1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
46 #include <asm/ftrace.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
67 #include <asm/dbell.h>
69 #include <asm/pnv-pci.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_host.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
81 #define CREATE_TRACE_POINTS
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL (~(u64)0)
96 static DECLARE_BITMAP(default_enabled_hcalls
, MAX_HCALL_OPCODE
/4 + 1);
98 static int dynamic_mt_modes
= 6;
99 module_param(dynamic_mt_modes
, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes
, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode
;
102 module_param(target_smt_mode
, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode
, "Target threads per core (0 = max)");
105 static bool indep_threads_mode
= true;
106 module_param(indep_threads_mode
, bool, S_IRUGO
| S_IWUSR
);
107 MODULE_PARM_DESC(indep_threads_mode
, "Independent-threads mode (only on POWER9)");
109 static bool one_vm_per_core
;
110 module_param(one_vm_per_core
, bool, S_IRUGO
| S_IWUSR
);
111 MODULE_PARM_DESC(one_vm_per_core
, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
113 #ifdef CONFIG_KVM_XICS
114 static struct kernel_param_ops module_param_ops
= {
115 .set
= param_set_int
,
116 .get
= param_get_int
,
119 module_param_cb(kvm_irq_bypass
, &module_param_ops
, &kvm_irq_bypass
, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass
, "Bypass passthrough interrupt optimization");
122 module_param_cb(h_ipi_redirect
, &module_param_ops
, &h_ipi_redirect
, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect
, "Redirect H_IPI wakeup to a free host core");
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested
= true;
128 module_param(nested
, bool, S_IRUGO
| S_IWUSR
);
129 MODULE_PARM_DESC(nested
, "Enable nested virtualization (only on POWER9)");
131 static inline bool nesting_enabled(struct kvm
*kvm
)
133 return kvm
->arch
.nested_enable
&& kvm_is_radix(kvm
);
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix
;
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu
*vcpu
);
142 * RWMR values for POWER8. These control the rate at which PURR
143 * and SPURR count and should be set according to the number of
144 * online threads in the vcore being run.
146 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
155 static unsigned long p8_rwmr_values
[MAX_SMT_THREADS
+ 1] = {
167 static inline struct kvm_vcpu
*next_runnable_thread(struct kvmppc_vcore
*vc
,
171 struct kvm_vcpu
*vcpu
;
173 while (++i
< MAX_SMT_THREADS
) {
174 vcpu
= READ_ONCE(vc
->runnable_threads
[i
]);
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
187 static bool kvmppc_ipi_thread(int cpu
)
189 unsigned long msg
= PPC_DBELL_TYPE(PPC_DBELL_SERVER
);
191 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192 if (kvmhv_on_pseries())
195 /* On POWER9 we can use msgsnd to IPI any cpu */
196 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
197 msg
|= get_hard_smp_processor_id(cpu
);
199 __asm__
__volatile__ (PPC_MSGSND(%0) : : "r" (msg
));
203 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
206 if (cpu_first_thread_sibling(cpu
) ==
207 cpu_first_thread_sibling(smp_processor_id())) {
208 msg
|= cpu_thread_in_core(cpu
);
210 __asm__
__volatile__ (PPC_MSGSND(%0) : : "r" (msg
));
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218 if (cpu
>= 0 && cpu
< nr_cpu_ids
) {
219 if (paca_ptrs
[cpu
]->kvm_hstate
.xics_phys
) {
223 opal_int_set_mfrr(get_hard_smp_processor_id(cpu
), IPI_PRIORITY
);
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu
*vcpu
)
234 struct swait_queue_head
*wqp
;
236 wqp
= kvm_arch_vcpu_wq(vcpu
);
237 if (swq_has_sleeper(wqp
)) {
239 ++vcpu
->stat
.halt_wakeup
;
242 cpu
= READ_ONCE(vcpu
->arch
.thread_cpu
);
243 if (cpu
>= 0 && kvmppc_ipi_thread(cpu
))
246 /* CPU points to the first thread of the core */
248 if (cpu
>= 0 && cpu
< nr_cpu_ids
&& cpu_online(cpu
))
249 smp_send_reschedule(cpu
);
253 * We use the vcpu_load/put functions to measure stolen time.
254 * Stolen time is counted as time when either the vcpu is able to
255 * run as part of a virtual core, but the task running the vcore
256 * is preempted or sleeping, or when the vcpu needs something done
257 * in the kernel by the task running the vcpu, but that task is
258 * preempted or sleeping. Those two things have to be counted
259 * separately, since one of the vcpu tasks will take on the job
260 * of running the core, and the other vcpu tasks in the vcore will
261 * sleep waiting for it to do that, but that sleep shouldn't count
264 * Hence we accumulate stolen time when the vcpu can run as part of
265 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
266 * needs its task to do other things in the kernel (for example,
267 * service a page fault) in busy_stolen. We don't accumulate
268 * stolen time for a vcore when it is inactive, or for a vcpu
269 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
270 * a misnomer; it means that the vcpu task is not executing in
271 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
272 * the kernel. We don't have any way of dividing up that time
273 * between time that the vcpu is genuinely stopped, time that
274 * the task is actively working on behalf of the vcpu, and time
275 * that the task is preempted, so we don't count any of it as
278 * Updates to busy_stolen are protected by arch.tbacct_lock;
279 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
280 * lock. The stolen times are measured in units of timebase ticks.
281 * (Note that the != TB_NIL checks below are purely defensive;
282 * they should never fail.)
285 static void kvmppc_core_start_stolen(struct kvmppc_vcore
*vc
)
289 spin_lock_irqsave(&vc
->stoltb_lock
, flags
);
290 vc
->preempt_tb
= mftb();
291 spin_unlock_irqrestore(&vc
->stoltb_lock
, flags
);
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore
*vc
)
298 spin_lock_irqsave(&vc
->stoltb_lock
, flags
);
299 if (vc
->preempt_tb
!= TB_NIL
) {
300 vc
->stolen_tb
+= mftb() - vc
->preempt_tb
;
301 vc
->preempt_tb
= TB_NIL
;
303 spin_unlock_irqrestore(&vc
->stoltb_lock
, flags
);
306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu
*vcpu
, int cpu
)
308 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
312 * We can test vc->runner without taking the vcore lock,
313 * because only this task ever sets vc->runner to this
314 * vcpu, and once it is set to this vcpu, only this task
315 * ever sets it to NULL.
317 if (vc
->runner
== vcpu
&& vc
->vcore_state
>= VCORE_SLEEPING
)
318 kvmppc_core_end_stolen(vc
);
320 spin_lock_irqsave(&vcpu
->arch
.tbacct_lock
, flags
);
321 if (vcpu
->arch
.state
== KVMPPC_VCPU_BUSY_IN_HOST
&&
322 vcpu
->arch
.busy_preempt
!= TB_NIL
) {
323 vcpu
->arch
.busy_stolen
+= mftb() - vcpu
->arch
.busy_preempt
;
324 vcpu
->arch
.busy_preempt
= TB_NIL
;
326 spin_unlock_irqrestore(&vcpu
->arch
.tbacct_lock
, flags
);
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu
*vcpu
)
331 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
334 if (vc
->runner
== vcpu
&& vc
->vcore_state
>= VCORE_SLEEPING
)
335 kvmppc_core_start_stolen(vc
);
337 spin_lock_irqsave(&vcpu
->arch
.tbacct_lock
, flags
);
338 if (vcpu
->arch
.state
== KVMPPC_VCPU_BUSY_IN_HOST
)
339 vcpu
->arch
.busy_preempt
= mftb();
340 spin_unlock_irqrestore(&vcpu
->arch
.tbacct_lock
, flags
);
343 static void kvmppc_set_pvr_hv(struct kvm_vcpu
*vcpu
, u32 pvr
)
345 vcpu
->arch
.pvr
= pvr
;
348 /* Dummy value used in computing PCR value below */
349 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
351 static int kvmppc_set_arch_compat(struct kvm_vcpu
*vcpu
, u32 arch_compat
)
353 unsigned long host_pcr_bit
= 0, guest_pcr_bit
= 0;
354 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
356 /* We can (emulate) our own architecture version and anything older */
357 if (cpu_has_feature(CPU_FTR_ARCH_300
))
358 host_pcr_bit
= PCR_ARCH_300
;
359 else if (cpu_has_feature(CPU_FTR_ARCH_207S
))
360 host_pcr_bit
= PCR_ARCH_207
;
361 else if (cpu_has_feature(CPU_FTR_ARCH_206
))
362 host_pcr_bit
= PCR_ARCH_206
;
364 host_pcr_bit
= PCR_ARCH_205
;
366 /* Determine lowest PCR bit needed to run guest in given PVR level */
367 guest_pcr_bit
= host_pcr_bit
;
369 switch (arch_compat
) {
371 guest_pcr_bit
= PCR_ARCH_205
;
375 guest_pcr_bit
= PCR_ARCH_206
;
378 guest_pcr_bit
= PCR_ARCH_207
;
381 guest_pcr_bit
= PCR_ARCH_300
;
388 /* Check requested PCR bits don't exceed our capabilities */
389 if (guest_pcr_bit
> host_pcr_bit
)
392 spin_lock(&vc
->lock
);
393 vc
->arch_compat
= arch_compat
;
395 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
396 * Also set all reserved PCR bits
398 vc
->pcr
= (host_pcr_bit
- guest_pcr_bit
) | PCR_MASK
;
399 spin_unlock(&vc
->lock
);
404 static void kvmppc_dump_regs(struct kvm_vcpu
*vcpu
)
408 pr_err("vcpu %p (%d):\n", vcpu
, vcpu
->vcpu_id
);
409 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
410 vcpu
->arch
.regs
.nip
, vcpu
->arch
.shregs
.msr
, vcpu
->arch
.trap
);
411 for (r
= 0; r
< 16; ++r
)
412 pr_err("r%2d = %.16lx r%d = %.16lx\n",
413 r
, kvmppc_get_gpr(vcpu
, r
),
414 r
+16, kvmppc_get_gpr(vcpu
, r
+16));
415 pr_err("ctr = %.16lx lr = %.16lx\n",
416 vcpu
->arch
.regs
.ctr
, vcpu
->arch
.regs
.link
);
417 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
418 vcpu
->arch
.shregs
.srr0
, vcpu
->arch
.shregs
.srr1
);
419 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
420 vcpu
->arch
.shregs
.sprg0
, vcpu
->arch
.shregs
.sprg1
);
421 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
422 vcpu
->arch
.shregs
.sprg2
, vcpu
->arch
.shregs
.sprg3
);
423 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
424 vcpu
->arch
.regs
.ccr
, vcpu
->arch
.regs
.xer
, vcpu
->arch
.shregs
.dsisr
);
425 pr_err("dar = %.16llx\n", vcpu
->arch
.shregs
.dar
);
426 pr_err("fault dar = %.16lx dsisr = %.8x\n",
427 vcpu
->arch
.fault_dar
, vcpu
->arch
.fault_dsisr
);
428 pr_err("SLB (%d entries):\n", vcpu
->arch
.slb_max
);
429 for (r
= 0; r
< vcpu
->arch
.slb_max
; ++r
)
430 pr_err(" ESID = %.16llx VSID = %.16llx\n",
431 vcpu
->arch
.slb
[r
].orige
, vcpu
->arch
.slb
[r
].origv
);
432 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
433 vcpu
->arch
.vcore
->lpcr
, vcpu
->kvm
->arch
.sdr1
,
434 vcpu
->arch
.last_inst
);
437 static struct kvm_vcpu
*kvmppc_find_vcpu(struct kvm
*kvm
, int id
)
439 return kvm_get_vcpu_by_id(kvm
, id
);
442 static void init_vpa(struct kvm_vcpu
*vcpu
, struct lppaca
*vpa
)
444 vpa
->__old_status
|= LPPACA_OLD_SHARED_PROC
;
445 vpa
->yield_count
= cpu_to_be32(1);
448 static int set_vpa(struct kvm_vcpu
*vcpu
, struct kvmppc_vpa
*v
,
449 unsigned long addr
, unsigned long len
)
451 /* check address is cacheline aligned */
452 if (addr
& (L1_CACHE_BYTES
- 1))
454 spin_lock(&vcpu
->arch
.vpa_update_lock
);
455 if (v
->next_gpa
!= addr
|| v
->len
!= len
) {
457 v
->len
= addr
? len
: 0;
458 v
->update_pending
= 1;
460 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
464 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
473 static int vpa_is_registered(struct kvmppc_vpa
*vpap
)
475 if (vpap
->update_pending
)
476 return vpap
->next_gpa
!= 0;
477 return vpap
->pinned_addr
!= NULL
;
480 static unsigned long do_h_register_vpa(struct kvm_vcpu
*vcpu
,
482 unsigned long vcpuid
, unsigned long vpa
)
484 struct kvm
*kvm
= vcpu
->kvm
;
485 unsigned long len
, nb
;
487 struct kvm_vcpu
*tvcpu
;
490 struct kvmppc_vpa
*vpap
;
492 tvcpu
= kvmppc_find_vcpu(kvm
, vcpuid
);
496 subfunc
= (flags
>> H_VPA_FUNC_SHIFT
) & H_VPA_FUNC_MASK
;
497 if (subfunc
== H_VPA_REG_VPA
|| subfunc
== H_VPA_REG_DTL
||
498 subfunc
== H_VPA_REG_SLB
) {
499 /* Registering new area - address must be cache-line aligned */
500 if ((vpa
& (L1_CACHE_BYTES
- 1)) || !vpa
)
503 /* convert logical addr to kernel addr and read length */
504 va
= kvmppc_pin_guest_page(kvm
, vpa
, &nb
);
507 if (subfunc
== H_VPA_REG_VPA
)
508 len
= be16_to_cpu(((struct reg_vpa
*)va
)->length
.hword
);
510 len
= be32_to_cpu(((struct reg_vpa
*)va
)->length
.word
);
511 kvmppc_unpin_guest_page(kvm
, va
, vpa
, false);
514 if (len
> nb
|| len
< sizeof(struct reg_vpa
))
523 spin_lock(&tvcpu
->arch
.vpa_update_lock
);
526 case H_VPA_REG_VPA
: /* register VPA */
528 * The size of our lppaca is 1kB because of the way we align
529 * it for the guest to avoid crossing a 4kB boundary. We only
530 * use 640 bytes of the structure though, so we should accept
531 * clients that set a size of 640.
533 BUILD_BUG_ON(sizeof(struct lppaca
) != 640);
534 if (len
< sizeof(struct lppaca
))
536 vpap
= &tvcpu
->arch
.vpa
;
540 case H_VPA_REG_DTL
: /* register DTL */
541 if (len
< sizeof(struct dtl_entry
))
543 len
-= len
% sizeof(struct dtl_entry
);
545 /* Check that they have previously registered a VPA */
547 if (!vpa_is_registered(&tvcpu
->arch
.vpa
))
550 vpap
= &tvcpu
->arch
.dtl
;
554 case H_VPA_REG_SLB
: /* register SLB shadow buffer */
555 /* Check that they have previously registered a VPA */
557 if (!vpa_is_registered(&tvcpu
->arch
.vpa
))
560 vpap
= &tvcpu
->arch
.slb_shadow
;
564 case H_VPA_DEREG_VPA
: /* deregister VPA */
565 /* Check they don't still have a DTL or SLB buf registered */
567 if (vpa_is_registered(&tvcpu
->arch
.dtl
) ||
568 vpa_is_registered(&tvcpu
->arch
.slb_shadow
))
571 vpap
= &tvcpu
->arch
.vpa
;
575 case H_VPA_DEREG_DTL
: /* deregister DTL */
576 vpap
= &tvcpu
->arch
.dtl
;
580 case H_VPA_DEREG_SLB
: /* deregister SLB shadow buffer */
581 vpap
= &tvcpu
->arch
.slb_shadow
;
587 vpap
->next_gpa
= vpa
;
589 vpap
->update_pending
= 1;
592 spin_unlock(&tvcpu
->arch
.vpa_update_lock
);
597 static void kvmppc_update_vpa(struct kvm_vcpu
*vcpu
, struct kvmppc_vpa
*vpap
)
599 struct kvm
*kvm
= vcpu
->kvm
;
605 * We need to pin the page pointed to by vpap->next_gpa,
606 * but we can't call kvmppc_pin_guest_page under the lock
607 * as it does get_user_pages() and down_read(). So we
608 * have to drop the lock, pin the page, then get the lock
609 * again and check that a new area didn't get registered
613 gpa
= vpap
->next_gpa
;
614 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
618 va
= kvmppc_pin_guest_page(kvm
, gpa
, &nb
);
619 spin_lock(&vcpu
->arch
.vpa_update_lock
);
620 if (gpa
== vpap
->next_gpa
)
622 /* sigh... unpin that one and try again */
624 kvmppc_unpin_guest_page(kvm
, va
, gpa
, false);
627 vpap
->update_pending
= 0;
628 if (va
&& nb
< vpap
->len
) {
630 * If it's now too short, it must be that userspace
631 * has changed the mappings underlying guest memory,
632 * so unregister the region.
634 kvmppc_unpin_guest_page(kvm
, va
, gpa
, false);
637 if (vpap
->pinned_addr
)
638 kvmppc_unpin_guest_page(kvm
, vpap
->pinned_addr
, vpap
->gpa
,
641 vpap
->pinned_addr
= va
;
644 vpap
->pinned_end
= va
+ vpap
->len
;
647 static void kvmppc_update_vpas(struct kvm_vcpu
*vcpu
)
649 if (!(vcpu
->arch
.vpa
.update_pending
||
650 vcpu
->arch
.slb_shadow
.update_pending
||
651 vcpu
->arch
.dtl
.update_pending
))
654 spin_lock(&vcpu
->arch
.vpa_update_lock
);
655 if (vcpu
->arch
.vpa
.update_pending
) {
656 kvmppc_update_vpa(vcpu
, &vcpu
->arch
.vpa
);
657 if (vcpu
->arch
.vpa
.pinned_addr
)
658 init_vpa(vcpu
, vcpu
->arch
.vpa
.pinned_addr
);
660 if (vcpu
->arch
.dtl
.update_pending
) {
661 kvmppc_update_vpa(vcpu
, &vcpu
->arch
.dtl
);
662 vcpu
->arch
.dtl_ptr
= vcpu
->arch
.dtl
.pinned_addr
;
663 vcpu
->arch
.dtl_index
= 0;
665 if (vcpu
->arch
.slb_shadow
.update_pending
)
666 kvmppc_update_vpa(vcpu
, &vcpu
->arch
.slb_shadow
);
667 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
671 * Return the accumulated stolen time for the vcore up until `now'.
672 * The caller should hold the vcore lock.
674 static u64
vcore_stolen_time(struct kvmppc_vcore
*vc
, u64 now
)
679 spin_lock_irqsave(&vc
->stoltb_lock
, flags
);
681 if (vc
->vcore_state
!= VCORE_INACTIVE
&&
682 vc
->preempt_tb
!= TB_NIL
)
683 p
+= now
- vc
->preempt_tb
;
684 spin_unlock_irqrestore(&vc
->stoltb_lock
, flags
);
688 static void kvmppc_create_dtl_entry(struct kvm_vcpu
*vcpu
,
689 struct kvmppc_vcore
*vc
)
691 struct dtl_entry
*dt
;
693 unsigned long stolen
;
694 unsigned long core_stolen
;
698 dt
= vcpu
->arch
.dtl_ptr
;
699 vpa
= vcpu
->arch
.vpa
.pinned_addr
;
701 core_stolen
= vcore_stolen_time(vc
, now
);
702 stolen
= core_stolen
- vcpu
->arch
.stolen_logged
;
703 vcpu
->arch
.stolen_logged
= core_stolen
;
704 spin_lock_irqsave(&vcpu
->arch
.tbacct_lock
, flags
);
705 stolen
+= vcpu
->arch
.busy_stolen
;
706 vcpu
->arch
.busy_stolen
= 0;
707 spin_unlock_irqrestore(&vcpu
->arch
.tbacct_lock
, flags
);
710 memset(dt
, 0, sizeof(struct dtl_entry
));
711 dt
->dispatch_reason
= 7;
712 dt
->processor_id
= cpu_to_be16(vc
->pcpu
+ vcpu
->arch
.ptid
);
713 dt
->timebase
= cpu_to_be64(now
+ vc
->tb_offset
);
714 dt
->enqueue_to_dispatch_time
= cpu_to_be32(stolen
);
715 dt
->srr0
= cpu_to_be64(kvmppc_get_pc(vcpu
));
716 dt
->srr1
= cpu_to_be64(vcpu
->arch
.shregs
.msr
);
718 if (dt
== vcpu
->arch
.dtl
.pinned_end
)
719 dt
= vcpu
->arch
.dtl
.pinned_addr
;
720 vcpu
->arch
.dtl_ptr
= dt
;
721 /* order writing *dt vs. writing vpa->dtl_idx */
723 vpa
->dtl_idx
= cpu_to_be64(++vcpu
->arch
.dtl_index
);
724 vcpu
->arch
.dtl
.dirty
= true;
727 /* See if there is a doorbell interrupt pending for a vcpu */
728 static bool kvmppc_doorbell_pending(struct kvm_vcpu
*vcpu
)
731 struct kvmppc_vcore
*vc
;
733 if (vcpu
->arch
.doorbell_request
)
736 * Ensure that the read of vcore->dpdes comes after the read
737 * of vcpu->doorbell_request. This barrier matches the
738 * smp_wmb() in kvmppc_guest_entry_inject().
741 vc
= vcpu
->arch
.vcore
;
742 thr
= vcpu
->vcpu_id
- vc
->first_vcpuid
;
743 return !!(vc
->dpdes
& (1 << thr
));
746 static bool kvmppc_power8_compatible(struct kvm_vcpu
*vcpu
)
748 if (vcpu
->arch
.vcore
->arch_compat
>= PVR_ARCH_207
)
750 if ((!vcpu
->arch
.vcore
->arch_compat
) &&
751 cpu_has_feature(CPU_FTR_ARCH_207S
))
756 static int kvmppc_h_set_mode(struct kvm_vcpu
*vcpu
, unsigned long mflags
,
757 unsigned long resource
, unsigned long value1
,
758 unsigned long value2
)
761 case H_SET_MODE_RESOURCE_SET_CIABR
:
762 if (!kvmppc_power8_compatible(vcpu
))
767 return H_UNSUPPORTED_FLAG_START
;
768 /* Guests can't breakpoint the hypervisor */
769 if ((value1
& CIABR_PRIV
) == CIABR_PRIV_HYPER
)
771 vcpu
->arch
.ciabr
= value1
;
773 case H_SET_MODE_RESOURCE_SET_DAWR
:
774 if (!kvmppc_power8_compatible(vcpu
))
776 if (!ppc_breakpoint_available())
779 return H_UNSUPPORTED_FLAG_START
;
780 if (value2
& DABRX_HYP
)
782 vcpu
->arch
.dawr
= value1
;
783 vcpu
->arch
.dawrx
= value2
;
785 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
786 /* KVM does not support mflags=2 (AIL=2) */
787 if (mflags
!= 0 && mflags
!= 3)
788 return H_UNSUPPORTED_FLAG_START
;
795 /* Copy guest memory in place - must reside within a single memslot */
796 static int kvmppc_copy_guest(struct kvm
*kvm
, gpa_t to
, gpa_t from
,
799 struct kvm_memory_slot
*to_memslot
= NULL
;
800 struct kvm_memory_slot
*from_memslot
= NULL
;
801 unsigned long to_addr
, from_addr
;
804 /* Get HPA for from address */
805 from_memslot
= gfn_to_memslot(kvm
, from
>> PAGE_SHIFT
);
808 if ((from
+ len
) >= ((from_memslot
->base_gfn
+ from_memslot
->npages
)
811 from_addr
= gfn_to_hva_memslot(from_memslot
, from
>> PAGE_SHIFT
);
812 if (kvm_is_error_hva(from_addr
))
814 from_addr
|= (from
& (PAGE_SIZE
- 1));
816 /* Get HPA for to address */
817 to_memslot
= gfn_to_memslot(kvm
, to
>> PAGE_SHIFT
);
820 if ((to
+ len
) >= ((to_memslot
->base_gfn
+ to_memslot
->npages
)
823 to_addr
= gfn_to_hva_memslot(to_memslot
, to
>> PAGE_SHIFT
);
824 if (kvm_is_error_hva(to_addr
))
826 to_addr
|= (to
& (PAGE_SIZE
- 1));
829 r
= raw_copy_in_user((void __user
*)to_addr
, (void __user
*)from_addr
,
833 mark_page_dirty(kvm
, to
>> PAGE_SHIFT
);
837 static long kvmppc_h_page_init(struct kvm_vcpu
*vcpu
, unsigned long flags
,
838 unsigned long dest
, unsigned long src
)
840 u64 pg_sz
= SZ_4K
; /* 4K page size */
841 u64 pg_mask
= SZ_4K
- 1;
844 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
845 if (flags
& ~(H_ICACHE_INVALIDATE
| H_ICACHE_SYNCHRONIZE
|
846 H_ZERO_PAGE
| H_COPY_PAGE
| H_PAGE_SET_LOANED
))
849 /* dest (and src if copy_page flag set) must be page aligned */
850 if ((dest
& pg_mask
) || ((flags
& H_COPY_PAGE
) && (src
& pg_mask
)))
853 /* zero and/or copy the page as determined by the flags */
854 if (flags
& H_COPY_PAGE
) {
855 ret
= kvmppc_copy_guest(vcpu
->kvm
, dest
, src
, pg_sz
);
858 } else if (flags
& H_ZERO_PAGE
) {
859 ret
= kvm_clear_guest(vcpu
->kvm
, dest
, pg_sz
);
864 /* We can ignore the remaining flags */
869 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu
*target
)
871 struct kvmppc_vcore
*vcore
= target
->arch
.vcore
;
874 * We expect to have been called by the real mode handler
875 * (kvmppc_rm_h_confer()) which would have directly returned
876 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
877 * have useful work to do and should not confer) so we don't
881 spin_lock(&vcore
->lock
);
882 if (target
->arch
.state
== KVMPPC_VCPU_RUNNABLE
&&
883 vcore
->vcore_state
!= VCORE_INACTIVE
&&
885 target
= vcore
->runner
;
886 spin_unlock(&vcore
->lock
);
888 return kvm_vcpu_yield_to(target
);
891 static int kvmppc_get_yield_count(struct kvm_vcpu
*vcpu
)
894 struct lppaca
*lppaca
;
896 spin_lock(&vcpu
->arch
.vpa_update_lock
);
897 lppaca
= (struct lppaca
*)vcpu
->arch
.vpa
.pinned_addr
;
899 yield_count
= be32_to_cpu(lppaca
->yield_count
);
900 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
904 int kvmppc_pseries_do_hcall(struct kvm_vcpu
*vcpu
)
906 unsigned long req
= kvmppc_get_gpr(vcpu
, 3);
907 unsigned long target
, ret
= H_SUCCESS
;
909 struct kvm_vcpu
*tvcpu
;
912 if (req
<= MAX_HCALL_OPCODE
&&
913 !test_bit(req
/4, vcpu
->kvm
->arch
.enabled_hcalls
))
920 target
= kvmppc_get_gpr(vcpu
, 4);
921 tvcpu
= kvmppc_find_vcpu(vcpu
->kvm
, target
);
926 tvcpu
->arch
.prodded
= 1;
928 if (tvcpu
->arch
.ceded
)
929 kvmppc_fast_vcpu_kick_hv(tvcpu
);
932 target
= kvmppc_get_gpr(vcpu
, 4);
935 tvcpu
= kvmppc_find_vcpu(vcpu
->kvm
, target
);
940 yield_count
= kvmppc_get_gpr(vcpu
, 5);
941 if (kvmppc_get_yield_count(tvcpu
) != yield_count
)
943 kvm_arch_vcpu_yield_to(tvcpu
);
946 ret
= do_h_register_vpa(vcpu
, kvmppc_get_gpr(vcpu
, 4),
947 kvmppc_get_gpr(vcpu
, 5),
948 kvmppc_get_gpr(vcpu
, 6));
951 if (list_empty(&vcpu
->kvm
->arch
.rtas_tokens
))
954 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
955 rc
= kvmppc_rtas_hcall(vcpu
);
956 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
963 /* Send the error out to userspace via KVM_RUN */
965 case H_LOGICAL_CI_LOAD
:
966 ret
= kvmppc_h_logical_ci_load(vcpu
);
967 if (ret
== H_TOO_HARD
)
970 case H_LOGICAL_CI_STORE
:
971 ret
= kvmppc_h_logical_ci_store(vcpu
);
972 if (ret
== H_TOO_HARD
)
976 ret
= kvmppc_h_set_mode(vcpu
, kvmppc_get_gpr(vcpu
, 4),
977 kvmppc_get_gpr(vcpu
, 5),
978 kvmppc_get_gpr(vcpu
, 6),
979 kvmppc_get_gpr(vcpu
, 7));
980 if (ret
== H_TOO_HARD
)
989 if (kvmppc_xics_enabled(vcpu
)) {
990 if (xics_on_xive()) {
991 ret
= H_NOT_AVAILABLE
;
994 ret
= kvmppc_xics_hcall(vcpu
, req
);
999 ret
= kvmppc_h_set_dabr(vcpu
, kvmppc_get_gpr(vcpu
, 4));
1002 ret
= kvmppc_h_set_xdabr(vcpu
, kvmppc_get_gpr(vcpu
, 4),
1003 kvmppc_get_gpr(vcpu
, 5));
1005 #ifdef CONFIG_SPAPR_TCE_IOMMU
1007 ret
= kvmppc_h_get_tce(vcpu
, kvmppc_get_gpr(vcpu
, 4),
1008 kvmppc_get_gpr(vcpu
, 5));
1009 if (ret
== H_TOO_HARD
)
1013 ret
= kvmppc_h_put_tce(vcpu
, kvmppc_get_gpr(vcpu
, 4),
1014 kvmppc_get_gpr(vcpu
, 5),
1015 kvmppc_get_gpr(vcpu
, 6));
1016 if (ret
== H_TOO_HARD
)
1019 case H_PUT_TCE_INDIRECT
:
1020 ret
= kvmppc_h_put_tce_indirect(vcpu
, kvmppc_get_gpr(vcpu
, 4),
1021 kvmppc_get_gpr(vcpu
, 5),
1022 kvmppc_get_gpr(vcpu
, 6),
1023 kvmppc_get_gpr(vcpu
, 7));
1024 if (ret
== H_TOO_HARD
)
1028 ret
= kvmppc_h_stuff_tce(vcpu
, kvmppc_get_gpr(vcpu
, 4),
1029 kvmppc_get_gpr(vcpu
, 5),
1030 kvmppc_get_gpr(vcpu
, 6),
1031 kvmppc_get_gpr(vcpu
, 7));
1032 if (ret
== H_TOO_HARD
)
1037 if (!powernv_get_random_long(&vcpu
->arch
.regs
.gpr
[4]))
1041 case H_SET_PARTITION_TABLE
:
1043 if (nesting_enabled(vcpu
->kvm
))
1044 ret
= kvmhv_set_partition_table(vcpu
);
1046 case H_ENTER_NESTED
:
1048 if (!nesting_enabled(vcpu
->kvm
))
1050 ret
= kvmhv_enter_nested_guest(vcpu
);
1051 if (ret
== H_INTERRUPT
) {
1052 kvmppc_set_gpr(vcpu
, 3, 0);
1053 vcpu
->arch
.hcall_needed
= 0;
1055 } else if (ret
== H_TOO_HARD
) {
1056 kvmppc_set_gpr(vcpu
, 3, 0);
1057 vcpu
->arch
.hcall_needed
= 0;
1061 case H_TLB_INVALIDATE
:
1063 if (nesting_enabled(vcpu
->kvm
))
1064 ret
= kvmhv_do_nested_tlbie(vcpu
);
1066 case H_COPY_TOFROM_GUEST
:
1068 if (nesting_enabled(vcpu
->kvm
))
1069 ret
= kvmhv_copy_tofrom_guest_nested(vcpu
);
1072 ret
= kvmppc_h_page_init(vcpu
, kvmppc_get_gpr(vcpu
, 4),
1073 kvmppc_get_gpr(vcpu
, 5),
1074 kvmppc_get_gpr(vcpu
, 6));
1077 ret
= kvmppc_h_svm_page_in(vcpu
->kvm
,
1078 kvmppc_get_gpr(vcpu
, 4),
1079 kvmppc_get_gpr(vcpu
, 5),
1080 kvmppc_get_gpr(vcpu
, 6));
1082 case H_SVM_PAGE_OUT
:
1083 ret
= kvmppc_h_svm_page_out(vcpu
->kvm
,
1084 kvmppc_get_gpr(vcpu
, 4),
1085 kvmppc_get_gpr(vcpu
, 5),
1086 kvmppc_get_gpr(vcpu
, 6));
1088 case H_SVM_INIT_START
:
1089 ret
= kvmppc_h_svm_init_start(vcpu
->kvm
);
1091 case H_SVM_INIT_DONE
:
1092 ret
= kvmppc_h_svm_init_done(vcpu
->kvm
);
1094 case H_SVM_INIT_ABORT
:
1095 ret
= kvmppc_h_svm_init_abort(vcpu
->kvm
);
1101 kvmppc_set_gpr(vcpu
, 3, ret
);
1102 vcpu
->arch
.hcall_needed
= 0;
1103 return RESUME_GUEST
;
1107 * Handle H_CEDE in the nested virtualization case where we haven't
1108 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1109 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1110 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1112 static void kvmppc_nested_cede(struct kvm_vcpu
*vcpu
)
1114 vcpu
->arch
.shregs
.msr
|= MSR_EE
;
1115 vcpu
->arch
.ceded
= 1;
1117 if (vcpu
->arch
.prodded
) {
1118 vcpu
->arch
.prodded
= 0;
1120 vcpu
->arch
.ceded
= 0;
1124 static int kvmppc_hcall_impl_hv(unsigned long cmd
)
1130 case H_REGISTER_VPA
:
1132 case H_LOGICAL_CI_LOAD
:
1133 case H_LOGICAL_CI_STORE
:
1134 #ifdef CONFIG_KVM_XICS
1146 /* See if it's in the real-mode table */
1147 return kvmppc_hcall_impl_hv_realmode(cmd
);
1150 static int kvmppc_emulate_debug_inst(struct kvm_run
*run
,
1151 struct kvm_vcpu
*vcpu
)
1155 if (kvmppc_get_last_inst(vcpu
, INST_GENERIC
, &last_inst
) !=
1158 * Fetch failed, so return to guest and
1159 * try executing it again.
1161 return RESUME_GUEST
;
1164 if (last_inst
== KVMPPC_INST_SW_BREAKPOINT
) {
1165 run
->exit_reason
= KVM_EXIT_DEBUG
;
1166 run
->debug
.arch
.address
= kvmppc_get_pc(vcpu
);
1169 kvmppc_core_queue_program(vcpu
, SRR1_PROGILL
);
1170 return RESUME_GUEST
;
1174 static void do_nothing(void *x
)
1178 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu
*vcpu
)
1180 int thr
, cpu
, pcpu
, nthreads
;
1182 unsigned long dpdes
;
1184 nthreads
= vcpu
->kvm
->arch
.emul_smt_mode
;
1186 cpu
= vcpu
->vcpu_id
& ~(nthreads
- 1);
1187 for (thr
= 0; thr
< nthreads
; ++thr
, ++cpu
) {
1188 v
= kvmppc_find_vcpu(vcpu
->kvm
, cpu
);
1192 * If the vcpu is currently running on a physical cpu thread,
1193 * interrupt it in order to pull it out of the guest briefly,
1194 * which will update its vcore->dpdes value.
1196 pcpu
= READ_ONCE(v
->cpu
);
1198 smp_call_function_single(pcpu
, do_nothing
, NULL
, 1);
1199 if (kvmppc_doorbell_pending(v
))
1206 * On POWER9, emulate doorbell-related instructions in order to
1207 * give the guest the illusion of running on a multi-threaded core.
1208 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1211 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu
*vcpu
)
1215 struct kvm
*kvm
= vcpu
->kvm
;
1216 struct kvm_vcpu
*tvcpu
;
1218 if (kvmppc_get_last_inst(vcpu
, INST_GENERIC
, &inst
) != EMULATE_DONE
)
1219 return RESUME_GUEST
;
1220 if (get_op(inst
) != 31)
1221 return EMULATE_FAIL
;
1223 thr
= vcpu
->vcpu_id
& (kvm
->arch
.emul_smt_mode
- 1);
1224 switch (get_xop(inst
)) {
1225 case OP_31_XOP_MSGSNDP
:
1226 arg
= kvmppc_get_gpr(vcpu
, rb
);
1227 if (((arg
>> 27) & 0xf) != PPC_DBELL_SERVER
)
1230 if (arg
>= kvm
->arch
.emul_smt_mode
)
1232 tvcpu
= kvmppc_find_vcpu(kvm
, vcpu
->vcpu_id
- thr
+ arg
);
1235 if (!tvcpu
->arch
.doorbell_request
) {
1236 tvcpu
->arch
.doorbell_request
= 1;
1237 kvmppc_fast_vcpu_kick_hv(tvcpu
);
1240 case OP_31_XOP_MSGCLRP
:
1241 arg
= kvmppc_get_gpr(vcpu
, rb
);
1242 if (((arg
>> 27) & 0xf) != PPC_DBELL_SERVER
)
1244 vcpu
->arch
.vcore
->dpdes
= 0;
1245 vcpu
->arch
.doorbell_request
= 0;
1247 case OP_31_XOP_MFSPR
:
1248 switch (get_sprn(inst
)) {
1253 arg
= kvmppc_read_dpdes(vcpu
);
1256 return EMULATE_FAIL
;
1258 kvmppc_set_gpr(vcpu
, get_rt(inst
), arg
);
1261 return EMULATE_FAIL
;
1263 kvmppc_set_pc(vcpu
, kvmppc_get_pc(vcpu
) + 4);
1264 return RESUME_GUEST
;
1267 static int kvmppc_handle_exit_hv(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
1268 struct task_struct
*tsk
)
1270 int r
= RESUME_HOST
;
1272 vcpu
->stat
.sum_exits
++;
1275 * This can happen if an interrupt occurs in the last stages
1276 * of guest entry or the first stages of guest exit (i.e. after
1277 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1278 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1279 * That can happen due to a bug, or due to a machine check
1280 * occurring at just the wrong time.
1282 if (vcpu
->arch
.shregs
.msr
& MSR_HV
) {
1283 printk(KERN_EMERG
"KVM trap in HV mode!\n");
1284 printk(KERN_EMERG
"trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1285 vcpu
->arch
.trap
, kvmppc_get_pc(vcpu
),
1286 vcpu
->arch
.shregs
.msr
);
1287 kvmppc_dump_regs(vcpu
);
1288 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
1289 run
->hw
.hardware_exit_reason
= vcpu
->arch
.trap
;
1292 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
1293 run
->ready_for_interrupt_injection
= 1;
1294 switch (vcpu
->arch
.trap
) {
1295 /* We're good on these - the host merely wanted to get our attention */
1296 case BOOK3S_INTERRUPT_HV_DECREMENTER
:
1297 vcpu
->stat
.dec_exits
++;
1300 case BOOK3S_INTERRUPT_EXTERNAL
:
1301 case BOOK3S_INTERRUPT_H_DOORBELL
:
1302 case BOOK3S_INTERRUPT_H_VIRT
:
1303 vcpu
->stat
.ext_intr_exits
++;
1306 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1307 case BOOK3S_INTERRUPT_HMI
:
1308 case BOOK3S_INTERRUPT_PERFMON
:
1309 case BOOK3S_INTERRUPT_SYSTEM_RESET
:
1312 case BOOK3S_INTERRUPT_MACHINE_CHECK
:
1313 /* Print the MCE event to host console. */
1314 machine_check_print_event_info(&vcpu
->arch
.mce_evt
, false, true);
1317 * If the guest can do FWNMI, exit to userspace so it can
1318 * deliver a FWNMI to the guest.
1319 * Otherwise we synthesize a machine check for the guest
1320 * so that it knows that the machine check occurred.
1322 if (!vcpu
->kvm
->arch
.fwnmi_enabled
) {
1323 ulong flags
= vcpu
->arch
.shregs
.msr
& 0x083c0000;
1324 kvmppc_core_queue_machine_check(vcpu
, flags
);
1329 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1330 run
->exit_reason
= KVM_EXIT_NMI
;
1331 run
->hw
.hardware_exit_reason
= vcpu
->arch
.trap
;
1332 /* Clear out the old NMI status from run->flags */
1333 run
->flags
&= ~KVM_RUN_PPC_NMI_DISP_MASK
;
1334 /* Now set the NMI status */
1335 if (vcpu
->arch
.mce_evt
.disposition
== MCE_DISPOSITION_RECOVERED
)
1336 run
->flags
|= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV
;
1338 run
->flags
|= KVM_RUN_PPC_NMI_DISP_NOT_RECOV
;
1342 case BOOK3S_INTERRUPT_PROGRAM
:
1346 * Normally program interrupts are delivered directly
1347 * to the guest by the hardware, but we can get here
1348 * as a result of a hypervisor emulation interrupt
1349 * (e40) getting turned into a 700 by BML RTAS.
1351 flags
= vcpu
->arch
.shregs
.msr
& 0x1f0000ull
;
1352 kvmppc_core_queue_program(vcpu
, flags
);
1356 case BOOK3S_INTERRUPT_SYSCALL
:
1358 /* hcall - punt to userspace */
1361 /* hypercall with MSR_PR has already been handled in rmode,
1362 * and never reaches here.
1365 run
->papr_hcall
.nr
= kvmppc_get_gpr(vcpu
, 3);
1366 for (i
= 0; i
< 9; ++i
)
1367 run
->papr_hcall
.args
[i
] = kvmppc_get_gpr(vcpu
, 4 + i
);
1368 run
->exit_reason
= KVM_EXIT_PAPR_HCALL
;
1369 vcpu
->arch
.hcall_needed
= 1;
1374 * We get these next two if the guest accesses a page which it thinks
1375 * it has mapped but which is not actually present, either because
1376 * it is for an emulated I/O device or because the corresonding
1377 * host page has been paged out. Any other HDSI/HISI interrupts
1378 * have been handled already.
1380 case BOOK3S_INTERRUPT_H_DATA_STORAGE
:
1381 r
= RESUME_PAGE_FAULT
;
1383 case BOOK3S_INTERRUPT_H_INST_STORAGE
:
1384 vcpu
->arch
.fault_dar
= kvmppc_get_pc(vcpu
);
1385 vcpu
->arch
.fault_dsisr
= vcpu
->arch
.shregs
.msr
&
1386 DSISR_SRR1_MATCH_64S
;
1387 if (vcpu
->arch
.shregs
.msr
& HSRR1_HISI_WRITE
)
1388 vcpu
->arch
.fault_dsisr
|= DSISR_ISSTORE
;
1389 r
= RESUME_PAGE_FAULT
;
1392 * This occurs if the guest executes an illegal instruction.
1393 * If the guest debug is disabled, generate a program interrupt
1394 * to the guest. If guest debug is enabled, we need to check
1395 * whether the instruction is a software breakpoint instruction.
1396 * Accordingly return to Guest or Host.
1398 case BOOK3S_INTERRUPT_H_EMUL_ASSIST
:
1399 if (vcpu
->arch
.emul_inst
!= KVM_INST_FETCH_FAILED
)
1400 vcpu
->arch
.last_inst
= kvmppc_need_byteswap(vcpu
) ?
1401 swab32(vcpu
->arch
.emul_inst
) :
1402 vcpu
->arch
.emul_inst
;
1403 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
) {
1404 r
= kvmppc_emulate_debug_inst(run
, vcpu
);
1406 kvmppc_core_queue_program(vcpu
, SRR1_PROGILL
);
1411 * This occurs if the guest (kernel or userspace), does something that
1412 * is prohibited by HFSCR.
1413 * On POWER9, this could be a doorbell instruction that we need
1415 * Otherwise, we just generate a program interrupt to the guest.
1417 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL
:
1419 if (((vcpu
->arch
.hfscr
>> 56) == FSCR_MSGP_LG
) &&
1420 cpu_has_feature(CPU_FTR_ARCH_300
))
1421 r
= kvmppc_emulate_doorbell_instr(vcpu
);
1422 if (r
== EMULATE_FAIL
) {
1423 kvmppc_core_queue_program(vcpu
, SRR1_PROGILL
);
1428 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1429 case BOOK3S_INTERRUPT_HV_SOFTPATCH
:
1431 * This occurs for various TM-related instructions that
1432 * we need to emulate on POWER9 DD2.2. We have already
1433 * handled the cases where the guest was in real-suspend
1434 * mode and was transitioning to transactional state.
1436 r
= kvmhv_p9_tm_emulation(vcpu
);
1440 case BOOK3S_INTERRUPT_HV_RM_HARD
:
1441 r
= RESUME_PASSTHROUGH
;
1444 kvmppc_dump_regs(vcpu
);
1445 printk(KERN_EMERG
"trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1446 vcpu
->arch
.trap
, kvmppc_get_pc(vcpu
),
1447 vcpu
->arch
.shregs
.msr
);
1448 run
->hw
.hardware_exit_reason
= vcpu
->arch
.trap
;
1456 static int kvmppc_handle_nested_exit(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
1461 vcpu
->stat
.sum_exits
++;
1464 * This can happen if an interrupt occurs in the last stages
1465 * of guest entry or the first stages of guest exit (i.e. after
1466 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1467 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1468 * That can happen due to a bug, or due to a machine check
1469 * occurring at just the wrong time.
1471 if (vcpu
->arch
.shregs
.msr
& MSR_HV
) {
1472 pr_emerg("KVM trap in HV mode while nested!\n");
1473 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1474 vcpu
->arch
.trap
, kvmppc_get_pc(vcpu
),
1475 vcpu
->arch
.shregs
.msr
);
1476 kvmppc_dump_regs(vcpu
);
1479 switch (vcpu
->arch
.trap
) {
1480 /* We're good on these - the host merely wanted to get our attention */
1481 case BOOK3S_INTERRUPT_HV_DECREMENTER
:
1482 vcpu
->stat
.dec_exits
++;
1485 case BOOK3S_INTERRUPT_EXTERNAL
:
1486 vcpu
->stat
.ext_intr_exits
++;
1489 case BOOK3S_INTERRUPT_H_DOORBELL
:
1490 case BOOK3S_INTERRUPT_H_VIRT
:
1491 vcpu
->stat
.ext_intr_exits
++;
1494 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1495 case BOOK3S_INTERRUPT_HMI
:
1496 case BOOK3S_INTERRUPT_PERFMON
:
1497 case BOOK3S_INTERRUPT_SYSTEM_RESET
:
1500 case BOOK3S_INTERRUPT_MACHINE_CHECK
:
1501 /* Pass the machine check to the L1 guest */
1503 /* Print the MCE event to host console. */
1504 machine_check_print_event_info(&vcpu
->arch
.mce_evt
, false, true);
1507 * We get these next two if the guest accesses a page which it thinks
1508 * it has mapped but which is not actually present, either because
1509 * it is for an emulated I/O device or because the corresonding
1510 * host page has been paged out.
1512 case BOOK3S_INTERRUPT_H_DATA_STORAGE
:
1513 srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1514 r
= kvmhv_nested_page_fault(run
, vcpu
);
1515 srcu_read_unlock(&vcpu
->kvm
->srcu
, srcu_idx
);
1517 case BOOK3S_INTERRUPT_H_INST_STORAGE
:
1518 vcpu
->arch
.fault_dar
= kvmppc_get_pc(vcpu
);
1519 vcpu
->arch
.fault_dsisr
= kvmppc_get_msr(vcpu
) &
1520 DSISR_SRR1_MATCH_64S
;
1521 if (vcpu
->arch
.shregs
.msr
& HSRR1_HISI_WRITE
)
1522 vcpu
->arch
.fault_dsisr
|= DSISR_ISSTORE
;
1523 srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1524 r
= kvmhv_nested_page_fault(run
, vcpu
);
1525 srcu_read_unlock(&vcpu
->kvm
->srcu
, srcu_idx
);
1528 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1529 case BOOK3S_INTERRUPT_HV_SOFTPATCH
:
1531 * This occurs for various TM-related instructions that
1532 * we need to emulate on POWER9 DD2.2. We have already
1533 * handled the cases where the guest was in real-suspend
1534 * mode and was transitioning to transactional state.
1536 r
= kvmhv_p9_tm_emulation(vcpu
);
1540 case BOOK3S_INTERRUPT_HV_RM_HARD
:
1541 vcpu
->arch
.trap
= 0;
1543 if (!xics_on_xive())
1544 kvmppc_xics_rm_complete(vcpu
, 0);
1554 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu
*vcpu
,
1555 struct kvm_sregs
*sregs
)
1559 memset(sregs
, 0, sizeof(struct kvm_sregs
));
1560 sregs
->pvr
= vcpu
->arch
.pvr
;
1561 for (i
= 0; i
< vcpu
->arch
.slb_max
; i
++) {
1562 sregs
->u
.s
.ppc64
.slb
[i
].slbe
= vcpu
->arch
.slb
[i
].orige
;
1563 sregs
->u
.s
.ppc64
.slb
[i
].slbv
= vcpu
->arch
.slb
[i
].origv
;
1569 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu
*vcpu
,
1570 struct kvm_sregs
*sregs
)
1574 /* Only accept the same PVR as the host's, since we can't spoof it */
1575 if (sregs
->pvr
!= vcpu
->arch
.pvr
)
1579 for (i
= 0; i
< vcpu
->arch
.slb_nr
; i
++) {
1580 if (sregs
->u
.s
.ppc64
.slb
[i
].slbe
& SLB_ESID_V
) {
1581 vcpu
->arch
.slb
[j
].orige
= sregs
->u
.s
.ppc64
.slb
[i
].slbe
;
1582 vcpu
->arch
.slb
[j
].origv
= sregs
->u
.s
.ppc64
.slb
[i
].slbv
;
1586 vcpu
->arch
.slb_max
= j
;
1591 static void kvmppc_set_lpcr(struct kvm_vcpu
*vcpu
, u64 new_lpcr
,
1592 bool preserve_top32
)
1594 struct kvm
*kvm
= vcpu
->kvm
;
1595 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
1598 spin_lock(&vc
->lock
);
1600 * If ILE (interrupt little-endian) has changed, update the
1601 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1603 if ((new_lpcr
& LPCR_ILE
) != (vc
->lpcr
& LPCR_ILE
)) {
1604 struct kvm_vcpu
*vcpu
;
1607 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1608 if (vcpu
->arch
.vcore
!= vc
)
1610 if (new_lpcr
& LPCR_ILE
)
1611 vcpu
->arch
.intr_msr
|= MSR_LE
;
1613 vcpu
->arch
.intr_msr
&= ~MSR_LE
;
1618 * Userspace can only modify DPFD (default prefetch depth),
1619 * ILE (interrupt little-endian) and TC (translation control).
1620 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1622 mask
= LPCR_DPFD
| LPCR_ILE
| LPCR_TC
;
1623 if (cpu_has_feature(CPU_FTR_ARCH_207S
))
1626 * On POWER9, allow userspace to enable large decrementer for the
1627 * guest, whether or not the host has it enabled.
1629 if (cpu_has_feature(CPU_FTR_ARCH_300
))
1632 /* Broken 32-bit version of LPCR must not clear top bits */
1635 vc
->lpcr
= (vc
->lpcr
& ~mask
) | (new_lpcr
& mask
);
1636 spin_unlock(&vc
->lock
);
1639 static int kvmppc_get_one_reg_hv(struct kvm_vcpu
*vcpu
, u64 id
,
1640 union kvmppc_one_reg
*val
)
1646 case KVM_REG_PPC_DEBUG_INST
:
1647 *val
= get_reg_val(id
, KVMPPC_INST_SW_BREAKPOINT
);
1649 case KVM_REG_PPC_HIOR
:
1650 *val
= get_reg_val(id
, 0);
1652 case KVM_REG_PPC_DABR
:
1653 *val
= get_reg_val(id
, vcpu
->arch
.dabr
);
1655 case KVM_REG_PPC_DABRX
:
1656 *val
= get_reg_val(id
, vcpu
->arch
.dabrx
);
1658 case KVM_REG_PPC_DSCR
:
1659 *val
= get_reg_val(id
, vcpu
->arch
.dscr
);
1661 case KVM_REG_PPC_PURR
:
1662 *val
= get_reg_val(id
, vcpu
->arch
.purr
);
1664 case KVM_REG_PPC_SPURR
:
1665 *val
= get_reg_val(id
, vcpu
->arch
.spurr
);
1667 case KVM_REG_PPC_AMR
:
1668 *val
= get_reg_val(id
, vcpu
->arch
.amr
);
1670 case KVM_REG_PPC_UAMOR
:
1671 *val
= get_reg_val(id
, vcpu
->arch
.uamor
);
1673 case KVM_REG_PPC_MMCR0
... KVM_REG_PPC_MMCRS
:
1674 i
= id
- KVM_REG_PPC_MMCR0
;
1675 *val
= get_reg_val(id
, vcpu
->arch
.mmcr
[i
]);
1677 case KVM_REG_PPC_PMC1
... KVM_REG_PPC_PMC8
:
1678 i
= id
- KVM_REG_PPC_PMC1
;
1679 *val
= get_reg_val(id
, vcpu
->arch
.pmc
[i
]);
1681 case KVM_REG_PPC_SPMC1
... KVM_REG_PPC_SPMC2
:
1682 i
= id
- KVM_REG_PPC_SPMC1
;
1683 *val
= get_reg_val(id
, vcpu
->arch
.spmc
[i
]);
1685 case KVM_REG_PPC_SIAR
:
1686 *val
= get_reg_val(id
, vcpu
->arch
.siar
);
1688 case KVM_REG_PPC_SDAR
:
1689 *val
= get_reg_val(id
, vcpu
->arch
.sdar
);
1691 case KVM_REG_PPC_SIER
:
1692 *val
= get_reg_val(id
, vcpu
->arch
.sier
);
1694 case KVM_REG_PPC_IAMR
:
1695 *val
= get_reg_val(id
, vcpu
->arch
.iamr
);
1697 case KVM_REG_PPC_PSPB
:
1698 *val
= get_reg_val(id
, vcpu
->arch
.pspb
);
1700 case KVM_REG_PPC_DPDES
:
1702 * On POWER9, where we are emulating msgsndp etc.,
1703 * we return 1 bit for each vcpu, which can come from
1704 * either vcore->dpdes or doorbell_request.
1705 * On POWER8, doorbell_request is 0.
1707 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->dpdes
|
1708 vcpu
->arch
.doorbell_request
);
1710 case KVM_REG_PPC_VTB
:
1711 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->vtb
);
1713 case KVM_REG_PPC_DAWR
:
1714 *val
= get_reg_val(id
, vcpu
->arch
.dawr
);
1716 case KVM_REG_PPC_DAWRX
:
1717 *val
= get_reg_val(id
, vcpu
->arch
.dawrx
);
1719 case KVM_REG_PPC_CIABR
:
1720 *val
= get_reg_val(id
, vcpu
->arch
.ciabr
);
1722 case KVM_REG_PPC_CSIGR
:
1723 *val
= get_reg_val(id
, vcpu
->arch
.csigr
);
1725 case KVM_REG_PPC_TACR
:
1726 *val
= get_reg_val(id
, vcpu
->arch
.tacr
);
1728 case KVM_REG_PPC_TCSCR
:
1729 *val
= get_reg_val(id
, vcpu
->arch
.tcscr
);
1731 case KVM_REG_PPC_PID
:
1732 *val
= get_reg_val(id
, vcpu
->arch
.pid
);
1734 case KVM_REG_PPC_ACOP
:
1735 *val
= get_reg_val(id
, vcpu
->arch
.acop
);
1737 case KVM_REG_PPC_WORT
:
1738 *val
= get_reg_val(id
, vcpu
->arch
.wort
);
1740 case KVM_REG_PPC_TIDR
:
1741 *val
= get_reg_val(id
, vcpu
->arch
.tid
);
1743 case KVM_REG_PPC_PSSCR
:
1744 *val
= get_reg_val(id
, vcpu
->arch
.psscr
);
1746 case KVM_REG_PPC_VPA_ADDR
:
1747 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1748 *val
= get_reg_val(id
, vcpu
->arch
.vpa
.next_gpa
);
1749 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1751 case KVM_REG_PPC_VPA_SLB
:
1752 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1753 val
->vpaval
.addr
= vcpu
->arch
.slb_shadow
.next_gpa
;
1754 val
->vpaval
.length
= vcpu
->arch
.slb_shadow
.len
;
1755 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1757 case KVM_REG_PPC_VPA_DTL
:
1758 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1759 val
->vpaval
.addr
= vcpu
->arch
.dtl
.next_gpa
;
1760 val
->vpaval
.length
= vcpu
->arch
.dtl
.len
;
1761 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1763 case KVM_REG_PPC_TB_OFFSET
:
1764 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->tb_offset
);
1766 case KVM_REG_PPC_LPCR
:
1767 case KVM_REG_PPC_LPCR_64
:
1768 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->lpcr
);
1770 case KVM_REG_PPC_PPR
:
1771 *val
= get_reg_val(id
, vcpu
->arch
.ppr
);
1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1774 case KVM_REG_PPC_TFHAR
:
1775 *val
= get_reg_val(id
, vcpu
->arch
.tfhar
);
1777 case KVM_REG_PPC_TFIAR
:
1778 *val
= get_reg_val(id
, vcpu
->arch
.tfiar
);
1780 case KVM_REG_PPC_TEXASR
:
1781 *val
= get_reg_val(id
, vcpu
->arch
.texasr
);
1783 case KVM_REG_PPC_TM_GPR0
... KVM_REG_PPC_TM_GPR31
:
1784 i
= id
- KVM_REG_PPC_TM_GPR0
;
1785 *val
= get_reg_val(id
, vcpu
->arch
.gpr_tm
[i
]);
1787 case KVM_REG_PPC_TM_VSR0
... KVM_REG_PPC_TM_VSR63
:
1790 i
= id
- KVM_REG_PPC_TM_VSR0
;
1792 for (j
= 0; j
< TS_FPRWIDTH
; j
++)
1793 val
->vsxval
[j
] = vcpu
->arch
.fp_tm
.fpr
[i
][j
];
1795 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1796 val
->vval
= vcpu
->arch
.vr_tm
.vr
[i
-32];
1802 case KVM_REG_PPC_TM_CR
:
1803 *val
= get_reg_val(id
, vcpu
->arch
.cr_tm
);
1805 case KVM_REG_PPC_TM_XER
:
1806 *val
= get_reg_val(id
, vcpu
->arch
.xer_tm
);
1808 case KVM_REG_PPC_TM_LR
:
1809 *val
= get_reg_val(id
, vcpu
->arch
.lr_tm
);
1811 case KVM_REG_PPC_TM_CTR
:
1812 *val
= get_reg_val(id
, vcpu
->arch
.ctr_tm
);
1814 case KVM_REG_PPC_TM_FPSCR
:
1815 *val
= get_reg_val(id
, vcpu
->arch
.fp_tm
.fpscr
);
1817 case KVM_REG_PPC_TM_AMR
:
1818 *val
= get_reg_val(id
, vcpu
->arch
.amr_tm
);
1820 case KVM_REG_PPC_TM_PPR
:
1821 *val
= get_reg_val(id
, vcpu
->arch
.ppr_tm
);
1823 case KVM_REG_PPC_TM_VRSAVE
:
1824 *val
= get_reg_val(id
, vcpu
->arch
.vrsave_tm
);
1826 case KVM_REG_PPC_TM_VSCR
:
1827 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1828 *val
= get_reg_val(id
, vcpu
->arch
.vr_tm
.vscr
.u
[3]);
1832 case KVM_REG_PPC_TM_DSCR
:
1833 *val
= get_reg_val(id
, vcpu
->arch
.dscr_tm
);
1835 case KVM_REG_PPC_TM_TAR
:
1836 *val
= get_reg_val(id
, vcpu
->arch
.tar_tm
);
1839 case KVM_REG_PPC_ARCH_COMPAT
:
1840 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->arch_compat
);
1842 case KVM_REG_PPC_DEC_EXPIRY
:
1843 *val
= get_reg_val(id
, vcpu
->arch
.dec_expires
+
1844 vcpu
->arch
.vcore
->tb_offset
);
1846 case KVM_REG_PPC_ONLINE
:
1847 *val
= get_reg_val(id
, vcpu
->arch
.online
);
1849 case KVM_REG_PPC_PTCR
:
1850 *val
= get_reg_val(id
, vcpu
->kvm
->arch
.l1_ptcr
);
1860 static int kvmppc_set_one_reg_hv(struct kvm_vcpu
*vcpu
, u64 id
,
1861 union kvmppc_one_reg
*val
)
1865 unsigned long addr
, len
;
1868 case KVM_REG_PPC_HIOR
:
1869 /* Only allow this to be set to zero */
1870 if (set_reg_val(id
, *val
))
1873 case KVM_REG_PPC_DABR
:
1874 vcpu
->arch
.dabr
= set_reg_val(id
, *val
);
1876 case KVM_REG_PPC_DABRX
:
1877 vcpu
->arch
.dabrx
= set_reg_val(id
, *val
) & ~DABRX_HYP
;
1879 case KVM_REG_PPC_DSCR
:
1880 vcpu
->arch
.dscr
= set_reg_val(id
, *val
);
1882 case KVM_REG_PPC_PURR
:
1883 vcpu
->arch
.purr
= set_reg_val(id
, *val
);
1885 case KVM_REG_PPC_SPURR
:
1886 vcpu
->arch
.spurr
= set_reg_val(id
, *val
);
1888 case KVM_REG_PPC_AMR
:
1889 vcpu
->arch
.amr
= set_reg_val(id
, *val
);
1891 case KVM_REG_PPC_UAMOR
:
1892 vcpu
->arch
.uamor
= set_reg_val(id
, *val
);
1894 case KVM_REG_PPC_MMCR0
... KVM_REG_PPC_MMCRS
:
1895 i
= id
- KVM_REG_PPC_MMCR0
;
1896 vcpu
->arch
.mmcr
[i
] = set_reg_val(id
, *val
);
1898 case KVM_REG_PPC_PMC1
... KVM_REG_PPC_PMC8
:
1899 i
= id
- KVM_REG_PPC_PMC1
;
1900 vcpu
->arch
.pmc
[i
] = set_reg_val(id
, *val
);
1902 case KVM_REG_PPC_SPMC1
... KVM_REG_PPC_SPMC2
:
1903 i
= id
- KVM_REG_PPC_SPMC1
;
1904 vcpu
->arch
.spmc
[i
] = set_reg_val(id
, *val
);
1906 case KVM_REG_PPC_SIAR
:
1907 vcpu
->arch
.siar
= set_reg_val(id
, *val
);
1909 case KVM_REG_PPC_SDAR
:
1910 vcpu
->arch
.sdar
= set_reg_val(id
, *val
);
1912 case KVM_REG_PPC_SIER
:
1913 vcpu
->arch
.sier
= set_reg_val(id
, *val
);
1915 case KVM_REG_PPC_IAMR
:
1916 vcpu
->arch
.iamr
= set_reg_val(id
, *val
);
1918 case KVM_REG_PPC_PSPB
:
1919 vcpu
->arch
.pspb
= set_reg_val(id
, *val
);
1921 case KVM_REG_PPC_DPDES
:
1922 vcpu
->arch
.vcore
->dpdes
= set_reg_val(id
, *val
);
1924 case KVM_REG_PPC_VTB
:
1925 vcpu
->arch
.vcore
->vtb
= set_reg_val(id
, *val
);
1927 case KVM_REG_PPC_DAWR
:
1928 vcpu
->arch
.dawr
= set_reg_val(id
, *val
);
1930 case KVM_REG_PPC_DAWRX
:
1931 vcpu
->arch
.dawrx
= set_reg_val(id
, *val
) & ~DAWRX_HYP
;
1933 case KVM_REG_PPC_CIABR
:
1934 vcpu
->arch
.ciabr
= set_reg_val(id
, *val
);
1935 /* Don't allow setting breakpoints in hypervisor code */
1936 if ((vcpu
->arch
.ciabr
& CIABR_PRIV
) == CIABR_PRIV_HYPER
)
1937 vcpu
->arch
.ciabr
&= ~CIABR_PRIV
; /* disable */
1939 case KVM_REG_PPC_CSIGR
:
1940 vcpu
->arch
.csigr
= set_reg_val(id
, *val
);
1942 case KVM_REG_PPC_TACR
:
1943 vcpu
->arch
.tacr
= set_reg_val(id
, *val
);
1945 case KVM_REG_PPC_TCSCR
:
1946 vcpu
->arch
.tcscr
= set_reg_val(id
, *val
);
1948 case KVM_REG_PPC_PID
:
1949 vcpu
->arch
.pid
= set_reg_val(id
, *val
);
1951 case KVM_REG_PPC_ACOP
:
1952 vcpu
->arch
.acop
= set_reg_val(id
, *val
);
1954 case KVM_REG_PPC_WORT
:
1955 vcpu
->arch
.wort
= set_reg_val(id
, *val
);
1957 case KVM_REG_PPC_TIDR
:
1958 vcpu
->arch
.tid
= set_reg_val(id
, *val
);
1960 case KVM_REG_PPC_PSSCR
:
1961 vcpu
->arch
.psscr
= set_reg_val(id
, *val
) & PSSCR_GUEST_VIS
;
1963 case KVM_REG_PPC_VPA_ADDR
:
1964 addr
= set_reg_val(id
, *val
);
1966 if (!addr
&& (vcpu
->arch
.slb_shadow
.next_gpa
||
1967 vcpu
->arch
.dtl
.next_gpa
))
1969 r
= set_vpa(vcpu
, &vcpu
->arch
.vpa
, addr
, sizeof(struct lppaca
));
1971 case KVM_REG_PPC_VPA_SLB
:
1972 addr
= val
->vpaval
.addr
;
1973 len
= val
->vpaval
.length
;
1975 if (addr
&& !vcpu
->arch
.vpa
.next_gpa
)
1977 r
= set_vpa(vcpu
, &vcpu
->arch
.slb_shadow
, addr
, len
);
1979 case KVM_REG_PPC_VPA_DTL
:
1980 addr
= val
->vpaval
.addr
;
1981 len
= val
->vpaval
.length
;
1983 if (addr
&& (len
< sizeof(struct dtl_entry
) ||
1984 !vcpu
->arch
.vpa
.next_gpa
))
1986 len
-= len
% sizeof(struct dtl_entry
);
1987 r
= set_vpa(vcpu
, &vcpu
->arch
.dtl
, addr
, len
);
1989 case KVM_REG_PPC_TB_OFFSET
:
1990 /* round up to multiple of 2^24 */
1991 vcpu
->arch
.vcore
->tb_offset
=
1992 ALIGN(set_reg_val(id
, *val
), 1UL << 24);
1994 case KVM_REG_PPC_LPCR
:
1995 kvmppc_set_lpcr(vcpu
, set_reg_val(id
, *val
), true);
1997 case KVM_REG_PPC_LPCR_64
:
1998 kvmppc_set_lpcr(vcpu
, set_reg_val(id
, *val
), false);
2000 case KVM_REG_PPC_PPR
:
2001 vcpu
->arch
.ppr
= set_reg_val(id
, *val
);
2003 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2004 case KVM_REG_PPC_TFHAR
:
2005 vcpu
->arch
.tfhar
= set_reg_val(id
, *val
);
2007 case KVM_REG_PPC_TFIAR
:
2008 vcpu
->arch
.tfiar
= set_reg_val(id
, *val
);
2010 case KVM_REG_PPC_TEXASR
:
2011 vcpu
->arch
.texasr
= set_reg_val(id
, *val
);
2013 case KVM_REG_PPC_TM_GPR0
... KVM_REG_PPC_TM_GPR31
:
2014 i
= id
- KVM_REG_PPC_TM_GPR0
;
2015 vcpu
->arch
.gpr_tm
[i
] = set_reg_val(id
, *val
);
2017 case KVM_REG_PPC_TM_VSR0
... KVM_REG_PPC_TM_VSR63
:
2020 i
= id
- KVM_REG_PPC_TM_VSR0
;
2022 for (j
= 0; j
< TS_FPRWIDTH
; j
++)
2023 vcpu
->arch
.fp_tm
.fpr
[i
][j
] = val
->vsxval
[j
];
2025 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
2026 vcpu
->arch
.vr_tm
.vr
[i
-32] = val
->vval
;
2031 case KVM_REG_PPC_TM_CR
:
2032 vcpu
->arch
.cr_tm
= set_reg_val(id
, *val
);
2034 case KVM_REG_PPC_TM_XER
:
2035 vcpu
->arch
.xer_tm
= set_reg_val(id
, *val
);
2037 case KVM_REG_PPC_TM_LR
:
2038 vcpu
->arch
.lr_tm
= set_reg_val(id
, *val
);
2040 case KVM_REG_PPC_TM_CTR
:
2041 vcpu
->arch
.ctr_tm
= set_reg_val(id
, *val
);
2043 case KVM_REG_PPC_TM_FPSCR
:
2044 vcpu
->arch
.fp_tm
.fpscr
= set_reg_val(id
, *val
);
2046 case KVM_REG_PPC_TM_AMR
:
2047 vcpu
->arch
.amr_tm
= set_reg_val(id
, *val
);
2049 case KVM_REG_PPC_TM_PPR
:
2050 vcpu
->arch
.ppr_tm
= set_reg_val(id
, *val
);
2052 case KVM_REG_PPC_TM_VRSAVE
:
2053 vcpu
->arch
.vrsave_tm
= set_reg_val(id
, *val
);
2055 case KVM_REG_PPC_TM_VSCR
:
2056 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
2057 vcpu
->arch
.vr
.vscr
.u
[3] = set_reg_val(id
, *val
);
2061 case KVM_REG_PPC_TM_DSCR
:
2062 vcpu
->arch
.dscr_tm
= set_reg_val(id
, *val
);
2064 case KVM_REG_PPC_TM_TAR
:
2065 vcpu
->arch
.tar_tm
= set_reg_val(id
, *val
);
2068 case KVM_REG_PPC_ARCH_COMPAT
:
2069 r
= kvmppc_set_arch_compat(vcpu
, set_reg_val(id
, *val
));
2071 case KVM_REG_PPC_DEC_EXPIRY
:
2072 vcpu
->arch
.dec_expires
= set_reg_val(id
, *val
) -
2073 vcpu
->arch
.vcore
->tb_offset
;
2075 case KVM_REG_PPC_ONLINE
:
2076 i
= set_reg_val(id
, *val
);
2077 if (i
&& !vcpu
->arch
.online
)
2078 atomic_inc(&vcpu
->arch
.vcore
->online_count
);
2079 else if (!i
&& vcpu
->arch
.online
)
2080 atomic_dec(&vcpu
->arch
.vcore
->online_count
);
2081 vcpu
->arch
.online
= i
;
2083 case KVM_REG_PPC_PTCR
:
2084 vcpu
->kvm
->arch
.l1_ptcr
= set_reg_val(id
, *val
);
2095 * On POWER9, threads are independent and can be in different partitions.
2096 * Therefore we consider each thread to be a subcore.
2097 * There is a restriction that all threads have to be in the same
2098 * MMU mode (radix or HPT), unfortunately, but since we only support
2099 * HPT guests on a HPT host so far, that isn't an impediment yet.
2101 static int threads_per_vcore(struct kvm
*kvm
)
2103 if (kvm
->arch
.threads_indep
)
2105 return threads_per_subcore
;
2108 static struct kvmppc_vcore
*kvmppc_vcore_create(struct kvm
*kvm
, int id
)
2110 struct kvmppc_vcore
*vcore
;
2112 vcore
= kzalloc(sizeof(struct kvmppc_vcore
), GFP_KERNEL
);
2117 spin_lock_init(&vcore
->lock
);
2118 spin_lock_init(&vcore
->stoltb_lock
);
2119 init_swait_queue_head(&vcore
->wq
);
2120 vcore
->preempt_tb
= TB_NIL
;
2121 vcore
->lpcr
= kvm
->arch
.lpcr
;
2122 vcore
->first_vcpuid
= id
;
2124 INIT_LIST_HEAD(&vcore
->preempt_list
);
2129 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2130 static struct debugfs_timings_element
{
2134 {"rm_entry", offsetof(struct kvm_vcpu
, arch
.rm_entry
)},
2135 {"rm_intr", offsetof(struct kvm_vcpu
, arch
.rm_intr
)},
2136 {"rm_exit", offsetof(struct kvm_vcpu
, arch
.rm_exit
)},
2137 {"guest", offsetof(struct kvm_vcpu
, arch
.guest_time
)},
2138 {"cede", offsetof(struct kvm_vcpu
, arch
.cede_time
)},
2141 #define N_TIMINGS (ARRAY_SIZE(timings))
2143 struct debugfs_timings_state
{
2144 struct kvm_vcpu
*vcpu
;
2145 unsigned int buflen
;
2146 char buf
[N_TIMINGS
* 100];
2149 static int debugfs_timings_open(struct inode
*inode
, struct file
*file
)
2151 struct kvm_vcpu
*vcpu
= inode
->i_private
;
2152 struct debugfs_timings_state
*p
;
2154 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2158 kvm_get_kvm(vcpu
->kvm
);
2160 file
->private_data
= p
;
2162 return nonseekable_open(inode
, file
);
2165 static int debugfs_timings_release(struct inode
*inode
, struct file
*file
)
2167 struct debugfs_timings_state
*p
= file
->private_data
;
2169 kvm_put_kvm(p
->vcpu
->kvm
);
2174 static ssize_t
debugfs_timings_read(struct file
*file
, char __user
*buf
,
2175 size_t len
, loff_t
*ppos
)
2177 struct debugfs_timings_state
*p
= file
->private_data
;
2178 struct kvm_vcpu
*vcpu
= p
->vcpu
;
2180 struct kvmhv_tb_accumulator tb
;
2189 buf_end
= s
+ sizeof(p
->buf
);
2190 for (i
= 0; i
< N_TIMINGS
; ++i
) {
2191 struct kvmhv_tb_accumulator
*acc
;
2193 acc
= (struct kvmhv_tb_accumulator
*)
2194 ((unsigned long)vcpu
+ timings
[i
].offset
);
2196 for (loops
= 0; loops
< 1000; ++loops
) {
2197 count
= acc
->seqcount
;
2202 if (count
== acc
->seqcount
) {
2210 snprintf(s
, buf_end
- s
, "%s: stuck\n",
2213 snprintf(s
, buf_end
- s
,
2214 "%s: %llu %llu %llu %llu\n",
2215 timings
[i
].name
, count
/ 2,
2216 tb_to_ns(tb
.tb_total
),
2217 tb_to_ns(tb
.tb_min
),
2218 tb_to_ns(tb
.tb_max
));
2221 p
->buflen
= s
- p
->buf
;
2225 if (pos
>= p
->buflen
)
2227 if (len
> p
->buflen
- pos
)
2228 len
= p
->buflen
- pos
;
2229 n
= copy_to_user(buf
, p
->buf
+ pos
, len
);
2239 static ssize_t
debugfs_timings_write(struct file
*file
, const char __user
*buf
,
2240 size_t len
, loff_t
*ppos
)
2245 static const struct file_operations debugfs_timings_ops
= {
2246 .owner
= THIS_MODULE
,
2247 .open
= debugfs_timings_open
,
2248 .release
= debugfs_timings_release
,
2249 .read
= debugfs_timings_read
,
2250 .write
= debugfs_timings_write
,
2251 .llseek
= generic_file_llseek
,
2254 /* Create a debugfs directory for the vcpu */
2255 static void debugfs_vcpu_init(struct kvm_vcpu
*vcpu
, unsigned int id
)
2258 struct kvm
*kvm
= vcpu
->kvm
;
2260 snprintf(buf
, sizeof(buf
), "vcpu%u", id
);
2261 if (IS_ERR_OR_NULL(kvm
->arch
.debugfs_dir
))
2263 vcpu
->arch
.debugfs_dir
= debugfs_create_dir(buf
, kvm
->arch
.debugfs_dir
);
2264 if (IS_ERR_OR_NULL(vcpu
->arch
.debugfs_dir
))
2266 vcpu
->arch
.debugfs_timings
=
2267 debugfs_create_file("timings", 0444, vcpu
->arch
.debugfs_dir
,
2268 vcpu
, &debugfs_timings_ops
);
2271 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2272 static void debugfs_vcpu_init(struct kvm_vcpu
*vcpu
, unsigned int id
)
2275 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2277 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu
*vcpu
)
2281 struct kvmppc_vcore
*vcore
;
2288 vcpu
->arch
.shared
= &vcpu
->arch
.shregs
;
2289 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2291 * The shared struct is never shared on HV,
2292 * so we can always use host endianness
2294 #ifdef __BIG_ENDIAN__
2295 vcpu
->arch
.shared_big_endian
= true;
2297 vcpu
->arch
.shared_big_endian
= false;
2300 vcpu
->arch
.mmcr
[0] = MMCR0_FC
;
2301 vcpu
->arch
.ctrl
= CTRL_RUNLATCH
;
2302 /* default to host PVR, since we can't spoof it */
2303 kvmppc_set_pvr_hv(vcpu
, mfspr(SPRN_PVR
));
2304 spin_lock_init(&vcpu
->arch
.vpa_update_lock
);
2305 spin_lock_init(&vcpu
->arch
.tbacct_lock
);
2306 vcpu
->arch
.busy_preempt
= TB_NIL
;
2307 vcpu
->arch
.intr_msr
= MSR_SF
| MSR_ME
;
2310 * Set the default HFSCR for the guest from the host value.
2311 * This value is only used on POWER9.
2312 * On POWER9, we want to virtualize the doorbell facility, so we
2313 * don't set the HFSCR_MSGP bit, and that causes those instructions
2314 * to trap and then we emulate them.
2316 vcpu
->arch
.hfscr
= HFSCR_TAR
| HFSCR_EBB
| HFSCR_PM
| HFSCR_BHRB
|
2317 HFSCR_DSCR
| HFSCR_VECVSX
| HFSCR_FP
;
2318 if (cpu_has_feature(CPU_FTR_HVMODE
)) {
2319 vcpu
->arch
.hfscr
&= mfspr(SPRN_HFSCR
);
2320 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST
))
2321 vcpu
->arch
.hfscr
|= HFSCR_TM
;
2323 if (cpu_has_feature(CPU_FTR_TM_COMP
))
2324 vcpu
->arch
.hfscr
|= HFSCR_TM
;
2326 kvmppc_mmu_book3s_hv_init(vcpu
);
2328 vcpu
->arch
.state
= KVMPPC_VCPU_NOTREADY
;
2330 init_waitqueue_head(&vcpu
->arch
.cpu_run
);
2332 mutex_lock(&kvm
->lock
);
2335 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
2336 if (id
>= (KVM_MAX_VCPUS
* kvm
->arch
.emul_smt_mode
)) {
2337 pr_devel("KVM: VCPU ID too high\n");
2338 core
= KVM_MAX_VCORES
;
2340 BUG_ON(kvm
->arch
.smt_mode
!= 1);
2341 core
= kvmppc_pack_vcpu_id(kvm
, id
);
2344 core
= id
/ kvm
->arch
.smt_mode
;
2346 if (core
< KVM_MAX_VCORES
) {
2347 vcore
= kvm
->arch
.vcores
[core
];
2348 if (vcore
&& cpu_has_feature(CPU_FTR_ARCH_300
)) {
2349 pr_devel("KVM: collision on id %u", id
);
2351 } else if (!vcore
) {
2353 * Take mmu_setup_lock for mutual exclusion
2354 * with kvmppc_update_lpcr().
2357 vcore
= kvmppc_vcore_create(kvm
,
2358 id
& ~(kvm
->arch
.smt_mode
- 1));
2359 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
2360 kvm
->arch
.vcores
[core
] = vcore
;
2361 kvm
->arch
.online_vcores
++;
2362 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
2365 mutex_unlock(&kvm
->lock
);
2370 spin_lock(&vcore
->lock
);
2371 ++vcore
->num_threads
;
2372 spin_unlock(&vcore
->lock
);
2373 vcpu
->arch
.vcore
= vcore
;
2374 vcpu
->arch
.ptid
= vcpu
->vcpu_id
- vcore
->first_vcpuid
;
2375 vcpu
->arch
.thread_cpu
= -1;
2376 vcpu
->arch
.prev_cpu
= -1;
2378 vcpu
->arch
.cpu_type
= KVM_CPU_3S_64
;
2379 kvmppc_sanity_check(vcpu
);
2381 debugfs_vcpu_init(vcpu
, id
);
2386 static int kvmhv_set_smt_mode(struct kvm
*kvm
, unsigned long smt_mode
,
2387 unsigned long flags
)
2394 if (smt_mode
> MAX_SMT_THREADS
|| !is_power_of_2(smt_mode
))
2396 if (!cpu_has_feature(CPU_FTR_ARCH_300
)) {
2398 * On POWER8 (or POWER7), the threading mode is "strict",
2399 * so we pack smt_mode vcpus per vcore.
2401 if (smt_mode
> threads_per_subcore
)
2405 * On POWER9, the threading mode is "loose",
2406 * so each vcpu gets its own vcore.
2411 mutex_lock(&kvm
->lock
);
2413 if (!kvm
->arch
.online_vcores
) {
2414 kvm
->arch
.smt_mode
= smt_mode
;
2415 kvm
->arch
.emul_smt_mode
= esmt
;
2418 mutex_unlock(&kvm
->lock
);
2423 static void unpin_vpa(struct kvm
*kvm
, struct kvmppc_vpa
*vpa
)
2425 if (vpa
->pinned_addr
)
2426 kvmppc_unpin_guest_page(kvm
, vpa
->pinned_addr
, vpa
->gpa
,
2430 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu
*vcpu
)
2432 spin_lock(&vcpu
->arch
.vpa_update_lock
);
2433 unpin_vpa(vcpu
->kvm
, &vcpu
->arch
.dtl
);
2434 unpin_vpa(vcpu
->kvm
, &vcpu
->arch
.slb_shadow
);
2435 unpin_vpa(vcpu
->kvm
, &vcpu
->arch
.vpa
);
2436 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
2439 static int kvmppc_core_check_requests_hv(struct kvm_vcpu
*vcpu
)
2441 /* Indicate we want to get back into the guest */
2445 static void kvmppc_set_timer(struct kvm_vcpu
*vcpu
)
2447 unsigned long dec_nsec
, now
;
2450 if (now
> vcpu
->arch
.dec_expires
) {
2451 /* decrementer has already gone negative */
2452 kvmppc_core_queue_dec(vcpu
);
2453 kvmppc_core_prepare_to_enter(vcpu
);
2456 dec_nsec
= tb_to_ns(vcpu
->arch
.dec_expires
- now
);
2457 hrtimer_start(&vcpu
->arch
.dec_timer
, dec_nsec
, HRTIMER_MODE_REL
);
2458 vcpu
->arch
.timer_running
= 1;
2461 extern int __kvmppc_vcore_entry(void);
2463 static void kvmppc_remove_runnable(struct kvmppc_vcore
*vc
,
2464 struct kvm_vcpu
*vcpu
)
2468 if (vcpu
->arch
.state
!= KVMPPC_VCPU_RUNNABLE
)
2470 spin_lock_irq(&vcpu
->arch
.tbacct_lock
);
2472 vcpu
->arch
.busy_stolen
+= vcore_stolen_time(vc
, now
) -
2473 vcpu
->arch
.stolen_logged
;
2474 vcpu
->arch
.busy_preempt
= now
;
2475 vcpu
->arch
.state
= KVMPPC_VCPU_BUSY_IN_HOST
;
2476 spin_unlock_irq(&vcpu
->arch
.tbacct_lock
);
2478 WRITE_ONCE(vc
->runnable_threads
[vcpu
->arch
.ptid
], NULL
);
2481 static int kvmppc_grab_hwthread(int cpu
)
2483 struct paca_struct
*tpaca
;
2484 long timeout
= 10000;
2486 tpaca
= paca_ptrs
[cpu
];
2488 /* Ensure the thread won't go into the kernel if it wakes */
2489 tpaca
->kvm_hstate
.kvm_vcpu
= NULL
;
2490 tpaca
->kvm_hstate
.kvm_vcore
= NULL
;
2491 tpaca
->kvm_hstate
.napping
= 0;
2493 tpaca
->kvm_hstate
.hwthread_req
= 1;
2496 * If the thread is already executing in the kernel (e.g. handling
2497 * a stray interrupt), wait for it to get back to nap mode.
2498 * The smp_mb() is to ensure that our setting of hwthread_req
2499 * is visible before we look at hwthread_state, so if this
2500 * races with the code at system_reset_pSeries and the thread
2501 * misses our setting of hwthread_req, we are sure to see its
2502 * setting of hwthread_state, and vice versa.
2505 while (tpaca
->kvm_hstate
.hwthread_state
== KVM_HWTHREAD_IN_KERNEL
) {
2506 if (--timeout
<= 0) {
2507 pr_err("KVM: couldn't grab cpu %d\n", cpu
);
2515 static void kvmppc_release_hwthread(int cpu
)
2517 struct paca_struct
*tpaca
;
2519 tpaca
= paca_ptrs
[cpu
];
2520 tpaca
->kvm_hstate
.hwthread_req
= 0;
2521 tpaca
->kvm_hstate
.kvm_vcpu
= NULL
;
2522 tpaca
->kvm_hstate
.kvm_vcore
= NULL
;
2523 tpaca
->kvm_hstate
.kvm_split_mode
= NULL
;
2526 static void radix_flush_cpu(struct kvm
*kvm
, int cpu
, struct kvm_vcpu
*vcpu
)
2528 struct kvm_nested_guest
*nested
= vcpu
->arch
.nested
;
2529 cpumask_t
*cpu_in_guest
;
2532 cpu
= cpu_first_thread_sibling(cpu
);
2534 cpumask_set_cpu(cpu
, &nested
->need_tlb_flush
);
2535 cpu_in_guest
= &nested
->cpu_in_guest
;
2537 cpumask_set_cpu(cpu
, &kvm
->arch
.need_tlb_flush
);
2538 cpu_in_guest
= &kvm
->arch
.cpu_in_guest
;
2541 * Make sure setting of bit in need_tlb_flush precedes
2542 * testing of cpu_in_guest bits. The matching barrier on
2543 * the other side is the first smp_mb() in kvmppc_run_core().
2546 for (i
= 0; i
< threads_per_core
; ++i
)
2547 if (cpumask_test_cpu(cpu
+ i
, cpu_in_guest
))
2548 smp_call_function_single(cpu
+ i
, do_nothing
, NULL
, 1);
2551 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu
*vcpu
, int pcpu
)
2553 struct kvm_nested_guest
*nested
= vcpu
->arch
.nested
;
2554 struct kvm
*kvm
= vcpu
->kvm
;
2557 if (!cpu_has_feature(CPU_FTR_HVMODE
))
2561 prev_cpu
= nested
->prev_cpu
[vcpu
->arch
.nested_vcpu_id
];
2563 prev_cpu
= vcpu
->arch
.prev_cpu
;
2566 * With radix, the guest can do TLB invalidations itself,
2567 * and it could choose to use the local form (tlbiel) if
2568 * it is invalidating a translation that has only ever been
2569 * used on one vcpu. However, that doesn't mean it has
2570 * only ever been used on one physical cpu, since vcpus
2571 * can move around between pcpus. To cope with this, when
2572 * a vcpu moves from one pcpu to another, we need to tell
2573 * any vcpus running on the same core as this vcpu previously
2574 * ran to flush the TLB. The TLB is shared between threads,
2575 * so we use a single bit in .need_tlb_flush for all 4 threads.
2577 if (prev_cpu
!= pcpu
) {
2578 if (prev_cpu
>= 0 &&
2579 cpu_first_thread_sibling(prev_cpu
) !=
2580 cpu_first_thread_sibling(pcpu
))
2581 radix_flush_cpu(kvm
, prev_cpu
, vcpu
);
2583 nested
->prev_cpu
[vcpu
->arch
.nested_vcpu_id
] = pcpu
;
2585 vcpu
->arch
.prev_cpu
= pcpu
;
2589 static void kvmppc_start_thread(struct kvm_vcpu
*vcpu
, struct kvmppc_vcore
*vc
)
2592 struct paca_struct
*tpaca
;
2593 struct kvm
*kvm
= vc
->kvm
;
2597 if (vcpu
->arch
.timer_running
) {
2598 hrtimer_try_to_cancel(&vcpu
->arch
.dec_timer
);
2599 vcpu
->arch
.timer_running
= 0;
2601 cpu
+= vcpu
->arch
.ptid
;
2602 vcpu
->cpu
= vc
->pcpu
;
2603 vcpu
->arch
.thread_cpu
= cpu
;
2604 cpumask_set_cpu(cpu
, &kvm
->arch
.cpu_in_guest
);
2606 tpaca
= paca_ptrs
[cpu
];
2607 tpaca
->kvm_hstate
.kvm_vcpu
= vcpu
;
2608 tpaca
->kvm_hstate
.ptid
= cpu
- vc
->pcpu
;
2609 tpaca
->kvm_hstate
.fake_suspend
= 0;
2610 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2612 tpaca
->kvm_hstate
.kvm_vcore
= vc
;
2613 if (cpu
!= smp_processor_id())
2614 kvmppc_ipi_thread(cpu
);
2617 static void kvmppc_wait_for_nap(int n_threads
)
2619 int cpu
= smp_processor_id();
2624 for (loops
= 0; loops
< 1000000; ++loops
) {
2626 * Check if all threads are finished.
2627 * We set the vcore pointer when starting a thread
2628 * and the thread clears it when finished, so we look
2629 * for any threads that still have a non-NULL vcore ptr.
2631 for (i
= 1; i
< n_threads
; ++i
)
2632 if (paca_ptrs
[cpu
+ i
]->kvm_hstate
.kvm_vcore
)
2634 if (i
== n_threads
) {
2641 for (i
= 1; i
< n_threads
; ++i
)
2642 if (paca_ptrs
[cpu
+ i
]->kvm_hstate
.kvm_vcore
)
2643 pr_err("KVM: CPU %d seems to be stuck\n", cpu
+ i
);
2647 * Check that we are on thread 0 and that any other threads in
2648 * this core are off-line. Then grab the threads so they can't
2651 static int on_primary_thread(void)
2653 int cpu
= smp_processor_id();
2656 /* Are we on a primary subcore? */
2657 if (cpu_thread_in_subcore(cpu
))
2661 while (++thr
< threads_per_subcore
)
2662 if (cpu_online(cpu
+ thr
))
2665 /* Grab all hw threads so they can't go into the kernel */
2666 for (thr
= 1; thr
< threads_per_subcore
; ++thr
) {
2667 if (kvmppc_grab_hwthread(cpu
+ thr
)) {
2668 /* Couldn't grab one; let the others go */
2670 kvmppc_release_hwthread(cpu
+ thr
);
2671 } while (--thr
> 0);
2679 * A list of virtual cores for each physical CPU.
2680 * These are vcores that could run but their runner VCPU tasks are
2681 * (or may be) preempted.
2683 struct preempted_vcore_list
{
2684 struct list_head list
;
2688 static DEFINE_PER_CPU(struct preempted_vcore_list
, preempted_vcores
);
2690 static void init_vcore_lists(void)
2694 for_each_possible_cpu(cpu
) {
2695 struct preempted_vcore_list
*lp
= &per_cpu(preempted_vcores
, cpu
);
2696 spin_lock_init(&lp
->lock
);
2697 INIT_LIST_HEAD(&lp
->list
);
2701 static void kvmppc_vcore_preempt(struct kvmppc_vcore
*vc
)
2703 struct preempted_vcore_list
*lp
= this_cpu_ptr(&preempted_vcores
);
2705 vc
->vcore_state
= VCORE_PREEMPT
;
2706 vc
->pcpu
= smp_processor_id();
2707 if (vc
->num_threads
< threads_per_vcore(vc
->kvm
)) {
2708 spin_lock(&lp
->lock
);
2709 list_add_tail(&vc
->preempt_list
, &lp
->list
);
2710 spin_unlock(&lp
->lock
);
2713 /* Start accumulating stolen time */
2714 kvmppc_core_start_stolen(vc
);
2717 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore
*vc
)
2719 struct preempted_vcore_list
*lp
;
2721 kvmppc_core_end_stolen(vc
);
2722 if (!list_empty(&vc
->preempt_list
)) {
2723 lp
= &per_cpu(preempted_vcores
, vc
->pcpu
);
2724 spin_lock(&lp
->lock
);
2725 list_del_init(&vc
->preempt_list
);
2726 spin_unlock(&lp
->lock
);
2728 vc
->vcore_state
= VCORE_INACTIVE
;
2732 * This stores information about the virtual cores currently
2733 * assigned to a physical core.
2737 int max_subcore_threads
;
2739 int subcore_threads
[MAX_SUBCORES
];
2740 struct kvmppc_vcore
*vc
[MAX_SUBCORES
];
2744 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2745 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2747 static int subcore_thread_map
[MAX_SUBCORES
] = { 0, 4, 2, 6 };
2749 static void init_core_info(struct core_info
*cip
, struct kvmppc_vcore
*vc
)
2751 memset(cip
, 0, sizeof(*cip
));
2752 cip
->n_subcores
= 1;
2753 cip
->max_subcore_threads
= vc
->num_threads
;
2754 cip
->total_threads
= vc
->num_threads
;
2755 cip
->subcore_threads
[0] = vc
->num_threads
;
2759 static bool subcore_config_ok(int n_subcores
, int n_threads
)
2762 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2763 * split-core mode, with one thread per subcore.
2765 if (cpu_has_feature(CPU_FTR_ARCH_300
))
2766 return n_subcores
<= 4 && n_threads
== 1;
2768 /* On POWER8, can only dynamically split if unsplit to begin with */
2769 if (n_subcores
> 1 && threads_per_subcore
< MAX_SMT_THREADS
)
2771 if (n_subcores
> MAX_SUBCORES
)
2773 if (n_subcores
> 1) {
2774 if (!(dynamic_mt_modes
& 2))
2776 if (n_subcores
> 2 && !(dynamic_mt_modes
& 4))
2780 return n_subcores
* roundup_pow_of_two(n_threads
) <= MAX_SMT_THREADS
;
2783 static void init_vcore_to_run(struct kvmppc_vcore
*vc
)
2785 vc
->entry_exit_map
= 0;
2787 vc
->napping_threads
= 0;
2788 vc
->conferring_threads
= 0;
2789 vc
->tb_offset_applied
= 0;
2792 static bool can_dynamic_split(struct kvmppc_vcore
*vc
, struct core_info
*cip
)
2794 int n_threads
= vc
->num_threads
;
2797 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
2800 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2801 if (one_vm_per_core
&& vc
->kvm
!= cip
->vc
[0]->kvm
)
2804 /* Some POWER9 chips require all threads to be in the same MMU mode */
2805 if (no_mixing_hpt_and_radix
&&
2806 kvm_is_radix(vc
->kvm
) != kvm_is_radix(cip
->vc
[0]->kvm
))
2809 if (n_threads
< cip
->max_subcore_threads
)
2810 n_threads
= cip
->max_subcore_threads
;
2811 if (!subcore_config_ok(cip
->n_subcores
+ 1, n_threads
))
2813 cip
->max_subcore_threads
= n_threads
;
2815 sub
= cip
->n_subcores
;
2817 cip
->total_threads
+= vc
->num_threads
;
2818 cip
->subcore_threads
[sub
] = vc
->num_threads
;
2820 init_vcore_to_run(vc
);
2821 list_del_init(&vc
->preempt_list
);
2827 * Work out whether it is possible to piggyback the execution of
2828 * vcore *pvc onto the execution of the other vcores described in *cip.
2830 static bool can_piggyback(struct kvmppc_vcore
*pvc
, struct core_info
*cip
,
2833 if (cip
->total_threads
+ pvc
->num_threads
> target_threads
)
2836 return can_dynamic_split(pvc
, cip
);
2839 static void prepare_threads(struct kvmppc_vcore
*vc
)
2842 struct kvm_vcpu
*vcpu
;
2844 for_each_runnable_thread(i
, vcpu
, vc
) {
2845 if (signal_pending(vcpu
->arch
.run_task
))
2846 vcpu
->arch
.ret
= -EINTR
;
2847 else if (vcpu
->arch
.vpa
.update_pending
||
2848 vcpu
->arch
.slb_shadow
.update_pending
||
2849 vcpu
->arch
.dtl
.update_pending
)
2850 vcpu
->arch
.ret
= RESUME_GUEST
;
2853 kvmppc_remove_runnable(vc
, vcpu
);
2854 wake_up(&vcpu
->arch
.cpu_run
);
2858 static void collect_piggybacks(struct core_info
*cip
, int target_threads
)
2860 struct preempted_vcore_list
*lp
= this_cpu_ptr(&preempted_vcores
);
2861 struct kvmppc_vcore
*pvc
, *vcnext
;
2863 spin_lock(&lp
->lock
);
2864 list_for_each_entry_safe(pvc
, vcnext
, &lp
->list
, preempt_list
) {
2865 if (!spin_trylock(&pvc
->lock
))
2867 prepare_threads(pvc
);
2868 if (!pvc
->n_runnable
|| !pvc
->kvm
->arch
.mmu_ready
) {
2869 list_del_init(&pvc
->preempt_list
);
2870 if (pvc
->runner
== NULL
) {
2871 pvc
->vcore_state
= VCORE_INACTIVE
;
2872 kvmppc_core_end_stolen(pvc
);
2874 spin_unlock(&pvc
->lock
);
2877 if (!can_piggyback(pvc
, cip
, target_threads
)) {
2878 spin_unlock(&pvc
->lock
);
2881 kvmppc_core_end_stolen(pvc
);
2882 pvc
->vcore_state
= VCORE_PIGGYBACK
;
2883 if (cip
->total_threads
>= target_threads
)
2886 spin_unlock(&lp
->lock
);
2889 static bool recheck_signals_and_mmu(struct core_info
*cip
)
2892 struct kvm_vcpu
*vcpu
;
2893 struct kvmppc_vcore
*vc
;
2895 for (sub
= 0; sub
< cip
->n_subcores
; ++sub
) {
2897 if (!vc
->kvm
->arch
.mmu_ready
)
2899 for_each_runnable_thread(i
, vcpu
, vc
)
2900 if (signal_pending(vcpu
->arch
.run_task
))
2906 static void post_guest_process(struct kvmppc_vcore
*vc
, bool is_master
)
2908 int still_running
= 0, i
;
2911 struct kvm_vcpu
*vcpu
;
2913 spin_lock(&vc
->lock
);
2915 for_each_runnable_thread(i
, vcpu
, vc
) {
2917 * It's safe to unlock the vcore in the loop here, because
2918 * for_each_runnable_thread() is safe against removal of
2919 * the vcpu, and the vcore state is VCORE_EXITING here,
2920 * so any vcpus becoming runnable will have their arch.trap
2921 * set to zero and can't actually run in the guest.
2923 spin_unlock(&vc
->lock
);
2924 /* cancel pending dec exception if dec is positive */
2925 if (now
< vcpu
->arch
.dec_expires
&&
2926 kvmppc_core_pending_dec(vcpu
))
2927 kvmppc_core_dequeue_dec(vcpu
);
2929 trace_kvm_guest_exit(vcpu
);
2932 if (vcpu
->arch
.trap
)
2933 ret
= kvmppc_handle_exit_hv(vcpu
->arch
.kvm_run
, vcpu
,
2934 vcpu
->arch
.run_task
);
2936 vcpu
->arch
.ret
= ret
;
2937 vcpu
->arch
.trap
= 0;
2939 spin_lock(&vc
->lock
);
2940 if (is_kvmppc_resume_guest(vcpu
->arch
.ret
)) {
2941 if (vcpu
->arch
.pending_exceptions
)
2942 kvmppc_core_prepare_to_enter(vcpu
);
2943 if (vcpu
->arch
.ceded
)
2944 kvmppc_set_timer(vcpu
);
2948 kvmppc_remove_runnable(vc
, vcpu
);
2949 wake_up(&vcpu
->arch
.cpu_run
);
2953 if (still_running
> 0) {
2954 kvmppc_vcore_preempt(vc
);
2955 } else if (vc
->runner
) {
2956 vc
->vcore_state
= VCORE_PREEMPT
;
2957 kvmppc_core_start_stolen(vc
);
2959 vc
->vcore_state
= VCORE_INACTIVE
;
2961 if (vc
->n_runnable
> 0 && vc
->runner
== NULL
) {
2962 /* make sure there's a candidate runner awake */
2964 vcpu
= next_runnable_thread(vc
, &i
);
2965 wake_up(&vcpu
->arch
.cpu_run
);
2968 spin_unlock(&vc
->lock
);
2972 * Clear core from the list of active host cores as we are about to
2973 * enter the guest. Only do this if it is the primary thread of the
2974 * core (not if a subcore) that is entering the guest.
2976 static inline int kvmppc_clear_host_core(unsigned int cpu
)
2980 if (!kvmppc_host_rm_ops_hv
|| cpu_thread_in_core(cpu
))
2983 * Memory barrier can be omitted here as we will do a smp_wmb()
2984 * later in kvmppc_start_thread and we need ensure that state is
2985 * visible to other CPUs only after we enter guest.
2987 core
= cpu
>> threads_shift
;
2988 kvmppc_host_rm_ops_hv
->rm_core
[core
].rm_state
.in_host
= 0;
2993 * Advertise this core as an active host core since we exited the guest
2994 * Only need to do this if it is the primary thread of the core that is
2997 static inline int kvmppc_set_host_core(unsigned int cpu
)
3001 if (!kvmppc_host_rm_ops_hv
|| cpu_thread_in_core(cpu
))
3005 * Memory barrier can be omitted here because we do a spin_unlock
3006 * immediately after this which provides the memory barrier.
3008 core
= cpu
>> threads_shift
;
3009 kvmppc_host_rm_ops_hv
->rm_core
[core
].rm_state
.in_host
= 1;
3013 static void set_irq_happened(int trap
)
3016 case BOOK3S_INTERRUPT_EXTERNAL
:
3017 local_paca
->irq_happened
|= PACA_IRQ_EE
;
3019 case BOOK3S_INTERRUPT_H_DOORBELL
:
3020 local_paca
->irq_happened
|= PACA_IRQ_DBELL
;
3022 case BOOK3S_INTERRUPT_HMI
:
3023 local_paca
->irq_happened
|= PACA_IRQ_HMI
;
3025 case BOOK3S_INTERRUPT_SYSTEM_RESET
:
3026 replay_system_reset();
3032 * Run a set of guest threads on a physical core.
3033 * Called with vc->lock held.
3035 static noinline
void kvmppc_run_core(struct kvmppc_vcore
*vc
)
3037 struct kvm_vcpu
*vcpu
;
3040 struct core_info core_info
;
3041 struct kvmppc_vcore
*pvc
;
3042 struct kvm_split_mode split_info
, *sip
;
3043 int split
, subcore_size
, active
;
3046 unsigned long cmd_bit
, stat_bit
;
3049 int controlled_threads
;
3055 * Remove from the list any threads that have a signal pending
3056 * or need a VPA update done
3058 prepare_threads(vc
);
3060 /* if the runner is no longer runnable, let the caller pick a new one */
3061 if (vc
->runner
->arch
.state
!= KVMPPC_VCPU_RUNNABLE
)
3067 init_vcore_to_run(vc
);
3068 vc
->preempt_tb
= TB_NIL
;
3071 * Number of threads that we will be controlling: the same as
3072 * the number of threads per subcore, except on POWER9,
3073 * where it's 1 because the threads are (mostly) independent.
3075 controlled_threads
= threads_per_vcore(vc
->kvm
);
3078 * Make sure we are running on primary threads, and that secondary
3079 * threads are offline. Also check if the number of threads in this
3080 * guest are greater than the current system threads per guest.
3081 * On POWER9, we need to be not in independent-threads mode if
3082 * this is a HPT guest on a radix host machine where the
3083 * CPU threads may not be in different MMU modes.
3085 hpt_on_radix
= no_mixing_hpt_and_radix
&& radix_enabled() &&
3086 !kvm_is_radix(vc
->kvm
);
3087 if (((controlled_threads
> 1) &&
3088 ((vc
->num_threads
> threads_per_subcore
) || !on_primary_thread())) ||
3089 (hpt_on_radix
&& vc
->kvm
->arch
.threads_indep
)) {
3090 for_each_runnable_thread(i
, vcpu
, vc
) {
3091 vcpu
->arch
.ret
= -EBUSY
;
3092 kvmppc_remove_runnable(vc
, vcpu
);
3093 wake_up(&vcpu
->arch
.cpu_run
);
3099 * See if we could run any other vcores on the physical core
3100 * along with this one.
3102 init_core_info(&core_info
, vc
);
3103 pcpu
= smp_processor_id();
3104 target_threads
= controlled_threads
;
3105 if (target_smt_mode
&& target_smt_mode
< target_threads
)
3106 target_threads
= target_smt_mode
;
3107 if (vc
->num_threads
< target_threads
)
3108 collect_piggybacks(&core_info
, target_threads
);
3111 * On radix, arrange for TLB flushing if necessary.
3112 * This has to be done before disabling interrupts since
3113 * it uses smp_call_function().
3115 pcpu
= smp_processor_id();
3116 if (kvm_is_radix(vc
->kvm
)) {
3117 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
)
3118 for_each_runnable_thread(i
, vcpu
, core_info
.vc
[sub
])
3119 kvmppc_prepare_radix_vcpu(vcpu
, pcpu
);
3123 * Hard-disable interrupts, and check resched flag and signals.
3124 * If we need to reschedule or deliver a signal, clean up
3125 * and return without going into the guest(s).
3126 * If the mmu_ready flag has been cleared, don't go into the
3127 * guest because that means a HPT resize operation is in progress.
3129 local_irq_disable();
3131 if (lazy_irq_pending() || need_resched() ||
3132 recheck_signals_and_mmu(&core_info
)) {
3134 vc
->vcore_state
= VCORE_INACTIVE
;
3135 /* Unlock all except the primary vcore */
3136 for (sub
= 1; sub
< core_info
.n_subcores
; ++sub
) {
3137 pvc
= core_info
.vc
[sub
];
3138 /* Put back on to the preempted vcores list */
3139 kvmppc_vcore_preempt(pvc
);
3140 spin_unlock(&pvc
->lock
);
3142 for (i
= 0; i
< controlled_threads
; ++i
)
3143 kvmppc_release_hwthread(pcpu
+ i
);
3147 kvmppc_clear_host_core(pcpu
);
3149 /* Decide on micro-threading (split-core) mode */
3150 subcore_size
= threads_per_subcore
;
3151 cmd_bit
= stat_bit
= 0;
3152 split
= core_info
.n_subcores
;
3154 is_power8
= cpu_has_feature(CPU_FTR_ARCH_207S
)
3155 && !cpu_has_feature(CPU_FTR_ARCH_300
);
3157 if (split
> 1 || hpt_on_radix
) {
3159 memset(&split_info
, 0, sizeof(split_info
));
3160 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
)
3161 split_info
.vc
[sub
] = core_info
.vc
[sub
];
3164 if (split
== 2 && (dynamic_mt_modes
& 2)) {
3165 cmd_bit
= HID0_POWER8_1TO2LPAR
;
3166 stat_bit
= HID0_POWER8_2LPARMODE
;
3169 cmd_bit
= HID0_POWER8_1TO4LPAR
;
3170 stat_bit
= HID0_POWER8_4LPARMODE
;
3172 subcore_size
= MAX_SMT_THREADS
/ split
;
3173 split_info
.rpr
= mfspr(SPRN_RPR
);
3174 split_info
.pmmar
= mfspr(SPRN_PMMAR
);
3175 split_info
.ldbar
= mfspr(SPRN_LDBAR
);
3176 split_info
.subcore_size
= subcore_size
;
3178 split_info
.subcore_size
= 1;
3180 /* Use the split_info for LPCR/LPIDR changes */
3181 split_info
.lpcr_req
= vc
->lpcr
;
3182 split_info
.lpidr_req
= vc
->kvm
->arch
.lpid
;
3183 split_info
.host_lpcr
= vc
->kvm
->arch
.host_lpcr
;
3184 split_info
.do_set
= 1;
3188 /* order writes to split_info before kvm_split_mode pointer */
3192 for (thr
= 0; thr
< controlled_threads
; ++thr
) {
3193 struct paca_struct
*paca
= paca_ptrs
[pcpu
+ thr
];
3195 paca
->kvm_hstate
.tid
= thr
;
3196 paca
->kvm_hstate
.napping
= 0;
3197 paca
->kvm_hstate
.kvm_split_mode
= sip
;
3200 /* Initiate micro-threading (split-core) on POWER8 if required */
3202 unsigned long hid0
= mfspr(SPRN_HID0
);
3204 hid0
|= cmd_bit
| HID0_POWER8_DYNLPARDIS
;
3206 mtspr(SPRN_HID0
, hid0
);
3209 hid0
= mfspr(SPRN_HID0
);
3210 if (hid0
& stat_bit
)
3217 * On POWER8, set RWMR register.
3218 * Since it only affects PURR and SPURR, it doesn't affect
3219 * the host, so we don't save/restore the host value.
3222 unsigned long rwmr_val
= RWMR_RPA_P8_8THREAD
;
3223 int n_online
= atomic_read(&vc
->online_count
);
3226 * Use the 8-thread value if we're doing split-core
3227 * or if the vcore's online count looks bogus.
3229 if (split
== 1 && threads_per_subcore
== MAX_SMT_THREADS
&&
3230 n_online
>= 1 && n_online
<= MAX_SMT_THREADS
)
3231 rwmr_val
= p8_rwmr_values
[n_online
];
3232 mtspr(SPRN_RWMR
, rwmr_val
);
3235 /* Start all the threads */
3237 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
) {
3238 thr
= is_power8
? subcore_thread_map
[sub
] : sub
;
3241 pvc
= core_info
.vc
[sub
];
3242 pvc
->pcpu
= pcpu
+ thr
;
3243 for_each_runnable_thread(i
, vcpu
, pvc
) {
3244 kvmppc_start_thread(vcpu
, pvc
);
3245 kvmppc_create_dtl_entry(vcpu
, pvc
);
3246 trace_kvm_guest_enter(vcpu
);
3247 if (!vcpu
->arch
.ptid
)
3249 active
|= 1 << (thr
+ vcpu
->arch
.ptid
);
3252 * We need to start the first thread of each subcore
3253 * even if it doesn't have a vcpu.
3256 kvmppc_start_thread(NULL
, pvc
);
3260 * Ensure that split_info.do_nap is set after setting
3261 * the vcore pointer in the PACA of the secondaries.
3266 * When doing micro-threading, poke the inactive threads as well.
3267 * This gets them to the nap instruction after kvm_do_nap,
3268 * which reduces the time taken to unsplit later.
3269 * For POWER9 HPT guest on radix host, we need all the secondary
3270 * threads woken up so they can do the LPCR/LPIDR change.
3272 if (cmd_bit
|| hpt_on_radix
) {
3273 split_info
.do_nap
= 1; /* ask secondaries to nap when done */
3274 for (thr
= 1; thr
< threads_per_subcore
; ++thr
)
3275 if (!(active
& (1 << thr
)))
3276 kvmppc_ipi_thread(pcpu
+ thr
);
3279 vc
->vcore_state
= VCORE_RUNNING
;
3282 trace_kvmppc_run_core(vc
, 0);
3284 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
)
3285 spin_unlock(&core_info
.vc
[sub
]->lock
);
3287 guest_enter_irqoff();
3289 srcu_idx
= srcu_read_lock(&vc
->kvm
->srcu
);
3291 this_cpu_disable_ftrace();
3294 * Interrupts will be enabled once we get into the guest,
3295 * so tell lockdep that we're about to enable interrupts.
3297 trace_hardirqs_on();
3299 trap
= __kvmppc_vcore_entry();
3301 trace_hardirqs_off();
3303 this_cpu_enable_ftrace();
3305 srcu_read_unlock(&vc
->kvm
->srcu
, srcu_idx
);
3307 set_irq_happened(trap
);
3309 spin_lock(&vc
->lock
);
3310 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3311 vc
->vcore_state
= VCORE_EXITING
;
3313 /* wait for secondary threads to finish writing their state to memory */
3314 kvmppc_wait_for_nap(controlled_threads
);
3316 /* Return to whole-core mode if we split the core earlier */
3318 unsigned long hid0
= mfspr(SPRN_HID0
);
3319 unsigned long loops
= 0;
3321 hid0
&= ~HID0_POWER8_DYNLPARDIS
;
3322 stat_bit
= HID0_POWER8_2LPARMODE
| HID0_POWER8_4LPARMODE
;
3324 mtspr(SPRN_HID0
, hid0
);
3327 hid0
= mfspr(SPRN_HID0
);
3328 if (!(hid0
& stat_bit
))
3333 } else if (hpt_on_radix
) {
3334 /* Wait for all threads to have seen final sync */
3335 for (thr
= 1; thr
< controlled_threads
; ++thr
) {
3336 struct paca_struct
*paca
= paca_ptrs
[pcpu
+ thr
];
3338 while (paca
->kvm_hstate
.kvm_split_mode
) {
3345 split_info
.do_nap
= 0;
3347 kvmppc_set_host_core(pcpu
);
3352 /* Let secondaries go back to the offline loop */
3353 for (i
= 0; i
< controlled_threads
; ++i
) {
3354 kvmppc_release_hwthread(pcpu
+ i
);
3355 if (sip
&& sip
->napped
[i
])
3356 kvmppc_ipi_thread(pcpu
+ i
);
3357 cpumask_clear_cpu(pcpu
+ i
, &vc
->kvm
->arch
.cpu_in_guest
);
3360 spin_unlock(&vc
->lock
);
3362 /* make sure updates to secondary vcpu structs are visible now */
3367 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
) {
3368 pvc
= core_info
.vc
[sub
];
3369 post_guest_process(pvc
, pvc
== vc
);
3372 spin_lock(&vc
->lock
);
3375 vc
->vcore_state
= VCORE_INACTIVE
;
3376 trace_kvmppc_run_core(vc
, 1);
3380 * Load up hypervisor-mode registers on P9.
3382 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu
*vcpu
, u64 time_limit
,
3385 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
3387 u64 tb
, purr
, spurr
;
3389 unsigned long host_hfscr
= mfspr(SPRN_HFSCR
);
3390 unsigned long host_ciabr
= mfspr(SPRN_CIABR
);
3391 unsigned long host_dawr
= mfspr(SPRN_DAWR
);
3392 unsigned long host_dawrx
= mfspr(SPRN_DAWRX
);
3393 unsigned long host_psscr
= mfspr(SPRN_PSSCR
);
3394 unsigned long host_pidr
= mfspr(SPRN_PID
);
3396 hdec
= time_limit
- mftb();
3398 return BOOK3S_INTERRUPT_HV_DECREMENTER
;
3399 mtspr(SPRN_HDEC
, hdec
);
3401 if (vc
->tb_offset
) {
3402 u64 new_tb
= mftb() + vc
->tb_offset
;
3403 mtspr(SPRN_TBU40
, new_tb
);
3405 if ((tb
& 0xffffff) < (new_tb
& 0xffffff))
3406 mtspr(SPRN_TBU40
, new_tb
+ 0x1000000);
3407 vc
->tb_offset_applied
= vc
->tb_offset
;
3411 mtspr(SPRN_PCR
, vc
->pcr
| PCR_MASK
);
3412 mtspr(SPRN_DPDES
, vc
->dpdes
);
3413 mtspr(SPRN_VTB
, vc
->vtb
);
3415 local_paca
->kvm_hstate
.host_purr
= mfspr(SPRN_PURR
);
3416 local_paca
->kvm_hstate
.host_spurr
= mfspr(SPRN_SPURR
);
3417 mtspr(SPRN_PURR
, vcpu
->arch
.purr
);
3418 mtspr(SPRN_SPURR
, vcpu
->arch
.spurr
);
3420 if (dawr_enabled()) {
3421 mtspr(SPRN_DAWR
, vcpu
->arch
.dawr
);
3422 mtspr(SPRN_DAWRX
, vcpu
->arch
.dawrx
);
3424 mtspr(SPRN_CIABR
, vcpu
->arch
.ciabr
);
3425 mtspr(SPRN_IC
, vcpu
->arch
.ic
);
3426 mtspr(SPRN_PID
, vcpu
->arch
.pid
);
3428 mtspr(SPRN_PSSCR
, vcpu
->arch
.psscr
| PSSCR_EC
|
3429 (local_paca
->kvm_hstate
.fake_suspend
<< PSSCR_FAKE_SUSPEND_LG
));
3431 mtspr(SPRN_HFSCR
, vcpu
->arch
.hfscr
);
3433 mtspr(SPRN_SPRG0
, vcpu
->arch
.shregs
.sprg0
);
3434 mtspr(SPRN_SPRG1
, vcpu
->arch
.shregs
.sprg1
);
3435 mtspr(SPRN_SPRG2
, vcpu
->arch
.shregs
.sprg2
);
3436 mtspr(SPRN_SPRG3
, vcpu
->arch
.shregs
.sprg3
);
3438 mtspr(SPRN_AMOR
, ~0UL);
3440 mtspr(SPRN_LPCR
, lpcr
);
3443 kvmppc_xive_push_vcpu(vcpu
);
3445 mtspr(SPRN_SRR0
, vcpu
->arch
.shregs
.srr0
);
3446 mtspr(SPRN_SRR1
, vcpu
->arch
.shregs
.srr1
);
3448 trap
= __kvmhv_vcpu_entry_p9(vcpu
);
3450 /* Advance host PURR/SPURR by the amount used by guest */
3451 purr
= mfspr(SPRN_PURR
);
3452 spurr
= mfspr(SPRN_SPURR
);
3453 mtspr(SPRN_PURR
, local_paca
->kvm_hstate
.host_purr
+
3454 purr
- vcpu
->arch
.purr
);
3455 mtspr(SPRN_SPURR
, local_paca
->kvm_hstate
.host_spurr
+
3456 spurr
- vcpu
->arch
.spurr
);
3457 vcpu
->arch
.purr
= purr
;
3458 vcpu
->arch
.spurr
= spurr
;
3460 vcpu
->arch
.ic
= mfspr(SPRN_IC
);
3461 vcpu
->arch
.pid
= mfspr(SPRN_PID
);
3462 vcpu
->arch
.psscr
= mfspr(SPRN_PSSCR
) & PSSCR_GUEST_VIS
;
3464 vcpu
->arch
.shregs
.sprg0
= mfspr(SPRN_SPRG0
);
3465 vcpu
->arch
.shregs
.sprg1
= mfspr(SPRN_SPRG1
);
3466 vcpu
->arch
.shregs
.sprg2
= mfspr(SPRN_SPRG2
);
3467 vcpu
->arch
.shregs
.sprg3
= mfspr(SPRN_SPRG3
);
3469 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3470 mtspr(SPRN_PSSCR
, host_psscr
|
3471 (local_paca
->kvm_hstate
.fake_suspend
<< PSSCR_FAKE_SUSPEND_LG
));
3472 mtspr(SPRN_HFSCR
, host_hfscr
);
3473 mtspr(SPRN_CIABR
, host_ciabr
);
3474 mtspr(SPRN_DAWR
, host_dawr
);
3475 mtspr(SPRN_DAWRX
, host_dawrx
);
3476 mtspr(SPRN_PID
, host_pidr
);
3479 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3480 * case we interrupted the guest between a tlbie and a ptesync.
3482 asm volatile("eieio; tlbsync; ptesync");
3484 mtspr(SPRN_LPID
, vcpu
->kvm
->arch
.host_lpid
); /* restore host LPID */
3487 vc
->dpdes
= mfspr(SPRN_DPDES
);
3488 vc
->vtb
= mfspr(SPRN_VTB
);
3489 mtspr(SPRN_DPDES
, 0);
3491 mtspr(SPRN_PCR
, PCR_MASK
);
3493 if (vc
->tb_offset_applied
) {
3494 u64 new_tb
= mftb() - vc
->tb_offset_applied
;
3495 mtspr(SPRN_TBU40
, new_tb
);
3497 if ((tb
& 0xffffff) < (new_tb
& 0xffffff))
3498 mtspr(SPRN_TBU40
, new_tb
+ 0x1000000);
3499 vc
->tb_offset_applied
= 0;
3502 mtspr(SPRN_HDEC
, 0x7fffffff);
3503 mtspr(SPRN_LPCR
, vcpu
->kvm
->arch
.host_lpcr
);
3509 * Virtual-mode guest entry for POWER9 and later when the host and
3510 * guest are both using the radix MMU. The LPIDR has already been set.
3512 int kvmhv_p9_guest_entry(struct kvm_vcpu
*vcpu
, u64 time_limit
,
3515 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
3516 unsigned long host_dscr
= mfspr(SPRN_DSCR
);
3517 unsigned long host_tidr
= mfspr(SPRN_TIDR
);
3518 unsigned long host_iamr
= mfspr(SPRN_IAMR
);
3519 unsigned long host_amr
= mfspr(SPRN_AMR
);
3524 dec
= mfspr(SPRN_DEC
);
3527 return BOOK3S_INTERRUPT_HV_DECREMENTER
;
3528 local_paca
->kvm_hstate
.dec_expires
= dec
+ tb
;
3529 if (local_paca
->kvm_hstate
.dec_expires
< time_limit
)
3530 time_limit
= local_paca
->kvm_hstate
.dec_expires
;
3532 vcpu
->arch
.ceded
= 0;
3534 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3536 kvmppc_subcore_enter_guest();
3538 vc
->entry_exit_map
= 1;
3541 if (vcpu
->arch
.vpa
.pinned_addr
) {
3542 struct lppaca
*lp
= vcpu
->arch
.vpa
.pinned_addr
;
3543 u32 yield_count
= be32_to_cpu(lp
->yield_count
) + 1;
3544 lp
->yield_count
= cpu_to_be32(yield_count
);
3545 vcpu
->arch
.vpa
.dirty
= 1;
3548 if (cpu_has_feature(CPU_FTR_TM
) ||
3549 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST
))
3550 kvmppc_restore_tm_hv(vcpu
, vcpu
->arch
.shregs
.msr
, true);
3552 kvmhv_load_guest_pmu(vcpu
);
3554 msr_check_and_set(MSR_FP
| MSR_VEC
| MSR_VSX
);
3555 load_fp_state(&vcpu
->arch
.fp
);
3556 #ifdef CONFIG_ALTIVEC
3557 load_vr_state(&vcpu
->arch
.vr
);
3559 mtspr(SPRN_VRSAVE
, vcpu
->arch
.vrsave
);
3561 mtspr(SPRN_DSCR
, vcpu
->arch
.dscr
);
3562 mtspr(SPRN_IAMR
, vcpu
->arch
.iamr
);
3563 mtspr(SPRN_PSPB
, vcpu
->arch
.pspb
);
3564 mtspr(SPRN_FSCR
, vcpu
->arch
.fscr
);
3565 mtspr(SPRN_TAR
, vcpu
->arch
.tar
);
3566 mtspr(SPRN_EBBHR
, vcpu
->arch
.ebbhr
);
3567 mtspr(SPRN_EBBRR
, vcpu
->arch
.ebbrr
);
3568 mtspr(SPRN_BESCR
, vcpu
->arch
.bescr
);
3569 mtspr(SPRN_WORT
, vcpu
->arch
.wort
);
3570 mtspr(SPRN_TIDR
, vcpu
->arch
.tid
);
3571 mtspr(SPRN_DAR
, vcpu
->arch
.shregs
.dar
);
3572 mtspr(SPRN_DSISR
, vcpu
->arch
.shregs
.dsisr
);
3573 mtspr(SPRN_AMR
, vcpu
->arch
.amr
);
3574 mtspr(SPRN_UAMOR
, vcpu
->arch
.uamor
);
3576 if (!(vcpu
->arch
.ctrl
& 1))
3577 mtspr(SPRN_CTRLT
, mfspr(SPRN_CTRLF
) & ~1);
3579 mtspr(SPRN_DEC
, vcpu
->arch
.dec_expires
- mftb());
3581 if (kvmhv_on_pseries()) {
3583 * We need to save and restore the guest visible part of the
3584 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3585 * doesn't do this for us. Note only required if pseries since
3586 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3588 unsigned long host_psscr
;
3589 /* call our hypervisor to load up HV regs and go */
3590 struct hv_guest_state hvregs
;
3592 host_psscr
= mfspr(SPRN_PSSCR_PR
);
3593 mtspr(SPRN_PSSCR_PR
, vcpu
->arch
.psscr
);
3594 kvmhv_save_hv_regs(vcpu
, &hvregs
);
3596 vcpu
->arch
.regs
.msr
= vcpu
->arch
.shregs
.msr
;
3597 hvregs
.version
= HV_GUEST_STATE_VERSION
;
3598 if (vcpu
->arch
.nested
) {
3599 hvregs
.lpid
= vcpu
->arch
.nested
->shadow_lpid
;
3600 hvregs
.vcpu_token
= vcpu
->arch
.nested_vcpu_id
;
3602 hvregs
.lpid
= vcpu
->kvm
->arch
.lpid
;
3603 hvregs
.vcpu_token
= vcpu
->vcpu_id
;
3605 hvregs
.hdec_expiry
= time_limit
;
3606 trap
= plpar_hcall_norets(H_ENTER_NESTED
, __pa(&hvregs
),
3607 __pa(&vcpu
->arch
.regs
));
3608 kvmhv_restore_hv_return_state(vcpu
, &hvregs
);
3609 vcpu
->arch
.shregs
.msr
= vcpu
->arch
.regs
.msr
;
3610 vcpu
->arch
.shregs
.dar
= mfspr(SPRN_DAR
);
3611 vcpu
->arch
.shregs
.dsisr
= mfspr(SPRN_DSISR
);
3612 vcpu
->arch
.psscr
= mfspr(SPRN_PSSCR_PR
);
3613 mtspr(SPRN_PSSCR_PR
, host_psscr
);
3615 /* H_CEDE has to be handled now, not later */
3616 if (trap
== BOOK3S_INTERRUPT_SYSCALL
&& !vcpu
->arch
.nested
&&
3617 kvmppc_get_gpr(vcpu
, 3) == H_CEDE
) {
3618 kvmppc_nested_cede(vcpu
);
3622 trap
= kvmhv_load_hv_regs_and_go(vcpu
, time_limit
, lpcr
);
3625 vcpu
->arch
.slb_max
= 0;
3626 dec
= mfspr(SPRN_DEC
);
3627 if (!(lpcr
& LPCR_LD
)) /* Sign extend if not using large decrementer */
3630 vcpu
->arch
.dec_expires
= dec
+ tb
;
3632 vcpu
->arch
.thread_cpu
= -1;
3633 vcpu
->arch
.ctrl
= mfspr(SPRN_CTRLF
);
3635 vcpu
->arch
.iamr
= mfspr(SPRN_IAMR
);
3636 vcpu
->arch
.pspb
= mfspr(SPRN_PSPB
);
3637 vcpu
->arch
.fscr
= mfspr(SPRN_FSCR
);
3638 vcpu
->arch
.tar
= mfspr(SPRN_TAR
);
3639 vcpu
->arch
.ebbhr
= mfspr(SPRN_EBBHR
);
3640 vcpu
->arch
.ebbrr
= mfspr(SPRN_EBBRR
);
3641 vcpu
->arch
.bescr
= mfspr(SPRN_BESCR
);
3642 vcpu
->arch
.wort
= mfspr(SPRN_WORT
);
3643 vcpu
->arch
.tid
= mfspr(SPRN_TIDR
);
3644 vcpu
->arch
.amr
= mfspr(SPRN_AMR
);
3645 vcpu
->arch
.uamor
= mfspr(SPRN_UAMOR
);
3646 vcpu
->arch
.dscr
= mfspr(SPRN_DSCR
);
3648 mtspr(SPRN_PSPB
, 0);
3649 mtspr(SPRN_WORT
, 0);
3650 mtspr(SPRN_UAMOR
, 0);
3651 mtspr(SPRN_DSCR
, host_dscr
);
3652 mtspr(SPRN_TIDR
, host_tidr
);
3653 mtspr(SPRN_IAMR
, host_iamr
);
3654 mtspr(SPRN_PSPB
, 0);
3656 if (host_amr
!= vcpu
->arch
.amr
)
3657 mtspr(SPRN_AMR
, host_amr
);
3659 msr_check_and_set(MSR_FP
| MSR_VEC
| MSR_VSX
);
3660 store_fp_state(&vcpu
->arch
.fp
);
3661 #ifdef CONFIG_ALTIVEC
3662 store_vr_state(&vcpu
->arch
.vr
);
3664 vcpu
->arch
.vrsave
= mfspr(SPRN_VRSAVE
);
3666 if (cpu_has_feature(CPU_FTR_TM
) ||
3667 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST
))
3668 kvmppc_save_tm_hv(vcpu
, vcpu
->arch
.shregs
.msr
, true);
3671 if (vcpu
->arch
.vpa
.pinned_addr
) {
3672 struct lppaca
*lp
= vcpu
->arch
.vpa
.pinned_addr
;
3673 u32 yield_count
= be32_to_cpu(lp
->yield_count
) + 1;
3674 lp
->yield_count
= cpu_to_be32(yield_count
);
3675 vcpu
->arch
.vpa
.dirty
= 1;
3676 save_pmu
= lp
->pmcregs_in_use
;
3678 /* Must save pmu if this guest is capable of running nested guests */
3679 save_pmu
|= nesting_enabled(vcpu
->kvm
);
3681 kvmhv_save_guest_pmu(vcpu
, save_pmu
);
3683 vc
->entry_exit_map
= 0x101;
3686 mtspr(SPRN_DEC
, local_paca
->kvm_hstate
.dec_expires
- mftb());
3687 mtspr(SPRN_SPRG_VDSO_WRITE
, local_paca
->sprg_vdso
);
3689 kvmhv_load_host_pmu();
3691 kvmppc_subcore_exit_guest();
3697 * Wait for some other vcpu thread to execute us, and
3698 * wake us up when we need to handle something in the host.
3700 static void kvmppc_wait_for_exec(struct kvmppc_vcore
*vc
,
3701 struct kvm_vcpu
*vcpu
, int wait_state
)
3705 prepare_to_wait(&vcpu
->arch
.cpu_run
, &wait
, wait_state
);
3706 if (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
) {
3707 spin_unlock(&vc
->lock
);
3709 spin_lock(&vc
->lock
);
3711 finish_wait(&vcpu
->arch
.cpu_run
, &wait
);
3714 static void grow_halt_poll_ns(struct kvmppc_vcore
*vc
)
3716 if (!halt_poll_ns_grow
)
3719 vc
->halt_poll_ns
*= halt_poll_ns_grow
;
3720 if (vc
->halt_poll_ns
< halt_poll_ns_grow_start
)
3721 vc
->halt_poll_ns
= halt_poll_ns_grow_start
;
3724 static void shrink_halt_poll_ns(struct kvmppc_vcore
*vc
)
3726 if (halt_poll_ns_shrink
== 0)
3727 vc
->halt_poll_ns
= 0;
3729 vc
->halt_poll_ns
/= halt_poll_ns_shrink
;
3732 #ifdef CONFIG_KVM_XICS
3733 static inline bool xive_interrupt_pending(struct kvm_vcpu
*vcpu
)
3735 if (!xics_on_xive())
3737 return vcpu
->arch
.irq_pending
|| vcpu
->arch
.xive_saved_state
.pipr
<
3738 vcpu
->arch
.xive_saved_state
.cppr
;
3741 static inline bool xive_interrupt_pending(struct kvm_vcpu
*vcpu
)
3745 #endif /* CONFIG_KVM_XICS */
3747 static bool kvmppc_vcpu_woken(struct kvm_vcpu
*vcpu
)
3749 if (vcpu
->arch
.pending_exceptions
|| vcpu
->arch
.prodded
||
3750 kvmppc_doorbell_pending(vcpu
) || xive_interrupt_pending(vcpu
))
3757 * Check to see if any of the runnable vcpus on the vcore have pending
3758 * exceptions or are no longer ceded
3760 static int kvmppc_vcore_check_block(struct kvmppc_vcore
*vc
)
3762 struct kvm_vcpu
*vcpu
;
3765 for_each_runnable_thread(i
, vcpu
, vc
) {
3766 if (!vcpu
->arch
.ceded
|| kvmppc_vcpu_woken(vcpu
))
3774 * All the vcpus in this vcore are idle, so wait for a decrementer
3775 * or external interrupt to one of the vcpus. vc->lock is held.
3777 static void kvmppc_vcore_blocked(struct kvmppc_vcore
*vc
)
3779 ktime_t cur
, start_poll
, start_wait
;
3782 DECLARE_SWAITQUEUE(wait
);
3784 /* Poll for pending exceptions and ceded state */
3785 cur
= start_poll
= ktime_get();
3786 if (vc
->halt_poll_ns
) {
3787 ktime_t stop
= ktime_add_ns(start_poll
, vc
->halt_poll_ns
);
3788 ++vc
->runner
->stat
.halt_attempted_poll
;
3790 vc
->vcore_state
= VCORE_POLLING
;
3791 spin_unlock(&vc
->lock
);
3794 if (kvmppc_vcore_check_block(vc
)) {
3799 } while (single_task_running() && ktime_before(cur
, stop
));
3801 spin_lock(&vc
->lock
);
3802 vc
->vcore_state
= VCORE_INACTIVE
;
3805 ++vc
->runner
->stat
.halt_successful_poll
;
3810 prepare_to_swait_exclusive(&vc
->wq
, &wait
, TASK_INTERRUPTIBLE
);
3812 if (kvmppc_vcore_check_block(vc
)) {
3813 finish_swait(&vc
->wq
, &wait
);
3815 /* If we polled, count this as a successful poll */
3816 if (vc
->halt_poll_ns
)
3817 ++vc
->runner
->stat
.halt_successful_poll
;
3821 start_wait
= ktime_get();
3823 vc
->vcore_state
= VCORE_SLEEPING
;
3824 trace_kvmppc_vcore_blocked(vc
, 0);
3825 spin_unlock(&vc
->lock
);
3827 finish_swait(&vc
->wq
, &wait
);
3828 spin_lock(&vc
->lock
);
3829 vc
->vcore_state
= VCORE_INACTIVE
;
3830 trace_kvmppc_vcore_blocked(vc
, 1);
3831 ++vc
->runner
->stat
.halt_successful_wait
;
3836 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start_poll
);
3838 /* Attribute wait time */
3840 vc
->runner
->stat
.halt_wait_ns
+=
3841 ktime_to_ns(cur
) - ktime_to_ns(start_wait
);
3842 /* Attribute failed poll time */
3843 if (vc
->halt_poll_ns
)
3844 vc
->runner
->stat
.halt_poll_fail_ns
+=
3845 ktime_to_ns(start_wait
) -
3846 ktime_to_ns(start_poll
);
3848 /* Attribute successful poll time */
3849 if (vc
->halt_poll_ns
)
3850 vc
->runner
->stat
.halt_poll_success_ns
+=
3852 ktime_to_ns(start_poll
);
3855 /* Adjust poll time */
3857 if (block_ns
<= vc
->halt_poll_ns
)
3859 /* We slept and blocked for longer than the max halt time */
3860 else if (vc
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
3861 shrink_halt_poll_ns(vc
);
3862 /* We slept and our poll time is too small */
3863 else if (vc
->halt_poll_ns
< halt_poll_ns
&&
3864 block_ns
< halt_poll_ns
)
3865 grow_halt_poll_ns(vc
);
3866 if (vc
->halt_poll_ns
> halt_poll_ns
)
3867 vc
->halt_poll_ns
= halt_poll_ns
;
3869 vc
->halt_poll_ns
= 0;
3871 trace_kvmppc_vcore_wakeup(do_sleep
, block_ns
);
3875 * This never fails for a radix guest, as none of the operations it does
3876 * for a radix guest can fail or have a way to report failure.
3877 * kvmhv_run_single_vcpu() relies on this fact.
3879 static int kvmhv_setup_mmu(struct kvm_vcpu
*vcpu
)
3882 struct kvm
*kvm
= vcpu
->kvm
;
3884 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
3885 if (!kvm
->arch
.mmu_ready
) {
3886 if (!kvm_is_radix(kvm
))
3887 r
= kvmppc_hv_setup_htab_rma(vcpu
);
3889 if (cpu_has_feature(CPU_FTR_ARCH_300
))
3890 kvmppc_setup_partition_table(kvm
);
3891 kvm
->arch
.mmu_ready
= 1;
3894 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
3898 static int kvmppc_run_vcpu(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
3901 struct kvmppc_vcore
*vc
;
3904 trace_kvmppc_run_vcpu_enter(vcpu
);
3906 kvm_run
->exit_reason
= 0;
3907 vcpu
->arch
.ret
= RESUME_GUEST
;
3908 vcpu
->arch
.trap
= 0;
3909 kvmppc_update_vpas(vcpu
);
3912 * Synchronize with other threads in this virtual core
3914 vc
= vcpu
->arch
.vcore
;
3915 spin_lock(&vc
->lock
);
3916 vcpu
->arch
.ceded
= 0;
3917 vcpu
->arch
.run_task
= current
;
3918 vcpu
->arch
.kvm_run
= kvm_run
;
3919 vcpu
->arch
.stolen_logged
= vcore_stolen_time(vc
, mftb());
3920 vcpu
->arch
.state
= KVMPPC_VCPU_RUNNABLE
;
3921 vcpu
->arch
.busy_preempt
= TB_NIL
;
3922 WRITE_ONCE(vc
->runnable_threads
[vcpu
->arch
.ptid
], vcpu
);
3926 * This happens the first time this is called for a vcpu.
3927 * If the vcore is already running, we may be able to start
3928 * this thread straight away and have it join in.
3930 if (!signal_pending(current
)) {
3931 if ((vc
->vcore_state
== VCORE_PIGGYBACK
||
3932 vc
->vcore_state
== VCORE_RUNNING
) &&
3933 !VCORE_IS_EXITING(vc
)) {
3934 kvmppc_create_dtl_entry(vcpu
, vc
);
3935 kvmppc_start_thread(vcpu
, vc
);
3936 trace_kvm_guest_enter(vcpu
);
3937 } else if (vc
->vcore_state
== VCORE_SLEEPING
) {
3938 swake_up_one(&vc
->wq
);
3943 while (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
&&
3944 !signal_pending(current
)) {
3945 /* See if the MMU is ready to go */
3946 if (!vcpu
->kvm
->arch
.mmu_ready
) {
3947 spin_unlock(&vc
->lock
);
3948 r
= kvmhv_setup_mmu(vcpu
);
3949 spin_lock(&vc
->lock
);
3951 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3952 kvm_run
->fail_entry
.
3953 hardware_entry_failure_reason
= 0;
3959 if (vc
->vcore_state
== VCORE_PREEMPT
&& vc
->runner
== NULL
)
3960 kvmppc_vcore_end_preempt(vc
);
3962 if (vc
->vcore_state
!= VCORE_INACTIVE
) {
3963 kvmppc_wait_for_exec(vc
, vcpu
, TASK_INTERRUPTIBLE
);
3966 for_each_runnable_thread(i
, v
, vc
) {
3967 kvmppc_core_prepare_to_enter(v
);
3968 if (signal_pending(v
->arch
.run_task
)) {
3969 kvmppc_remove_runnable(vc
, v
);
3970 v
->stat
.signal_exits
++;
3971 v
->arch
.kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3972 v
->arch
.ret
= -EINTR
;
3973 wake_up(&v
->arch
.cpu_run
);
3976 if (!vc
->n_runnable
|| vcpu
->arch
.state
!= KVMPPC_VCPU_RUNNABLE
)
3979 for_each_runnable_thread(i
, v
, vc
) {
3980 if (!kvmppc_vcpu_woken(v
))
3981 n_ceded
+= v
->arch
.ceded
;
3986 if (n_ceded
== vc
->n_runnable
) {
3987 kvmppc_vcore_blocked(vc
);
3988 } else if (need_resched()) {
3989 kvmppc_vcore_preempt(vc
);
3990 /* Let something else run */
3991 cond_resched_lock(&vc
->lock
);
3992 if (vc
->vcore_state
== VCORE_PREEMPT
)
3993 kvmppc_vcore_end_preempt(vc
);
3995 kvmppc_run_core(vc
);
4000 while (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
&&
4001 (vc
->vcore_state
== VCORE_RUNNING
||
4002 vc
->vcore_state
== VCORE_EXITING
||
4003 vc
->vcore_state
== VCORE_PIGGYBACK
))
4004 kvmppc_wait_for_exec(vc
, vcpu
, TASK_UNINTERRUPTIBLE
);
4006 if (vc
->vcore_state
== VCORE_PREEMPT
&& vc
->runner
== NULL
)
4007 kvmppc_vcore_end_preempt(vc
);
4009 if (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
) {
4010 kvmppc_remove_runnable(vc
, vcpu
);
4011 vcpu
->stat
.signal_exits
++;
4012 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
4013 vcpu
->arch
.ret
= -EINTR
;
4016 if (vc
->n_runnable
&& vc
->vcore_state
== VCORE_INACTIVE
) {
4017 /* Wake up some vcpu to run the core */
4019 v
= next_runnable_thread(vc
, &i
);
4020 wake_up(&v
->arch
.cpu_run
);
4023 trace_kvmppc_run_vcpu_exit(vcpu
, kvm_run
);
4024 spin_unlock(&vc
->lock
);
4025 return vcpu
->arch
.ret
;
4028 int kvmhv_run_single_vcpu(struct kvm_run
*kvm_run
,
4029 struct kvm_vcpu
*vcpu
, u64 time_limit
,
4034 struct kvmppc_vcore
*vc
;
4035 struct kvm
*kvm
= vcpu
->kvm
;
4036 struct kvm_nested_guest
*nested
= vcpu
->arch
.nested
;
4038 trace_kvmppc_run_vcpu_enter(vcpu
);
4040 kvm_run
->exit_reason
= 0;
4041 vcpu
->arch
.ret
= RESUME_GUEST
;
4042 vcpu
->arch
.trap
= 0;
4044 vc
= vcpu
->arch
.vcore
;
4045 vcpu
->arch
.ceded
= 0;
4046 vcpu
->arch
.run_task
= current
;
4047 vcpu
->arch
.kvm_run
= kvm_run
;
4048 vcpu
->arch
.stolen_logged
= vcore_stolen_time(vc
, mftb());
4049 vcpu
->arch
.state
= KVMPPC_VCPU_RUNNABLE
;
4050 vcpu
->arch
.busy_preempt
= TB_NIL
;
4051 vcpu
->arch
.last_inst
= KVM_INST_FETCH_FAILED
;
4052 vc
->runnable_threads
[0] = vcpu
;
4056 /* See if the MMU is ready to go */
4057 if (!kvm
->arch
.mmu_ready
)
4058 kvmhv_setup_mmu(vcpu
);
4063 kvmppc_update_vpas(vcpu
);
4065 init_vcore_to_run(vc
);
4066 vc
->preempt_tb
= TB_NIL
;
4069 pcpu
= smp_processor_id();
4071 kvmppc_prepare_radix_vcpu(vcpu
, pcpu
);
4073 local_irq_disable();
4075 if (signal_pending(current
))
4077 if (lazy_irq_pending() || need_resched() || !kvm
->arch
.mmu_ready
)
4081 kvmppc_core_prepare_to_enter(vcpu
);
4082 if (vcpu
->arch
.doorbell_request
) {
4085 vcpu
->arch
.doorbell_request
= 0;
4087 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL
,
4088 &vcpu
->arch
.pending_exceptions
))
4090 } else if (vcpu
->arch
.pending_exceptions
||
4091 vcpu
->arch
.doorbell_request
||
4092 xive_interrupt_pending(vcpu
)) {
4093 vcpu
->arch
.ret
= RESUME_HOST
;
4097 kvmppc_clear_host_core(pcpu
);
4099 local_paca
->kvm_hstate
.tid
= 0;
4100 local_paca
->kvm_hstate
.napping
= 0;
4101 local_paca
->kvm_hstate
.kvm_split_mode
= NULL
;
4102 kvmppc_start_thread(vcpu
, vc
);
4103 kvmppc_create_dtl_entry(vcpu
, vc
);
4104 trace_kvm_guest_enter(vcpu
);
4106 vc
->vcore_state
= VCORE_RUNNING
;
4107 trace_kvmppc_run_core(vc
, 0);
4109 if (cpu_has_feature(CPU_FTR_HVMODE
)) {
4110 lpid
= nested
? nested
->shadow_lpid
: kvm
->arch
.lpid
;
4111 mtspr(SPRN_LPID
, lpid
);
4113 kvmppc_check_need_tlb_flush(kvm
, pcpu
, nested
);
4116 guest_enter_irqoff();
4118 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
4120 this_cpu_disable_ftrace();
4122 /* Tell lockdep that we're about to enable interrupts */
4123 trace_hardirqs_on();
4125 trap
= kvmhv_p9_guest_entry(vcpu
, time_limit
, lpcr
);
4126 vcpu
->arch
.trap
= trap
;
4128 trace_hardirqs_off();
4130 this_cpu_enable_ftrace();
4132 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
4134 if (cpu_has_feature(CPU_FTR_HVMODE
)) {
4135 mtspr(SPRN_LPID
, kvm
->arch
.host_lpid
);
4139 set_irq_happened(trap
);
4141 kvmppc_set_host_core(pcpu
);
4146 cpumask_clear_cpu(pcpu
, &kvm
->arch
.cpu_in_guest
);
4151 * cancel pending decrementer exception if DEC is now positive, or if
4152 * entering a nested guest in which case the decrementer is now owned
4153 * by L2 and the L1 decrementer is provided in hdec_expires
4155 if (kvmppc_core_pending_dec(vcpu
) &&
4156 ((get_tb() < vcpu
->arch
.dec_expires
) ||
4157 (trap
== BOOK3S_INTERRUPT_SYSCALL
&&
4158 kvmppc_get_gpr(vcpu
, 3) == H_ENTER_NESTED
)))
4159 kvmppc_core_dequeue_dec(vcpu
);
4161 trace_kvm_guest_exit(vcpu
);
4165 r
= kvmppc_handle_exit_hv(kvm_run
, vcpu
, current
);
4167 r
= kvmppc_handle_nested_exit(kvm_run
, vcpu
);
4171 if (is_kvmppc_resume_guest(r
) && vcpu
->arch
.ceded
&&
4172 !kvmppc_vcpu_woken(vcpu
)) {
4173 kvmppc_set_timer(vcpu
);
4174 while (vcpu
->arch
.ceded
&& !kvmppc_vcpu_woken(vcpu
)) {
4175 if (signal_pending(current
)) {
4176 vcpu
->stat
.signal_exits
++;
4177 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
4178 vcpu
->arch
.ret
= -EINTR
;
4181 spin_lock(&vc
->lock
);
4182 kvmppc_vcore_blocked(vc
);
4183 spin_unlock(&vc
->lock
);
4186 vcpu
->arch
.ceded
= 0;
4188 vc
->vcore_state
= VCORE_INACTIVE
;
4189 trace_kvmppc_run_core(vc
, 1);
4192 kvmppc_remove_runnable(vc
, vcpu
);
4193 trace_kvmppc_run_vcpu_exit(vcpu
, kvm_run
);
4195 return vcpu
->arch
.ret
;
4198 vcpu
->stat
.signal_exits
++;
4199 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
4200 vcpu
->arch
.ret
= -EINTR
;
4207 static int kvmppc_vcpu_run_hv(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
4211 unsigned long ebb_regs
[3] = {}; /* shut up GCC */
4212 unsigned long user_tar
= 0;
4213 unsigned int user_vrsave
;
4216 if (!vcpu
->arch
.sane
) {
4217 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4222 * Don't allow entry with a suspended transaction, because
4223 * the guest entry/exit code will lose it.
4224 * If the guest has TM enabled, save away their TM-related SPRs
4225 * (they will get restored by the TM unavailable interrupt).
4227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4228 if (cpu_has_feature(CPU_FTR_TM
) && current
->thread
.regs
&&
4229 (current
->thread
.regs
->msr
& MSR_TM
)) {
4230 if (MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
4231 run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
4232 run
->fail_entry
.hardware_entry_failure_reason
= 0;
4235 /* Enable TM so we can read the TM SPRs */
4236 mtmsr(mfmsr() | MSR_TM
);
4237 current
->thread
.tm_tfhar
= mfspr(SPRN_TFHAR
);
4238 current
->thread
.tm_tfiar
= mfspr(SPRN_TFIAR
);
4239 current
->thread
.tm_texasr
= mfspr(SPRN_TEXASR
);
4240 current
->thread
.regs
->msr
&= ~MSR_TM
;
4245 * Force online to 1 for the sake of old userspace which doesn't
4248 if (!vcpu
->arch
.online
) {
4249 atomic_inc(&vcpu
->arch
.vcore
->online_count
);
4250 vcpu
->arch
.online
= 1;
4253 kvmppc_core_prepare_to_enter(vcpu
);
4255 /* No need to go into the guest when all we'll do is come back out */
4256 if (signal_pending(current
)) {
4257 run
->exit_reason
= KVM_EXIT_INTR
;
4262 atomic_inc(&kvm
->arch
.vcpus_running
);
4263 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4266 flush_all_to_thread(current
);
4268 /* Save userspace EBB and other register values */
4269 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
4270 ebb_regs
[0] = mfspr(SPRN_EBBHR
);
4271 ebb_regs
[1] = mfspr(SPRN_EBBRR
);
4272 ebb_regs
[2] = mfspr(SPRN_BESCR
);
4273 user_tar
= mfspr(SPRN_TAR
);
4275 user_vrsave
= mfspr(SPRN_VRSAVE
);
4277 vcpu
->arch
.wqp
= &vcpu
->arch
.vcore
->wq
;
4278 vcpu
->arch
.pgdir
= kvm
->mm
->pgd
;
4279 vcpu
->arch
.state
= KVMPPC_VCPU_BUSY_IN_HOST
;
4283 * The early POWER9 chips that can't mix radix and HPT threads
4284 * on the same core also need the workaround for the problem
4285 * where the TLB would prefetch entries in the guest exit path
4286 * for radix guests using the guest PIDR value and LPID 0.
4287 * The workaround is in the old path (kvmppc_run_vcpu())
4288 * but not the new path (kvmhv_run_single_vcpu()).
4290 if (kvm
->arch
.threads_indep
&& kvm_is_radix(kvm
) &&
4291 !no_mixing_hpt_and_radix
)
4292 r
= kvmhv_run_single_vcpu(run
, vcpu
, ~(u64
)0,
4293 vcpu
->arch
.vcore
->lpcr
);
4295 r
= kvmppc_run_vcpu(run
, vcpu
);
4297 if (run
->exit_reason
== KVM_EXIT_PAPR_HCALL
&&
4298 !(vcpu
->arch
.shregs
.msr
& MSR_PR
)) {
4299 trace_kvm_hcall_enter(vcpu
);
4300 r
= kvmppc_pseries_do_hcall(vcpu
);
4301 trace_kvm_hcall_exit(vcpu
, r
);
4302 kvmppc_core_prepare_to_enter(vcpu
);
4303 } else if (r
== RESUME_PAGE_FAULT
) {
4304 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
4305 r
= kvmppc_book3s_hv_page_fault(run
, vcpu
,
4306 vcpu
->arch
.fault_dar
, vcpu
->arch
.fault_dsisr
);
4307 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
4308 } else if (r
== RESUME_PASSTHROUGH
) {
4309 if (WARN_ON(xics_on_xive()))
4312 r
= kvmppc_xics_rm_complete(vcpu
, 0);
4314 } while (is_kvmppc_resume_guest(r
));
4316 /* Restore userspace EBB and other register values */
4317 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
4318 mtspr(SPRN_EBBHR
, ebb_regs
[0]);
4319 mtspr(SPRN_EBBRR
, ebb_regs
[1]);
4320 mtspr(SPRN_BESCR
, ebb_regs
[2]);
4321 mtspr(SPRN_TAR
, user_tar
);
4322 mtspr(SPRN_FSCR
, current
->thread
.fscr
);
4324 mtspr(SPRN_VRSAVE
, user_vrsave
);
4326 vcpu
->arch
.state
= KVMPPC_VCPU_NOTREADY
;
4327 atomic_dec(&kvm
->arch
.vcpus_running
);
4331 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size
**sps
,
4332 int shift
, int sllp
)
4334 (*sps
)->page_shift
= shift
;
4335 (*sps
)->slb_enc
= sllp
;
4336 (*sps
)->enc
[0].page_shift
= shift
;
4337 (*sps
)->enc
[0].pte_enc
= kvmppc_pgsize_lp_encoding(shift
, shift
);
4339 * Add 16MB MPSS support (may get filtered out by userspace)
4342 int penc
= kvmppc_pgsize_lp_encoding(shift
, 24);
4344 (*sps
)->enc
[1].page_shift
= 24;
4345 (*sps
)->enc
[1].pte_enc
= penc
;
4351 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm
*kvm
,
4352 struct kvm_ppc_smmu_info
*info
)
4354 struct kvm_ppc_one_seg_page_size
*sps
;
4357 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4358 * POWER7 doesn't support keys for instruction accesses,
4359 * POWER8 and POWER9 do.
4361 info
->data_keys
= 32;
4362 info
->instr_keys
= cpu_has_feature(CPU_FTR_ARCH_207S
) ? 32 : 0;
4364 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4365 info
->flags
= KVM_PPC_PAGE_SIZES_REAL
| KVM_PPC_1T_SEGMENTS
;
4366 info
->slb_size
= 32;
4368 /* We only support these sizes for now, and no muti-size segments */
4369 sps
= &info
->sps
[0];
4370 kvmppc_add_seg_page_size(&sps
, 12, 0);
4371 kvmppc_add_seg_page_size(&sps
, 16, SLB_VSID_L
| SLB_VSID_LP_01
);
4372 kvmppc_add_seg_page_size(&sps
, 24, SLB_VSID_L
);
4374 /* If running as a nested hypervisor, we don't support HPT guests */
4375 if (kvmhv_on_pseries())
4376 info
->flags
|= KVM_PPC_NO_HASH
;
4382 * Get (and clear) the dirty memory log for a memory slot.
4384 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm
*kvm
,
4385 struct kvm_dirty_log
*log
)
4387 struct kvm_memslots
*slots
;
4388 struct kvm_memory_slot
*memslot
;
4391 unsigned long *buf
, *p
;
4392 struct kvm_vcpu
*vcpu
;
4394 mutex_lock(&kvm
->slots_lock
);
4397 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
4400 slots
= kvm_memslots(kvm
);
4401 memslot
= id_to_memslot(slots
, log
->slot
);
4403 if (!memslot
->dirty_bitmap
)
4407 * Use second half of bitmap area because both HPT and radix
4408 * accumulate bits in the first half.
4410 n
= kvm_dirty_bitmap_bytes(memslot
);
4411 buf
= memslot
->dirty_bitmap
+ n
/ sizeof(long);
4414 if (kvm_is_radix(kvm
))
4415 r
= kvmppc_hv_get_dirty_log_radix(kvm
, memslot
, buf
);
4417 r
= kvmppc_hv_get_dirty_log_hpt(kvm
, memslot
, buf
);
4422 * We accumulate dirty bits in the first half of the
4423 * memslot's dirty_bitmap area, for when pages are paged
4424 * out or modified by the host directly. Pick up these
4425 * bits and add them to the map.
4427 p
= memslot
->dirty_bitmap
;
4428 for (i
= 0; i
< n
/ sizeof(long); ++i
)
4429 buf
[i
] |= xchg(&p
[i
], 0);
4431 /* Harvest dirty bits from VPA and DTL updates */
4432 /* Note: we never modify the SLB shadow buffer areas */
4433 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4434 spin_lock(&vcpu
->arch
.vpa_update_lock
);
4435 kvmppc_harvest_vpa_dirty(&vcpu
->arch
.vpa
, memslot
, buf
);
4436 kvmppc_harvest_vpa_dirty(&vcpu
->arch
.dtl
, memslot
, buf
);
4437 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
4441 if (copy_to_user(log
->dirty_bitmap
, buf
, n
))
4446 mutex_unlock(&kvm
->slots_lock
);
4450 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot
*free
,
4451 struct kvm_memory_slot
*dont
)
4453 if (!dont
|| free
->arch
.rmap
!= dont
->arch
.rmap
) {
4454 vfree(free
->arch
.rmap
);
4455 free
->arch
.rmap
= NULL
;
4459 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot
*slot
,
4460 unsigned long npages
)
4462 slot
->arch
.rmap
= vzalloc(array_size(npages
, sizeof(*slot
->arch
.rmap
)));
4463 if (!slot
->arch
.rmap
)
4469 static int kvmppc_core_prepare_memory_region_hv(struct kvm
*kvm
,
4470 struct kvm_memory_slot
*memslot
,
4471 const struct kvm_userspace_memory_region
*mem
)
4476 static void kvmppc_core_commit_memory_region_hv(struct kvm
*kvm
,
4477 const struct kvm_userspace_memory_region
*mem
,
4478 const struct kvm_memory_slot
*old
,
4479 const struct kvm_memory_slot
*new,
4480 enum kvm_mr_change change
)
4482 unsigned long npages
= mem
->memory_size
>> PAGE_SHIFT
;
4485 * If we are making a new memslot, it might make
4486 * some address that was previously cached as emulated
4487 * MMIO be no longer emulated MMIO, so invalidate
4488 * all the caches of emulated MMIO translations.
4491 atomic64_inc(&kvm
->arch
.mmio_update
);
4494 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4495 * have already called kvm_arch_flush_shadow_memslot() to
4496 * flush shadow mappings. For KVM_MR_CREATE we have no
4497 * previous mappings. So the only case to handle is
4498 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4500 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4501 * to get rid of any THP PTEs in the partition-scoped page tables
4502 * so we can track dirtiness at the page level; we flush when
4503 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4506 if (change
== KVM_MR_FLAGS_ONLY
&& kvm_is_radix(kvm
) &&
4507 ((new->flags
^ old
->flags
) & KVM_MEM_LOG_DIRTY_PAGES
))
4508 kvmppc_radix_flush_memslot(kvm
, old
);
4510 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4512 if (!kvm
->arch
.secure_guest
)
4517 if (kvmppc_uvmem_slot_init(kvm
, new))
4519 uv_register_mem_slot(kvm
->arch
.lpid
,
4520 new->base_gfn
<< PAGE_SHIFT
,
4521 new->npages
* PAGE_SIZE
,
4525 uv_unregister_mem_slot(kvm
->arch
.lpid
, old
->id
);
4526 kvmppc_uvmem_slot_free(kvm
, old
);
4529 /* TODO: Handle KVM_MR_MOVE */
4535 * Update LPCR values in kvm->arch and in vcores.
4536 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4537 * of kvm->arch.lpcr update).
4539 void kvmppc_update_lpcr(struct kvm
*kvm
, unsigned long lpcr
, unsigned long mask
)
4544 if ((kvm
->arch
.lpcr
& mask
) == lpcr
)
4547 kvm
->arch
.lpcr
= (kvm
->arch
.lpcr
& ~mask
) | lpcr
;
4549 for (i
= 0; i
< KVM_MAX_VCORES
; ++i
) {
4550 struct kvmppc_vcore
*vc
= kvm
->arch
.vcores
[i
];
4553 spin_lock(&vc
->lock
);
4554 vc
->lpcr
= (vc
->lpcr
& ~mask
) | lpcr
;
4555 spin_unlock(&vc
->lock
);
4556 if (++cores_done
>= kvm
->arch
.online_vcores
)
4561 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu
*vcpu
)
4566 void kvmppc_setup_partition_table(struct kvm
*kvm
)
4568 unsigned long dw0
, dw1
;
4570 if (!kvm_is_radix(kvm
)) {
4571 /* PS field - page size for VRMA */
4572 dw0
= ((kvm
->arch
.vrma_slb_v
& SLB_VSID_L
) >> 1) |
4573 ((kvm
->arch
.vrma_slb_v
& SLB_VSID_LP
) << 1);
4574 /* HTABSIZE and HTABORG fields */
4575 dw0
|= kvm
->arch
.sdr1
;
4577 /* Second dword as set by userspace */
4578 dw1
= kvm
->arch
.process_table
;
4580 dw0
= PATB_HR
| radix__get_tree_size() |
4581 __pa(kvm
->arch
.pgtable
) | RADIX_PGD_INDEX_SIZE
;
4582 dw1
= PATB_GR
| kvm
->arch
.process_table
;
4584 kvmhv_set_ptbl_entry(kvm
->arch
.lpid
, dw0
, dw1
);
4588 * Set up HPT (hashed page table) and RMA (real-mode area).
4589 * Must be called with kvm->arch.mmu_setup_lock held.
4591 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu
*vcpu
)
4594 struct kvm
*kvm
= vcpu
->kvm
;
4596 struct kvm_memory_slot
*memslot
;
4597 struct vm_area_struct
*vma
;
4598 unsigned long lpcr
= 0, senc
;
4599 unsigned long psize
, porder
;
4602 /* Allocate hashed page table (if not done already) and reset it */
4603 if (!kvm
->arch
.hpt
.virt
) {
4604 int order
= KVM_DEFAULT_HPT_ORDER
;
4605 struct kvm_hpt_info info
;
4607 err
= kvmppc_allocate_hpt(&info
, order
);
4608 /* If we get here, it means userspace didn't specify a
4609 * size explicitly. So, try successively smaller
4610 * sizes if the default failed. */
4611 while ((err
== -ENOMEM
) && --order
>= PPC_MIN_HPT_ORDER
)
4612 err
= kvmppc_allocate_hpt(&info
, order
);
4615 pr_err("KVM: Couldn't alloc HPT\n");
4619 kvmppc_set_hpt(kvm
, &info
);
4622 /* Look up the memslot for guest physical address 0 */
4623 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
4624 memslot
= gfn_to_memslot(kvm
, 0);
4626 /* We must have some memory at 0 by now */
4628 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
4631 /* Look up the VMA for the start of this memory slot */
4632 hva
= memslot
->userspace_addr
;
4633 down_read(&kvm
->mm
->mmap_sem
);
4634 vma
= find_vma(kvm
->mm
, hva
);
4635 if (!vma
|| vma
->vm_start
> hva
|| (vma
->vm_flags
& VM_IO
))
4638 psize
= vma_kernel_pagesize(vma
);
4640 up_read(&kvm
->mm
->mmap_sem
);
4642 /* We can handle 4k, 64k or 16M pages in the VRMA */
4643 if (psize
>= 0x1000000)
4645 else if (psize
>= 0x10000)
4649 porder
= __ilog2(psize
);
4651 senc
= slb_pgsize_encoding(psize
);
4652 kvm
->arch
.vrma_slb_v
= senc
| SLB_VSID_B_1T
|
4653 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
4654 /* Create HPTEs in the hash page table for the VRMA */
4655 kvmppc_map_vrma(vcpu
, memslot
, porder
);
4657 /* Update VRMASD field in the LPCR */
4658 if (!cpu_has_feature(CPU_FTR_ARCH_300
)) {
4659 /* the -4 is to account for senc values starting at 0x10 */
4660 lpcr
= senc
<< (LPCR_VRMASD_SH
- 4);
4661 kvmppc_update_lpcr(kvm
, lpcr
, LPCR_VRMASD
);
4664 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4668 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
4673 up_read(&kvm
->mm
->mmap_sem
);
4678 * Must be called with kvm->arch.mmu_setup_lock held and
4679 * mmu_ready = 0 and no vcpus running.
4681 int kvmppc_switch_mmu_to_hpt(struct kvm
*kvm
)
4683 if (nesting_enabled(kvm
))
4684 kvmhv_release_all_nested(kvm
);
4685 kvmppc_rmap_reset(kvm
);
4686 kvm
->arch
.process_table
= 0;
4687 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4688 spin_lock(&kvm
->mmu_lock
);
4689 kvm
->arch
.radix
= 0;
4690 spin_unlock(&kvm
->mmu_lock
);
4691 kvmppc_free_radix(kvm
);
4692 kvmppc_update_lpcr(kvm
, LPCR_VPM1
,
4693 LPCR_VPM1
| LPCR_UPRT
| LPCR_GTSE
| LPCR_HR
);
4698 * Must be called with kvm->arch.mmu_setup_lock held and
4699 * mmu_ready = 0 and no vcpus running.
4701 int kvmppc_switch_mmu_to_radix(struct kvm
*kvm
)
4705 err
= kvmppc_init_vm_radix(kvm
);
4708 kvmppc_rmap_reset(kvm
);
4709 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4710 spin_lock(&kvm
->mmu_lock
);
4711 kvm
->arch
.radix
= 1;
4712 spin_unlock(&kvm
->mmu_lock
);
4713 kvmppc_free_hpt(&kvm
->arch
.hpt
);
4714 kvmppc_update_lpcr(kvm
, LPCR_UPRT
| LPCR_GTSE
| LPCR_HR
,
4715 LPCR_VPM1
| LPCR_UPRT
| LPCR_GTSE
| LPCR_HR
);
4719 #ifdef CONFIG_KVM_XICS
4721 * Allocate a per-core structure for managing state about which cores are
4722 * running in the host versus the guest and for exchanging data between
4723 * real mode KVM and CPU running in the host.
4724 * This is only done for the first VM.
4725 * The allocated structure stays even if all VMs have stopped.
4726 * It is only freed when the kvm-hv module is unloaded.
4727 * It's OK for this routine to fail, we just don't support host
4728 * core operations like redirecting H_IPI wakeups.
4730 void kvmppc_alloc_host_rm_ops(void)
4732 struct kvmppc_host_rm_ops
*ops
;
4733 unsigned long l_ops
;
4737 /* Not the first time here ? */
4738 if (kvmppc_host_rm_ops_hv
!= NULL
)
4741 ops
= kzalloc(sizeof(struct kvmppc_host_rm_ops
), GFP_KERNEL
);
4745 size
= cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core
);
4746 ops
->rm_core
= kzalloc(size
, GFP_KERNEL
);
4748 if (!ops
->rm_core
) {
4755 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
+= threads_per_core
) {
4756 if (!cpu_online(cpu
))
4759 core
= cpu
>> threads_shift
;
4760 ops
->rm_core
[core
].rm_state
.in_host
= 1;
4763 ops
->vcpu_kick
= kvmppc_fast_vcpu_kick_hv
;
4766 * Make the contents of the kvmppc_host_rm_ops structure visible
4767 * to other CPUs before we assign it to the global variable.
4768 * Do an atomic assignment (no locks used here), but if someone
4769 * beats us to it, just free our copy and return.
4772 l_ops
= (unsigned long) ops
;
4774 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv
, 0, l_ops
)) {
4776 kfree(ops
->rm_core
);
4781 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE
,
4782 "ppc/kvm_book3s:prepare",
4783 kvmppc_set_host_core
,
4784 kvmppc_clear_host_core
);
4788 void kvmppc_free_host_rm_ops(void)
4790 if (kvmppc_host_rm_ops_hv
) {
4791 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE
);
4792 kfree(kvmppc_host_rm_ops_hv
->rm_core
);
4793 kfree(kvmppc_host_rm_ops_hv
);
4794 kvmppc_host_rm_ops_hv
= NULL
;
4799 static int kvmppc_core_init_vm_hv(struct kvm
*kvm
)
4801 unsigned long lpcr
, lpid
;
4805 mutex_init(&kvm
->arch
.uvmem_lock
);
4806 INIT_LIST_HEAD(&kvm
->arch
.uvmem_pfns
);
4807 mutex_init(&kvm
->arch
.mmu_setup_lock
);
4809 /* Allocate the guest's logical partition ID */
4811 lpid
= kvmppc_alloc_lpid();
4814 kvm
->arch
.lpid
= lpid
;
4816 kvmppc_alloc_host_rm_ops();
4818 kvmhv_vm_nested_init(kvm
);
4821 * Since we don't flush the TLB when tearing down a VM,
4822 * and this lpid might have previously been used,
4823 * make sure we flush on each core before running the new VM.
4824 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4825 * does this flush for us.
4827 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
4828 cpumask_setall(&kvm
->arch
.need_tlb_flush
);
4830 /* Start out with the default set of hcalls enabled */
4831 memcpy(kvm
->arch
.enabled_hcalls
, default_enabled_hcalls
,
4832 sizeof(kvm
->arch
.enabled_hcalls
));
4834 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
4835 kvm
->arch
.host_sdr1
= mfspr(SPRN_SDR1
);
4837 /* Init LPCR for virtual RMA mode */
4838 if (cpu_has_feature(CPU_FTR_HVMODE
)) {
4839 kvm
->arch
.host_lpid
= mfspr(SPRN_LPID
);
4840 kvm
->arch
.host_lpcr
= lpcr
= mfspr(SPRN_LPCR
);
4841 lpcr
&= LPCR_PECE
| LPCR_LPES
;
4845 lpcr
|= (4UL << LPCR_DPFD_SH
) | LPCR_HDICE
|
4846 LPCR_VPM0
| LPCR_VPM1
;
4847 kvm
->arch
.vrma_slb_v
= SLB_VSID_B_1T
|
4848 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
4849 /* On POWER8 turn on online bit to enable PURR/SPURR */
4850 if (cpu_has_feature(CPU_FTR_ARCH_207S
))
4853 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4854 * Set HVICE bit to enable hypervisor virtualization interrupts.
4855 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4856 * be unnecessary but better safe than sorry in case we re-enable
4857 * EE in HV mode with this LPCR still set)
4859 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
4861 lpcr
|= LPCR_HVICE
| LPCR_HEIC
;
4864 * If xive is enabled, we route 0x500 interrupts directly
4872 * If the host uses radix, the guest starts out as radix.
4874 if (radix_enabled()) {
4875 kvm
->arch
.radix
= 1;
4876 kvm
->arch
.mmu_ready
= 1;
4878 lpcr
|= LPCR_UPRT
| LPCR_GTSE
| LPCR_HR
;
4879 ret
= kvmppc_init_vm_radix(kvm
);
4881 kvmppc_free_lpid(kvm
->arch
.lpid
);
4884 kvmppc_setup_partition_table(kvm
);
4887 kvm
->arch
.lpcr
= lpcr
;
4889 /* Initialization for future HPT resizes */
4890 kvm
->arch
.resize_hpt
= NULL
;
4893 * Work out how many sets the TLB has, for the use of
4894 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4896 if (radix_enabled())
4897 kvm
->arch
.tlb_sets
= POWER9_TLB_SETS_RADIX
; /* 128 */
4898 else if (cpu_has_feature(CPU_FTR_ARCH_300
))
4899 kvm
->arch
.tlb_sets
= POWER9_TLB_SETS_HASH
; /* 256 */
4900 else if (cpu_has_feature(CPU_FTR_ARCH_207S
))
4901 kvm
->arch
.tlb_sets
= POWER8_TLB_SETS
; /* 512 */
4903 kvm
->arch
.tlb_sets
= POWER7_TLB_SETS
; /* 128 */
4906 * Track that we now have a HV mode VM active. This blocks secondary
4907 * CPU threads from coming online.
4908 * On POWER9, we only need to do this if the "indep_threads_mode"
4909 * module parameter has been set to N.
4911 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
4912 if (!indep_threads_mode
&& !cpu_has_feature(CPU_FTR_HVMODE
)) {
4913 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4914 kvm
->arch
.threads_indep
= true;
4916 kvm
->arch
.threads_indep
= indep_threads_mode
;
4919 if (!kvm
->arch
.threads_indep
)
4920 kvm_hv_vm_activated();
4923 * Initialize smt_mode depending on processor.
4924 * POWER8 and earlier have to use "strict" threading, where
4925 * all vCPUs in a vcore have to run on the same (sub)core,
4926 * whereas on POWER9 the threads can each run a different
4929 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
4930 kvm
->arch
.smt_mode
= threads_per_subcore
;
4932 kvm
->arch
.smt_mode
= 1;
4933 kvm
->arch
.emul_smt_mode
= 1;
4936 * Create a debugfs directory for the VM
4938 snprintf(buf
, sizeof(buf
), "vm%d", current
->pid
);
4939 kvm
->arch
.debugfs_dir
= debugfs_create_dir(buf
, kvm_debugfs_dir
);
4940 kvmppc_mmu_debugfs_init(kvm
);
4941 if (radix_enabled())
4942 kvmhv_radix_debugfs_init(kvm
);
4947 static void kvmppc_free_vcores(struct kvm
*kvm
)
4951 for (i
= 0; i
< KVM_MAX_VCORES
; ++i
)
4952 kfree(kvm
->arch
.vcores
[i
]);
4953 kvm
->arch
.online_vcores
= 0;
4956 static void kvmppc_core_destroy_vm_hv(struct kvm
*kvm
)
4958 debugfs_remove_recursive(kvm
->arch
.debugfs_dir
);
4960 if (!kvm
->arch
.threads_indep
)
4961 kvm_hv_vm_deactivated();
4963 kvmppc_free_vcores(kvm
);
4966 if (kvm_is_radix(kvm
))
4967 kvmppc_free_radix(kvm
);
4969 kvmppc_free_hpt(&kvm
->arch
.hpt
);
4971 /* Perform global invalidation and return lpid to the pool */
4972 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
4973 if (nesting_enabled(kvm
))
4974 kvmhv_release_all_nested(kvm
);
4975 kvm
->arch
.process_table
= 0;
4976 if (kvm
->arch
.secure_guest
)
4977 uv_svm_terminate(kvm
->arch
.lpid
);
4978 kvmhv_set_ptbl_entry(kvm
->arch
.lpid
, 0, 0);
4981 kvmppc_free_lpid(kvm
->arch
.lpid
);
4983 kvmppc_free_pimap(kvm
);
4986 /* We don't need to emulate any privileged instructions or dcbz */
4987 static int kvmppc_core_emulate_op_hv(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
4988 unsigned int inst
, int *advance
)
4990 return EMULATE_FAIL
;
4993 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu
*vcpu
, int sprn
,
4996 return EMULATE_FAIL
;
4999 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu
*vcpu
, int sprn
,
5002 return EMULATE_FAIL
;
5005 static int kvmppc_core_check_processor_compat_hv(void)
5007 if (cpu_has_feature(CPU_FTR_HVMODE
) &&
5008 cpu_has_feature(CPU_FTR_ARCH_206
))
5011 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5012 if (cpu_has_feature(CPU_FTR_ARCH_300
) && radix_enabled())
5018 #ifdef CONFIG_KVM_XICS
5020 void kvmppc_free_pimap(struct kvm
*kvm
)
5022 kfree(kvm
->arch
.pimap
);
5025 static struct kvmppc_passthru_irqmap
*kvmppc_alloc_pimap(void)
5027 return kzalloc(sizeof(struct kvmppc_passthru_irqmap
), GFP_KERNEL
);
5030 static int kvmppc_set_passthru_irq(struct kvm
*kvm
, int host_irq
, int guest_gsi
)
5032 struct irq_desc
*desc
;
5033 struct kvmppc_irq_map
*irq_map
;
5034 struct kvmppc_passthru_irqmap
*pimap
;
5035 struct irq_chip
*chip
;
5038 if (!kvm_irq_bypass
)
5041 desc
= irq_to_desc(host_irq
);
5045 mutex_lock(&kvm
->lock
);
5047 pimap
= kvm
->arch
.pimap
;
5048 if (pimap
== NULL
) {
5049 /* First call, allocate structure to hold IRQ map */
5050 pimap
= kvmppc_alloc_pimap();
5051 if (pimap
== NULL
) {
5052 mutex_unlock(&kvm
->lock
);
5055 kvm
->arch
.pimap
= pimap
;
5059 * For now, we only support interrupts for which the EOI operation
5060 * is an OPAL call followed by a write to XIRR, since that's
5061 * what our real-mode EOI code does, or a XIVE interrupt
5063 chip
= irq_data_get_irq_chip(&desc
->irq_data
);
5064 if (!chip
|| !(is_pnv_opal_msi(chip
) || is_xive_irq(chip
))) {
5065 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5066 host_irq
, guest_gsi
);
5067 mutex_unlock(&kvm
->lock
);
5072 * See if we already have an entry for this guest IRQ number.
5073 * If it's mapped to a hardware IRQ number, that's an error,
5074 * otherwise re-use this entry.
5076 for (i
= 0; i
< pimap
->n_mapped
; i
++) {
5077 if (guest_gsi
== pimap
->mapped
[i
].v_hwirq
) {
5078 if (pimap
->mapped
[i
].r_hwirq
) {
5079 mutex_unlock(&kvm
->lock
);
5086 if (i
== KVMPPC_PIRQ_MAPPED
) {
5087 mutex_unlock(&kvm
->lock
);
5088 return -EAGAIN
; /* table is full */
5091 irq_map
= &pimap
->mapped
[i
];
5093 irq_map
->v_hwirq
= guest_gsi
;
5094 irq_map
->desc
= desc
;
5097 * Order the above two stores before the next to serialize with
5098 * the KVM real mode handler.
5101 irq_map
->r_hwirq
= desc
->irq_data
.hwirq
;
5103 if (i
== pimap
->n_mapped
)
5107 rc
= kvmppc_xive_set_mapped(kvm
, guest_gsi
, desc
);
5109 kvmppc_xics_set_mapped(kvm
, guest_gsi
, desc
->irq_data
.hwirq
);
5111 irq_map
->r_hwirq
= 0;
5113 mutex_unlock(&kvm
->lock
);
5118 static int kvmppc_clr_passthru_irq(struct kvm
*kvm
, int host_irq
, int guest_gsi
)
5120 struct irq_desc
*desc
;
5121 struct kvmppc_passthru_irqmap
*pimap
;
5124 if (!kvm_irq_bypass
)
5127 desc
= irq_to_desc(host_irq
);
5131 mutex_lock(&kvm
->lock
);
5132 if (!kvm
->arch
.pimap
)
5135 pimap
= kvm
->arch
.pimap
;
5137 for (i
= 0; i
< pimap
->n_mapped
; i
++) {
5138 if (guest_gsi
== pimap
->mapped
[i
].v_hwirq
)
5142 if (i
== pimap
->n_mapped
) {
5143 mutex_unlock(&kvm
->lock
);
5148 rc
= kvmppc_xive_clr_mapped(kvm
, guest_gsi
, pimap
->mapped
[i
].desc
);
5150 kvmppc_xics_clr_mapped(kvm
, guest_gsi
, pimap
->mapped
[i
].r_hwirq
);
5152 /* invalidate the entry (what do do on error from the above ?) */
5153 pimap
->mapped
[i
].r_hwirq
= 0;
5156 * We don't free this structure even when the count goes to
5157 * zero. The structure is freed when we destroy the VM.
5160 mutex_unlock(&kvm
->lock
);
5164 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer
*cons
,
5165 struct irq_bypass_producer
*prod
)
5168 struct kvm_kernel_irqfd
*irqfd
=
5169 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
5171 irqfd
->producer
= prod
;
5173 ret
= kvmppc_set_passthru_irq(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
);
5175 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5176 prod
->irq
, irqfd
->gsi
, ret
);
5181 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer
*cons
,
5182 struct irq_bypass_producer
*prod
)
5185 struct kvm_kernel_irqfd
*irqfd
=
5186 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
5188 irqfd
->producer
= NULL
;
5191 * When producer of consumer is unregistered, we change back to
5192 * default external interrupt handling mode - KVM real mode
5193 * will switch back to host.
5195 ret
= kvmppc_clr_passthru_irq(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
);
5197 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5198 prod
->irq
, irqfd
->gsi
, ret
);
5202 static long kvm_arch_vm_ioctl_hv(struct file
*filp
,
5203 unsigned int ioctl
, unsigned long arg
)
5205 struct kvm
*kvm __maybe_unused
= filp
->private_data
;
5206 void __user
*argp
= (void __user
*)arg
;
5211 case KVM_PPC_ALLOCATE_HTAB
: {
5215 if (get_user(htab_order
, (u32 __user
*)argp
))
5217 r
= kvmppc_alloc_reset_hpt(kvm
, htab_order
);
5224 case KVM_PPC_GET_HTAB_FD
: {
5225 struct kvm_get_htab_fd ghf
;
5228 if (copy_from_user(&ghf
, argp
, sizeof(ghf
)))
5230 r
= kvm_vm_ioctl_get_htab_fd(kvm
, &ghf
);
5234 case KVM_PPC_RESIZE_HPT_PREPARE
: {
5235 struct kvm_ppc_resize_hpt rhpt
;
5238 if (copy_from_user(&rhpt
, argp
, sizeof(rhpt
)))
5241 r
= kvm_vm_ioctl_resize_hpt_prepare(kvm
, &rhpt
);
5245 case KVM_PPC_RESIZE_HPT_COMMIT
: {
5246 struct kvm_ppc_resize_hpt rhpt
;
5249 if (copy_from_user(&rhpt
, argp
, sizeof(rhpt
)))
5252 r
= kvm_vm_ioctl_resize_hpt_commit(kvm
, &rhpt
);
5264 * List of hcall numbers to enable by default.
5265 * For compatibility with old userspace, we enable by default
5266 * all hcalls that were implemented before the hcall-enabling
5267 * facility was added. Note this list should not include H_RTAS.
5269 static unsigned int default_hcall_list
[] = {
5283 #ifdef CONFIG_KVM_XICS
5294 static void init_default_hcalls(void)
5299 for (i
= 0; default_hcall_list
[i
]; ++i
) {
5300 hcall
= default_hcall_list
[i
];
5301 WARN_ON(!kvmppc_hcall_impl_hv(hcall
));
5302 __set_bit(hcall
/ 4, default_enabled_hcalls
);
5306 static int kvmhv_configure_mmu(struct kvm
*kvm
, struct kvm_ppc_mmuv3_cfg
*cfg
)
5312 /* If not on a POWER9, reject it */
5313 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
5316 /* If any unknown flags set, reject it */
5317 if (cfg
->flags
& ~(KVM_PPC_MMUV3_RADIX
| KVM_PPC_MMUV3_GTSE
))
5320 /* GR (guest radix) bit in process_table field must match */
5321 radix
= !!(cfg
->flags
& KVM_PPC_MMUV3_RADIX
);
5322 if (!!(cfg
->process_table
& PATB_GR
) != radix
)
5325 /* Process table size field must be reasonable, i.e. <= 24 */
5326 if ((cfg
->process_table
& PRTS_MASK
) > 24)
5329 /* We can change a guest to/from radix now, if the host is radix */
5330 if (radix
&& !radix_enabled())
5333 /* If we're a nested hypervisor, we currently only support radix */
5334 if (kvmhv_on_pseries() && !radix
)
5337 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
5338 if (radix
!= kvm_is_radix(kvm
)) {
5339 if (kvm
->arch
.mmu_ready
) {
5340 kvm
->arch
.mmu_ready
= 0;
5341 /* order mmu_ready vs. vcpus_running */
5343 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
5344 kvm
->arch
.mmu_ready
= 1;
5350 err
= kvmppc_switch_mmu_to_radix(kvm
);
5352 err
= kvmppc_switch_mmu_to_hpt(kvm
);
5357 kvm
->arch
.process_table
= cfg
->process_table
;
5358 kvmppc_setup_partition_table(kvm
);
5360 lpcr
= (cfg
->flags
& KVM_PPC_MMUV3_GTSE
) ? LPCR_GTSE
: 0;
5361 kvmppc_update_lpcr(kvm
, lpcr
, LPCR_GTSE
);
5365 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
5369 static int kvmhv_enable_nested(struct kvm
*kvm
)
5373 if (!cpu_has_feature(CPU_FTR_ARCH_300
) || no_mixing_hpt_and_radix
)
5376 /* kvm == NULL means the caller is testing if the capability exists */
5378 kvm
->arch
.nested_enable
= true;
5382 static int kvmhv_load_from_eaddr(struct kvm_vcpu
*vcpu
, ulong
*eaddr
, void *ptr
,
5387 if (kvmhv_vcpu_is_radix(vcpu
)) {
5388 rc
= kvmhv_copy_from_guest_radix(vcpu
, *eaddr
, ptr
, size
);
5394 /* For now quadrants are the only way to access nested guest memory */
5395 if (rc
&& vcpu
->arch
.nested
)
5401 static int kvmhv_store_to_eaddr(struct kvm_vcpu
*vcpu
, ulong
*eaddr
, void *ptr
,
5406 if (kvmhv_vcpu_is_radix(vcpu
)) {
5407 rc
= kvmhv_copy_to_guest_radix(vcpu
, *eaddr
, ptr
, size
);
5413 /* For now quadrants are the only way to access nested guest memory */
5414 if (rc
&& vcpu
->arch
.nested
)
5420 static void unpin_vpa_reset(struct kvm
*kvm
, struct kvmppc_vpa
*vpa
)
5422 unpin_vpa(kvm
, vpa
);
5424 vpa
->pinned_addr
= NULL
;
5426 vpa
->update_pending
= 0;
5430 * IOCTL handler to turn off secure mode of guest
5432 * - Release all device pages
5433 * - Issue ucall to terminate the guest on the UV side
5434 * - Unpin the VPA pages.
5435 * - Reinit the partition scoped page tables
5437 static int kvmhv_svm_off(struct kvm
*kvm
)
5439 struct kvm_vcpu
*vcpu
;
5445 if (!(kvm
->arch
.secure_guest
& KVMPPC_SECURE_INIT_START
))
5448 mutex_lock(&kvm
->arch
.mmu_setup_lock
);
5449 mmu_was_ready
= kvm
->arch
.mmu_ready
;
5450 if (kvm
->arch
.mmu_ready
) {
5451 kvm
->arch
.mmu_ready
= 0;
5452 /* order mmu_ready vs. vcpus_running */
5454 if (atomic_read(&kvm
->arch
.vcpus_running
)) {
5455 kvm
->arch
.mmu_ready
= 1;
5461 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5462 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
5463 struct kvm_memory_slot
*memslot
;
5464 struct kvm_memslots
*slots
= __kvm_memslots(kvm
, i
);
5469 kvm_for_each_memslot(memslot
, slots
) {
5470 kvmppc_uvmem_drop_pages(memslot
, kvm
, true);
5471 uv_unregister_mem_slot(kvm
->arch
.lpid
, memslot
->id
);
5474 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
5476 ret
= uv_svm_terminate(kvm
->arch
.lpid
);
5477 if (ret
!= U_SUCCESS
) {
5483 * When secure guest is reset, all the guest pages are sent
5484 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5485 * chance to run and unpin their VPA pages. Unpinning of all
5486 * VPA pages is done here explicitly so that VPA pages
5487 * can be migrated to the secure side.
5489 * This is required to for the secure SMP guest to reboot
5492 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5493 spin_lock(&vcpu
->arch
.vpa_update_lock
);
5494 unpin_vpa_reset(kvm
, &vcpu
->arch
.dtl
);
5495 unpin_vpa_reset(kvm
, &vcpu
->arch
.slb_shadow
);
5496 unpin_vpa_reset(kvm
, &vcpu
->arch
.vpa
);
5497 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
5500 kvmppc_setup_partition_table(kvm
);
5501 kvm
->arch
.secure_guest
= 0;
5502 kvm
->arch
.mmu_ready
= mmu_was_ready
;
5504 mutex_unlock(&kvm
->arch
.mmu_setup_lock
);
5508 static struct kvmppc_ops kvm_ops_hv
= {
5509 .get_sregs
= kvm_arch_vcpu_ioctl_get_sregs_hv
,
5510 .set_sregs
= kvm_arch_vcpu_ioctl_set_sregs_hv
,
5511 .get_one_reg
= kvmppc_get_one_reg_hv
,
5512 .set_one_reg
= kvmppc_set_one_reg_hv
,
5513 .vcpu_load
= kvmppc_core_vcpu_load_hv
,
5514 .vcpu_put
= kvmppc_core_vcpu_put_hv
,
5515 .inject_interrupt
= kvmppc_inject_interrupt_hv
,
5516 .set_msr
= kvmppc_set_msr_hv
,
5517 .vcpu_run
= kvmppc_vcpu_run_hv
,
5518 .vcpu_create
= kvmppc_core_vcpu_create_hv
,
5519 .vcpu_free
= kvmppc_core_vcpu_free_hv
,
5520 .check_requests
= kvmppc_core_check_requests_hv
,
5521 .get_dirty_log
= kvm_vm_ioctl_get_dirty_log_hv
,
5522 .flush_memslot
= kvmppc_core_flush_memslot_hv
,
5523 .prepare_memory_region
= kvmppc_core_prepare_memory_region_hv
,
5524 .commit_memory_region
= kvmppc_core_commit_memory_region_hv
,
5525 .unmap_hva_range
= kvm_unmap_hva_range_hv
,
5526 .age_hva
= kvm_age_hva_hv
,
5527 .test_age_hva
= kvm_test_age_hva_hv
,
5528 .set_spte_hva
= kvm_set_spte_hva_hv
,
5529 .mmu_destroy
= kvmppc_mmu_destroy_hv
,
5530 .free_memslot
= kvmppc_core_free_memslot_hv
,
5531 .create_memslot
= kvmppc_core_create_memslot_hv
,
5532 .init_vm
= kvmppc_core_init_vm_hv
,
5533 .destroy_vm
= kvmppc_core_destroy_vm_hv
,
5534 .get_smmu_info
= kvm_vm_ioctl_get_smmu_info_hv
,
5535 .emulate_op
= kvmppc_core_emulate_op_hv
,
5536 .emulate_mtspr
= kvmppc_core_emulate_mtspr_hv
,
5537 .emulate_mfspr
= kvmppc_core_emulate_mfspr_hv
,
5538 .fast_vcpu_kick
= kvmppc_fast_vcpu_kick_hv
,
5539 .arch_vm_ioctl
= kvm_arch_vm_ioctl_hv
,
5540 .hcall_implemented
= kvmppc_hcall_impl_hv
,
5541 #ifdef CONFIG_KVM_XICS
5542 .irq_bypass_add_producer
= kvmppc_irq_bypass_add_producer_hv
,
5543 .irq_bypass_del_producer
= kvmppc_irq_bypass_del_producer_hv
,
5545 .configure_mmu
= kvmhv_configure_mmu
,
5546 .get_rmmu_info
= kvmhv_get_rmmu_info
,
5547 .set_smt_mode
= kvmhv_set_smt_mode
,
5548 .enable_nested
= kvmhv_enable_nested
,
5549 .load_from_eaddr
= kvmhv_load_from_eaddr
,
5550 .store_to_eaddr
= kvmhv_store_to_eaddr
,
5551 .svm_off
= kvmhv_svm_off
,
5554 static int kvm_init_subcore_bitmap(void)
5557 int nr_cores
= cpu_nr_cores();
5558 struct sibling_subcore_state
*sibling_subcore_state
;
5560 for (i
= 0; i
< nr_cores
; i
++) {
5561 int first_cpu
= i
* threads_per_core
;
5562 int node
= cpu_to_node(first_cpu
);
5564 /* Ignore if it is already allocated. */
5565 if (paca_ptrs
[first_cpu
]->sibling_subcore_state
)
5568 sibling_subcore_state
=
5569 kzalloc_node(sizeof(struct sibling_subcore_state
),
5571 if (!sibling_subcore_state
)
5575 for (j
= 0; j
< threads_per_core
; j
++) {
5576 int cpu
= first_cpu
+ j
;
5578 paca_ptrs
[cpu
]->sibling_subcore_state
=
5579 sibling_subcore_state
;
5585 static int kvmppc_radix_possible(void)
5587 return cpu_has_feature(CPU_FTR_ARCH_300
) && radix_enabled();
5590 static int kvmppc_book3s_init_hv(void)
5594 if (!tlbie_capable
) {
5595 pr_err("KVM-HV: Host does not support TLBIE\n");
5600 * FIXME!! Do we need to check on all cpus ?
5602 r
= kvmppc_core_check_processor_compat_hv();
5606 r
= kvmhv_nested_init();
5610 r
= kvm_init_subcore_bitmap();
5615 * We need a way of accessing the XICS interrupt controller,
5616 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5617 * indirectly, via OPAL.
5620 if (!xics_on_xive() && !kvmhv_on_pseries() &&
5621 !local_paca
->kvm_hstate
.xics_phys
) {
5622 struct device_node
*np
;
5624 np
= of_find_compatible_node(NULL
, NULL
, "ibm,opal-intc");
5626 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5629 /* presence of intc confirmed - node can be dropped again */
5634 kvm_ops_hv
.owner
= THIS_MODULE
;
5635 kvmppc_hv_ops
= &kvm_ops_hv
;
5637 init_default_hcalls();
5641 r
= kvmppc_mmu_hv_init();
5645 if (kvmppc_radix_possible())
5646 r
= kvmppc_radix_init();
5649 * POWER9 chips before version 2.02 can't have some threads in
5650 * HPT mode and some in radix mode on the same core.
5652 if (cpu_has_feature(CPU_FTR_ARCH_300
)) {
5653 unsigned int pvr
= mfspr(SPRN_PVR
);
5654 if ((pvr
>> 16) == PVR_POWER9
&&
5655 (((pvr
& 0xe000) == 0 && (pvr
& 0xfff) < 0x202) ||
5656 ((pvr
& 0xe000) == 0x2000 && (pvr
& 0xfff) < 0x101)))
5657 no_mixing_hpt_and_radix
= true;
5660 r
= kvmppc_uvmem_init();
5662 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r
);
5667 static void kvmppc_book3s_exit_hv(void)
5669 kvmppc_uvmem_free();
5670 kvmppc_free_host_rm_ops();
5671 if (kvmppc_radix_possible())
5672 kvmppc_radix_exit();
5673 kvmppc_hv_ops
= NULL
;
5674 kvmhv_nested_exit();
5677 module_init(kvmppc_book3s_init_hv
);
5678 module_exit(kvmppc_book3s_exit_hv
);
5679 MODULE_LICENSE("GPL");
5680 MODULE_ALIAS_MISCDEV(KVM_MINOR
);
5681 MODULE_ALIAS("devname:kvm");