1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
15 #include <asm/irqdomain.h>
16 #include <asm/fixmap.h>
20 #define HPET_MASK CLOCKSOURCE_MASK(32)
24 #define FSEC_PER_NSEC 1000000L
26 #define HPET_DEV_USED_BIT 2
27 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID 0x8
29 #define HPET_DEV_FSB_CAP 0x1000
30 #define HPET_DEV_PERI_CAP 0x2000
32 #define HPET_MIN_CYCLES 128
33 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
36 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 unsigned long hpet_address
;
39 u8 hpet_blockid
; /* OS timer block num */
40 bool hpet_msi_disable
;
43 static unsigned int hpet_num_timers
;
45 static void __iomem
*hpet_virt_address
;
48 struct clock_event_device evt
;
56 inline struct hpet_dev
*EVT_TO_HPET_DEV(struct clock_event_device
*evtdev
)
58 return container_of(evtdev
, struct hpet_dev
, evt
);
61 inline unsigned int hpet_readl(unsigned int a
)
63 return readl(hpet_virt_address
+ a
);
66 static inline void hpet_writel(unsigned int d
, unsigned int a
)
68 writel(d
, hpet_virt_address
+ a
);
72 #include <asm/pgtable.h>
75 static inline void hpet_set_mapping(void)
77 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
80 static inline void hpet_clear_mapping(void)
82 iounmap(hpet_virt_address
);
83 hpet_virt_address
= NULL
;
87 * HPET command line enable / disable
89 bool boot_hpet_disable
;
91 static bool hpet_verbose
;
93 static int __init
hpet_setup(char *str
)
96 char *next
= strchr(str
, ',');
100 if (!strncmp("disable", str
, 7))
101 boot_hpet_disable
= true;
102 if (!strncmp("force", str
, 5))
103 hpet_force_user
= true;
104 if (!strncmp("verbose", str
, 7))
110 __setup("hpet=", hpet_setup
);
112 static int __init
disable_hpet(char *str
)
114 boot_hpet_disable
= true;
117 __setup("nohpet", disable_hpet
);
119 static inline int is_hpet_capable(void)
121 return !boot_hpet_disable
&& hpet_address
;
125 * HPET timer interrupt enable / disable
127 static bool hpet_legacy_int_enabled
;
130 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 int is_hpet_enabled(void)
134 return is_hpet_capable() && hpet_legacy_int_enabled
;
136 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
138 static void _hpet_print_config(const char *function
, int line
)
141 printk(KERN_INFO
"hpet: %s(%d):\n", function
, line
);
142 l
= hpet_readl(HPET_ID
);
143 h
= hpet_readl(HPET_PERIOD
);
144 timers
= ((l
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
145 printk(KERN_INFO
"hpet: ID: 0x%x, PERIOD: 0x%x\n", l
, h
);
146 l
= hpet_readl(HPET_CFG
);
147 h
= hpet_readl(HPET_STATUS
);
148 printk(KERN_INFO
"hpet: CFG: 0x%x, STATUS: 0x%x\n", l
, h
);
149 l
= hpet_readl(HPET_COUNTER
);
150 h
= hpet_readl(HPET_COUNTER
+4);
151 printk(KERN_INFO
"hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
153 for (i
= 0; i
< timers
; i
++) {
154 l
= hpet_readl(HPET_Tn_CFG(i
));
155 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
156 printk(KERN_INFO
"hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 l
= hpet_readl(HPET_Tn_CMP(i
));
159 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
160 printk(KERN_INFO
"hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 l
= hpet_readl(HPET_Tn_ROUTE(i
));
163 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
164 printk(KERN_INFO
"hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
169 #define hpet_print_config() \
172 _hpet_print_config(__func__, __LINE__); \
176 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177 * timer 0 and timer 1 in case of RTC emulation.
181 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
183 static void hpet_reserve_platform_timers(unsigned int id
)
185 struct hpet __iomem
*hpet
= hpet_virt_address
;
186 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
187 unsigned int nrtimers
, i
;
190 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
192 memset(&hd
, 0, sizeof(hd
));
193 hd
.hd_phys_address
= hpet_address
;
194 hd
.hd_address
= hpet
;
195 hd
.hd_nirqs
= nrtimers
;
196 hpet_reserve_timer(&hd
, 0);
198 #ifdef CONFIG_HPET_EMULATE_RTC
199 hpet_reserve_timer(&hd
, 1);
203 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204 * is wrong for i8259!) not the output IRQ. Many BIOS writers
205 * don't bother configuring *any* comparator interrupts.
207 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
208 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
210 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
211 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
212 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
215 hpet_reserve_msi_timers(&hd
);
221 static void hpet_reserve_platform_timers(unsigned int id
) { }
227 static unsigned long hpet_freq
;
229 static struct clock_event_device hpet_clockevent
;
231 static void hpet_stop_counter(void)
233 u32 cfg
= hpet_readl(HPET_CFG
);
234 cfg
&= ~HPET_CFG_ENABLE
;
235 hpet_writel(cfg
, HPET_CFG
);
238 static void hpet_reset_counter(void)
240 hpet_writel(0, HPET_COUNTER
);
241 hpet_writel(0, HPET_COUNTER
+ 4);
244 static void hpet_start_counter(void)
246 unsigned int cfg
= hpet_readl(HPET_CFG
);
247 cfg
|= HPET_CFG_ENABLE
;
248 hpet_writel(cfg
, HPET_CFG
);
251 static void hpet_restart_counter(void)
254 hpet_reset_counter();
255 hpet_start_counter();
258 static void hpet_resume_device(void)
263 static void hpet_resume_counter(struct clocksource
*cs
)
265 hpet_resume_device();
266 hpet_restart_counter();
269 static void hpet_enable_legacy_int(void)
271 unsigned int cfg
= hpet_readl(HPET_CFG
);
273 cfg
|= HPET_CFG_LEGACY
;
274 hpet_writel(cfg
, HPET_CFG
);
275 hpet_legacy_int_enabled
= true;
278 static void hpet_legacy_clockevent_register(void)
280 /* Start HPET legacy interrupts */
281 hpet_enable_legacy_int();
284 * Start hpet with the boot cpu mask and make it
285 * global after the IO_APIC has been initialized.
287 hpet_clockevent
.cpumask
= cpumask_of(smp_processor_id());
288 clockevents_config_and_register(&hpet_clockevent
, hpet_freq
,
289 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
290 global_clock_event
= &hpet_clockevent
;
291 printk(KERN_DEBUG
"hpet clockevent registered\n");
294 static int hpet_set_periodic(struct clock_event_device
*evt
, int timer
)
296 unsigned int cfg
, cmp
, now
;
300 delta
= ((uint64_t)(NSEC_PER_SEC
/ HZ
)) * evt
->mult
;
301 delta
>>= evt
->shift
;
302 now
= hpet_readl(HPET_COUNTER
);
303 cmp
= now
+ (unsigned int)delta
;
304 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
305 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
| HPET_TN_SETVAL
|
307 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
308 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
311 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
312 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
313 * bit is automatically cleared after the first write.
314 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
315 * Publication # 24674)
317 hpet_writel((unsigned int)delta
, HPET_Tn_CMP(timer
));
318 hpet_start_counter();
324 static int hpet_set_oneshot(struct clock_event_device
*evt
, int timer
)
328 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
329 cfg
&= ~HPET_TN_PERIODIC
;
330 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
331 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
336 static int hpet_shutdown(struct clock_event_device
*evt
, int timer
)
340 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
341 cfg
&= ~HPET_TN_ENABLE
;
342 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
347 static int hpet_resume(struct clock_event_device
*evt
, int timer
)
350 hpet_enable_legacy_int();
352 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
354 irq_domain_activate_irq(irq_get_irq_data(hdev
->irq
));
355 disable_irq(hdev
->irq
);
356 irq_set_affinity(hdev
->irq
, cpumask_of(hdev
->cpu
));
357 enable_irq(hdev
->irq
);
364 static int hpet_next_event(unsigned long delta
,
365 struct clock_event_device
*evt
, int timer
)
370 cnt
= hpet_readl(HPET_COUNTER
);
372 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
375 * HPETs are a complete disaster. The compare register is
376 * based on a equal comparison and neither provides a less
377 * than or equal functionality (which would require to take
378 * the wraparound into account) nor a simple count down event
379 * mode. Further the write to the comparator register is
380 * delayed internally up to two HPET clock cycles in certain
381 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
382 * longer delays. We worked around that by reading back the
383 * compare register, but that required another workaround for
384 * ICH9,10 chips where the first readout after write can
385 * return the old stale value. We already had a minimum
386 * programming delta of 5us enforced, but a NMI or SMI hitting
387 * between the counter readout and the comparator write can
388 * move us behind that point easily. Now instead of reading
389 * the compare register back several times, we make the ETIME
390 * decision based on the following: Return ETIME if the
391 * counter value after the write is less than HPET_MIN_CYCLES
392 * away from the event or if the counter is already ahead of
393 * the event. The minimum programming delta for the generic
394 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
396 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
398 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
401 static int hpet_legacy_shutdown(struct clock_event_device
*evt
)
403 return hpet_shutdown(evt
, 0);
406 static int hpet_legacy_set_oneshot(struct clock_event_device
*evt
)
408 return hpet_set_oneshot(evt
, 0);
411 static int hpet_legacy_set_periodic(struct clock_event_device
*evt
)
413 return hpet_set_periodic(evt
, 0);
416 static int hpet_legacy_resume(struct clock_event_device
*evt
)
418 return hpet_resume(evt
, 0);
421 static int hpet_legacy_next_event(unsigned long delta
,
422 struct clock_event_device
*evt
)
424 return hpet_next_event(delta
, evt
, 0);
428 * The hpet clock event device
430 static struct clock_event_device hpet_clockevent
= {
432 .features
= CLOCK_EVT_FEAT_PERIODIC
|
433 CLOCK_EVT_FEAT_ONESHOT
,
434 .set_state_periodic
= hpet_legacy_set_periodic
,
435 .set_state_oneshot
= hpet_legacy_set_oneshot
,
436 .set_state_shutdown
= hpet_legacy_shutdown
,
437 .tick_resume
= hpet_legacy_resume
,
438 .set_next_event
= hpet_legacy_next_event
,
446 #ifdef CONFIG_PCI_MSI
448 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
449 static struct hpet_dev
*hpet_devs
;
450 static struct irq_domain
*hpet_domain
;
452 void hpet_msi_unmask(struct irq_data
*data
)
454 struct hpet_dev
*hdev
= irq_data_get_irq_handler_data(data
);
458 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
459 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
460 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
463 void hpet_msi_mask(struct irq_data
*data
)
465 struct hpet_dev
*hdev
= irq_data_get_irq_handler_data(data
);
469 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
470 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
471 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
474 void hpet_msi_write(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
476 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
477 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
480 void hpet_msi_read(struct hpet_dev
*hdev
, struct msi_msg
*msg
)
482 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
483 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
487 static int hpet_msi_shutdown(struct clock_event_device
*evt
)
489 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
491 return hpet_shutdown(evt
, hdev
->num
);
494 static int hpet_msi_set_oneshot(struct clock_event_device
*evt
)
496 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
498 return hpet_set_oneshot(evt
, hdev
->num
);
501 static int hpet_msi_set_periodic(struct clock_event_device
*evt
)
503 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
505 return hpet_set_periodic(evt
, hdev
->num
);
508 static int hpet_msi_resume(struct clock_event_device
*evt
)
510 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
512 return hpet_resume(evt
, hdev
->num
);
515 static int hpet_msi_next_event(unsigned long delta
,
516 struct clock_event_device
*evt
)
518 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
519 return hpet_next_event(delta
, evt
, hdev
->num
);
522 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
524 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
525 struct clock_event_device
*hevt
= &dev
->evt
;
527 if (!hevt
->event_handler
) {
528 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
533 hevt
->event_handler(hevt
);
537 static int hpet_setup_irq(struct hpet_dev
*dev
)
540 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
541 IRQF_TIMER
| IRQF_NOBALANCING
,
545 disable_irq(dev
->irq
);
546 irq_set_affinity(dev
->irq
, cpumask_of(dev
->cpu
));
547 enable_irq(dev
->irq
);
549 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
550 dev
->name
, dev
->irq
);
555 /* This should be called in specific @cpu */
556 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
558 struct clock_event_device
*evt
= &hdev
->evt
;
560 WARN_ON(cpu
!= smp_processor_id());
561 if (!(hdev
->flags
& HPET_DEV_VALID
))
565 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
566 evt
->name
= hdev
->name
;
567 hpet_setup_irq(hdev
);
568 evt
->irq
= hdev
->irq
;
571 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
572 if (hdev
->flags
& HPET_DEV_PERI_CAP
) {
573 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
574 evt
->set_state_periodic
= hpet_msi_set_periodic
;
577 evt
->set_state_shutdown
= hpet_msi_shutdown
;
578 evt
->set_state_oneshot
= hpet_msi_set_oneshot
;
579 evt
->tick_resume
= hpet_msi_resume
;
580 evt
->set_next_event
= hpet_msi_next_event
;
581 evt
->cpumask
= cpumask_of(hdev
->cpu
);
583 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
588 /* Reserve at least one timer for userspace (/dev/hpet) */
589 #define RESERVE_TIMERS 1
591 #define RESERVE_TIMERS 0
594 static void hpet_msi_capability_lookup(unsigned int start_timer
)
597 unsigned int num_timers
;
598 unsigned int num_timers_used
= 0;
601 if (hpet_msi_disable
)
604 if (boot_cpu_has(X86_FEATURE_ARAT
))
606 id
= hpet_readl(HPET_ID
);
608 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
609 num_timers
++; /* Value read out starts from 0 */
612 hpet_domain
= hpet_create_irq_domain(hpet_blockid
);
616 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
620 hpet_num_timers
= num_timers
;
622 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
623 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
624 unsigned int cfg
= hpet_readl(HPET_Tn_CFG(i
));
626 /* Only consider HPET timer with MSI support */
627 if (!(cfg
& HPET_TN_FSB_CAP
))
631 if (cfg
& HPET_TN_PERIODIC_CAP
)
632 hdev
->flags
|= HPET_DEV_PERI_CAP
;
633 sprintf(hdev
->name
, "hpet%d", i
);
636 irq
= hpet_assign_irq(hpet_domain
, hdev
, hdev
->num
);
641 hdev
->flags
|= HPET_DEV_FSB_CAP
;
642 hdev
->flags
|= HPET_DEV_VALID
;
644 if (num_timers_used
== num_possible_cpus())
648 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
649 num_timers
, num_timers_used
);
653 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
660 for (i
= 0; i
< hpet_num_timers
; i
++) {
661 struct hpet_dev
*hdev
= &hpet_devs
[i
];
663 if (!(hdev
->flags
& HPET_DEV_VALID
))
666 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
667 hpet_reserve_timer(hd
, hdev
->num
);
672 static struct hpet_dev
*hpet_get_unused_timer(void)
679 for (i
= 0; i
< hpet_num_timers
; i
++) {
680 struct hpet_dev
*hdev
= &hpet_devs
[i
];
682 if (!(hdev
->flags
& HPET_DEV_VALID
))
684 if (test_and_set_bit(HPET_DEV_USED_BIT
,
685 (unsigned long *)&hdev
->flags
))
692 struct hpet_work_struct
{
693 struct delayed_work work
;
694 struct completion complete
;
697 static void hpet_work(struct work_struct
*w
)
699 struct hpet_dev
*hdev
;
700 int cpu
= smp_processor_id();
701 struct hpet_work_struct
*hpet_work
;
703 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
705 hdev
= hpet_get_unused_timer();
707 init_one_hpet_msi_clockevent(hdev
, cpu
);
709 complete(&hpet_work
->complete
);
712 static int hpet_cpuhp_notify(struct notifier_block
*n
,
713 unsigned long action
, void *hcpu
)
715 unsigned long cpu
= (unsigned long)hcpu
;
716 struct hpet_work_struct work
;
717 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
719 switch (action
& 0xf) {
721 INIT_DELAYED_WORK_ONSTACK(&work
.work
, hpet_work
);
722 init_completion(&work
.complete
);
723 /* FIXME: add schedule_work_on() */
724 schedule_delayed_work_on(cpu
, &work
.work
, 0);
725 wait_for_completion(&work
.complete
);
726 destroy_delayed_work_on_stack(&work
.work
);
730 free_irq(hdev
->irq
, hdev
);
731 hdev
->flags
&= ~HPET_DEV_USED
;
732 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
740 static void hpet_msi_capability_lookup(unsigned int start_timer
)
746 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
752 static int hpet_cpuhp_notify(struct notifier_block
*n
,
753 unsigned long action
, void *hcpu
)
761 * Clock source related code
763 static cycle_t
read_hpet(struct clocksource
*cs
)
765 return (cycle_t
)hpet_readl(HPET_COUNTER
);
768 static struct clocksource clocksource_hpet
= {
773 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
774 .resume
= hpet_resume_counter
,
775 .archdata
= { .vclock_mode
= VCLOCK_HPET
},
778 static int hpet_clocksource_register(void)
783 /* Start the counter */
784 hpet_restart_counter();
786 /* Verify whether hpet counter works */
787 t1
= hpet_readl(HPET_COUNTER
);
791 * We don't know the TSC frequency yet, but waiting for
792 * 200000 TSC cycles is safe:
799 } while ((now
- start
) < 200000UL);
801 if (t1
== hpet_readl(HPET_COUNTER
)) {
803 "HPET counter not counting. HPET disabled\n");
807 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
811 static u32
*hpet_boot_cfg
;
814 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
816 int __init
hpet_enable(void)
818 u32 hpet_period
, cfg
, id
;
820 unsigned int i
, last
;
822 if (!is_hpet_capable())
828 * Read the period and check for a sane value:
830 hpet_period
= hpet_readl(HPET_PERIOD
);
833 * AMD SB700 based systems with spread spectrum enabled use a
834 * SMM based HPET emulation to provide proper frequency
835 * setting. The SMM code is initialized with the first HPET
836 * register access and takes some time to complete. During
837 * this time the config register reads 0xffffffff. We check
838 * for max. 1000 loops whether the config register reads a non
839 * 0xffffffff value to make sure that HPET is up and running
840 * before we go further. A counting loop is safe, as the HPET
841 * access takes thousands of CPU cycles. On non SB700 based
842 * machines this check is only done once and has no side
845 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
848 "HPET config register value = 0xFFFFFFFF. "
854 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
858 * The period is a femto seconds value. Convert it to a
862 do_div(freq
, hpet_period
);
866 * Read the HPET ID register to retrieve the IRQ routing
867 * information and the number of channels
869 id
= hpet_readl(HPET_ID
);
872 last
= (id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
;
874 #ifdef CONFIG_HPET_EMULATE_RTC
876 * The legacy routing mode needs at least two channels, tick timer
877 * and the rtc emulation channel.
883 cfg
= hpet_readl(HPET_CFG
);
884 hpet_boot_cfg
= kmalloc((last
+ 2) * sizeof(*hpet_boot_cfg
),
887 *hpet_boot_cfg
= cfg
;
889 pr_warn("HPET initial state will not be saved\n");
890 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
891 hpet_writel(cfg
, HPET_CFG
);
893 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
896 for (i
= 0; i
<= last
; ++i
) {
897 cfg
= hpet_readl(HPET_Tn_CFG(i
));
899 hpet_boot_cfg
[i
+ 1] = cfg
;
900 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
901 hpet_writel(cfg
, HPET_Tn_CFG(i
));
902 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
903 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
904 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
906 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
911 if (hpet_clocksource_register())
914 if (id
& HPET_ID_LEGSUP
) {
915 hpet_legacy_clockevent_register();
921 hpet_clear_mapping();
927 * Needs to be late, as the reserve_timer code calls kalloc !
929 * Not a problem on i386 as hpet_enable is called from late_time_init,
930 * but on x86_64 it is necessary !
932 static __init
int hpet_late_init(void)
936 if (boot_hpet_disable
)
940 if (!force_hpet_address
)
943 hpet_address
= force_hpet_address
;
947 if (!hpet_virt_address
)
950 if (hpet_readl(HPET_ID
) & HPET_ID_LEGSUP
)
951 hpet_msi_capability_lookup(2);
953 hpet_msi_capability_lookup(0);
955 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
958 if (hpet_msi_disable
)
961 if (boot_cpu_has(X86_FEATURE_ARAT
))
964 cpu_notifier_register_begin();
965 for_each_online_cpu(cpu
) {
966 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
969 /* This notifier should be called after workqueue is ready */
970 __hotcpu_notifier(hpet_cpuhp_notify
, -20);
971 cpu_notifier_register_done();
975 fs_initcall(hpet_late_init
);
977 void hpet_disable(void)
979 if (is_hpet_capable() && hpet_virt_address
) {
980 unsigned int cfg
= hpet_readl(HPET_CFG
), id
, last
;
983 cfg
= *hpet_boot_cfg
;
984 else if (hpet_legacy_int_enabled
) {
985 cfg
&= ~HPET_CFG_LEGACY
;
986 hpet_legacy_int_enabled
= false;
988 cfg
&= ~HPET_CFG_ENABLE
;
989 hpet_writel(cfg
, HPET_CFG
);
994 id
= hpet_readl(HPET_ID
);
995 last
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
997 for (id
= 0; id
<= last
; ++id
)
998 hpet_writel(hpet_boot_cfg
[id
+ 1], HPET_Tn_CFG(id
));
1000 if (*hpet_boot_cfg
& HPET_CFG_ENABLE
)
1001 hpet_writel(*hpet_boot_cfg
, HPET_CFG
);
1005 #ifdef CONFIG_HPET_EMULATE_RTC
1007 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1008 * is enabled, we support RTC interrupt functionality in software.
1009 * RTC has 3 kinds of interrupts:
1010 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1012 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1013 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1014 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1015 * (1) and (2) above are implemented using polling at a frequency of
1016 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1017 * overhead. (DEFAULT_RTC_INT_FREQ)
1018 * For (3), we use interrupts at 64Hz or user specified periodic
1019 * frequency, whichever is higher.
1021 #include <linux/mc146818rtc.h>
1022 #include <linux/rtc.h>
1023 #include <asm/rtc.h>
1025 #define DEFAULT_RTC_INT_FREQ 64
1026 #define DEFAULT_RTC_SHIFT 6
1027 #define RTC_NUM_INTS 1
1029 static unsigned long hpet_rtc_flags
;
1030 static int hpet_prev_update_sec
;
1031 static struct rtc_time hpet_alarm_time
;
1032 static unsigned long hpet_pie_count
;
1033 static u32 hpet_t1_cmp
;
1034 static u32 hpet_default_delta
;
1035 static u32 hpet_pie_delta
;
1036 static unsigned long hpet_pie_limit
;
1038 static rtc_irq_handler irq_handler
;
1041 * Check that the hpet counter c1 is ahead of the c2
1043 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1045 return (s32
)(c2
- c1
) < 0;
1049 * Registers a IRQ handler.
1051 int hpet_register_irq_handler(rtc_irq_handler handler
)
1053 if (!is_hpet_enabled())
1058 irq_handler
= handler
;
1062 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1065 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1068 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1070 if (!is_hpet_enabled())
1076 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1079 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1080 * is not supported by all HPET implementations for timer 1.
1082 * hpet_rtc_timer_init() is called when the rtc is initialized.
1084 int hpet_rtc_timer_init(void)
1086 unsigned int cfg
, cnt
, delta
;
1087 unsigned long flags
;
1089 if (!is_hpet_enabled())
1092 if (!hpet_default_delta
) {
1095 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1096 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
1097 hpet_default_delta
= clc
;
1100 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1101 delta
= hpet_default_delta
;
1103 delta
= hpet_pie_delta
;
1105 local_irq_save(flags
);
1107 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1108 hpet_writel(cnt
, HPET_T1_CMP
);
1111 cfg
= hpet_readl(HPET_T1_CFG
);
1112 cfg
&= ~HPET_TN_PERIODIC
;
1113 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1114 hpet_writel(cfg
, HPET_T1_CFG
);
1116 local_irq_restore(flags
);
1120 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1122 static void hpet_disable_rtc_channel(void)
1124 u32 cfg
= hpet_readl(HPET_T1_CFG
);
1125 cfg
&= ~HPET_TN_ENABLE
;
1126 hpet_writel(cfg
, HPET_T1_CFG
);
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1134 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1136 if (!is_hpet_enabled())
1139 hpet_rtc_flags
&= ~bit_mask
;
1140 if (unlikely(!hpet_rtc_flags
))
1141 hpet_disable_rtc_channel();
1145 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1147 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1149 unsigned long oldbits
= hpet_rtc_flags
;
1151 if (!is_hpet_enabled())
1154 hpet_rtc_flags
|= bit_mask
;
1156 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1157 hpet_prev_update_sec
= -1;
1160 hpet_rtc_timer_init();
1164 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1166 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1169 if (!is_hpet_enabled())
1172 hpet_alarm_time
.tm_hour
= hrs
;
1173 hpet_alarm_time
.tm_min
= min
;
1174 hpet_alarm_time
.tm_sec
= sec
;
1178 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1180 int hpet_set_periodic_freq(unsigned long freq
)
1184 if (!is_hpet_enabled())
1187 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1188 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1190 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1192 clc
>>= hpet_clockevent
.shift
;
1193 hpet_pie_delta
= clc
;
1198 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1200 int hpet_rtc_dropped_irq(void)
1202 return is_hpet_enabled();
1204 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1206 static void hpet_rtc_timer_reinit(void)
1211 if (unlikely(!hpet_rtc_flags
))
1212 hpet_disable_rtc_channel();
1214 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1215 delta
= hpet_default_delta
;
1217 delta
= hpet_pie_delta
;
1220 * Increment the comparator value until we are ahead of the
1224 hpet_t1_cmp
+= delta
;
1225 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1227 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1230 if (hpet_rtc_flags
& RTC_PIE
)
1231 hpet_pie_count
+= lost_ints
;
1232 if (printk_ratelimit())
1233 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1238 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1240 struct rtc_time curr_time
;
1241 unsigned long rtc_int_flag
= 0;
1243 hpet_rtc_timer_reinit();
1244 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1246 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1247 get_rtc_time(&curr_time
);
1249 if (hpet_rtc_flags
& RTC_UIE
&&
1250 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1251 if (hpet_prev_update_sec
>= 0)
1252 rtc_int_flag
= RTC_UF
;
1253 hpet_prev_update_sec
= curr_time
.tm_sec
;
1256 if (hpet_rtc_flags
& RTC_PIE
&&
1257 ++hpet_pie_count
>= hpet_pie_limit
) {
1258 rtc_int_flag
|= RTC_PF
;
1262 if (hpet_rtc_flags
& RTC_AIE
&&
1263 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1264 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1265 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1266 rtc_int_flag
|= RTC_AF
;
1269 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1271 irq_handler(rtc_int_flag
, dev_id
);
1275 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);