1 // SPDX-License-Identifier: GPL-2.0
3 * arch/sparc64/mm/init.c
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
56 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
57 static unsigned long page_cache4v_flag
;
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
85 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
87 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
89 static unsigned long cpu_pgsz_mask
;
91 #define MAX_BANKS 1024
93 static struct linux_prom64_registers pavail
[MAX_BANKS
];
94 static int pavail_ents
;
96 u64 numa_latency
[MAX_NUMNODES
][MAX_NUMNODES
];
98 static int cmp_p64(const void *a
, const void *b
)
100 const struct linux_prom64_registers
*x
= a
, *y
= b
;
102 if (x
->phys_addr
> y
->phys_addr
)
104 if (x
->phys_addr
< y
->phys_addr
)
109 static void __init
read_obp_memory(const char *property
,
110 struct linux_prom64_registers
*regs
,
113 phandle node
= prom_finddevice("/memory");
114 int prop_size
= prom_getproplen(node
, property
);
117 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
118 if (ents
> MAX_BANKS
) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property
, MAX_BANKS
);
125 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
127 prom_printf("Couldn't get %s property from /memory.\n",
132 /* Sanitize what we got from the firmware, by page aligning
135 for (i
= 0; i
< ents
; i
++) {
136 unsigned long base
, size
;
138 base
= regs
[i
].phys_addr
;
139 size
= regs
[i
].reg_size
;
142 if (base
& ~PAGE_MASK
) {
143 unsigned long new_base
= PAGE_ALIGN(base
);
145 size
-= new_base
- base
;
146 if ((long) size
< 0L)
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
155 memmove(®s
[i
], ®s
[i
+ 1],
156 (ents
- i
- 1) * sizeof(regs
[0]));
161 regs
[i
].phys_addr
= base
;
162 regs
[i
].reg_size
= size
;
167 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly
;
173 unsigned long kern_size __read_mostly
;
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64
;
177 extern unsigned int sparc_ramdisk_image
;
178 extern unsigned int sparc_ramdisk_size
;
180 struct page
*mem_map_zero __read_mostly
;
181 EXPORT_SYMBOL(mem_map_zero
);
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
185 unsigned long sparc64_kern_pri_context __read_mostly
;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
187 unsigned long sparc64_kern_sec_context __read_mostly
;
189 int num_kernel_image_mappings
;
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
194 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
198 inline void flush_dcache_page_impl(struct page
*page
)
200 BUG_ON(tlb_type
== hypervisor
);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes
);
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page
),
207 ((tlb_type
== spitfire
) &&
208 page_mapping_file(page
) != NULL
));
210 if (page_mapping_file(page
) != NULL
&&
211 tlb_type
== spitfire
)
212 __flush_icache_page(__pa(page_address(page
)));
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
224 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
226 unsigned long mask
= this_cpu
;
227 unsigned long non_cpu_bits
;
229 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
230 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
232 __asm__
__volatile__("1:\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
241 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
245 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
247 unsigned long mask
= (1UL << PG_dcache_dirty
);
249 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
263 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
264 "i" (PG_dcache_cpu_mask
),
265 "i" (PG_dcache_cpu_shift
)
269 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
271 unsigned long tsb_addr
= (unsigned long) ent
;
273 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
274 tsb_addr
= __pa(tsb_addr
);
276 __tsb_insert(tsb_addr
, tag
, pte
);
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
281 static void flush_dcache(unsigned long pfn
)
285 page
= pfn_to_page(pfn
);
287 unsigned long pg_flags
;
289 pg_flags
= page
->flags
;
290 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
291 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
293 int this_cpu
= get_cpu();
295 /* This is just to optimize away some function calls
299 flush_dcache_page_impl(page
);
301 smp_flush_dcache_page_impl(page
, cpu
);
303 clear_dcache_dirty_cpu(page
, cpu
);
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
312 unsigned long tsb_hash_shift
, unsigned long address
,
315 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
321 tsb
+= ((address
>> tsb_hash_shift
) &
322 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
323 tag
= (address
>> 22UL);
324 tsb_insert(tsb
, tag
, tte
);
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init
add_huge_page_size(unsigned long size
)
332 if (size_to_hstate(size
))
335 order
= ilog2(size
) - PAGE_SHIFT
;
336 hugetlb_add_hstate(order
);
339 static int __init
hugetlbpage_init(void)
341 add_huge_page_size(1UL << HPAGE_64K_SHIFT
);
342 add_huge_page_size(1UL << HPAGE_SHIFT
);
343 add_huge_page_size(1UL << HPAGE_256MB_SHIFT
);
344 add_huge_page_size(1UL << HPAGE_2GB_SHIFT
);
349 arch_initcall(hugetlbpage_init
);
351 static void __init
pud_huge_patch(void)
353 struct pud_huge_patch_entry
*p
;
356 p
= &__pud_huge_patch
;
358 *(unsigned int *)addr
= p
->insn
;
360 __asm__
__volatile__("flush %0" : : "r" (addr
));
363 static int __init
setup_hugepagesz(char *string
)
365 unsigned long long hugepage_size
;
366 unsigned int hugepage_shift
;
367 unsigned short hv_pgsz_idx
;
368 unsigned int hv_pgsz_mask
;
371 hugepage_size
= memparse(string
, &string
);
372 hugepage_shift
= ilog2(hugepage_size
);
374 switch (hugepage_shift
) {
375 case HPAGE_16GB_SHIFT
:
376 hv_pgsz_mask
= HV_PGSZ_MASK_16GB
;
377 hv_pgsz_idx
= HV_PGSZ_IDX_16GB
;
380 case HPAGE_2GB_SHIFT
:
381 hv_pgsz_mask
= HV_PGSZ_MASK_2GB
;
382 hv_pgsz_idx
= HV_PGSZ_IDX_2GB
;
384 case HPAGE_256MB_SHIFT
:
385 hv_pgsz_mask
= HV_PGSZ_MASK_256MB
;
386 hv_pgsz_idx
= HV_PGSZ_IDX_256MB
;
389 hv_pgsz_mask
= HV_PGSZ_MASK_4MB
;
390 hv_pgsz_idx
= HV_PGSZ_IDX_4MB
;
392 case HPAGE_64K_SHIFT
:
393 hv_pgsz_mask
= HV_PGSZ_MASK_64K
;
394 hv_pgsz_idx
= HV_PGSZ_IDX_64K
;
400 if ((hv_pgsz_mask
& cpu_pgsz_mask
) == 0U) {
402 pr_err("hugepagesz=%llu not supported by MMU.\n",
407 add_huge_page_size(hugepage_size
);
413 __setup("hugepagesz=", setup_hugepagesz
);
414 #endif /* CONFIG_HUGETLB_PAGE */
416 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
418 struct mm_struct
*mm
;
423 if (tlb_type
!= hypervisor
) {
424 unsigned long pfn
= pte_pfn(pte
);
432 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
433 if (!pte_accessible(mm
, pte
))
436 spin_lock_irqsave(&mm
->context
.lock
, flags
);
439 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
440 if (mm
->context
.hugetlb_pte_count
|| mm
->context
.thp_pte_count
) {
441 unsigned long hugepage_size
= PAGE_SIZE
;
443 if (is_vm_hugetlb_page(vma
))
444 hugepage_size
= huge_page_size(hstate_vma(vma
));
446 if (hugepage_size
>= PUD_SIZE
) {
447 unsigned long mask
= 0x1ffc00000UL
;
449 /* Transfer bits [32:22] from address to resolve
452 pte_val(pte
) &= ~mask
;
453 pte_val(pte
) |= (address
& mask
);
454 } else if (hugepage_size
>= PMD_SIZE
) {
455 /* We are fabricating 8MB pages using 4MB
458 pte_val(pte
) |= (address
& (1UL << REAL_HPAGE_SHIFT
));
461 if (hugepage_size
>= PMD_SIZE
) {
462 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
,
463 REAL_HPAGE_SHIFT
, address
, pte_val(pte
));
469 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
470 address
, pte_val(pte
));
472 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
475 void flush_dcache_page(struct page
*page
)
477 struct address_space
*mapping
;
480 if (tlb_type
== hypervisor
)
483 /* Do not bother with the expensive D-cache flush if it
484 * is merely the zero page. The 'bigcore' testcase in GDB
485 * causes this case to run millions of times.
487 if (page
== ZERO_PAGE(0))
490 this_cpu
= get_cpu();
492 mapping
= page_mapping_file(page
);
493 if (mapping
&& !mapping_mapped(mapping
)) {
494 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
496 int dirty_cpu
= dcache_dirty_cpu(page
);
498 if (dirty_cpu
== this_cpu
)
500 smp_flush_dcache_page_impl(page
, dirty_cpu
);
502 set_dcache_dirty(page
, this_cpu
);
504 /* We could delay the flush for the !page_mapping
505 * case too. But that case is for exec env/arg
506 * pages and those are %99 certainly going to get
507 * faulted into the tlb (and thus flushed) anyways.
509 flush_dcache_page_impl(page
);
515 EXPORT_SYMBOL(flush_dcache_page
);
517 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
519 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
520 if (tlb_type
== spitfire
) {
523 /* This code only runs on Spitfire cpus so this is
524 * why we can assume _PAGE_PADDR_4U.
526 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
527 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
529 if (kaddr
>= PAGE_OFFSET
)
530 paddr
= kaddr
& mask
;
532 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
533 p4d_t
*p4dp
= p4d_offset(pgdp
, kaddr
);
534 pud_t
*pudp
= pud_offset(p4dp
, kaddr
);
535 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
536 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
538 paddr
= pte_val(*ptep
) & mask
;
540 __flush_icache_page(paddr
);
544 EXPORT_SYMBOL(flush_icache_range
);
546 void mmu_info(struct seq_file
*m
)
548 static const char *pgsz_strings
[] = {
549 "8K", "64K", "512K", "4MB", "32MB",
550 "256MB", "2GB", "16GB",
554 if (tlb_type
== cheetah
)
555 seq_printf(m
, "MMU Type\t: Cheetah\n");
556 else if (tlb_type
== cheetah_plus
)
557 seq_printf(m
, "MMU Type\t: Cheetah+\n");
558 else if (tlb_type
== spitfire
)
559 seq_printf(m
, "MMU Type\t: Spitfire\n");
560 else if (tlb_type
== hypervisor
)
561 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
563 seq_printf(m
, "MMU Type\t: ???\n");
565 seq_printf(m
, "MMU PGSZs\t: ");
567 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
568 if (cpu_pgsz_mask
& (1UL << i
)) {
569 seq_printf(m
, "%s%s",
570 printed
? "," : "", pgsz_strings
[i
]);
576 #ifdef CONFIG_DEBUG_DCFLUSH
577 seq_printf(m
, "DCPageFlushes\t: %d\n",
578 atomic_read(&dcpage_flushes
));
580 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
581 atomic_read(&dcpage_flushes_xcall
));
582 #endif /* CONFIG_SMP */
583 #endif /* CONFIG_DEBUG_DCFLUSH */
586 struct linux_prom_translation prom_trans
[512] __read_mostly
;
587 unsigned int prom_trans_ents __read_mostly
;
589 unsigned long kern_locked_tte_data
;
591 /* The obp translations are saved based on 8k pagesize, since obp can
592 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
593 * HI_OBP_ADDRESS range are handled in ktlb.S.
595 static inline int in_obp_range(unsigned long vaddr
)
597 return (vaddr
>= LOW_OBP_ADDRESS
&&
598 vaddr
< HI_OBP_ADDRESS
);
601 static int cmp_ptrans(const void *a
, const void *b
)
603 const struct linux_prom_translation
*x
= a
, *y
= b
;
605 if (x
->virt
> y
->virt
)
607 if (x
->virt
< y
->virt
)
612 /* Read OBP translations property into 'prom_trans[]'. */
613 static void __init
read_obp_translations(void)
615 int n
, node
, ents
, first
, last
, i
;
617 node
= prom_finddevice("/virtual-memory");
618 n
= prom_getproplen(node
, "translations");
619 if (unlikely(n
== 0 || n
== -1)) {
620 prom_printf("prom_mappings: Couldn't get size.\n");
623 if (unlikely(n
> sizeof(prom_trans
))) {
624 prom_printf("prom_mappings: Size %d is too big.\n", n
);
628 if ((n
= prom_getproperty(node
, "translations",
629 (char *)&prom_trans
[0],
630 sizeof(prom_trans
))) == -1) {
631 prom_printf("prom_mappings: Couldn't get property.\n");
635 n
= n
/ sizeof(struct linux_prom_translation
);
639 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
642 /* Now kick out all the non-OBP entries. */
643 for (i
= 0; i
< ents
; i
++) {
644 if (in_obp_range(prom_trans
[i
].virt
))
648 for (; i
< ents
; i
++) {
649 if (!in_obp_range(prom_trans
[i
].virt
))
654 for (i
= 0; i
< (last
- first
); i
++) {
655 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
656 struct linux_prom_translation
*dest
= &prom_trans
[i
];
660 for (; i
< ents
; i
++) {
661 struct linux_prom_translation
*dest
= &prom_trans
[i
];
662 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
665 prom_trans_ents
= last
- first
;
667 if (tlb_type
== spitfire
) {
668 /* Clear diag TTE bits. */
669 for (i
= 0; i
< prom_trans_ents
; i
++)
670 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
673 /* Force execute bit on. */
674 for (i
= 0; i
< prom_trans_ents
; i
++)
675 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
676 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
679 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
683 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
686 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
687 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
692 static unsigned long kern_large_tte(unsigned long paddr
);
694 static void __init
remap_kernel(void)
696 unsigned long phys_page
, tte_vaddr
, tte_data
;
697 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
699 tte_vaddr
= (unsigned long) KERNBASE
;
700 phys_page
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
701 tte_data
= kern_large_tte(phys_page
);
703 kern_locked_tte_data
= tte_data
;
705 /* Now lock us into the TLBs via Hypervisor or OBP. */
706 if (tlb_type
== hypervisor
) {
707 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
708 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
709 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
710 tte_vaddr
+= 0x400000;
711 tte_data
+= 0x400000;
714 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
715 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
716 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
717 tte_vaddr
+= 0x400000;
718 tte_data
+= 0x400000;
720 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
722 if (tlb_type
== cheetah_plus
) {
723 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
724 CTX_CHEETAH_PLUS_NUC
);
725 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
726 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
731 static void __init
inherit_prom_mappings(void)
733 /* Now fixup OBP's idea about where we really are mapped. */
734 printk("Remapping the kernel... ");
739 void prom_world(int enter
)
744 __asm__
__volatile__("flushw");
747 void __flush_dcache_range(unsigned long start
, unsigned long end
)
751 if (tlb_type
== spitfire
) {
754 for (va
= start
; va
< end
; va
+= 32) {
755 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
759 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
762 for (va
= start
; va
< end
; va
+= 32)
763 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
767 "i" (ASI_DCACHE_INVALIDATE
));
770 EXPORT_SYMBOL(__flush_dcache_range
);
772 /* get_new_mmu_context() uses "cache + 1". */
773 DEFINE_SPINLOCK(ctx_alloc_lock
);
774 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
;
775 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
776 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
777 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
778 DEFINE_PER_CPU(struct mm_struct
*, per_cpu_secondary_mm
) = {0};
780 static void mmu_context_wrap(void)
782 unsigned long old_ver
= tlb_context_cache
& CTX_VERSION_MASK
;
783 unsigned long new_ver
, new_ctx
, old_ctx
;
784 struct mm_struct
*mm
;
787 bitmap_zero(mmu_context_bmap
, 1 << CTX_NR_BITS
);
789 /* Reserve kernel context */
790 set_bit(0, mmu_context_bmap
);
792 new_ver
= (tlb_context_cache
& CTX_VERSION_MASK
) + CTX_FIRST_VERSION
;
793 if (unlikely(new_ver
== 0))
794 new_ver
= CTX_FIRST_VERSION
;
795 tlb_context_cache
= new_ver
;
798 * Make sure that any new mm that are added into per_cpu_secondary_mm,
799 * are going to go through get_new_mmu_context() path.
804 * Updated versions to current on those CPUs that had valid secondary
807 for_each_online_cpu(cpu
) {
809 * If a new mm is stored after we took this mm from the array,
810 * it will go into get_new_mmu_context() path, because we
811 * already bumped the version in tlb_context_cache.
813 mm
= per_cpu(per_cpu_secondary_mm
, cpu
);
815 if (unlikely(!mm
|| mm
== &init_mm
))
818 old_ctx
= mm
->context
.sparc64_ctx_val
;
819 if (likely((old_ctx
& CTX_VERSION_MASK
) == old_ver
)) {
820 new_ctx
= (old_ctx
& ~CTX_VERSION_MASK
) | new_ver
;
821 set_bit(new_ctx
& CTX_NR_MASK
, mmu_context_bmap
);
822 mm
->context
.sparc64_ctx_val
= new_ctx
;
827 /* Caller does TLB context flushing on local CPU if necessary.
828 * The caller also ensures that CTX_VALID(mm->context) is false.
830 * We must be careful about boundary cases so that we never
831 * let the user have CTX 0 (nucleus) or we ever use a CTX
832 * version of zero (and thus NO_CONTEXT would not be caught
833 * by version mis-match tests in mmu_context.h).
835 * Always invoked with interrupts disabled.
837 void get_new_mmu_context(struct mm_struct
*mm
)
839 unsigned long ctx
, new_ctx
;
840 unsigned long orig_pgsz_bits
;
842 spin_lock(&ctx_alloc_lock
);
844 /* wrap might have happened, test again if our context became valid */
845 if (unlikely(CTX_VALID(mm
->context
)))
847 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
848 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
849 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
850 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
851 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
852 if (new_ctx
>= ctx
) {
857 if (mm
->context
.sparc64_ctx_val
)
858 cpumask_clear(mm_cpumask(mm
));
859 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
860 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
861 tlb_context_cache
= new_ctx
;
862 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
864 spin_unlock(&ctx_alloc_lock
);
867 static int numa_enabled
= 1;
868 static int numa_debug
;
870 static int __init
early_numa(char *p
)
875 if (strstr(p
, "off"))
878 if (strstr(p
, "debug"))
883 early_param("numa", early_numa
);
885 #define numadbg(f, a...) \
886 do { if (numa_debug) \
887 printk(KERN_INFO f, ## a); \
890 static void __init
find_ramdisk(unsigned long phys_base
)
892 #ifdef CONFIG_BLK_DEV_INITRD
893 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
894 unsigned long ramdisk_image
;
896 /* Older versions of the bootloader only supported a
897 * 32-bit physical address for the ramdisk image
898 * location, stored at sparc_ramdisk_image. Newer
899 * SILO versions set sparc_ramdisk_image to zero and
900 * provide a full 64-bit physical address at
901 * sparc_ramdisk_image64.
903 ramdisk_image
= sparc_ramdisk_image
;
905 ramdisk_image
= sparc_ramdisk_image64
;
907 /* Another bootloader quirk. The bootloader normalizes
908 * the physical address to KERNBASE, so we have to
909 * factor that back out and add in the lowest valid
910 * physical page address to get the true physical address.
912 ramdisk_image
-= KERNBASE
;
913 ramdisk_image
+= phys_base
;
915 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
916 ramdisk_image
, sparc_ramdisk_size
);
918 initrd_start
= ramdisk_image
;
919 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
921 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
923 initrd_start
+= PAGE_OFFSET
;
924 initrd_end
+= PAGE_OFFSET
;
929 struct node_mem_mask
{
933 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
934 static int num_node_masks
;
936 #ifdef CONFIG_NEED_MULTIPLE_NODES
938 struct mdesc_mlgroup
{
945 static struct mdesc_mlgroup
*mlgroups
;
946 static int num_mlgroups
;
948 int numa_cpu_lookup_table
[NR_CPUS
];
949 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
951 struct mdesc_mblock
{
954 u64 offset
; /* RA-to-PA */
956 static struct mdesc_mblock
*mblocks
;
957 static int num_mblocks
;
959 static struct mdesc_mblock
* __init
addr_to_mblock(unsigned long addr
)
961 struct mdesc_mblock
*m
= NULL
;
964 for (i
= 0; i
< num_mblocks
; i
++) {
967 if (addr
>= m
->base
&&
968 addr
< (m
->base
+ m
->size
)) {
976 static u64 __init
memblock_nid_range_sun4u(u64 start
, u64 end
, int *nid
)
978 int prev_nid
, new_nid
;
980 prev_nid
= NUMA_NO_NODE
;
981 for ( ; start
< end
; start
+= PAGE_SIZE
) {
982 for (new_nid
= 0; new_nid
< num_node_masks
; new_nid
++) {
983 struct node_mem_mask
*p
= &node_masks
[new_nid
];
985 if ((start
& p
->mask
) == p
->match
) {
986 if (prev_nid
== NUMA_NO_NODE
)
992 if (new_nid
== num_node_masks
) {
994 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
999 if (prev_nid
!= new_nid
)
1004 return start
> end
? end
: start
;
1007 static u64 __init
memblock_nid_range(u64 start
, u64 end
, int *nid
)
1009 u64 ret_end
, pa_start
, m_mask
, m_match
, m_end
;
1010 struct mdesc_mblock
*mblock
;
1013 if (tlb_type
!= hypervisor
)
1014 return memblock_nid_range_sun4u(start
, end
, nid
);
1016 mblock
= addr_to_mblock(start
);
1018 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1026 pa_start
= start
+ mblock
->offset
;
1030 for (_nid
= 0; _nid
< num_node_masks
; _nid
++) {
1031 struct node_mem_mask
*const m
= &node_masks
[_nid
];
1033 if ((pa_start
& m
->mask
) == m
->match
) {
1040 if (num_node_masks
== _nid
) {
1041 /* We could not find NUMA group, so default to 0, but lets
1042 * search for latency group, so we could calculate the correct
1043 * end address that we return
1047 for (i
= 0; i
< num_mlgroups
; i
++) {
1048 struct mdesc_mlgroup
*const m
= &mlgroups
[i
];
1050 if ((pa_start
& m
->mask
) == m
->match
) {
1057 if (i
== num_mlgroups
) {
1058 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1067 * Each latency group has match and mask, and each memory block has an
1068 * offset. An address belongs to a latency group if its address matches
1069 * the following formula: ((addr + offset) & mask) == match
1070 * It is, however, slow to check every single page if it matches a
1071 * particular latency group. As optimization we calculate end value by
1072 * using bit arithmetics.
1074 m_end
= m_match
+ (1ul << __ffs(m_mask
)) - mblock
->offset
;
1075 m_end
+= pa_start
& ~((1ul << fls64(m_mask
)) - 1);
1076 ret_end
= m_end
> end
? end
: m_end
;
1084 /* This must be invoked after performing all of the necessary
1085 * memblock_set_node() calls for 'nid'. We need to be able to get
1086 * correct data from get_pfn_range_for_nid().
1088 static void __init
allocate_node_data(int nid
)
1090 struct pglist_data
*p
;
1091 unsigned long start_pfn
, end_pfn
;
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1094 NODE_DATA(nid
) = memblock_alloc_node(sizeof(struct pglist_data
),
1095 SMP_CACHE_BYTES
, nid
);
1096 if (!NODE_DATA(nid
)) {
1097 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
1101 NODE_DATA(nid
)->node_id
= nid
;
1106 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1107 p
->node_start_pfn
= start_pfn
;
1108 p
->node_spanned_pages
= end_pfn
- start_pfn
;
1111 static void init_node_masks_nonnuma(void)
1113 #ifdef CONFIG_NEED_MULTIPLE_NODES
1117 numadbg("Initializing tables for non-numa.\n");
1119 node_masks
[0].mask
= 0;
1120 node_masks
[0].match
= 0;
1123 #ifdef CONFIG_NEED_MULTIPLE_NODES
1124 for (i
= 0; i
< NR_CPUS
; i
++)
1125 numa_cpu_lookup_table
[i
] = 0;
1127 cpumask_setall(&numa_cpumask_lookup_table
[0]);
1131 #ifdef CONFIG_NEED_MULTIPLE_NODES
1132 struct pglist_data
*node_data
[MAX_NUMNODES
];
1134 EXPORT_SYMBOL(numa_cpu_lookup_table
);
1135 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
1136 EXPORT_SYMBOL(node_data
);
1138 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
1143 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
1144 u64 target
= mdesc_arc_target(md
, arc
);
1147 val
= mdesc_get_property(md
, target
,
1148 "cfg-handle", NULL
);
1149 if (val
&& *val
== cfg_handle
)
1155 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
1158 u64 arc
, candidate
, best_latency
= ~(u64
)0;
1160 candidate
= MDESC_NODE_NULL
;
1161 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1162 u64 target
= mdesc_arc_target(md
, arc
);
1163 const char *name
= mdesc_node_name(md
, target
);
1166 if (strcmp(name
, "pio-latency-group"))
1169 val
= mdesc_get_property(md
, target
, "latency", NULL
);
1173 if (*val
< best_latency
) {
1175 best_latency
= *val
;
1179 if (candidate
== MDESC_NODE_NULL
)
1182 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
1185 int of_node_to_nid(struct device_node
*dp
)
1187 const struct linux_prom64_registers
*regs
;
1188 struct mdesc_handle
*md
;
1193 /* This is the right thing to do on currently supported
1194 * SUN4U NUMA platforms as well, as the PCI controller does
1195 * not sit behind any particular memory controller.
1200 regs
= of_get_property(dp
, "reg", NULL
);
1204 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
1210 mdesc_for_each_node_by_name(md
, grp
, "group") {
1211 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1223 static void __init
add_node_ranges(void)
1225 struct memblock_region
*reg
;
1226 unsigned long prev_max
;
1229 prev_max
= memblock
.memory
.max
;
1231 for_each_memblock(memory
, reg
) {
1232 unsigned long size
= reg
->size
;
1233 unsigned long start
, end
;
1237 while (start
< end
) {
1238 unsigned long this_end
;
1241 this_end
= memblock_nid_range(start
, end
, &nid
);
1243 numadbg("Setting memblock NUMA node nid[%d] "
1244 "start[%lx] end[%lx]\n",
1245 nid
, start
, this_end
);
1247 memblock_set_node(start
, this_end
- start
,
1248 &memblock
.memory
, nid
);
1249 if (memblock
.memory
.max
!= prev_max
)
1250 goto memblock_resized
;
1256 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1258 unsigned long paddr
;
1262 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1267 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mlgroup
),
1272 mlgroups
= __va(paddr
);
1273 num_mlgroups
= count
;
1276 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1277 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1282 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1284 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1286 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1289 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1290 "match[%llx] mask[%llx]\n",
1291 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1297 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1299 unsigned long paddr
;
1303 mdesc_for_each_node_by_name(md
, node
, "mblock")
1308 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mblock
),
1313 mblocks
= __va(paddr
);
1314 num_mblocks
= count
;
1317 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1318 struct mdesc_mblock
*m
= &mblocks
[count
++];
1321 val
= mdesc_get_property(md
, node
, "base", NULL
);
1323 val
= mdesc_get_property(md
, node
, "size", NULL
);
1325 val
= mdesc_get_property(md
, node
,
1326 "address-congruence-offset", NULL
);
1328 /* The address-congruence-offset property is optional.
1329 * Explicity zero it be identifty this.
1336 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1337 count
- 1, m
->base
, m
->size
, m
->offset
);
1343 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1344 u64 grp
, cpumask_t
*mask
)
1348 cpumask_clear(mask
);
1350 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1351 u64 target
= mdesc_arc_target(md
, arc
);
1352 const char *name
= mdesc_node_name(md
, target
);
1355 if (strcmp(name
, "cpu"))
1357 id
= mdesc_get_property(md
, target
, "id", NULL
);
1358 if (*id
< nr_cpu_ids
)
1359 cpumask_set_cpu(*id
, mask
);
1363 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1367 for (i
= 0; i
< num_mlgroups
; i
++) {
1368 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1369 if (m
->node
== node
)
1375 int __node_distance(int from
, int to
)
1377 if ((from
>= MAX_NUMNODES
) || (to
>= MAX_NUMNODES
)) {
1378 pr_warn("Returning default NUMA distance value for %d->%d\n",
1380 return (from
== to
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1382 return numa_latency
[from
][to
];
1384 EXPORT_SYMBOL(__node_distance
);
1386 static int __init
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup
*grp
)
1390 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1391 struct node_mem_mask
*n
= &node_masks
[i
];
1393 if ((grp
->mask
== n
->mask
) && (grp
->match
== n
->match
))
1399 static void __init
find_numa_latencies_for_group(struct mdesc_handle
*md
,
1404 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1406 u64 target
= mdesc_arc_target(md
, arc
);
1407 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1411 tnode
= find_best_numa_node_for_mlgroup(m
);
1412 if (tnode
== MAX_NUMNODES
)
1414 numa_latency
[index
][tnode
] = m
->latency
;
1418 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1421 struct mdesc_mlgroup
*candidate
= NULL
;
1422 u64 arc
, best_latency
= ~(u64
)0;
1423 struct node_mem_mask
*n
;
1425 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1426 u64 target
= mdesc_arc_target(md
, arc
);
1427 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1430 if (m
->latency
< best_latency
) {
1432 best_latency
= m
->latency
;
1438 if (num_node_masks
!= index
) {
1439 printk(KERN_ERR
"Inconsistent NUMA state, "
1440 "index[%d] != num_node_masks[%d]\n",
1441 index
, num_node_masks
);
1445 n
= &node_masks
[num_node_masks
++];
1447 n
->mask
= candidate
->mask
;
1448 n
->match
= candidate
->match
;
1450 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1451 index
, n
->mask
, n
->match
, candidate
->latency
);
1456 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1462 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1464 for_each_cpu(cpu
, &mask
)
1465 numa_cpu_lookup_table
[cpu
] = index
;
1466 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1469 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1470 for_each_cpu(cpu
, &mask
)
1475 return numa_attach_mlgroup(md
, grp
, index
);
1478 static int __init
numa_parse_mdesc(void)
1480 struct mdesc_handle
*md
= mdesc_grab();
1481 int i
, j
, err
, count
;
1484 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1485 if (node
== MDESC_NODE_NULL
) {
1490 err
= grab_mblocks(md
);
1494 err
= grab_mlgroups(md
);
1499 mdesc_for_each_node_by_name(md
, node
, "group") {
1500 err
= numa_parse_mdesc_group(md
, node
, count
);
1507 mdesc_for_each_node_by_name(md
, node
, "group") {
1508 find_numa_latencies_for_group(md
, node
, count
);
1512 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1513 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1514 u64 self_latency
= numa_latency
[i
][i
];
1516 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
1517 numa_latency
[i
][j
] =
1518 (numa_latency
[i
][j
] * LOCAL_DISTANCE
) /
1525 for (i
= 0; i
< num_node_masks
; i
++) {
1526 allocate_node_data(i
);
1536 static int __init
numa_parse_jbus(void)
1538 unsigned long cpu
, index
;
1540 /* NUMA node id is encoded in bits 36 and higher, and there is
1541 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1544 for_each_present_cpu(cpu
) {
1545 numa_cpu_lookup_table
[cpu
] = index
;
1546 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1547 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1548 node_masks
[index
].match
= cpu
<< 36UL;
1552 num_node_masks
= index
;
1556 for (index
= 0; index
< num_node_masks
; index
++) {
1557 allocate_node_data(index
);
1558 node_set_online(index
);
1564 static int __init
numa_parse_sun4u(void)
1566 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1569 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1570 if ((ver
>> 32UL) == __JALAPENO_ID
||
1571 (ver
>> 32UL) == __SERRANO_ID
)
1572 return numa_parse_jbus();
1577 static int __init
bootmem_init_numa(void)
1582 numadbg("bootmem_init_numa()\n");
1584 /* Some sane defaults for numa latency values */
1585 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1586 for (j
= 0; j
< MAX_NUMNODES
; j
++)
1587 numa_latency
[i
][j
] = (i
== j
) ?
1588 LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1592 if (tlb_type
== hypervisor
)
1593 err
= numa_parse_mdesc();
1595 err
= numa_parse_sun4u();
1602 static int bootmem_init_numa(void)
1609 static void __init
bootmem_init_nonnuma(void)
1611 unsigned long top_of_ram
= memblock_end_of_DRAM();
1612 unsigned long total_ram
= memblock_phys_mem_size();
1614 numadbg("bootmem_init_nonnuma()\n");
1616 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1617 top_of_ram
, total_ram
);
1618 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1619 (top_of_ram
- total_ram
) >> 20);
1621 init_node_masks_nonnuma();
1622 memblock_set_node(0, PHYS_ADDR_MAX
, &memblock
.memory
, 0);
1623 allocate_node_data(0);
1627 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1629 unsigned long end_pfn
;
1631 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1632 max_pfn
= max_low_pfn
= end_pfn
;
1633 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1635 if (bootmem_init_numa() < 0)
1636 bootmem_init_nonnuma();
1638 /* Dump memblock with node info. */
1639 memblock_dump_all();
1641 /* XXX cpu notifier XXX */
1643 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1649 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1650 static int pall_ents __initdata
;
1652 static unsigned long max_phys_bits
= 40;
1654 bool kern_addr_valid(unsigned long addr
)
1662 if ((long)addr
< 0L) {
1663 unsigned long pa
= __pa(addr
);
1665 if ((pa
>> max_phys_bits
) != 0UL)
1668 return pfn_valid(pa
>> PAGE_SHIFT
);
1671 if (addr
>= (unsigned long) KERNBASE
&&
1672 addr
< (unsigned long)&_end
)
1675 pgd
= pgd_offset_k(addr
);
1679 p4d
= p4d_offset(pgd
, addr
);
1683 pud
= pud_offset(p4d
, addr
);
1687 if (pud_large(*pud
))
1688 return pfn_valid(pud_pfn(*pud
));
1690 pmd
= pmd_offset(pud
, addr
);
1694 if (pmd_large(*pmd
))
1695 return pfn_valid(pmd_pfn(*pmd
));
1697 pte
= pte_offset_kernel(pmd
, addr
);
1701 return pfn_valid(pte_pfn(*pte
));
1703 EXPORT_SYMBOL(kern_addr_valid
);
1705 static unsigned long __ref
kernel_map_hugepud(unsigned long vstart
,
1709 const unsigned long mask16gb
= (1UL << 34) - 1UL;
1710 u64 pte_val
= vstart
;
1712 /* Each PUD is 8GB */
1713 if ((vstart
& mask16gb
) ||
1714 (vend
- vstart
<= mask16gb
)) {
1715 pte_val
^= kern_linear_pte_xor
[2];
1716 pud_val(*pud
) = pte_val
| _PAGE_PUD_HUGE
;
1718 return vstart
+ PUD_SIZE
;
1721 pte_val
^= kern_linear_pte_xor
[3];
1722 pte_val
|= _PAGE_PUD_HUGE
;
1724 vend
= vstart
+ mask16gb
+ 1UL;
1725 while (vstart
< vend
) {
1726 pud_val(*pud
) = pte_val
;
1728 pte_val
+= PUD_SIZE
;
1735 static bool kernel_can_map_hugepud(unsigned long vstart
, unsigned long vend
,
1738 if (guard
&& !(vstart
& ~PUD_MASK
) && (vend
- vstart
) >= PUD_SIZE
)
1744 static unsigned long __ref
kernel_map_hugepmd(unsigned long vstart
,
1748 const unsigned long mask256mb
= (1UL << 28) - 1UL;
1749 const unsigned long mask2gb
= (1UL << 31) - 1UL;
1750 u64 pte_val
= vstart
;
1752 /* Each PMD is 8MB */
1753 if ((vstart
& mask256mb
) ||
1754 (vend
- vstart
<= mask256mb
)) {
1755 pte_val
^= kern_linear_pte_xor
[0];
1756 pmd_val(*pmd
) = pte_val
| _PAGE_PMD_HUGE
;
1758 return vstart
+ PMD_SIZE
;
1761 if ((vstart
& mask2gb
) ||
1762 (vend
- vstart
<= mask2gb
)) {
1763 pte_val
^= kern_linear_pte_xor
[1];
1764 pte_val
|= _PAGE_PMD_HUGE
;
1765 vend
= vstart
+ mask256mb
+ 1UL;
1767 pte_val
^= kern_linear_pte_xor
[2];
1768 pte_val
|= _PAGE_PMD_HUGE
;
1769 vend
= vstart
+ mask2gb
+ 1UL;
1772 while (vstart
< vend
) {
1773 pmd_val(*pmd
) = pte_val
;
1775 pte_val
+= PMD_SIZE
;
1783 static bool kernel_can_map_hugepmd(unsigned long vstart
, unsigned long vend
,
1786 if (guard
&& !(vstart
& ~PMD_MASK
) && (vend
- vstart
) >= PMD_SIZE
)
1792 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1793 unsigned long pend
, pgprot_t prot
,
1796 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1797 unsigned long vend
= PAGE_OFFSET
+ pend
;
1798 unsigned long alloc_bytes
= 0UL;
1800 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1801 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1806 while (vstart
< vend
) {
1807 unsigned long this_end
, paddr
= __pa(vstart
);
1808 pgd_t
*pgd
= pgd_offset_k(vstart
);
1814 if (pgd_none(*pgd
)) {
1817 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1821 alloc_bytes
+= PAGE_SIZE
;
1822 pgd_populate(&init_mm
, pgd
, new);
1825 p4d
= p4d_offset(pgd
, vstart
);
1826 if (p4d_none(*p4d
)) {
1829 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1833 alloc_bytes
+= PAGE_SIZE
;
1834 p4d_populate(&init_mm
, p4d
, new);
1837 pud
= pud_offset(p4d
, vstart
);
1838 if (pud_none(*pud
)) {
1841 if (kernel_can_map_hugepud(vstart
, vend
, use_huge
)) {
1842 vstart
= kernel_map_hugepud(vstart
, vend
, pud
);
1845 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1849 alloc_bytes
+= PAGE_SIZE
;
1850 pud_populate(&init_mm
, pud
, new);
1853 pmd
= pmd_offset(pud
, vstart
);
1854 if (pmd_none(*pmd
)) {
1857 if (kernel_can_map_hugepmd(vstart
, vend
, use_huge
)) {
1858 vstart
= kernel_map_hugepmd(vstart
, vend
, pmd
);
1861 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1865 alloc_bytes
+= PAGE_SIZE
;
1866 pmd_populate_kernel(&init_mm
, pmd
, new);
1869 pte
= pte_offset_kernel(pmd
, vstart
);
1870 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1871 if (this_end
> vend
)
1874 while (vstart
< this_end
) {
1875 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1877 vstart
+= PAGE_SIZE
;
1886 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1887 __func__
, PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1891 static void __init
flush_all_kernel_tsbs(void)
1895 for (i
= 0; i
< KERNEL_TSB_NENTRIES
; i
++) {
1896 struct tsb
*ent
= &swapper_tsb
[i
];
1898 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1900 #ifndef CONFIG_DEBUG_PAGEALLOC
1901 for (i
= 0; i
< KERNEL_TSB4M_NENTRIES
; i
++) {
1902 struct tsb
*ent
= &swapper_4m_tsb
[i
];
1904 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1909 extern unsigned int kvmap_linear_patch
[1];
1911 static void __init
kernel_physical_mapping_init(void)
1913 unsigned long i
, mem_alloced
= 0UL;
1914 bool use_huge
= true;
1916 #ifdef CONFIG_DEBUG_PAGEALLOC
1919 for (i
= 0; i
< pall_ents
; i
++) {
1920 unsigned long phys_start
, phys_end
;
1922 phys_start
= pall
[i
].phys_addr
;
1923 phys_end
= phys_start
+ pall
[i
].reg_size
;
1925 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1926 PAGE_KERNEL
, use_huge
);
1929 printk("Allocated %ld bytes for kernel page tables.\n",
1932 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1933 flushi(&kvmap_linear_patch
[0]);
1935 flush_all_kernel_tsbs();
1940 #ifdef CONFIG_DEBUG_PAGEALLOC
1941 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1943 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1944 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1946 kernel_map_range(phys_start
, phys_end
,
1947 (enable
? PAGE_KERNEL
: __pgprot(0)), false);
1949 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1950 PAGE_OFFSET
+ phys_end
);
1952 /* we should perform an IPI and flush all tlbs,
1953 * but that can deadlock->flush only current cpu.
1955 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1956 PAGE_OFFSET
+ phys_end
);
1960 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1964 for (i
= 0; i
< pavail_ents
; i
++) {
1965 if (pavail
[i
].reg_size
>= size
)
1966 return pavail
[i
].phys_addr
;
1972 unsigned long PAGE_OFFSET
;
1973 EXPORT_SYMBOL(PAGE_OFFSET
);
1975 unsigned long VMALLOC_END
= 0x0000010000000000UL
;
1976 EXPORT_SYMBOL(VMALLOC_END
);
1978 unsigned long sparc64_va_hole_top
= 0xfffff80000000000UL
;
1979 unsigned long sparc64_va_hole_bottom
= 0x0000080000000000UL
;
1981 static void __init
setup_page_offset(void)
1983 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1984 /* Cheetah/Panther support a full 64-bit virtual
1985 * address, so we can use all that our page tables
1988 sparc64_va_hole_top
= 0xfff0000000000000UL
;
1989 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
1992 } else if (tlb_type
== hypervisor
) {
1993 switch (sun4v_chip_type
) {
1994 case SUN4V_CHIP_NIAGARA1
:
1995 case SUN4V_CHIP_NIAGARA2
:
1996 /* T1 and T2 support 48-bit virtual addresses. */
1997 sparc64_va_hole_top
= 0xffff800000000000UL
;
1998 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
2002 case SUN4V_CHIP_NIAGARA3
:
2003 /* T3 supports 48-bit virtual addresses. */
2004 sparc64_va_hole_top
= 0xffff800000000000UL
;
2005 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
2009 case SUN4V_CHIP_NIAGARA4
:
2010 case SUN4V_CHIP_NIAGARA5
:
2011 case SUN4V_CHIP_SPARC64X
:
2012 case SUN4V_CHIP_SPARC_M6
:
2013 /* T4 and later support 52-bit virtual addresses. */
2014 sparc64_va_hole_top
= 0xfff8000000000000UL
;
2015 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
2018 case SUN4V_CHIP_SPARC_M7
:
2019 case SUN4V_CHIP_SPARC_SN
:
2020 /* M7 and later support 52-bit virtual addresses. */
2021 sparc64_va_hole_top
= 0xfff8000000000000UL
;
2022 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
2025 case SUN4V_CHIP_SPARC_M8
:
2027 /* M8 and later support 54-bit virtual addresses.
2028 * However, restricting M8 and above VA bits to 53
2029 * as 4-level page table cannot support more than
2032 sparc64_va_hole_top
= 0xfff0000000000000UL
;
2033 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
2039 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
2040 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2045 PAGE_OFFSET
= sparc64_va_hole_top
;
2046 VMALLOC_END
= ((sparc64_va_hole_bottom
>> 1) +
2047 (sparc64_va_hole_bottom
>> 2));
2049 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2050 PAGE_OFFSET
, max_phys_bits
);
2051 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2052 VMALLOC_START
, VMALLOC_END
);
2053 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2054 VMEMMAP_BASE
, VMEMMAP_BASE
<< 1);
2057 static void __init
tsb_phys_patch(void)
2059 struct tsb_ldquad_phys_patch_entry
*pquad
;
2060 struct tsb_phys_patch_entry
*p
;
2062 pquad
= &__tsb_ldquad_phys_patch
;
2063 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
2064 unsigned long addr
= pquad
->addr
;
2066 if (tlb_type
== hypervisor
)
2067 *(unsigned int *) addr
= pquad
->sun4v_insn
;
2069 *(unsigned int *) addr
= pquad
->sun4u_insn
;
2071 __asm__
__volatile__("flush %0"
2078 p
= &__tsb_phys_patch
;
2079 while (p
< &__tsb_phys_patch_end
) {
2080 unsigned long addr
= p
->addr
;
2082 *(unsigned int *) addr
= p
->insn
;
2084 __asm__
__volatile__("flush %0"
2092 /* Don't mark as init, we give this to the Hypervisor. */
2093 #ifndef CONFIG_DEBUG_PAGEALLOC
2094 #define NUM_KTSB_DESCR 2
2096 #define NUM_KTSB_DESCR 1
2098 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
2100 /* The swapper TSBs are loaded with a base sequence of:
2102 * sethi %uhi(SYMBOL), REG1
2103 * sethi %hi(SYMBOL), REG2
2104 * or REG1, %ulo(SYMBOL), REG1
2105 * or REG2, %lo(SYMBOL), REG2
2106 * sllx REG1, 32, REG1
2107 * or REG1, REG2, REG1
2109 * When we use physical addressing for the TSB accesses, we patch the
2110 * first four instructions in the above sequence.
2113 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
2115 unsigned long high_bits
, low_bits
;
2117 high_bits
= (pa
>> 32) & 0xffffffff;
2118 low_bits
= (pa
>> 0) & 0xffffffff;
2120 while (start
< end
) {
2121 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
2123 ia
[0] = (ia
[0] & ~0x3fffff) | (high_bits
>> 10);
2124 __asm__
__volatile__("flush %0" : : "r" (ia
));
2126 ia
[1] = (ia
[1] & ~0x3fffff) | (low_bits
>> 10);
2127 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
2129 ia
[2] = (ia
[2] & ~0x1fff) | (high_bits
& 0x3ff);
2130 __asm__
__volatile__("flush %0" : : "r" (ia
+ 2));
2132 ia
[3] = (ia
[3] & ~0x1fff) | (low_bits
& 0x3ff);
2133 __asm__
__volatile__("flush %0" : : "r" (ia
+ 3));
2139 static void ktsb_phys_patch(void)
2141 extern unsigned int __swapper_tsb_phys_patch
;
2142 extern unsigned int __swapper_tsb_phys_patch_end
;
2143 unsigned long ktsb_pa
;
2145 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2146 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
2147 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
2148 #ifndef CONFIG_DEBUG_PAGEALLOC
2150 extern unsigned int __swapper_4m_tsb_phys_patch
;
2151 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
2152 ktsb_pa
= (kern_base
+
2153 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2154 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
2155 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
2160 static void __init
sun4v_ktsb_init(void)
2162 unsigned long ktsb_pa
;
2164 /* First KTSB for PAGE_SIZE mappings. */
2165 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2167 switch (PAGE_SIZE
) {
2170 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
2171 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
2175 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
2176 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
2180 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
2181 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
2184 case 4 * 1024 * 1024:
2185 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2186 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
2190 ktsb_descr
[0].assoc
= 1;
2191 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
2192 ktsb_descr
[0].ctx_idx
= 0;
2193 ktsb_descr
[0].tsb_base
= ktsb_pa
;
2194 ktsb_descr
[0].resv
= 0;
2196 #ifndef CONFIG_DEBUG_PAGEALLOC
2197 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2198 ktsb_pa
= (kern_base
+
2199 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2201 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2202 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
2203 HV_PGSZ_MASK_256MB
|
2205 HV_PGSZ_MASK_16GB
) &
2207 ktsb_descr
[1].assoc
= 1;
2208 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
2209 ktsb_descr
[1].ctx_idx
= 0;
2210 ktsb_descr
[1].tsb_base
= ktsb_pa
;
2211 ktsb_descr
[1].resv
= 0;
2215 void sun4v_ktsb_register(void)
2217 unsigned long pa
, ret
;
2219 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
2221 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
2223 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2224 "errors with %lx\n", pa
, ret
);
2229 static void __init
sun4u_linear_pte_xor_finalize(void)
2231 #ifndef CONFIG_DEBUG_PAGEALLOC
2232 /* This is where we would add Panther support for
2233 * 32MB and 256MB pages.
2238 static void __init
sun4v_linear_pte_xor_finalize(void)
2240 unsigned long pagecv_flag
;
2242 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2243 * enables MCD error. Do not set bit 9 on M7 processor.
2245 switch (sun4v_chip_type
) {
2246 case SUN4V_CHIP_SPARC_M7
:
2247 case SUN4V_CHIP_SPARC_M8
:
2248 case SUN4V_CHIP_SPARC_SN
:
2252 pagecv_flag
= _PAGE_CV_4V
;
2255 #ifndef CONFIG_DEBUG_PAGEALLOC
2256 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
2257 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2259 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| pagecv_flag
|
2260 _PAGE_P_4V
| _PAGE_W_4V
);
2262 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2265 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
2266 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
2268 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| pagecv_flag
|
2269 _PAGE_P_4V
| _PAGE_W_4V
);
2271 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
2274 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
2275 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
2277 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| pagecv_flag
|
2278 _PAGE_P_4V
| _PAGE_W_4V
);
2280 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
2285 /* paging_init() sets up the page tables */
2287 static unsigned long last_valid_pfn
;
2289 static void sun4u_pgprot_init(void);
2290 static void sun4v_pgprot_init(void);
2292 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2293 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2294 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2295 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2296 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2297 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2299 /* We need to exclude reserved regions. This exclusion will include
2300 * vmlinux and initrd. To be more precise the initrd size could be used to
2301 * compute a new lower limit because it is freed later during initialization.
2303 static void __init
reduce_memory(phys_addr_t limit_ram
)
2305 limit_ram
+= memblock_reserved_size();
2306 memblock_enforce_memory_limit(limit_ram
);
2309 void __init
paging_init(void)
2311 unsigned long end_pfn
, shift
, phys_base
;
2312 unsigned long real_end
, i
;
2314 setup_page_offset();
2316 /* These build time checkes make sure that the dcache_dirty_cpu()
2317 * page->flags usage will work.
2319 * When a page gets marked as dcache-dirty, we store the
2320 * cpu number starting at bit 32 in the page->flags. Also,
2321 * functions like clear_dcache_dirty_cpu use the cpu mask
2322 * in 13-bit signed-immediate instruction fields.
2326 * Page flags must not reach into upper 32 bits that are used
2327 * for the cpu number
2329 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
2332 * The bit fields placed in the high range must not reach below
2333 * the 32 bit boundary. Otherwise we cannot place the cpu field
2334 * at the 32 bit boundary.
2336 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
2337 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
2339 BUILD_BUG_ON(NR_CPUS
> 4096);
2341 kern_base
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
2342 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
2344 /* Invalidate both kernel TSBs. */
2345 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
2346 #ifndef CONFIG_DEBUG_PAGEALLOC
2347 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2350 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2351 * bit on M7 processor. This is a conflicting usage of the same
2352 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2353 * Detection error on all pages and this will lead to problems
2354 * later. Kernel does not run with MCD enabled and hence rest
2355 * of the required steps to fully configure memory corruption
2356 * detection are not taken. We need to ensure TTE.mcde is not
2357 * set on M7 processor. Compute the value of cacheability
2358 * flag for use later taking this into consideration.
2360 switch (sun4v_chip_type
) {
2361 case SUN4V_CHIP_SPARC_M7
:
2362 case SUN4V_CHIP_SPARC_M8
:
2363 case SUN4V_CHIP_SPARC_SN
:
2364 page_cache4v_flag
= _PAGE_CP_4V
;
2367 page_cache4v_flag
= _PAGE_CACHE_4V
;
2371 if (tlb_type
== hypervisor
)
2372 sun4v_pgprot_init();
2374 sun4u_pgprot_init();
2376 if (tlb_type
== cheetah_plus
||
2377 tlb_type
== hypervisor
) {
2382 if (tlb_type
== hypervisor
)
2383 sun4v_patch_tlb_handlers();
2385 /* Find available physical memory...
2387 * Read it twice in order to work around a bug in openfirmware.
2388 * The call to grab this table itself can cause openfirmware to
2389 * allocate memory, which in turn can take away some space from
2390 * the list of available memory. Reading it twice makes sure
2391 * we really do get the final value.
2393 read_obp_translations();
2394 read_obp_memory("reg", &pall
[0], &pall_ents
);
2395 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2396 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2398 phys_base
= 0xffffffffffffffffUL
;
2399 for (i
= 0; i
< pavail_ents
; i
++) {
2400 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
2401 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
2404 memblock_reserve(kern_base
, kern_size
);
2406 find_ramdisk(phys_base
);
2408 if (cmdline_memory_size
)
2409 reduce_memory(cmdline_memory_size
);
2411 memblock_allow_resize();
2412 memblock_dump_all();
2414 set_bit(0, mmu_context_bmap
);
2416 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
2418 real_end
= (unsigned long)_end
;
2419 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << ILOG2_4MB
);
2420 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2421 num_kernel_image_mappings
);
2423 /* Set kernel pgd to upper alias so physical page computations
2426 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
2428 memset(swapper_pg_dir
, 0, sizeof(swapper_pg_dir
));
2430 inherit_prom_mappings();
2432 /* Ok, we can use our TLB miss and window trap handlers safely. */
2437 prom_build_devicetree();
2438 of_populate_present_mask();
2440 of_fill_in_cpu_data();
2443 if (tlb_type
== hypervisor
) {
2445 mdesc_populate_present_mask(cpu_all_mask
);
2447 mdesc_fill_in_cpu_data(cpu_all_mask
);
2449 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
2451 sun4v_linear_pte_xor_finalize();
2454 sun4v_ktsb_register();
2456 unsigned long impl
, ver
;
2458 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
2459 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
2461 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
2462 impl
= ((ver
>> 32) & 0xffff);
2463 if (impl
== PANTHER_IMPL
)
2464 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
2465 HV_PGSZ_MASK_256MB
);
2467 sun4u_linear_pte_xor_finalize();
2470 /* Flush the TLBs and the 4M TSB so that the updated linear
2471 * pte XOR settings are realized for all mappings.
2474 #ifndef CONFIG_DEBUG_PAGEALLOC
2475 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2479 /* Setup bootmem... */
2480 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2482 kernel_physical_mapping_init();
2485 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2487 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2489 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2491 free_area_init_nodes(max_zone_pfns
);
2494 printk("Booting Linux...\n");
2497 int page_in_phys_avail(unsigned long paddr
)
2503 for (i
= 0; i
< pavail_ents
; i
++) {
2504 unsigned long start
, end
;
2506 start
= pavail
[i
].phys_addr
;
2507 end
= start
+ pavail
[i
].reg_size
;
2509 if (paddr
>= start
&& paddr
< end
)
2512 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2514 #ifdef CONFIG_BLK_DEV_INITRD
2515 if (paddr
>= __pa(initrd_start
) &&
2516 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2523 static void __init
register_page_bootmem_info(void)
2525 #ifdef CONFIG_NEED_MULTIPLE_NODES
2528 for_each_online_node(i
)
2529 if (NODE_DATA(i
)->node_spanned_pages
)
2530 register_page_bootmem_info_node(NODE_DATA(i
));
2533 void __init
mem_init(void)
2535 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2537 memblock_free_all();
2540 * Must be done after boot memory is put on freelist, because here we
2541 * might set fields in deferred struct pages that have not yet been
2542 * initialized, and memblock_free_all() initializes all the reserved
2543 * deferred pages for us.
2545 register_page_bootmem_info();
2548 * Set up the zero page, mark it reserved, so that page count
2549 * is not manipulated when freeing the page from user ptes.
2551 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2552 if (mem_map_zero
== NULL
) {
2553 prom_printf("paging_init: Cannot alloc zero page.\n");
2556 mark_page_reserved(mem_map_zero
);
2558 mem_init_print_info(NULL
);
2560 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2561 cheetah_ecache_flush_init();
2564 void free_initmem(void)
2566 unsigned long addr
, initend
;
2569 /* If the physical memory maps were trimmed by kernel command
2570 * line options, don't even try freeing this initmem stuff up.
2571 * The kernel image could have been in the trimmed out region
2572 * and if so the freeing below will free invalid page structs.
2574 if (cmdline_memory_size
)
2578 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2580 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2581 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2582 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2586 ((unsigned long) __va(kern_base
)) -
2587 ((unsigned long) KERNBASE
));
2588 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2591 free_reserved_page(virt_to_page(page
));
2595 pgprot_t PAGE_KERNEL __read_mostly
;
2596 EXPORT_SYMBOL(PAGE_KERNEL
);
2598 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2599 pgprot_t PAGE_COPY __read_mostly
;
2601 pgprot_t PAGE_SHARED __read_mostly
;
2602 EXPORT_SYMBOL(PAGE_SHARED
);
2604 unsigned long pg_iobits __read_mostly
;
2606 unsigned long _PAGE_IE __read_mostly
;
2607 EXPORT_SYMBOL(_PAGE_IE
);
2609 unsigned long _PAGE_E __read_mostly
;
2610 EXPORT_SYMBOL(_PAGE_E
);
2612 unsigned long _PAGE_CACHE __read_mostly
;
2613 EXPORT_SYMBOL(_PAGE_CACHE
);
2615 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2616 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2617 int node
, struct vmem_altmap
*altmap
)
2619 unsigned long pte_base
;
2621 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2622 _PAGE_CP_4U
| _PAGE_CV_4U
|
2623 _PAGE_P_4U
| _PAGE_W_4U
);
2624 if (tlb_type
== hypervisor
)
2625 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2626 page_cache4v_flag
| _PAGE_P_4V
| _PAGE_W_4V
);
2628 pte_base
|= _PAGE_PMD_HUGE
;
2630 vstart
= vstart
& PMD_MASK
;
2631 vend
= ALIGN(vend
, PMD_SIZE
);
2632 for (; vstart
< vend
; vstart
+= PMD_SIZE
) {
2633 pgd_t
*pgd
= vmemmap_pgd_populate(vstart
, node
);
2642 p4d
= vmemmap_p4d_populate(pgd
, vstart
, node
);
2646 pud
= vmemmap_pud_populate(p4d
, vstart
, node
);
2650 pmd
= pmd_offset(pud
, vstart
);
2651 pte
= pmd_val(*pmd
);
2652 if (!(pte
& _PAGE_VALID
)) {
2653 void *block
= vmemmap_alloc_block(PMD_SIZE
, node
);
2658 pmd_val(*pmd
) = pte_base
| __pa(block
);
2665 void vmemmap_free(unsigned long start
, unsigned long end
,
2666 struct vmem_altmap
*altmap
)
2669 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2671 static void prot_init_common(unsigned long page_none
,
2672 unsigned long page_shared
,
2673 unsigned long page_copy
,
2674 unsigned long page_readonly
,
2675 unsigned long page_exec_bit
)
2677 PAGE_COPY
= __pgprot(page_copy
);
2678 PAGE_SHARED
= __pgprot(page_shared
);
2680 protection_map
[0x0] = __pgprot(page_none
);
2681 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2682 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2683 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2684 protection_map
[0x4] = __pgprot(page_readonly
);
2685 protection_map
[0x5] = __pgprot(page_readonly
);
2686 protection_map
[0x6] = __pgprot(page_copy
);
2687 protection_map
[0x7] = __pgprot(page_copy
);
2688 protection_map
[0x8] = __pgprot(page_none
);
2689 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2690 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2691 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2692 protection_map
[0xc] = __pgprot(page_readonly
);
2693 protection_map
[0xd] = __pgprot(page_readonly
);
2694 protection_map
[0xe] = __pgprot(page_shared
);
2695 protection_map
[0xf] = __pgprot(page_shared
);
2698 static void __init
sun4u_pgprot_init(void)
2700 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2701 unsigned long page_exec_bit
;
2704 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2705 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2706 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2708 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2709 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2710 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2711 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2713 _PAGE_IE
= _PAGE_IE_4U
;
2714 _PAGE_E
= _PAGE_E_4U
;
2715 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2717 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2718 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2720 #ifdef CONFIG_DEBUG_PAGEALLOC
2721 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2723 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2726 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2727 _PAGE_P_4U
| _PAGE_W_4U
);
2729 for (i
= 1; i
< 4; i
++)
2730 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2732 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2733 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2734 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2737 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2738 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2739 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2740 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2741 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2742 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2743 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2745 page_exec_bit
= _PAGE_EXEC_4U
;
2747 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2751 static void __init
sun4v_pgprot_init(void)
2753 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2754 unsigned long page_exec_bit
;
2757 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2758 page_cache4v_flag
| _PAGE_P_4V
|
2759 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2761 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2763 _PAGE_IE
= _PAGE_IE_4V
;
2764 _PAGE_E
= _PAGE_E_4V
;
2765 _PAGE_CACHE
= page_cache4v_flag
;
2767 #ifdef CONFIG_DEBUG_PAGEALLOC
2768 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2770 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2773 kern_linear_pte_xor
[0] |= (page_cache4v_flag
| _PAGE_P_4V
|
2776 for (i
= 1; i
< 4; i
++)
2777 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2779 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2780 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2782 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2783 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2784 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2785 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2787 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| page_cache4v_flag
;
2788 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2789 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2790 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2791 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2792 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2793 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2795 page_exec_bit
= _PAGE_EXEC_4V
;
2797 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2801 unsigned long pte_sz_bits(unsigned long sz
)
2803 if (tlb_type
== hypervisor
) {
2807 return _PAGE_SZ8K_4V
;
2809 return _PAGE_SZ64K_4V
;
2811 return _PAGE_SZ512K_4V
;
2812 case 4 * 1024 * 1024:
2813 return _PAGE_SZ4MB_4V
;
2819 return _PAGE_SZ8K_4U
;
2821 return _PAGE_SZ64K_4U
;
2823 return _PAGE_SZ512K_4U
;
2824 case 4 * 1024 * 1024:
2825 return _PAGE_SZ4MB_4U
;
2830 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2834 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2835 pte_val(pte
) |= (((unsigned long)space
) << 32);
2836 pte_val(pte
) |= pte_sz_bits(page_size
);
2841 static unsigned long kern_large_tte(unsigned long paddr
)
2845 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2846 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2847 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2848 if (tlb_type
== hypervisor
)
2849 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2850 page_cache4v_flag
| _PAGE_P_4V
|
2851 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2856 /* If not locked, zap it. */
2857 void __flush_tlb_all(void)
2859 unsigned long pstate
;
2862 __asm__
__volatile__("flushw\n\t"
2863 "rdpr %%pstate, %0\n\t"
2864 "wrpr %0, %1, %%pstate"
2867 if (tlb_type
== hypervisor
) {
2868 sun4v_mmu_demap_all();
2869 } else if (tlb_type
== spitfire
) {
2870 for (i
= 0; i
< 64; i
++) {
2871 /* Spitfire Errata #32 workaround */
2872 /* NOTE: Always runs on spitfire, so no
2873 * cheetah+ page size encodings.
2875 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2879 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2881 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2882 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2885 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2886 spitfire_put_dtlb_data(i
, 0x0UL
);
2889 /* Spitfire Errata #32 workaround */
2890 /* NOTE: Always runs on spitfire, so no
2891 * cheetah+ page size encodings.
2893 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2897 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2899 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2900 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2903 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2904 spitfire_put_itlb_data(i
, 0x0UL
);
2907 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2908 cheetah_flush_dtlb_all();
2909 cheetah_flush_itlb_all();
2911 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2915 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
)
2917 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2921 pte
= (pte_t
*) page_address(page
);
2926 pgtable_t
pte_alloc_one(struct mm_struct
*mm
)
2928 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2931 if (!pgtable_pte_page_ctor(page
)) {
2932 free_unref_page(page
);
2935 return (pte_t
*) page_address(page
);
2938 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2940 free_page((unsigned long)pte
);
2943 static void __pte_free(pgtable_t pte
)
2945 struct page
*page
= virt_to_page(pte
);
2947 pgtable_pte_page_dtor(page
);
2951 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2956 void pgtable_free(void *table
, bool is_page
)
2961 kmem_cache_free(pgtable_cache
, table
);
2964 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2965 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2968 unsigned long pte
, flags
;
2969 struct mm_struct
*mm
;
2972 if (!pmd_large(entry
) || !pmd_young(entry
))
2975 pte
= pmd_val(entry
);
2977 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2978 if (!(pte
& _PAGE_VALID
))
2981 /* We are fabricating 8MB pages using 4MB real hw pages. */
2982 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
2986 spin_lock_irqsave(&mm
->context
.lock
, flags
);
2988 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
2989 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
2992 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
2994 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2996 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2997 static void context_reload(void *__data
)
2999 struct mm_struct
*mm
= __data
;
3001 if (mm
== current
->mm
)
3002 load_secondary_context(mm
);
3005 void hugetlb_setup(struct pt_regs
*regs
)
3007 struct mm_struct
*mm
= current
->mm
;
3008 struct tsb_config
*tp
;
3010 if (faulthandler_disabled() || !mm
) {
3011 const struct exception_table_entry
*entry
;
3013 entry
= search_exception_tables(regs
->tpc
);
3015 regs
->tpc
= entry
->fixup
;
3016 regs
->tnpc
= regs
->tpc
+ 4;
3019 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3020 die_if_kernel("HugeTSB in atomic", regs
);
3023 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
3024 if (likely(tp
->tsb
== NULL
))
3025 tsb_grow(mm
, MM_TSB_HUGE
, 0);
3027 tsb_context_switch(mm
);
3030 /* On UltraSPARC-III+ and later, configure the second half of
3031 * the Data-TLB for huge pages.
3033 if (tlb_type
== cheetah_plus
) {
3034 bool need_context_reload
= false;
3037 spin_lock_irq(&ctx_alloc_lock
);
3038 ctx
= mm
->context
.sparc64_ctx_val
;
3039 ctx
&= ~CTX_PGSZ_MASK
;
3040 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
3041 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
3043 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
3044 /* When changing the page size fields, we
3045 * must perform a context flush so that no
3046 * stale entries match. This flush must
3047 * occur with the original context register
3050 do_flush_tlb_mm(mm
);
3052 /* Reload the context register of all processors
3053 * also executing in this address space.
3055 mm
->context
.sparc64_ctx_val
= ctx
;
3056 need_context_reload
= true;
3058 spin_unlock_irq(&ctx_alloc_lock
);
3060 if (need_context_reload
)
3061 on_each_cpu(context_reload
, mm
, 0);
3066 static struct resource code_resource
= {
3067 .name
= "Kernel code",
3068 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3071 static struct resource data_resource
= {
3072 .name
= "Kernel data",
3073 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3076 static struct resource bss_resource
= {
3077 .name
= "Kernel bss",
3078 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3081 static inline resource_size_t
compute_kern_paddr(void *addr
)
3083 return (resource_size_t
) (addr
- KERNBASE
+ kern_base
);
3086 static void __init
kernel_lds_init(void)
3088 code_resource
.start
= compute_kern_paddr(_text
);
3089 code_resource
.end
= compute_kern_paddr(_etext
- 1);
3090 data_resource
.start
= compute_kern_paddr(_etext
);
3091 data_resource
.end
= compute_kern_paddr(_edata
- 1);
3092 bss_resource
.start
= compute_kern_paddr(__bss_start
);
3093 bss_resource
.end
= compute_kern_paddr(_end
- 1);
3096 static int __init
report_memory(void)
3099 struct resource
*res
;
3103 for (i
= 0; i
< pavail_ents
; i
++) {
3104 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
3107 pr_warn("Failed to allocate source.\n");
3111 res
->name
= "System RAM";
3112 res
->start
= pavail
[i
].phys_addr
;
3113 res
->end
= pavail
[i
].phys_addr
+ pavail
[i
].reg_size
- 1;
3114 res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
3116 if (insert_resource(&iomem_resource
, res
) < 0) {
3117 pr_warn("Resource insertion failed.\n");
3121 insert_resource(res
, &code_resource
);
3122 insert_resource(res
, &data_resource
);
3123 insert_resource(res
, &bss_resource
);
3128 arch_initcall(report_memory
);
3131 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3133 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3136 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
3138 if (start
< HI_OBP_ADDRESS
&& end
> LOW_OBP_ADDRESS
) {
3139 if (start
< LOW_OBP_ADDRESS
) {
3140 flush_tsb_kernel_range(start
, LOW_OBP_ADDRESS
);
3141 do_flush_tlb_kernel_range(start
, LOW_OBP_ADDRESS
);
3143 if (end
> HI_OBP_ADDRESS
) {
3144 flush_tsb_kernel_range(HI_OBP_ADDRESS
, end
);
3145 do_flush_tlb_kernel_range(HI_OBP_ADDRESS
, end
);
3148 flush_tsb_kernel_range(start
, end
);
3149 do_flush_tlb_kernel_range(start
, end
);
3153 void copy_user_highpage(struct page
*to
, struct page
*from
,
3154 unsigned long vaddr
, struct vm_area_struct
*vma
)
3158 vfrom
= kmap_atomic(from
);
3159 vto
= kmap_atomic(to
);
3160 copy_user_page(vto
, vfrom
, vaddr
, to
);
3162 kunmap_atomic(vfrom
);
3164 /* If this page has ADI enabled, copy over any ADI tags
3167 if (vma
->vm_flags
& VM_SPARC_ADI
) {
3168 unsigned long pfrom
, pto
, i
, adi_tag
;
3170 pfrom
= page_to_phys(from
);
3171 pto
= page_to_phys(to
);
3173 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3174 asm volatile("ldxa [%1] %2, %0\n\t"
3176 : "r" (i
), "i" (ASI_MCD_REAL
));
3177 asm volatile("stxa %0, [%1] %2\n\t"
3179 : "r" (adi_tag
), "r" (pto
),
3180 "i" (ASI_MCD_REAL
));
3181 pto
+= adi_blksize();
3183 asm volatile("membar #Sync\n\t");
3186 EXPORT_SYMBOL(copy_user_highpage
);
3188 void copy_highpage(struct page
*to
, struct page
*from
)
3192 vfrom
= kmap_atomic(from
);
3193 vto
= kmap_atomic(to
);
3194 copy_page(vto
, vfrom
);
3196 kunmap_atomic(vfrom
);
3198 /* If this platform is ADI enabled, copy any ADI tags
3201 if (adi_capable()) {
3202 unsigned long pfrom
, pto
, i
, adi_tag
;
3204 pfrom
= page_to_phys(from
);
3205 pto
= page_to_phys(to
);
3207 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3208 asm volatile("ldxa [%1] %2, %0\n\t"
3210 : "r" (i
), "i" (ASI_MCD_REAL
));
3211 asm volatile("stxa %0, [%1] %2\n\t"
3213 : "r" (adi_tag
), "r" (pto
),
3214 "i" (ASI_MCD_REAL
));
3215 pto
+= adi_blksize();
3217 asm volatile("membar #Sync\n\t");
3220 EXPORT_SYMBOL(copy_highpage
);