2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events
{
36 struct perf_event
*event
[MAX_HWEVENTS
];
37 u64 events
[MAX_HWEVENTS
];
38 unsigned int flags
[MAX_HWEVENTS
];
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
44 unsigned long mmcr
[4];
45 struct perf_event
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
46 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
47 u64 alternatives
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
48 unsigned long amasks
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
49 unsigned long avalues
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
51 unsigned int txn_flags
;
55 u64 bhrb_filter
; /* BHRB HW branch filter */
56 unsigned int bhrb_users
;
58 struct perf_branch_stack bhrb_stack
;
59 struct perf_branch_entry bhrb_entries
[BHRB_MAX_ENTRIES
];
62 static DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
64 static struct power_pmu
*ppmu
;
67 * Normally, to ignore kernel events we set the FCS (freeze counters
68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
69 * hypervisor bit set in the MSR, or if we are running on a processor
70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
71 * then we need to use the FCHV bit to ignore kernel events.
73 static unsigned int freeze_events_kernel
= MMCR0_FCS
;
76 * 32-bit doesn't have MMCRA but does have an MMCR2,
77 * and a few other names are different.
82 #define MMCR0_PMCjCE MMCR0_PMCnCE
88 #define MMCR0_PMCC_U6 0
90 #define SPRN_MMCRA SPRN_MMCR2
91 #define MMCRA_SAMPLE_ENABLE 0
93 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
97 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
) { }
98 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
102 static inline void perf_read_regs(struct pt_regs
*regs
)
106 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
111 static inline int siar_valid(struct pt_regs
*regs
)
116 static bool is_ebb_event(struct perf_event
*event
) { return false; }
117 static int ebb_event_check(struct perf_event
*event
) { return 0; }
118 static void ebb_event_add(struct perf_event
*event
) { }
119 static void ebb_switch_out(unsigned long mmcr0
) { }
120 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
122 return cpuhw
->mmcr
[0];
125 static inline void power_pmu_bhrb_enable(struct perf_event
*event
) {}
126 static inline void power_pmu_bhrb_disable(struct perf_event
*event
) {}
127 static void power_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
) {}
128 static inline void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
) {}
129 static void pmao_restore_workaround(bool ebb
) { }
130 #endif /* CONFIG_PPC32 */
132 static bool regs_use_siar(struct pt_regs
*regs
)
135 * When we take a performance monitor exception the regs are setup
136 * using perf_read_regs() which overloads some fields, in particular
137 * regs->result to tell us whether to use SIAR.
139 * However if the regs are from another exception, eg. a syscall, then
140 * they have not been setup using perf_read_regs() and so regs->result
141 * is something random.
143 return ((TRAP(regs
) == 0xf00) && regs
->result
);
147 * Things that are specific to 64-bit implementations.
151 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
153 unsigned long mmcra
= regs
->dsisr
;
155 if ((ppmu
->flags
& PPMU_HAS_SSLOT
) && (mmcra
& MMCRA_SAMPLE_ENABLE
)) {
156 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
158 return 4 * (slot
- 1);
165 * The user wants a data address recorded.
166 * If we're not doing instruction sampling, give them the SDAR
167 * (sampled data address). If we are doing instruction sampling, then
168 * only give them the SDAR if it corresponds to the instruction
169 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
170 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
172 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
)
174 unsigned long mmcra
= regs
->dsisr
;
177 if (ppmu
->flags
& PPMU_HAS_SIER
)
178 sdar_valid
= regs
->dar
& SIER_SDAR_VALID
;
180 unsigned long sdsync
;
182 if (ppmu
->flags
& PPMU_SIAR_VALID
)
183 sdsync
= POWER7P_MMCRA_SDAR_VALID
;
184 else if (ppmu
->flags
& PPMU_ALT_SIPR
)
185 sdsync
= POWER6_MMCRA_SDSYNC
;
187 sdsync
= MMCRA_SDSYNC
;
189 sdar_valid
= mmcra
& sdsync
;
192 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || sdar_valid
)
193 *addrp
= mfspr(SPRN_SDAR
);
196 static bool regs_sihv(struct pt_regs
*regs
)
198 unsigned long sihv
= MMCRA_SIHV
;
200 if (ppmu
->flags
& PPMU_HAS_SIER
)
201 return !!(regs
->dar
& SIER_SIHV
);
203 if (ppmu
->flags
& PPMU_ALT_SIPR
)
204 sihv
= POWER6_MMCRA_SIHV
;
206 return !!(regs
->dsisr
& sihv
);
209 static bool regs_sipr(struct pt_regs
*regs
)
211 unsigned long sipr
= MMCRA_SIPR
;
213 if (ppmu
->flags
& PPMU_HAS_SIER
)
214 return !!(regs
->dar
& SIER_SIPR
);
216 if (ppmu
->flags
& PPMU_ALT_SIPR
)
217 sipr
= POWER6_MMCRA_SIPR
;
219 return !!(regs
->dsisr
& sipr
);
222 static inline u32
perf_flags_from_msr(struct pt_regs
*regs
)
224 if (regs
->msr
& MSR_PR
)
225 return PERF_RECORD_MISC_USER
;
226 if ((regs
->msr
& MSR_HV
) && freeze_events_kernel
!= MMCR0_FCHV
)
227 return PERF_RECORD_MISC_HYPERVISOR
;
228 return PERF_RECORD_MISC_KERNEL
;
231 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
233 bool use_siar
= regs_use_siar(regs
);
236 return perf_flags_from_msr(regs
);
239 * If we don't have flags in MMCRA, rather than using
240 * the MSR, we intuit the flags from the address in
241 * SIAR which should give slightly more reliable
244 if (ppmu
->flags
& PPMU_NO_SIPR
) {
245 unsigned long siar
= mfspr(SPRN_SIAR
);
246 if (siar
>= PAGE_OFFSET
)
247 return PERF_RECORD_MISC_KERNEL
;
248 return PERF_RECORD_MISC_USER
;
251 /* PR has priority over HV, so order below is important */
253 return PERF_RECORD_MISC_USER
;
255 if (regs_sihv(regs
) && (freeze_events_kernel
!= MMCR0_FCHV
))
256 return PERF_RECORD_MISC_HYPERVISOR
;
258 return PERF_RECORD_MISC_KERNEL
;
262 * Overload regs->dsisr to store MMCRA so we only need to read it once
264 * Overload regs->dar to store SIER if we have it.
265 * Overload regs->result to specify whether we should use the MSR (result
266 * is zero) or the SIAR (result is non zero).
268 static inline void perf_read_regs(struct pt_regs
*regs
)
270 unsigned long mmcra
= mfspr(SPRN_MMCRA
);
271 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
276 if (ppmu
->flags
& PPMU_HAS_SIER
)
277 regs
->dar
= mfspr(SPRN_SIER
);
280 * If this isn't a PMU exception (eg a software event) the SIAR is
281 * not valid. Use pt_regs.
283 * If it is a marked event use the SIAR.
285 * If the PMU doesn't update the SIAR for non marked events use
288 * If the PMU has HV/PR flags then check to see if they
289 * place the exception in userspace. If so, use pt_regs. In
290 * continuous sampling mode the SIAR and the PMU exception are
291 * not synchronised, so they may be many instructions apart.
292 * This can result in confusing backtraces. We still want
293 * hypervisor samples as well as samples in the kernel with
294 * interrupts off hence the userspace check.
296 if (TRAP(regs
) != 0xf00)
300 else if ((ppmu
->flags
& PPMU_NO_CONT_SAMPLING
))
302 else if (!(ppmu
->flags
& PPMU_NO_SIPR
) && regs_sipr(regs
))
307 regs
->result
= use_siar
;
311 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
314 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
320 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
321 * must be sampled only if the SIAR-valid bit is set.
323 * For unmarked instructions and for processors that don't have the SIAR-Valid
324 * bit, assume that SIAR is valid.
326 static inline int siar_valid(struct pt_regs
*regs
)
328 unsigned long mmcra
= regs
->dsisr
;
329 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
332 if (ppmu
->flags
& PPMU_HAS_SIER
)
333 return regs
->dar
& SIER_SIAR_VALID
;
335 if (ppmu
->flags
& PPMU_SIAR_VALID
)
336 return mmcra
& POWER7P_MMCRA_SIAR_VALID
;
343 /* Reset all possible BHRB entries */
344 static void power_pmu_bhrb_reset(void)
346 asm volatile(PPC_CLRBHRB
);
349 static void power_pmu_bhrb_enable(struct perf_event
*event
)
351 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
356 /* Clear BHRB if we changed task context to avoid data leaks */
357 if (event
->ctx
->task
&& cpuhw
->bhrb_context
!= event
->ctx
) {
358 power_pmu_bhrb_reset();
359 cpuhw
->bhrb_context
= event
->ctx
;
362 perf_sched_cb_inc(event
->ctx
->pmu
);
365 static void power_pmu_bhrb_disable(struct perf_event
*event
)
367 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
372 WARN_ON_ONCE(!cpuhw
->bhrb_users
);
374 perf_sched_cb_dec(event
->ctx
->pmu
);
376 if (!cpuhw
->disabled
&& !cpuhw
->bhrb_users
) {
377 /* BHRB cannot be turned off when other
378 * events are active on the PMU.
381 /* avoid stale pointer */
382 cpuhw
->bhrb_context
= NULL
;
386 /* Called from ctxsw to prevent one process's branch entries to
387 * mingle with the other process's entries during context switch.
389 static void power_pmu_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
395 power_pmu_bhrb_reset();
397 /* Calculate the to address for a branch */
398 static __u64
power_pmu_bhrb_to(u64 addr
)
404 if (is_kernel_addr(addr
))
405 return branch_target((unsigned int *)addr
);
407 /* Userspace: need copy instruction here then translate it */
409 ret
= __get_user_inatomic(instr
, (unsigned int __user
*)addr
);
416 target
= branch_target(&instr
);
417 if ((!target
) || (instr
& BRANCH_ABSOLUTE
))
420 /* Translate relative branch target from kernel to user address */
421 return target
- (unsigned long)&instr
+ addr
;
424 /* Processing BHRB entries */
425 static void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
)
429 int r_index
, u_index
, pred
;
433 while (r_index
< ppmu
->bhrb_nr
) {
434 /* Assembly read function */
435 val
= read_bhrb(r_index
++);
437 /* Terminal marker: End of valid BHRB entries */
440 addr
= val
& BHRB_EA
;
441 pred
= val
& BHRB_PREDICTION
;
447 /* Branches are read most recent first (ie. mfbhrb 0 is
448 * the most recent branch).
449 * There are two types of valid entries:
450 * 1) a target entry which is the to address of a
451 * computed goto like a blr,bctr,btar. The next
452 * entry read from the bhrb will be branch
453 * corresponding to this target (ie. the actual
454 * blr/bctr/btar instruction).
455 * 2) a from address which is an actual branch. If a
456 * target entry proceeds this, then this is the
457 * matching branch for that target. If this is not
458 * following a target entry, then this is a branch
459 * where the target is given as an immediate field
460 * in the instruction (ie. an i or b form branch).
461 * In this case we need to read the instruction from
462 * memory to determine the target/to address.
465 if (val
& BHRB_TARGET
) {
466 /* Target branches use two entries
467 * (ie. computed gotos/XL form)
469 cpuhw
->bhrb_entries
[u_index
].to
= addr
;
470 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
471 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
473 /* Get from address in next entry */
474 val
= read_bhrb(r_index
++);
475 addr
= val
& BHRB_EA
;
476 if (val
& BHRB_TARGET
) {
477 /* Shouldn't have two targets in a
478 row.. Reset index and try again */
482 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
484 /* Branches to immediate field
486 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
487 cpuhw
->bhrb_entries
[u_index
].to
=
488 power_pmu_bhrb_to(addr
);
489 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
490 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
496 cpuhw
->bhrb_stack
.nr
= u_index
;
500 static bool is_ebb_event(struct perf_event
*event
)
503 * This could be a per-PMU callback, but we'd rather avoid the cost. We
504 * check that the PMU supports EBB, meaning those that don't can still
505 * use bit 63 of the event code for something else if they wish.
507 return (ppmu
->flags
& PPMU_ARCH_207S
) &&
508 ((event
->attr
.config
>> PERF_EVENT_CONFIG_EBB_SHIFT
) & 1);
511 static int ebb_event_check(struct perf_event
*event
)
513 struct perf_event
*leader
= event
->group_leader
;
515 /* Event and group leader must agree on EBB */
516 if (is_ebb_event(leader
) != is_ebb_event(event
))
519 if (is_ebb_event(event
)) {
520 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
523 if (!leader
->attr
.pinned
|| !leader
->attr
.exclusive
)
526 if (event
->attr
.freq
||
527 event
->attr
.inherit
||
528 event
->attr
.sample_type
||
529 event
->attr
.sample_period
||
530 event
->attr
.enable_on_exec
)
537 static void ebb_event_add(struct perf_event
*event
)
539 if (!is_ebb_event(event
) || current
->thread
.used_ebb
)
543 * IFF this is the first time we've added an EBB event, set
544 * PMXE in the user MMCR0 so we can detect when it's cleared by
545 * userspace. We need this so that we can context switch while
546 * userspace is in the EBB handler (where PMXE is 0).
548 current
->thread
.used_ebb
= 1;
549 current
->thread
.mmcr0
|= MMCR0_PMXE
;
552 static void ebb_switch_out(unsigned long mmcr0
)
554 if (!(mmcr0
& MMCR0_EBE
))
557 current
->thread
.siar
= mfspr(SPRN_SIAR
);
558 current
->thread
.sier
= mfspr(SPRN_SIER
);
559 current
->thread
.sdar
= mfspr(SPRN_SDAR
);
560 current
->thread
.mmcr0
= mmcr0
& MMCR0_USER_MASK
;
561 current
->thread
.mmcr2
= mfspr(SPRN_MMCR2
) & MMCR2_USER_MASK
;
564 static unsigned long ebb_switch_in(bool ebb
, struct cpu_hw_events
*cpuhw
)
566 unsigned long mmcr0
= cpuhw
->mmcr
[0];
571 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
572 mmcr0
|= MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC_U6
;
575 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
576 * with pmao_restore_workaround() because we may add PMAO but we never
579 mmcr0
|= current
->thread
.mmcr0
;
582 * Be careful not to set PMXE if userspace had it cleared. This is also
583 * compatible with pmao_restore_workaround() because it has already
584 * cleared PMXE and we leave PMAO alone.
586 if (!(current
->thread
.mmcr0
& MMCR0_PMXE
))
587 mmcr0
&= ~MMCR0_PMXE
;
589 mtspr(SPRN_SIAR
, current
->thread
.siar
);
590 mtspr(SPRN_SIER
, current
->thread
.sier
);
591 mtspr(SPRN_SDAR
, current
->thread
.sdar
);
594 * Merge the kernel & user values of MMCR2. The semantics we implement
595 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
596 * but not clear bits. If a task wants to be able to clear bits, ie.
597 * unfreeze counters, it should not set exclude_xxx in its events and
598 * instead manage the MMCR2 entirely by itself.
600 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
[3] | current
->thread
.mmcr2
);
605 static void pmao_restore_workaround(bool ebb
)
609 if (!cpu_has_feature(CPU_FTR_PMAO_BUG
))
613 * On POWER8E there is a hardware defect which affects the PMU context
614 * switch logic, ie. power_pmu_disable/enable().
616 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
617 * by the hardware. Sometime later the actual PMU exception is
620 * If we context switch, or simply disable/enable, the PMU prior to the
621 * exception arriving, the exception will be lost when we clear PMAO.
623 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
624 * set, and this _should_ generate an exception. However because of the
625 * defect no exception is generated when we write PMAO, and we get
626 * stuck with no counters counting but no exception delivered.
628 * The workaround is to detect this case and tweak the hardware to
629 * create another pending PMU exception.
631 * We do that by setting up PMC6 (cycles) for an imminent overflow and
632 * enabling the PMU. That causes a new exception to be generated in the
633 * chip, but we don't take it yet because we have interrupts hard
634 * disabled. We then write back the PMU state as we want it to be seen
635 * by the exception handler. When we reenable interrupts the exception
636 * handler will be called and see the correct state.
638 * The logic is the same for EBB, except that the exception is gated by
639 * us having interrupts hard disabled as well as the fact that we are
640 * not in userspace. The exception is finally delivered when we return
644 /* Only if PMAO is set and PMAO_SYNC is clear */
645 if ((current
->thread
.mmcr0
& (MMCR0_PMAO
| MMCR0_PMAO_SYNC
)) != MMCR0_PMAO
)
648 /* If we're doing EBB, only if BESCR[GE] is set */
649 if (ebb
&& !(current
->thread
.bescr
& BESCR_GE
))
653 * We are already soft-disabled in power_pmu_enable(). We need to hard
654 * enable to actually prevent the PMU exception from firing.
659 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
660 * Using read/write_pmc() in a for loop adds 12 function calls and
661 * almost doubles our code size.
663 pmcs
[0] = mfspr(SPRN_PMC1
);
664 pmcs
[1] = mfspr(SPRN_PMC2
);
665 pmcs
[2] = mfspr(SPRN_PMC3
);
666 pmcs
[3] = mfspr(SPRN_PMC4
);
667 pmcs
[4] = mfspr(SPRN_PMC5
);
668 pmcs
[5] = mfspr(SPRN_PMC6
);
670 /* Ensure all freeze bits are unset */
671 mtspr(SPRN_MMCR2
, 0);
673 /* Set up PMC6 to overflow in one cycle */
674 mtspr(SPRN_PMC6
, 0x7FFFFFFE);
676 /* Enable exceptions and unfreeze PMC6 */
677 mtspr(SPRN_MMCR0
, MMCR0_PMXE
| MMCR0_PMCjCE
| MMCR0_PMAO
);
679 /* Now we need to refreeze and restore the PMCs */
680 mtspr(SPRN_MMCR0
, MMCR0_FC
| MMCR0_PMAO
);
682 mtspr(SPRN_PMC1
, pmcs
[0]);
683 mtspr(SPRN_PMC2
, pmcs
[1]);
684 mtspr(SPRN_PMC3
, pmcs
[2]);
685 mtspr(SPRN_PMC4
, pmcs
[3]);
686 mtspr(SPRN_PMC5
, pmcs
[4]);
687 mtspr(SPRN_PMC6
, pmcs
[5]);
689 #endif /* CONFIG_PPC64 */
691 static void perf_event_interrupt(struct pt_regs
*regs
);
694 * Read one performance monitor counter (PMC).
696 static unsigned long read_pmc(int idx
)
702 val
= mfspr(SPRN_PMC1
);
705 val
= mfspr(SPRN_PMC2
);
708 val
= mfspr(SPRN_PMC3
);
711 val
= mfspr(SPRN_PMC4
);
714 val
= mfspr(SPRN_PMC5
);
717 val
= mfspr(SPRN_PMC6
);
721 val
= mfspr(SPRN_PMC7
);
724 val
= mfspr(SPRN_PMC8
);
726 #endif /* CONFIG_PPC64 */
728 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
737 static void write_pmc(int idx
, unsigned long val
)
741 mtspr(SPRN_PMC1
, val
);
744 mtspr(SPRN_PMC2
, val
);
747 mtspr(SPRN_PMC3
, val
);
750 mtspr(SPRN_PMC4
, val
);
753 mtspr(SPRN_PMC5
, val
);
756 mtspr(SPRN_PMC6
, val
);
760 mtspr(SPRN_PMC7
, val
);
763 mtspr(SPRN_PMC8
, val
);
765 #endif /* CONFIG_PPC64 */
767 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
771 /* Called from sysrq_handle_showregs() */
772 void perf_event_print_debug(void)
774 unsigned long sdar
, sier
, flags
;
775 u32 pmcs
[MAX_HWEVENTS
];
778 if (!ppmu
->n_counter
)
781 local_irq_save(flags
);
783 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
784 smp_processor_id(), ppmu
->name
, ppmu
->n_counter
);
786 for (i
= 0; i
< ppmu
->n_counter
; i
++)
787 pmcs
[i
] = read_pmc(i
+ 1);
789 for (; i
< MAX_HWEVENTS
; i
++)
790 pmcs
[i
] = 0xdeadbeef;
792 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
793 pmcs
[0], pmcs
[1], pmcs
[2], pmcs
[3]);
795 if (ppmu
->n_counter
> 4)
796 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
797 pmcs
[4], pmcs
[5], pmcs
[6], pmcs
[7]);
799 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
800 mfspr(SPRN_MMCR0
), mfspr(SPRN_MMCR1
), mfspr(SPRN_MMCRA
));
804 sdar
= mfspr(SPRN_SDAR
);
806 if (ppmu
->flags
& PPMU_HAS_SIER
)
807 sier
= mfspr(SPRN_SIER
);
809 if (ppmu
->flags
& PPMU_ARCH_207S
) {
810 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
811 mfspr(SPRN_MMCR2
), mfspr(SPRN_EBBHR
));
812 pr_info("EBBRR: %016lx BESCR: %016lx\n",
813 mfspr(SPRN_EBBRR
), mfspr(SPRN_BESCR
));
816 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
817 mfspr(SPRN_SIAR
), sdar
, sier
);
819 local_irq_restore(flags
);
823 * Check if a set of events can all go on the PMU at once.
824 * If they can't, this will look at alternative codes for the events
825 * and see if any combination of alternative codes is feasible.
826 * The feasible set is returned in event_id[].
828 static int power_check_constraints(struct cpu_hw_events
*cpuhw
,
829 u64 event_id
[], unsigned int cflags
[],
832 unsigned long mask
, value
, nv
;
833 unsigned long smasks
[MAX_HWEVENTS
], svalues
[MAX_HWEVENTS
];
834 int n_alt
[MAX_HWEVENTS
], choice
[MAX_HWEVENTS
];
836 unsigned long addf
= ppmu
->add_fields
;
837 unsigned long tadd
= ppmu
->test_adder
;
839 if (n_ev
> ppmu
->n_counter
)
842 /* First see if the events will go on as-is */
843 for (i
= 0; i
< n_ev
; ++i
) {
844 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
845 && !ppmu
->limited_pmc_event(event_id
[i
])) {
846 ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
847 cpuhw
->alternatives
[i
]);
848 event_id
[i
] = cpuhw
->alternatives
[i
][0];
850 if (ppmu
->get_constraint(event_id
[i
], &cpuhw
->amasks
[i
][0],
851 &cpuhw
->avalues
[i
][0]))
855 for (i
= 0; i
< n_ev
; ++i
) {
856 nv
= (value
| cpuhw
->avalues
[i
][0]) +
857 (value
& cpuhw
->avalues
[i
][0] & addf
);
858 if ((((nv
+ tadd
) ^ value
) & mask
) != 0 ||
859 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][0]) &
860 cpuhw
->amasks
[i
][0]) != 0)
863 mask
|= cpuhw
->amasks
[i
][0];
866 return 0; /* all OK */
868 /* doesn't work, gather alternatives... */
869 if (!ppmu
->get_alternatives
)
871 for (i
= 0; i
< n_ev
; ++i
) {
873 n_alt
[i
] = ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
874 cpuhw
->alternatives
[i
]);
875 for (j
= 1; j
< n_alt
[i
]; ++j
)
876 ppmu
->get_constraint(cpuhw
->alternatives
[i
][j
],
877 &cpuhw
->amasks
[i
][j
],
878 &cpuhw
->avalues
[i
][j
]);
881 /* enumerate all possibilities and see if any will work */
884 value
= mask
= nv
= 0;
887 /* we're backtracking, restore context */
893 * See if any alternative k for event_id i,
894 * where k > j, will satisfy the constraints.
896 while (++j
< n_alt
[i
]) {
897 nv
= (value
| cpuhw
->avalues
[i
][j
]) +
898 (value
& cpuhw
->avalues
[i
][j
] & addf
);
899 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
900 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][j
])
901 & cpuhw
->amasks
[i
][j
]) == 0)
906 * No feasible alternative, backtrack
907 * to event_id i-1 and continue enumerating its
908 * alternatives from where we got up to.
914 * Found a feasible alternative for event_id i,
915 * remember where we got up to with this event_id,
916 * go on to the next event_id, and start with
917 * the first alternative for it.
923 mask
|= cpuhw
->amasks
[i
][j
];
929 /* OK, we have a feasible combination, tell the caller the solution */
930 for (i
= 0; i
< n_ev
; ++i
)
931 event_id
[i
] = cpuhw
->alternatives
[i
][choice
[i
]];
936 * Check if newly-added events have consistent settings for
937 * exclude_{user,kernel,hv} with each other and any previously
940 static int check_excludes(struct perf_event
**ctrs
, unsigned int cflags
[],
941 int n_prev
, int n_new
)
943 int eu
= 0, ek
= 0, eh
= 0;
945 struct perf_event
*event
;
948 * If the PMU we're on supports per event exclude settings then we
949 * don't need to do any of this logic. NB. This assumes no PMU has both
950 * per event exclude and limited PMCs.
952 if (ppmu
->flags
& PPMU_ARCH_207S
)
960 for (i
= 0; i
< n
; ++i
) {
961 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
962 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
967 eu
= event
->attr
.exclude_user
;
968 ek
= event
->attr
.exclude_kernel
;
969 eh
= event
->attr
.exclude_hv
;
971 } else if (event
->attr
.exclude_user
!= eu
||
972 event
->attr
.exclude_kernel
!= ek
||
973 event
->attr
.exclude_hv
!= eh
) {
979 for (i
= 0; i
< n
; ++i
)
980 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
981 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
986 static u64
check_and_compute_delta(u64 prev
, u64 val
)
988 u64 delta
= (val
- prev
) & 0xfffffffful
;
991 * POWER7 can roll back counter values, if the new value is smaller
992 * than the previous value it will cause the delta and the counter to
993 * have bogus values unless we rolled a counter over. If a coutner is
994 * rolled back, it will be smaller, but within 256, which is the maximum
995 * number of events to rollback at once. If we dectect a rollback
996 * return 0. This can lead to a small lack of precision in the
999 if (prev
> val
&& (prev
- val
) < 256)
1005 static void power_pmu_read(struct perf_event
*event
)
1007 s64 val
, delta
, prev
;
1009 if (event
->hw
.state
& PERF_HES_STOPPED
)
1015 if (is_ebb_event(event
)) {
1016 val
= read_pmc(event
->hw
.idx
);
1017 local64_set(&event
->hw
.prev_count
, val
);
1022 * Performance monitor interrupts come even when interrupts
1023 * are soft-disabled, as long as interrupts are hard-enabled.
1024 * Therefore we treat them like NMIs.
1027 prev
= local64_read(&event
->hw
.prev_count
);
1029 val
= read_pmc(event
->hw
.idx
);
1030 delta
= check_and_compute_delta(prev
, val
);
1033 } while (local64_cmpxchg(&event
->hw
.prev_count
, prev
, val
) != prev
);
1035 local64_add(delta
, &event
->count
);
1038 * A number of places program the PMC with (0x80000000 - period_left).
1039 * We never want period_left to be less than 1 because we will program
1040 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1041 * roll around to 0 before taking an exception. We have seen this
1044 * To fix this, clamp the minimum value of period_left to 1.
1047 prev
= local64_read(&event
->hw
.period_left
);
1051 } while (local64_cmpxchg(&event
->hw
.period_left
, prev
, val
) != prev
);
1055 * On some machines, PMC5 and PMC6 can't be written, don't respect
1056 * the freeze conditions, and don't generate interrupts. This tells
1057 * us if `event' is using such a PMC.
1059 static int is_limited_pmc(int pmcnum
)
1061 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
1062 && (pmcnum
== 5 || pmcnum
== 6);
1065 static void freeze_limited_counters(struct cpu_hw_events
*cpuhw
,
1066 unsigned long pmc5
, unsigned long pmc6
)
1068 struct perf_event
*event
;
1069 u64 val
, prev
, delta
;
1072 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1073 event
= cpuhw
->limited_counter
[i
];
1076 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1077 prev
= local64_read(&event
->hw
.prev_count
);
1079 delta
= check_and_compute_delta(prev
, val
);
1081 local64_add(delta
, &event
->count
);
1085 static void thaw_limited_counters(struct cpu_hw_events
*cpuhw
,
1086 unsigned long pmc5
, unsigned long pmc6
)
1088 struct perf_event
*event
;
1092 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
1093 event
= cpuhw
->limited_counter
[i
];
1094 event
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
1095 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
1096 prev
= local64_read(&event
->hw
.prev_count
);
1097 if (check_and_compute_delta(prev
, val
))
1098 local64_set(&event
->hw
.prev_count
, val
);
1099 perf_event_update_userpage(event
);
1104 * Since limited events don't respect the freeze conditions, we
1105 * have to read them immediately after freezing or unfreezing the
1106 * other events. We try to keep the values from the limited
1107 * events as consistent as possible by keeping the delay (in
1108 * cycles and instructions) between freezing/unfreezing and reading
1109 * the limited events as small and consistent as possible.
1110 * Therefore, if any limited events are in use, we read them
1111 * both, and always in the same order, to minimize variability,
1112 * and do it inside the same asm that writes MMCR0.
1114 static void write_mmcr0(struct cpu_hw_events
*cpuhw
, unsigned long mmcr0
)
1116 unsigned long pmc5
, pmc6
;
1118 if (!cpuhw
->n_limited
) {
1119 mtspr(SPRN_MMCR0
, mmcr0
);
1124 * Write MMCR0, then read PMC5 and PMC6 immediately.
1125 * To ensure we don't get a performance monitor interrupt
1126 * between writing MMCR0 and freezing/thawing the limited
1127 * events, we first write MMCR0 with the event overflow
1128 * interrupt enable bits turned off.
1130 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1131 : "=&r" (pmc5
), "=&r" (pmc6
)
1132 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
1134 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
1136 if (mmcr0
& MMCR0_FC
)
1137 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
1139 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
1142 * Write the full MMCR0 including the event overflow interrupt
1143 * enable bits, if necessary.
1145 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1146 mtspr(SPRN_MMCR0
, mmcr0
);
1150 * Disable all events to prevent PMU interrupts and to allow
1151 * events to be added or removed.
1153 static void power_pmu_disable(struct pmu
*pmu
)
1155 struct cpu_hw_events
*cpuhw
;
1156 unsigned long flags
, mmcr0
, val
;
1160 local_irq_save(flags
);
1161 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1163 if (!cpuhw
->disabled
) {
1165 * Check if we ever enabled the PMU on this cpu.
1167 if (!cpuhw
->pmcs_enabled
) {
1169 cpuhw
->pmcs_enabled
= 1;
1173 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1175 val
= mmcr0
= mfspr(SPRN_MMCR0
);
1177 val
&= ~(MMCR0_EBE
| MMCR0_BHRBA
| MMCR0_PMCC
| MMCR0_PMAO
|
1181 * The barrier is to make sure the mtspr has been
1182 * executed and the PMU has frozen the events etc.
1185 write_mmcr0(cpuhw
, val
);
1189 * Disable instruction sampling if it was enabled
1191 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1193 cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1197 cpuhw
->disabled
= 1;
1200 ebb_switch_out(mmcr0
);
1203 local_irq_restore(flags
);
1207 * Re-enable all events if disable == 0.
1208 * If we were previously disabled and events were added, then
1209 * put the new config on the PMU.
1211 static void power_pmu_enable(struct pmu
*pmu
)
1213 struct perf_event
*event
;
1214 struct cpu_hw_events
*cpuhw
;
1215 unsigned long flags
;
1217 unsigned long val
, mmcr0
;
1219 unsigned int hwc_index
[MAX_HWEVENTS
];
1226 local_irq_save(flags
);
1228 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1229 if (!cpuhw
->disabled
)
1232 if (cpuhw
->n_events
== 0) {
1233 ppc_set_pmu_inuse(0);
1237 cpuhw
->disabled
= 0;
1240 * EBB requires an exclusive group and all events must have the EBB
1241 * flag set, or not set, so we can just check a single event. Also we
1242 * know we have at least one event.
1244 ebb
= is_ebb_event(cpuhw
->event
[0]);
1247 * If we didn't change anything, or only removed events,
1248 * no need to recalculate MMCR* settings and reset the PMCs.
1249 * Just reenable the PMU with the current MMCR* settings
1250 * (possibly updated for removal of events).
1252 if (!cpuhw
->n_added
) {
1253 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1254 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1259 * Clear all MMCR settings and recompute them for the new set of events.
1261 memset(cpuhw
->mmcr
, 0, sizeof(cpuhw
->mmcr
));
1263 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_events
, hwc_index
,
1264 cpuhw
->mmcr
, cpuhw
->event
)) {
1265 /* shouldn't ever get here */
1266 printk(KERN_ERR
"oops compute_mmcr failed\n");
1270 if (!(ppmu
->flags
& PPMU_ARCH_207S
)) {
1272 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1273 * bits for the first event. We have already checked that all
1274 * events have the same value for these bits as the first event.
1276 event
= cpuhw
->event
[0];
1277 if (event
->attr
.exclude_user
)
1278 cpuhw
->mmcr
[0] |= MMCR0_FCP
;
1279 if (event
->attr
.exclude_kernel
)
1280 cpuhw
->mmcr
[0] |= freeze_events_kernel
;
1281 if (event
->attr
.exclude_hv
)
1282 cpuhw
->mmcr
[0] |= MMCR0_FCHV
;
1286 * Write the new configuration to MMCR* with the freeze
1287 * bit set and set the hardware events to their initial values.
1288 * Then unfreeze the events.
1290 ppc_set_pmu_inuse(1);
1291 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1292 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1293 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
[0] & ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1295 if (ppmu
->flags
& PPMU_ARCH_207S
)
1296 mtspr(SPRN_MMCR2
, cpuhw
->mmcr
[3]);
1299 * Read off any pre-existing events that need to move
1302 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1303 event
= cpuhw
->event
[i
];
1304 if (event
->hw
.idx
&& event
->hw
.idx
!= hwc_index
[i
] + 1) {
1305 power_pmu_read(event
);
1306 write_pmc(event
->hw
.idx
, 0);
1312 * Initialize the PMCs for all the new and moved events.
1314 cpuhw
->n_limited
= n_lim
= 0;
1315 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1316 event
= cpuhw
->event
[i
];
1319 idx
= hwc_index
[i
] + 1;
1320 if (is_limited_pmc(idx
)) {
1321 cpuhw
->limited_counter
[n_lim
] = event
;
1322 cpuhw
->limited_hwidx
[n_lim
] = idx
;
1328 val
= local64_read(&event
->hw
.prev_count
);
1331 if (event
->hw
.sample_period
) {
1332 left
= local64_read(&event
->hw
.period_left
);
1333 if (left
< 0x80000000L
)
1334 val
= 0x80000000L
- left
;
1336 local64_set(&event
->hw
.prev_count
, val
);
1339 event
->hw
.idx
= idx
;
1340 if (event
->hw
.state
& PERF_HES_STOPPED
)
1342 write_pmc(idx
, val
);
1344 perf_event_update_userpage(event
);
1346 cpuhw
->n_limited
= n_lim
;
1347 cpuhw
->mmcr
[0] |= MMCR0_PMXE
| MMCR0_FCECE
;
1350 pmao_restore_workaround(ebb
);
1352 mmcr0
= ebb_switch_in(ebb
, cpuhw
);
1355 if (cpuhw
->bhrb_users
)
1356 ppmu
->config_bhrb(cpuhw
->bhrb_filter
);
1358 write_mmcr0(cpuhw
, mmcr0
);
1361 * Enable instruction sampling if necessary
1363 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1365 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2]);
1370 local_irq_restore(flags
);
1373 static int collect_events(struct perf_event
*group
, int max_count
,
1374 struct perf_event
*ctrs
[], u64
*events
,
1375 unsigned int *flags
)
1378 struct perf_event
*event
;
1380 if (!is_software_event(group
)) {
1384 flags
[n
] = group
->hw
.event_base
;
1385 events
[n
++] = group
->hw
.config
;
1387 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1388 if (!is_software_event(event
) &&
1389 event
->state
!= PERF_EVENT_STATE_OFF
) {
1393 flags
[n
] = event
->hw
.event_base
;
1394 events
[n
++] = event
->hw
.config
;
1401 * Add a event to the PMU.
1402 * If all events are not already frozen, then we disable and
1403 * re-enable the PMU in order to get hw_perf_enable to do the
1404 * actual work of reconfiguring the PMU.
1406 static int power_pmu_add(struct perf_event
*event
, int ef_flags
)
1408 struct cpu_hw_events
*cpuhw
;
1409 unsigned long flags
;
1413 local_irq_save(flags
);
1414 perf_pmu_disable(event
->pmu
);
1417 * Add the event to the list (if there is room)
1418 * and check whether the total set is still feasible.
1420 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1421 n0
= cpuhw
->n_events
;
1422 if (n0
>= ppmu
->n_counter
)
1424 cpuhw
->event
[n0
] = event
;
1425 cpuhw
->events
[n0
] = event
->hw
.config
;
1426 cpuhw
->flags
[n0
] = event
->hw
.event_base
;
1429 * This event may have been disabled/stopped in record_and_restart()
1430 * because we exceeded the ->event_limit. If re-starting the event,
1431 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1432 * notification is re-enabled.
1434 if (!(ef_flags
& PERF_EF_START
))
1435 event
->hw
.state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1437 event
->hw
.state
= 0;
1440 * If group events scheduling transaction was started,
1441 * skip the schedulability test here, it will be performed
1442 * at commit time(->commit_txn) as a whole
1444 if (cpuhw
->txn_flags
& PERF_PMU_TXN_ADD
)
1447 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, n0
, 1))
1449 if (power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
1451 event
->hw
.config
= cpuhw
->events
[n0
];
1454 ebb_event_add(event
);
1461 if (has_branch_stack(event
)) {
1462 power_pmu_bhrb_enable(event
);
1463 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1464 event
->attr
.branch_sample_type
);
1467 perf_pmu_enable(event
->pmu
);
1468 local_irq_restore(flags
);
1473 * Remove a event from the PMU.
1475 static void power_pmu_del(struct perf_event
*event
, int ef_flags
)
1477 struct cpu_hw_events
*cpuhw
;
1479 unsigned long flags
;
1481 local_irq_save(flags
);
1482 perf_pmu_disable(event
->pmu
);
1484 power_pmu_read(event
);
1486 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1487 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1488 if (event
== cpuhw
->event
[i
]) {
1489 while (++i
< cpuhw
->n_events
) {
1490 cpuhw
->event
[i
-1] = cpuhw
->event
[i
];
1491 cpuhw
->events
[i
-1] = cpuhw
->events
[i
];
1492 cpuhw
->flags
[i
-1] = cpuhw
->flags
[i
];
1495 ppmu
->disable_pmc(event
->hw
.idx
- 1, cpuhw
->mmcr
);
1496 if (event
->hw
.idx
) {
1497 write_pmc(event
->hw
.idx
, 0);
1500 perf_event_update_userpage(event
);
1504 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
1505 if (event
== cpuhw
->limited_counter
[i
])
1507 if (i
< cpuhw
->n_limited
) {
1508 while (++i
< cpuhw
->n_limited
) {
1509 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
1510 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
1514 if (cpuhw
->n_events
== 0) {
1515 /* disable exceptions if no events are running */
1516 cpuhw
->mmcr
[0] &= ~(MMCR0_PMXE
| MMCR0_FCECE
);
1519 if (has_branch_stack(event
))
1520 power_pmu_bhrb_disable(event
);
1522 perf_pmu_enable(event
->pmu
);
1523 local_irq_restore(flags
);
1527 * POWER-PMU does not support disabling individual counters, hence
1528 * program their cycle counter to their max value and ignore the interrupts.
1531 static void power_pmu_start(struct perf_event
*event
, int ef_flags
)
1533 unsigned long flags
;
1537 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1540 if (!(event
->hw
.state
& PERF_HES_STOPPED
))
1543 if (ef_flags
& PERF_EF_RELOAD
)
1544 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1546 local_irq_save(flags
);
1547 perf_pmu_disable(event
->pmu
);
1549 event
->hw
.state
= 0;
1550 left
= local64_read(&event
->hw
.period_left
);
1553 if (left
< 0x80000000L
)
1554 val
= 0x80000000L
- left
;
1556 write_pmc(event
->hw
.idx
, val
);
1558 perf_event_update_userpage(event
);
1559 perf_pmu_enable(event
->pmu
);
1560 local_irq_restore(flags
);
1563 static void power_pmu_stop(struct perf_event
*event
, int ef_flags
)
1565 unsigned long flags
;
1567 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1570 if (event
->hw
.state
& PERF_HES_STOPPED
)
1573 local_irq_save(flags
);
1574 perf_pmu_disable(event
->pmu
);
1576 power_pmu_read(event
);
1577 event
->hw
.state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1578 write_pmc(event
->hw
.idx
, 0);
1580 perf_event_update_userpage(event
);
1581 perf_pmu_enable(event
->pmu
);
1582 local_irq_restore(flags
);
1586 * Start group events scheduling transaction
1587 * Set the flag to make pmu::enable() not perform the
1588 * schedulability test, it will be performed at commit time
1590 * We only support PERF_PMU_TXN_ADD transactions. Save the
1591 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1594 static void power_pmu_start_txn(struct pmu
*pmu
, unsigned int txn_flags
)
1596 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1598 WARN_ON_ONCE(cpuhw
->txn_flags
); /* txn already in flight */
1600 cpuhw
->txn_flags
= txn_flags
;
1601 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1604 perf_pmu_disable(pmu
);
1605 cpuhw
->n_txn_start
= cpuhw
->n_events
;
1609 * Stop group events scheduling transaction
1610 * Clear the flag and pmu::enable() will perform the
1611 * schedulability test.
1613 static void power_pmu_cancel_txn(struct pmu
*pmu
)
1615 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1616 unsigned int txn_flags
;
1618 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1620 txn_flags
= cpuhw
->txn_flags
;
1621 cpuhw
->txn_flags
= 0;
1622 if (txn_flags
& ~PERF_PMU_TXN_ADD
)
1625 perf_pmu_enable(pmu
);
1629 * Commit group events scheduling transaction
1630 * Perform the group schedulability test as a whole
1631 * Return 0 if success
1633 static int power_pmu_commit_txn(struct pmu
*pmu
)
1635 struct cpu_hw_events
*cpuhw
;
1641 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
1642 WARN_ON_ONCE(!cpuhw
->txn_flags
); /* no txn in flight */
1644 if (cpuhw
->txn_flags
& ~PERF_PMU_TXN_ADD
) {
1645 cpuhw
->txn_flags
= 0;
1649 n
= cpuhw
->n_events
;
1650 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, 0, n
))
1652 i
= power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n
);
1656 for (i
= cpuhw
->n_txn_start
; i
< n
; ++i
)
1657 cpuhw
->event
[i
]->hw
.config
= cpuhw
->events
[i
];
1659 cpuhw
->txn_flags
= 0;
1660 perf_pmu_enable(pmu
);
1665 * Return 1 if we might be able to put event on a limited PMC,
1667 * A event can only go on a limited PMC if it counts something
1668 * that a limited PMC can count, doesn't require interrupts, and
1669 * doesn't exclude any processor mode.
1671 static int can_go_on_limited_pmc(struct perf_event
*event
, u64 ev
,
1675 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1677 if (event
->attr
.exclude_user
1678 || event
->attr
.exclude_kernel
1679 || event
->attr
.exclude_hv
1680 || event
->attr
.sample_period
)
1683 if (ppmu
->limited_pmc_event(ev
))
1687 * The requested event_id isn't on a limited PMC already;
1688 * see if any alternative code goes on a limited PMC.
1690 if (!ppmu
->get_alternatives
)
1693 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
1694 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1700 * Find an alternative event_id that goes on a normal PMC, if possible,
1701 * and return the event_id code, or 0 if there is no such alternative.
1702 * (Note: event_id code 0 is "don't count" on all machines.)
1704 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
1706 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1709 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
1710 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1716 /* Number of perf_events counting hardware events */
1717 static atomic_t num_events
;
1718 /* Used to avoid races in calling reserve/release_pmc_hardware */
1719 static DEFINE_MUTEX(pmc_reserve_mutex
);
1722 * Release the PMU if this is the last perf_event.
1724 static void hw_perf_event_destroy(struct perf_event
*event
)
1726 if (!atomic_add_unless(&num_events
, -1, 1)) {
1727 mutex_lock(&pmc_reserve_mutex
);
1728 if (atomic_dec_return(&num_events
) == 0)
1729 release_pmc_hardware();
1730 mutex_unlock(&pmc_reserve_mutex
);
1735 * Translate a generic cache event_id config to a raw event_id code.
1737 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
1739 unsigned long type
, op
, result
;
1742 if (!ppmu
->cache_events
)
1746 type
= config
& 0xff;
1747 op
= (config
>> 8) & 0xff;
1748 result
= (config
>> 16) & 0xff;
1750 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
1751 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
1752 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1755 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1764 static int power_pmu_event_init(struct perf_event
*event
)
1767 unsigned long flags
;
1768 struct perf_event
*ctrs
[MAX_HWEVENTS
];
1769 u64 events
[MAX_HWEVENTS
];
1770 unsigned int cflags
[MAX_HWEVENTS
];
1773 struct cpu_hw_events
*cpuhw
;
1778 if (has_branch_stack(event
)) {
1779 /* PMU has BHRB enabled */
1780 if (!(ppmu
->flags
& PPMU_ARCH_207S
))
1784 switch (event
->attr
.type
) {
1785 case PERF_TYPE_HARDWARE
:
1786 ev
= event
->attr
.config
;
1787 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1789 ev
= ppmu
->generic_events
[ev
];
1791 case PERF_TYPE_HW_CACHE
:
1792 err
= hw_perf_cache_event(event
->attr
.config
, &ev
);
1797 ev
= event
->attr
.config
;
1803 event
->hw
.config_base
= ev
;
1807 * If we are not running on a hypervisor, force the
1808 * exclude_hv bit to 0 so that we don't care what
1809 * the user set it to.
1811 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1812 event
->attr
.exclude_hv
= 0;
1815 * If this is a per-task event, then we can use
1816 * PM_RUN_* events interchangeably with their non RUN_*
1817 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1818 * XXX we should check if the task is an idle task.
1821 if (event
->attach_state
& PERF_ATTACH_TASK
)
1822 flags
|= PPMU_ONLY_COUNT_RUN
;
1825 * If this machine has limited events, check whether this
1826 * event_id could go on a limited event.
1828 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1829 if (can_go_on_limited_pmc(event
, ev
, flags
)) {
1830 flags
|= PPMU_LIMITED_PMC_OK
;
1831 } else if (ppmu
->limited_pmc_event(ev
)) {
1833 * The requested event_id is on a limited PMC,
1834 * but we can't use a limited PMC; see if any
1835 * alternative goes on a normal PMC.
1837 ev
= normal_pmc_alternative(ev
, flags
);
1843 /* Extra checks for EBB */
1844 err
= ebb_event_check(event
);
1849 * If this is in a group, check if it can go on with all the
1850 * other hardware events in the group. We assume the event
1851 * hasn't been linked into its leader's sibling list at this point.
1854 if (event
->group_leader
!= event
) {
1855 n
= collect_events(event
->group_leader
, ppmu
->n_counter
- 1,
1856 ctrs
, events
, cflags
);
1863 if (check_excludes(ctrs
, cflags
, n
, 1))
1866 cpuhw
= &get_cpu_var(cpu_hw_events
);
1867 err
= power_check_constraints(cpuhw
, events
, cflags
, n
+ 1);
1869 if (has_branch_stack(event
)) {
1870 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1871 event
->attr
.branch_sample_type
);
1873 if (cpuhw
->bhrb_filter
== -1) {
1874 put_cpu_var(cpu_hw_events
);
1879 put_cpu_var(cpu_hw_events
);
1883 event
->hw
.config
= events
[n
];
1884 event
->hw
.event_base
= cflags
[n
];
1885 event
->hw
.last_period
= event
->hw
.sample_period
;
1886 local64_set(&event
->hw
.period_left
, event
->hw
.last_period
);
1889 * For EBB events we just context switch the PMC value, we don't do any
1890 * of the sample_period logic. We use hw.prev_count for this.
1892 if (is_ebb_event(event
))
1893 local64_set(&event
->hw
.prev_count
, 0);
1896 * See if we need to reserve the PMU.
1897 * If no events are currently in use, then we have to take a
1898 * mutex to ensure that we don't race with another task doing
1899 * reserve_pmc_hardware or release_pmc_hardware.
1902 if (!atomic_inc_not_zero(&num_events
)) {
1903 mutex_lock(&pmc_reserve_mutex
);
1904 if (atomic_read(&num_events
) == 0 &&
1905 reserve_pmc_hardware(perf_event_interrupt
))
1908 atomic_inc(&num_events
);
1909 mutex_unlock(&pmc_reserve_mutex
);
1911 event
->destroy
= hw_perf_event_destroy
;
1916 static int power_pmu_event_idx(struct perf_event
*event
)
1918 return event
->hw
.idx
;
1921 ssize_t
power_events_sysfs_show(struct device
*dev
,
1922 struct device_attribute
*attr
, char *page
)
1924 struct perf_pmu_events_attr
*pmu_attr
;
1926 pmu_attr
= container_of(attr
, struct perf_pmu_events_attr
, attr
);
1928 return sprintf(page
, "event=0x%02llx\n", pmu_attr
->id
);
1931 static struct pmu power_pmu
= {
1932 .pmu_enable
= power_pmu_enable
,
1933 .pmu_disable
= power_pmu_disable
,
1934 .event_init
= power_pmu_event_init
,
1935 .add
= power_pmu_add
,
1936 .del
= power_pmu_del
,
1937 .start
= power_pmu_start
,
1938 .stop
= power_pmu_stop
,
1939 .read
= power_pmu_read
,
1940 .start_txn
= power_pmu_start_txn
,
1941 .cancel_txn
= power_pmu_cancel_txn
,
1942 .commit_txn
= power_pmu_commit_txn
,
1943 .event_idx
= power_pmu_event_idx
,
1944 .sched_task
= power_pmu_sched_task
,
1948 * A counter has overflowed; update its count and record
1949 * things if requested. Note that interrupts are hard-disabled
1950 * here so there is no possibility of being interrupted.
1952 static void record_and_restart(struct perf_event
*event
, unsigned long val
,
1953 struct pt_regs
*regs
)
1955 u64 period
= event
->hw
.sample_period
;
1956 s64 prev
, delta
, left
;
1959 if (event
->hw
.state
& PERF_HES_STOPPED
) {
1960 write_pmc(event
->hw
.idx
, 0);
1964 /* we don't have to worry about interrupts here */
1965 prev
= local64_read(&event
->hw
.prev_count
);
1966 delta
= check_and_compute_delta(prev
, val
);
1967 local64_add(delta
, &event
->count
);
1970 * See if the total period for this event has expired,
1971 * and update for the next period.
1974 left
= local64_read(&event
->hw
.period_left
) - delta
;
1982 record
= siar_valid(regs
);
1983 event
->hw
.last_period
= event
->hw
.sample_period
;
1985 if (left
< 0x80000000LL
)
1986 val
= 0x80000000LL
- left
;
1989 write_pmc(event
->hw
.idx
, val
);
1990 local64_set(&event
->hw
.prev_count
, val
);
1991 local64_set(&event
->hw
.period_left
, left
);
1992 perf_event_update_userpage(event
);
1995 * Finally record data if requested.
1998 struct perf_sample_data data
;
2000 perf_sample_data_init(&data
, ~0ULL, event
->hw
.last_period
);
2002 if (event
->attr
.sample_type
& PERF_SAMPLE_ADDR
)
2003 perf_get_data_addr(regs
, &data
.addr
);
2005 if (event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
2006 struct cpu_hw_events
*cpuhw
;
2007 cpuhw
= this_cpu_ptr(&cpu_hw_events
);
2008 power_pmu_bhrb_read(cpuhw
);
2009 data
.br_stack
= &cpuhw
->bhrb_stack
;
2012 if (perf_event_overflow(event
, &data
, regs
))
2013 power_pmu_stop(event
, 0);
2018 * Called from generic code to get the misc flags (i.e. processor mode)
2021 unsigned long perf_misc_flags(struct pt_regs
*regs
)
2023 u32 flags
= perf_get_misc_flags(regs
);
2027 return user_mode(regs
) ? PERF_RECORD_MISC_USER
:
2028 PERF_RECORD_MISC_KERNEL
;
2032 * Called from generic code to get the instruction pointer
2035 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
2037 bool use_siar
= regs_use_siar(regs
);
2039 if (use_siar
&& siar_valid(regs
))
2040 return mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
2042 return 0; // no valid instruction pointer
2047 static bool pmc_overflow_power7(unsigned long val
)
2050 * Events on POWER7 can roll back if a speculative event doesn't
2051 * eventually complete. Unfortunately in some rare cases they will
2052 * raise a performance monitor exception. We need to catch this to
2053 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2054 * cycles from overflow.
2056 * We only do this if the first pass fails to find any overflowing
2057 * PMCs because a user might set a period of less than 256 and we
2058 * don't want to mistakenly reset them.
2060 if ((0x80000000 - val
) <= 256)
2066 static bool pmc_overflow(unsigned long val
)
2075 * Performance monitor interrupt stuff
2077 static void perf_event_interrupt(struct pt_regs
*regs
)
2080 struct cpu_hw_events
*cpuhw
= this_cpu_ptr(&cpu_hw_events
);
2081 struct perf_event
*event
;
2082 unsigned long val
[8];
2086 if (cpuhw
->n_limited
)
2087 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
2090 perf_read_regs(regs
);
2092 nmi
= perf_intr_is_nmi(regs
);
2098 /* Read all the PMCs since we'll need them a bunch of times */
2099 for (i
= 0; i
< ppmu
->n_counter
; ++i
)
2100 val
[i
] = read_pmc(i
+ 1);
2102 /* Try to find what caused the IRQ */
2104 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
2105 if (!pmc_overflow(val
[i
]))
2107 if (is_limited_pmc(i
+ 1))
2108 continue; /* these won't generate IRQs */
2110 * We've found one that's overflowed. For active
2111 * counters we need to log this. For inactive
2112 * counters, we need to reset it anyway
2116 for (j
= 0; j
< cpuhw
->n_events
; ++j
) {
2117 event
= cpuhw
->event
[j
];
2118 if (event
->hw
.idx
== (i
+ 1)) {
2120 record_and_restart(event
, val
[i
], regs
);
2125 /* reset non active counters that have overflowed */
2126 write_pmc(i
+ 1, 0);
2128 if (!found
&& pvr_version_is(PVR_POWER7
)) {
2129 /* check active counters for special buggy p7 overflow */
2130 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
2131 event
= cpuhw
->event
[i
];
2132 if (!event
->hw
.idx
|| is_limited_pmc(event
->hw
.idx
))
2134 if (pmc_overflow_power7(val
[event
->hw
.idx
- 1])) {
2135 /* event has overflowed in a buggy way*/
2137 record_and_restart(event
,
2138 val
[event
->hw
.idx
- 1],
2143 if (!found
&& !nmi
&& printk_ratelimit())
2144 printk(KERN_WARNING
"Can't find PMC that caused IRQ\n");
2147 * Reset MMCR0 to its normal value. This will set PMXE and
2148 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2149 * and thus allow interrupts to occur again.
2150 * XXX might want to use MSR.PM to keep the events frozen until
2151 * we get back out of this interrupt.
2153 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
2161 static void power_pmu_setup(int cpu
)
2163 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
2167 memset(cpuhw
, 0, sizeof(*cpuhw
));
2168 cpuhw
->mmcr
[0] = MMCR0_FC
;
2172 power_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
2174 unsigned int cpu
= (long)hcpu
;
2176 switch (action
& ~CPU_TASKS_FROZEN
) {
2177 case CPU_UP_PREPARE
:
2178 power_pmu_setup(cpu
);
2188 int register_power_pmu(struct power_pmu
*pmu
)
2191 return -EBUSY
; /* something's already registered */
2194 pr_info("%s performance monitor hardware support registered\n",
2197 power_pmu
.attr_groups
= ppmu
->attr_groups
;
2201 * Use FCHV to ignore kernel events if MSR.HV is set.
2203 if (mfmsr() & MSR_HV
)
2204 freeze_events_kernel
= MMCR0_FCHV
;
2205 #endif /* CONFIG_PPC64 */
2207 perf_pmu_register(&power_pmu
, "cpu", PERF_TYPE_RAW
);
2208 perf_cpu_notifier(power_pmu_notifier
);