, key
;
335 unsigned long v
, orig_v
, gr
;
338 int virtmode
= vcpu
->arch
.shregs
.msr
& (data
? MSR_DR
: MSR_IR
);
340 if (kvm_is_radix(vcpu
->kvm
))
341 return kvmppc_mmu_radix_xlate(vcpu
, eaddr
, gpte
, data
, iswrite
);
345 slbe
= kvmppc_mmu_book3s_hv_find_slbe(vcpu
, eaddr
);
350 /* real mode access */
351 slb_v
= vcpu
->kvm
->arch
.vrma_slb_v
;
355 /* Find the HPTE in the hash table */
356 index
= kvmppc_hv_find_lock_hpte(kvm
, eaddr
, slb_v
,
357 HPTE_V_VALID
| HPTE_V_ABSENT
);
362 hptep
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (index
<< 4));
363 v
= orig_v
= be64_to_cpu(hptep
[0]) & ~HPTE_V_HVLOCK
;
364 if (cpu_has_feature(CPU_FTR_ARCH_300
))
365 v
= hpte_new_to_old_v(v
, be64_to_cpu(hptep
[1]));
366 gr
= kvm
->arch
.hpt
.rev
[index
].guest_rpte
;
368 unlock_hpte(hptep
, orig_v
);
372 gpte
->vpage
= ((v
& HPTE_V_AVPN
) << 4) | ((eaddr
>> 12) & 0xfff);
374 /* Get PP bits and key for permission check */
375 pp
= gr
& (HPTE_R_PP0
| HPTE_R_PP
);
376 key
= (vcpu
->arch
.shregs
.msr
& MSR_PR
) ? SLB_VSID_KP
: SLB_VSID_KS
;
379 /* Calculate permissions */
380 gpte
->may_read
= hpte_read_permission(pp
, key
);
381 gpte
->may_write
= hpte_write_permission(pp
, key
);
382 gpte
->may_execute
= gpte
->may_read
&& !(gr
& (HPTE_R_N
| HPTE_R_G
));
384 /* Storage key permission check for POWER7 */
385 if (data
&& virtmode
) {
386 int amrfield
= hpte_get_skey_perm(gr
, vcpu
->arch
.amr
);
393 /* Get the guest physical address */
394 gpte
->raddr
= kvmppc_mmu_get_real_addr(v
, gr
, eaddr
);
399 * Quick test for whether an instruction is a load or a store.
400 * If the instruction is a load or a store, then this will indicate
401 * which it is, at least on server processors. (Embedded processors
402 * have some external PID instructions that don't follow the rule
403 * embodied here.) If the instruction isn't a load or store, then
404 * this doesn't return anything useful.
406 static int instruction_is_store(unsigned int instr
)
411 if ((instr
& 0xfc000000) == 0x7c000000)
412 mask
= 0x100; /* major opcode 31 */
413 return (instr
& mask
) != 0;
416 int kvmppc_hv_emulate_mmio(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
417 unsigned long gpa
, gva_t ea
, int is_store
)
422 * Fast path - check if the guest physical address corresponds to a
423 * device on the FAST_MMIO_BUS, if so we can avoid loading the
424 * instruction all together, then we can just handle it and return.
429 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
430 ret
= kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, (gpa_t
) gpa
, 0,
432 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
434 kvmppc_set_pc(vcpu
, kvmppc_get_pc(vcpu
) + 4);
440 * If we fail, we just return to the guest and try executing it again.
442 if (kvmppc_get_last_inst(vcpu
, INST_GENERIC
, &last_inst
) !=
447 * WARNING: We do not know for sure whether the instruction we just
448 * read from memory is the same that caused the fault in the first
449 * place. If the instruction we read is neither an load or a store,
450 * then it can't access memory, so we don't need to worry about
451 * enforcing access permissions. So, assuming it is a load or
452 * store, we just check that its direction (load or store) is
453 * consistent with the original fault, since that's what we
454 * checked the access permissions against. If there is a mismatch
455 * we just return and retry the instruction.
458 if (instruction_is_store(last_inst
) != !!is_store
)
462 * Emulated accesses are emulated by looking at the hash for
463 * translation once, then performing the access later. The
464 * translation could be invalidated in the meantime in which
465 * point performing the subsequent memory access on the old
466 * physical address could possibly be a security hole for the
467 * guest (but not the host).
469 * This is less of an issue for MMIO stores since they aren't
470 * globally visible. It could be an issue for MMIO loads to
471 * a certain extent but we'll ignore it for now.
474 vcpu
->arch
.paddr_accessed
= gpa
;
475 vcpu
->arch
.vaddr_accessed
= ea
;
476 return kvmppc_emulate_mmio(run
, vcpu
);
479 int kvmppc_book3s_hv_page_fault(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
480 unsigned long ea
, unsigned long dsisr
)
482 struct kvm
*kvm
= vcpu
->kvm
;
483 unsigned long hpte
[3], r
;
484 unsigned long hnow_v
, hnow_r
;
486 unsigned long mmu_seq
, psize
, pte_size
;
487 unsigned long gpa_base
, gfn_base
;
488 unsigned long gpa
, gfn
, hva
, pfn
;
489 struct kvm_memory_slot
*memslot
;
491 struct revmap_entry
*rev
;
492 struct page
*page
, *pages
[1];
493 long index
, ret
, npages
;
495 unsigned int writing
, write_ok
;
496 struct vm_area_struct
*vma
;
497 unsigned long rcbits
;
499 struct mm_struct
*mm
;
501 if (kvm_is_radix(kvm
))
502 return kvmppc_book3s_radix_page_fault(run
, vcpu
, ea
, dsisr
);
505 * Real-mode code has already searched the HPT and found the
506 * entry we're interested in. Lock the entry and check that
507 * it hasn't changed. If it has, just return and re-execute the
510 if (ea
!= vcpu
->arch
.pgfault_addr
)
513 if (vcpu
->arch
.pgfault_cache
) {
514 mmio_update
= atomic64_read(&kvm
->arch
.mmio_update
);
515 if (mmio_update
== vcpu
->arch
.pgfault_cache
->mmio_update
) {
516 r
= vcpu
->arch
.pgfault_cache
->rpte
;
517 psize
= kvmppc_actual_pgsz(vcpu
->arch
.pgfault_hpte
[0],
519 gpa_base
= r
& HPTE_R_RPN
& ~(psize
- 1);
520 gfn_base
= gpa_base
>> PAGE_SHIFT
;
521 gpa
= gpa_base
| (ea
& (psize
- 1));
522 return kvmppc_hv_emulate_mmio(run
, vcpu
, gpa
, ea
,
523 dsisr
& DSISR_ISSTORE
);
526 index
= vcpu
->arch
.pgfault_index
;
527 hptep
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (index
<< 4));
528 rev
= &kvm
->arch
.hpt
.rev
[index
];
530 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
532 hpte
[0] = be64_to_cpu(hptep
[0]) & ~HPTE_V_HVLOCK
;
533 hpte
[1] = be64_to_cpu(hptep
[1]);
534 hpte
[2] = r
= rev
->guest_rpte
;
535 unlock_hpte(hptep
, hpte
[0]);
538 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
539 hpte
[0] = hpte_new_to_old_v(hpte
[0], hpte
[1]);
540 hpte
[1] = hpte_new_to_old_r(hpte
[1]);
542 if (hpte
[0] != vcpu
->arch
.pgfault_hpte
[0] ||
543 hpte
[1] != vcpu
->arch
.pgfault_hpte
[1])
546 /* Translate the logical address and get the page */
547 psize
= kvmppc_actual_pgsz(hpte
[0], r
);
548 gpa_base
= r
& HPTE_R_RPN
& ~(psize
- 1);
549 gfn_base
= gpa_base
>> PAGE_SHIFT
;
550 gpa
= gpa_base
| (ea
& (psize
- 1));
551 gfn
= gpa
>> PAGE_SHIFT
;
552 memslot
= gfn_to_memslot(kvm
, gfn
);
554 trace_kvm_page_fault_enter(vcpu
, hpte
, memslot
, ea
, dsisr
);
556 /* No memslot means it's an emulated MMIO region */
557 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
558 return kvmppc_hv_emulate_mmio(run
, vcpu
, gpa
, ea
,
559 dsisr
& DSISR_ISSTORE
);
562 * This should never happen, because of the slot_is_aligned()
563 * check in kvmppc_do_h_enter().
565 if (gfn_base
< memslot
->base_gfn
)
568 /* used to check for invalidations in progress */
569 mmu_seq
= kvm
->mmu_notifier_seq
;
577 pte_size
= PAGE_SIZE
;
578 writing
= (dsisr
& DSISR_ISSTORE
) != 0;
579 /* If writing != 0, then the HPTE must allow writing, if we get here */
581 hva
= gfn_to_hva_memslot(memslot
, gfn
);
582 npages
= get_user_pages_fast(hva
, 1, writing
? FOLL_WRITE
: 0, pages
);
584 /* Check if it's an I/O mapping */
585 down_read(&mm
->mmap_sem
);
586 vma
= find_vma(mm
, hva
);
587 if (vma
&& vma
->vm_start
<= hva
&& hva
+ psize
<= vma
->vm_end
&&
588 (vma
->vm_flags
& VM_PFNMAP
)) {
589 pfn
= vma
->vm_pgoff
+
590 ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
592 is_ci
= pte_ci(__pte((pgprot_val(vma
->vm_page_prot
))));
593 write_ok
= vma
->vm_flags
& VM_WRITE
;
595 up_read(&mm
->mmap_sem
);
600 pfn
= page_to_pfn(page
);
601 if (PageHuge(page
)) {
602 page
= compound_head(page
);
603 pte_size
<<= compound_order(page
);
605 /* if the guest wants write access, see if that is OK */
606 if (!writing
&& hpte_is_writable(r
)) {
610 * We need to protect against page table destruction
611 * hugepage split and collapse.
613 local_irq_save(flags
);
614 ptep
= find_current_mm_pte(mm
->pgd
, hva
, NULL
, NULL
);
616 pte
= kvmppc_read_update_linux_pte(ptep
, 1);
617 if (__pte_write(pte
))
620 local_irq_restore(flags
);
624 if (psize
> pte_size
)
627 /* Check WIMG vs. the actual page we're accessing */
628 if (!hpte_cache_flags_ok(r
, is_ci
)) {
632 * Allow guest to map emulated device memory as
633 * uncacheable, but actually make it cacheable.
635 r
= (r
& ~(HPTE_R_W
|HPTE_R_I
|HPTE_R_G
)) | HPTE_R_M
;
639 * Set the HPTE to point to pfn.
640 * Since the pfn is at PAGE_SIZE granularity, make sure we
641 * don't mask out lower-order bits if psize < PAGE_SIZE.
643 if (psize
< PAGE_SIZE
)
645 r
= (r
& HPTE_R_KEY_HI
) | (r
& ~(HPTE_R_PP0
- psize
)) |
646 ((pfn
<< PAGE_SHIFT
) & ~(psize
- 1));
647 if (hpte_is_writable(r
) && !write_ok
)
648 r
= hpte_make_readonly(r
);
651 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
653 hnow_v
= be64_to_cpu(hptep
[0]);
654 hnow_r
= be64_to_cpu(hptep
[1]);
655 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
656 hnow_v
= hpte_new_to_old_v(hnow_v
, hnow_r
);
657 hnow_r
= hpte_new_to_old_r(hnow_r
);
661 * If the HPT is being resized, don't update the HPTE,
662 * instead let the guest retry after the resize operation is complete.
663 * The synchronization for mmu_ready test vs. set is provided
666 if (!kvm
->arch
.mmu_ready
)
669 if ((hnow_v
& ~HPTE_V_HVLOCK
) != hpte
[0] || hnow_r
!= hpte
[1] ||
670 rev
->guest_rpte
!= hpte
[2])
671 /* HPTE has been changed under us; let the guest retry */
673 hpte
[0] = (hpte
[0] & ~HPTE_V_ABSENT
) | HPTE_V_VALID
;
675 /* Always put the HPTE in the rmap chain for the page base address */
676 rmap
= &memslot
->arch
.rmap
[gfn_base
- memslot
->base_gfn
];
679 /* Check if we might have been invalidated; let the guest retry if so */
681 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
)) {
686 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
687 rcbits
= *rmap
>> KVMPPC_RMAP_RC_SHIFT
;
688 r
&= rcbits
| ~(HPTE_R_R
| HPTE_R_C
);
690 if (be64_to_cpu(hptep
[0]) & HPTE_V_VALID
) {
691 /* HPTE was previously valid, so we need to invalidate it */
693 hptep
[0] |= cpu_to_be64(HPTE_V_ABSENT
);
694 kvmppc_invalidate_hpte(kvm
, hptep
, index
);
695 /* don't lose previous R and C bits */
696 r
|= be64_to_cpu(hptep
[1]) & (HPTE_R_R
| HPTE_R_C
);
698 kvmppc_add_revmap_chain(kvm
, rev
, rmap
, index
, 0);
701 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
702 r
= hpte_old_to_new_r(hpte
[0], r
);
703 hpte
[0] = hpte_old_to_new_v(hpte
[0]);
705 hptep
[1] = cpu_to_be64(r
);
707 __unlock_hpte(hptep
, hpte
[0]);
708 asm volatile("ptesync" : : : "memory");
710 if (page
&& hpte_is_writable(r
))
714 trace_kvm_page_fault_exit(vcpu
, hpte
, ret
);
718 * We drop pages[0] here, not page because page might
719 * have been set to the head page of a compound, but
720 * we have to drop the reference on the correct tail
721 * page to match the get inside gup()
728 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
733 void kvmppc_rmap_reset(struct kvm
*kvm
)
735 struct kvm_memslots
*slots
;
736 struct kvm_memory_slot
*memslot
;
739 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
740 slots
= kvm_memslots(kvm
);
741 kvm_for_each_memslot(memslot
, slots
) {
742 /* Mutual exclusion with kvm_unmap_hva_range etc. */
743 spin_lock(&kvm
->mmu_lock
);
745 * This assumes it is acceptable to lose reference and
746 * change bits across a reset.
748 memset(memslot
->arch
.rmap
, 0,
749 memslot
->npages
* sizeof(*memslot
->arch
.rmap
));
750 spin_unlock(&kvm
->mmu_lock
);
752 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
755 typedef int (*hva_handler_fn
)(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
758 static int kvm_handle_hva_range(struct kvm
*kvm
,
761 hva_handler_fn handler
)
765 struct kvm_memslots
*slots
;
766 struct kvm_memory_slot
*memslot
;
768 slots
= kvm_memslots(kvm
);
769 kvm_for_each_memslot(memslot
, slots
) {
770 unsigned long hva_start
, hva_end
;
773 hva_start
= max(start
, memslot
->userspace_addr
);
774 hva_end
= min(end
, memslot
->userspace_addr
+
775 (memslot
->npages
<< PAGE_SHIFT
));
776 if (hva_start
>= hva_end
)
779 * {gfn(page) | page intersects with [hva_start, hva_end)} =
780 * {gfn, gfn+1, ..., gfn_end-1}.
782 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
783 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
785 for (; gfn
< gfn_end
; ++gfn
) {
786 ret
= handler(kvm
, memslot
, gfn
);
794 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
795 hva_handler_fn handler
)
797 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, handler
);
800 /* Must be called with both HPTE and rmap locked */
801 static void kvmppc_unmap_hpte(struct kvm
*kvm
, unsigned long i
,
802 struct kvm_memory_slot
*memslot
,
803 unsigned long *rmapp
, unsigned long gfn
)
805 __be64
*hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
806 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
808 unsigned long ptel
, psize
, rcbits
;
812 /* chain is now empty */
813 *rmapp
&= ~(KVMPPC_RMAP_PRESENT
| KVMPPC_RMAP_INDEX
);
815 /* remove i from chain */
819 rev
[i
].forw
= rev
[i
].back
= i
;
820 *rmapp
= (*rmapp
& ~KVMPPC_RMAP_INDEX
) | j
;
823 /* Now check and modify the HPTE */
824 ptel
= rev
[i
].guest_rpte
;
825 psize
= kvmppc_actual_pgsz(be64_to_cpu(hptep
[0]), ptel
);
826 if ((be64_to_cpu(hptep
[0]) & HPTE_V_VALID
) &&
827 hpte_rpn(ptel
, psize
) == gfn
) {
828 hptep
[0] |= cpu_to_be64(HPTE_V_ABSENT
);
829 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
830 hptep
[1] &= ~cpu_to_be64(HPTE_R_KEY_HI
| HPTE_R_KEY_LO
);
831 /* Harvest R and C */
832 rcbits
= be64_to_cpu(hptep
[1]) & (HPTE_R_R
| HPTE_R_C
);
833 *rmapp
|= rcbits
<< KVMPPC_RMAP_RC_SHIFT
;
834 if ((rcbits
& HPTE_R_C
) && memslot
->dirty_bitmap
)
835 kvmppc_update_dirty_map(memslot
, gfn
, psize
);
836 if (rcbits
& ~rev
[i
].guest_rpte
) {
837 rev
[i
].guest_rpte
= ptel
| rcbits
;
838 note_hpte_modification(kvm
, &rev
[i
]);
843 static int kvm_unmap_rmapp(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
848 unsigned long *rmapp
;
850 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
853 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
859 * To avoid an ABBA deadlock with the HPTE lock bit,
860 * we can't spin on the HPTE lock while holding the
863 i
= *rmapp
& KVMPPC_RMAP_INDEX
;
864 hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
865 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
866 /* unlock rmap before spinning on the HPTE lock */
868 while (be64_to_cpu(hptep
[0]) & HPTE_V_HVLOCK
)
873 kvmppc_unmap_hpte(kvm
, i
, memslot
, rmapp
, gfn
);
875 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
880 int kvm_unmap_hva_range_hv(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
882 hva_handler_fn handler
;
884 handler
= kvm_is_radix(kvm
) ? kvm_unmap_radix
: kvm_unmap_rmapp
;
885 kvm_handle_hva_range(kvm
, start
, end
, handler
);
889 void kvmppc_core_flush_memslot_hv(struct kvm
*kvm
,
890 struct kvm_memory_slot
*memslot
)
894 unsigned long *rmapp
;
896 gfn
= memslot
->base_gfn
;
897 rmapp
= memslot
->arch
.rmap
;
898 if (kvm_is_radix(kvm
)) {
899 kvmppc_radix_flush_memslot(kvm
, memslot
);
903 for (n
= memslot
->npages
; n
; --n
, ++gfn
) {
905 * Testing the present bit without locking is OK because
906 * the memslot has been marked invalid already, and hence
907 * no new HPTEs referencing this page can be created,
908 * thus the present bit can't go from 0 to 1.
910 if (*rmapp
& KVMPPC_RMAP_PRESENT
)
911 kvm_unmap_rmapp(kvm
, memslot
, gfn
);
916 static int kvm_age_rmapp(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
919 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
920 unsigned long head
, i
, j
;
923 unsigned long *rmapp
;
925 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
928 if (*rmapp
& KVMPPC_RMAP_REFERENCED
) {
929 *rmapp
&= ~KVMPPC_RMAP_REFERENCED
;
932 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
937 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
939 hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
942 /* If this HPTE isn't referenced, ignore it */
943 if (!(be64_to_cpu(hptep
[1]) & HPTE_R_R
))
946 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
947 /* unlock rmap before spinning on the HPTE lock */
949 while (be64_to_cpu(hptep
[0]) & HPTE_V_HVLOCK
)
954 /* Now check and modify the HPTE */
955 if ((be64_to_cpu(hptep
[0]) & HPTE_V_VALID
) &&
956 (be64_to_cpu(hptep
[1]) & HPTE_R_R
)) {
957 kvmppc_clear_ref_hpte(kvm
, hptep
, i
);
958 if (!(rev
[i
].guest_rpte
& HPTE_R_R
)) {
959 rev
[i
].guest_rpte
|= HPTE_R_R
;
960 note_hpte_modification(kvm
, &rev
[i
]);
964 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
965 } while ((i
= j
) != head
);
971 int kvm_age_hva_hv(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
973 hva_handler_fn handler
;
975 handler
= kvm_is_radix(kvm
) ? kvm_age_radix
: kvm_age_rmapp
;
976 return kvm_handle_hva_range(kvm
, start
, end
, handler
);
979 static int kvm_test_age_rmapp(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
982 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
983 unsigned long head
, i
, j
;
986 unsigned long *rmapp
;
988 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
989 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
993 if (*rmapp
& KVMPPC_RMAP_REFERENCED
)
996 if (*rmapp
& KVMPPC_RMAP_PRESENT
) {
997 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
999 hp
= (unsigned long *)(kvm
->arch
.hpt
.virt
+ (i
<< 4));
1001 if (be64_to_cpu(hp
[1]) & HPTE_R_R
)
1003 } while ((i
= j
) != head
);
1012 int kvm_test_age_hva_hv(struct kvm
*kvm
, unsigned long hva
)
1014 hva_handler_fn handler
;
1016 handler
= kvm_is_radix(kvm
) ? kvm_test_age_radix
: kvm_test_age_rmapp
;
1017 return kvm_handle_hva(kvm
, hva
, handler
);
1020 void kvm_set_spte_hva_hv(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1022 hva_handler_fn handler
;
1024 handler
= kvm_is_radix(kvm
) ? kvm_unmap_radix
: kvm_unmap_rmapp
;
1025 kvm_handle_hva(kvm
, hva
, handler
);
1028 static int vcpus_running(struct kvm
*kvm
)
1030 return atomic_read(&kvm
->arch
.vcpus_running
) != 0;
1034 * Returns the number of system pages that are dirty.
1035 * This can be more than 1 if we find a huge-page HPTE.
1037 static int kvm_test_clear_dirty_npages(struct kvm
*kvm
, unsigned long *rmapp
)
1039 struct revmap_entry
*rev
= kvm
->arch
.hpt
.rev
;
1040 unsigned long head
, i
, j
;
1044 int npages_dirty
= 0;
1048 if (!(*rmapp
& KVMPPC_RMAP_PRESENT
)) {
1050 return npages_dirty
;
1053 i
= head
= *rmapp
& KVMPPC_RMAP_INDEX
;
1055 unsigned long hptep1
;
1056 hptep
= (__be64
*) (kvm
->arch
.hpt
.virt
+ (i
<< 4));
1060 * Checking the C (changed) bit here is racy since there
1061 * is no guarantee about when the hardware writes it back.
1062 * If the HPTE is not writable then it is stable since the
1063 * page can't be written to, and we would have done a tlbie
1064 * (which forces the hardware to complete any writeback)
1065 * when making the HPTE read-only.
1066 * If vcpus are running then this call is racy anyway
1067 * since the page could get dirtied subsequently, so we
1068 * expect there to be a further call which would pick up
1069 * any delayed C bit writeback.
1070 * Otherwise we need to do the tlbie even if C==0 in
1071 * order to pick up any delayed writeback of C.
1073 hptep1
= be64_to_cpu(hptep
[1]);
1074 if (!(hptep1
& HPTE_R_C
) &&
1075 (!hpte_is_writable(hptep1
) || vcpus_running(kvm
)))
1078 if (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
)) {
1079 /* unlock rmap before spinning on the HPTE lock */
1081 while (hptep
[0] & cpu_to_be64(HPTE_V_HVLOCK
))
1086 /* Now check and modify the HPTE */
1087 if (!(hptep
[0] & cpu_to_be64(HPTE_V_VALID
))) {
1088 __unlock_hpte(hptep
, be64_to_cpu(hptep
[0]));
1092 /* need to make it temporarily absent so C is stable */
1093 hptep
[0] |= cpu_to_be64(HPTE_V_ABSENT
);
1094 kvmppc_invalidate_hpte(kvm
, hptep
, i
);
1095 v
= be64_to_cpu(hptep
[0]);
1096 r
= be64_to_cpu(hptep
[1]);
1098 hptep
[1] = cpu_to_be64(r
& ~HPTE_R_C
);
1099 if (!(rev
[i
].guest_rpte
& HPTE_R_C
)) {
1100 rev
[i
].guest_rpte
|= HPTE_R_C
;
1101 note_hpte_modification(kvm
, &rev
[i
]);
1103 n
= kvmppc_actual_pgsz(v
, r
);
1104 n
= (n
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1105 if (n
> npages_dirty
)
1109 v
&= ~HPTE_V_ABSENT
;
1111 __unlock_hpte(hptep
, v
);
1112 } while ((i
= j
) != head
);
1115 return npages_dirty
;
1118 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa
*vpa
,
1119 struct kvm_memory_slot
*memslot
,
1124 if (!vpa
->dirty
|| !vpa
->pinned_addr
)
1126 gfn
= vpa
->gpa
>> PAGE_SHIFT
;
1127 if (gfn
< memslot
->base_gfn
||
1128 gfn
>= memslot
->base_gfn
+ memslot
->npages
)
1133 __set_bit_le(gfn
- memslot
->base_gfn
, map
);
1136 long kvmppc_hv_get_dirty_log_hpt(struct kvm
*kvm
,
1137 struct kvm_memory_slot
*memslot
, unsigned long *map
)
1140 unsigned long *rmapp
;
1143 rmapp
= memslot
->arch
.rmap
;
1144 for (i
= 0; i
< memslot
->npages
; ++i
) {
1145 int npages
= kvm_test_clear_dirty_npages(kvm
, rmapp
);
1147 * Note that if npages > 0 then i must be a multiple of npages,
1148 * since we always put huge-page HPTEs in the rmap chain
1149 * corresponding to their page base address.
1152 set_dirty_bits(map
, i
, npages
);
1159 void *kvmppc_pin_guest_page(struct kvm
*kvm
, unsigned long gpa
,
1160 unsigned long *nb_ret
)
1162 struct kvm_memory_slot
*memslot
;
1163 unsigned long gfn
= gpa
>> PAGE_SHIFT
;
1164 struct page
*page
, *pages
[1];
1166 unsigned long hva
, offset
;
1169 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1170 memslot
= gfn_to_memslot(kvm
, gfn
);
1171 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
1173 hva
= gfn_to_hva_memslot(memslot
, gfn
);
1174 npages
= get_user_pages_fast(hva
, 1, FOLL_WRITE
, pages
);
1178 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1180 offset
= gpa
& (PAGE_SIZE
- 1);
1182 *nb_ret
= PAGE_SIZE
- offset
;
1183 return page_address(page
) + offset
;
1186 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1190 void kvmppc_unpin_guest_page(struct kvm
*kvm
, void *va
, unsigned long gpa
,
1193 struct page
*page
= virt_to_page(va
);
1194 struct kvm_memory_slot
*memslot
;
1203 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1204 gfn
= gpa
>> PAGE_SHIFT
;
1205 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1206 memslot
= gfn_to_memslot(kvm
, gfn
);
1207 if (memslot
&& memslot
->dirty_bitmap
)
1208 set_bit_le(gfn
- memslot
->base_gfn
, memslot
->dirty_bitmap
);
1209 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1215 static int resize_hpt_allocate(struct kvm_resize_hpt
*resize
)
1219 rc
= kvmppc_allocate_hpt(&resize
->hpt
, resize
->order
);
1223 resize_hpt_debug(resize
, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1229 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt
*resize
,
1232 struct kvm
*kvm
= resize
->kvm
;
1233 struct kvm_hpt_info
*old
= &kvm
->arch
.hpt
;
1234 struct kvm_hpt_info
*new = &resize
->hpt
;
1235 unsigned long old_hash_mask
= (1ULL << (old
->order
- 7)) - 1;
1236 unsigned long new_hash_mask
= (1ULL << (new->order
- 7)) - 1;
1237 __be64
*hptep
, *new_hptep
;
1238 unsigned long vpte
, rpte
, guest_rpte
;
1240 struct revmap_entry
*rev
;
1241 unsigned long apsize
, avpn
, pteg
, hash
;
1242 unsigned long new_idx
, new_pteg
, replace_vpte
;
1245 hptep
= (__be64
*)(old
->virt
+ (idx
<< 4));
1247 /* Guest is stopped, so new HPTEs can't be added or faulted
1248 * in, only unmapped or altered by host actions. So, it's
1249 * safe to check this before we take the HPTE lock */
1250 vpte
= be64_to_cpu(hptep
[0]);
1251 if (!(vpte
& HPTE_V_VALID
) && !(vpte
& HPTE_V_ABSENT
))
1252 return 0; /* nothing to do */
1254 while (!try_lock_hpte(hptep
, HPTE_V_HVLOCK
))
1257 vpte
= be64_to_cpu(hptep
[0]);
1260 if (!(vpte
& HPTE_V_VALID
) && !(vpte
& HPTE_V_ABSENT
))
1264 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1265 rpte
= be64_to_cpu(hptep
[1]);
1266 vpte
= hpte_new_to_old_v(vpte
, rpte
);
1270 rev
= &old
->rev
[idx
];
1271 guest_rpte
= rev
->guest_rpte
;
1274 apsize
= kvmppc_actual_pgsz(vpte
, guest_rpte
);
1278 if (vpte
& HPTE_V_VALID
) {
1279 unsigned long gfn
= hpte_rpn(guest_rpte
, apsize
);
1280 int srcu_idx
= srcu_read_lock(&kvm
->srcu
);
1281 struct kvm_memory_slot
*memslot
=
1282 __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1285 unsigned long *rmapp
;
1286 rmapp
= &memslot
->arch
.rmap
[gfn
- memslot
->base_gfn
];
1289 kvmppc_unmap_hpte(kvm
, idx
, memslot
, rmapp
, gfn
);
1293 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
1296 /* Reload PTE after unmap */
1297 vpte
= be64_to_cpu(hptep
[0]);
1298 BUG_ON(vpte
& HPTE_V_VALID
);
1299 BUG_ON(!(vpte
& HPTE_V_ABSENT
));
1302 if (!(vpte
& HPTE_V_BOLTED
))
1305 rpte
= be64_to_cpu(hptep
[1]);
1307 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1308 vpte
= hpte_new_to_old_v(vpte
, rpte
);
1309 rpte
= hpte_new_to_old_r(rpte
);
1312 pshift
= kvmppc_hpte_base_page_shift(vpte
, rpte
);
1313 avpn
= HPTE_V_AVPN_VAL(vpte
) & ~(((1ul << pshift
) - 1) >> 23);
1314 pteg
= idx
/ HPTES_PER_GROUP
;
1315 if (vpte
& HPTE_V_SECONDARY
)
1318 if (!(vpte
& HPTE_V_1TB_SEG
)) {
1319 unsigned long offset
, vsid
;
1321 /* We only have 28 - 23 bits of offset in avpn */
1322 offset
= (avpn
& 0x1f) << 23;
1324 /* We can find more bits from the pteg value */
1326 offset
|= ((vsid
^ pteg
) & old_hash_mask
) << pshift
;
1328 hash
= vsid
^ (offset
>> pshift
);
1330 unsigned long offset
, vsid
;
1332 /* We only have 40 - 23 bits of seg_off in avpn */
1333 offset
= (avpn
& 0x1ffff) << 23;
1336 offset
|= ((vsid
^ (vsid
<< 25) ^ pteg
) & old_hash_mask
) << pshift
;
1338 hash
= vsid
^ (vsid
<< 25) ^ (offset
>> pshift
);
1341 new_pteg
= hash
& new_hash_mask
;
1342 if (vpte
& HPTE_V_SECONDARY
)
1343 new_pteg
= ~hash
& new_hash_mask
;
1345 new_idx
= new_pteg
* HPTES_PER_GROUP
+ (idx
% HPTES_PER_GROUP
);
1346 new_hptep
= (__be64
*)(new->virt
+ (new_idx
<< 4));
1348 replace_vpte
= be64_to_cpu(new_hptep
[0]);
1349 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1350 unsigned long replace_rpte
= be64_to_cpu(new_hptep
[1]);
1351 replace_vpte
= hpte_new_to_old_v(replace_vpte
, replace_rpte
);
1354 if (replace_vpte
& (HPTE_V_VALID
| HPTE_V_ABSENT
)) {
1355 BUG_ON(new->order
>= old
->order
);
1357 if (replace_vpte
& HPTE_V_BOLTED
) {
1358 if (vpte
& HPTE_V_BOLTED
)
1359 /* Bolted collision, nothing we can do */
1361 /* Discard the new HPTE */
1365 /* Discard the previous HPTE */
1368 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1369 rpte
= hpte_old_to_new_r(vpte
, rpte
);
1370 vpte
= hpte_old_to_new_v(vpte
);
1373 new_hptep
[1] = cpu_to_be64(rpte
);
1374 new->rev
[new_idx
].guest_rpte
= guest_rpte
;
1375 /* No need for a barrier, since new HPT isn't active */
1376 new_hptep
[0] = cpu_to_be64(vpte
);
1377 unlock_hpte(new_hptep
, vpte
);
1380 unlock_hpte(hptep
, vpte
);
1384 static int resize_hpt_rehash(struct kvm_resize_hpt
*resize
)
1386 struct kvm
*kvm
= resize
->kvm
;
1390 for (i
= 0; i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
); i
++) {
1391 rc
= resize_hpt_rehash_hpte(resize
, i
);
1399 static void resize_hpt_pivot(struct kvm_resize_hpt
*resize
)
1401 struct kvm
*kvm
= resize
->kvm
;
1402 struct kvm_hpt_info hpt_tmp
;
1404 /* Exchange the pending tables in the resize structure with
1405 * the active tables */
1407 resize_hpt_debug(resize
, "resize_hpt_pivot()\n");
1409 spin_lock(&kvm
->mmu_lock
);
1410 asm volatile("ptesync" : : : "memory");
1412 hpt_tmp
= kvm
->arch
.hpt
;
1413 kvmppc_set_hpt(kvm
, &resize
->hpt
);
1414 resize
->hpt
= hpt_tmp
;
1416 spin_unlock(&kvm
->mmu_lock
);
1418 synchronize_srcu_expedited(&kvm
->srcu
);
1420 if (cpu_has_feature(CPU_FTR_ARCH_300
))
1421 kvmppc_setup_partition_table(kvm
);
1423 resize_hpt_debug(resize
, "resize_hpt_pivot() done\n");
1426 static void resize_hpt_release(struct kvm
*kvm
, struct kvm_resize_hpt
*resize
)
1428 if (WARN_ON(!mutex_is_locked(&kvm
->arch
.mmu_setup_lock
)))
1434 if (resize
->error
!= -EBUSY
) {
1435 if (resize
->hpt
.virt
)
1436 kvmppc_free_hpt(&resize
->hpt
);
1440 if (kvm
->arch
.resize_hpt
== resize
)
1441 kvm
->arch
.resize_hpt
= NULL
;
1444 static void resize_hpt_prepare_work(struct work_struct
*work
)
1446 struct kvm_resize_hpt
*resize
= container_of(work
,
1447 struct kvm_resize_hpt
,
1449 struct kvm
*kvm
= resize
->kvm
;
1452 if (WARN_ON(resize
->error
!= -EBUSY
))
1455 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
1457 /* Request is still current? */
1458 if (kvm
->arch
.resize_hpt
== resize
) {
1459 /* We may request large allocations here:
1460 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1462 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
1464 resize_hpt_debug(resize
, "resize_hpt_prepare_work(): order = %d\n",
1467 err
= resize_hpt_allocate(resize
);
1469 /* We have strict assumption about -EBUSY
1470 * when preparing for HPT resize.
1472 if (WARN_ON(err
== -EBUSY
))
1475 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
1476 /* It is possible that kvm->arch.resize_hpt != resize
1477 * after we grab kvm->arch.mmu_setup_lock again.
1481 resize
->error
= err
;
1483 if (kvm
->arch
.resize_hpt
!= resize
)
1484 resize_hpt_release(kvm
, resize
);
1486 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
1489 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm
*kvm
,
1490 struct kvm_ppc_resize_hpt
*rhpt
)
1492 unsigned long flags
= rhpt
->flags
;
1493 unsigned long shift
= rhpt
->shift
;
1494 struct kvm_resize_hpt
*resize
;
1497 if (flags
!= 0 || kvm_is_radix(kvm
))
1500 if (shift
&& ((shift
< 18) || (shift
> 46)))
1503 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
1505 resize
= kvm
->arch
.resize_hpt
;
1508 if (resize
->order
== shift
) {
1509 /* Suitable resize in progress? */
1510 ret
= resize
->error
;
1512 ret
= 100; /* estimated time in ms */
1514 resize_hpt_release(kvm
, resize
);
1519 /* not suitable, cancel it */
1520 resize_hpt_release(kvm
, resize
);
1525 goto out
; /* nothing to do */
1527 /* start new resize */
1529 resize
= kzalloc(sizeof(*resize
), GFP_KERNEL
);
1535 resize
->error
= -EBUSY
;
1536 resize
->order
= shift
;
1538 INIT_WORK(&resize
->work
, resize_hpt_prepare_work
);
1539 kvm
->arch
.resize_hpt
= resize
;
1541 schedule_work(&resize
->work
);
1543 ret
= 100; /* estimated time in ms */
1546 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
1550 static void resize_hpt_boot_vcpu(void *opaque
)
1552 /* Nothing to do, just force a KVM exit */
1555 long kvm_vm_ioctl_resize_hpt_commit(struct kvm
*kvm
,
1556 struct kvm_ppc_resize_hpt
*rhpt
)
1558 unsigned long flags
= rhpt
->flags
;
1559 unsigned long shift
= rhpt
->shift
;
1560 struct kvm_resize_hpt
*resize
;
1563 if (flags
!= 0 || kvm_is_radix(kvm
))
1566 if (shift
&& ((shift
< 18) || (shift
> 46)))
1569 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
1571 resize
= kvm
->arch
.resize_hpt
;
1573 /* This shouldn't be possible */
1575 if (WARN_ON(!kvm
->arch
.mmu_ready
))
1578 /* Stop VCPUs from running while we mess with the HPT */
1579 kvm
->arch
.mmu_ready
= 0;
1582 /* Boot all CPUs out of the guest so they re-read
1584 on_each_cpu(resize_hpt_boot_vcpu
, NULL
, 1);
1587 if (!resize
|| (resize
->order
!= shift
))
1590 ret
= resize
->error
;
1594 ret
= resize_hpt_rehash(resize
);
1598 resize_hpt_pivot(resize
);
1601 /* Let VCPUs run again */
1602 kvm
->arch
.mmu_ready
= 1;
1605 resize_hpt_release(kvm
, resize
);
1606 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
1611 * Functions for reading and writing the hash table via reads and
1612 * writes on a file descriptor.
1614 * Reads return the guest view of the hash table, which has to be
1615 * pieced together from the real hash table and the guest_rpte
1616 * values in the revmap array.
1618 * On writes, each HPTE written is considered in turn, and if it
1619 * is valid, it is written to the HPT as if an H_ENTER with the
1620 * exact flag set was done. When the invalid count is non-zero
1621 * in the header written to the stream, the kernel will make
1622 * sure that that many HPTEs are invalid, and invalidate them
1626 struct kvm_htab_ctx
{
1627 unsigned long index
;
1628 unsigned long flags
;
1633 #define HPTE_SIZE (2 * sizeof(unsigned long))
1636 * Returns 1 if this HPT entry has been modified or has pending
1639 static int hpte_dirty(struct revmap_entry
*revp
, __be64
*hptp
)
1641 unsigned long rcbits_unset
;
1643 if (revp
->guest_rpte
& HPTE_GR_MODIFIED
)
1646 /* Also need to consider changes in reference and changed bits */
1647 rcbits_unset
= ~revp
->guest_rpte
& (HPTE_R_R
| HPTE_R_C
);
1648 if ((be64_to_cpu(hptp
[0]) & HPTE_V_VALID
) &&
1649 (be64_to_cpu(hptp
[1]) & rcbits_unset
))
1655 static long record_hpte(unsigned long flags
, __be64
*hptp
,
1656 unsigned long *hpte
, struct revmap_entry
*revp
,
1657 int want_valid
, int first_pass
)
1659 unsigned long v
, r
, hr
;
1660 unsigned long rcbits_unset
;
1664 /* Unmodified entries are uninteresting except on the first pass */
1665 dirty
= hpte_dirty(revp
, hptp
);
1666 if (!first_pass
&& !dirty
)
1670 if (be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
)) {
1672 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) &&
1673 !(be64_to_cpu(hptp
[0]) & HPTE_V_BOLTED
))
1676 if (valid
!= want_valid
)
1680 if (valid
|| dirty
) {
1681 /* lock the HPTE so it's stable and read it */
1683 while (!try_lock_hpte(hptp
, HPTE_V_HVLOCK
))
1685 v
= be64_to_cpu(hptp
[0]);
1686 hr
= be64_to_cpu(hptp
[1]);
1687 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
1688 v
= hpte_new_to_old_v(v
, hr
);
1689 hr
= hpte_new_to_old_r(hr
);
1692 /* re-evaluate valid and dirty from synchronized HPTE value */
1693 valid
= !!(v
& HPTE_V_VALID
);
1694 dirty
= !!(revp
->guest_rpte
& HPTE_GR_MODIFIED
);
1696 /* Harvest R and C into guest view if necessary */
1697 rcbits_unset
= ~revp
->guest_rpte
& (HPTE_R_R
| HPTE_R_C
);
1698 if (valid
&& (rcbits_unset
& hr
)) {
1699 revp
->guest_rpte
|= (hr
&
1700 (HPTE_R_R
| HPTE_R_C
)) | HPTE_GR_MODIFIED
;
1704 if (v
& HPTE_V_ABSENT
) {
1705 v
&= ~HPTE_V_ABSENT
;
1709 if ((flags
& KVM_GET_HTAB_BOLTED_ONLY
) && !(v
& HPTE_V_BOLTED
))
1712 r
= revp
->guest_rpte
;
1713 /* only clear modified if this is the right sort of entry */
1714 if (valid
== want_valid
&& dirty
) {
1715 r
&= ~HPTE_GR_MODIFIED
;
1716 revp
->guest_rpte
= r
;
1718 unlock_hpte(hptp
, be64_to_cpu(hptp
[0]));
1720 if (!(valid
== want_valid
&& (first_pass
|| dirty
)))
1723 hpte
[0] = cpu_to_be64(v
);
1724 hpte
[1] = cpu_to_be64(r
);
1728 static ssize_t
kvm_htab_read(struct file
*file
, char __user
*buf
,
1729 size_t count
, loff_t
*ppos
)
1731 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1732 struct kvm
*kvm
= ctx
->kvm
;
1733 struct kvm_get_htab_header hdr
;
1735 struct revmap_entry
*revp
;
1736 unsigned long i
, nb
, nw
;
1737 unsigned long __user
*lbuf
;
1738 struct kvm_get_htab_header __user
*hptr
;
1739 unsigned long flags
;
1741 unsigned long hpte
[2];
1743 if (!access_ok(buf
, count
))
1745 if (kvm_is_radix(kvm
))
1748 first_pass
= ctx
->first_pass
;
1752 hptp
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (i
* HPTE_SIZE
));
1753 revp
= kvm
->arch
.hpt
.rev
+ i
;
1754 lbuf
= (unsigned long __user
*)buf
;
1757 while (nb
+ sizeof(hdr
) + HPTE_SIZE
< count
) {
1758 /* Initialize header */
1759 hptr
= (struct kvm_get_htab_header __user
*)buf
;
1764 lbuf
= (unsigned long __user
*)(buf
+ sizeof(hdr
));
1766 /* Skip uninteresting entries, i.e. clean on not-first pass */
1768 while (i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
) &&
1769 !hpte_dirty(revp
, hptp
)) {
1777 /* Grab a series of valid entries */
1778 while (i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
) &&
1779 hdr
.n_valid
< 0xffff &&
1780 nb
+ HPTE_SIZE
< count
&&
1781 record_hpte(flags
, hptp
, hpte
, revp
, 1, first_pass
)) {
1782 /* valid entry, write it out */
1784 if (__put_user(hpte
[0], lbuf
) ||
1785 __put_user(hpte
[1], lbuf
+ 1))
1793 /* Now skip invalid entries while we can */
1794 while (i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
) &&
1795 hdr
.n_invalid
< 0xffff &&
1796 record_hpte(flags
, hptp
, hpte
, revp
, 0, first_pass
)) {
1797 /* found an invalid entry */
1804 if (hdr
.n_valid
|| hdr
.n_invalid
) {
1805 /* write back the header */
1806 if (__copy_to_user(hptr
, &hdr
, sizeof(hdr
)))
1809 buf
= (char __user
*)lbuf
;
1814 /* Check if we've wrapped around the hash table */
1815 if (i
>= kvmppc_hpt_npte(&kvm
->arch
.hpt
)) {
1817 ctx
->first_pass
= 0;
1827 static ssize_t
kvm_htab_write(struct file
*file
, const char __user
*buf
,
1828 size_t count
, loff_t
*ppos
)
1830 struct kvm_htab_ctx
*ctx
= file
->private_data
;
1831 struct kvm
*kvm
= ctx
->kvm
;
1832 struct kvm_get_htab_header hdr
;
1835 unsigned long __user
*lbuf
;
1837 unsigned long tmp
[2];
1843 if (!access_ok(buf
, count
))
1845 if (kvm_is_radix(kvm
))
1848 /* lock out vcpus from running while we're doing this */
1849 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
1850 mmu_ready
= kvm
->arch
.mmu_ready
;
1852 kvm
->arch
.mmu_ready
= 0; /* temporarily */
1853 /* order mmu_ready vs. vcpus_running */
1855 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
1856 kvm
->arch
.mmu_ready
= 1;
1857 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
1863 for (nb
= 0; nb
+ sizeof(hdr
) <= count
; ) {
1865 if (__copy_from_user(&hdr
, buf
, sizeof(hdr
)))
1869 if (nb
+ hdr
.n_valid
* HPTE_SIZE
> count
)
1877 if (i
>= kvmppc_hpt_npte(&kvm
->arch
.hpt
) ||
1878 i
+ hdr
.n_valid
+ hdr
.n_invalid
> kvmppc_hpt_npte(&kvm
->arch
.hpt
))
1881 hptp
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (i
* HPTE_SIZE
));
1882 lbuf
= (unsigned long __user
*)buf
;
1883 for (j
= 0; j
< hdr
.n_valid
; ++j
) {
1888 if (__get_user(hpte_v
, lbuf
) ||
1889 __get_user(hpte_r
, lbuf
+ 1))
1891 v
= be64_to_cpu(hpte_v
);
1892 r
= be64_to_cpu(hpte_r
);
1894 if (!(v
& HPTE_V_VALID
))
1896 pshift
= kvmppc_hpte_base_page_shift(v
, r
);
1902 if (be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1903 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1905 ret
= kvmppc_virtmode_do_h_enter(kvm
, H_EXACT
, i
, v
, r
,
1907 if (ret
!= H_SUCCESS
) {
1908 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1909 "r=%lx\n", ret
, i
, v
, r
);
1912 if (!mmu_ready
&& is_vrma_hpte(v
)) {
1913 unsigned long senc
, lpcr
;
1915 senc
= slb_pgsize_encoding(1ul << pshift
);
1916 kvm
->arch
.vrma_slb_v
= senc
| SLB_VSID_B_1T
|
1917 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
1918 if (!cpu_has_feature(CPU_FTR_ARCH_300
)) {
1919 lpcr
= senc
<< (LPCR_VRMASD_SH
- 4);
1920 kvmppc_update_lpcr(kvm
, lpcr
,
1923 kvmppc_setup_partition_table(kvm
);
1931 for (j
= 0; j
< hdr
.n_invalid
; ++j
) {
1932 if (be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
))
1933 kvmppc_do_h_remove(kvm
, 0, i
, 0, tmp
);
1941 /* Order HPTE updates vs. mmu_ready */
1943 kvm
->arch
.mmu_ready
= mmu_ready
;
1944 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
1951 static int kvm_htab_release(struct inode
*inode
, struct file
*filp
)
1953 struct kvm_htab_ctx
*ctx
= filp
->private_data
;
1955 filp
->private_data
= NULL
;
1956 if (!(ctx
->flags
& KVM_GET_HTAB_WRITE
))
1957 atomic_dec(&ctx
->kvm
->arch
.hpte_mod_interest
);
1958 kvm_put_kvm(ctx
->kvm
);
1963 static const struct file_operations kvm_htab_fops
= {
1964 .read
= kvm_htab_read
,
1965 .write
= kvm_htab_write
,
1966 .llseek
= default_llseek
,
1967 .release
= kvm_htab_release
,
1970 int kvm_vm_ioctl_get_htab_fd(struct kvm
*kvm
, struct kvm_get_htab_fd
*ghf
)
1973 struct kvm_htab_ctx
*ctx
;
1976 /* reject flags we don't recognize */
1977 if (ghf
->flags
& ~(KVM_GET_HTAB_BOLTED_ONLY
| KVM_GET_HTAB_WRITE
))
1979 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
1984 ctx
->index
= ghf
->start_index
;
1985 ctx
->flags
= ghf
->flags
;
1986 ctx
->first_pass
= 1;
1988 rwflag
= (ghf
->flags
& KVM_GET_HTAB_WRITE
) ? O_WRONLY
: O_RDONLY
;
1989 ret
= anon_inode_getfd("kvm-htab", &kvm_htab_fops
, ctx
, rwflag
| O_CLOEXEC
);
1992 kvm_put_kvm_no_destroy(kvm
);
1996 if (rwflag
== O_RDONLY
) {
1997 mutex_lock(&kvm
->slots_lock
);
1998 atomic_inc(&kvm
->arch
.hpte_mod_interest
);
1999 /* make sure kvmppc_do_h_enter etc. see the increment */
2000 synchronize_srcu_expedited(&kvm
->srcu
);
2001 mutex_unlock(&kvm
->slots_lock
);
2007 struct debugfs_htab_state
{
2010 unsigned long hpt_index
;
2016 static int debugfs_htab_open(struct inode
*inode
, struct file
*file
)
2018 struct kvm
*kvm
= inode
->i_private
;
2019 struct debugfs_htab_state
*p
;
2021 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2027 mutex_init(&p
->mutex
);
2028 file
->private_data
= p
;
2030 return nonseekable_open(inode
, file
);
2033 static int debugfs_htab_release(struct inode
*inode
, struct file
*file
)
2035 struct debugfs_htab_state
*p
= file
->private_data
;
2037 kvm_put_kvm(p
->kvm
);
2042 static ssize_t
debugfs_htab_read(struct file
*file
, char __user
*buf
,
2043 size_t len
, loff_t
*ppos
)
2045 struct debugfs_htab_state
*p
= file
->private_data
;
2048 unsigned long v
, hr
, gr
;
2053 if (kvm_is_radix(kvm
))
2056 ret
= mutex_lock_interruptible(&p
->mutex
);
2060 if (p
->chars_left
) {
2064 r
= copy_to_user(buf
, p
->buf
+ p
->buf_index
, n
);
2079 hptp
= (__be64
*)(kvm
->arch
.hpt
.virt
+ (i
* HPTE_SIZE
));
2080 for (; len
!= 0 && i
< kvmppc_hpt_npte(&kvm
->arch
.hpt
);
2082 if (!(be64_to_cpu(hptp
[0]) & (HPTE_V_VALID
| HPTE_V_ABSENT
)))
2085 /* lock the HPTE so it's stable and read it */
2087 while (!try_lock_hpte(hptp
, HPTE_V_HVLOCK
))
2089 v
= be64_to_cpu(hptp
[0]) & ~HPTE_V_HVLOCK
;
2090 hr
= be64_to_cpu(hptp
[1]);
2091 gr
= kvm
->arch
.hpt
.rev
[i
].guest_rpte
;
2092 unlock_hpte(hptp
, v
);
2095 if (!(v
& (HPTE_V_VALID
| HPTE_V_ABSENT
)))
2098 n
= scnprintf(p
->buf
, sizeof(p
->buf
),
2099 "%6lx %.16lx %.16lx %.16lx\n",
2104 r
= copy_to_user(buf
, p
->buf
, n
);
2120 mutex_unlock(&p
->mutex
);
2124 static ssize_t
debugfs_htab_write(struct file
*file
, const char __user
*buf
,
2125 size_t len
, loff_t
*ppos
)
2130 static const struct file_operations debugfs_htab_fops
= {
2131 .owner
= THIS_MODULE
,
2132 .open
= debugfs_htab_open
,
2133 .release
= debugfs_htab_release
,
2134 .read
= debugfs_htab_read
,
2135 .write
= debugfs_htab_write
,
2136 .llseek
= generic_file_llseek
,
2139 void kvmppc_mmu_debugfs_init(struct kvm
*kvm
)
2141 kvm
->arch
.htab_dentry
= debugfs_create_file("htab", 0400,
2142 kvm
->arch
.debugfs_dir
, kvm
,
2143 &debugfs_htab_fops
);
2146 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu
*vcpu
)
2148 struct kvmppc_mmu
*mmu
= &vcpu
->arch
.mmu
;
2150 vcpu
->arch
.slb_nr
= 32; /* POWER7/POWER8 */
2152 mmu
->xlate
= kvmppc_mmu_book3s_64_hv_xlate
;
2154 vcpu
->arch
.hflags
|= BOOK3S_HFLAG_SLB
;