2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock
);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node
);
82 EXPORT_PER_CPU_SYMBOL(numa_node
);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
96 int _node_numa_mem_
[MAX_NUMNODES
];
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex
);
101 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy
;
105 EXPORT_SYMBOL(latent_entropy
);
109 * Array of node states.
111 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
112 [N_POSSIBLE
] = NODE_MASK_ALL
,
113 [N_ONLINE
] = { { [0] = 1UL } },
115 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
119 [N_MEMORY
] = { { [0] = 1UL } },
120 [N_CPU
] = { { [0] = 1UL } },
123 EXPORT_SYMBOL(node_states
);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock
);
128 unsigned long totalram_pages __read_mostly
;
129 unsigned long totalreserve_pages __read_mostly
;
130 unsigned long totalcma_pages __read_mostly
;
132 int percpu_pagelist_fraction
;
133 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page
*page
)
148 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
150 page
->index
= migratetype
;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask
;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex
));
168 if (saved_gfp_mask
) {
169 gfp_allowed_mask
= saved_gfp_mask
;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex
));
177 WARN_ON(saved_gfp_mask
);
178 saved_gfp_mask
= gfp_allowed_mask
;
179 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly
;
194 static void __free_pages_ok(struct page
*page
, unsigned int order
);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
214 #ifdef CONFIG_HIGHMEM
220 EXPORT_SYMBOL(totalram_pages
);
222 static char * const zone_names
[MAX_NR_ZONES
] = {
223 #ifdef CONFIG_ZONE_DMA
226 #ifdef CONFIG_ZONE_DMA32
230 #ifdef CONFIG_HIGHMEM
234 #ifdef CONFIG_ZONE_DEVICE
239 char * const migratetype_names
[MIGRATE_TYPES
] = {
247 #ifdef CONFIG_MEMORY_ISOLATION
252 compound_page_dtor
* const compound_page_dtors
[] = {
255 #ifdef CONFIG_HUGETLB_PAGE
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 int min_free_kbytes
= 1024;
264 int user_min_free_kbytes
= -1;
265 int watermark_scale_factor
= 10;
267 static unsigned long __meminitdata nr_kernel_pages
;
268 static unsigned long __meminitdata nr_all_pages
;
269 static unsigned long __meminitdata dma_reserve
;
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
274 static unsigned long __initdata required_kernelcore
;
275 static unsigned long __initdata required_movablecore
;
276 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
277 static bool mirrored_kernelcore
;
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 EXPORT_SYMBOL(movable_zone
);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
285 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
286 int nr_online_nodes __read_mostly
= 1;
287 EXPORT_SYMBOL(nr_node_ids
);
288 EXPORT_SYMBOL(nr_online_nodes
);
291 int page_group_by_mobility_disabled __read_mostly
;
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * Determine how many pages need to be initialized durig early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
301 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
303 phys_addr_t start_addr
, end_addr
;
304 unsigned long max_pgcnt
;
305 unsigned long reserved
;
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
311 max_pgcnt
= max(2UL << (30 - PAGE_SHIFT
),
312 (pgdat
->node_spanned_pages
>> 8));
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
319 start_addr
= PFN_PHYS(pgdat
->node_start_pfn
);
320 end_addr
= PFN_PHYS(pgdat
->node_start_pfn
+ max_pgcnt
);
321 reserved
= memblock_reserved_memory_within(start_addr
, end_addr
);
322 max_pgcnt
+= PHYS_PFN(reserved
);
324 pgdat
->static_init_pgcnt
= min(max_pgcnt
, pgdat
->node_spanned_pages
);
325 pgdat
->first_deferred_pfn
= ULONG_MAX
;
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
331 int nid
= early_pfn_to_nid(pfn
);
333 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
343 static inline bool update_defer_init(pg_data_t
*pgdat
,
344 unsigned long pfn
, unsigned long zone_end
,
345 unsigned long *nr_initialised
)
347 /* Always populate low zones for address-contrained allocations */
348 if (zone_end
< pgdat_end_pfn(pgdat
))
351 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
352 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
353 pgdat
->first_deferred_pfn
= pfn
;
360 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
364 static inline bool early_page_uninitialised(unsigned long pfn
)
369 static inline bool update_defer_init(pg_data_t
*pgdat
,
370 unsigned long pfn
, unsigned long zone_end
,
371 unsigned long *nr_initialised
)
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
381 #ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn
)->pageblock_flags
;
384 return page_zone(page
)->pageblock_flags
;
385 #endif /* CONFIG_SPARSEMEM */
388 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
390 #ifdef CONFIG_SPARSEMEM
391 pfn
&= (PAGES_PER_SECTION
-1);
392 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
394 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
395 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
396 #endif /* CONFIG_SPARSEMEM */
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
406 * Return: pageblock_bits flags
408 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
410 unsigned long end_bitidx
,
413 unsigned long *bitmap
;
414 unsigned long bitidx
, word_bitidx
;
417 bitmap
= get_pageblock_bitmap(page
, pfn
);
418 bitidx
= pfn_to_bitidx(page
, pfn
);
419 word_bitidx
= bitidx
/ BITS_PER_LONG
;
420 bitidx
&= (BITS_PER_LONG
-1);
422 word
= bitmap
[word_bitidx
];
423 bitidx
+= end_bitidx
;
424 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
427 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
428 unsigned long end_bitidx
,
431 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
434 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
436 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
447 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
449 unsigned long end_bitidx
,
452 unsigned long *bitmap
;
453 unsigned long bitidx
, word_bitidx
;
454 unsigned long old_word
, word
;
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
458 bitmap
= get_pageblock_bitmap(page
, pfn
);
459 bitidx
= pfn_to_bitidx(page
, pfn
);
460 word_bitidx
= bitidx
/ BITS_PER_LONG
;
461 bitidx
&= (BITS_PER_LONG
-1);
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
465 bitidx
+= end_bitidx
;
466 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
467 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
469 word
= READ_ONCE(bitmap
[word_bitidx
]);
471 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
472 if (word
== old_word
)
478 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
480 if (unlikely(page_group_by_mobility_disabled
&&
481 migratetype
< MIGRATE_PCPTYPES
))
482 migratetype
= MIGRATE_UNMOVABLE
;
484 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
485 PB_migrate
, PB_migrate_end
);
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
493 unsigned long pfn
= page_to_pfn(page
);
494 unsigned long sp
, start_pfn
;
497 seq
= zone_span_seqbegin(zone
);
498 start_pfn
= zone
->zone_start_pfn
;
499 sp
= zone
->spanned_pages
;
500 if (!zone_spans_pfn(zone
, pfn
))
502 } while (zone_span_seqretry(zone
, seq
));
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn
, zone_to_nid(zone
), zone
->name
,
507 start_pfn
, start_pfn
+ sp
);
512 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
514 if (!pfn_valid_within(page_to_pfn(page
)))
516 if (zone
!= page_zone(page
))
522 * Temporary debugging check for pages not lying within a given zone.
524 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
526 if (page_outside_zone_boundaries(zone
, page
))
528 if (!page_is_consistent(zone
, page
))
534 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
540 static void bad_page(struct page
*page
, const char *reason
,
541 unsigned long bad_flags
)
543 static unsigned long resume
;
544 static unsigned long nr_shown
;
545 static unsigned long nr_unshown
;
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
551 if (nr_shown
== 60) {
552 if (time_before(jiffies
, resume
)) {
558 "BUG: Bad page state: %lu messages suppressed\n",
565 resume
= jiffies
+ 60 * HZ
;
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current
->comm
, page_to_pfn(page
));
569 __dump_page(page
, reason
);
570 bad_flags
&= page
->flags
;
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags
, &bad_flags
);
574 dump_page_owner(page
);
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page
); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
585 * Higher-order pages are called "compound pages". They are structured thusly:
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
599 void free_compound_page(struct page
*page
)
601 __free_pages_ok(page
, compound_order(page
));
604 void prep_compound_page(struct page
*page
, unsigned int order
)
607 int nr_pages
= 1 << order
;
609 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
610 set_compound_order(page
, order
);
612 for (i
= 1; i
< nr_pages
; i
++) {
613 struct page
*p
= page
+ i
;
614 set_page_count(p
, 0);
615 p
->mapping
= TAIL_MAPPING
;
616 set_compound_head(p
, page
);
618 atomic_set(compound_mapcount_ptr(page
), -1);
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder
;
623 bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
626 bool _debug_guardpage_enabled __read_mostly
;
628 static int __init
early_debug_pagealloc(char *buf
)
632 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
634 early_param("debug_pagealloc", early_debug_pagealloc
);
636 static bool need_debug_guardpage(void)
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
642 if (!debug_guardpage_minorder())
648 static void init_debug_guardpage(void)
650 if (!debug_pagealloc_enabled())
653 if (!debug_guardpage_minorder())
656 _debug_guardpage_enabled
= true;
659 struct page_ext_operations debug_guardpage_ops
= {
660 .need
= need_debug_guardpage
,
661 .init
= init_debug_guardpage
,
664 static int __init
debug_guardpage_minorder_setup(char *buf
)
668 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
672 _debug_guardpage_minorder
= res
;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
678 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
679 unsigned int order
, int migratetype
)
681 struct page_ext
*page_ext
;
683 if (!debug_guardpage_enabled())
686 if (order
>= debug_guardpage_minorder())
689 page_ext
= lookup_page_ext(page
);
690 if (unlikely(!page_ext
))
693 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
695 INIT_LIST_HEAD(&page
->lru
);
696 set_page_private(page
, order
);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
703 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
704 unsigned int order
, int migratetype
)
706 struct page_ext
*page_ext
;
708 if (!debug_guardpage_enabled())
711 page_ext
= lookup_page_ext(page
);
712 if (unlikely(!page_ext
))
715 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
717 set_page_private(page
, 0);
718 if (!is_migrate_isolate(migratetype
))
719 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
722 struct page_ext_operations debug_guardpage_ops
;
723 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
724 unsigned int order
, int migratetype
) { return false; }
725 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
726 unsigned int order
, int migratetype
) {}
729 static inline void set_page_order(struct page
*page
, unsigned int order
)
731 set_page_private(page
, order
);
732 __SetPageBuddy(page
);
735 static inline void rmv_page_order(struct page
*page
)
737 __ClearPageBuddy(page
);
738 set_page_private(page
, 0);
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
754 * For recording page's order, we use page_private(page).
756 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
759 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
760 if (page_zone_id(page
) != page_zone_id(buddy
))
763 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
768 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
774 if (page_zone_id(page
) != page_zone_id(buddy
))
777 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
785 * Freeing function for a buddy system allocator.
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
800 * So when we are allocating or freeing one, we can derive the state of the
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
803 * If a block is freed, and its buddy is also free, then this
804 * triggers coalescing into a block of larger size.
809 static inline void __free_one_page(struct page
*page
,
811 struct zone
*zone
, unsigned int order
,
814 unsigned long combined_pfn
;
815 unsigned long uninitialized_var(buddy_pfn
);
817 unsigned int max_order
;
819 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
821 VM_BUG_ON(!zone_is_initialized(zone
));
822 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
824 VM_BUG_ON(migratetype
== -1);
825 if (likely(!is_migrate_isolate(migratetype
)))
826 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
828 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
829 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
832 while (order
< max_order
- 1) {
833 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
834 buddy
= page
+ (buddy_pfn
- pfn
);
836 if (!pfn_valid_within(buddy_pfn
))
838 if (!page_is_buddy(page
, buddy
, order
))
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
844 if (page_is_guard(buddy
)) {
845 clear_page_guard(zone
, buddy
, order
, migratetype
);
847 list_del(&buddy
->lru
);
848 zone
->free_area
[order
].nr_free
--;
849 rmv_page_order(buddy
);
851 combined_pfn
= buddy_pfn
& pfn
;
852 page
= page
+ (combined_pfn
- pfn
);
856 if (max_order
< MAX_ORDER
) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
862 * We don't want to hit this code for the more frequent
865 if (unlikely(has_isolate_pageblock(zone
))) {
868 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
869 buddy
= page
+ (buddy_pfn
- pfn
);
870 buddy_mt
= get_pageblock_migratetype(buddy
);
872 if (migratetype
!= buddy_mt
873 && (is_migrate_isolate(migratetype
) ||
874 is_migrate_isolate(buddy_mt
)))
878 goto continue_merging
;
882 set_page_order(page
, order
);
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
892 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
893 struct page
*higher_page
, *higher_buddy
;
894 combined_pfn
= buddy_pfn
& pfn
;
895 higher_page
= page
+ (combined_pfn
- pfn
);
896 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
897 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
898 if (pfn_valid_within(buddy_pfn
) &&
899 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
900 list_add_tail(&page
->lru
,
901 &zone
->free_area
[order
].free_list
[migratetype
]);
906 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
908 zone
->free_area
[order
].nr_free
++;
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
916 static inline bool page_expected_state(struct page
*page
,
917 unsigned long check_flags
)
919 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
922 if (unlikely((unsigned long)page
->mapping
|
923 page_ref_count(page
) |
925 (unsigned long)page
->mem_cgroup
|
927 (page
->flags
& check_flags
)))
933 static void free_pages_check_bad(struct page
*page
)
935 const char *bad_reason
;
936 unsigned long bad_flags
;
941 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
942 bad_reason
= "nonzero mapcount";
943 if (unlikely(page
->mapping
!= NULL
))
944 bad_reason
= "non-NULL mapping";
945 if (unlikely(page_ref_count(page
) != 0))
946 bad_reason
= "nonzero _refcount";
947 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
948 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
952 if (unlikely(page
->mem_cgroup
))
953 bad_reason
= "page still charged to cgroup";
955 bad_page(page
, bad_reason
, bad_flags
);
958 static inline int free_pages_check(struct page
*page
)
960 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page
);
968 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
978 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
982 switch (page
- head_page
) {
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page
))) {
986 bad_page(page
, "nonzero compound_mapcount", 0);
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
997 if (page
->mapping
!= TAIL_MAPPING
) {
998 bad_page(page
, "corrupted mapping in tail page", 0);
1003 if (unlikely(!PageTail(page
))) {
1004 bad_page(page
, "PageTail not set", 0);
1007 if (unlikely(compound_head(page
) != head_page
)) {
1008 bad_page(page
, "compound_head not consistent", 0);
1013 page
->mapping
= NULL
;
1014 clear_compound_head(page
);
1018 static __always_inline
bool free_pages_prepare(struct page
*page
,
1019 unsigned int order
, bool check_free
)
1023 VM_BUG_ON_PAGE(PageTail(page
), page
);
1025 trace_mm_page_free(page
, order
);
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1031 if (unlikely(order
)) {
1032 bool compound
= PageCompound(page
);
1035 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1038 ClearPageDoubleMap(page
);
1039 for (i
= 1; i
< (1 << order
); i
++) {
1041 bad
+= free_tail_pages_check(page
, page
+ i
);
1042 if (unlikely(free_pages_check(page
+ i
))) {
1046 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1049 if (PageMappingFlags(page
))
1050 page
->mapping
= NULL
;
1051 if (memcg_kmem_enabled() && PageKmemcg(page
))
1052 memcg_kmem_uncharge(page
, order
);
1054 bad
+= free_pages_check(page
);
1058 page_cpupid_reset_last(page
);
1059 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1060 reset_page_owner(page
, order
);
1062 if (!PageHighMem(page
)) {
1063 debug_check_no_locks_freed(page_address(page
),
1064 PAGE_SIZE
<< order
);
1065 debug_check_no_obj_freed(page_address(page
),
1066 PAGE_SIZE
<< order
);
1068 arch_free_page(page
, order
);
1069 kernel_poison_pages(page
, 1 << order
, 0);
1070 kernel_map_pages(page
, 1 << order
, 0);
1071 kasan_free_pages(page
, order
);
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page
*page
)
1079 return free_pages_prepare(page
, 0, true);
1082 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1087 static bool free_pcp_prepare(struct page
*page
)
1089 return free_pages_prepare(page
, 0, false);
1092 static bool bulkfree_pcp_prepare(struct page
*page
)
1094 return free_pages_check(page
);
1096 #endif /* CONFIG_DEBUG_VM */
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1109 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1110 struct per_cpu_pages
*pcp
)
1112 int migratetype
= 0;
1114 bool isolated_pageblocks
;
1116 spin_lock(&zone
->lock
);
1117 isolated_pageblocks
= has_isolate_pageblock(zone
);
1121 struct list_head
*list
;
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1132 if (++migratetype
== MIGRATE_PCPTYPES
)
1134 list
= &pcp
->lists
[migratetype
];
1135 } while (list_empty(list
));
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free
== MIGRATE_PCPTYPES
)
1142 int mt
; /* migratetype of the to-be-freed page */
1144 page
= list_last_entry(list
, struct page
, lru
);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page
->lru
);
1148 mt
= get_pcppage_migratetype(page
);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks
))
1153 mt
= get_pageblock_migratetype(page
);
1155 if (bulkfree_pcp_prepare(page
))
1158 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1159 trace_mm_page_pcpu_drain(page
, 0, mt
);
1160 } while (--count
&& --batch_free
&& !list_empty(list
));
1162 spin_unlock(&zone
->lock
);
1165 static void free_one_page(struct zone
*zone
,
1166 struct page
*page
, unsigned long pfn
,
1170 spin_lock(&zone
->lock
);
1171 if (unlikely(has_isolate_pageblock(zone
) ||
1172 is_migrate_isolate(migratetype
))) {
1173 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1175 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1176 spin_unlock(&zone
->lock
);
1179 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1180 unsigned long zone
, int nid
, bool zero
)
1183 mm_zero_struct_page(page
);
1184 set_page_links(page
, zone
, nid
, pfn
);
1185 init_page_count(page
);
1186 page_mapcount_reset(page
);
1187 page_cpupid_reset_last(page
);
1189 INIT_LIST_HEAD(&page
->lru
);
1190 #ifdef WANT_PAGE_VIRTUAL
1191 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1192 if (!is_highmem_idx(zone
))
1193 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1197 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1200 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
, zero
);
1203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1204 static void __meminit
init_reserved_page(unsigned long pfn
)
1209 if (!early_page_uninitialised(pfn
))
1212 nid
= early_pfn_to_nid(pfn
);
1213 pgdat
= NODE_DATA(nid
);
1215 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1216 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1218 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1221 __init_single_pfn(pfn
, zid
, nid
, true);
1224 static inline void init_reserved_page(unsigned long pfn
)
1227 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1230 * Initialised pages do not have PageReserved set. This function is
1231 * called for each range allocated by the bootmem allocator and
1232 * marks the pages PageReserved. The remaining valid pages are later
1233 * sent to the buddy page allocator.
1235 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1237 unsigned long start_pfn
= PFN_DOWN(start
);
1238 unsigned long end_pfn
= PFN_UP(end
);
1240 for (; start_pfn
< end_pfn
; start_pfn
++) {
1241 if (pfn_valid(start_pfn
)) {
1242 struct page
*page
= pfn_to_page(start_pfn
);
1244 init_reserved_page(start_pfn
);
1246 /* Avoid false-positive PageTail() */
1247 INIT_LIST_HEAD(&page
->lru
);
1249 SetPageReserved(page
);
1254 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1256 unsigned long flags
;
1258 unsigned long pfn
= page_to_pfn(page
);
1260 if (!free_pages_prepare(page
, order
, true))
1263 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1264 local_irq_save(flags
);
1265 __count_vm_events(PGFREE
, 1 << order
);
1266 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1267 local_irq_restore(flags
);
1270 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1272 unsigned int nr_pages
= 1 << order
;
1273 struct page
*p
= page
;
1277 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1279 __ClearPageReserved(p
);
1280 set_page_count(p
, 0);
1282 __ClearPageReserved(p
);
1283 set_page_count(p
, 0);
1285 page_zone(page
)->managed_pages
+= nr_pages
;
1286 set_page_refcounted(page
);
1287 __free_pages(page
, order
);
1290 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1291 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1293 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1295 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1297 static DEFINE_SPINLOCK(early_pfn_lock
);
1300 spin_lock(&early_pfn_lock
);
1301 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1303 nid
= first_online_node
;
1304 spin_unlock(&early_pfn_lock
);
1310 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1311 static inline bool __meminit __maybe_unused
1312 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1313 struct mminit_pfnnid_cache
*state
)
1317 nid
= __early_pfn_to_nid(pfn
, state
);
1318 if (nid
>= 0 && nid
!= node
)
1323 /* Only safe to use early in boot when initialisation is single-threaded */
1324 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1326 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1331 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1335 static inline bool __meminit __maybe_unused
1336 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1337 struct mminit_pfnnid_cache
*state
)
1344 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1347 if (early_page_uninitialised(pfn
))
1349 return __free_pages_boot_core(page
, order
);
1353 * Check that the whole (or subset of) a pageblock given by the interval of
1354 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1355 * with the migration of free compaction scanner. The scanners then need to
1356 * use only pfn_valid_within() check for arches that allow holes within
1359 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1361 * It's possible on some configurations to have a setup like node0 node1 node0
1362 * i.e. it's possible that all pages within a zones range of pages do not
1363 * belong to a single zone. We assume that a border between node0 and node1
1364 * can occur within a single pageblock, but not a node0 node1 node0
1365 * interleaving within a single pageblock. It is therefore sufficient to check
1366 * the first and last page of a pageblock and avoid checking each individual
1367 * page in a pageblock.
1369 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1370 unsigned long end_pfn
, struct zone
*zone
)
1372 struct page
*start_page
;
1373 struct page
*end_page
;
1375 /* end_pfn is one past the range we are checking */
1378 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1381 start_page
= pfn_to_online_page(start_pfn
);
1385 if (page_zone(start_page
) != zone
)
1388 end_page
= pfn_to_page(end_pfn
);
1390 /* This gives a shorter code than deriving page_zone(end_page) */
1391 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1397 void set_zone_contiguous(struct zone
*zone
)
1399 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1400 unsigned long block_end_pfn
;
1402 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1403 for (; block_start_pfn
< zone_end_pfn(zone
);
1404 block_start_pfn
= block_end_pfn
,
1405 block_end_pfn
+= pageblock_nr_pages
) {
1407 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1409 if (!__pageblock_pfn_to_page(block_start_pfn
,
1410 block_end_pfn
, zone
))
1414 /* We confirm that there is no hole */
1415 zone
->contiguous
= true;
1418 void clear_zone_contiguous(struct zone
*zone
)
1420 zone
->contiguous
= false;
1423 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1424 static void __init
deferred_free_range(unsigned long pfn
,
1425 unsigned long nr_pages
)
1433 page
= pfn_to_page(pfn
);
1435 /* Free a large naturally-aligned chunk if possible */
1436 if (nr_pages
== pageblock_nr_pages
&&
1437 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1438 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1439 __free_pages_boot_core(page
, pageblock_order
);
1443 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1444 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1445 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1446 __free_pages_boot_core(page
, 0);
1450 /* Completion tracking for deferred_init_memmap() threads */
1451 static atomic_t pgdat_init_n_undone __initdata
;
1452 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1454 static inline void __init
pgdat_init_report_one_done(void)
1456 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1457 complete(&pgdat_init_all_done_comp
);
1461 * Helper for deferred_init_range, free the given range, reset the counters, and
1462 * return number of pages freed.
1464 static inline unsigned long __init
__def_free(unsigned long *nr_free
,
1465 unsigned long *free_base_pfn
,
1468 unsigned long nr
= *nr_free
;
1470 deferred_free_range(*free_base_pfn
, nr
);
1478 static unsigned long __init
deferred_init_range(int nid
, int zid
,
1479 unsigned long start_pfn
,
1480 unsigned long end_pfn
)
1482 struct mminit_pfnnid_cache nid_init_state
= { };
1483 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1484 unsigned long free_base_pfn
= 0;
1485 unsigned long nr_pages
= 0;
1486 unsigned long nr_free
= 0;
1487 struct page
*page
= NULL
;
1491 * First we check if pfn is valid on architectures where it is possible
1492 * to have holes within pageblock_nr_pages. On systems where it is not
1493 * possible, this function is optimized out.
1495 * Then, we check if a current large page is valid by only checking the
1496 * validity of the head pfn.
1498 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1499 * within a node: a pfn is between start and end of a node, but does not
1500 * belong to this memory node.
1502 * Finally, we minimize pfn page lookups and scheduler checks by
1503 * performing it only once every pageblock_nr_pages.
1505 * We do it in two loops: first we initialize struct page, than free to
1506 * buddy allocator, becuse while we are freeing pages we can access
1507 * pages that are ahead (computing buddy page in __free_one_page()).
1509 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1510 if (!pfn_valid_within(pfn
))
1512 if ((pfn
& nr_pgmask
) || pfn_valid(pfn
)) {
1513 if (meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1514 if (page
&& (pfn
& nr_pgmask
))
1517 page
= pfn_to_page(pfn
);
1518 __init_single_page(page
, pfn
, zid
, nid
, true);
1525 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1526 if (!pfn_valid_within(pfn
)) {
1527 nr_pages
+= __def_free(&nr_free
, &free_base_pfn
, &page
);
1528 } else if (!(pfn
& nr_pgmask
) && !pfn_valid(pfn
)) {
1529 nr_pages
+= __def_free(&nr_free
, &free_base_pfn
, &page
);
1530 } else if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1531 nr_pages
+= __def_free(&nr_free
, &free_base_pfn
, &page
);
1532 } else if (page
&& (pfn
& nr_pgmask
)) {
1536 nr_pages
+= __def_free(&nr_free
, &free_base_pfn
, &page
);
1537 page
= pfn_to_page(pfn
);
1538 free_base_pfn
= pfn
;
1543 /* Free the last block of pages to allocator */
1544 nr_pages
+= __def_free(&nr_free
, &free_base_pfn
, &page
);
1549 /* Initialise remaining memory on a node */
1550 static int __init
deferred_init_memmap(void *data
)
1552 pg_data_t
*pgdat
= data
;
1553 int nid
= pgdat
->node_id
;
1554 unsigned long start
= jiffies
;
1555 unsigned long nr_pages
= 0;
1556 unsigned long spfn
, epfn
;
1557 phys_addr_t spa
, epa
;
1560 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1561 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1564 if (first_init_pfn
== ULONG_MAX
) {
1565 pgdat_init_report_one_done();
1569 /* Bind memory initialisation thread to a local node if possible */
1570 if (!cpumask_empty(cpumask
))
1571 set_cpus_allowed_ptr(current
, cpumask
);
1573 /* Sanity check boundaries */
1574 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1575 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1576 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1578 /* Only the highest zone is deferred so find it */
1579 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1580 zone
= pgdat
->node_zones
+ zid
;
1581 if (first_init_pfn
< zone_end_pfn(zone
))
1584 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1586 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1587 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1588 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1589 nr_pages
+= deferred_init_range(nid
, zid
, spfn
, epfn
);
1592 /* Sanity check that the next zone really is unpopulated */
1593 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1595 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1596 jiffies_to_msecs(jiffies
- start
));
1598 pgdat_init_report_one_done();
1601 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1603 void __init
page_alloc_init_late(void)
1607 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1610 /* There will be num_node_state(N_MEMORY) threads */
1611 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1612 for_each_node_state(nid
, N_MEMORY
) {
1613 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1616 /* Block until all are initialised */
1617 wait_for_completion(&pgdat_init_all_done_comp
);
1619 /* Reinit limits that are based on free pages after the kernel is up */
1620 files_maxfiles_init();
1622 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1623 /* Discard memblock private memory */
1627 for_each_populated_zone(zone
)
1628 set_zone_contiguous(zone
);
1632 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1633 void __init
init_cma_reserved_pageblock(struct page
*page
)
1635 unsigned i
= pageblock_nr_pages
;
1636 struct page
*p
= page
;
1639 __ClearPageReserved(p
);
1640 set_page_count(p
, 0);
1643 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1645 if (pageblock_order
>= MAX_ORDER
) {
1646 i
= pageblock_nr_pages
;
1649 set_page_refcounted(p
);
1650 __free_pages(p
, MAX_ORDER
- 1);
1651 p
+= MAX_ORDER_NR_PAGES
;
1652 } while (i
-= MAX_ORDER_NR_PAGES
);
1654 set_page_refcounted(page
);
1655 __free_pages(page
, pageblock_order
);
1658 adjust_managed_page_count(page
, pageblock_nr_pages
);
1663 * The order of subdivision here is critical for the IO subsystem.
1664 * Please do not alter this order without good reasons and regression
1665 * testing. Specifically, as large blocks of memory are subdivided,
1666 * the order in which smaller blocks are delivered depends on the order
1667 * they're subdivided in this function. This is the primary factor
1668 * influencing the order in which pages are delivered to the IO
1669 * subsystem according to empirical testing, and this is also justified
1670 * by considering the behavior of a buddy system containing a single
1671 * large block of memory acted on by a series of small allocations.
1672 * This behavior is a critical factor in sglist merging's success.
1676 static inline void expand(struct zone
*zone
, struct page
*page
,
1677 int low
, int high
, struct free_area
*area
,
1680 unsigned long size
= 1 << high
;
1682 while (high
> low
) {
1686 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1689 * Mark as guard pages (or page), that will allow to
1690 * merge back to allocator when buddy will be freed.
1691 * Corresponding page table entries will not be touched,
1692 * pages will stay not present in virtual address space
1694 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1697 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1699 set_page_order(&page
[size
], high
);
1703 static void check_new_page_bad(struct page
*page
)
1705 const char *bad_reason
= NULL
;
1706 unsigned long bad_flags
= 0;
1708 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1709 bad_reason
= "nonzero mapcount";
1710 if (unlikely(page
->mapping
!= NULL
))
1711 bad_reason
= "non-NULL mapping";
1712 if (unlikely(page_ref_count(page
) != 0))
1713 bad_reason
= "nonzero _count";
1714 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1715 bad_reason
= "HWPoisoned (hardware-corrupted)";
1716 bad_flags
= __PG_HWPOISON
;
1717 /* Don't complain about hwpoisoned pages */
1718 page_mapcount_reset(page
); /* remove PageBuddy */
1721 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1722 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1723 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1726 if (unlikely(page
->mem_cgroup
))
1727 bad_reason
= "page still charged to cgroup";
1729 bad_page(page
, bad_reason
, bad_flags
);
1733 * This page is about to be returned from the page allocator
1735 static inline int check_new_page(struct page
*page
)
1737 if (likely(page_expected_state(page
,
1738 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1741 check_new_page_bad(page
);
1745 static inline bool free_pages_prezeroed(void)
1747 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1748 page_poisoning_enabled();
1751 #ifdef CONFIG_DEBUG_VM
1752 static bool check_pcp_refill(struct page
*page
)
1757 static bool check_new_pcp(struct page
*page
)
1759 return check_new_page(page
);
1762 static bool check_pcp_refill(struct page
*page
)
1764 return check_new_page(page
);
1766 static bool check_new_pcp(struct page
*page
)
1770 #endif /* CONFIG_DEBUG_VM */
1772 static bool check_new_pages(struct page
*page
, unsigned int order
)
1775 for (i
= 0; i
< (1 << order
); i
++) {
1776 struct page
*p
= page
+ i
;
1778 if (unlikely(check_new_page(p
)))
1785 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1788 set_page_private(page
, 0);
1789 set_page_refcounted(page
);
1791 arch_alloc_page(page
, order
);
1792 kernel_map_pages(page
, 1 << order
, 1);
1793 kernel_poison_pages(page
, 1 << order
, 1);
1794 kasan_alloc_pages(page
, order
);
1795 set_page_owner(page
, order
, gfp_flags
);
1798 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1799 unsigned int alloc_flags
)
1803 post_alloc_hook(page
, order
, gfp_flags
);
1805 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1806 for (i
= 0; i
< (1 << order
); i
++)
1807 clear_highpage(page
+ i
);
1809 if (order
&& (gfp_flags
& __GFP_COMP
))
1810 prep_compound_page(page
, order
);
1813 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1814 * allocate the page. The expectation is that the caller is taking
1815 * steps that will free more memory. The caller should avoid the page
1816 * being used for !PFMEMALLOC purposes.
1818 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1819 set_page_pfmemalloc(page
);
1821 clear_page_pfmemalloc(page
);
1825 * Go through the free lists for the given migratetype and remove
1826 * the smallest available page from the freelists
1828 static __always_inline
1829 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1832 unsigned int current_order
;
1833 struct free_area
*area
;
1836 /* Find a page of the appropriate size in the preferred list */
1837 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1838 area
= &(zone
->free_area
[current_order
]);
1839 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1843 list_del(&page
->lru
);
1844 rmv_page_order(page
);
1846 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1847 set_pcppage_migratetype(page
, migratetype
);
1856 * This array describes the order lists are fallen back to when
1857 * the free lists for the desirable migrate type are depleted
1859 static int fallbacks
[MIGRATE_TYPES
][4] = {
1860 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1861 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1862 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1864 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1866 #ifdef CONFIG_MEMORY_ISOLATION
1867 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1872 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1875 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1878 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1879 unsigned int order
) { return NULL
; }
1883 * Move the free pages in a range to the free lists of the requested type.
1884 * Note that start_page and end_pages are not aligned on a pageblock
1885 * boundary. If alignment is required, use move_freepages_block()
1887 static int move_freepages(struct zone
*zone
,
1888 struct page
*start_page
, struct page
*end_page
,
1889 int migratetype
, int *num_movable
)
1893 int pages_moved
= 0;
1895 #ifndef CONFIG_HOLES_IN_ZONE
1897 * page_zone is not safe to call in this context when
1898 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1899 * anyway as we check zone boundaries in move_freepages_block().
1900 * Remove at a later date when no bug reports exist related to
1901 * grouping pages by mobility
1903 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1909 for (page
= start_page
; page
<= end_page
;) {
1910 if (!pfn_valid_within(page_to_pfn(page
))) {
1915 /* Make sure we are not inadvertently changing nodes */
1916 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1918 if (!PageBuddy(page
)) {
1920 * We assume that pages that could be isolated for
1921 * migration are movable. But we don't actually try
1922 * isolating, as that would be expensive.
1925 (PageLRU(page
) || __PageMovable(page
)))
1932 order
= page_order(page
);
1933 list_move(&page
->lru
,
1934 &zone
->free_area
[order
].free_list
[migratetype
]);
1936 pages_moved
+= 1 << order
;
1942 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1943 int migratetype
, int *num_movable
)
1945 unsigned long start_pfn
, end_pfn
;
1946 struct page
*start_page
, *end_page
;
1948 start_pfn
= page_to_pfn(page
);
1949 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1950 start_page
= pfn_to_page(start_pfn
);
1951 end_page
= start_page
+ pageblock_nr_pages
- 1;
1952 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1954 /* Do not cross zone boundaries */
1955 if (!zone_spans_pfn(zone
, start_pfn
))
1957 if (!zone_spans_pfn(zone
, end_pfn
))
1960 return move_freepages(zone
, start_page
, end_page
, migratetype
,
1964 static void change_pageblock_range(struct page
*pageblock_page
,
1965 int start_order
, int migratetype
)
1967 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1969 while (nr_pageblocks
--) {
1970 set_pageblock_migratetype(pageblock_page
, migratetype
);
1971 pageblock_page
+= pageblock_nr_pages
;
1976 * When we are falling back to another migratetype during allocation, try to
1977 * steal extra free pages from the same pageblocks to satisfy further
1978 * allocations, instead of polluting multiple pageblocks.
1980 * If we are stealing a relatively large buddy page, it is likely there will
1981 * be more free pages in the pageblock, so try to steal them all. For
1982 * reclaimable and unmovable allocations, we steal regardless of page size,
1983 * as fragmentation caused by those allocations polluting movable pageblocks
1984 * is worse than movable allocations stealing from unmovable and reclaimable
1987 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1990 * Leaving this order check is intended, although there is
1991 * relaxed order check in next check. The reason is that
1992 * we can actually steal whole pageblock if this condition met,
1993 * but, below check doesn't guarantee it and that is just heuristic
1994 * so could be changed anytime.
1996 if (order
>= pageblock_order
)
1999 if (order
>= pageblock_order
/ 2 ||
2000 start_mt
== MIGRATE_RECLAIMABLE
||
2001 start_mt
== MIGRATE_UNMOVABLE
||
2002 page_group_by_mobility_disabled
)
2009 * This function implements actual steal behaviour. If order is large enough,
2010 * we can steal whole pageblock. If not, we first move freepages in this
2011 * pageblock to our migratetype and determine how many already-allocated pages
2012 * are there in the pageblock with a compatible migratetype. If at least half
2013 * of pages are free or compatible, we can change migratetype of the pageblock
2014 * itself, so pages freed in the future will be put on the correct free list.
2016 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2017 int start_type
, bool whole_block
)
2019 unsigned int current_order
= page_order(page
);
2020 struct free_area
*area
;
2021 int free_pages
, movable_pages
, alike_pages
;
2024 old_block_type
= get_pageblock_migratetype(page
);
2027 * This can happen due to races and we want to prevent broken
2028 * highatomic accounting.
2030 if (is_migrate_highatomic(old_block_type
))
2033 /* Take ownership for orders >= pageblock_order */
2034 if (current_order
>= pageblock_order
) {
2035 change_pageblock_range(page
, current_order
, start_type
);
2039 /* We are not allowed to try stealing from the whole block */
2043 free_pages
= move_freepages_block(zone
, page
, start_type
,
2046 * Determine how many pages are compatible with our allocation.
2047 * For movable allocation, it's the number of movable pages which
2048 * we just obtained. For other types it's a bit more tricky.
2050 if (start_type
== MIGRATE_MOVABLE
) {
2051 alike_pages
= movable_pages
;
2054 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2055 * to MOVABLE pageblock, consider all non-movable pages as
2056 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2057 * vice versa, be conservative since we can't distinguish the
2058 * exact migratetype of non-movable pages.
2060 if (old_block_type
== MIGRATE_MOVABLE
)
2061 alike_pages
= pageblock_nr_pages
2062 - (free_pages
+ movable_pages
);
2067 /* moving whole block can fail due to zone boundary conditions */
2072 * If a sufficient number of pages in the block are either free or of
2073 * comparable migratability as our allocation, claim the whole block.
2075 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2076 page_group_by_mobility_disabled
)
2077 set_pageblock_migratetype(page
, start_type
);
2082 area
= &zone
->free_area
[current_order
];
2083 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2087 * Check whether there is a suitable fallback freepage with requested order.
2088 * If only_stealable is true, this function returns fallback_mt only if
2089 * we can steal other freepages all together. This would help to reduce
2090 * fragmentation due to mixed migratetype pages in one pageblock.
2092 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2093 int migratetype
, bool only_stealable
, bool *can_steal
)
2098 if (area
->nr_free
== 0)
2103 fallback_mt
= fallbacks
[migratetype
][i
];
2104 if (fallback_mt
== MIGRATE_TYPES
)
2107 if (list_empty(&area
->free_list
[fallback_mt
]))
2110 if (can_steal_fallback(order
, migratetype
))
2113 if (!only_stealable
)
2124 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2125 * there are no empty page blocks that contain a page with a suitable order
2127 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2128 unsigned int alloc_order
)
2131 unsigned long max_managed
, flags
;
2134 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2135 * Check is race-prone but harmless.
2137 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2138 if (zone
->nr_reserved_highatomic
>= max_managed
)
2141 spin_lock_irqsave(&zone
->lock
, flags
);
2143 /* Recheck the nr_reserved_highatomic limit under the lock */
2144 if (zone
->nr_reserved_highatomic
>= max_managed
)
2148 mt
= get_pageblock_migratetype(page
);
2149 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2150 && !is_migrate_cma(mt
)) {
2151 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2152 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2153 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2157 spin_unlock_irqrestore(&zone
->lock
, flags
);
2161 * Used when an allocation is about to fail under memory pressure. This
2162 * potentially hurts the reliability of high-order allocations when under
2163 * intense memory pressure but failed atomic allocations should be easier
2164 * to recover from than an OOM.
2166 * If @force is true, try to unreserve a pageblock even though highatomic
2167 * pageblock is exhausted.
2169 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2172 struct zonelist
*zonelist
= ac
->zonelist
;
2173 unsigned long flags
;
2180 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2183 * Preserve at least one pageblock unless memory pressure
2186 if (!force
&& zone
->nr_reserved_highatomic
<=
2190 spin_lock_irqsave(&zone
->lock
, flags
);
2191 for (order
= 0; order
< MAX_ORDER
; order
++) {
2192 struct free_area
*area
= &(zone
->free_area
[order
]);
2194 page
= list_first_entry_or_null(
2195 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2201 * In page freeing path, migratetype change is racy so
2202 * we can counter several free pages in a pageblock
2203 * in this loop althoug we changed the pageblock type
2204 * from highatomic to ac->migratetype. So we should
2205 * adjust the count once.
2207 if (is_migrate_highatomic_page(page
)) {
2209 * It should never happen but changes to
2210 * locking could inadvertently allow a per-cpu
2211 * drain to add pages to MIGRATE_HIGHATOMIC
2212 * while unreserving so be safe and watch for
2215 zone
->nr_reserved_highatomic
-= min(
2217 zone
->nr_reserved_highatomic
);
2221 * Convert to ac->migratetype and avoid the normal
2222 * pageblock stealing heuristics. Minimally, the caller
2223 * is doing the work and needs the pages. More
2224 * importantly, if the block was always converted to
2225 * MIGRATE_UNMOVABLE or another type then the number
2226 * of pageblocks that cannot be completely freed
2229 set_pageblock_migratetype(page
, ac
->migratetype
);
2230 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2233 spin_unlock_irqrestore(&zone
->lock
, flags
);
2237 spin_unlock_irqrestore(&zone
->lock
, flags
);
2244 * Try finding a free buddy page on the fallback list and put it on the free
2245 * list of requested migratetype, possibly along with other pages from the same
2246 * block, depending on fragmentation avoidance heuristics. Returns true if
2247 * fallback was found so that __rmqueue_smallest() can grab it.
2249 * The use of signed ints for order and current_order is a deliberate
2250 * deviation from the rest of this file, to make the for loop
2251 * condition simpler.
2253 static __always_inline
bool
2254 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2256 struct free_area
*area
;
2263 * Find the largest available free page in the other list. This roughly
2264 * approximates finding the pageblock with the most free pages, which
2265 * would be too costly to do exactly.
2267 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2269 area
= &(zone
->free_area
[current_order
]);
2270 fallback_mt
= find_suitable_fallback(area
, current_order
,
2271 start_migratetype
, false, &can_steal
);
2272 if (fallback_mt
== -1)
2276 * We cannot steal all free pages from the pageblock and the
2277 * requested migratetype is movable. In that case it's better to
2278 * steal and split the smallest available page instead of the
2279 * largest available page, because even if the next movable
2280 * allocation falls back into a different pageblock than this
2281 * one, it won't cause permanent fragmentation.
2283 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2284 && current_order
> order
)
2293 for (current_order
= order
; current_order
< MAX_ORDER
;
2295 area
= &(zone
->free_area
[current_order
]);
2296 fallback_mt
= find_suitable_fallback(area
, current_order
,
2297 start_migratetype
, false, &can_steal
);
2298 if (fallback_mt
!= -1)
2303 * This should not happen - we already found a suitable fallback
2304 * when looking for the largest page.
2306 VM_BUG_ON(current_order
== MAX_ORDER
);
2309 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2312 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2314 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2315 start_migratetype
, fallback_mt
);
2322 * Do the hard work of removing an element from the buddy allocator.
2323 * Call me with the zone->lock already held.
2325 static __always_inline
struct page
*
2326 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
)
2331 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2332 if (unlikely(!page
)) {
2333 if (migratetype
== MIGRATE_MOVABLE
)
2334 page
= __rmqueue_cma_fallback(zone
, order
);
2336 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2340 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2345 * Obtain a specified number of elements from the buddy allocator, all under
2346 * a single hold of the lock, for efficiency. Add them to the supplied list.
2347 * Returns the number of new pages which were placed at *list.
2349 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2350 unsigned long count
, struct list_head
*list
,
2355 spin_lock(&zone
->lock
);
2356 for (i
= 0; i
< count
; ++i
) {
2357 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2358 if (unlikely(page
== NULL
))
2361 if (unlikely(check_pcp_refill(page
)))
2365 * Split buddy pages returned by expand() are received here in
2366 * physical page order. The page is added to the tail of
2367 * caller's list. From the callers perspective, the linked list
2368 * is ordered by page number under some conditions. This is
2369 * useful for IO devices that can forward direction from the
2370 * head, thus also in the physical page order. This is useful
2371 * for IO devices that can merge IO requests if the physical
2372 * pages are ordered properly.
2374 list_add_tail(&page
->lru
, list
);
2376 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2377 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2382 * i pages were removed from the buddy list even if some leak due
2383 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2384 * on i. Do not confuse with 'alloced' which is the number of
2385 * pages added to the pcp list.
2387 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2388 spin_unlock(&zone
->lock
);
2394 * Called from the vmstat counter updater to drain pagesets of this
2395 * currently executing processor on remote nodes after they have
2398 * Note that this function must be called with the thread pinned to
2399 * a single processor.
2401 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2403 unsigned long flags
;
2404 int to_drain
, batch
;
2406 local_irq_save(flags
);
2407 batch
= READ_ONCE(pcp
->batch
);
2408 to_drain
= min(pcp
->count
, batch
);
2410 free_pcppages_bulk(zone
, to_drain
, pcp
);
2411 pcp
->count
-= to_drain
;
2413 local_irq_restore(flags
);
2418 * Drain pcplists of the indicated processor and zone.
2420 * The processor must either be the current processor and the
2421 * thread pinned to the current processor or a processor that
2424 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2426 unsigned long flags
;
2427 struct per_cpu_pageset
*pset
;
2428 struct per_cpu_pages
*pcp
;
2430 local_irq_save(flags
);
2431 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2435 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2438 local_irq_restore(flags
);
2442 * Drain pcplists of all zones on the indicated processor.
2444 * The processor must either be the current processor and the
2445 * thread pinned to the current processor or a processor that
2448 static void drain_pages(unsigned int cpu
)
2452 for_each_populated_zone(zone
) {
2453 drain_pages_zone(cpu
, zone
);
2458 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2460 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2461 * the single zone's pages.
2463 void drain_local_pages(struct zone
*zone
)
2465 int cpu
= smp_processor_id();
2468 drain_pages_zone(cpu
, zone
);
2473 static void drain_local_pages_wq(struct work_struct
*work
)
2476 * drain_all_pages doesn't use proper cpu hotplug protection so
2477 * we can race with cpu offline when the WQ can move this from
2478 * a cpu pinned worker to an unbound one. We can operate on a different
2479 * cpu which is allright but we also have to make sure to not move to
2483 drain_local_pages(NULL
);
2488 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2490 * When zone parameter is non-NULL, spill just the single zone's pages.
2492 * Note that this can be extremely slow as the draining happens in a workqueue.
2494 void drain_all_pages(struct zone
*zone
)
2499 * Allocate in the BSS so we wont require allocation in
2500 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2502 static cpumask_t cpus_with_pcps
;
2505 * Make sure nobody triggers this path before mm_percpu_wq is fully
2508 if (WARN_ON_ONCE(!mm_percpu_wq
))
2512 * Do not drain if one is already in progress unless it's specific to
2513 * a zone. Such callers are primarily CMA and memory hotplug and need
2514 * the drain to be complete when the call returns.
2516 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2519 mutex_lock(&pcpu_drain_mutex
);
2523 * We don't care about racing with CPU hotplug event
2524 * as offline notification will cause the notified
2525 * cpu to drain that CPU pcps and on_each_cpu_mask
2526 * disables preemption as part of its processing
2528 for_each_online_cpu(cpu
) {
2529 struct per_cpu_pageset
*pcp
;
2531 bool has_pcps
= false;
2534 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2538 for_each_populated_zone(z
) {
2539 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2540 if (pcp
->pcp
.count
) {
2548 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2550 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2553 for_each_cpu(cpu
, &cpus_with_pcps
) {
2554 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2555 INIT_WORK(work
, drain_local_pages_wq
);
2556 queue_work_on(cpu
, mm_percpu_wq
, work
);
2558 for_each_cpu(cpu
, &cpus_with_pcps
)
2559 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2561 mutex_unlock(&pcpu_drain_mutex
);
2564 #ifdef CONFIG_HIBERNATION
2567 * Touch the watchdog for every WD_PAGE_COUNT pages.
2569 #define WD_PAGE_COUNT (128*1024)
2571 void mark_free_pages(struct zone
*zone
)
2573 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2574 unsigned long flags
;
2575 unsigned int order
, t
;
2578 if (zone_is_empty(zone
))
2581 spin_lock_irqsave(&zone
->lock
, flags
);
2583 max_zone_pfn
= zone_end_pfn(zone
);
2584 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2585 if (pfn_valid(pfn
)) {
2586 page
= pfn_to_page(pfn
);
2588 if (!--page_count
) {
2589 touch_nmi_watchdog();
2590 page_count
= WD_PAGE_COUNT
;
2593 if (page_zone(page
) != zone
)
2596 if (!swsusp_page_is_forbidden(page
))
2597 swsusp_unset_page_free(page
);
2600 for_each_migratetype_order(order
, t
) {
2601 list_for_each_entry(page
,
2602 &zone
->free_area
[order
].free_list
[t
], lru
) {
2605 pfn
= page_to_pfn(page
);
2606 for (i
= 0; i
< (1UL << order
); i
++) {
2607 if (!--page_count
) {
2608 touch_nmi_watchdog();
2609 page_count
= WD_PAGE_COUNT
;
2611 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2615 spin_unlock_irqrestore(&zone
->lock
, flags
);
2617 #endif /* CONFIG_PM */
2619 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2623 if (!free_pcp_prepare(page
))
2626 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2627 set_pcppage_migratetype(page
, migratetype
);
2631 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2633 struct zone
*zone
= page_zone(page
);
2634 struct per_cpu_pages
*pcp
;
2637 migratetype
= get_pcppage_migratetype(page
);
2638 __count_vm_event(PGFREE
);
2641 * We only track unmovable, reclaimable and movable on pcp lists.
2642 * Free ISOLATE pages back to the allocator because they are being
2643 * offlined but treat HIGHATOMIC as movable pages so we can get those
2644 * areas back if necessary. Otherwise, we may have to free
2645 * excessively into the page allocator
2647 if (migratetype
>= MIGRATE_PCPTYPES
) {
2648 if (unlikely(is_migrate_isolate(migratetype
))) {
2649 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2652 migratetype
= MIGRATE_MOVABLE
;
2655 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2656 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2658 if (pcp
->count
>= pcp
->high
) {
2659 unsigned long batch
= READ_ONCE(pcp
->batch
);
2660 free_pcppages_bulk(zone
, batch
, pcp
);
2661 pcp
->count
-= batch
;
2666 * Free a 0-order page
2668 void free_unref_page(struct page
*page
)
2670 unsigned long flags
;
2671 unsigned long pfn
= page_to_pfn(page
);
2673 if (!free_unref_page_prepare(page
, pfn
))
2676 local_irq_save(flags
);
2677 free_unref_page_commit(page
, pfn
);
2678 local_irq_restore(flags
);
2682 * Free a list of 0-order pages
2684 void free_unref_page_list(struct list_head
*list
)
2686 struct page
*page
, *next
;
2687 unsigned long flags
, pfn
;
2688 int batch_count
= 0;
2690 /* Prepare pages for freeing */
2691 list_for_each_entry_safe(page
, next
, list
, lru
) {
2692 pfn
= page_to_pfn(page
);
2693 if (!free_unref_page_prepare(page
, pfn
))
2694 list_del(&page
->lru
);
2695 set_page_private(page
, pfn
);
2698 local_irq_save(flags
);
2699 list_for_each_entry_safe(page
, next
, list
, lru
) {
2700 unsigned long pfn
= page_private(page
);
2702 set_page_private(page
, 0);
2703 trace_mm_page_free_batched(page
);
2704 free_unref_page_commit(page
, pfn
);
2707 * Guard against excessive IRQ disabled times when we get
2708 * a large list of pages to free.
2710 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2711 local_irq_restore(flags
);
2713 local_irq_save(flags
);
2716 local_irq_restore(flags
);
2720 * split_page takes a non-compound higher-order page, and splits it into
2721 * n (1<<order) sub-pages: page[0..n]
2722 * Each sub-page must be freed individually.
2724 * Note: this is probably too low level an operation for use in drivers.
2725 * Please consult with lkml before using this in your driver.
2727 void split_page(struct page
*page
, unsigned int order
)
2731 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2732 VM_BUG_ON_PAGE(!page_count(page
), page
);
2734 for (i
= 1; i
< (1 << order
); i
++)
2735 set_page_refcounted(page
+ i
);
2736 split_page_owner(page
, order
);
2738 EXPORT_SYMBOL_GPL(split_page
);
2740 int __isolate_free_page(struct page
*page
, unsigned int order
)
2742 unsigned long watermark
;
2746 BUG_ON(!PageBuddy(page
));
2748 zone
= page_zone(page
);
2749 mt
= get_pageblock_migratetype(page
);
2751 if (!is_migrate_isolate(mt
)) {
2753 * Obey watermarks as if the page was being allocated. We can
2754 * emulate a high-order watermark check with a raised order-0
2755 * watermark, because we already know our high-order page
2758 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2759 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2762 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2765 /* Remove page from free list */
2766 list_del(&page
->lru
);
2767 zone
->free_area
[order
].nr_free
--;
2768 rmv_page_order(page
);
2771 * Set the pageblock if the isolated page is at least half of a
2774 if (order
>= pageblock_order
- 1) {
2775 struct page
*endpage
= page
+ (1 << order
) - 1;
2776 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2777 int mt
= get_pageblock_migratetype(page
);
2778 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2779 && !is_migrate_highatomic(mt
))
2780 set_pageblock_migratetype(page
,
2786 return 1UL << order
;
2790 * Update NUMA hit/miss statistics
2792 * Must be called with interrupts disabled.
2794 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2797 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2799 /* skip numa counters update if numa stats is disabled */
2800 if (!static_branch_likely(&vm_numa_stat_key
))
2803 if (z
->node
!= numa_node_id())
2804 local_stat
= NUMA_OTHER
;
2806 if (z
->node
== preferred_zone
->node
)
2807 __inc_numa_state(z
, NUMA_HIT
);
2809 __inc_numa_state(z
, NUMA_MISS
);
2810 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2812 __inc_numa_state(z
, local_stat
);
2816 /* Remove page from the per-cpu list, caller must protect the list */
2817 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2818 struct per_cpu_pages
*pcp
,
2819 struct list_head
*list
)
2824 if (list_empty(list
)) {
2825 pcp
->count
+= rmqueue_bulk(zone
, 0,
2828 if (unlikely(list_empty(list
)))
2832 page
= list_first_entry(list
, struct page
, lru
);
2833 list_del(&page
->lru
);
2835 } while (check_new_pcp(page
));
2840 /* Lock and remove page from the per-cpu list */
2841 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2842 struct zone
*zone
, unsigned int order
,
2843 gfp_t gfp_flags
, int migratetype
)
2845 struct per_cpu_pages
*pcp
;
2846 struct list_head
*list
;
2848 unsigned long flags
;
2850 local_irq_save(flags
);
2851 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2852 list
= &pcp
->lists
[migratetype
];
2853 page
= __rmqueue_pcplist(zone
, migratetype
, pcp
, list
);
2855 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2856 zone_statistics(preferred_zone
, zone
);
2858 local_irq_restore(flags
);
2863 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2866 struct page
*rmqueue(struct zone
*preferred_zone
,
2867 struct zone
*zone
, unsigned int order
,
2868 gfp_t gfp_flags
, unsigned int alloc_flags
,
2871 unsigned long flags
;
2874 if (likely(order
== 0)) {
2875 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2876 gfp_flags
, migratetype
);
2881 * We most definitely don't want callers attempting to
2882 * allocate greater than order-1 page units with __GFP_NOFAIL.
2884 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2885 spin_lock_irqsave(&zone
->lock
, flags
);
2889 if (alloc_flags
& ALLOC_HARDER
) {
2890 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2892 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2895 page
= __rmqueue(zone
, order
, migratetype
);
2896 } while (page
&& check_new_pages(page
, order
));
2897 spin_unlock(&zone
->lock
);
2900 __mod_zone_freepage_state(zone
, -(1 << order
),
2901 get_pcppage_migratetype(page
));
2903 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2904 zone_statistics(preferred_zone
, zone
);
2905 local_irq_restore(flags
);
2908 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
2912 local_irq_restore(flags
);
2916 #ifdef CONFIG_FAIL_PAGE_ALLOC
2919 struct fault_attr attr
;
2921 bool ignore_gfp_highmem
;
2922 bool ignore_gfp_reclaim
;
2924 } fail_page_alloc
= {
2925 .attr
= FAULT_ATTR_INITIALIZER
,
2926 .ignore_gfp_reclaim
= true,
2927 .ignore_gfp_highmem
= true,
2931 static int __init
setup_fail_page_alloc(char *str
)
2933 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2935 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2937 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2939 if (order
< fail_page_alloc
.min_order
)
2941 if (gfp_mask
& __GFP_NOFAIL
)
2943 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2945 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2946 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2949 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2952 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2954 static int __init
fail_page_alloc_debugfs(void)
2956 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2959 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2960 &fail_page_alloc
.attr
);
2962 return PTR_ERR(dir
);
2964 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2965 &fail_page_alloc
.ignore_gfp_reclaim
))
2967 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2968 &fail_page_alloc
.ignore_gfp_highmem
))
2970 if (!debugfs_create_u32("min-order", mode
, dir
,
2971 &fail_page_alloc
.min_order
))
2976 debugfs_remove_recursive(dir
);
2981 late_initcall(fail_page_alloc_debugfs
);
2983 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2985 #else /* CONFIG_FAIL_PAGE_ALLOC */
2987 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2992 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2995 * Return true if free base pages are above 'mark'. For high-order checks it
2996 * will return true of the order-0 watermark is reached and there is at least
2997 * one free page of a suitable size. Checking now avoids taking the zone lock
2998 * to check in the allocation paths if no pages are free.
3000 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3001 int classzone_idx
, unsigned int alloc_flags
,
3006 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3008 /* free_pages may go negative - that's OK */
3009 free_pages
-= (1 << order
) - 1;
3011 if (alloc_flags
& ALLOC_HIGH
)
3015 * If the caller does not have rights to ALLOC_HARDER then subtract
3016 * the high-atomic reserves. This will over-estimate the size of the
3017 * atomic reserve but it avoids a search.
3019 if (likely(!alloc_harder
)) {
3020 free_pages
-= z
->nr_reserved_highatomic
;
3023 * OOM victims can try even harder than normal ALLOC_HARDER
3024 * users on the grounds that it's definitely going to be in
3025 * the exit path shortly and free memory. Any allocation it
3026 * makes during the free path will be small and short-lived.
3028 if (alloc_flags
& ALLOC_OOM
)
3036 /* If allocation can't use CMA areas don't use free CMA pages */
3037 if (!(alloc_flags
& ALLOC_CMA
))
3038 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3042 * Check watermarks for an order-0 allocation request. If these
3043 * are not met, then a high-order request also cannot go ahead
3044 * even if a suitable page happened to be free.
3046 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3049 /* If this is an order-0 request then the watermark is fine */
3053 /* For a high-order request, check at least one suitable page is free */
3054 for (o
= order
; o
< MAX_ORDER
; o
++) {
3055 struct free_area
*area
= &z
->free_area
[o
];
3061 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3062 if (!list_empty(&area
->free_list
[mt
]))
3067 if ((alloc_flags
& ALLOC_CMA
) &&
3068 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3073 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3079 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3080 int classzone_idx
, unsigned int alloc_flags
)
3082 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3083 zone_page_state(z
, NR_FREE_PAGES
));
3086 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3087 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3089 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3093 /* If allocation can't use CMA areas don't use free CMA pages */
3094 if (!(alloc_flags
& ALLOC_CMA
))
3095 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3099 * Fast check for order-0 only. If this fails then the reserves
3100 * need to be calculated. There is a corner case where the check
3101 * passes but only the high-order atomic reserve are free. If
3102 * the caller is !atomic then it'll uselessly search the free
3103 * list. That corner case is then slower but it is harmless.
3105 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3108 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3112 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3113 unsigned long mark
, int classzone_idx
)
3115 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3117 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3118 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3120 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3125 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3127 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3130 #else /* CONFIG_NUMA */
3131 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3135 #endif /* CONFIG_NUMA */
3138 * get_page_from_freelist goes through the zonelist trying to allocate
3141 static struct page
*
3142 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3143 const struct alloc_context
*ac
)
3145 struct zoneref
*z
= ac
->preferred_zoneref
;
3147 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3150 * Scan zonelist, looking for a zone with enough free.
3151 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3153 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3158 if (cpusets_enabled() &&
3159 (alloc_flags
& ALLOC_CPUSET
) &&
3160 !__cpuset_zone_allowed(zone
, gfp_mask
))
3163 * When allocating a page cache page for writing, we
3164 * want to get it from a node that is within its dirty
3165 * limit, such that no single node holds more than its
3166 * proportional share of globally allowed dirty pages.
3167 * The dirty limits take into account the node's
3168 * lowmem reserves and high watermark so that kswapd
3169 * should be able to balance it without having to
3170 * write pages from its LRU list.
3172 * XXX: For now, allow allocations to potentially
3173 * exceed the per-node dirty limit in the slowpath
3174 * (spread_dirty_pages unset) before going into reclaim,
3175 * which is important when on a NUMA setup the allowed
3176 * nodes are together not big enough to reach the
3177 * global limit. The proper fix for these situations
3178 * will require awareness of nodes in the
3179 * dirty-throttling and the flusher threads.
3181 if (ac
->spread_dirty_pages
) {
3182 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3185 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3186 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3191 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3192 if (!zone_watermark_fast(zone
, order
, mark
,
3193 ac_classzone_idx(ac
), alloc_flags
)) {
3196 /* Checked here to keep the fast path fast */
3197 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3198 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3201 if (node_reclaim_mode
== 0 ||
3202 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3205 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3207 case NODE_RECLAIM_NOSCAN
:
3210 case NODE_RECLAIM_FULL
:
3211 /* scanned but unreclaimable */
3214 /* did we reclaim enough */
3215 if (zone_watermark_ok(zone
, order
, mark
,
3216 ac_classzone_idx(ac
), alloc_flags
))
3224 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3225 gfp_mask
, alloc_flags
, ac
->migratetype
);
3227 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3230 * If this is a high-order atomic allocation then check
3231 * if the pageblock should be reserved for the future
3233 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3234 reserve_highatomic_pageblock(page
, zone
, order
);
3244 * Large machines with many possible nodes should not always dump per-node
3245 * meminfo in irq context.
3247 static inline bool should_suppress_show_mem(void)
3252 ret
= in_interrupt();
3257 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3259 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3260 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3262 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3266 * This documents exceptions given to allocations in certain
3267 * contexts that are allowed to allocate outside current's set
3270 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3271 if (tsk_is_oom_victim(current
) ||
3272 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3273 filter
&= ~SHOW_MEM_FILTER_NODES
;
3274 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3275 filter
&= ~SHOW_MEM_FILTER_NODES
;
3277 show_mem(filter
, nodemask
);
3280 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3282 struct va_format vaf
;
3284 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3285 DEFAULT_RATELIMIT_BURST
);
3287 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3290 va_start(args
, fmt
);
3293 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3294 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3295 nodemask_pr_args(nodemask
));
3298 cpuset_print_current_mems_allowed();
3301 warn_alloc_show_mem(gfp_mask
, nodemask
);
3304 static inline struct page
*
3305 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3306 unsigned int alloc_flags
,
3307 const struct alloc_context
*ac
)
3311 page
= get_page_from_freelist(gfp_mask
, order
,
3312 alloc_flags
|ALLOC_CPUSET
, ac
);
3314 * fallback to ignore cpuset restriction if our nodes
3318 page
= get_page_from_freelist(gfp_mask
, order
,
3324 static inline struct page
*
3325 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3326 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3328 struct oom_control oc
= {
3329 .zonelist
= ac
->zonelist
,
3330 .nodemask
= ac
->nodemask
,
3332 .gfp_mask
= gfp_mask
,
3337 *did_some_progress
= 0;
3340 * Acquire the oom lock. If that fails, somebody else is
3341 * making progress for us.
3343 if (!mutex_trylock(&oom_lock
)) {
3344 *did_some_progress
= 1;
3345 schedule_timeout_uninterruptible(1);
3350 * Go through the zonelist yet one more time, keep very high watermark
3351 * here, this is only to catch a parallel oom killing, we must fail if
3352 * we're still under heavy pressure. But make sure that this reclaim
3353 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3354 * allocation which will never fail due to oom_lock already held.
3356 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3357 ~__GFP_DIRECT_RECLAIM
, order
,
3358 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3362 /* Coredumps can quickly deplete all memory reserves */
3363 if (current
->flags
& PF_DUMPCORE
)
3365 /* The OOM killer will not help higher order allocs */
3366 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3369 * We have already exhausted all our reclaim opportunities without any
3370 * success so it is time to admit defeat. We will skip the OOM killer
3371 * because it is very likely that the caller has a more reasonable
3372 * fallback than shooting a random task.
3374 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3376 /* The OOM killer does not needlessly kill tasks for lowmem */
3377 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3379 if (pm_suspended_storage())
3382 * XXX: GFP_NOFS allocations should rather fail than rely on
3383 * other request to make a forward progress.
3384 * We are in an unfortunate situation where out_of_memory cannot
3385 * do much for this context but let's try it to at least get
3386 * access to memory reserved if the current task is killed (see
3387 * out_of_memory). Once filesystems are ready to handle allocation
3388 * failures more gracefully we should just bail out here.
3391 /* The OOM killer may not free memory on a specific node */
3392 if (gfp_mask
& __GFP_THISNODE
)
3395 /* Exhausted what can be done so it's blamo time */
3396 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3397 *did_some_progress
= 1;
3400 * Help non-failing allocations by giving them access to memory
3403 if (gfp_mask
& __GFP_NOFAIL
)
3404 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3405 ALLOC_NO_WATERMARKS
, ac
);
3408 mutex_unlock(&oom_lock
);
3413 * Maximum number of compaction retries wit a progress before OOM
3414 * killer is consider as the only way to move forward.
3416 #define MAX_COMPACT_RETRIES 16
3418 #ifdef CONFIG_COMPACTION
3419 /* Try memory compaction for high-order allocations before reclaim */
3420 static struct page
*
3421 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3422 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3423 enum compact_priority prio
, enum compact_result
*compact_result
)
3426 unsigned int noreclaim_flag
;
3431 noreclaim_flag
= memalloc_noreclaim_save();
3432 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3434 memalloc_noreclaim_restore(noreclaim_flag
);
3436 if (*compact_result
<= COMPACT_INACTIVE
)
3440 * At least in one zone compaction wasn't deferred or skipped, so let's
3441 * count a compaction stall
3443 count_vm_event(COMPACTSTALL
);
3445 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3448 struct zone
*zone
= page_zone(page
);
3450 zone
->compact_blockskip_flush
= false;
3451 compaction_defer_reset(zone
, order
, true);
3452 count_vm_event(COMPACTSUCCESS
);
3457 * It's bad if compaction run occurs and fails. The most likely reason
3458 * is that pages exist, but not enough to satisfy watermarks.
3460 count_vm_event(COMPACTFAIL
);
3468 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3469 enum compact_result compact_result
,
3470 enum compact_priority
*compact_priority
,
3471 int *compaction_retries
)
3473 int max_retries
= MAX_COMPACT_RETRIES
;
3476 int retries
= *compaction_retries
;
3477 enum compact_priority priority
= *compact_priority
;
3482 if (compaction_made_progress(compact_result
))
3483 (*compaction_retries
)++;
3486 * compaction considers all the zone as desperately out of memory
3487 * so it doesn't really make much sense to retry except when the
3488 * failure could be caused by insufficient priority
3490 if (compaction_failed(compact_result
))
3491 goto check_priority
;
3494 * make sure the compaction wasn't deferred or didn't bail out early
3495 * due to locks contention before we declare that we should give up.
3496 * But do not retry if the given zonelist is not suitable for
3499 if (compaction_withdrawn(compact_result
)) {
3500 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3505 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3506 * costly ones because they are de facto nofail and invoke OOM
3507 * killer to move on while costly can fail and users are ready
3508 * to cope with that. 1/4 retries is rather arbitrary but we
3509 * would need much more detailed feedback from compaction to
3510 * make a better decision.
3512 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3514 if (*compaction_retries
<= max_retries
) {
3520 * Make sure there are attempts at the highest priority if we exhausted
3521 * all retries or failed at the lower priorities.
3524 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3525 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3527 if (*compact_priority
> min_priority
) {
3528 (*compact_priority
)--;
3529 *compaction_retries
= 0;
3533 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3537 static inline struct page
*
3538 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3539 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3540 enum compact_priority prio
, enum compact_result
*compact_result
)
3542 *compact_result
= COMPACT_SKIPPED
;
3547 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3548 enum compact_result compact_result
,
3549 enum compact_priority
*compact_priority
,
3550 int *compaction_retries
)
3555 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3559 * There are setups with compaction disabled which would prefer to loop
3560 * inside the allocator rather than hit the oom killer prematurely.
3561 * Let's give them a good hope and keep retrying while the order-0
3562 * watermarks are OK.
3564 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3566 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3567 ac_classzone_idx(ac
), alloc_flags
))
3572 #endif /* CONFIG_COMPACTION */
3574 #ifdef CONFIG_LOCKDEP
3575 struct lockdep_map __fs_reclaim_map
=
3576 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3578 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3580 gfp_mask
= current_gfp_context(gfp_mask
);
3582 /* no reclaim without waiting on it */
3583 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3586 /* this guy won't enter reclaim */
3587 if ((current
->flags
& PF_MEMALLOC
) && !(gfp_mask
& __GFP_NOMEMALLOC
))
3590 /* We're only interested __GFP_FS allocations for now */
3591 if (!(gfp_mask
& __GFP_FS
))
3594 if (gfp_mask
& __GFP_NOLOCKDEP
)
3600 void fs_reclaim_acquire(gfp_t gfp_mask
)
3602 if (__need_fs_reclaim(gfp_mask
))
3603 lock_map_acquire(&__fs_reclaim_map
);
3605 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3607 void fs_reclaim_release(gfp_t gfp_mask
)
3609 if (__need_fs_reclaim(gfp_mask
))
3610 lock_map_release(&__fs_reclaim_map
);
3612 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3615 /* Perform direct synchronous page reclaim */
3617 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3618 const struct alloc_context
*ac
)
3620 struct reclaim_state reclaim_state
;
3622 unsigned int noreclaim_flag
;
3626 /* We now go into synchronous reclaim */
3627 cpuset_memory_pressure_bump();
3628 noreclaim_flag
= memalloc_noreclaim_save();
3629 fs_reclaim_acquire(gfp_mask
);
3630 reclaim_state
.reclaimed_slab
= 0;
3631 current
->reclaim_state
= &reclaim_state
;
3633 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3636 current
->reclaim_state
= NULL
;
3637 fs_reclaim_release(gfp_mask
);
3638 memalloc_noreclaim_restore(noreclaim_flag
);
3645 /* The really slow allocator path where we enter direct reclaim */
3646 static inline struct page
*
3647 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3648 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3649 unsigned long *did_some_progress
)
3651 struct page
*page
= NULL
;
3652 bool drained
= false;
3654 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3655 if (unlikely(!(*did_some_progress
)))
3659 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3662 * If an allocation failed after direct reclaim, it could be because
3663 * pages are pinned on the per-cpu lists or in high alloc reserves.
3664 * Shrink them them and try again
3666 if (!page
&& !drained
) {
3667 unreserve_highatomic_pageblock(ac
, false);
3668 drain_all_pages(NULL
);
3676 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3680 pg_data_t
*last_pgdat
= NULL
;
3682 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3683 ac
->high_zoneidx
, ac
->nodemask
) {
3684 if (last_pgdat
!= zone
->zone_pgdat
)
3685 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3686 last_pgdat
= zone
->zone_pgdat
;
3690 static inline unsigned int
3691 gfp_to_alloc_flags(gfp_t gfp_mask
)
3693 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3695 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3696 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3699 * The caller may dip into page reserves a bit more if the caller
3700 * cannot run direct reclaim, or if the caller has realtime scheduling
3701 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3702 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3704 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3706 if (gfp_mask
& __GFP_ATOMIC
) {
3708 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3709 * if it can't schedule.
3711 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3712 alloc_flags
|= ALLOC_HARDER
;
3714 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3715 * comment for __cpuset_node_allowed().
3717 alloc_flags
&= ~ALLOC_CPUSET
;
3718 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3719 alloc_flags
|= ALLOC_HARDER
;
3722 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3723 alloc_flags
|= ALLOC_CMA
;
3728 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3730 if (!tsk_is_oom_victim(tsk
))
3734 * !MMU doesn't have oom reaper so give access to memory reserves
3735 * only to the thread with TIF_MEMDIE set
3737 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3744 * Distinguish requests which really need access to full memory
3745 * reserves from oom victims which can live with a portion of it
3747 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3749 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3751 if (gfp_mask
& __GFP_MEMALLOC
)
3752 return ALLOC_NO_WATERMARKS
;
3753 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3754 return ALLOC_NO_WATERMARKS
;
3755 if (!in_interrupt()) {
3756 if (current
->flags
& PF_MEMALLOC
)
3757 return ALLOC_NO_WATERMARKS
;
3758 else if (oom_reserves_allowed(current
))
3765 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3767 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3771 * Checks whether it makes sense to retry the reclaim to make a forward progress
3772 * for the given allocation request.
3774 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3775 * without success, or when we couldn't even meet the watermark if we
3776 * reclaimed all remaining pages on the LRU lists.
3778 * Returns true if a retry is viable or false to enter the oom path.
3781 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3782 struct alloc_context
*ac
, int alloc_flags
,
3783 bool did_some_progress
, int *no_progress_loops
)
3789 * Costly allocations might have made a progress but this doesn't mean
3790 * their order will become available due to high fragmentation so
3791 * always increment the no progress counter for them
3793 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3794 *no_progress_loops
= 0;
3796 (*no_progress_loops
)++;
3799 * Make sure we converge to OOM if we cannot make any progress
3800 * several times in the row.
3802 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3803 /* Before OOM, exhaust highatomic_reserve */
3804 return unreserve_highatomic_pageblock(ac
, true);
3808 * Keep reclaiming pages while there is a chance this will lead
3809 * somewhere. If none of the target zones can satisfy our allocation
3810 * request even if all reclaimable pages are considered then we are
3811 * screwed and have to go OOM.
3813 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3815 unsigned long available
;
3816 unsigned long reclaimable
;
3817 unsigned long min_wmark
= min_wmark_pages(zone
);
3820 available
= reclaimable
= zone_reclaimable_pages(zone
);
3821 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3824 * Would the allocation succeed if we reclaimed all
3825 * reclaimable pages?
3827 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3828 ac_classzone_idx(ac
), alloc_flags
, available
);
3829 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3830 available
, min_wmark
, *no_progress_loops
, wmark
);
3833 * If we didn't make any progress and have a lot of
3834 * dirty + writeback pages then we should wait for
3835 * an IO to complete to slow down the reclaim and
3836 * prevent from pre mature OOM
3838 if (!did_some_progress
) {
3839 unsigned long write_pending
;
3841 write_pending
= zone_page_state_snapshot(zone
,
3842 NR_ZONE_WRITE_PENDING
);
3844 if (2 * write_pending
> reclaimable
) {
3845 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3851 * Memory allocation/reclaim might be called from a WQ
3852 * context and the current implementation of the WQ
3853 * concurrency control doesn't recognize that
3854 * a particular WQ is congested if the worker thread is
3855 * looping without ever sleeping. Therefore we have to
3856 * do a short sleep here rather than calling
3859 if (current
->flags
& PF_WQ_WORKER
)
3860 schedule_timeout_uninterruptible(1);
3872 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
3875 * It's possible that cpuset's mems_allowed and the nodemask from
3876 * mempolicy don't intersect. This should be normally dealt with by
3877 * policy_nodemask(), but it's possible to race with cpuset update in
3878 * such a way the check therein was true, and then it became false
3879 * before we got our cpuset_mems_cookie here.
3880 * This assumes that for all allocations, ac->nodemask can come only
3881 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3882 * when it does not intersect with the cpuset restrictions) or the
3883 * caller can deal with a violated nodemask.
3885 if (cpusets_enabled() && ac
->nodemask
&&
3886 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
3887 ac
->nodemask
= NULL
;
3892 * When updating a task's mems_allowed or mempolicy nodemask, it is
3893 * possible to race with parallel threads in such a way that our
3894 * allocation can fail while the mask is being updated. If we are about
3895 * to fail, check if the cpuset changed during allocation and if so,
3898 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3904 static inline struct page
*
3905 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3906 struct alloc_context
*ac
)
3908 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3909 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
3910 struct page
*page
= NULL
;
3911 unsigned int alloc_flags
;
3912 unsigned long did_some_progress
;
3913 enum compact_priority compact_priority
;
3914 enum compact_result compact_result
;
3915 int compaction_retries
;
3916 int no_progress_loops
;
3917 unsigned int cpuset_mems_cookie
;
3921 * In the slowpath, we sanity check order to avoid ever trying to
3922 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3923 * be using allocators in order of preference for an area that is
3926 if (order
>= MAX_ORDER
) {
3927 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3932 * We also sanity check to catch abuse of atomic reserves being used by
3933 * callers that are not in atomic context.
3935 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3936 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3937 gfp_mask
&= ~__GFP_ATOMIC
;
3940 compaction_retries
= 0;
3941 no_progress_loops
= 0;
3942 compact_priority
= DEF_COMPACT_PRIORITY
;
3943 cpuset_mems_cookie
= read_mems_allowed_begin();
3946 * The fast path uses conservative alloc_flags to succeed only until
3947 * kswapd needs to be woken up, and to avoid the cost of setting up
3948 * alloc_flags precisely. So we do that now.
3950 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3953 * We need to recalculate the starting point for the zonelist iterator
3954 * because we might have used different nodemask in the fast path, or
3955 * there was a cpuset modification and we are retrying - otherwise we
3956 * could end up iterating over non-eligible zones endlessly.
3958 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3959 ac
->high_zoneidx
, ac
->nodemask
);
3960 if (!ac
->preferred_zoneref
->zone
)
3963 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3964 wake_all_kswapds(order
, ac
);
3967 * The adjusted alloc_flags might result in immediate success, so try
3970 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3975 * For costly allocations, try direct compaction first, as it's likely
3976 * that we have enough base pages and don't need to reclaim. For non-
3977 * movable high-order allocations, do that as well, as compaction will
3978 * try prevent permanent fragmentation by migrating from blocks of the
3980 * Don't try this for allocations that are allowed to ignore
3981 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3983 if (can_direct_reclaim
&&
3985 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
3986 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
3987 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3989 INIT_COMPACT_PRIORITY
,
3995 * Checks for costly allocations with __GFP_NORETRY, which
3996 * includes THP page fault allocations
3998 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4000 * If compaction is deferred for high-order allocations,
4001 * it is because sync compaction recently failed. If
4002 * this is the case and the caller requested a THP
4003 * allocation, we do not want to heavily disrupt the
4004 * system, so we fail the allocation instead of entering
4007 if (compact_result
== COMPACT_DEFERRED
)
4011 * Looks like reclaim/compaction is worth trying, but
4012 * sync compaction could be very expensive, so keep
4013 * using async compaction.
4015 compact_priority
= INIT_COMPACT_PRIORITY
;
4020 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4021 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4022 wake_all_kswapds(order
, ac
);
4024 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4026 alloc_flags
= reserve_flags
;
4029 * Reset the zonelist iterators if memory policies can be ignored.
4030 * These allocations are high priority and system rather than user
4033 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4034 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
4035 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4036 ac
->high_zoneidx
, ac
->nodemask
);
4039 /* Attempt with potentially adjusted zonelist and alloc_flags */
4040 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4044 /* Caller is not willing to reclaim, we can't balance anything */
4045 if (!can_direct_reclaim
)
4048 /* Avoid recursion of direct reclaim */
4049 if (current
->flags
& PF_MEMALLOC
)
4052 /* Try direct reclaim and then allocating */
4053 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4054 &did_some_progress
);
4058 /* Try direct compaction and then allocating */
4059 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4060 compact_priority
, &compact_result
);
4064 /* Do not loop if specifically requested */
4065 if (gfp_mask
& __GFP_NORETRY
)
4069 * Do not retry costly high order allocations unless they are
4070 * __GFP_RETRY_MAYFAIL
4072 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4075 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4076 did_some_progress
> 0, &no_progress_loops
))
4080 * It doesn't make any sense to retry for the compaction if the order-0
4081 * reclaim is not able to make any progress because the current
4082 * implementation of the compaction depends on the sufficient amount
4083 * of free memory (see __compaction_suitable)
4085 if (did_some_progress
> 0 &&
4086 should_compact_retry(ac
, order
, alloc_flags
,
4087 compact_result
, &compact_priority
,
4088 &compaction_retries
))
4092 /* Deal with possible cpuset update races before we start OOM killing */
4093 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4096 /* Reclaim has failed us, start killing things */
4097 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4101 /* Avoid allocations with no watermarks from looping endlessly */
4102 if (tsk_is_oom_victim(current
) &&
4103 (alloc_flags
== ALLOC_OOM
||
4104 (gfp_mask
& __GFP_NOMEMALLOC
)))
4107 /* Retry as long as the OOM killer is making progress */
4108 if (did_some_progress
) {
4109 no_progress_loops
= 0;
4114 /* Deal with possible cpuset update races before we fail */
4115 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4119 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4122 if (gfp_mask
& __GFP_NOFAIL
) {
4124 * All existing users of the __GFP_NOFAIL are blockable, so warn
4125 * of any new users that actually require GFP_NOWAIT
4127 if (WARN_ON_ONCE(!can_direct_reclaim
))
4131 * PF_MEMALLOC request from this context is rather bizarre
4132 * because we cannot reclaim anything and only can loop waiting
4133 * for somebody to do a work for us
4135 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4138 * non failing costly orders are a hard requirement which we
4139 * are not prepared for much so let's warn about these users
4140 * so that we can identify them and convert them to something
4143 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4146 * Help non-failing allocations by giving them access to memory
4147 * reserves but do not use ALLOC_NO_WATERMARKS because this
4148 * could deplete whole memory reserves which would just make
4149 * the situation worse
4151 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4159 warn_alloc(gfp_mask
, ac
->nodemask
,
4160 "page allocation failure: order:%u", order
);
4165 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4166 int preferred_nid
, nodemask_t
*nodemask
,
4167 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4168 unsigned int *alloc_flags
)
4170 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4171 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4172 ac
->nodemask
= nodemask
;
4173 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4175 if (cpusets_enabled()) {
4176 *alloc_mask
|= __GFP_HARDWALL
;
4178 ac
->nodemask
= &cpuset_current_mems_allowed
;
4180 *alloc_flags
|= ALLOC_CPUSET
;
4183 fs_reclaim_acquire(gfp_mask
);
4184 fs_reclaim_release(gfp_mask
);
4186 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4188 if (should_fail_alloc_page(gfp_mask
, order
))
4191 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4192 *alloc_flags
|= ALLOC_CMA
;
4197 /* Determine whether to spread dirty pages and what the first usable zone */
4198 static inline void finalise_ac(gfp_t gfp_mask
,
4199 unsigned int order
, struct alloc_context
*ac
)
4201 /* Dirty zone balancing only done in the fast path */
4202 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4205 * The preferred zone is used for statistics but crucially it is
4206 * also used as the starting point for the zonelist iterator. It
4207 * may get reset for allocations that ignore memory policies.
4209 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4210 ac
->high_zoneidx
, ac
->nodemask
);
4214 * This is the 'heart' of the zoned buddy allocator.
4217 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4218 nodemask_t
*nodemask
)
4221 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4222 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4223 struct alloc_context ac
= { };
4225 gfp_mask
&= gfp_allowed_mask
;
4226 alloc_mask
= gfp_mask
;
4227 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4230 finalise_ac(gfp_mask
, order
, &ac
);
4232 /* First allocation attempt */
4233 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4238 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4239 * resp. GFP_NOIO which has to be inherited for all allocation requests
4240 * from a particular context which has been marked by
4241 * memalloc_no{fs,io}_{save,restore}.
4243 alloc_mask
= current_gfp_context(gfp_mask
);
4244 ac
.spread_dirty_pages
= false;
4247 * Restore the original nodemask if it was potentially replaced with
4248 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4250 if (unlikely(ac
.nodemask
!= nodemask
))
4251 ac
.nodemask
= nodemask
;
4253 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4256 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4257 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4258 __free_pages(page
, order
);
4262 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4266 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4269 * Common helper functions.
4271 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4276 * __get_free_pages() returns a 32-bit address, which cannot represent
4279 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4281 page
= alloc_pages(gfp_mask
, order
);
4284 return (unsigned long) page_address(page
);
4286 EXPORT_SYMBOL(__get_free_pages
);
4288 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4290 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4292 EXPORT_SYMBOL(get_zeroed_page
);
4294 void __free_pages(struct page
*page
, unsigned int order
)
4296 if (put_page_testzero(page
)) {
4298 free_unref_page(page
);
4300 __free_pages_ok(page
, order
);
4304 EXPORT_SYMBOL(__free_pages
);
4306 void free_pages(unsigned long addr
, unsigned int order
)
4309 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4310 __free_pages(virt_to_page((void *)addr
), order
);
4314 EXPORT_SYMBOL(free_pages
);
4318 * An arbitrary-length arbitrary-offset area of memory which resides
4319 * within a 0 or higher order page. Multiple fragments within that page
4320 * are individually refcounted, in the page's reference counter.
4322 * The page_frag functions below provide a simple allocation framework for
4323 * page fragments. This is used by the network stack and network device
4324 * drivers to provide a backing region of memory for use as either an
4325 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4327 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4330 struct page
*page
= NULL
;
4331 gfp_t gfp
= gfp_mask
;
4333 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4334 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4336 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4337 PAGE_FRAG_CACHE_MAX_ORDER
);
4338 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4340 if (unlikely(!page
))
4341 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4343 nc
->va
= page
? page_address(page
) : NULL
;
4348 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4350 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4352 if (page_ref_sub_and_test(page
, count
)) {
4353 unsigned int order
= compound_order(page
);
4356 free_unref_page(page
);
4358 __free_pages_ok(page
, order
);
4361 EXPORT_SYMBOL(__page_frag_cache_drain
);
4363 void *page_frag_alloc(struct page_frag_cache
*nc
,
4364 unsigned int fragsz
, gfp_t gfp_mask
)
4366 unsigned int size
= PAGE_SIZE
;
4370 if (unlikely(!nc
->va
)) {
4372 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4376 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4377 /* if size can vary use size else just use PAGE_SIZE */
4380 /* Even if we own the page, we do not use atomic_set().
4381 * This would break get_page_unless_zero() users.
4383 page_ref_add(page
, size
- 1);
4385 /* reset page count bias and offset to start of new frag */
4386 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4387 nc
->pagecnt_bias
= size
;
4391 offset
= nc
->offset
- fragsz
;
4392 if (unlikely(offset
< 0)) {
4393 page
= virt_to_page(nc
->va
);
4395 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4398 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4399 /* if size can vary use size else just use PAGE_SIZE */
4402 /* OK, page count is 0, we can safely set it */
4403 set_page_count(page
, size
);
4405 /* reset page count bias and offset to start of new frag */
4406 nc
->pagecnt_bias
= size
;
4407 offset
= size
- fragsz
;
4411 nc
->offset
= offset
;
4413 return nc
->va
+ offset
;
4415 EXPORT_SYMBOL(page_frag_alloc
);
4418 * Frees a page fragment allocated out of either a compound or order 0 page.
4420 void page_frag_free(void *addr
)
4422 struct page
*page
= virt_to_head_page(addr
);
4424 if (unlikely(put_page_testzero(page
)))
4425 __free_pages_ok(page
, compound_order(page
));
4427 EXPORT_SYMBOL(page_frag_free
);
4429 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4433 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4434 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4436 split_page(virt_to_page((void *)addr
), order
);
4437 while (used
< alloc_end
) {
4442 return (void *)addr
;
4446 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4447 * @size: the number of bytes to allocate
4448 * @gfp_mask: GFP flags for the allocation
4450 * This function is similar to alloc_pages(), except that it allocates the
4451 * minimum number of pages to satisfy the request. alloc_pages() can only
4452 * allocate memory in power-of-two pages.
4454 * This function is also limited by MAX_ORDER.
4456 * Memory allocated by this function must be released by free_pages_exact().
4458 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4460 unsigned int order
= get_order(size
);
4463 addr
= __get_free_pages(gfp_mask
, order
);
4464 return make_alloc_exact(addr
, order
, size
);
4466 EXPORT_SYMBOL(alloc_pages_exact
);
4469 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4471 * @nid: the preferred node ID where memory should be allocated
4472 * @size: the number of bytes to allocate
4473 * @gfp_mask: GFP flags for the allocation
4475 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4478 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4480 unsigned int order
= get_order(size
);
4481 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4484 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4488 * free_pages_exact - release memory allocated via alloc_pages_exact()
4489 * @virt: the value returned by alloc_pages_exact.
4490 * @size: size of allocation, same value as passed to alloc_pages_exact().
4492 * Release the memory allocated by a previous call to alloc_pages_exact.
4494 void free_pages_exact(void *virt
, size_t size
)
4496 unsigned long addr
= (unsigned long)virt
;
4497 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4499 while (addr
< end
) {
4504 EXPORT_SYMBOL(free_pages_exact
);
4507 * nr_free_zone_pages - count number of pages beyond high watermark
4508 * @offset: The zone index of the highest zone
4510 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4511 * high watermark within all zones at or below a given zone index. For each
4512 * zone, the number of pages is calculated as:
4514 * nr_free_zone_pages = managed_pages - high_pages
4516 static unsigned long nr_free_zone_pages(int offset
)
4521 /* Just pick one node, since fallback list is circular */
4522 unsigned long sum
= 0;
4524 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4526 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4527 unsigned long size
= zone
->managed_pages
;
4528 unsigned long high
= high_wmark_pages(zone
);
4537 * nr_free_buffer_pages - count number of pages beyond high watermark
4539 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4540 * watermark within ZONE_DMA and ZONE_NORMAL.
4542 unsigned long nr_free_buffer_pages(void)
4544 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4546 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4549 * nr_free_pagecache_pages - count number of pages beyond high watermark
4551 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4552 * high watermark within all zones.
4554 unsigned long nr_free_pagecache_pages(void)
4556 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4559 static inline void show_node(struct zone
*zone
)
4561 if (IS_ENABLED(CONFIG_NUMA
))
4562 printk("Node %d ", zone_to_nid(zone
));
4565 long si_mem_available(void)
4568 unsigned long pagecache
;
4569 unsigned long wmark_low
= 0;
4570 unsigned long pages
[NR_LRU_LISTS
];
4574 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4575 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4578 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4581 * Estimate the amount of memory available for userspace allocations,
4582 * without causing swapping.
4584 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4587 * Not all the page cache can be freed, otherwise the system will
4588 * start swapping. Assume at least half of the page cache, or the
4589 * low watermark worth of cache, needs to stay.
4591 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4592 pagecache
-= min(pagecache
/ 2, wmark_low
);
4593 available
+= pagecache
;
4596 * Part of the reclaimable slab consists of items that are in use,
4597 * and cannot be freed. Cap this estimate at the low watermark.
4599 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4600 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4607 EXPORT_SYMBOL_GPL(si_mem_available
);
4609 void si_meminfo(struct sysinfo
*val
)
4611 val
->totalram
= totalram_pages
;
4612 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4613 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4614 val
->bufferram
= nr_blockdev_pages();
4615 val
->totalhigh
= totalhigh_pages
;
4616 val
->freehigh
= nr_free_highpages();
4617 val
->mem_unit
= PAGE_SIZE
;
4620 EXPORT_SYMBOL(si_meminfo
);
4623 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4625 int zone_type
; /* needs to be signed */
4626 unsigned long managed_pages
= 0;
4627 unsigned long managed_highpages
= 0;
4628 unsigned long free_highpages
= 0;
4629 pg_data_t
*pgdat
= NODE_DATA(nid
);
4631 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4632 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4633 val
->totalram
= managed_pages
;
4634 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4635 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4636 #ifdef CONFIG_HIGHMEM
4637 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4638 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4640 if (is_highmem(zone
)) {
4641 managed_highpages
+= zone
->managed_pages
;
4642 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4645 val
->totalhigh
= managed_highpages
;
4646 val
->freehigh
= free_highpages
;
4648 val
->totalhigh
= managed_highpages
;
4649 val
->freehigh
= free_highpages
;
4651 val
->mem_unit
= PAGE_SIZE
;
4656 * Determine whether the node should be displayed or not, depending on whether
4657 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4659 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4661 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4665 * no node mask - aka implicit memory numa policy. Do not bother with
4666 * the synchronization - read_mems_allowed_begin - because we do not
4667 * have to be precise here.
4670 nodemask
= &cpuset_current_mems_allowed
;
4672 return !node_isset(nid
, *nodemask
);
4675 #define K(x) ((x) << (PAGE_SHIFT-10))
4677 static void show_migration_types(unsigned char type
)
4679 static const char types
[MIGRATE_TYPES
] = {
4680 [MIGRATE_UNMOVABLE
] = 'U',
4681 [MIGRATE_MOVABLE
] = 'M',
4682 [MIGRATE_RECLAIMABLE
] = 'E',
4683 [MIGRATE_HIGHATOMIC
] = 'H',
4685 [MIGRATE_CMA
] = 'C',
4687 #ifdef CONFIG_MEMORY_ISOLATION
4688 [MIGRATE_ISOLATE
] = 'I',
4691 char tmp
[MIGRATE_TYPES
+ 1];
4695 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4696 if (type
& (1 << i
))
4701 printk(KERN_CONT
"(%s) ", tmp
);
4705 * Show free area list (used inside shift_scroll-lock stuff)
4706 * We also calculate the percentage fragmentation. We do this by counting the
4707 * memory on each free list with the exception of the first item on the list.
4710 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4713 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4715 unsigned long free_pcp
= 0;
4720 for_each_populated_zone(zone
) {
4721 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4724 for_each_online_cpu(cpu
)
4725 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4728 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4729 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4730 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4731 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4732 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4733 " free:%lu free_pcp:%lu free_cma:%lu\n",
4734 global_node_page_state(NR_ACTIVE_ANON
),
4735 global_node_page_state(NR_INACTIVE_ANON
),
4736 global_node_page_state(NR_ISOLATED_ANON
),
4737 global_node_page_state(NR_ACTIVE_FILE
),
4738 global_node_page_state(NR_INACTIVE_FILE
),
4739 global_node_page_state(NR_ISOLATED_FILE
),
4740 global_node_page_state(NR_UNEVICTABLE
),
4741 global_node_page_state(NR_FILE_DIRTY
),
4742 global_node_page_state(NR_WRITEBACK
),
4743 global_node_page_state(NR_UNSTABLE_NFS
),
4744 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4745 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4746 global_node_page_state(NR_FILE_MAPPED
),
4747 global_node_page_state(NR_SHMEM
),
4748 global_zone_page_state(NR_PAGETABLE
),
4749 global_zone_page_state(NR_BOUNCE
),
4750 global_zone_page_state(NR_FREE_PAGES
),
4752 global_zone_page_state(NR_FREE_CMA_PAGES
));
4754 for_each_online_pgdat(pgdat
) {
4755 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4759 " active_anon:%lukB"
4760 " inactive_anon:%lukB"
4761 " active_file:%lukB"
4762 " inactive_file:%lukB"
4763 " unevictable:%lukB"
4764 " isolated(anon):%lukB"
4765 " isolated(file):%lukB"
4770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4772 " shmem_pmdmapped: %lukB"
4775 " writeback_tmp:%lukB"
4777 " all_unreclaimable? %s"
4780 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4781 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4782 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4783 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4784 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4785 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4786 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4787 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4788 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4789 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4790 K(node_page_state(pgdat
, NR_SHMEM
)),
4791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4792 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4793 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4795 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4797 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4798 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4799 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4803 for_each_populated_zone(zone
) {
4806 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4810 for_each_online_cpu(cpu
)
4811 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4820 " active_anon:%lukB"
4821 " inactive_anon:%lukB"
4822 " active_file:%lukB"
4823 " inactive_file:%lukB"
4824 " unevictable:%lukB"
4825 " writepending:%lukB"
4829 " kernel_stack:%lukB"
4837 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4838 K(min_wmark_pages(zone
)),
4839 K(low_wmark_pages(zone
)),
4840 K(high_wmark_pages(zone
)),
4841 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4842 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4843 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4844 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4845 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4846 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4847 K(zone
->present_pages
),
4848 K(zone
->managed_pages
),
4849 K(zone_page_state(zone
, NR_MLOCK
)),
4850 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4851 K(zone_page_state(zone
, NR_PAGETABLE
)),
4852 K(zone_page_state(zone
, NR_BOUNCE
)),
4854 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4855 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4856 printk("lowmem_reserve[]:");
4857 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4858 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4859 printk(KERN_CONT
"\n");
4862 for_each_populated_zone(zone
) {
4864 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4865 unsigned char types
[MAX_ORDER
];
4867 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4870 printk(KERN_CONT
"%s: ", zone
->name
);
4872 spin_lock_irqsave(&zone
->lock
, flags
);
4873 for (order
= 0; order
< MAX_ORDER
; order
++) {
4874 struct free_area
*area
= &zone
->free_area
[order
];
4877 nr
[order
] = area
->nr_free
;
4878 total
+= nr
[order
] << order
;
4881 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4882 if (!list_empty(&area
->free_list
[type
]))
4883 types
[order
] |= 1 << type
;
4886 spin_unlock_irqrestore(&zone
->lock
, flags
);
4887 for (order
= 0; order
< MAX_ORDER
; order
++) {
4888 printk(KERN_CONT
"%lu*%lukB ",
4889 nr
[order
], K(1UL) << order
);
4891 show_migration_types(types
[order
]);
4893 printk(KERN_CONT
"= %lukB\n", K(total
));
4896 hugetlb_show_meminfo();
4898 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4900 show_swap_cache_info();
4903 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4905 zoneref
->zone
= zone
;
4906 zoneref
->zone_idx
= zone_idx(zone
);
4910 * Builds allocation fallback zone lists.
4912 * Add all populated zones of a node to the zonelist.
4914 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
4917 enum zone_type zone_type
= MAX_NR_ZONES
;
4922 zone
= pgdat
->node_zones
+ zone_type
;
4923 if (managed_zone(zone
)) {
4924 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
4925 check_highest_zone(zone_type
);
4927 } while (zone_type
);
4934 static int __parse_numa_zonelist_order(char *s
)
4937 * We used to support different zonlists modes but they turned
4938 * out to be just not useful. Let's keep the warning in place
4939 * if somebody still use the cmd line parameter so that we do
4940 * not fail it silently
4942 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
4943 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
4949 static __init
int setup_numa_zonelist_order(char *s
)
4954 return __parse_numa_zonelist_order(s
);
4956 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4958 char numa_zonelist_order
[] = "Node";
4961 * sysctl handler for numa_zonelist_order
4963 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4964 void __user
*buffer
, size_t *length
,
4971 return proc_dostring(table
, write
, buffer
, length
, ppos
);
4972 str
= memdup_user_nul(buffer
, 16);
4974 return PTR_ERR(str
);
4976 ret
= __parse_numa_zonelist_order(str
);
4982 #define MAX_NODE_LOAD (nr_online_nodes)
4983 static int node_load
[MAX_NUMNODES
];
4986 * find_next_best_node - find the next node that should appear in a given node's fallback list
4987 * @node: node whose fallback list we're appending
4988 * @used_node_mask: nodemask_t of already used nodes
4990 * We use a number of factors to determine which is the next node that should
4991 * appear on a given node's fallback list. The node should not have appeared
4992 * already in @node's fallback list, and it should be the next closest node
4993 * according to the distance array (which contains arbitrary distance values
4994 * from each node to each node in the system), and should also prefer nodes
4995 * with no CPUs, since presumably they'll have very little allocation pressure
4996 * on them otherwise.
4997 * It returns -1 if no node is found.
4999 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5002 int min_val
= INT_MAX
;
5003 int best_node
= NUMA_NO_NODE
;
5004 const struct cpumask
*tmp
= cpumask_of_node(0);
5006 /* Use the local node if we haven't already */
5007 if (!node_isset(node
, *used_node_mask
)) {
5008 node_set(node
, *used_node_mask
);
5012 for_each_node_state(n
, N_MEMORY
) {
5014 /* Don't want a node to appear more than once */
5015 if (node_isset(n
, *used_node_mask
))
5018 /* Use the distance array to find the distance */
5019 val
= node_distance(node
, n
);
5021 /* Penalize nodes under us ("prefer the next node") */
5024 /* Give preference to headless and unused nodes */
5025 tmp
= cpumask_of_node(n
);
5026 if (!cpumask_empty(tmp
))
5027 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5029 /* Slight preference for less loaded node */
5030 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5031 val
+= node_load
[n
];
5033 if (val
< min_val
) {
5040 node_set(best_node
, *used_node_mask
);
5047 * Build zonelists ordered by node and zones within node.
5048 * This results in maximum locality--normal zone overflows into local
5049 * DMA zone, if any--but risks exhausting DMA zone.
5051 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5054 struct zoneref
*zonerefs
;
5057 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5059 for (i
= 0; i
< nr_nodes
; i
++) {
5062 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5064 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5065 zonerefs
+= nr_zones
;
5067 zonerefs
->zone
= NULL
;
5068 zonerefs
->zone_idx
= 0;
5072 * Build gfp_thisnode zonelists
5074 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5076 struct zoneref
*zonerefs
;
5079 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5080 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5081 zonerefs
+= nr_zones
;
5082 zonerefs
->zone
= NULL
;
5083 zonerefs
->zone_idx
= 0;
5087 * Build zonelists ordered by zone and nodes within zones.
5088 * This results in conserving DMA zone[s] until all Normal memory is
5089 * exhausted, but results in overflowing to remote node while memory
5090 * may still exist in local DMA zone.
5093 static void build_zonelists(pg_data_t
*pgdat
)
5095 static int node_order
[MAX_NUMNODES
];
5096 int node
, load
, nr_nodes
= 0;
5097 nodemask_t used_mask
;
5098 int local_node
, prev_node
;
5100 /* NUMA-aware ordering of nodes */
5101 local_node
= pgdat
->node_id
;
5102 load
= nr_online_nodes
;
5103 prev_node
= local_node
;
5104 nodes_clear(used_mask
);
5106 memset(node_order
, 0, sizeof(node_order
));
5107 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5109 * We don't want to pressure a particular node.
5110 * So adding penalty to the first node in same
5111 * distance group to make it round-robin.
5113 if (node_distance(local_node
, node
) !=
5114 node_distance(local_node
, prev_node
))
5115 node_load
[node
] = load
;
5117 node_order
[nr_nodes
++] = node
;
5122 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5123 build_thisnode_zonelists(pgdat
);
5126 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5128 * Return node id of node used for "local" allocations.
5129 * I.e., first node id of first zone in arg node's generic zonelist.
5130 * Used for initializing percpu 'numa_mem', which is used primarily
5131 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5133 int local_memory_node(int node
)
5137 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5138 gfp_zone(GFP_KERNEL
),
5140 return z
->zone
->node
;
5144 static void setup_min_unmapped_ratio(void);
5145 static void setup_min_slab_ratio(void);
5146 #else /* CONFIG_NUMA */
5148 static void build_zonelists(pg_data_t
*pgdat
)
5150 int node
, local_node
;
5151 struct zoneref
*zonerefs
;
5154 local_node
= pgdat
->node_id
;
5156 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5157 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5158 zonerefs
+= nr_zones
;
5161 * Now we build the zonelist so that it contains the zones
5162 * of all the other nodes.
5163 * We don't want to pressure a particular node, so when
5164 * building the zones for node N, we make sure that the
5165 * zones coming right after the local ones are those from
5166 * node N+1 (modulo N)
5168 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5169 if (!node_online(node
))
5171 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5172 zonerefs
+= nr_zones
;
5174 for (node
= 0; node
< local_node
; node
++) {
5175 if (!node_online(node
))
5177 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5178 zonerefs
+= nr_zones
;
5181 zonerefs
->zone
= NULL
;
5182 zonerefs
->zone_idx
= 0;
5185 #endif /* CONFIG_NUMA */
5188 * Boot pageset table. One per cpu which is going to be used for all
5189 * zones and all nodes. The parameters will be set in such a way
5190 * that an item put on a list will immediately be handed over to
5191 * the buddy list. This is safe since pageset manipulation is done
5192 * with interrupts disabled.
5194 * The boot_pagesets must be kept even after bootup is complete for
5195 * unused processors and/or zones. They do play a role for bootstrapping
5196 * hotplugged processors.
5198 * zoneinfo_show() and maybe other functions do
5199 * not check if the processor is online before following the pageset pointer.
5200 * Other parts of the kernel may not check if the zone is available.
5202 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5203 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5204 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5206 static void __build_all_zonelists(void *data
)
5209 int __maybe_unused cpu
;
5210 pg_data_t
*self
= data
;
5211 static DEFINE_SPINLOCK(lock
);
5216 memset(node_load
, 0, sizeof(node_load
));
5220 * This node is hotadded and no memory is yet present. So just
5221 * building zonelists is fine - no need to touch other nodes.
5223 if (self
&& !node_online(self
->node_id
)) {
5224 build_zonelists(self
);
5226 for_each_online_node(nid
) {
5227 pg_data_t
*pgdat
= NODE_DATA(nid
);
5229 build_zonelists(pgdat
);
5232 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5234 * We now know the "local memory node" for each node--
5235 * i.e., the node of the first zone in the generic zonelist.
5236 * Set up numa_mem percpu variable for on-line cpus. During
5237 * boot, only the boot cpu should be on-line; we'll init the
5238 * secondary cpus' numa_mem as they come on-line. During
5239 * node/memory hotplug, we'll fixup all on-line cpus.
5241 for_each_online_cpu(cpu
)
5242 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5249 static noinline
void __init
5250 build_all_zonelists_init(void)
5254 __build_all_zonelists(NULL
);
5257 * Initialize the boot_pagesets that are going to be used
5258 * for bootstrapping processors. The real pagesets for
5259 * each zone will be allocated later when the per cpu
5260 * allocator is available.
5262 * boot_pagesets are used also for bootstrapping offline
5263 * cpus if the system is already booted because the pagesets
5264 * are needed to initialize allocators on a specific cpu too.
5265 * F.e. the percpu allocator needs the page allocator which
5266 * needs the percpu allocator in order to allocate its pagesets
5267 * (a chicken-egg dilemma).
5269 for_each_possible_cpu(cpu
)
5270 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5272 mminit_verify_zonelist();
5273 cpuset_init_current_mems_allowed();
5277 * unless system_state == SYSTEM_BOOTING.
5279 * __ref due to call of __init annotated helper build_all_zonelists_init
5280 * [protected by SYSTEM_BOOTING].
5282 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5284 if (system_state
== SYSTEM_BOOTING
) {
5285 build_all_zonelists_init();
5287 __build_all_zonelists(pgdat
);
5288 /* cpuset refresh routine should be here */
5290 vm_total_pages
= nr_free_pagecache_pages();
5292 * Disable grouping by mobility if the number of pages in the
5293 * system is too low to allow the mechanism to work. It would be
5294 * more accurate, but expensive to check per-zone. This check is
5295 * made on memory-hotadd so a system can start with mobility
5296 * disabled and enable it later
5298 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5299 page_group_by_mobility_disabled
= 1;
5301 page_group_by_mobility_disabled
= 0;
5303 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5305 page_group_by_mobility_disabled
? "off" : "on",
5308 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5313 * Initially all pages are reserved - free ones are freed
5314 * up by free_all_bootmem() once the early boot process is
5315 * done. Non-atomic initialization, single-pass.
5317 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5318 unsigned long start_pfn
, enum memmap_context context
)
5320 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5321 unsigned long end_pfn
= start_pfn
+ size
;
5322 pg_data_t
*pgdat
= NODE_DATA(nid
);
5324 unsigned long nr_initialised
= 0;
5325 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5326 struct memblock_region
*r
= NULL
, *tmp
;
5329 if (highest_memmap_pfn
< end_pfn
- 1)
5330 highest_memmap_pfn
= end_pfn
- 1;
5333 * Honor reservation requested by the driver for this ZONE_DEVICE
5336 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5337 start_pfn
+= altmap
->reserve
;
5339 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5341 * There can be holes in boot-time mem_map[]s handed to this
5342 * function. They do not exist on hotplugged memory.
5344 if (context
!= MEMMAP_EARLY
)
5347 if (!early_pfn_valid(pfn
)) {
5348 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5350 * Skip to the pfn preceding the next valid one (or
5351 * end_pfn), such that we hit a valid pfn (or end_pfn)
5352 * on our next iteration of the loop.
5354 pfn
= memblock_next_valid_pfn(pfn
, end_pfn
) - 1;
5358 if (!early_pfn_in_nid(pfn
, nid
))
5360 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5363 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5365 * Check given memblock attribute by firmware which can affect
5366 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5367 * mirrored, it's an overlapped memmap init. skip it.
5369 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5370 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5371 for_each_memblock(memory
, tmp
)
5372 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5376 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5377 memblock_is_mirror(r
)) {
5378 /* already initialized as NORMAL */
5379 pfn
= memblock_region_memory_end_pfn(r
);
5387 * Mark the block movable so that blocks are reserved for
5388 * movable at startup. This will force kernel allocations
5389 * to reserve their blocks rather than leaking throughout
5390 * the address space during boot when many long-lived
5391 * kernel allocations are made.
5393 * bitmap is created for zone's valid pfn range. but memmap
5394 * can be created for invalid pages (for alignment)
5395 * check here not to call set_pageblock_migratetype() against
5398 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5399 * because this is done early in sparse_add_one_section
5401 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5402 struct page
*page
= pfn_to_page(pfn
);
5404 __init_single_page(page
, pfn
, zone
, nid
,
5405 context
!= MEMMAP_HOTPLUG
);
5406 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5409 __init_single_pfn(pfn
, zone
, nid
,
5410 context
!= MEMMAP_HOTPLUG
);
5415 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5417 unsigned int order
, t
;
5418 for_each_migratetype_order(order
, t
) {
5419 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5420 zone
->free_area
[order
].nr_free
= 0;
5424 #ifndef __HAVE_ARCH_MEMMAP_INIT
5425 #define memmap_init(size, nid, zone, start_pfn) \
5426 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5429 static int zone_batchsize(struct zone
*zone
)
5435 * The per-cpu-pages pools are set to around 1000th of the
5436 * size of the zone. But no more than 1/2 of a meg.
5438 * OK, so we don't know how big the cache is. So guess.
5440 batch
= zone
->managed_pages
/ 1024;
5441 if (batch
* PAGE_SIZE
> 512 * 1024)
5442 batch
= (512 * 1024) / PAGE_SIZE
;
5443 batch
/= 4; /* We effectively *= 4 below */
5448 * Clamp the batch to a 2^n - 1 value. Having a power
5449 * of 2 value was found to be more likely to have
5450 * suboptimal cache aliasing properties in some cases.
5452 * For example if 2 tasks are alternately allocating
5453 * batches of pages, one task can end up with a lot
5454 * of pages of one half of the possible page colors
5455 * and the other with pages of the other colors.
5457 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5462 /* The deferral and batching of frees should be suppressed under NOMMU
5465 * The problem is that NOMMU needs to be able to allocate large chunks
5466 * of contiguous memory as there's no hardware page translation to
5467 * assemble apparent contiguous memory from discontiguous pages.
5469 * Queueing large contiguous runs of pages for batching, however,
5470 * causes the pages to actually be freed in smaller chunks. As there
5471 * can be a significant delay between the individual batches being
5472 * recycled, this leads to the once large chunks of space being
5473 * fragmented and becoming unavailable for high-order allocations.
5480 * pcp->high and pcp->batch values are related and dependent on one another:
5481 * ->batch must never be higher then ->high.
5482 * The following function updates them in a safe manner without read side
5485 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5486 * those fields changing asynchronously (acording the the above rule).
5488 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5489 * outside of boot time (or some other assurance that no concurrent updaters
5492 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5493 unsigned long batch
)
5495 /* start with a fail safe value for batch */
5499 /* Update high, then batch, in order */
5506 /* a companion to pageset_set_high() */
5507 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5509 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5512 static void pageset_init(struct per_cpu_pageset
*p
)
5514 struct per_cpu_pages
*pcp
;
5517 memset(p
, 0, sizeof(*p
));
5521 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5522 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5525 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5528 pageset_set_batch(p
, batch
);
5532 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5533 * to the value high for the pageset p.
5535 static void pageset_set_high(struct per_cpu_pageset
*p
,
5538 unsigned long batch
= max(1UL, high
/ 4);
5539 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5540 batch
= PAGE_SHIFT
* 8;
5542 pageset_update(&p
->pcp
, high
, batch
);
5545 static void pageset_set_high_and_batch(struct zone
*zone
,
5546 struct per_cpu_pageset
*pcp
)
5548 if (percpu_pagelist_fraction
)
5549 pageset_set_high(pcp
,
5550 (zone
->managed_pages
/
5551 percpu_pagelist_fraction
));
5553 pageset_set_batch(pcp
, zone_batchsize(zone
));
5556 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5558 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5561 pageset_set_high_and_batch(zone
, pcp
);
5564 void __meminit
setup_zone_pageset(struct zone
*zone
)
5567 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5568 for_each_possible_cpu(cpu
)
5569 zone_pageset_init(zone
, cpu
);
5573 * Allocate per cpu pagesets and initialize them.
5574 * Before this call only boot pagesets were available.
5576 void __init
setup_per_cpu_pageset(void)
5578 struct pglist_data
*pgdat
;
5581 for_each_populated_zone(zone
)
5582 setup_zone_pageset(zone
);
5584 for_each_online_pgdat(pgdat
)
5585 pgdat
->per_cpu_nodestats
=
5586 alloc_percpu(struct per_cpu_nodestat
);
5589 static __meminit
void zone_pcp_init(struct zone
*zone
)
5592 * per cpu subsystem is not up at this point. The following code
5593 * relies on the ability of the linker to provide the
5594 * offset of a (static) per cpu variable into the per cpu area.
5596 zone
->pageset
= &boot_pageset
;
5598 if (populated_zone(zone
))
5599 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5600 zone
->name
, zone
->present_pages
,
5601 zone_batchsize(zone
));
5604 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5605 unsigned long zone_start_pfn
,
5608 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5610 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5612 zone
->zone_start_pfn
= zone_start_pfn
;
5614 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5615 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5617 (unsigned long)zone_idx(zone
),
5618 zone_start_pfn
, (zone_start_pfn
+ size
));
5620 zone_init_free_lists(zone
);
5621 zone
->initialized
= 1;
5624 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5625 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5630 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5631 struct mminit_pfnnid_cache
*state
)
5633 unsigned long start_pfn
, end_pfn
;
5636 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5637 return state
->last_nid
;
5639 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5641 state
->last_start
= start_pfn
;
5642 state
->last_end
= end_pfn
;
5643 state
->last_nid
= nid
;
5648 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5651 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5652 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5653 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5655 * If an architecture guarantees that all ranges registered contain no holes
5656 * and may be freed, this this function may be used instead of calling
5657 * memblock_free_early_nid() manually.
5659 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5661 unsigned long start_pfn
, end_pfn
;
5664 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5665 start_pfn
= min(start_pfn
, max_low_pfn
);
5666 end_pfn
= min(end_pfn
, max_low_pfn
);
5668 if (start_pfn
< end_pfn
)
5669 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5670 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5676 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5677 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5679 * If an architecture guarantees that all ranges registered contain no holes and may
5680 * be freed, this function may be used instead of calling memory_present() manually.
5682 void __init
sparse_memory_present_with_active_regions(int nid
)
5684 unsigned long start_pfn
, end_pfn
;
5687 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5688 memory_present(this_nid
, start_pfn
, end_pfn
);
5692 * get_pfn_range_for_nid - Return the start and end page frames for a node
5693 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5694 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5695 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5697 * It returns the start and end page frame of a node based on information
5698 * provided by memblock_set_node(). If called for a node
5699 * with no available memory, a warning is printed and the start and end
5702 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5703 unsigned long *start_pfn
, unsigned long *end_pfn
)
5705 unsigned long this_start_pfn
, this_end_pfn
;
5711 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5712 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5713 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5716 if (*start_pfn
== -1UL)
5721 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5722 * assumption is made that zones within a node are ordered in monotonic
5723 * increasing memory addresses so that the "highest" populated zone is used
5725 static void __init
find_usable_zone_for_movable(void)
5728 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5729 if (zone_index
== ZONE_MOVABLE
)
5732 if (arch_zone_highest_possible_pfn
[zone_index
] >
5733 arch_zone_lowest_possible_pfn
[zone_index
])
5737 VM_BUG_ON(zone_index
== -1);
5738 movable_zone
= zone_index
;
5742 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5743 * because it is sized independent of architecture. Unlike the other zones,
5744 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5745 * in each node depending on the size of each node and how evenly kernelcore
5746 * is distributed. This helper function adjusts the zone ranges
5747 * provided by the architecture for a given node by using the end of the
5748 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5749 * zones within a node are in order of monotonic increases memory addresses
5751 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5752 unsigned long zone_type
,
5753 unsigned long node_start_pfn
,
5754 unsigned long node_end_pfn
,
5755 unsigned long *zone_start_pfn
,
5756 unsigned long *zone_end_pfn
)
5758 /* Only adjust if ZONE_MOVABLE is on this node */
5759 if (zone_movable_pfn
[nid
]) {
5760 /* Size ZONE_MOVABLE */
5761 if (zone_type
== ZONE_MOVABLE
) {
5762 *zone_start_pfn
= zone_movable_pfn
[nid
];
5763 *zone_end_pfn
= min(node_end_pfn
,
5764 arch_zone_highest_possible_pfn
[movable_zone
]);
5766 /* Adjust for ZONE_MOVABLE starting within this range */
5767 } else if (!mirrored_kernelcore
&&
5768 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5769 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5770 *zone_end_pfn
= zone_movable_pfn
[nid
];
5772 /* Check if this whole range is within ZONE_MOVABLE */
5773 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5774 *zone_start_pfn
= *zone_end_pfn
;
5779 * Return the number of pages a zone spans in a node, including holes
5780 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5782 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5783 unsigned long zone_type
,
5784 unsigned long node_start_pfn
,
5785 unsigned long node_end_pfn
,
5786 unsigned long *zone_start_pfn
,
5787 unsigned long *zone_end_pfn
,
5788 unsigned long *ignored
)
5790 /* When hotadd a new node from cpu_up(), the node should be empty */
5791 if (!node_start_pfn
&& !node_end_pfn
)
5794 /* Get the start and end of the zone */
5795 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5796 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5797 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5798 node_start_pfn
, node_end_pfn
,
5799 zone_start_pfn
, zone_end_pfn
);
5801 /* Check that this node has pages within the zone's required range */
5802 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5805 /* Move the zone boundaries inside the node if necessary */
5806 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5807 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5809 /* Return the spanned pages */
5810 return *zone_end_pfn
- *zone_start_pfn
;
5814 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5815 * then all holes in the requested range will be accounted for.
5817 unsigned long __meminit
__absent_pages_in_range(int nid
,
5818 unsigned long range_start_pfn
,
5819 unsigned long range_end_pfn
)
5821 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5822 unsigned long start_pfn
, end_pfn
;
5825 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5826 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5827 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5828 nr_absent
-= end_pfn
- start_pfn
;
5834 * absent_pages_in_range - Return number of page frames in holes within a range
5835 * @start_pfn: The start PFN to start searching for holes
5836 * @end_pfn: The end PFN to stop searching for holes
5838 * It returns the number of pages frames in memory holes within a range.
5840 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5841 unsigned long end_pfn
)
5843 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5846 /* Return the number of page frames in holes in a zone on a node */
5847 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5848 unsigned long zone_type
,
5849 unsigned long node_start_pfn
,
5850 unsigned long node_end_pfn
,
5851 unsigned long *ignored
)
5853 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5854 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5855 unsigned long zone_start_pfn
, zone_end_pfn
;
5856 unsigned long nr_absent
;
5858 /* When hotadd a new node from cpu_up(), the node should be empty */
5859 if (!node_start_pfn
&& !node_end_pfn
)
5862 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5863 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5865 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5866 node_start_pfn
, node_end_pfn
,
5867 &zone_start_pfn
, &zone_end_pfn
);
5868 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5871 * ZONE_MOVABLE handling.
5872 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5875 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5876 unsigned long start_pfn
, end_pfn
;
5877 struct memblock_region
*r
;
5879 for_each_memblock(memory
, r
) {
5880 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5881 zone_start_pfn
, zone_end_pfn
);
5882 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5883 zone_start_pfn
, zone_end_pfn
);
5885 if (zone_type
== ZONE_MOVABLE
&&
5886 memblock_is_mirror(r
))
5887 nr_absent
+= end_pfn
- start_pfn
;
5889 if (zone_type
== ZONE_NORMAL
&&
5890 !memblock_is_mirror(r
))
5891 nr_absent
+= end_pfn
- start_pfn
;
5898 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5899 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5900 unsigned long zone_type
,
5901 unsigned long node_start_pfn
,
5902 unsigned long node_end_pfn
,
5903 unsigned long *zone_start_pfn
,
5904 unsigned long *zone_end_pfn
,
5905 unsigned long *zones_size
)
5909 *zone_start_pfn
= node_start_pfn
;
5910 for (zone
= 0; zone
< zone_type
; zone
++)
5911 *zone_start_pfn
+= zones_size
[zone
];
5913 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5915 return zones_size
[zone_type
];
5918 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5919 unsigned long zone_type
,
5920 unsigned long node_start_pfn
,
5921 unsigned long node_end_pfn
,
5922 unsigned long *zholes_size
)
5927 return zholes_size
[zone_type
];
5930 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5932 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5933 unsigned long node_start_pfn
,
5934 unsigned long node_end_pfn
,
5935 unsigned long *zones_size
,
5936 unsigned long *zholes_size
)
5938 unsigned long realtotalpages
= 0, totalpages
= 0;
5941 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5942 struct zone
*zone
= pgdat
->node_zones
+ i
;
5943 unsigned long zone_start_pfn
, zone_end_pfn
;
5944 unsigned long size
, real_size
;
5946 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5952 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5953 node_start_pfn
, node_end_pfn
,
5956 zone
->zone_start_pfn
= zone_start_pfn
;
5958 zone
->zone_start_pfn
= 0;
5959 zone
->spanned_pages
= size
;
5960 zone
->present_pages
= real_size
;
5963 realtotalpages
+= real_size
;
5966 pgdat
->node_spanned_pages
= totalpages
;
5967 pgdat
->node_present_pages
= realtotalpages
;
5968 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5972 #ifndef CONFIG_SPARSEMEM
5974 * Calculate the size of the zone->blockflags rounded to an unsigned long
5975 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5976 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5977 * round what is now in bits to nearest long in bits, then return it in
5980 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5982 unsigned long usemapsize
;
5984 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5985 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5986 usemapsize
= usemapsize
>> pageblock_order
;
5987 usemapsize
*= NR_PAGEBLOCK_BITS
;
5988 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5990 return usemapsize
/ 8;
5993 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5995 unsigned long zone_start_pfn
,
5996 unsigned long zonesize
)
5998 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5999 zone
->pageblock_flags
= NULL
;
6001 zone
->pageblock_flags
=
6002 memblock_virt_alloc_node_nopanic(usemapsize
,
6006 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6007 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6008 #endif /* CONFIG_SPARSEMEM */
6010 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6012 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6013 void __paginginit
set_pageblock_order(void)
6017 /* Check that pageblock_nr_pages has not already been setup */
6018 if (pageblock_order
)
6021 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6022 order
= HUGETLB_PAGE_ORDER
;
6024 order
= MAX_ORDER
- 1;
6027 * Assume the largest contiguous order of interest is a huge page.
6028 * This value may be variable depending on boot parameters on IA64 and
6031 pageblock_order
= order
;
6033 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6036 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6037 * is unused as pageblock_order is set at compile-time. See
6038 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6041 void __paginginit
set_pageblock_order(void)
6045 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6047 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
6048 unsigned long present_pages
)
6050 unsigned long pages
= spanned_pages
;
6053 * Provide a more accurate estimation if there are holes within
6054 * the zone and SPARSEMEM is in use. If there are holes within the
6055 * zone, each populated memory region may cost us one or two extra
6056 * memmap pages due to alignment because memmap pages for each
6057 * populated regions may not be naturally aligned on page boundary.
6058 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6060 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6061 IS_ENABLED(CONFIG_SPARSEMEM
))
6062 pages
= present_pages
;
6064 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6068 * Set up the zone data structures:
6069 * - mark all pages reserved
6070 * - mark all memory queues empty
6071 * - clear the memory bitmaps
6073 * NOTE: pgdat should get zeroed by caller.
6075 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6078 int nid
= pgdat
->node_id
;
6080 pgdat_resize_init(pgdat
);
6081 #ifdef CONFIG_NUMA_BALANCING
6082 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6083 pgdat
->numabalancing_migrate_nr_pages
= 0;
6084 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6087 spin_lock_init(&pgdat
->split_queue_lock
);
6088 INIT_LIST_HEAD(&pgdat
->split_queue
);
6089 pgdat
->split_queue_len
= 0;
6091 init_waitqueue_head(&pgdat
->kswapd_wait
);
6092 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6093 #ifdef CONFIG_COMPACTION
6094 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6096 pgdat_page_ext_init(pgdat
);
6097 spin_lock_init(&pgdat
->lru_lock
);
6098 lruvec_init(node_lruvec(pgdat
));
6100 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6102 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6103 struct zone
*zone
= pgdat
->node_zones
+ j
;
6104 unsigned long size
, realsize
, freesize
, memmap_pages
;
6105 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6107 size
= zone
->spanned_pages
;
6108 realsize
= freesize
= zone
->present_pages
;
6111 * Adjust freesize so that it accounts for how much memory
6112 * is used by this zone for memmap. This affects the watermark
6113 * and per-cpu initialisations
6115 memmap_pages
= calc_memmap_size(size
, realsize
);
6116 if (!is_highmem_idx(j
)) {
6117 if (freesize
>= memmap_pages
) {
6118 freesize
-= memmap_pages
;
6121 " %s zone: %lu pages used for memmap\n",
6122 zone_names
[j
], memmap_pages
);
6124 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6125 zone_names
[j
], memmap_pages
, freesize
);
6128 /* Account for reserved pages */
6129 if (j
== 0 && freesize
> dma_reserve
) {
6130 freesize
-= dma_reserve
;
6131 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6132 zone_names
[0], dma_reserve
);
6135 if (!is_highmem_idx(j
))
6136 nr_kernel_pages
+= freesize
;
6137 /* Charge for highmem memmap if there are enough kernel pages */
6138 else if (nr_kernel_pages
> memmap_pages
* 2)
6139 nr_kernel_pages
-= memmap_pages
;
6140 nr_all_pages
+= freesize
;
6143 * Set an approximate value for lowmem here, it will be adjusted
6144 * when the bootmem allocator frees pages into the buddy system.
6145 * And all highmem pages will be managed by the buddy system.
6147 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6151 zone
->name
= zone_names
[j
];
6152 zone
->zone_pgdat
= pgdat
;
6153 spin_lock_init(&zone
->lock
);
6154 zone_seqlock_init(zone
);
6155 zone_pcp_init(zone
);
6160 set_pageblock_order();
6161 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6162 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6163 memmap_init(size
, nid
, j
, zone_start_pfn
);
6167 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6168 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6170 unsigned long __maybe_unused start
= 0;
6171 unsigned long __maybe_unused offset
= 0;
6173 /* Skip empty nodes */
6174 if (!pgdat
->node_spanned_pages
)
6177 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6178 offset
= pgdat
->node_start_pfn
- start
;
6179 /* ia64 gets its own node_mem_map, before this, without bootmem */
6180 if (!pgdat
->node_mem_map
) {
6181 unsigned long size
, end
;
6185 * The zone's endpoints aren't required to be MAX_ORDER
6186 * aligned but the node_mem_map endpoints must be in order
6187 * for the buddy allocator to function correctly.
6189 end
= pgdat_end_pfn(pgdat
);
6190 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6191 size
= (end
- start
) * sizeof(struct page
);
6192 map
= alloc_remap(pgdat
->node_id
, size
);
6194 map
= memblock_virt_alloc_node_nopanic(size
,
6196 pgdat
->node_mem_map
= map
+ offset
;
6198 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6199 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6200 (unsigned long)pgdat
->node_mem_map
);
6201 #ifndef CONFIG_NEED_MULTIPLE_NODES
6203 * With no DISCONTIG, the global mem_map is just set as node 0's
6205 if (pgdat
== NODE_DATA(0)) {
6206 mem_map
= NODE_DATA(0)->node_mem_map
;
6207 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6208 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6215 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6216 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6218 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6219 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6221 pg_data_t
*pgdat
= NODE_DATA(nid
);
6222 unsigned long start_pfn
= 0;
6223 unsigned long end_pfn
= 0;
6225 /* pg_data_t should be reset to zero when it's allocated */
6226 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6228 pgdat
->node_id
= nid
;
6229 pgdat
->node_start_pfn
= node_start_pfn
;
6230 pgdat
->per_cpu_nodestats
= NULL
;
6231 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6232 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6233 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6234 (u64
)start_pfn
<< PAGE_SHIFT
,
6235 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6237 start_pfn
= node_start_pfn
;
6239 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6240 zones_size
, zholes_size
);
6242 alloc_node_mem_map(pgdat
);
6244 reset_deferred_meminit(pgdat
);
6245 free_area_init_core(pgdat
);
6248 #ifdef CONFIG_HAVE_MEMBLOCK
6250 * Only struct pages that are backed by physical memory are zeroed and
6251 * initialized by going through __init_single_page(). But, there are some
6252 * struct pages which are reserved in memblock allocator and their fields
6253 * may be accessed (for example page_to_pfn() on some configuration accesses
6254 * flags). We must explicitly zero those struct pages.
6256 void __paginginit
zero_resv_unavail(void)
6258 phys_addr_t start
, end
;
6263 * Loop through ranges that are reserved, but do not have reported
6264 * physical memory backing.
6267 for_each_resv_unavail_range(i
, &start
, &end
) {
6268 for (pfn
= PFN_DOWN(start
); pfn
< PFN_UP(end
); pfn
++) {
6269 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
)))
6271 mm_zero_struct_page(pfn_to_page(pfn
));
6277 * Struct pages that do not have backing memory. This could be because
6278 * firmware is using some of this memory, or for some other reasons.
6279 * Once memblock is changed so such behaviour is not allowed: i.e.
6280 * list of "reserved" memory must be a subset of list of "memory", then
6281 * this code can be removed.
6284 pr_info("Reserved but unavailable: %lld pages", pgcnt
);
6286 #endif /* CONFIG_HAVE_MEMBLOCK */
6288 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6290 #if MAX_NUMNODES > 1
6292 * Figure out the number of possible node ids.
6294 void __init
setup_nr_node_ids(void)
6296 unsigned int highest
;
6298 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6299 nr_node_ids
= highest
+ 1;
6304 * node_map_pfn_alignment - determine the maximum internode alignment
6306 * This function should be called after node map is populated and sorted.
6307 * It calculates the maximum power of two alignment which can distinguish
6310 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6311 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6312 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6313 * shifted, 1GiB is enough and this function will indicate so.
6315 * This is used to test whether pfn -> nid mapping of the chosen memory
6316 * model has fine enough granularity to avoid incorrect mapping for the
6317 * populated node map.
6319 * Returns the determined alignment in pfn's. 0 if there is no alignment
6320 * requirement (single node).
6322 unsigned long __init
node_map_pfn_alignment(void)
6324 unsigned long accl_mask
= 0, last_end
= 0;
6325 unsigned long start
, end
, mask
;
6329 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6330 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6337 * Start with a mask granular enough to pin-point to the
6338 * start pfn and tick off bits one-by-one until it becomes
6339 * too coarse to separate the current node from the last.
6341 mask
= ~((1 << __ffs(start
)) - 1);
6342 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6345 /* accumulate all internode masks */
6349 /* convert mask to number of pages */
6350 return ~accl_mask
+ 1;
6353 /* Find the lowest pfn for a node */
6354 static unsigned long __init
find_min_pfn_for_node(int nid
)
6356 unsigned long min_pfn
= ULONG_MAX
;
6357 unsigned long start_pfn
;
6360 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6361 min_pfn
= min(min_pfn
, start_pfn
);
6363 if (min_pfn
== ULONG_MAX
) {
6364 pr_warn("Could not find start_pfn for node %d\n", nid
);
6372 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6374 * It returns the minimum PFN based on information provided via
6375 * memblock_set_node().
6377 unsigned long __init
find_min_pfn_with_active_regions(void)
6379 return find_min_pfn_for_node(MAX_NUMNODES
);
6383 * early_calculate_totalpages()
6384 * Sum pages in active regions for movable zone.
6385 * Populate N_MEMORY for calculating usable_nodes.
6387 static unsigned long __init
early_calculate_totalpages(void)
6389 unsigned long totalpages
= 0;
6390 unsigned long start_pfn
, end_pfn
;
6393 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6394 unsigned long pages
= end_pfn
- start_pfn
;
6396 totalpages
+= pages
;
6398 node_set_state(nid
, N_MEMORY
);
6404 * Find the PFN the Movable zone begins in each node. Kernel memory
6405 * is spread evenly between nodes as long as the nodes have enough
6406 * memory. When they don't, some nodes will have more kernelcore than
6409 static void __init
find_zone_movable_pfns_for_nodes(void)
6412 unsigned long usable_startpfn
;
6413 unsigned long kernelcore_node
, kernelcore_remaining
;
6414 /* save the state before borrow the nodemask */
6415 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6416 unsigned long totalpages
= early_calculate_totalpages();
6417 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6418 struct memblock_region
*r
;
6420 /* Need to find movable_zone earlier when movable_node is specified. */
6421 find_usable_zone_for_movable();
6424 * If movable_node is specified, ignore kernelcore and movablecore
6427 if (movable_node_is_enabled()) {
6428 for_each_memblock(memory
, r
) {
6429 if (!memblock_is_hotpluggable(r
))
6434 usable_startpfn
= PFN_DOWN(r
->base
);
6435 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6436 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6444 * If kernelcore=mirror is specified, ignore movablecore option
6446 if (mirrored_kernelcore
) {
6447 bool mem_below_4gb_not_mirrored
= false;
6449 for_each_memblock(memory
, r
) {
6450 if (memblock_is_mirror(r
))
6455 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6457 if (usable_startpfn
< 0x100000) {
6458 mem_below_4gb_not_mirrored
= true;
6462 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6463 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6467 if (mem_below_4gb_not_mirrored
)
6468 pr_warn("This configuration results in unmirrored kernel memory.");
6474 * If movablecore=nn[KMG] was specified, calculate what size of
6475 * kernelcore that corresponds so that memory usable for
6476 * any allocation type is evenly spread. If both kernelcore
6477 * and movablecore are specified, then the value of kernelcore
6478 * will be used for required_kernelcore if it's greater than
6479 * what movablecore would have allowed.
6481 if (required_movablecore
) {
6482 unsigned long corepages
;
6485 * Round-up so that ZONE_MOVABLE is at least as large as what
6486 * was requested by the user
6488 required_movablecore
=
6489 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6490 required_movablecore
= min(totalpages
, required_movablecore
);
6491 corepages
= totalpages
- required_movablecore
;
6493 required_kernelcore
= max(required_kernelcore
, corepages
);
6497 * If kernelcore was not specified or kernelcore size is larger
6498 * than totalpages, there is no ZONE_MOVABLE.
6500 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6503 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6504 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6507 /* Spread kernelcore memory as evenly as possible throughout nodes */
6508 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6509 for_each_node_state(nid
, N_MEMORY
) {
6510 unsigned long start_pfn
, end_pfn
;
6513 * Recalculate kernelcore_node if the division per node
6514 * now exceeds what is necessary to satisfy the requested
6515 * amount of memory for the kernel
6517 if (required_kernelcore
< kernelcore_node
)
6518 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6521 * As the map is walked, we track how much memory is usable
6522 * by the kernel using kernelcore_remaining. When it is
6523 * 0, the rest of the node is usable by ZONE_MOVABLE
6525 kernelcore_remaining
= kernelcore_node
;
6527 /* Go through each range of PFNs within this node */
6528 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6529 unsigned long size_pages
;
6531 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6532 if (start_pfn
>= end_pfn
)
6535 /* Account for what is only usable for kernelcore */
6536 if (start_pfn
< usable_startpfn
) {
6537 unsigned long kernel_pages
;
6538 kernel_pages
= min(end_pfn
, usable_startpfn
)
6541 kernelcore_remaining
-= min(kernel_pages
,
6542 kernelcore_remaining
);
6543 required_kernelcore
-= min(kernel_pages
,
6544 required_kernelcore
);
6546 /* Continue if range is now fully accounted */
6547 if (end_pfn
<= usable_startpfn
) {
6550 * Push zone_movable_pfn to the end so
6551 * that if we have to rebalance
6552 * kernelcore across nodes, we will
6553 * not double account here
6555 zone_movable_pfn
[nid
] = end_pfn
;
6558 start_pfn
= usable_startpfn
;
6562 * The usable PFN range for ZONE_MOVABLE is from
6563 * start_pfn->end_pfn. Calculate size_pages as the
6564 * number of pages used as kernelcore
6566 size_pages
= end_pfn
- start_pfn
;
6567 if (size_pages
> kernelcore_remaining
)
6568 size_pages
= kernelcore_remaining
;
6569 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6572 * Some kernelcore has been met, update counts and
6573 * break if the kernelcore for this node has been
6576 required_kernelcore
-= min(required_kernelcore
,
6578 kernelcore_remaining
-= size_pages
;
6579 if (!kernelcore_remaining
)
6585 * If there is still required_kernelcore, we do another pass with one
6586 * less node in the count. This will push zone_movable_pfn[nid] further
6587 * along on the nodes that still have memory until kernelcore is
6591 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6595 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6596 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6597 zone_movable_pfn
[nid
] =
6598 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6601 /* restore the node_state */
6602 node_states
[N_MEMORY
] = saved_node_state
;
6605 /* Any regular or high memory on that node ? */
6606 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6608 enum zone_type zone_type
;
6610 if (N_MEMORY
== N_NORMAL_MEMORY
)
6613 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6614 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6615 if (populated_zone(zone
)) {
6616 node_set_state(nid
, N_HIGH_MEMORY
);
6617 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6618 zone_type
<= ZONE_NORMAL
)
6619 node_set_state(nid
, N_NORMAL_MEMORY
);
6626 * free_area_init_nodes - Initialise all pg_data_t and zone data
6627 * @max_zone_pfn: an array of max PFNs for each zone
6629 * This will call free_area_init_node() for each active node in the system.
6630 * Using the page ranges provided by memblock_set_node(), the size of each
6631 * zone in each node and their holes is calculated. If the maximum PFN
6632 * between two adjacent zones match, it is assumed that the zone is empty.
6633 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6634 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6635 * starts where the previous one ended. For example, ZONE_DMA32 starts
6636 * at arch_max_dma_pfn.
6638 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6640 unsigned long start_pfn
, end_pfn
;
6643 /* Record where the zone boundaries are */
6644 memset(arch_zone_lowest_possible_pfn
, 0,
6645 sizeof(arch_zone_lowest_possible_pfn
));
6646 memset(arch_zone_highest_possible_pfn
, 0,
6647 sizeof(arch_zone_highest_possible_pfn
));
6649 start_pfn
= find_min_pfn_with_active_regions();
6651 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6652 if (i
== ZONE_MOVABLE
)
6655 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6656 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6657 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6659 start_pfn
= end_pfn
;
6662 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6663 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6664 find_zone_movable_pfns_for_nodes();
6666 /* Print out the zone ranges */
6667 pr_info("Zone ranges:\n");
6668 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6669 if (i
== ZONE_MOVABLE
)
6671 pr_info(" %-8s ", zone_names
[i
]);
6672 if (arch_zone_lowest_possible_pfn
[i
] ==
6673 arch_zone_highest_possible_pfn
[i
])
6676 pr_cont("[mem %#018Lx-%#018Lx]\n",
6677 (u64
)arch_zone_lowest_possible_pfn
[i
]
6679 ((u64
)arch_zone_highest_possible_pfn
[i
]
6680 << PAGE_SHIFT
) - 1);
6683 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6684 pr_info("Movable zone start for each node\n");
6685 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6686 if (zone_movable_pfn
[i
])
6687 pr_info(" Node %d: %#018Lx\n", i
,
6688 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6691 /* Print out the early node map */
6692 pr_info("Early memory node ranges\n");
6693 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6694 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6695 (u64
)start_pfn
<< PAGE_SHIFT
,
6696 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6698 /* Initialise every node */
6699 mminit_verify_pageflags_layout();
6700 setup_nr_node_ids();
6701 for_each_online_node(nid
) {
6702 pg_data_t
*pgdat
= NODE_DATA(nid
);
6703 free_area_init_node(nid
, NULL
,
6704 find_min_pfn_for_node(nid
), NULL
);
6706 /* Any memory on that node */
6707 if (pgdat
->node_present_pages
)
6708 node_set_state(nid
, N_MEMORY
);
6709 check_for_memory(pgdat
, nid
);
6711 zero_resv_unavail();
6714 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6716 unsigned long long coremem
;
6720 coremem
= memparse(p
, &p
);
6721 *core
= coremem
>> PAGE_SHIFT
;
6723 /* Paranoid check that UL is enough for the coremem value */
6724 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6730 * kernelcore=size sets the amount of memory for use for allocations that
6731 * cannot be reclaimed or migrated.
6733 static int __init
cmdline_parse_kernelcore(char *p
)
6735 /* parse kernelcore=mirror */
6736 if (parse_option_str(p
, "mirror")) {
6737 mirrored_kernelcore
= true;
6741 return cmdline_parse_core(p
, &required_kernelcore
);
6745 * movablecore=size sets the amount of memory for use for allocations that
6746 * can be reclaimed or migrated.
6748 static int __init
cmdline_parse_movablecore(char *p
)
6750 return cmdline_parse_core(p
, &required_movablecore
);
6753 early_param("kernelcore", cmdline_parse_kernelcore
);
6754 early_param("movablecore", cmdline_parse_movablecore
);
6756 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6758 void adjust_managed_page_count(struct page
*page
, long count
)
6760 spin_lock(&managed_page_count_lock
);
6761 page_zone(page
)->managed_pages
+= count
;
6762 totalram_pages
+= count
;
6763 #ifdef CONFIG_HIGHMEM
6764 if (PageHighMem(page
))
6765 totalhigh_pages
+= count
;
6767 spin_unlock(&managed_page_count_lock
);
6769 EXPORT_SYMBOL(adjust_managed_page_count
);
6771 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6774 unsigned long pages
= 0;
6776 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6777 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6778 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6779 if ((unsigned int)poison
<= 0xFF)
6780 memset(pos
, poison
, PAGE_SIZE
);
6781 free_reserved_page(virt_to_page(pos
));
6785 pr_info("Freeing %s memory: %ldK\n",
6786 s
, pages
<< (PAGE_SHIFT
- 10));
6790 EXPORT_SYMBOL(free_reserved_area
);
6792 #ifdef CONFIG_HIGHMEM
6793 void free_highmem_page(struct page
*page
)
6795 __free_reserved_page(page
);
6797 page_zone(page
)->managed_pages
++;
6803 void __init
mem_init_print_info(const char *str
)
6805 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6806 unsigned long init_code_size
, init_data_size
;
6808 physpages
= get_num_physpages();
6809 codesize
= _etext
- _stext
;
6810 datasize
= _edata
- _sdata
;
6811 rosize
= __end_rodata
- __start_rodata
;
6812 bss_size
= __bss_stop
- __bss_start
;
6813 init_data_size
= __init_end
- __init_begin
;
6814 init_code_size
= _einittext
- _sinittext
;
6817 * Detect special cases and adjust section sizes accordingly:
6818 * 1) .init.* may be embedded into .data sections
6819 * 2) .init.text.* may be out of [__init_begin, __init_end],
6820 * please refer to arch/tile/kernel/vmlinux.lds.S.
6821 * 3) .rodata.* may be embedded into .text or .data sections.
6823 #define adj_init_size(start, end, size, pos, adj) \
6825 if (start <= pos && pos < end && size > adj) \
6829 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6830 _sinittext
, init_code_size
);
6831 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6832 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6833 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6834 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6836 #undef adj_init_size
6838 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6839 #ifdef CONFIG_HIGHMEM
6843 nr_free_pages() << (PAGE_SHIFT
- 10),
6844 physpages
<< (PAGE_SHIFT
- 10),
6845 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6846 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6847 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6848 totalcma_pages
<< (PAGE_SHIFT
- 10),
6849 #ifdef CONFIG_HIGHMEM
6850 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6852 str
? ", " : "", str
? str
: "");
6856 * set_dma_reserve - set the specified number of pages reserved in the first zone
6857 * @new_dma_reserve: The number of pages to mark reserved
6859 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6860 * In the DMA zone, a significant percentage may be consumed by kernel image
6861 * and other unfreeable allocations which can skew the watermarks badly. This
6862 * function may optionally be used to account for unfreeable pages in the
6863 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6864 * smaller per-cpu batchsize.
6866 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6868 dma_reserve
= new_dma_reserve
;
6871 void __init
free_area_init(unsigned long *zones_size
)
6873 free_area_init_node(0, zones_size
,
6874 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6875 zero_resv_unavail();
6878 static int page_alloc_cpu_dead(unsigned int cpu
)
6881 lru_add_drain_cpu(cpu
);
6885 * Spill the event counters of the dead processor
6886 * into the current processors event counters.
6887 * This artificially elevates the count of the current
6890 vm_events_fold_cpu(cpu
);
6893 * Zero the differential counters of the dead processor
6894 * so that the vm statistics are consistent.
6896 * This is only okay since the processor is dead and cannot
6897 * race with what we are doing.
6899 cpu_vm_stats_fold(cpu
);
6903 void __init
page_alloc_init(void)
6907 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6908 "mm/page_alloc:dead", NULL
,
6909 page_alloc_cpu_dead
);
6914 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6915 * or min_free_kbytes changes.
6917 static void calculate_totalreserve_pages(void)
6919 struct pglist_data
*pgdat
;
6920 unsigned long reserve_pages
= 0;
6921 enum zone_type i
, j
;
6923 for_each_online_pgdat(pgdat
) {
6925 pgdat
->totalreserve_pages
= 0;
6927 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6928 struct zone
*zone
= pgdat
->node_zones
+ i
;
6931 /* Find valid and maximum lowmem_reserve in the zone */
6932 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6933 if (zone
->lowmem_reserve
[j
] > max
)
6934 max
= zone
->lowmem_reserve
[j
];
6937 /* we treat the high watermark as reserved pages. */
6938 max
+= high_wmark_pages(zone
);
6940 if (max
> zone
->managed_pages
)
6941 max
= zone
->managed_pages
;
6943 pgdat
->totalreserve_pages
+= max
;
6945 reserve_pages
+= max
;
6948 totalreserve_pages
= reserve_pages
;
6952 * setup_per_zone_lowmem_reserve - called whenever
6953 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6954 * has a correct pages reserved value, so an adequate number of
6955 * pages are left in the zone after a successful __alloc_pages().
6957 static void setup_per_zone_lowmem_reserve(void)
6959 struct pglist_data
*pgdat
;
6960 enum zone_type j
, idx
;
6962 for_each_online_pgdat(pgdat
) {
6963 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6964 struct zone
*zone
= pgdat
->node_zones
+ j
;
6965 unsigned long managed_pages
= zone
->managed_pages
;
6967 zone
->lowmem_reserve
[j
] = 0;
6971 struct zone
*lower_zone
;
6975 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6976 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6978 lower_zone
= pgdat
->node_zones
+ idx
;
6979 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6980 sysctl_lowmem_reserve_ratio
[idx
];
6981 managed_pages
+= lower_zone
->managed_pages
;
6986 /* update totalreserve_pages */
6987 calculate_totalreserve_pages();
6990 static void __setup_per_zone_wmarks(void)
6992 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6993 unsigned long lowmem_pages
= 0;
6995 unsigned long flags
;
6997 /* Calculate total number of !ZONE_HIGHMEM pages */
6998 for_each_zone(zone
) {
6999 if (!is_highmem(zone
))
7000 lowmem_pages
+= zone
->managed_pages
;
7003 for_each_zone(zone
) {
7006 spin_lock_irqsave(&zone
->lock
, flags
);
7007 tmp
= (u64
)pages_min
* zone
->managed_pages
;
7008 do_div(tmp
, lowmem_pages
);
7009 if (is_highmem(zone
)) {
7011 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7012 * need highmem pages, so cap pages_min to a small
7015 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7016 * deltas control asynch page reclaim, and so should
7017 * not be capped for highmem.
7019 unsigned long min_pages
;
7021 min_pages
= zone
->managed_pages
/ 1024;
7022 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7023 zone
->watermark
[WMARK_MIN
] = min_pages
;
7026 * If it's a lowmem zone, reserve a number of pages
7027 * proportionate to the zone's size.
7029 zone
->watermark
[WMARK_MIN
] = tmp
;
7033 * Set the kswapd watermarks distance according to the
7034 * scale factor in proportion to available memory, but
7035 * ensure a minimum size on small systems.
7037 tmp
= max_t(u64
, tmp
>> 2,
7038 mult_frac(zone
->managed_pages
,
7039 watermark_scale_factor
, 10000));
7041 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7042 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7044 spin_unlock_irqrestore(&zone
->lock
, flags
);
7047 /* update totalreserve_pages */
7048 calculate_totalreserve_pages();
7052 * setup_per_zone_wmarks - called when min_free_kbytes changes
7053 * or when memory is hot-{added|removed}
7055 * Ensures that the watermark[min,low,high] values for each zone are set
7056 * correctly with respect to min_free_kbytes.
7058 void setup_per_zone_wmarks(void)
7060 static DEFINE_SPINLOCK(lock
);
7063 __setup_per_zone_wmarks();
7068 * Initialise min_free_kbytes.
7070 * For small machines we want it small (128k min). For large machines
7071 * we want it large (64MB max). But it is not linear, because network
7072 * bandwidth does not increase linearly with machine size. We use
7074 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7075 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7091 int __meminit
init_per_zone_wmark_min(void)
7093 unsigned long lowmem_kbytes
;
7094 int new_min_free_kbytes
;
7096 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7097 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7099 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7100 min_free_kbytes
= new_min_free_kbytes
;
7101 if (min_free_kbytes
< 128)
7102 min_free_kbytes
= 128;
7103 if (min_free_kbytes
> 65536)
7104 min_free_kbytes
= 65536;
7106 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7107 new_min_free_kbytes
, user_min_free_kbytes
);
7109 setup_per_zone_wmarks();
7110 refresh_zone_stat_thresholds();
7111 setup_per_zone_lowmem_reserve();
7114 setup_min_unmapped_ratio();
7115 setup_min_slab_ratio();
7120 core_initcall(init_per_zone_wmark_min
)
7123 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7124 * that we can call two helper functions whenever min_free_kbytes
7127 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7128 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7132 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7137 user_min_free_kbytes
= min_free_kbytes
;
7138 setup_per_zone_wmarks();
7143 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7144 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7148 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7153 setup_per_zone_wmarks();
7159 static void setup_min_unmapped_ratio(void)
7164 for_each_online_pgdat(pgdat
)
7165 pgdat
->min_unmapped_pages
= 0;
7168 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7169 sysctl_min_unmapped_ratio
) / 100;
7173 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7174 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7178 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7182 setup_min_unmapped_ratio();
7187 static void setup_min_slab_ratio(void)
7192 for_each_online_pgdat(pgdat
)
7193 pgdat
->min_slab_pages
= 0;
7196 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7197 sysctl_min_slab_ratio
) / 100;
7200 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7201 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7205 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7209 setup_min_slab_ratio();
7216 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7217 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7218 * whenever sysctl_lowmem_reserve_ratio changes.
7220 * The reserve ratio obviously has absolutely no relation with the
7221 * minimum watermarks. The lowmem reserve ratio can only make sense
7222 * if in function of the boot time zone sizes.
7224 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7225 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7227 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7228 setup_per_zone_lowmem_reserve();
7233 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7234 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7235 * pagelist can have before it gets flushed back to buddy allocator.
7237 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7238 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7241 int old_percpu_pagelist_fraction
;
7244 mutex_lock(&pcp_batch_high_lock
);
7245 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7247 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7248 if (!write
|| ret
< 0)
7251 /* Sanity checking to avoid pcp imbalance */
7252 if (percpu_pagelist_fraction
&&
7253 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7254 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7260 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7263 for_each_populated_zone(zone
) {
7266 for_each_possible_cpu(cpu
)
7267 pageset_set_high_and_batch(zone
,
7268 per_cpu_ptr(zone
->pageset
, cpu
));
7271 mutex_unlock(&pcp_batch_high_lock
);
7276 int hashdist
= HASHDIST_DEFAULT
;
7278 static int __init
set_hashdist(char *str
)
7282 hashdist
= simple_strtoul(str
, &str
, 0);
7285 __setup("hashdist=", set_hashdist
);
7288 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7290 * Returns the number of pages that arch has reserved but
7291 * is not known to alloc_large_system_hash().
7293 static unsigned long __init
arch_reserved_kernel_pages(void)
7300 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7301 * machines. As memory size is increased the scale is also increased but at
7302 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7303 * quadruples the scale is increased by one, which means the size of hash table
7304 * only doubles, instead of quadrupling as well.
7305 * Because 32-bit systems cannot have large physical memory, where this scaling
7306 * makes sense, it is disabled on such platforms.
7308 #if __BITS_PER_LONG > 32
7309 #define ADAPT_SCALE_BASE (64ul << 30)
7310 #define ADAPT_SCALE_SHIFT 2
7311 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7315 * allocate a large system hash table from bootmem
7316 * - it is assumed that the hash table must contain an exact power-of-2
7317 * quantity of entries
7318 * - limit is the number of hash buckets, not the total allocation size
7320 void *__init
alloc_large_system_hash(const char *tablename
,
7321 unsigned long bucketsize
,
7322 unsigned long numentries
,
7325 unsigned int *_hash_shift
,
7326 unsigned int *_hash_mask
,
7327 unsigned long low_limit
,
7328 unsigned long high_limit
)
7330 unsigned long long max
= high_limit
;
7331 unsigned long log2qty
, size
;
7335 /* allow the kernel cmdline to have a say */
7337 /* round applicable memory size up to nearest megabyte */
7338 numentries
= nr_kernel_pages
;
7339 numentries
-= arch_reserved_kernel_pages();
7341 /* It isn't necessary when PAGE_SIZE >= 1MB */
7342 if (PAGE_SHIFT
< 20)
7343 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7345 #if __BITS_PER_LONG > 32
7347 unsigned long adapt
;
7349 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7350 adapt
<<= ADAPT_SCALE_SHIFT
)
7355 /* limit to 1 bucket per 2^scale bytes of low memory */
7356 if (scale
> PAGE_SHIFT
)
7357 numentries
>>= (scale
- PAGE_SHIFT
);
7359 numentries
<<= (PAGE_SHIFT
- scale
);
7361 /* Make sure we've got at least a 0-order allocation.. */
7362 if (unlikely(flags
& HASH_SMALL
)) {
7363 /* Makes no sense without HASH_EARLY */
7364 WARN_ON(!(flags
& HASH_EARLY
));
7365 if (!(numentries
>> *_hash_shift
)) {
7366 numentries
= 1UL << *_hash_shift
;
7367 BUG_ON(!numentries
);
7369 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7370 numentries
= PAGE_SIZE
/ bucketsize
;
7372 numentries
= roundup_pow_of_two(numentries
);
7374 /* limit allocation size to 1/16 total memory by default */
7376 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7377 do_div(max
, bucketsize
);
7379 max
= min(max
, 0x80000000ULL
);
7381 if (numentries
< low_limit
)
7382 numentries
= low_limit
;
7383 if (numentries
> max
)
7386 log2qty
= ilog2(numentries
);
7388 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7390 size
= bucketsize
<< log2qty
;
7391 if (flags
& HASH_EARLY
) {
7392 if (flags
& HASH_ZERO
)
7393 table
= memblock_virt_alloc_nopanic(size
, 0);
7395 table
= memblock_virt_alloc_raw(size
, 0);
7396 } else if (hashdist
) {
7397 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7400 * If bucketsize is not a power-of-two, we may free
7401 * some pages at the end of hash table which
7402 * alloc_pages_exact() automatically does
7404 if (get_order(size
) < MAX_ORDER
) {
7405 table
= alloc_pages_exact(size
, gfp_flags
);
7406 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7409 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7412 panic("Failed to allocate %s hash table\n", tablename
);
7414 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7415 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7418 *_hash_shift
= log2qty
;
7420 *_hash_mask
= (1 << log2qty
) - 1;
7426 * This function checks whether pageblock includes unmovable pages or not.
7427 * If @count is not zero, it is okay to include less @count unmovable pages
7429 * PageLRU check without isolation or lru_lock could race so that
7430 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7431 * check without lock_page also may miss some movable non-lru pages at
7432 * race condition. So you can't expect this function should be exact.
7434 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7436 bool skip_hwpoisoned_pages
)
7438 unsigned long pfn
, iter
, found
;
7441 * For avoiding noise data, lru_add_drain_all() should be called
7442 * If ZONE_MOVABLE, the zone never contains unmovable pages
7444 if (zone_idx(zone
) == ZONE_MOVABLE
)
7448 * CMA allocations (alloc_contig_range) really need to mark isolate
7449 * CMA pageblocks even when they are not movable in fact so consider
7450 * them movable here.
7452 if (is_migrate_cma(migratetype
) &&
7453 is_migrate_cma(get_pageblock_migratetype(page
)))
7456 pfn
= page_to_pfn(page
);
7457 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7458 unsigned long check
= pfn
+ iter
;
7460 if (!pfn_valid_within(check
))
7463 page
= pfn_to_page(check
);
7465 if (PageReserved(page
))
7469 * Hugepages are not in LRU lists, but they're movable.
7470 * We need not scan over tail pages bacause we don't
7471 * handle each tail page individually in migration.
7473 if (PageHuge(page
)) {
7474 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7479 * We can't use page_count without pin a page
7480 * because another CPU can free compound page.
7481 * This check already skips compound tails of THP
7482 * because their page->_refcount is zero at all time.
7484 if (!page_ref_count(page
)) {
7485 if (PageBuddy(page
))
7486 iter
+= (1 << page_order(page
)) - 1;
7491 * The HWPoisoned page may be not in buddy system, and
7492 * page_count() is not 0.
7494 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7497 if (__PageMovable(page
))
7503 * If there are RECLAIMABLE pages, we need to check
7504 * it. But now, memory offline itself doesn't call
7505 * shrink_node_slabs() and it still to be fixed.
7508 * If the page is not RAM, page_count()should be 0.
7509 * we don't need more check. This is an _used_ not-movable page.
7511 * The problematic thing here is PG_reserved pages. PG_reserved
7512 * is set to both of a memory hole page and a _used_ kernel
7521 bool is_pageblock_removable_nolock(struct page
*page
)
7527 * We have to be careful here because we are iterating over memory
7528 * sections which are not zone aware so we might end up outside of
7529 * the zone but still within the section.
7530 * We have to take care about the node as well. If the node is offline
7531 * its NODE_DATA will be NULL - see page_zone.
7533 if (!node_online(page_to_nid(page
)))
7536 zone
= page_zone(page
);
7537 pfn
= page_to_pfn(page
);
7538 if (!zone_spans_pfn(zone
, pfn
))
7541 return !has_unmovable_pages(zone
, page
, 0, MIGRATE_MOVABLE
, true);
7544 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7546 static unsigned long pfn_max_align_down(unsigned long pfn
)
7548 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7549 pageblock_nr_pages
) - 1);
7552 static unsigned long pfn_max_align_up(unsigned long pfn
)
7554 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7555 pageblock_nr_pages
));
7558 /* [start, end) must belong to a single zone. */
7559 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7560 unsigned long start
, unsigned long end
)
7562 /* This function is based on compact_zone() from compaction.c. */
7563 unsigned long nr_reclaimed
;
7564 unsigned long pfn
= start
;
7565 unsigned int tries
= 0;
7570 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7571 if (fatal_signal_pending(current
)) {
7576 if (list_empty(&cc
->migratepages
)) {
7577 cc
->nr_migratepages
= 0;
7578 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7584 } else if (++tries
== 5) {
7585 ret
= ret
< 0 ? ret
: -EBUSY
;
7589 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7591 cc
->nr_migratepages
-= nr_reclaimed
;
7593 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7594 NULL
, 0, cc
->mode
, MR_CMA
);
7597 putback_movable_pages(&cc
->migratepages
);
7604 * alloc_contig_range() -- tries to allocate given range of pages
7605 * @start: start PFN to allocate
7606 * @end: one-past-the-last PFN to allocate
7607 * @migratetype: migratetype of the underlaying pageblocks (either
7608 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7609 * in range must have the same migratetype and it must
7610 * be either of the two.
7611 * @gfp_mask: GFP mask to use during compaction
7613 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7614 * aligned, however it's the caller's responsibility to guarantee that
7615 * we are the only thread that changes migrate type of pageblocks the
7618 * The PFN range must belong to a single zone.
7620 * Returns zero on success or negative error code. On success all
7621 * pages which PFN is in [start, end) are allocated for the caller and
7622 * need to be freed with free_contig_range().
7624 int alloc_contig_range(unsigned long start
, unsigned long end
,
7625 unsigned migratetype
, gfp_t gfp_mask
)
7627 unsigned long outer_start
, outer_end
;
7631 struct compact_control cc
= {
7632 .nr_migratepages
= 0,
7634 .zone
= page_zone(pfn_to_page(start
)),
7635 .mode
= MIGRATE_SYNC
,
7636 .ignore_skip_hint
= true,
7637 .no_set_skip_hint
= true,
7638 .gfp_mask
= current_gfp_context(gfp_mask
),
7640 INIT_LIST_HEAD(&cc
.migratepages
);
7643 * What we do here is we mark all pageblocks in range as
7644 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7645 * have different sizes, and due to the way page allocator
7646 * work, we align the range to biggest of the two pages so
7647 * that page allocator won't try to merge buddies from
7648 * different pageblocks and change MIGRATE_ISOLATE to some
7649 * other migration type.
7651 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7652 * migrate the pages from an unaligned range (ie. pages that
7653 * we are interested in). This will put all the pages in
7654 * range back to page allocator as MIGRATE_ISOLATE.
7656 * When this is done, we take the pages in range from page
7657 * allocator removing them from the buddy system. This way
7658 * page allocator will never consider using them.
7660 * This lets us mark the pageblocks back as
7661 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7662 * aligned range but not in the unaligned, original range are
7663 * put back to page allocator so that buddy can use them.
7666 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7667 pfn_max_align_up(end
), migratetype
,
7673 * In case of -EBUSY, we'd like to know which page causes problem.
7674 * So, just fall through. test_pages_isolated() has a tracepoint
7675 * which will report the busy page.
7677 * It is possible that busy pages could become available before
7678 * the call to test_pages_isolated, and the range will actually be
7679 * allocated. So, if we fall through be sure to clear ret so that
7680 * -EBUSY is not accidentally used or returned to caller.
7682 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7683 if (ret
&& ret
!= -EBUSY
)
7688 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7689 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7690 * more, all pages in [start, end) are free in page allocator.
7691 * What we are going to do is to allocate all pages from
7692 * [start, end) (that is remove them from page allocator).
7694 * The only problem is that pages at the beginning and at the
7695 * end of interesting range may be not aligned with pages that
7696 * page allocator holds, ie. they can be part of higher order
7697 * pages. Because of this, we reserve the bigger range and
7698 * once this is done free the pages we are not interested in.
7700 * We don't have to hold zone->lock here because the pages are
7701 * isolated thus they won't get removed from buddy.
7704 lru_add_drain_all();
7705 drain_all_pages(cc
.zone
);
7708 outer_start
= start
;
7709 while (!PageBuddy(pfn_to_page(outer_start
))) {
7710 if (++order
>= MAX_ORDER
) {
7711 outer_start
= start
;
7714 outer_start
&= ~0UL << order
;
7717 if (outer_start
!= start
) {
7718 order
= page_order(pfn_to_page(outer_start
));
7721 * outer_start page could be small order buddy page and
7722 * it doesn't include start page. Adjust outer_start
7723 * in this case to report failed page properly
7724 * on tracepoint in test_pages_isolated()
7726 if (outer_start
+ (1UL << order
) <= start
)
7727 outer_start
= start
;
7730 /* Make sure the range is really isolated. */
7731 if (test_pages_isolated(outer_start
, end
, false)) {
7732 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7733 __func__
, outer_start
, end
);
7738 /* Grab isolated pages from freelists. */
7739 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7745 /* Free head and tail (if any) */
7746 if (start
!= outer_start
)
7747 free_contig_range(outer_start
, start
- outer_start
);
7748 if (end
!= outer_end
)
7749 free_contig_range(end
, outer_end
- end
);
7752 undo_isolate_page_range(pfn_max_align_down(start
),
7753 pfn_max_align_up(end
), migratetype
);
7757 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7759 unsigned int count
= 0;
7761 for (; nr_pages
--; pfn
++) {
7762 struct page
*page
= pfn_to_page(pfn
);
7764 count
+= page_count(page
) != 1;
7767 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7771 #ifdef CONFIG_MEMORY_HOTPLUG
7773 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7774 * page high values need to be recalulated.
7776 void __meminit
zone_pcp_update(struct zone
*zone
)
7779 mutex_lock(&pcp_batch_high_lock
);
7780 for_each_possible_cpu(cpu
)
7781 pageset_set_high_and_batch(zone
,
7782 per_cpu_ptr(zone
->pageset
, cpu
));
7783 mutex_unlock(&pcp_batch_high_lock
);
7787 void zone_pcp_reset(struct zone
*zone
)
7789 unsigned long flags
;
7791 struct per_cpu_pageset
*pset
;
7793 /* avoid races with drain_pages() */
7794 local_irq_save(flags
);
7795 if (zone
->pageset
!= &boot_pageset
) {
7796 for_each_online_cpu(cpu
) {
7797 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7798 drain_zonestat(zone
, pset
);
7800 free_percpu(zone
->pageset
);
7801 zone
->pageset
= &boot_pageset
;
7803 local_irq_restore(flags
);
7806 #ifdef CONFIG_MEMORY_HOTREMOVE
7808 * All pages in the range must be in a single zone and isolated
7809 * before calling this.
7812 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7816 unsigned int order
, i
;
7818 unsigned long flags
;
7819 /* find the first valid pfn */
7820 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7825 offline_mem_sections(pfn
, end_pfn
);
7826 zone
= page_zone(pfn_to_page(pfn
));
7827 spin_lock_irqsave(&zone
->lock
, flags
);
7829 while (pfn
< end_pfn
) {
7830 if (!pfn_valid(pfn
)) {
7834 page
= pfn_to_page(pfn
);
7836 * The HWPoisoned page may be not in buddy system, and
7837 * page_count() is not 0.
7839 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7841 SetPageReserved(page
);
7845 BUG_ON(page_count(page
));
7846 BUG_ON(!PageBuddy(page
));
7847 order
= page_order(page
);
7848 #ifdef CONFIG_DEBUG_VM
7849 pr_info("remove from free list %lx %d %lx\n",
7850 pfn
, 1 << order
, end_pfn
);
7852 list_del(&page
->lru
);
7853 rmv_page_order(page
);
7854 zone
->free_area
[order
].nr_free
--;
7855 for (i
= 0; i
< (1 << order
); i
++)
7856 SetPageReserved((page
+i
));
7857 pfn
+= (1 << order
);
7859 spin_unlock_irqrestore(&zone
->lock
, flags
);
7863 bool is_free_buddy_page(struct page
*page
)
7865 struct zone
*zone
= page_zone(page
);
7866 unsigned long pfn
= page_to_pfn(page
);
7867 unsigned long flags
;
7870 spin_lock_irqsave(&zone
->lock
, flags
);
7871 for (order
= 0; order
< MAX_ORDER
; order
++) {
7872 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7874 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7877 spin_unlock_irqrestore(&zone
->lock
, flags
);
7879 return order
< MAX_ORDER
;