vmalloc: fix __GFP_HIGHMEM usage for vmalloc_32 on 32b systems
[linux/fpc-iii.git] / mm / page_alloc.c
blobd23818c5465ae1e173d443139542004f112a022f
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
109 * Array of node states.
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
121 #endif /* NUMA */
123 EXPORT_SYMBOL(node_states);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page *page)
145 return page->index;
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 page->index = migratetype;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
194 static void __free_pages_ok(struct page *page, unsigned int order);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208 #ifdef CONFIG_ZONE_DMA
209 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 256,
213 #endif
214 #ifdef CONFIG_HIGHMEM
216 #endif
220 EXPORT_SYMBOL(totalram_pages);
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 "DMA32",
228 #endif
229 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 "HighMem",
232 #endif
233 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 "Device",
236 #endif
239 char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244 #ifdef CONFIG_CMA
245 "CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249 #endif
252 compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260 #endif
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
267 static unsigned long __meminitdata nr_kernel_pages;
268 static unsigned long __meminitdata nr_all_pages;
269 static unsigned long __meminitdata dma_reserve;
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __initdata required_kernelcore;
275 static unsigned long __initdata required_movablecore;
276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277 static bool mirrored_kernelcore;
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 int movable_zone;
281 EXPORT_SYMBOL(movable_zone);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 #if MAX_NUMNODES > 1
285 int nr_node_ids __read_mostly = MAX_NUMNODES;
286 int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
289 #endif
291 int page_group_by_mobility_disabled __read_mostly;
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * Determine how many pages need to be initialized durig early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
301 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 phys_addr_t start_addr, end_addr;
304 unsigned long max_pgcnt;
305 unsigned long reserved;
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 (pgdat->node_spanned_pages >> 8));
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
317 * memory to boot.
319 start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 max_pgcnt += PHYS_PFN(reserved);
324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 pgdat->first_deferred_pfn = ULONG_MAX;
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 int nid = early_pfn_to_nid(pfn);
333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 return true;
336 return false;
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
347 /* Always populate low zones for address-contrained allocations */
348 if (zone_end < pgdat_end_pfn(pgdat))
349 return true;
350 (*nr_initialised)++;
351 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 pgdat->first_deferred_pfn = pfn;
354 return false;
357 return true;
359 #else
360 static inline void reset_deferred_meminit(pg_data_t *pgdat)
364 static inline bool early_page_uninitialised(unsigned long pfn)
366 return false;
369 static inline bool update_defer_init(pg_data_t *pgdat,
370 unsigned long pfn, unsigned long zone_end,
371 unsigned long *nr_initialised)
373 return true;
375 #endif
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 unsigned long pfn)
381 #ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn)->pageblock_flags;
383 #else
384 return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
390 #ifdef CONFIG_SPARSEMEM
391 pfn &= (PAGES_PER_SECTION-1);
392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393 #else
394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
406 * Return: pageblock_bits flags
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 unsigned long pfn,
410 unsigned long end_bitidx,
411 unsigned long mask)
413 unsigned long *bitmap;
414 unsigned long bitidx, word_bitidx;
415 unsigned long word;
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
422 word = bitmap[word_bitidx];
423 bitidx += end_bitidx;
424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 unsigned long pfn,
449 unsigned long end_bitidx,
450 unsigned long mask)
452 unsigned long *bitmap;
453 unsigned long bitidx, word_bitidx;
454 unsigned long old_word, word;
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
458 bitmap = get_pageblock_bitmap(page, pfn);
459 bitidx = pfn_to_bitidx(page, pfn);
460 word_bitidx = bitidx / BITS_PER_LONG;
461 bitidx &= (BITS_PER_LONG-1);
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
465 bitidx += end_bitidx;
466 mask <<= (BITS_PER_LONG - bitidx - 1);
467 flags <<= (BITS_PER_LONG - bitidx - 1);
469 word = READ_ONCE(bitmap[word_bitidx]);
470 for (;;) {
471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 if (word == old_word)
473 break;
474 word = old_word;
478 void set_pageblock_migratetype(struct page *page, int migratetype)
480 if (unlikely(page_group_by_mobility_disabled &&
481 migratetype < MIGRATE_PCPTYPES))
482 migratetype = MIGRATE_UNMOVABLE;
484 set_pageblock_flags_group(page, (unsigned long)migratetype,
485 PB_migrate, PB_migrate_end);
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
491 int ret = 0;
492 unsigned seq;
493 unsigned long pfn = page_to_pfn(page);
494 unsigned long sp, start_pfn;
496 do {
497 seq = zone_span_seqbegin(zone);
498 start_pfn = zone->zone_start_pfn;
499 sp = zone->spanned_pages;
500 if (!zone_spans_pfn(zone, pfn))
501 ret = 1;
502 } while (zone_span_seqretry(zone, seq));
504 if (ret)
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn, zone_to_nid(zone), zone->name,
507 start_pfn, start_pfn + sp);
509 return ret;
512 static int page_is_consistent(struct zone *zone, struct page *page)
514 if (!pfn_valid_within(page_to_pfn(page)))
515 return 0;
516 if (zone != page_zone(page))
517 return 0;
519 return 1;
522 * Temporary debugging check for pages not lying within a given zone.
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
526 if (page_outside_zone_boundaries(zone, page))
527 return 1;
528 if (!page_is_consistent(zone, page))
529 return 1;
531 return 0;
533 #else
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
536 return 0;
538 #endif
540 static void bad_page(struct page *page, const char *reason,
541 unsigned long bad_flags)
543 static unsigned long resume;
544 static unsigned long nr_shown;
545 static unsigned long nr_unshown;
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
551 if (nr_shown == 60) {
552 if (time_before(jiffies, resume)) {
553 nr_unshown++;
554 goto out;
556 if (nr_unshown) {
557 pr_alert(
558 "BUG: Bad page state: %lu messages suppressed\n",
559 nr_unshown);
560 nr_unshown = 0;
562 nr_shown = 0;
564 if (nr_shown++ == 0)
565 resume = jiffies + 60 * HZ;
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current->comm, page_to_pfn(page));
569 __dump_page(page, reason);
570 bad_flags &= page->flags;
571 if (bad_flags)
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags, &bad_flags);
574 dump_page_owner(page);
576 print_modules();
577 dump_stack();
578 out:
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
585 * Higher-order pages are called "compound pages". They are structured thusly:
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
599 void free_compound_page(struct page *page)
601 __free_pages_ok(page, compound_order(page));
604 void prep_compound_page(struct page *page, unsigned int order)
606 int i;
607 int nr_pages = 1 << order;
609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 set_compound_order(page, order);
611 __SetPageHead(page);
612 for (i = 1; i < nr_pages; i++) {
613 struct page *p = page + i;
614 set_page_count(p, 0);
615 p->mapping = TAIL_MAPPING;
616 set_compound_head(p, page);
618 atomic_set(compound_mapcount_ptr(page), -1);
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
628 static int __init early_debug_pagealloc(char *buf)
630 if (!buf)
631 return -EINVAL;
632 return kstrtobool(buf, &_debug_pagealloc_enabled);
634 early_param("debug_pagealloc", early_debug_pagealloc);
636 static bool need_debug_guardpage(void)
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
640 return false;
642 if (!debug_guardpage_minorder())
643 return false;
645 return true;
648 static void init_debug_guardpage(void)
650 if (!debug_pagealloc_enabled())
651 return;
653 if (!debug_guardpage_minorder())
654 return;
656 _debug_guardpage_enabled = true;
659 struct page_ext_operations debug_guardpage_ops = {
660 .need = need_debug_guardpage,
661 .init = init_debug_guardpage,
664 static int __init debug_guardpage_minorder_setup(char *buf)
666 unsigned long res;
668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
670 return 0;
672 _debug_guardpage_minorder = res;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 return 0;
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 unsigned int order, int migratetype)
681 struct page_ext *page_ext;
683 if (!debug_guardpage_enabled())
684 return false;
686 if (order >= debug_guardpage_minorder())
687 return false;
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return false;
693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 INIT_LIST_HEAD(&page->lru);
696 set_page_private(page, order);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
700 return true;
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
706 struct page_ext *page_ext;
708 if (!debug_guardpage_enabled())
709 return;
711 page_ext = lookup_page_ext(page);
712 if (unlikely(!page_ext))
713 return;
715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
717 set_page_private(page, 0);
718 if (!is_migrate_isolate(migratetype))
719 __mod_zone_freepage_state(zone, (1 << order), migratetype);
721 #else
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype) {}
727 #endif
729 static inline void set_page_order(struct page *page, unsigned int order)
731 set_page_private(page, order);
732 __SetPageBuddy(page);
735 static inline void rmv_page_order(struct page *page)
737 __ClearPageBuddy(page);
738 set_page_private(page, 0);
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
754 * For recording page's order, we use page_private(page).
756 static inline int page_is_buddy(struct page *page, struct page *buddy,
757 unsigned int order)
759 if (page_is_guard(buddy) && page_order(buddy) == order) {
760 if (page_zone_id(page) != page_zone_id(buddy))
761 return 0;
763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
765 return 1;
768 if (PageBuddy(buddy) && page_order(buddy) == order) {
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
772 * never merge.
774 if (page_zone_id(page) != page_zone_id(buddy))
775 return 0;
777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
779 return 1;
781 return 0;
785 * Freeing function for a buddy system allocator.
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799 * field.
800 * So when we are allocating or freeing one, we can derive the state of the
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
803 * If a block is freed, and its buddy is also free, then this
804 * triggers coalescing into a block of larger size.
806 * -- nyc
809 static inline void __free_one_page(struct page *page,
810 unsigned long pfn,
811 struct zone *zone, unsigned int order,
812 int migratetype)
814 unsigned long combined_pfn;
815 unsigned long uninitialized_var(buddy_pfn);
816 struct page *buddy;
817 unsigned int max_order;
819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
821 VM_BUG_ON(!zone_is_initialized(zone));
822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
824 VM_BUG_ON(migratetype == -1);
825 if (likely(!is_migrate_isolate(migratetype)))
826 __mod_zone_freepage_state(zone, 1 << order, migratetype);
828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 VM_BUG_ON_PAGE(bad_range(zone, page), page);
831 continue_merging:
832 while (order < max_order - 1) {
833 buddy_pfn = __find_buddy_pfn(pfn, order);
834 buddy = page + (buddy_pfn - pfn);
836 if (!pfn_valid_within(buddy_pfn))
837 goto done_merging;
838 if (!page_is_buddy(page, buddy, order))
839 goto done_merging;
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
844 if (page_is_guard(buddy)) {
845 clear_page_guard(zone, buddy, order, migratetype);
846 } else {
847 list_del(&buddy->lru);
848 zone->free_area[order].nr_free--;
849 rmv_page_order(buddy);
851 combined_pfn = buddy_pfn & pfn;
852 page = page + (combined_pfn - pfn);
853 pfn = combined_pfn;
854 order++;
856 if (max_order < MAX_ORDER) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
862 * We don't want to hit this code for the more frequent
863 * low-order merging.
865 if (unlikely(has_isolate_pageblock(zone))) {
866 int buddy_mt;
868 buddy_pfn = __find_buddy_pfn(pfn, order);
869 buddy = page + (buddy_pfn - pfn);
870 buddy_mt = get_pageblock_migratetype(buddy);
872 if (migratetype != buddy_mt
873 && (is_migrate_isolate(migratetype) ||
874 is_migrate_isolate(buddy_mt)))
875 goto done_merging;
877 max_order++;
878 goto continue_merging;
881 done_merging:
882 set_page_order(page, order);
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 struct page *higher_page, *higher_buddy;
894 combined_pfn = buddy_pfn & pfn;
895 higher_page = page + (combined_pfn - pfn);
896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 if (pfn_valid_within(buddy_pfn) &&
899 page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 list_add_tail(&page->lru,
901 &zone->free_area[order].free_list[migratetype]);
902 goto out;
906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907 out:
908 zone->free_area[order].nr_free++;
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
916 static inline bool page_expected_state(struct page *page,
917 unsigned long check_flags)
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 return false;
922 if (unlikely((unsigned long)page->mapping |
923 page_ref_count(page) |
924 #ifdef CONFIG_MEMCG
925 (unsigned long)page->mem_cgroup |
926 #endif
927 (page->flags & check_flags)))
928 return false;
930 return true;
933 static void free_pages_check_bad(struct page *page)
935 const char *bad_reason;
936 unsigned long bad_flags;
938 bad_reason = NULL;
939 bad_flags = 0;
941 if (unlikely(atomic_read(&page->_mapcount) != -1))
942 bad_reason = "nonzero mapcount";
943 if (unlikely(page->mapping != NULL))
944 bad_reason = "non-NULL mapping";
945 if (unlikely(page_ref_count(page) != 0))
946 bad_reason = "nonzero _refcount";
947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
951 #ifdef CONFIG_MEMCG
952 if (unlikely(page->mem_cgroup))
953 bad_reason = "page still charged to cgroup";
954 #endif
955 bad_page(page, bad_reason, bad_flags);
958 static inline int free_pages_check(struct page *page)
960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 return 0;
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page);
965 return 1;
968 static int free_tail_pages_check(struct page *head_page, struct page *page)
970 int ret = 1;
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 ret = 0;
980 goto out;
982 switch (page - head_page) {
983 case 1:
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page))) {
986 bad_page(page, "nonzero compound_mapcount", 0);
987 goto out;
989 break;
990 case 2:
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
995 break;
996 default:
997 if (page->mapping != TAIL_MAPPING) {
998 bad_page(page, "corrupted mapping in tail page", 0);
999 goto out;
1001 break;
1003 if (unlikely(!PageTail(page))) {
1004 bad_page(page, "PageTail not set", 0);
1005 goto out;
1007 if (unlikely(compound_head(page) != head_page)) {
1008 bad_page(page, "compound_head not consistent", 0);
1009 goto out;
1011 ret = 0;
1012 out:
1013 page->mapping = NULL;
1014 clear_compound_head(page);
1015 return ret;
1018 static __always_inline bool free_pages_prepare(struct page *page,
1019 unsigned int order, bool check_free)
1021 int bad = 0;
1023 VM_BUG_ON_PAGE(PageTail(page), page);
1025 trace_mm_page_free(page, order);
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1031 if (unlikely(order)) {
1032 bool compound = PageCompound(page);
1033 int i;
1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1037 if (compound)
1038 ClearPageDoubleMap(page);
1039 for (i = 1; i < (1 << order); i++) {
1040 if (compound)
1041 bad += free_tail_pages_check(page, page + i);
1042 if (unlikely(free_pages_check(page + i))) {
1043 bad++;
1044 continue;
1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 if (PageMappingFlags(page))
1050 page->mapping = NULL;
1051 if (memcg_kmem_enabled() && PageKmemcg(page))
1052 memcg_kmem_uncharge(page, order);
1053 if (check_free)
1054 bad += free_pages_check(page);
1055 if (bad)
1056 return false;
1058 page_cpupid_reset_last(page);
1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 reset_page_owner(page, order);
1062 if (!PageHighMem(page)) {
1063 debug_check_no_locks_freed(page_address(page),
1064 PAGE_SIZE << order);
1065 debug_check_no_obj_freed(page_address(page),
1066 PAGE_SIZE << order);
1068 arch_free_page(page, order);
1069 kernel_poison_pages(page, 1 << order, 0);
1070 kernel_map_pages(page, 1 << order, 0);
1071 kasan_free_pages(page, order);
1073 return true;
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page *page)
1079 return free_pages_prepare(page, 0, true);
1082 static inline bool bulkfree_pcp_prepare(struct page *page)
1084 return false;
1086 #else
1087 static bool free_pcp_prepare(struct page *page)
1089 return free_pages_prepare(page, 0, false);
1092 static bool bulkfree_pcp_prepare(struct page *page)
1094 return free_pages_check(page);
1096 #endif /* CONFIG_DEBUG_VM */
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 struct per_cpu_pages *pcp)
1112 int migratetype = 0;
1113 int batch_free = 0;
1114 bool isolated_pageblocks;
1116 spin_lock(&zone->lock);
1117 isolated_pageblocks = has_isolate_pageblock(zone);
1119 while (count) {
1120 struct page *page;
1121 struct list_head *list;
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1128 * lists
1130 do {
1131 batch_free++;
1132 if (++migratetype == MIGRATE_PCPTYPES)
1133 migratetype = 0;
1134 list = &pcp->lists[migratetype];
1135 } while (list_empty(list));
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free == MIGRATE_PCPTYPES)
1139 batch_free = count;
1141 do {
1142 int mt; /* migratetype of the to-be-freed page */
1144 page = list_last_entry(list, struct page, lru);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page->lru);
1148 mt = get_pcppage_migratetype(page);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks))
1153 mt = get_pageblock_migratetype(page);
1155 if (bulkfree_pcp_prepare(page))
1156 continue;
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 } while (--count && --batch_free && !list_empty(list));
1162 spin_unlock(&zone->lock);
1165 static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
1167 unsigned int order,
1168 int migratetype)
1170 spin_lock(&zone->lock);
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
1175 __free_one_page(page, pfn, zone, order, migratetype);
1176 spin_unlock(&zone->lock);
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 unsigned long zone, int nid, bool zero)
1182 if (zero)
1183 mm_zero_struct_page(page);
1184 set_page_links(page, zone, nid, pfn);
1185 init_page_count(page);
1186 page_mapcount_reset(page);
1187 page_cpupid_reset_last(page);
1189 INIT_LIST_HEAD(&page->lru);
1190 #ifdef WANT_PAGE_VIRTUAL
1191 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1192 if (!is_highmem_idx(zone))
1193 set_page_address(page, __va(pfn << PAGE_SHIFT));
1194 #endif
1197 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1198 int nid, bool zero)
1200 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1204 static void __meminit init_reserved_page(unsigned long pfn)
1206 pg_data_t *pgdat;
1207 int nid, zid;
1209 if (!early_page_uninitialised(pfn))
1210 return;
1212 nid = early_pfn_to_nid(pfn);
1213 pgdat = NODE_DATA(nid);
1215 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1216 struct zone *zone = &pgdat->node_zones[zid];
1218 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1219 break;
1221 __init_single_pfn(pfn, zid, nid, true);
1223 #else
1224 static inline void init_reserved_page(unsigned long pfn)
1227 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1230 * Initialised pages do not have PageReserved set. This function is
1231 * called for each range allocated by the bootmem allocator and
1232 * marks the pages PageReserved. The remaining valid pages are later
1233 * sent to the buddy page allocator.
1235 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1237 unsigned long start_pfn = PFN_DOWN(start);
1238 unsigned long end_pfn = PFN_UP(end);
1240 for (; start_pfn < end_pfn; start_pfn++) {
1241 if (pfn_valid(start_pfn)) {
1242 struct page *page = pfn_to_page(start_pfn);
1244 init_reserved_page(start_pfn);
1246 /* Avoid false-positive PageTail() */
1247 INIT_LIST_HEAD(&page->lru);
1249 SetPageReserved(page);
1254 static void __free_pages_ok(struct page *page, unsigned int order)
1256 unsigned long flags;
1257 int migratetype;
1258 unsigned long pfn = page_to_pfn(page);
1260 if (!free_pages_prepare(page, order, true))
1261 return;
1263 migratetype = get_pfnblock_migratetype(page, pfn);
1264 local_irq_save(flags);
1265 __count_vm_events(PGFREE, 1 << order);
1266 free_one_page(page_zone(page), page, pfn, order, migratetype);
1267 local_irq_restore(flags);
1270 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1272 unsigned int nr_pages = 1 << order;
1273 struct page *p = page;
1274 unsigned int loop;
1276 prefetchw(p);
1277 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1278 prefetchw(p + 1);
1279 __ClearPageReserved(p);
1280 set_page_count(p, 0);
1282 __ClearPageReserved(p);
1283 set_page_count(p, 0);
1285 page_zone(page)->managed_pages += nr_pages;
1286 set_page_refcounted(page);
1287 __free_pages(page, order);
1290 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1291 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1293 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1295 int __meminit early_pfn_to_nid(unsigned long pfn)
1297 static DEFINE_SPINLOCK(early_pfn_lock);
1298 int nid;
1300 spin_lock(&early_pfn_lock);
1301 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1302 if (nid < 0)
1303 nid = first_online_node;
1304 spin_unlock(&early_pfn_lock);
1306 return nid;
1308 #endif
1310 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1311 static inline bool __meminit __maybe_unused
1312 meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1315 int nid;
1317 nid = __early_pfn_to_nid(pfn, state);
1318 if (nid >= 0 && nid != node)
1319 return false;
1320 return true;
1323 /* Only safe to use early in boot when initialisation is single-threaded */
1324 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1326 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1329 #else
1331 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1333 return true;
1335 static inline bool __meminit __maybe_unused
1336 meminit_pfn_in_nid(unsigned long pfn, int node,
1337 struct mminit_pfnnid_cache *state)
1339 return true;
1341 #endif
1344 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1345 unsigned int order)
1347 if (early_page_uninitialised(pfn))
1348 return;
1349 return __free_pages_boot_core(page, order);
1353 * Check that the whole (or subset of) a pageblock given by the interval of
1354 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1355 * with the migration of free compaction scanner. The scanners then need to
1356 * use only pfn_valid_within() check for arches that allow holes within
1357 * pageblocks.
1359 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1361 * It's possible on some configurations to have a setup like node0 node1 node0
1362 * i.e. it's possible that all pages within a zones range of pages do not
1363 * belong to a single zone. We assume that a border between node0 and node1
1364 * can occur within a single pageblock, but not a node0 node1 node0
1365 * interleaving within a single pageblock. It is therefore sufficient to check
1366 * the first and last page of a pageblock and avoid checking each individual
1367 * page in a pageblock.
1369 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1370 unsigned long end_pfn, struct zone *zone)
1372 struct page *start_page;
1373 struct page *end_page;
1375 /* end_pfn is one past the range we are checking */
1376 end_pfn--;
1378 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1379 return NULL;
1381 start_page = pfn_to_online_page(start_pfn);
1382 if (!start_page)
1383 return NULL;
1385 if (page_zone(start_page) != zone)
1386 return NULL;
1388 end_page = pfn_to_page(end_pfn);
1390 /* This gives a shorter code than deriving page_zone(end_page) */
1391 if (page_zone_id(start_page) != page_zone_id(end_page))
1392 return NULL;
1394 return start_page;
1397 void set_zone_contiguous(struct zone *zone)
1399 unsigned long block_start_pfn = zone->zone_start_pfn;
1400 unsigned long block_end_pfn;
1402 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1403 for (; block_start_pfn < zone_end_pfn(zone);
1404 block_start_pfn = block_end_pfn,
1405 block_end_pfn += pageblock_nr_pages) {
1407 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1409 if (!__pageblock_pfn_to_page(block_start_pfn,
1410 block_end_pfn, zone))
1411 return;
1414 /* We confirm that there is no hole */
1415 zone->contiguous = true;
1418 void clear_zone_contiguous(struct zone *zone)
1420 zone->contiguous = false;
1423 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1424 static void __init deferred_free_range(unsigned long pfn,
1425 unsigned long nr_pages)
1427 struct page *page;
1428 unsigned long i;
1430 if (!nr_pages)
1431 return;
1433 page = pfn_to_page(pfn);
1435 /* Free a large naturally-aligned chunk if possible */
1436 if (nr_pages == pageblock_nr_pages &&
1437 (pfn & (pageblock_nr_pages - 1)) == 0) {
1438 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1439 __free_pages_boot_core(page, pageblock_order);
1440 return;
1443 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1444 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1445 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1446 __free_pages_boot_core(page, 0);
1450 /* Completion tracking for deferred_init_memmap() threads */
1451 static atomic_t pgdat_init_n_undone __initdata;
1452 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1454 static inline void __init pgdat_init_report_one_done(void)
1456 if (atomic_dec_and_test(&pgdat_init_n_undone))
1457 complete(&pgdat_init_all_done_comp);
1461 * Helper for deferred_init_range, free the given range, reset the counters, and
1462 * return number of pages freed.
1464 static inline unsigned long __init __def_free(unsigned long *nr_free,
1465 unsigned long *free_base_pfn,
1466 struct page **page)
1468 unsigned long nr = *nr_free;
1470 deferred_free_range(*free_base_pfn, nr);
1471 *free_base_pfn = 0;
1472 *nr_free = 0;
1473 *page = NULL;
1475 return nr;
1478 static unsigned long __init deferred_init_range(int nid, int zid,
1479 unsigned long start_pfn,
1480 unsigned long end_pfn)
1482 struct mminit_pfnnid_cache nid_init_state = { };
1483 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484 unsigned long free_base_pfn = 0;
1485 unsigned long nr_pages = 0;
1486 unsigned long nr_free = 0;
1487 struct page *page = NULL;
1488 unsigned long pfn;
1491 * First we check if pfn is valid on architectures where it is possible
1492 * to have holes within pageblock_nr_pages. On systems where it is not
1493 * possible, this function is optimized out.
1495 * Then, we check if a current large page is valid by only checking the
1496 * validity of the head pfn.
1498 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1499 * within a node: a pfn is between start and end of a node, but does not
1500 * belong to this memory node.
1502 * Finally, we minimize pfn page lookups and scheduler checks by
1503 * performing it only once every pageblock_nr_pages.
1505 * We do it in two loops: first we initialize struct page, than free to
1506 * buddy allocator, becuse while we are freeing pages we can access
1507 * pages that are ahead (computing buddy page in __free_one_page()).
1509 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1510 if (!pfn_valid_within(pfn))
1511 continue;
1512 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1513 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1514 if (page && (pfn & nr_pgmask))
1515 page++;
1516 else
1517 page = pfn_to_page(pfn);
1518 __init_single_page(page, pfn, zid, nid, true);
1519 cond_resched();
1524 page = NULL;
1525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 if (!pfn_valid_within(pfn)) {
1527 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1528 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1529 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1530 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1531 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1532 } else if (page && (pfn & nr_pgmask)) {
1533 page++;
1534 nr_free++;
1535 } else {
1536 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1537 page = pfn_to_page(pfn);
1538 free_base_pfn = pfn;
1539 nr_free = 1;
1540 cond_resched();
1543 /* Free the last block of pages to allocator */
1544 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1546 return nr_pages;
1549 /* Initialise remaining memory on a node */
1550 static int __init deferred_init_memmap(void *data)
1552 pg_data_t *pgdat = data;
1553 int nid = pgdat->node_id;
1554 unsigned long start = jiffies;
1555 unsigned long nr_pages = 0;
1556 unsigned long spfn, epfn;
1557 phys_addr_t spa, epa;
1558 int zid;
1559 struct zone *zone;
1560 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1561 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1562 u64 i;
1564 if (first_init_pfn == ULONG_MAX) {
1565 pgdat_init_report_one_done();
1566 return 0;
1569 /* Bind memory initialisation thread to a local node if possible */
1570 if (!cpumask_empty(cpumask))
1571 set_cpus_allowed_ptr(current, cpumask);
1573 /* Sanity check boundaries */
1574 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1575 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1576 pgdat->first_deferred_pfn = ULONG_MAX;
1578 /* Only the highest zone is deferred so find it */
1579 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1580 zone = pgdat->node_zones + zid;
1581 if (first_init_pfn < zone_end_pfn(zone))
1582 break;
1584 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1586 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1587 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1588 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1589 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1592 /* Sanity check that the next zone really is unpopulated */
1593 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1595 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1596 jiffies_to_msecs(jiffies - start));
1598 pgdat_init_report_one_done();
1599 return 0;
1601 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1603 void __init page_alloc_init_late(void)
1605 struct zone *zone;
1607 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1608 int nid;
1610 /* There will be num_node_state(N_MEMORY) threads */
1611 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1612 for_each_node_state(nid, N_MEMORY) {
1613 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1616 /* Block until all are initialised */
1617 wait_for_completion(&pgdat_init_all_done_comp);
1619 /* Reinit limits that are based on free pages after the kernel is up */
1620 files_maxfiles_init();
1621 #endif
1622 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1623 /* Discard memblock private memory */
1624 memblock_discard();
1625 #endif
1627 for_each_populated_zone(zone)
1628 set_zone_contiguous(zone);
1631 #ifdef CONFIG_CMA
1632 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1633 void __init init_cma_reserved_pageblock(struct page *page)
1635 unsigned i = pageblock_nr_pages;
1636 struct page *p = page;
1638 do {
1639 __ClearPageReserved(p);
1640 set_page_count(p, 0);
1641 } while (++p, --i);
1643 set_pageblock_migratetype(page, MIGRATE_CMA);
1645 if (pageblock_order >= MAX_ORDER) {
1646 i = pageblock_nr_pages;
1647 p = page;
1648 do {
1649 set_page_refcounted(p);
1650 __free_pages(p, MAX_ORDER - 1);
1651 p += MAX_ORDER_NR_PAGES;
1652 } while (i -= MAX_ORDER_NR_PAGES);
1653 } else {
1654 set_page_refcounted(page);
1655 __free_pages(page, pageblock_order);
1658 adjust_managed_page_count(page, pageblock_nr_pages);
1660 #endif
1663 * The order of subdivision here is critical for the IO subsystem.
1664 * Please do not alter this order without good reasons and regression
1665 * testing. Specifically, as large blocks of memory are subdivided,
1666 * the order in which smaller blocks are delivered depends on the order
1667 * they're subdivided in this function. This is the primary factor
1668 * influencing the order in which pages are delivered to the IO
1669 * subsystem according to empirical testing, and this is also justified
1670 * by considering the behavior of a buddy system containing a single
1671 * large block of memory acted on by a series of small allocations.
1672 * This behavior is a critical factor in sglist merging's success.
1674 * -- nyc
1676 static inline void expand(struct zone *zone, struct page *page,
1677 int low, int high, struct free_area *area,
1678 int migratetype)
1680 unsigned long size = 1 << high;
1682 while (high > low) {
1683 area--;
1684 high--;
1685 size >>= 1;
1686 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1689 * Mark as guard pages (or page), that will allow to
1690 * merge back to allocator when buddy will be freed.
1691 * Corresponding page table entries will not be touched,
1692 * pages will stay not present in virtual address space
1694 if (set_page_guard(zone, &page[size], high, migratetype))
1695 continue;
1697 list_add(&page[size].lru, &area->free_list[migratetype]);
1698 area->nr_free++;
1699 set_page_order(&page[size], high);
1703 static void check_new_page_bad(struct page *page)
1705 const char *bad_reason = NULL;
1706 unsigned long bad_flags = 0;
1708 if (unlikely(atomic_read(&page->_mapcount) != -1))
1709 bad_reason = "nonzero mapcount";
1710 if (unlikely(page->mapping != NULL))
1711 bad_reason = "non-NULL mapping";
1712 if (unlikely(page_ref_count(page) != 0))
1713 bad_reason = "nonzero _count";
1714 if (unlikely(page->flags & __PG_HWPOISON)) {
1715 bad_reason = "HWPoisoned (hardware-corrupted)";
1716 bad_flags = __PG_HWPOISON;
1717 /* Don't complain about hwpoisoned pages */
1718 page_mapcount_reset(page); /* remove PageBuddy */
1719 return;
1721 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1722 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1723 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1725 #ifdef CONFIG_MEMCG
1726 if (unlikely(page->mem_cgroup))
1727 bad_reason = "page still charged to cgroup";
1728 #endif
1729 bad_page(page, bad_reason, bad_flags);
1733 * This page is about to be returned from the page allocator
1735 static inline int check_new_page(struct page *page)
1737 if (likely(page_expected_state(page,
1738 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1739 return 0;
1741 check_new_page_bad(page);
1742 return 1;
1745 static inline bool free_pages_prezeroed(void)
1747 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1748 page_poisoning_enabled();
1751 #ifdef CONFIG_DEBUG_VM
1752 static bool check_pcp_refill(struct page *page)
1754 return false;
1757 static bool check_new_pcp(struct page *page)
1759 return check_new_page(page);
1761 #else
1762 static bool check_pcp_refill(struct page *page)
1764 return check_new_page(page);
1766 static bool check_new_pcp(struct page *page)
1768 return false;
1770 #endif /* CONFIG_DEBUG_VM */
1772 static bool check_new_pages(struct page *page, unsigned int order)
1774 int i;
1775 for (i = 0; i < (1 << order); i++) {
1776 struct page *p = page + i;
1778 if (unlikely(check_new_page(p)))
1779 return true;
1782 return false;
1785 inline void post_alloc_hook(struct page *page, unsigned int order,
1786 gfp_t gfp_flags)
1788 set_page_private(page, 0);
1789 set_page_refcounted(page);
1791 arch_alloc_page(page, order);
1792 kernel_map_pages(page, 1 << order, 1);
1793 kernel_poison_pages(page, 1 << order, 1);
1794 kasan_alloc_pages(page, order);
1795 set_page_owner(page, order, gfp_flags);
1798 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1799 unsigned int alloc_flags)
1801 int i;
1803 post_alloc_hook(page, order, gfp_flags);
1805 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1806 for (i = 0; i < (1 << order); i++)
1807 clear_highpage(page + i);
1809 if (order && (gfp_flags & __GFP_COMP))
1810 prep_compound_page(page, order);
1813 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1814 * allocate the page. The expectation is that the caller is taking
1815 * steps that will free more memory. The caller should avoid the page
1816 * being used for !PFMEMALLOC purposes.
1818 if (alloc_flags & ALLOC_NO_WATERMARKS)
1819 set_page_pfmemalloc(page);
1820 else
1821 clear_page_pfmemalloc(page);
1825 * Go through the free lists for the given migratetype and remove
1826 * the smallest available page from the freelists
1828 static __always_inline
1829 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1830 int migratetype)
1832 unsigned int current_order;
1833 struct free_area *area;
1834 struct page *page;
1836 /* Find a page of the appropriate size in the preferred list */
1837 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1838 area = &(zone->free_area[current_order]);
1839 page = list_first_entry_or_null(&area->free_list[migratetype],
1840 struct page, lru);
1841 if (!page)
1842 continue;
1843 list_del(&page->lru);
1844 rmv_page_order(page);
1845 area->nr_free--;
1846 expand(zone, page, order, current_order, area, migratetype);
1847 set_pcppage_migratetype(page, migratetype);
1848 return page;
1851 return NULL;
1856 * This array describes the order lists are fallen back to when
1857 * the free lists for the desirable migrate type are depleted
1859 static int fallbacks[MIGRATE_TYPES][4] = {
1860 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1861 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1862 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1863 #ifdef CONFIG_CMA
1864 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1865 #endif
1866 #ifdef CONFIG_MEMORY_ISOLATION
1867 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1868 #endif
1871 #ifdef CONFIG_CMA
1872 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1873 unsigned int order)
1875 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1877 #else
1878 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1879 unsigned int order) { return NULL; }
1880 #endif
1883 * Move the free pages in a range to the free lists of the requested type.
1884 * Note that start_page and end_pages are not aligned on a pageblock
1885 * boundary. If alignment is required, use move_freepages_block()
1887 static int move_freepages(struct zone *zone,
1888 struct page *start_page, struct page *end_page,
1889 int migratetype, int *num_movable)
1891 struct page *page;
1892 unsigned int order;
1893 int pages_moved = 0;
1895 #ifndef CONFIG_HOLES_IN_ZONE
1897 * page_zone is not safe to call in this context when
1898 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1899 * anyway as we check zone boundaries in move_freepages_block().
1900 * Remove at a later date when no bug reports exist related to
1901 * grouping pages by mobility
1903 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1904 #endif
1906 if (num_movable)
1907 *num_movable = 0;
1909 for (page = start_page; page <= end_page;) {
1910 if (!pfn_valid_within(page_to_pfn(page))) {
1911 page++;
1912 continue;
1915 /* Make sure we are not inadvertently changing nodes */
1916 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1918 if (!PageBuddy(page)) {
1920 * We assume that pages that could be isolated for
1921 * migration are movable. But we don't actually try
1922 * isolating, as that would be expensive.
1924 if (num_movable &&
1925 (PageLRU(page) || __PageMovable(page)))
1926 (*num_movable)++;
1928 page++;
1929 continue;
1932 order = page_order(page);
1933 list_move(&page->lru,
1934 &zone->free_area[order].free_list[migratetype]);
1935 page += 1 << order;
1936 pages_moved += 1 << order;
1939 return pages_moved;
1942 int move_freepages_block(struct zone *zone, struct page *page,
1943 int migratetype, int *num_movable)
1945 unsigned long start_pfn, end_pfn;
1946 struct page *start_page, *end_page;
1948 start_pfn = page_to_pfn(page);
1949 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1950 start_page = pfn_to_page(start_pfn);
1951 end_page = start_page + pageblock_nr_pages - 1;
1952 end_pfn = start_pfn + pageblock_nr_pages - 1;
1954 /* Do not cross zone boundaries */
1955 if (!zone_spans_pfn(zone, start_pfn))
1956 start_page = page;
1957 if (!zone_spans_pfn(zone, end_pfn))
1958 return 0;
1960 return move_freepages(zone, start_page, end_page, migratetype,
1961 num_movable);
1964 static void change_pageblock_range(struct page *pageblock_page,
1965 int start_order, int migratetype)
1967 int nr_pageblocks = 1 << (start_order - pageblock_order);
1969 while (nr_pageblocks--) {
1970 set_pageblock_migratetype(pageblock_page, migratetype);
1971 pageblock_page += pageblock_nr_pages;
1976 * When we are falling back to another migratetype during allocation, try to
1977 * steal extra free pages from the same pageblocks to satisfy further
1978 * allocations, instead of polluting multiple pageblocks.
1980 * If we are stealing a relatively large buddy page, it is likely there will
1981 * be more free pages in the pageblock, so try to steal them all. For
1982 * reclaimable and unmovable allocations, we steal regardless of page size,
1983 * as fragmentation caused by those allocations polluting movable pageblocks
1984 * is worse than movable allocations stealing from unmovable and reclaimable
1985 * pageblocks.
1987 static bool can_steal_fallback(unsigned int order, int start_mt)
1990 * Leaving this order check is intended, although there is
1991 * relaxed order check in next check. The reason is that
1992 * we can actually steal whole pageblock if this condition met,
1993 * but, below check doesn't guarantee it and that is just heuristic
1994 * so could be changed anytime.
1996 if (order >= pageblock_order)
1997 return true;
1999 if (order >= pageblock_order / 2 ||
2000 start_mt == MIGRATE_RECLAIMABLE ||
2001 start_mt == MIGRATE_UNMOVABLE ||
2002 page_group_by_mobility_disabled)
2003 return true;
2005 return false;
2009 * This function implements actual steal behaviour. If order is large enough,
2010 * we can steal whole pageblock. If not, we first move freepages in this
2011 * pageblock to our migratetype and determine how many already-allocated pages
2012 * are there in the pageblock with a compatible migratetype. If at least half
2013 * of pages are free or compatible, we can change migratetype of the pageblock
2014 * itself, so pages freed in the future will be put on the correct free list.
2016 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2017 int start_type, bool whole_block)
2019 unsigned int current_order = page_order(page);
2020 struct free_area *area;
2021 int free_pages, movable_pages, alike_pages;
2022 int old_block_type;
2024 old_block_type = get_pageblock_migratetype(page);
2027 * This can happen due to races and we want to prevent broken
2028 * highatomic accounting.
2030 if (is_migrate_highatomic(old_block_type))
2031 goto single_page;
2033 /* Take ownership for orders >= pageblock_order */
2034 if (current_order >= pageblock_order) {
2035 change_pageblock_range(page, current_order, start_type);
2036 goto single_page;
2039 /* We are not allowed to try stealing from the whole block */
2040 if (!whole_block)
2041 goto single_page;
2043 free_pages = move_freepages_block(zone, page, start_type,
2044 &movable_pages);
2046 * Determine how many pages are compatible with our allocation.
2047 * For movable allocation, it's the number of movable pages which
2048 * we just obtained. For other types it's a bit more tricky.
2050 if (start_type == MIGRATE_MOVABLE) {
2051 alike_pages = movable_pages;
2052 } else {
2054 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2055 * to MOVABLE pageblock, consider all non-movable pages as
2056 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2057 * vice versa, be conservative since we can't distinguish the
2058 * exact migratetype of non-movable pages.
2060 if (old_block_type == MIGRATE_MOVABLE)
2061 alike_pages = pageblock_nr_pages
2062 - (free_pages + movable_pages);
2063 else
2064 alike_pages = 0;
2067 /* moving whole block can fail due to zone boundary conditions */
2068 if (!free_pages)
2069 goto single_page;
2072 * If a sufficient number of pages in the block are either free or of
2073 * comparable migratability as our allocation, claim the whole block.
2075 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2076 page_group_by_mobility_disabled)
2077 set_pageblock_migratetype(page, start_type);
2079 return;
2081 single_page:
2082 area = &zone->free_area[current_order];
2083 list_move(&page->lru, &area->free_list[start_type]);
2087 * Check whether there is a suitable fallback freepage with requested order.
2088 * If only_stealable is true, this function returns fallback_mt only if
2089 * we can steal other freepages all together. This would help to reduce
2090 * fragmentation due to mixed migratetype pages in one pageblock.
2092 int find_suitable_fallback(struct free_area *area, unsigned int order,
2093 int migratetype, bool only_stealable, bool *can_steal)
2095 int i;
2096 int fallback_mt;
2098 if (area->nr_free == 0)
2099 return -1;
2101 *can_steal = false;
2102 for (i = 0;; i++) {
2103 fallback_mt = fallbacks[migratetype][i];
2104 if (fallback_mt == MIGRATE_TYPES)
2105 break;
2107 if (list_empty(&area->free_list[fallback_mt]))
2108 continue;
2110 if (can_steal_fallback(order, migratetype))
2111 *can_steal = true;
2113 if (!only_stealable)
2114 return fallback_mt;
2116 if (*can_steal)
2117 return fallback_mt;
2120 return -1;
2124 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2125 * there are no empty page blocks that contain a page with a suitable order
2127 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2128 unsigned int alloc_order)
2130 int mt;
2131 unsigned long max_managed, flags;
2134 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2135 * Check is race-prone but harmless.
2137 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2138 if (zone->nr_reserved_highatomic >= max_managed)
2139 return;
2141 spin_lock_irqsave(&zone->lock, flags);
2143 /* Recheck the nr_reserved_highatomic limit under the lock */
2144 if (zone->nr_reserved_highatomic >= max_managed)
2145 goto out_unlock;
2147 /* Yoink! */
2148 mt = get_pageblock_migratetype(page);
2149 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2150 && !is_migrate_cma(mt)) {
2151 zone->nr_reserved_highatomic += pageblock_nr_pages;
2152 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2153 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2156 out_unlock:
2157 spin_unlock_irqrestore(&zone->lock, flags);
2161 * Used when an allocation is about to fail under memory pressure. This
2162 * potentially hurts the reliability of high-order allocations when under
2163 * intense memory pressure but failed atomic allocations should be easier
2164 * to recover from than an OOM.
2166 * If @force is true, try to unreserve a pageblock even though highatomic
2167 * pageblock is exhausted.
2169 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2170 bool force)
2172 struct zonelist *zonelist = ac->zonelist;
2173 unsigned long flags;
2174 struct zoneref *z;
2175 struct zone *zone;
2176 struct page *page;
2177 int order;
2178 bool ret;
2180 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2181 ac->nodemask) {
2183 * Preserve at least one pageblock unless memory pressure
2184 * is really high.
2186 if (!force && zone->nr_reserved_highatomic <=
2187 pageblock_nr_pages)
2188 continue;
2190 spin_lock_irqsave(&zone->lock, flags);
2191 for (order = 0; order < MAX_ORDER; order++) {
2192 struct free_area *area = &(zone->free_area[order]);
2194 page = list_first_entry_or_null(
2195 &area->free_list[MIGRATE_HIGHATOMIC],
2196 struct page, lru);
2197 if (!page)
2198 continue;
2201 * In page freeing path, migratetype change is racy so
2202 * we can counter several free pages in a pageblock
2203 * in this loop althoug we changed the pageblock type
2204 * from highatomic to ac->migratetype. So we should
2205 * adjust the count once.
2207 if (is_migrate_highatomic_page(page)) {
2209 * It should never happen but changes to
2210 * locking could inadvertently allow a per-cpu
2211 * drain to add pages to MIGRATE_HIGHATOMIC
2212 * while unreserving so be safe and watch for
2213 * underflows.
2215 zone->nr_reserved_highatomic -= min(
2216 pageblock_nr_pages,
2217 zone->nr_reserved_highatomic);
2221 * Convert to ac->migratetype and avoid the normal
2222 * pageblock stealing heuristics. Minimally, the caller
2223 * is doing the work and needs the pages. More
2224 * importantly, if the block was always converted to
2225 * MIGRATE_UNMOVABLE or another type then the number
2226 * of pageblocks that cannot be completely freed
2227 * may increase.
2229 set_pageblock_migratetype(page, ac->migratetype);
2230 ret = move_freepages_block(zone, page, ac->migratetype,
2231 NULL);
2232 if (ret) {
2233 spin_unlock_irqrestore(&zone->lock, flags);
2234 return ret;
2237 spin_unlock_irqrestore(&zone->lock, flags);
2240 return false;
2244 * Try finding a free buddy page on the fallback list and put it on the free
2245 * list of requested migratetype, possibly along with other pages from the same
2246 * block, depending on fragmentation avoidance heuristics. Returns true if
2247 * fallback was found so that __rmqueue_smallest() can grab it.
2249 * The use of signed ints for order and current_order is a deliberate
2250 * deviation from the rest of this file, to make the for loop
2251 * condition simpler.
2253 static __always_inline bool
2254 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2256 struct free_area *area;
2257 int current_order;
2258 struct page *page;
2259 int fallback_mt;
2260 bool can_steal;
2263 * Find the largest available free page in the other list. This roughly
2264 * approximates finding the pageblock with the most free pages, which
2265 * would be too costly to do exactly.
2267 for (current_order = MAX_ORDER - 1; current_order >= order;
2268 --current_order) {
2269 area = &(zone->free_area[current_order]);
2270 fallback_mt = find_suitable_fallback(area, current_order,
2271 start_migratetype, false, &can_steal);
2272 if (fallback_mt == -1)
2273 continue;
2276 * We cannot steal all free pages from the pageblock and the
2277 * requested migratetype is movable. In that case it's better to
2278 * steal and split the smallest available page instead of the
2279 * largest available page, because even if the next movable
2280 * allocation falls back into a different pageblock than this
2281 * one, it won't cause permanent fragmentation.
2283 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2284 && current_order > order)
2285 goto find_smallest;
2287 goto do_steal;
2290 return false;
2292 find_smallest:
2293 for (current_order = order; current_order < MAX_ORDER;
2294 current_order++) {
2295 area = &(zone->free_area[current_order]);
2296 fallback_mt = find_suitable_fallback(area, current_order,
2297 start_migratetype, false, &can_steal);
2298 if (fallback_mt != -1)
2299 break;
2303 * This should not happen - we already found a suitable fallback
2304 * when looking for the largest page.
2306 VM_BUG_ON(current_order == MAX_ORDER);
2308 do_steal:
2309 page = list_first_entry(&area->free_list[fallback_mt],
2310 struct page, lru);
2312 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2314 trace_mm_page_alloc_extfrag(page, order, current_order,
2315 start_migratetype, fallback_mt);
2317 return true;
2322 * Do the hard work of removing an element from the buddy allocator.
2323 * Call me with the zone->lock already held.
2325 static __always_inline struct page *
2326 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2328 struct page *page;
2330 retry:
2331 page = __rmqueue_smallest(zone, order, migratetype);
2332 if (unlikely(!page)) {
2333 if (migratetype == MIGRATE_MOVABLE)
2334 page = __rmqueue_cma_fallback(zone, order);
2336 if (!page && __rmqueue_fallback(zone, order, migratetype))
2337 goto retry;
2340 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2341 return page;
2345 * Obtain a specified number of elements from the buddy allocator, all under
2346 * a single hold of the lock, for efficiency. Add them to the supplied list.
2347 * Returns the number of new pages which were placed at *list.
2349 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2350 unsigned long count, struct list_head *list,
2351 int migratetype)
2353 int i, alloced = 0;
2355 spin_lock(&zone->lock);
2356 for (i = 0; i < count; ++i) {
2357 struct page *page = __rmqueue(zone, order, migratetype);
2358 if (unlikely(page == NULL))
2359 break;
2361 if (unlikely(check_pcp_refill(page)))
2362 continue;
2365 * Split buddy pages returned by expand() are received here in
2366 * physical page order. The page is added to the tail of
2367 * caller's list. From the callers perspective, the linked list
2368 * is ordered by page number under some conditions. This is
2369 * useful for IO devices that can forward direction from the
2370 * head, thus also in the physical page order. This is useful
2371 * for IO devices that can merge IO requests if the physical
2372 * pages are ordered properly.
2374 list_add_tail(&page->lru, list);
2375 alloced++;
2376 if (is_migrate_cma(get_pcppage_migratetype(page)))
2377 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2378 -(1 << order));
2382 * i pages were removed from the buddy list even if some leak due
2383 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2384 * on i. Do not confuse with 'alloced' which is the number of
2385 * pages added to the pcp list.
2387 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2388 spin_unlock(&zone->lock);
2389 return alloced;
2392 #ifdef CONFIG_NUMA
2394 * Called from the vmstat counter updater to drain pagesets of this
2395 * currently executing processor on remote nodes after they have
2396 * expired.
2398 * Note that this function must be called with the thread pinned to
2399 * a single processor.
2401 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2403 unsigned long flags;
2404 int to_drain, batch;
2406 local_irq_save(flags);
2407 batch = READ_ONCE(pcp->batch);
2408 to_drain = min(pcp->count, batch);
2409 if (to_drain > 0) {
2410 free_pcppages_bulk(zone, to_drain, pcp);
2411 pcp->count -= to_drain;
2413 local_irq_restore(flags);
2415 #endif
2418 * Drain pcplists of the indicated processor and zone.
2420 * The processor must either be the current processor and the
2421 * thread pinned to the current processor or a processor that
2422 * is not online.
2424 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2426 unsigned long flags;
2427 struct per_cpu_pageset *pset;
2428 struct per_cpu_pages *pcp;
2430 local_irq_save(flags);
2431 pset = per_cpu_ptr(zone->pageset, cpu);
2433 pcp = &pset->pcp;
2434 if (pcp->count) {
2435 free_pcppages_bulk(zone, pcp->count, pcp);
2436 pcp->count = 0;
2438 local_irq_restore(flags);
2442 * Drain pcplists of all zones on the indicated processor.
2444 * The processor must either be the current processor and the
2445 * thread pinned to the current processor or a processor that
2446 * is not online.
2448 static void drain_pages(unsigned int cpu)
2450 struct zone *zone;
2452 for_each_populated_zone(zone) {
2453 drain_pages_zone(cpu, zone);
2458 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2460 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2461 * the single zone's pages.
2463 void drain_local_pages(struct zone *zone)
2465 int cpu = smp_processor_id();
2467 if (zone)
2468 drain_pages_zone(cpu, zone);
2469 else
2470 drain_pages(cpu);
2473 static void drain_local_pages_wq(struct work_struct *work)
2476 * drain_all_pages doesn't use proper cpu hotplug protection so
2477 * we can race with cpu offline when the WQ can move this from
2478 * a cpu pinned worker to an unbound one. We can operate on a different
2479 * cpu which is allright but we also have to make sure to not move to
2480 * a different one.
2482 preempt_disable();
2483 drain_local_pages(NULL);
2484 preempt_enable();
2488 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2490 * When zone parameter is non-NULL, spill just the single zone's pages.
2492 * Note that this can be extremely slow as the draining happens in a workqueue.
2494 void drain_all_pages(struct zone *zone)
2496 int cpu;
2499 * Allocate in the BSS so we wont require allocation in
2500 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2502 static cpumask_t cpus_with_pcps;
2505 * Make sure nobody triggers this path before mm_percpu_wq is fully
2506 * initialized.
2508 if (WARN_ON_ONCE(!mm_percpu_wq))
2509 return;
2512 * Do not drain if one is already in progress unless it's specific to
2513 * a zone. Such callers are primarily CMA and memory hotplug and need
2514 * the drain to be complete when the call returns.
2516 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2517 if (!zone)
2518 return;
2519 mutex_lock(&pcpu_drain_mutex);
2523 * We don't care about racing with CPU hotplug event
2524 * as offline notification will cause the notified
2525 * cpu to drain that CPU pcps and on_each_cpu_mask
2526 * disables preemption as part of its processing
2528 for_each_online_cpu(cpu) {
2529 struct per_cpu_pageset *pcp;
2530 struct zone *z;
2531 bool has_pcps = false;
2533 if (zone) {
2534 pcp = per_cpu_ptr(zone->pageset, cpu);
2535 if (pcp->pcp.count)
2536 has_pcps = true;
2537 } else {
2538 for_each_populated_zone(z) {
2539 pcp = per_cpu_ptr(z->pageset, cpu);
2540 if (pcp->pcp.count) {
2541 has_pcps = true;
2542 break;
2547 if (has_pcps)
2548 cpumask_set_cpu(cpu, &cpus_with_pcps);
2549 else
2550 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2553 for_each_cpu(cpu, &cpus_with_pcps) {
2554 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2555 INIT_WORK(work, drain_local_pages_wq);
2556 queue_work_on(cpu, mm_percpu_wq, work);
2558 for_each_cpu(cpu, &cpus_with_pcps)
2559 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2561 mutex_unlock(&pcpu_drain_mutex);
2564 #ifdef CONFIG_HIBERNATION
2567 * Touch the watchdog for every WD_PAGE_COUNT pages.
2569 #define WD_PAGE_COUNT (128*1024)
2571 void mark_free_pages(struct zone *zone)
2573 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2574 unsigned long flags;
2575 unsigned int order, t;
2576 struct page *page;
2578 if (zone_is_empty(zone))
2579 return;
2581 spin_lock_irqsave(&zone->lock, flags);
2583 max_zone_pfn = zone_end_pfn(zone);
2584 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2585 if (pfn_valid(pfn)) {
2586 page = pfn_to_page(pfn);
2588 if (!--page_count) {
2589 touch_nmi_watchdog();
2590 page_count = WD_PAGE_COUNT;
2593 if (page_zone(page) != zone)
2594 continue;
2596 if (!swsusp_page_is_forbidden(page))
2597 swsusp_unset_page_free(page);
2600 for_each_migratetype_order(order, t) {
2601 list_for_each_entry(page,
2602 &zone->free_area[order].free_list[t], lru) {
2603 unsigned long i;
2605 pfn = page_to_pfn(page);
2606 for (i = 0; i < (1UL << order); i++) {
2607 if (!--page_count) {
2608 touch_nmi_watchdog();
2609 page_count = WD_PAGE_COUNT;
2611 swsusp_set_page_free(pfn_to_page(pfn + i));
2615 spin_unlock_irqrestore(&zone->lock, flags);
2617 #endif /* CONFIG_PM */
2619 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2621 int migratetype;
2623 if (!free_pcp_prepare(page))
2624 return false;
2626 migratetype = get_pfnblock_migratetype(page, pfn);
2627 set_pcppage_migratetype(page, migratetype);
2628 return true;
2631 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2633 struct zone *zone = page_zone(page);
2634 struct per_cpu_pages *pcp;
2635 int migratetype;
2637 migratetype = get_pcppage_migratetype(page);
2638 __count_vm_event(PGFREE);
2641 * We only track unmovable, reclaimable and movable on pcp lists.
2642 * Free ISOLATE pages back to the allocator because they are being
2643 * offlined but treat HIGHATOMIC as movable pages so we can get those
2644 * areas back if necessary. Otherwise, we may have to free
2645 * excessively into the page allocator
2647 if (migratetype >= MIGRATE_PCPTYPES) {
2648 if (unlikely(is_migrate_isolate(migratetype))) {
2649 free_one_page(zone, page, pfn, 0, migratetype);
2650 return;
2652 migratetype = MIGRATE_MOVABLE;
2655 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2656 list_add(&page->lru, &pcp->lists[migratetype]);
2657 pcp->count++;
2658 if (pcp->count >= pcp->high) {
2659 unsigned long batch = READ_ONCE(pcp->batch);
2660 free_pcppages_bulk(zone, batch, pcp);
2661 pcp->count -= batch;
2666 * Free a 0-order page
2668 void free_unref_page(struct page *page)
2670 unsigned long flags;
2671 unsigned long pfn = page_to_pfn(page);
2673 if (!free_unref_page_prepare(page, pfn))
2674 return;
2676 local_irq_save(flags);
2677 free_unref_page_commit(page, pfn);
2678 local_irq_restore(flags);
2682 * Free a list of 0-order pages
2684 void free_unref_page_list(struct list_head *list)
2686 struct page *page, *next;
2687 unsigned long flags, pfn;
2688 int batch_count = 0;
2690 /* Prepare pages for freeing */
2691 list_for_each_entry_safe(page, next, list, lru) {
2692 pfn = page_to_pfn(page);
2693 if (!free_unref_page_prepare(page, pfn))
2694 list_del(&page->lru);
2695 set_page_private(page, pfn);
2698 local_irq_save(flags);
2699 list_for_each_entry_safe(page, next, list, lru) {
2700 unsigned long pfn = page_private(page);
2702 set_page_private(page, 0);
2703 trace_mm_page_free_batched(page);
2704 free_unref_page_commit(page, pfn);
2707 * Guard against excessive IRQ disabled times when we get
2708 * a large list of pages to free.
2710 if (++batch_count == SWAP_CLUSTER_MAX) {
2711 local_irq_restore(flags);
2712 batch_count = 0;
2713 local_irq_save(flags);
2716 local_irq_restore(flags);
2720 * split_page takes a non-compound higher-order page, and splits it into
2721 * n (1<<order) sub-pages: page[0..n]
2722 * Each sub-page must be freed individually.
2724 * Note: this is probably too low level an operation for use in drivers.
2725 * Please consult with lkml before using this in your driver.
2727 void split_page(struct page *page, unsigned int order)
2729 int i;
2731 VM_BUG_ON_PAGE(PageCompound(page), page);
2732 VM_BUG_ON_PAGE(!page_count(page), page);
2734 for (i = 1; i < (1 << order); i++)
2735 set_page_refcounted(page + i);
2736 split_page_owner(page, order);
2738 EXPORT_SYMBOL_GPL(split_page);
2740 int __isolate_free_page(struct page *page, unsigned int order)
2742 unsigned long watermark;
2743 struct zone *zone;
2744 int mt;
2746 BUG_ON(!PageBuddy(page));
2748 zone = page_zone(page);
2749 mt = get_pageblock_migratetype(page);
2751 if (!is_migrate_isolate(mt)) {
2753 * Obey watermarks as if the page was being allocated. We can
2754 * emulate a high-order watermark check with a raised order-0
2755 * watermark, because we already know our high-order page
2756 * exists.
2758 watermark = min_wmark_pages(zone) + (1UL << order);
2759 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2760 return 0;
2762 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2765 /* Remove page from free list */
2766 list_del(&page->lru);
2767 zone->free_area[order].nr_free--;
2768 rmv_page_order(page);
2771 * Set the pageblock if the isolated page is at least half of a
2772 * pageblock
2774 if (order >= pageblock_order - 1) {
2775 struct page *endpage = page + (1 << order) - 1;
2776 for (; page < endpage; page += pageblock_nr_pages) {
2777 int mt = get_pageblock_migratetype(page);
2778 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2779 && !is_migrate_highatomic(mt))
2780 set_pageblock_migratetype(page,
2781 MIGRATE_MOVABLE);
2786 return 1UL << order;
2790 * Update NUMA hit/miss statistics
2792 * Must be called with interrupts disabled.
2794 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2796 #ifdef CONFIG_NUMA
2797 enum numa_stat_item local_stat = NUMA_LOCAL;
2799 /* skip numa counters update if numa stats is disabled */
2800 if (!static_branch_likely(&vm_numa_stat_key))
2801 return;
2803 if (z->node != numa_node_id())
2804 local_stat = NUMA_OTHER;
2806 if (z->node == preferred_zone->node)
2807 __inc_numa_state(z, NUMA_HIT);
2808 else {
2809 __inc_numa_state(z, NUMA_MISS);
2810 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2812 __inc_numa_state(z, local_stat);
2813 #endif
2816 /* Remove page from the per-cpu list, caller must protect the list */
2817 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2818 struct per_cpu_pages *pcp,
2819 struct list_head *list)
2821 struct page *page;
2823 do {
2824 if (list_empty(list)) {
2825 pcp->count += rmqueue_bulk(zone, 0,
2826 pcp->batch, list,
2827 migratetype);
2828 if (unlikely(list_empty(list)))
2829 return NULL;
2832 page = list_first_entry(list, struct page, lru);
2833 list_del(&page->lru);
2834 pcp->count--;
2835 } while (check_new_pcp(page));
2837 return page;
2840 /* Lock and remove page from the per-cpu list */
2841 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2842 struct zone *zone, unsigned int order,
2843 gfp_t gfp_flags, int migratetype)
2845 struct per_cpu_pages *pcp;
2846 struct list_head *list;
2847 struct page *page;
2848 unsigned long flags;
2850 local_irq_save(flags);
2851 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2852 list = &pcp->lists[migratetype];
2853 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2854 if (page) {
2855 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2856 zone_statistics(preferred_zone, zone);
2858 local_irq_restore(flags);
2859 return page;
2863 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2865 static inline
2866 struct page *rmqueue(struct zone *preferred_zone,
2867 struct zone *zone, unsigned int order,
2868 gfp_t gfp_flags, unsigned int alloc_flags,
2869 int migratetype)
2871 unsigned long flags;
2872 struct page *page;
2874 if (likely(order == 0)) {
2875 page = rmqueue_pcplist(preferred_zone, zone, order,
2876 gfp_flags, migratetype);
2877 goto out;
2881 * We most definitely don't want callers attempting to
2882 * allocate greater than order-1 page units with __GFP_NOFAIL.
2884 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2885 spin_lock_irqsave(&zone->lock, flags);
2887 do {
2888 page = NULL;
2889 if (alloc_flags & ALLOC_HARDER) {
2890 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2891 if (page)
2892 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2894 if (!page)
2895 page = __rmqueue(zone, order, migratetype);
2896 } while (page && check_new_pages(page, order));
2897 spin_unlock(&zone->lock);
2898 if (!page)
2899 goto failed;
2900 __mod_zone_freepage_state(zone, -(1 << order),
2901 get_pcppage_migratetype(page));
2903 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2904 zone_statistics(preferred_zone, zone);
2905 local_irq_restore(flags);
2907 out:
2908 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2909 return page;
2911 failed:
2912 local_irq_restore(flags);
2913 return NULL;
2916 #ifdef CONFIG_FAIL_PAGE_ALLOC
2918 static struct {
2919 struct fault_attr attr;
2921 bool ignore_gfp_highmem;
2922 bool ignore_gfp_reclaim;
2923 u32 min_order;
2924 } fail_page_alloc = {
2925 .attr = FAULT_ATTR_INITIALIZER,
2926 .ignore_gfp_reclaim = true,
2927 .ignore_gfp_highmem = true,
2928 .min_order = 1,
2931 static int __init setup_fail_page_alloc(char *str)
2933 return setup_fault_attr(&fail_page_alloc.attr, str);
2935 __setup("fail_page_alloc=", setup_fail_page_alloc);
2937 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2939 if (order < fail_page_alloc.min_order)
2940 return false;
2941 if (gfp_mask & __GFP_NOFAIL)
2942 return false;
2943 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2944 return false;
2945 if (fail_page_alloc.ignore_gfp_reclaim &&
2946 (gfp_mask & __GFP_DIRECT_RECLAIM))
2947 return false;
2949 return should_fail(&fail_page_alloc.attr, 1 << order);
2952 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2954 static int __init fail_page_alloc_debugfs(void)
2956 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2957 struct dentry *dir;
2959 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2960 &fail_page_alloc.attr);
2961 if (IS_ERR(dir))
2962 return PTR_ERR(dir);
2964 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2965 &fail_page_alloc.ignore_gfp_reclaim))
2966 goto fail;
2967 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2968 &fail_page_alloc.ignore_gfp_highmem))
2969 goto fail;
2970 if (!debugfs_create_u32("min-order", mode, dir,
2971 &fail_page_alloc.min_order))
2972 goto fail;
2974 return 0;
2975 fail:
2976 debugfs_remove_recursive(dir);
2978 return -ENOMEM;
2981 late_initcall(fail_page_alloc_debugfs);
2983 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2985 #else /* CONFIG_FAIL_PAGE_ALLOC */
2987 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2989 return false;
2992 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2995 * Return true if free base pages are above 'mark'. For high-order checks it
2996 * will return true of the order-0 watermark is reached and there is at least
2997 * one free page of a suitable size. Checking now avoids taking the zone lock
2998 * to check in the allocation paths if no pages are free.
3000 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3001 int classzone_idx, unsigned int alloc_flags,
3002 long free_pages)
3004 long min = mark;
3005 int o;
3006 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3008 /* free_pages may go negative - that's OK */
3009 free_pages -= (1 << order) - 1;
3011 if (alloc_flags & ALLOC_HIGH)
3012 min -= min / 2;
3015 * If the caller does not have rights to ALLOC_HARDER then subtract
3016 * the high-atomic reserves. This will over-estimate the size of the
3017 * atomic reserve but it avoids a search.
3019 if (likely(!alloc_harder)) {
3020 free_pages -= z->nr_reserved_highatomic;
3021 } else {
3023 * OOM victims can try even harder than normal ALLOC_HARDER
3024 * users on the grounds that it's definitely going to be in
3025 * the exit path shortly and free memory. Any allocation it
3026 * makes during the free path will be small and short-lived.
3028 if (alloc_flags & ALLOC_OOM)
3029 min -= min / 2;
3030 else
3031 min -= min / 4;
3035 #ifdef CONFIG_CMA
3036 /* If allocation can't use CMA areas don't use free CMA pages */
3037 if (!(alloc_flags & ALLOC_CMA))
3038 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3039 #endif
3042 * Check watermarks for an order-0 allocation request. If these
3043 * are not met, then a high-order request also cannot go ahead
3044 * even if a suitable page happened to be free.
3046 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3047 return false;
3049 /* If this is an order-0 request then the watermark is fine */
3050 if (!order)
3051 return true;
3053 /* For a high-order request, check at least one suitable page is free */
3054 for (o = order; o < MAX_ORDER; o++) {
3055 struct free_area *area = &z->free_area[o];
3056 int mt;
3058 if (!area->nr_free)
3059 continue;
3061 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3062 if (!list_empty(&area->free_list[mt]))
3063 return true;
3066 #ifdef CONFIG_CMA
3067 if ((alloc_flags & ALLOC_CMA) &&
3068 !list_empty(&area->free_list[MIGRATE_CMA])) {
3069 return true;
3071 #endif
3072 if (alloc_harder &&
3073 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3074 return true;
3076 return false;
3079 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3080 int classzone_idx, unsigned int alloc_flags)
3082 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3083 zone_page_state(z, NR_FREE_PAGES));
3086 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3087 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3089 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3090 long cma_pages = 0;
3092 #ifdef CONFIG_CMA
3093 /* If allocation can't use CMA areas don't use free CMA pages */
3094 if (!(alloc_flags & ALLOC_CMA))
3095 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3096 #endif
3099 * Fast check for order-0 only. If this fails then the reserves
3100 * need to be calculated. There is a corner case where the check
3101 * passes but only the high-order atomic reserve are free. If
3102 * the caller is !atomic then it'll uselessly search the free
3103 * list. That corner case is then slower but it is harmless.
3105 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3106 return true;
3108 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3109 free_pages);
3112 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3113 unsigned long mark, int classzone_idx)
3115 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3117 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3118 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3120 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3121 free_pages);
3124 #ifdef CONFIG_NUMA
3125 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3127 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3128 RECLAIM_DISTANCE;
3130 #else /* CONFIG_NUMA */
3131 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3133 return true;
3135 #endif /* CONFIG_NUMA */
3138 * get_page_from_freelist goes through the zonelist trying to allocate
3139 * a page.
3141 static struct page *
3142 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3143 const struct alloc_context *ac)
3145 struct zoneref *z = ac->preferred_zoneref;
3146 struct zone *zone;
3147 struct pglist_data *last_pgdat_dirty_limit = NULL;
3150 * Scan zonelist, looking for a zone with enough free.
3151 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3153 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3154 ac->nodemask) {
3155 struct page *page;
3156 unsigned long mark;
3158 if (cpusets_enabled() &&
3159 (alloc_flags & ALLOC_CPUSET) &&
3160 !__cpuset_zone_allowed(zone, gfp_mask))
3161 continue;
3163 * When allocating a page cache page for writing, we
3164 * want to get it from a node that is within its dirty
3165 * limit, such that no single node holds more than its
3166 * proportional share of globally allowed dirty pages.
3167 * The dirty limits take into account the node's
3168 * lowmem reserves and high watermark so that kswapd
3169 * should be able to balance it without having to
3170 * write pages from its LRU list.
3172 * XXX: For now, allow allocations to potentially
3173 * exceed the per-node dirty limit in the slowpath
3174 * (spread_dirty_pages unset) before going into reclaim,
3175 * which is important when on a NUMA setup the allowed
3176 * nodes are together not big enough to reach the
3177 * global limit. The proper fix for these situations
3178 * will require awareness of nodes in the
3179 * dirty-throttling and the flusher threads.
3181 if (ac->spread_dirty_pages) {
3182 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3183 continue;
3185 if (!node_dirty_ok(zone->zone_pgdat)) {
3186 last_pgdat_dirty_limit = zone->zone_pgdat;
3187 continue;
3191 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3192 if (!zone_watermark_fast(zone, order, mark,
3193 ac_classzone_idx(ac), alloc_flags)) {
3194 int ret;
3196 /* Checked here to keep the fast path fast */
3197 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3198 if (alloc_flags & ALLOC_NO_WATERMARKS)
3199 goto try_this_zone;
3201 if (node_reclaim_mode == 0 ||
3202 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3203 continue;
3205 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3206 switch (ret) {
3207 case NODE_RECLAIM_NOSCAN:
3208 /* did not scan */
3209 continue;
3210 case NODE_RECLAIM_FULL:
3211 /* scanned but unreclaimable */
3212 continue;
3213 default:
3214 /* did we reclaim enough */
3215 if (zone_watermark_ok(zone, order, mark,
3216 ac_classzone_idx(ac), alloc_flags))
3217 goto try_this_zone;
3219 continue;
3223 try_this_zone:
3224 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3225 gfp_mask, alloc_flags, ac->migratetype);
3226 if (page) {
3227 prep_new_page(page, order, gfp_mask, alloc_flags);
3230 * If this is a high-order atomic allocation then check
3231 * if the pageblock should be reserved for the future
3233 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3234 reserve_highatomic_pageblock(page, zone, order);
3236 return page;
3240 return NULL;
3244 * Large machines with many possible nodes should not always dump per-node
3245 * meminfo in irq context.
3247 static inline bool should_suppress_show_mem(void)
3249 bool ret = false;
3251 #if NODES_SHIFT > 8
3252 ret = in_interrupt();
3253 #endif
3254 return ret;
3257 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3259 unsigned int filter = SHOW_MEM_FILTER_NODES;
3260 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3262 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3263 return;
3266 * This documents exceptions given to allocations in certain
3267 * contexts that are allowed to allocate outside current's set
3268 * of allowed nodes.
3270 if (!(gfp_mask & __GFP_NOMEMALLOC))
3271 if (tsk_is_oom_victim(current) ||
3272 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3273 filter &= ~SHOW_MEM_FILTER_NODES;
3274 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3275 filter &= ~SHOW_MEM_FILTER_NODES;
3277 show_mem(filter, nodemask);
3280 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3282 struct va_format vaf;
3283 va_list args;
3284 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3285 DEFAULT_RATELIMIT_BURST);
3287 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3288 return;
3290 va_start(args, fmt);
3291 vaf.fmt = fmt;
3292 vaf.va = &args;
3293 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3294 current->comm, &vaf, gfp_mask, &gfp_mask,
3295 nodemask_pr_args(nodemask));
3296 va_end(args);
3298 cpuset_print_current_mems_allowed();
3300 dump_stack();
3301 warn_alloc_show_mem(gfp_mask, nodemask);
3304 static inline struct page *
3305 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3306 unsigned int alloc_flags,
3307 const struct alloc_context *ac)
3309 struct page *page;
3311 page = get_page_from_freelist(gfp_mask, order,
3312 alloc_flags|ALLOC_CPUSET, ac);
3314 * fallback to ignore cpuset restriction if our nodes
3315 * are depleted
3317 if (!page)
3318 page = get_page_from_freelist(gfp_mask, order,
3319 alloc_flags, ac);
3321 return page;
3324 static inline struct page *
3325 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3326 const struct alloc_context *ac, unsigned long *did_some_progress)
3328 struct oom_control oc = {
3329 .zonelist = ac->zonelist,
3330 .nodemask = ac->nodemask,
3331 .memcg = NULL,
3332 .gfp_mask = gfp_mask,
3333 .order = order,
3335 struct page *page;
3337 *did_some_progress = 0;
3340 * Acquire the oom lock. If that fails, somebody else is
3341 * making progress for us.
3343 if (!mutex_trylock(&oom_lock)) {
3344 *did_some_progress = 1;
3345 schedule_timeout_uninterruptible(1);
3346 return NULL;
3350 * Go through the zonelist yet one more time, keep very high watermark
3351 * here, this is only to catch a parallel oom killing, we must fail if
3352 * we're still under heavy pressure. But make sure that this reclaim
3353 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3354 * allocation which will never fail due to oom_lock already held.
3356 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3357 ~__GFP_DIRECT_RECLAIM, order,
3358 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3359 if (page)
3360 goto out;
3362 /* Coredumps can quickly deplete all memory reserves */
3363 if (current->flags & PF_DUMPCORE)
3364 goto out;
3365 /* The OOM killer will not help higher order allocs */
3366 if (order > PAGE_ALLOC_COSTLY_ORDER)
3367 goto out;
3369 * We have already exhausted all our reclaim opportunities without any
3370 * success so it is time to admit defeat. We will skip the OOM killer
3371 * because it is very likely that the caller has a more reasonable
3372 * fallback than shooting a random task.
3374 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3375 goto out;
3376 /* The OOM killer does not needlessly kill tasks for lowmem */
3377 if (ac->high_zoneidx < ZONE_NORMAL)
3378 goto out;
3379 if (pm_suspended_storage())
3380 goto out;
3382 * XXX: GFP_NOFS allocations should rather fail than rely on
3383 * other request to make a forward progress.
3384 * We are in an unfortunate situation where out_of_memory cannot
3385 * do much for this context but let's try it to at least get
3386 * access to memory reserved if the current task is killed (see
3387 * out_of_memory). Once filesystems are ready to handle allocation
3388 * failures more gracefully we should just bail out here.
3391 /* The OOM killer may not free memory on a specific node */
3392 if (gfp_mask & __GFP_THISNODE)
3393 goto out;
3395 /* Exhausted what can be done so it's blamo time */
3396 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3397 *did_some_progress = 1;
3400 * Help non-failing allocations by giving them access to memory
3401 * reserves
3403 if (gfp_mask & __GFP_NOFAIL)
3404 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3405 ALLOC_NO_WATERMARKS, ac);
3407 out:
3408 mutex_unlock(&oom_lock);
3409 return page;
3413 * Maximum number of compaction retries wit a progress before OOM
3414 * killer is consider as the only way to move forward.
3416 #define MAX_COMPACT_RETRIES 16
3418 #ifdef CONFIG_COMPACTION
3419 /* Try memory compaction for high-order allocations before reclaim */
3420 static struct page *
3421 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3422 unsigned int alloc_flags, const struct alloc_context *ac,
3423 enum compact_priority prio, enum compact_result *compact_result)
3425 struct page *page;
3426 unsigned int noreclaim_flag;
3428 if (!order)
3429 return NULL;
3431 noreclaim_flag = memalloc_noreclaim_save();
3432 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3433 prio);
3434 memalloc_noreclaim_restore(noreclaim_flag);
3436 if (*compact_result <= COMPACT_INACTIVE)
3437 return NULL;
3440 * At least in one zone compaction wasn't deferred or skipped, so let's
3441 * count a compaction stall
3443 count_vm_event(COMPACTSTALL);
3445 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3447 if (page) {
3448 struct zone *zone = page_zone(page);
3450 zone->compact_blockskip_flush = false;
3451 compaction_defer_reset(zone, order, true);
3452 count_vm_event(COMPACTSUCCESS);
3453 return page;
3457 * It's bad if compaction run occurs and fails. The most likely reason
3458 * is that pages exist, but not enough to satisfy watermarks.
3460 count_vm_event(COMPACTFAIL);
3462 cond_resched();
3464 return NULL;
3467 static inline bool
3468 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3469 enum compact_result compact_result,
3470 enum compact_priority *compact_priority,
3471 int *compaction_retries)
3473 int max_retries = MAX_COMPACT_RETRIES;
3474 int min_priority;
3475 bool ret = false;
3476 int retries = *compaction_retries;
3477 enum compact_priority priority = *compact_priority;
3479 if (!order)
3480 return false;
3482 if (compaction_made_progress(compact_result))
3483 (*compaction_retries)++;
3486 * compaction considers all the zone as desperately out of memory
3487 * so it doesn't really make much sense to retry except when the
3488 * failure could be caused by insufficient priority
3490 if (compaction_failed(compact_result))
3491 goto check_priority;
3494 * make sure the compaction wasn't deferred or didn't bail out early
3495 * due to locks contention before we declare that we should give up.
3496 * But do not retry if the given zonelist is not suitable for
3497 * compaction.
3499 if (compaction_withdrawn(compact_result)) {
3500 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3501 goto out;
3505 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3506 * costly ones because they are de facto nofail and invoke OOM
3507 * killer to move on while costly can fail and users are ready
3508 * to cope with that. 1/4 retries is rather arbitrary but we
3509 * would need much more detailed feedback from compaction to
3510 * make a better decision.
3512 if (order > PAGE_ALLOC_COSTLY_ORDER)
3513 max_retries /= 4;
3514 if (*compaction_retries <= max_retries) {
3515 ret = true;
3516 goto out;
3520 * Make sure there are attempts at the highest priority if we exhausted
3521 * all retries or failed at the lower priorities.
3523 check_priority:
3524 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3525 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3527 if (*compact_priority > min_priority) {
3528 (*compact_priority)--;
3529 *compaction_retries = 0;
3530 ret = true;
3532 out:
3533 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3534 return ret;
3536 #else
3537 static inline struct page *
3538 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3539 unsigned int alloc_flags, const struct alloc_context *ac,
3540 enum compact_priority prio, enum compact_result *compact_result)
3542 *compact_result = COMPACT_SKIPPED;
3543 return NULL;
3546 static inline bool
3547 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3548 enum compact_result compact_result,
3549 enum compact_priority *compact_priority,
3550 int *compaction_retries)
3552 struct zone *zone;
3553 struct zoneref *z;
3555 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3556 return false;
3559 * There are setups with compaction disabled which would prefer to loop
3560 * inside the allocator rather than hit the oom killer prematurely.
3561 * Let's give them a good hope and keep retrying while the order-0
3562 * watermarks are OK.
3564 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3565 ac->nodemask) {
3566 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3567 ac_classzone_idx(ac), alloc_flags))
3568 return true;
3570 return false;
3572 #endif /* CONFIG_COMPACTION */
3574 #ifdef CONFIG_LOCKDEP
3575 struct lockdep_map __fs_reclaim_map =
3576 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3578 static bool __need_fs_reclaim(gfp_t gfp_mask)
3580 gfp_mask = current_gfp_context(gfp_mask);
3582 /* no reclaim without waiting on it */
3583 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3584 return false;
3586 /* this guy won't enter reclaim */
3587 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3588 return false;
3590 /* We're only interested __GFP_FS allocations for now */
3591 if (!(gfp_mask & __GFP_FS))
3592 return false;
3594 if (gfp_mask & __GFP_NOLOCKDEP)
3595 return false;
3597 return true;
3600 void fs_reclaim_acquire(gfp_t gfp_mask)
3602 if (__need_fs_reclaim(gfp_mask))
3603 lock_map_acquire(&__fs_reclaim_map);
3605 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3607 void fs_reclaim_release(gfp_t gfp_mask)
3609 if (__need_fs_reclaim(gfp_mask))
3610 lock_map_release(&__fs_reclaim_map);
3612 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3613 #endif
3615 /* Perform direct synchronous page reclaim */
3616 static int
3617 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3618 const struct alloc_context *ac)
3620 struct reclaim_state reclaim_state;
3621 int progress;
3622 unsigned int noreclaim_flag;
3624 cond_resched();
3626 /* We now go into synchronous reclaim */
3627 cpuset_memory_pressure_bump();
3628 noreclaim_flag = memalloc_noreclaim_save();
3629 fs_reclaim_acquire(gfp_mask);
3630 reclaim_state.reclaimed_slab = 0;
3631 current->reclaim_state = &reclaim_state;
3633 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3634 ac->nodemask);
3636 current->reclaim_state = NULL;
3637 fs_reclaim_release(gfp_mask);
3638 memalloc_noreclaim_restore(noreclaim_flag);
3640 cond_resched();
3642 return progress;
3645 /* The really slow allocator path where we enter direct reclaim */
3646 static inline struct page *
3647 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3648 unsigned int alloc_flags, const struct alloc_context *ac,
3649 unsigned long *did_some_progress)
3651 struct page *page = NULL;
3652 bool drained = false;
3654 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3655 if (unlikely(!(*did_some_progress)))
3656 return NULL;
3658 retry:
3659 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3662 * If an allocation failed after direct reclaim, it could be because
3663 * pages are pinned on the per-cpu lists or in high alloc reserves.
3664 * Shrink them them and try again
3666 if (!page && !drained) {
3667 unreserve_highatomic_pageblock(ac, false);
3668 drain_all_pages(NULL);
3669 drained = true;
3670 goto retry;
3673 return page;
3676 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3678 struct zoneref *z;
3679 struct zone *zone;
3680 pg_data_t *last_pgdat = NULL;
3682 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3683 ac->high_zoneidx, ac->nodemask) {
3684 if (last_pgdat != zone->zone_pgdat)
3685 wakeup_kswapd(zone, order, ac->high_zoneidx);
3686 last_pgdat = zone->zone_pgdat;
3690 static inline unsigned int
3691 gfp_to_alloc_flags(gfp_t gfp_mask)
3693 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3695 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3696 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3699 * The caller may dip into page reserves a bit more if the caller
3700 * cannot run direct reclaim, or if the caller has realtime scheduling
3701 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3702 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3704 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3706 if (gfp_mask & __GFP_ATOMIC) {
3708 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3709 * if it can't schedule.
3711 if (!(gfp_mask & __GFP_NOMEMALLOC))
3712 alloc_flags |= ALLOC_HARDER;
3714 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3715 * comment for __cpuset_node_allowed().
3717 alloc_flags &= ~ALLOC_CPUSET;
3718 } else if (unlikely(rt_task(current)) && !in_interrupt())
3719 alloc_flags |= ALLOC_HARDER;
3721 #ifdef CONFIG_CMA
3722 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3723 alloc_flags |= ALLOC_CMA;
3724 #endif
3725 return alloc_flags;
3728 static bool oom_reserves_allowed(struct task_struct *tsk)
3730 if (!tsk_is_oom_victim(tsk))
3731 return false;
3734 * !MMU doesn't have oom reaper so give access to memory reserves
3735 * only to the thread with TIF_MEMDIE set
3737 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3738 return false;
3740 return true;
3744 * Distinguish requests which really need access to full memory
3745 * reserves from oom victims which can live with a portion of it
3747 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3749 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3750 return 0;
3751 if (gfp_mask & __GFP_MEMALLOC)
3752 return ALLOC_NO_WATERMARKS;
3753 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3754 return ALLOC_NO_WATERMARKS;
3755 if (!in_interrupt()) {
3756 if (current->flags & PF_MEMALLOC)
3757 return ALLOC_NO_WATERMARKS;
3758 else if (oom_reserves_allowed(current))
3759 return ALLOC_OOM;
3762 return 0;
3765 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3767 return !!__gfp_pfmemalloc_flags(gfp_mask);
3771 * Checks whether it makes sense to retry the reclaim to make a forward progress
3772 * for the given allocation request.
3774 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3775 * without success, or when we couldn't even meet the watermark if we
3776 * reclaimed all remaining pages on the LRU lists.
3778 * Returns true if a retry is viable or false to enter the oom path.
3780 static inline bool
3781 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3782 struct alloc_context *ac, int alloc_flags,
3783 bool did_some_progress, int *no_progress_loops)
3785 struct zone *zone;
3786 struct zoneref *z;
3789 * Costly allocations might have made a progress but this doesn't mean
3790 * their order will become available due to high fragmentation so
3791 * always increment the no progress counter for them
3793 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3794 *no_progress_loops = 0;
3795 else
3796 (*no_progress_loops)++;
3799 * Make sure we converge to OOM if we cannot make any progress
3800 * several times in the row.
3802 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3803 /* Before OOM, exhaust highatomic_reserve */
3804 return unreserve_highatomic_pageblock(ac, true);
3808 * Keep reclaiming pages while there is a chance this will lead
3809 * somewhere. If none of the target zones can satisfy our allocation
3810 * request even if all reclaimable pages are considered then we are
3811 * screwed and have to go OOM.
3813 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3814 ac->nodemask) {
3815 unsigned long available;
3816 unsigned long reclaimable;
3817 unsigned long min_wmark = min_wmark_pages(zone);
3818 bool wmark;
3820 available = reclaimable = zone_reclaimable_pages(zone);
3821 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3824 * Would the allocation succeed if we reclaimed all
3825 * reclaimable pages?
3827 wmark = __zone_watermark_ok(zone, order, min_wmark,
3828 ac_classzone_idx(ac), alloc_flags, available);
3829 trace_reclaim_retry_zone(z, order, reclaimable,
3830 available, min_wmark, *no_progress_loops, wmark);
3831 if (wmark) {
3833 * If we didn't make any progress and have a lot of
3834 * dirty + writeback pages then we should wait for
3835 * an IO to complete to slow down the reclaim and
3836 * prevent from pre mature OOM
3838 if (!did_some_progress) {
3839 unsigned long write_pending;
3841 write_pending = zone_page_state_snapshot(zone,
3842 NR_ZONE_WRITE_PENDING);
3844 if (2 * write_pending > reclaimable) {
3845 congestion_wait(BLK_RW_ASYNC, HZ/10);
3846 return true;
3851 * Memory allocation/reclaim might be called from a WQ
3852 * context and the current implementation of the WQ
3853 * concurrency control doesn't recognize that
3854 * a particular WQ is congested if the worker thread is
3855 * looping without ever sleeping. Therefore we have to
3856 * do a short sleep here rather than calling
3857 * cond_resched().
3859 if (current->flags & PF_WQ_WORKER)
3860 schedule_timeout_uninterruptible(1);
3861 else
3862 cond_resched();
3864 return true;
3868 return false;
3871 static inline bool
3872 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3875 * It's possible that cpuset's mems_allowed and the nodemask from
3876 * mempolicy don't intersect. This should be normally dealt with by
3877 * policy_nodemask(), but it's possible to race with cpuset update in
3878 * such a way the check therein was true, and then it became false
3879 * before we got our cpuset_mems_cookie here.
3880 * This assumes that for all allocations, ac->nodemask can come only
3881 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3882 * when it does not intersect with the cpuset restrictions) or the
3883 * caller can deal with a violated nodemask.
3885 if (cpusets_enabled() && ac->nodemask &&
3886 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3887 ac->nodemask = NULL;
3888 return true;
3892 * When updating a task's mems_allowed or mempolicy nodemask, it is
3893 * possible to race with parallel threads in such a way that our
3894 * allocation can fail while the mask is being updated. If we are about
3895 * to fail, check if the cpuset changed during allocation and if so,
3896 * retry.
3898 if (read_mems_allowed_retry(cpuset_mems_cookie))
3899 return true;
3901 return false;
3904 static inline struct page *
3905 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3906 struct alloc_context *ac)
3908 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3909 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3910 struct page *page = NULL;
3911 unsigned int alloc_flags;
3912 unsigned long did_some_progress;
3913 enum compact_priority compact_priority;
3914 enum compact_result compact_result;
3915 int compaction_retries;
3916 int no_progress_loops;
3917 unsigned int cpuset_mems_cookie;
3918 int reserve_flags;
3921 * In the slowpath, we sanity check order to avoid ever trying to
3922 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3923 * be using allocators in order of preference for an area that is
3924 * too large.
3926 if (order >= MAX_ORDER) {
3927 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3928 return NULL;
3932 * We also sanity check to catch abuse of atomic reserves being used by
3933 * callers that are not in atomic context.
3935 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3936 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3937 gfp_mask &= ~__GFP_ATOMIC;
3939 retry_cpuset:
3940 compaction_retries = 0;
3941 no_progress_loops = 0;
3942 compact_priority = DEF_COMPACT_PRIORITY;
3943 cpuset_mems_cookie = read_mems_allowed_begin();
3946 * The fast path uses conservative alloc_flags to succeed only until
3947 * kswapd needs to be woken up, and to avoid the cost of setting up
3948 * alloc_flags precisely. So we do that now.
3950 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3953 * We need to recalculate the starting point for the zonelist iterator
3954 * because we might have used different nodemask in the fast path, or
3955 * there was a cpuset modification and we are retrying - otherwise we
3956 * could end up iterating over non-eligible zones endlessly.
3958 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3959 ac->high_zoneidx, ac->nodemask);
3960 if (!ac->preferred_zoneref->zone)
3961 goto nopage;
3963 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3964 wake_all_kswapds(order, ac);
3967 * The adjusted alloc_flags might result in immediate success, so try
3968 * that first
3970 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3971 if (page)
3972 goto got_pg;
3975 * For costly allocations, try direct compaction first, as it's likely
3976 * that we have enough base pages and don't need to reclaim. For non-
3977 * movable high-order allocations, do that as well, as compaction will
3978 * try prevent permanent fragmentation by migrating from blocks of the
3979 * same migratetype.
3980 * Don't try this for allocations that are allowed to ignore
3981 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3983 if (can_direct_reclaim &&
3984 (costly_order ||
3985 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3986 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3987 page = __alloc_pages_direct_compact(gfp_mask, order,
3988 alloc_flags, ac,
3989 INIT_COMPACT_PRIORITY,
3990 &compact_result);
3991 if (page)
3992 goto got_pg;
3995 * Checks for costly allocations with __GFP_NORETRY, which
3996 * includes THP page fault allocations
3998 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4000 * If compaction is deferred for high-order allocations,
4001 * it is because sync compaction recently failed. If
4002 * this is the case and the caller requested a THP
4003 * allocation, we do not want to heavily disrupt the
4004 * system, so we fail the allocation instead of entering
4005 * direct reclaim.
4007 if (compact_result == COMPACT_DEFERRED)
4008 goto nopage;
4011 * Looks like reclaim/compaction is worth trying, but
4012 * sync compaction could be very expensive, so keep
4013 * using async compaction.
4015 compact_priority = INIT_COMPACT_PRIORITY;
4019 retry:
4020 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4021 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4022 wake_all_kswapds(order, ac);
4024 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4025 if (reserve_flags)
4026 alloc_flags = reserve_flags;
4029 * Reset the zonelist iterators if memory policies can be ignored.
4030 * These allocations are high priority and system rather than user
4031 * orientated.
4033 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4034 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4035 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4036 ac->high_zoneidx, ac->nodemask);
4039 /* Attempt with potentially adjusted zonelist and alloc_flags */
4040 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4041 if (page)
4042 goto got_pg;
4044 /* Caller is not willing to reclaim, we can't balance anything */
4045 if (!can_direct_reclaim)
4046 goto nopage;
4048 /* Avoid recursion of direct reclaim */
4049 if (current->flags & PF_MEMALLOC)
4050 goto nopage;
4052 /* Try direct reclaim and then allocating */
4053 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4054 &did_some_progress);
4055 if (page)
4056 goto got_pg;
4058 /* Try direct compaction and then allocating */
4059 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4060 compact_priority, &compact_result);
4061 if (page)
4062 goto got_pg;
4064 /* Do not loop if specifically requested */
4065 if (gfp_mask & __GFP_NORETRY)
4066 goto nopage;
4069 * Do not retry costly high order allocations unless they are
4070 * __GFP_RETRY_MAYFAIL
4072 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4073 goto nopage;
4075 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4076 did_some_progress > 0, &no_progress_loops))
4077 goto retry;
4080 * It doesn't make any sense to retry for the compaction if the order-0
4081 * reclaim is not able to make any progress because the current
4082 * implementation of the compaction depends on the sufficient amount
4083 * of free memory (see __compaction_suitable)
4085 if (did_some_progress > 0 &&
4086 should_compact_retry(ac, order, alloc_flags,
4087 compact_result, &compact_priority,
4088 &compaction_retries))
4089 goto retry;
4092 /* Deal with possible cpuset update races before we start OOM killing */
4093 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4094 goto retry_cpuset;
4096 /* Reclaim has failed us, start killing things */
4097 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4098 if (page)
4099 goto got_pg;
4101 /* Avoid allocations with no watermarks from looping endlessly */
4102 if (tsk_is_oom_victim(current) &&
4103 (alloc_flags == ALLOC_OOM ||
4104 (gfp_mask & __GFP_NOMEMALLOC)))
4105 goto nopage;
4107 /* Retry as long as the OOM killer is making progress */
4108 if (did_some_progress) {
4109 no_progress_loops = 0;
4110 goto retry;
4113 nopage:
4114 /* Deal with possible cpuset update races before we fail */
4115 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4116 goto retry_cpuset;
4119 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4120 * we always retry
4122 if (gfp_mask & __GFP_NOFAIL) {
4124 * All existing users of the __GFP_NOFAIL are blockable, so warn
4125 * of any new users that actually require GFP_NOWAIT
4127 if (WARN_ON_ONCE(!can_direct_reclaim))
4128 goto fail;
4131 * PF_MEMALLOC request from this context is rather bizarre
4132 * because we cannot reclaim anything and only can loop waiting
4133 * for somebody to do a work for us
4135 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4138 * non failing costly orders are a hard requirement which we
4139 * are not prepared for much so let's warn about these users
4140 * so that we can identify them and convert them to something
4141 * else.
4143 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4146 * Help non-failing allocations by giving them access to memory
4147 * reserves but do not use ALLOC_NO_WATERMARKS because this
4148 * could deplete whole memory reserves which would just make
4149 * the situation worse
4151 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4152 if (page)
4153 goto got_pg;
4155 cond_resched();
4156 goto retry;
4158 fail:
4159 warn_alloc(gfp_mask, ac->nodemask,
4160 "page allocation failure: order:%u", order);
4161 got_pg:
4162 return page;
4165 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4166 int preferred_nid, nodemask_t *nodemask,
4167 struct alloc_context *ac, gfp_t *alloc_mask,
4168 unsigned int *alloc_flags)
4170 ac->high_zoneidx = gfp_zone(gfp_mask);
4171 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4172 ac->nodemask = nodemask;
4173 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4175 if (cpusets_enabled()) {
4176 *alloc_mask |= __GFP_HARDWALL;
4177 if (!ac->nodemask)
4178 ac->nodemask = &cpuset_current_mems_allowed;
4179 else
4180 *alloc_flags |= ALLOC_CPUSET;
4183 fs_reclaim_acquire(gfp_mask);
4184 fs_reclaim_release(gfp_mask);
4186 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4188 if (should_fail_alloc_page(gfp_mask, order))
4189 return false;
4191 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4192 *alloc_flags |= ALLOC_CMA;
4194 return true;
4197 /* Determine whether to spread dirty pages and what the first usable zone */
4198 static inline void finalise_ac(gfp_t gfp_mask,
4199 unsigned int order, struct alloc_context *ac)
4201 /* Dirty zone balancing only done in the fast path */
4202 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4205 * The preferred zone is used for statistics but crucially it is
4206 * also used as the starting point for the zonelist iterator. It
4207 * may get reset for allocations that ignore memory policies.
4209 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4210 ac->high_zoneidx, ac->nodemask);
4214 * This is the 'heart' of the zoned buddy allocator.
4216 struct page *
4217 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4218 nodemask_t *nodemask)
4220 struct page *page;
4221 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4222 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4223 struct alloc_context ac = { };
4225 gfp_mask &= gfp_allowed_mask;
4226 alloc_mask = gfp_mask;
4227 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4228 return NULL;
4230 finalise_ac(gfp_mask, order, &ac);
4232 /* First allocation attempt */
4233 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4234 if (likely(page))
4235 goto out;
4238 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4239 * resp. GFP_NOIO which has to be inherited for all allocation requests
4240 * from a particular context which has been marked by
4241 * memalloc_no{fs,io}_{save,restore}.
4243 alloc_mask = current_gfp_context(gfp_mask);
4244 ac.spread_dirty_pages = false;
4247 * Restore the original nodemask if it was potentially replaced with
4248 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4250 if (unlikely(ac.nodemask != nodemask))
4251 ac.nodemask = nodemask;
4253 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4255 out:
4256 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4257 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4258 __free_pages(page, order);
4259 page = NULL;
4262 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4264 return page;
4266 EXPORT_SYMBOL(__alloc_pages_nodemask);
4269 * Common helper functions.
4271 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4273 struct page *page;
4276 * __get_free_pages() returns a 32-bit address, which cannot represent
4277 * a highmem page
4279 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4281 page = alloc_pages(gfp_mask, order);
4282 if (!page)
4283 return 0;
4284 return (unsigned long) page_address(page);
4286 EXPORT_SYMBOL(__get_free_pages);
4288 unsigned long get_zeroed_page(gfp_t gfp_mask)
4290 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4292 EXPORT_SYMBOL(get_zeroed_page);
4294 void __free_pages(struct page *page, unsigned int order)
4296 if (put_page_testzero(page)) {
4297 if (order == 0)
4298 free_unref_page(page);
4299 else
4300 __free_pages_ok(page, order);
4304 EXPORT_SYMBOL(__free_pages);
4306 void free_pages(unsigned long addr, unsigned int order)
4308 if (addr != 0) {
4309 VM_BUG_ON(!virt_addr_valid((void *)addr));
4310 __free_pages(virt_to_page((void *)addr), order);
4314 EXPORT_SYMBOL(free_pages);
4317 * Page Fragment:
4318 * An arbitrary-length arbitrary-offset area of memory which resides
4319 * within a 0 or higher order page. Multiple fragments within that page
4320 * are individually refcounted, in the page's reference counter.
4322 * The page_frag functions below provide a simple allocation framework for
4323 * page fragments. This is used by the network stack and network device
4324 * drivers to provide a backing region of memory for use as either an
4325 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4327 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4328 gfp_t gfp_mask)
4330 struct page *page = NULL;
4331 gfp_t gfp = gfp_mask;
4333 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4334 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4335 __GFP_NOMEMALLOC;
4336 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4337 PAGE_FRAG_CACHE_MAX_ORDER);
4338 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4339 #endif
4340 if (unlikely(!page))
4341 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4343 nc->va = page ? page_address(page) : NULL;
4345 return page;
4348 void __page_frag_cache_drain(struct page *page, unsigned int count)
4350 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4352 if (page_ref_sub_and_test(page, count)) {
4353 unsigned int order = compound_order(page);
4355 if (order == 0)
4356 free_unref_page(page);
4357 else
4358 __free_pages_ok(page, order);
4361 EXPORT_SYMBOL(__page_frag_cache_drain);
4363 void *page_frag_alloc(struct page_frag_cache *nc,
4364 unsigned int fragsz, gfp_t gfp_mask)
4366 unsigned int size = PAGE_SIZE;
4367 struct page *page;
4368 int offset;
4370 if (unlikely(!nc->va)) {
4371 refill:
4372 page = __page_frag_cache_refill(nc, gfp_mask);
4373 if (!page)
4374 return NULL;
4376 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4377 /* if size can vary use size else just use PAGE_SIZE */
4378 size = nc->size;
4379 #endif
4380 /* Even if we own the page, we do not use atomic_set().
4381 * This would break get_page_unless_zero() users.
4383 page_ref_add(page, size - 1);
4385 /* reset page count bias and offset to start of new frag */
4386 nc->pfmemalloc = page_is_pfmemalloc(page);
4387 nc->pagecnt_bias = size;
4388 nc->offset = size;
4391 offset = nc->offset - fragsz;
4392 if (unlikely(offset < 0)) {
4393 page = virt_to_page(nc->va);
4395 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4396 goto refill;
4398 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4399 /* if size can vary use size else just use PAGE_SIZE */
4400 size = nc->size;
4401 #endif
4402 /* OK, page count is 0, we can safely set it */
4403 set_page_count(page, size);
4405 /* reset page count bias and offset to start of new frag */
4406 nc->pagecnt_bias = size;
4407 offset = size - fragsz;
4410 nc->pagecnt_bias--;
4411 nc->offset = offset;
4413 return nc->va + offset;
4415 EXPORT_SYMBOL(page_frag_alloc);
4418 * Frees a page fragment allocated out of either a compound or order 0 page.
4420 void page_frag_free(void *addr)
4422 struct page *page = virt_to_head_page(addr);
4424 if (unlikely(put_page_testzero(page)))
4425 __free_pages_ok(page, compound_order(page));
4427 EXPORT_SYMBOL(page_frag_free);
4429 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4430 size_t size)
4432 if (addr) {
4433 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4434 unsigned long used = addr + PAGE_ALIGN(size);
4436 split_page(virt_to_page((void *)addr), order);
4437 while (used < alloc_end) {
4438 free_page(used);
4439 used += PAGE_SIZE;
4442 return (void *)addr;
4446 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4447 * @size: the number of bytes to allocate
4448 * @gfp_mask: GFP flags for the allocation
4450 * This function is similar to alloc_pages(), except that it allocates the
4451 * minimum number of pages to satisfy the request. alloc_pages() can only
4452 * allocate memory in power-of-two pages.
4454 * This function is also limited by MAX_ORDER.
4456 * Memory allocated by this function must be released by free_pages_exact().
4458 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4460 unsigned int order = get_order(size);
4461 unsigned long addr;
4463 addr = __get_free_pages(gfp_mask, order);
4464 return make_alloc_exact(addr, order, size);
4466 EXPORT_SYMBOL(alloc_pages_exact);
4469 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4470 * pages on a node.
4471 * @nid: the preferred node ID where memory should be allocated
4472 * @size: the number of bytes to allocate
4473 * @gfp_mask: GFP flags for the allocation
4475 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4476 * back.
4478 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4480 unsigned int order = get_order(size);
4481 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4482 if (!p)
4483 return NULL;
4484 return make_alloc_exact((unsigned long)page_address(p), order, size);
4488 * free_pages_exact - release memory allocated via alloc_pages_exact()
4489 * @virt: the value returned by alloc_pages_exact.
4490 * @size: size of allocation, same value as passed to alloc_pages_exact().
4492 * Release the memory allocated by a previous call to alloc_pages_exact.
4494 void free_pages_exact(void *virt, size_t size)
4496 unsigned long addr = (unsigned long)virt;
4497 unsigned long end = addr + PAGE_ALIGN(size);
4499 while (addr < end) {
4500 free_page(addr);
4501 addr += PAGE_SIZE;
4504 EXPORT_SYMBOL(free_pages_exact);
4507 * nr_free_zone_pages - count number of pages beyond high watermark
4508 * @offset: The zone index of the highest zone
4510 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4511 * high watermark within all zones at or below a given zone index. For each
4512 * zone, the number of pages is calculated as:
4514 * nr_free_zone_pages = managed_pages - high_pages
4516 static unsigned long nr_free_zone_pages(int offset)
4518 struct zoneref *z;
4519 struct zone *zone;
4521 /* Just pick one node, since fallback list is circular */
4522 unsigned long sum = 0;
4524 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4526 for_each_zone_zonelist(zone, z, zonelist, offset) {
4527 unsigned long size = zone->managed_pages;
4528 unsigned long high = high_wmark_pages(zone);
4529 if (size > high)
4530 sum += size - high;
4533 return sum;
4537 * nr_free_buffer_pages - count number of pages beyond high watermark
4539 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4540 * watermark within ZONE_DMA and ZONE_NORMAL.
4542 unsigned long nr_free_buffer_pages(void)
4544 return nr_free_zone_pages(gfp_zone(GFP_USER));
4546 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4549 * nr_free_pagecache_pages - count number of pages beyond high watermark
4551 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4552 * high watermark within all zones.
4554 unsigned long nr_free_pagecache_pages(void)
4556 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4559 static inline void show_node(struct zone *zone)
4561 if (IS_ENABLED(CONFIG_NUMA))
4562 printk("Node %d ", zone_to_nid(zone));
4565 long si_mem_available(void)
4567 long available;
4568 unsigned long pagecache;
4569 unsigned long wmark_low = 0;
4570 unsigned long pages[NR_LRU_LISTS];
4571 struct zone *zone;
4572 int lru;
4574 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4575 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4577 for_each_zone(zone)
4578 wmark_low += zone->watermark[WMARK_LOW];
4581 * Estimate the amount of memory available for userspace allocations,
4582 * without causing swapping.
4584 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4587 * Not all the page cache can be freed, otherwise the system will
4588 * start swapping. Assume at least half of the page cache, or the
4589 * low watermark worth of cache, needs to stay.
4591 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4592 pagecache -= min(pagecache / 2, wmark_low);
4593 available += pagecache;
4596 * Part of the reclaimable slab consists of items that are in use,
4597 * and cannot be freed. Cap this estimate at the low watermark.
4599 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4600 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4601 wmark_low);
4603 if (available < 0)
4604 available = 0;
4605 return available;
4607 EXPORT_SYMBOL_GPL(si_mem_available);
4609 void si_meminfo(struct sysinfo *val)
4611 val->totalram = totalram_pages;
4612 val->sharedram = global_node_page_state(NR_SHMEM);
4613 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4614 val->bufferram = nr_blockdev_pages();
4615 val->totalhigh = totalhigh_pages;
4616 val->freehigh = nr_free_highpages();
4617 val->mem_unit = PAGE_SIZE;
4620 EXPORT_SYMBOL(si_meminfo);
4622 #ifdef CONFIG_NUMA
4623 void si_meminfo_node(struct sysinfo *val, int nid)
4625 int zone_type; /* needs to be signed */
4626 unsigned long managed_pages = 0;
4627 unsigned long managed_highpages = 0;
4628 unsigned long free_highpages = 0;
4629 pg_data_t *pgdat = NODE_DATA(nid);
4631 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4632 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4633 val->totalram = managed_pages;
4634 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4635 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4636 #ifdef CONFIG_HIGHMEM
4637 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4638 struct zone *zone = &pgdat->node_zones[zone_type];
4640 if (is_highmem(zone)) {
4641 managed_highpages += zone->managed_pages;
4642 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4645 val->totalhigh = managed_highpages;
4646 val->freehigh = free_highpages;
4647 #else
4648 val->totalhigh = managed_highpages;
4649 val->freehigh = free_highpages;
4650 #endif
4651 val->mem_unit = PAGE_SIZE;
4653 #endif
4656 * Determine whether the node should be displayed or not, depending on whether
4657 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4659 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4661 if (!(flags & SHOW_MEM_FILTER_NODES))
4662 return false;
4665 * no node mask - aka implicit memory numa policy. Do not bother with
4666 * the synchronization - read_mems_allowed_begin - because we do not
4667 * have to be precise here.
4669 if (!nodemask)
4670 nodemask = &cpuset_current_mems_allowed;
4672 return !node_isset(nid, *nodemask);
4675 #define K(x) ((x) << (PAGE_SHIFT-10))
4677 static void show_migration_types(unsigned char type)
4679 static const char types[MIGRATE_TYPES] = {
4680 [MIGRATE_UNMOVABLE] = 'U',
4681 [MIGRATE_MOVABLE] = 'M',
4682 [MIGRATE_RECLAIMABLE] = 'E',
4683 [MIGRATE_HIGHATOMIC] = 'H',
4684 #ifdef CONFIG_CMA
4685 [MIGRATE_CMA] = 'C',
4686 #endif
4687 #ifdef CONFIG_MEMORY_ISOLATION
4688 [MIGRATE_ISOLATE] = 'I',
4689 #endif
4691 char tmp[MIGRATE_TYPES + 1];
4692 char *p = tmp;
4693 int i;
4695 for (i = 0; i < MIGRATE_TYPES; i++) {
4696 if (type & (1 << i))
4697 *p++ = types[i];
4700 *p = '\0';
4701 printk(KERN_CONT "(%s) ", tmp);
4705 * Show free area list (used inside shift_scroll-lock stuff)
4706 * We also calculate the percentage fragmentation. We do this by counting the
4707 * memory on each free list with the exception of the first item on the list.
4709 * Bits in @filter:
4710 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4711 * cpuset.
4713 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4715 unsigned long free_pcp = 0;
4716 int cpu;
4717 struct zone *zone;
4718 pg_data_t *pgdat;
4720 for_each_populated_zone(zone) {
4721 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4722 continue;
4724 for_each_online_cpu(cpu)
4725 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4728 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4729 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4730 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4731 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4732 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4733 " free:%lu free_pcp:%lu free_cma:%lu\n",
4734 global_node_page_state(NR_ACTIVE_ANON),
4735 global_node_page_state(NR_INACTIVE_ANON),
4736 global_node_page_state(NR_ISOLATED_ANON),
4737 global_node_page_state(NR_ACTIVE_FILE),
4738 global_node_page_state(NR_INACTIVE_FILE),
4739 global_node_page_state(NR_ISOLATED_FILE),
4740 global_node_page_state(NR_UNEVICTABLE),
4741 global_node_page_state(NR_FILE_DIRTY),
4742 global_node_page_state(NR_WRITEBACK),
4743 global_node_page_state(NR_UNSTABLE_NFS),
4744 global_node_page_state(NR_SLAB_RECLAIMABLE),
4745 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4746 global_node_page_state(NR_FILE_MAPPED),
4747 global_node_page_state(NR_SHMEM),
4748 global_zone_page_state(NR_PAGETABLE),
4749 global_zone_page_state(NR_BOUNCE),
4750 global_zone_page_state(NR_FREE_PAGES),
4751 free_pcp,
4752 global_zone_page_state(NR_FREE_CMA_PAGES));
4754 for_each_online_pgdat(pgdat) {
4755 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4756 continue;
4758 printk("Node %d"
4759 " active_anon:%lukB"
4760 " inactive_anon:%lukB"
4761 " active_file:%lukB"
4762 " inactive_file:%lukB"
4763 " unevictable:%lukB"
4764 " isolated(anon):%lukB"
4765 " isolated(file):%lukB"
4766 " mapped:%lukB"
4767 " dirty:%lukB"
4768 " writeback:%lukB"
4769 " shmem:%lukB"
4770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4771 " shmem_thp: %lukB"
4772 " shmem_pmdmapped: %lukB"
4773 " anon_thp: %lukB"
4774 #endif
4775 " writeback_tmp:%lukB"
4776 " unstable:%lukB"
4777 " all_unreclaimable? %s"
4778 "\n",
4779 pgdat->node_id,
4780 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4781 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4782 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4783 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4784 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4785 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4786 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4787 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4788 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4789 K(node_page_state(pgdat, NR_WRITEBACK)),
4790 K(node_page_state(pgdat, NR_SHMEM)),
4791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4792 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4793 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4794 * HPAGE_PMD_NR),
4795 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4796 #endif
4797 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4798 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4799 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4800 "yes" : "no");
4803 for_each_populated_zone(zone) {
4804 int i;
4806 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4807 continue;
4809 free_pcp = 0;
4810 for_each_online_cpu(cpu)
4811 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4813 show_node(zone);
4814 printk(KERN_CONT
4815 "%s"
4816 " free:%lukB"
4817 " min:%lukB"
4818 " low:%lukB"
4819 " high:%lukB"
4820 " active_anon:%lukB"
4821 " inactive_anon:%lukB"
4822 " active_file:%lukB"
4823 " inactive_file:%lukB"
4824 " unevictable:%lukB"
4825 " writepending:%lukB"
4826 " present:%lukB"
4827 " managed:%lukB"
4828 " mlocked:%lukB"
4829 " kernel_stack:%lukB"
4830 " pagetables:%lukB"
4831 " bounce:%lukB"
4832 " free_pcp:%lukB"
4833 " local_pcp:%ukB"
4834 " free_cma:%lukB"
4835 "\n",
4836 zone->name,
4837 K(zone_page_state(zone, NR_FREE_PAGES)),
4838 K(min_wmark_pages(zone)),
4839 K(low_wmark_pages(zone)),
4840 K(high_wmark_pages(zone)),
4841 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4842 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4843 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4844 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4845 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4846 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4847 K(zone->present_pages),
4848 K(zone->managed_pages),
4849 K(zone_page_state(zone, NR_MLOCK)),
4850 zone_page_state(zone, NR_KERNEL_STACK_KB),
4851 K(zone_page_state(zone, NR_PAGETABLE)),
4852 K(zone_page_state(zone, NR_BOUNCE)),
4853 K(free_pcp),
4854 K(this_cpu_read(zone->pageset->pcp.count)),
4855 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4856 printk("lowmem_reserve[]:");
4857 for (i = 0; i < MAX_NR_ZONES; i++)
4858 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4859 printk(KERN_CONT "\n");
4862 for_each_populated_zone(zone) {
4863 unsigned int order;
4864 unsigned long nr[MAX_ORDER], flags, total = 0;
4865 unsigned char types[MAX_ORDER];
4867 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4868 continue;
4869 show_node(zone);
4870 printk(KERN_CONT "%s: ", zone->name);
4872 spin_lock_irqsave(&zone->lock, flags);
4873 for (order = 0; order < MAX_ORDER; order++) {
4874 struct free_area *area = &zone->free_area[order];
4875 int type;
4877 nr[order] = area->nr_free;
4878 total += nr[order] << order;
4880 types[order] = 0;
4881 for (type = 0; type < MIGRATE_TYPES; type++) {
4882 if (!list_empty(&area->free_list[type]))
4883 types[order] |= 1 << type;
4886 spin_unlock_irqrestore(&zone->lock, flags);
4887 for (order = 0; order < MAX_ORDER; order++) {
4888 printk(KERN_CONT "%lu*%lukB ",
4889 nr[order], K(1UL) << order);
4890 if (nr[order])
4891 show_migration_types(types[order]);
4893 printk(KERN_CONT "= %lukB\n", K(total));
4896 hugetlb_show_meminfo();
4898 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4900 show_swap_cache_info();
4903 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4905 zoneref->zone = zone;
4906 zoneref->zone_idx = zone_idx(zone);
4910 * Builds allocation fallback zone lists.
4912 * Add all populated zones of a node to the zonelist.
4914 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4916 struct zone *zone;
4917 enum zone_type zone_type = MAX_NR_ZONES;
4918 int nr_zones = 0;
4920 do {
4921 zone_type--;
4922 zone = pgdat->node_zones + zone_type;
4923 if (managed_zone(zone)) {
4924 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4925 check_highest_zone(zone_type);
4927 } while (zone_type);
4929 return nr_zones;
4932 #ifdef CONFIG_NUMA
4934 static int __parse_numa_zonelist_order(char *s)
4937 * We used to support different zonlists modes but they turned
4938 * out to be just not useful. Let's keep the warning in place
4939 * if somebody still use the cmd line parameter so that we do
4940 * not fail it silently
4942 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4943 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4944 return -EINVAL;
4946 return 0;
4949 static __init int setup_numa_zonelist_order(char *s)
4951 if (!s)
4952 return 0;
4954 return __parse_numa_zonelist_order(s);
4956 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4958 char numa_zonelist_order[] = "Node";
4961 * sysctl handler for numa_zonelist_order
4963 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4964 void __user *buffer, size_t *length,
4965 loff_t *ppos)
4967 char *str;
4968 int ret;
4970 if (!write)
4971 return proc_dostring(table, write, buffer, length, ppos);
4972 str = memdup_user_nul(buffer, 16);
4973 if (IS_ERR(str))
4974 return PTR_ERR(str);
4976 ret = __parse_numa_zonelist_order(str);
4977 kfree(str);
4978 return ret;
4982 #define MAX_NODE_LOAD (nr_online_nodes)
4983 static int node_load[MAX_NUMNODES];
4986 * find_next_best_node - find the next node that should appear in a given node's fallback list
4987 * @node: node whose fallback list we're appending
4988 * @used_node_mask: nodemask_t of already used nodes
4990 * We use a number of factors to determine which is the next node that should
4991 * appear on a given node's fallback list. The node should not have appeared
4992 * already in @node's fallback list, and it should be the next closest node
4993 * according to the distance array (which contains arbitrary distance values
4994 * from each node to each node in the system), and should also prefer nodes
4995 * with no CPUs, since presumably they'll have very little allocation pressure
4996 * on them otherwise.
4997 * It returns -1 if no node is found.
4999 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5001 int n, val;
5002 int min_val = INT_MAX;
5003 int best_node = NUMA_NO_NODE;
5004 const struct cpumask *tmp = cpumask_of_node(0);
5006 /* Use the local node if we haven't already */
5007 if (!node_isset(node, *used_node_mask)) {
5008 node_set(node, *used_node_mask);
5009 return node;
5012 for_each_node_state(n, N_MEMORY) {
5014 /* Don't want a node to appear more than once */
5015 if (node_isset(n, *used_node_mask))
5016 continue;
5018 /* Use the distance array to find the distance */
5019 val = node_distance(node, n);
5021 /* Penalize nodes under us ("prefer the next node") */
5022 val += (n < node);
5024 /* Give preference to headless and unused nodes */
5025 tmp = cpumask_of_node(n);
5026 if (!cpumask_empty(tmp))
5027 val += PENALTY_FOR_NODE_WITH_CPUS;
5029 /* Slight preference for less loaded node */
5030 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5031 val += node_load[n];
5033 if (val < min_val) {
5034 min_val = val;
5035 best_node = n;
5039 if (best_node >= 0)
5040 node_set(best_node, *used_node_mask);
5042 return best_node;
5047 * Build zonelists ordered by node and zones within node.
5048 * This results in maximum locality--normal zone overflows into local
5049 * DMA zone, if any--but risks exhausting DMA zone.
5051 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5052 unsigned nr_nodes)
5054 struct zoneref *zonerefs;
5055 int i;
5057 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5059 for (i = 0; i < nr_nodes; i++) {
5060 int nr_zones;
5062 pg_data_t *node = NODE_DATA(node_order[i]);
5064 nr_zones = build_zonerefs_node(node, zonerefs);
5065 zonerefs += nr_zones;
5067 zonerefs->zone = NULL;
5068 zonerefs->zone_idx = 0;
5072 * Build gfp_thisnode zonelists
5074 static void build_thisnode_zonelists(pg_data_t *pgdat)
5076 struct zoneref *zonerefs;
5077 int nr_zones;
5079 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5080 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5081 zonerefs += nr_zones;
5082 zonerefs->zone = NULL;
5083 zonerefs->zone_idx = 0;
5087 * Build zonelists ordered by zone and nodes within zones.
5088 * This results in conserving DMA zone[s] until all Normal memory is
5089 * exhausted, but results in overflowing to remote node while memory
5090 * may still exist in local DMA zone.
5093 static void build_zonelists(pg_data_t *pgdat)
5095 static int node_order[MAX_NUMNODES];
5096 int node, load, nr_nodes = 0;
5097 nodemask_t used_mask;
5098 int local_node, prev_node;
5100 /* NUMA-aware ordering of nodes */
5101 local_node = pgdat->node_id;
5102 load = nr_online_nodes;
5103 prev_node = local_node;
5104 nodes_clear(used_mask);
5106 memset(node_order, 0, sizeof(node_order));
5107 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5109 * We don't want to pressure a particular node.
5110 * So adding penalty to the first node in same
5111 * distance group to make it round-robin.
5113 if (node_distance(local_node, node) !=
5114 node_distance(local_node, prev_node))
5115 node_load[node] = load;
5117 node_order[nr_nodes++] = node;
5118 prev_node = node;
5119 load--;
5122 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5123 build_thisnode_zonelists(pgdat);
5126 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5128 * Return node id of node used for "local" allocations.
5129 * I.e., first node id of first zone in arg node's generic zonelist.
5130 * Used for initializing percpu 'numa_mem', which is used primarily
5131 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5133 int local_memory_node(int node)
5135 struct zoneref *z;
5137 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5138 gfp_zone(GFP_KERNEL),
5139 NULL);
5140 return z->zone->node;
5142 #endif
5144 static void setup_min_unmapped_ratio(void);
5145 static void setup_min_slab_ratio(void);
5146 #else /* CONFIG_NUMA */
5148 static void build_zonelists(pg_data_t *pgdat)
5150 int node, local_node;
5151 struct zoneref *zonerefs;
5152 int nr_zones;
5154 local_node = pgdat->node_id;
5156 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5157 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5158 zonerefs += nr_zones;
5161 * Now we build the zonelist so that it contains the zones
5162 * of all the other nodes.
5163 * We don't want to pressure a particular node, so when
5164 * building the zones for node N, we make sure that the
5165 * zones coming right after the local ones are those from
5166 * node N+1 (modulo N)
5168 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5169 if (!node_online(node))
5170 continue;
5171 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5172 zonerefs += nr_zones;
5174 for (node = 0; node < local_node; node++) {
5175 if (!node_online(node))
5176 continue;
5177 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5178 zonerefs += nr_zones;
5181 zonerefs->zone = NULL;
5182 zonerefs->zone_idx = 0;
5185 #endif /* CONFIG_NUMA */
5188 * Boot pageset table. One per cpu which is going to be used for all
5189 * zones and all nodes. The parameters will be set in such a way
5190 * that an item put on a list will immediately be handed over to
5191 * the buddy list. This is safe since pageset manipulation is done
5192 * with interrupts disabled.
5194 * The boot_pagesets must be kept even after bootup is complete for
5195 * unused processors and/or zones. They do play a role for bootstrapping
5196 * hotplugged processors.
5198 * zoneinfo_show() and maybe other functions do
5199 * not check if the processor is online before following the pageset pointer.
5200 * Other parts of the kernel may not check if the zone is available.
5202 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5203 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5204 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5206 static void __build_all_zonelists(void *data)
5208 int nid;
5209 int __maybe_unused cpu;
5210 pg_data_t *self = data;
5211 static DEFINE_SPINLOCK(lock);
5213 spin_lock(&lock);
5215 #ifdef CONFIG_NUMA
5216 memset(node_load, 0, sizeof(node_load));
5217 #endif
5220 * This node is hotadded and no memory is yet present. So just
5221 * building zonelists is fine - no need to touch other nodes.
5223 if (self && !node_online(self->node_id)) {
5224 build_zonelists(self);
5225 } else {
5226 for_each_online_node(nid) {
5227 pg_data_t *pgdat = NODE_DATA(nid);
5229 build_zonelists(pgdat);
5232 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5234 * We now know the "local memory node" for each node--
5235 * i.e., the node of the first zone in the generic zonelist.
5236 * Set up numa_mem percpu variable for on-line cpus. During
5237 * boot, only the boot cpu should be on-line; we'll init the
5238 * secondary cpus' numa_mem as they come on-line. During
5239 * node/memory hotplug, we'll fixup all on-line cpus.
5241 for_each_online_cpu(cpu)
5242 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5243 #endif
5246 spin_unlock(&lock);
5249 static noinline void __init
5250 build_all_zonelists_init(void)
5252 int cpu;
5254 __build_all_zonelists(NULL);
5257 * Initialize the boot_pagesets that are going to be used
5258 * for bootstrapping processors. The real pagesets for
5259 * each zone will be allocated later when the per cpu
5260 * allocator is available.
5262 * boot_pagesets are used also for bootstrapping offline
5263 * cpus if the system is already booted because the pagesets
5264 * are needed to initialize allocators on a specific cpu too.
5265 * F.e. the percpu allocator needs the page allocator which
5266 * needs the percpu allocator in order to allocate its pagesets
5267 * (a chicken-egg dilemma).
5269 for_each_possible_cpu(cpu)
5270 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5272 mminit_verify_zonelist();
5273 cpuset_init_current_mems_allowed();
5277 * unless system_state == SYSTEM_BOOTING.
5279 * __ref due to call of __init annotated helper build_all_zonelists_init
5280 * [protected by SYSTEM_BOOTING].
5282 void __ref build_all_zonelists(pg_data_t *pgdat)
5284 if (system_state == SYSTEM_BOOTING) {
5285 build_all_zonelists_init();
5286 } else {
5287 __build_all_zonelists(pgdat);
5288 /* cpuset refresh routine should be here */
5290 vm_total_pages = nr_free_pagecache_pages();
5292 * Disable grouping by mobility if the number of pages in the
5293 * system is too low to allow the mechanism to work. It would be
5294 * more accurate, but expensive to check per-zone. This check is
5295 * made on memory-hotadd so a system can start with mobility
5296 * disabled and enable it later
5298 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5299 page_group_by_mobility_disabled = 1;
5300 else
5301 page_group_by_mobility_disabled = 0;
5303 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5304 nr_online_nodes,
5305 page_group_by_mobility_disabled ? "off" : "on",
5306 vm_total_pages);
5307 #ifdef CONFIG_NUMA
5308 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5309 #endif
5313 * Initially all pages are reserved - free ones are freed
5314 * up by free_all_bootmem() once the early boot process is
5315 * done. Non-atomic initialization, single-pass.
5317 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5318 unsigned long start_pfn, enum memmap_context context)
5320 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5321 unsigned long end_pfn = start_pfn + size;
5322 pg_data_t *pgdat = NODE_DATA(nid);
5323 unsigned long pfn;
5324 unsigned long nr_initialised = 0;
5325 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5326 struct memblock_region *r = NULL, *tmp;
5327 #endif
5329 if (highest_memmap_pfn < end_pfn - 1)
5330 highest_memmap_pfn = end_pfn - 1;
5333 * Honor reservation requested by the driver for this ZONE_DEVICE
5334 * memory
5336 if (altmap && start_pfn == altmap->base_pfn)
5337 start_pfn += altmap->reserve;
5339 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5341 * There can be holes in boot-time mem_map[]s handed to this
5342 * function. They do not exist on hotplugged memory.
5344 if (context != MEMMAP_EARLY)
5345 goto not_early;
5347 if (!early_pfn_valid(pfn)) {
5348 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5350 * Skip to the pfn preceding the next valid one (or
5351 * end_pfn), such that we hit a valid pfn (or end_pfn)
5352 * on our next iteration of the loop.
5354 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5355 #endif
5356 continue;
5358 if (!early_pfn_in_nid(pfn, nid))
5359 continue;
5360 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5361 break;
5363 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5365 * Check given memblock attribute by firmware which can affect
5366 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5367 * mirrored, it's an overlapped memmap init. skip it.
5369 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5370 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5371 for_each_memblock(memory, tmp)
5372 if (pfn < memblock_region_memory_end_pfn(tmp))
5373 break;
5374 r = tmp;
5376 if (pfn >= memblock_region_memory_base_pfn(r) &&
5377 memblock_is_mirror(r)) {
5378 /* already initialized as NORMAL */
5379 pfn = memblock_region_memory_end_pfn(r);
5380 continue;
5383 #endif
5385 not_early:
5387 * Mark the block movable so that blocks are reserved for
5388 * movable at startup. This will force kernel allocations
5389 * to reserve their blocks rather than leaking throughout
5390 * the address space during boot when many long-lived
5391 * kernel allocations are made.
5393 * bitmap is created for zone's valid pfn range. but memmap
5394 * can be created for invalid pages (for alignment)
5395 * check here not to call set_pageblock_migratetype() against
5396 * pfn out of zone.
5398 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5399 * because this is done early in sparse_add_one_section
5401 if (!(pfn & (pageblock_nr_pages - 1))) {
5402 struct page *page = pfn_to_page(pfn);
5404 __init_single_page(page, pfn, zone, nid,
5405 context != MEMMAP_HOTPLUG);
5406 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5407 cond_resched();
5408 } else {
5409 __init_single_pfn(pfn, zone, nid,
5410 context != MEMMAP_HOTPLUG);
5415 static void __meminit zone_init_free_lists(struct zone *zone)
5417 unsigned int order, t;
5418 for_each_migratetype_order(order, t) {
5419 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5420 zone->free_area[order].nr_free = 0;
5424 #ifndef __HAVE_ARCH_MEMMAP_INIT
5425 #define memmap_init(size, nid, zone, start_pfn) \
5426 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5427 #endif
5429 static int zone_batchsize(struct zone *zone)
5431 #ifdef CONFIG_MMU
5432 int batch;
5435 * The per-cpu-pages pools are set to around 1000th of the
5436 * size of the zone. But no more than 1/2 of a meg.
5438 * OK, so we don't know how big the cache is. So guess.
5440 batch = zone->managed_pages / 1024;
5441 if (batch * PAGE_SIZE > 512 * 1024)
5442 batch = (512 * 1024) / PAGE_SIZE;
5443 batch /= 4; /* We effectively *= 4 below */
5444 if (batch < 1)
5445 batch = 1;
5448 * Clamp the batch to a 2^n - 1 value. Having a power
5449 * of 2 value was found to be more likely to have
5450 * suboptimal cache aliasing properties in some cases.
5452 * For example if 2 tasks are alternately allocating
5453 * batches of pages, one task can end up with a lot
5454 * of pages of one half of the possible page colors
5455 * and the other with pages of the other colors.
5457 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5459 return batch;
5461 #else
5462 /* The deferral and batching of frees should be suppressed under NOMMU
5463 * conditions.
5465 * The problem is that NOMMU needs to be able to allocate large chunks
5466 * of contiguous memory as there's no hardware page translation to
5467 * assemble apparent contiguous memory from discontiguous pages.
5469 * Queueing large contiguous runs of pages for batching, however,
5470 * causes the pages to actually be freed in smaller chunks. As there
5471 * can be a significant delay between the individual batches being
5472 * recycled, this leads to the once large chunks of space being
5473 * fragmented and becoming unavailable for high-order allocations.
5475 return 0;
5476 #endif
5480 * pcp->high and pcp->batch values are related and dependent on one another:
5481 * ->batch must never be higher then ->high.
5482 * The following function updates them in a safe manner without read side
5483 * locking.
5485 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5486 * those fields changing asynchronously (acording the the above rule).
5488 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5489 * outside of boot time (or some other assurance that no concurrent updaters
5490 * exist).
5492 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5493 unsigned long batch)
5495 /* start with a fail safe value for batch */
5496 pcp->batch = 1;
5497 smp_wmb();
5499 /* Update high, then batch, in order */
5500 pcp->high = high;
5501 smp_wmb();
5503 pcp->batch = batch;
5506 /* a companion to pageset_set_high() */
5507 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5509 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5512 static void pageset_init(struct per_cpu_pageset *p)
5514 struct per_cpu_pages *pcp;
5515 int migratetype;
5517 memset(p, 0, sizeof(*p));
5519 pcp = &p->pcp;
5520 pcp->count = 0;
5521 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5522 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5525 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5527 pageset_init(p);
5528 pageset_set_batch(p, batch);
5532 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5533 * to the value high for the pageset p.
5535 static void pageset_set_high(struct per_cpu_pageset *p,
5536 unsigned long high)
5538 unsigned long batch = max(1UL, high / 4);
5539 if ((high / 4) > (PAGE_SHIFT * 8))
5540 batch = PAGE_SHIFT * 8;
5542 pageset_update(&p->pcp, high, batch);
5545 static void pageset_set_high_and_batch(struct zone *zone,
5546 struct per_cpu_pageset *pcp)
5548 if (percpu_pagelist_fraction)
5549 pageset_set_high(pcp,
5550 (zone->managed_pages /
5551 percpu_pagelist_fraction));
5552 else
5553 pageset_set_batch(pcp, zone_batchsize(zone));
5556 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5558 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5560 pageset_init(pcp);
5561 pageset_set_high_and_batch(zone, pcp);
5564 void __meminit setup_zone_pageset(struct zone *zone)
5566 int cpu;
5567 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5568 for_each_possible_cpu(cpu)
5569 zone_pageset_init(zone, cpu);
5573 * Allocate per cpu pagesets and initialize them.
5574 * Before this call only boot pagesets were available.
5576 void __init setup_per_cpu_pageset(void)
5578 struct pglist_data *pgdat;
5579 struct zone *zone;
5581 for_each_populated_zone(zone)
5582 setup_zone_pageset(zone);
5584 for_each_online_pgdat(pgdat)
5585 pgdat->per_cpu_nodestats =
5586 alloc_percpu(struct per_cpu_nodestat);
5589 static __meminit void zone_pcp_init(struct zone *zone)
5592 * per cpu subsystem is not up at this point. The following code
5593 * relies on the ability of the linker to provide the
5594 * offset of a (static) per cpu variable into the per cpu area.
5596 zone->pageset = &boot_pageset;
5598 if (populated_zone(zone))
5599 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5600 zone->name, zone->present_pages,
5601 zone_batchsize(zone));
5604 void __meminit init_currently_empty_zone(struct zone *zone,
5605 unsigned long zone_start_pfn,
5606 unsigned long size)
5608 struct pglist_data *pgdat = zone->zone_pgdat;
5610 pgdat->nr_zones = zone_idx(zone) + 1;
5612 zone->zone_start_pfn = zone_start_pfn;
5614 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5615 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5616 pgdat->node_id,
5617 (unsigned long)zone_idx(zone),
5618 zone_start_pfn, (zone_start_pfn + size));
5620 zone_init_free_lists(zone);
5621 zone->initialized = 1;
5624 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5625 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5630 int __meminit __early_pfn_to_nid(unsigned long pfn,
5631 struct mminit_pfnnid_cache *state)
5633 unsigned long start_pfn, end_pfn;
5634 int nid;
5636 if (state->last_start <= pfn && pfn < state->last_end)
5637 return state->last_nid;
5639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5640 if (nid != -1) {
5641 state->last_start = start_pfn;
5642 state->last_end = end_pfn;
5643 state->last_nid = nid;
5646 return nid;
5648 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5651 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5652 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5653 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5655 * If an architecture guarantees that all ranges registered contain no holes
5656 * and may be freed, this this function may be used instead of calling
5657 * memblock_free_early_nid() manually.
5659 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5661 unsigned long start_pfn, end_pfn;
5662 int i, this_nid;
5664 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5665 start_pfn = min(start_pfn, max_low_pfn);
5666 end_pfn = min(end_pfn, max_low_pfn);
5668 if (start_pfn < end_pfn)
5669 memblock_free_early_nid(PFN_PHYS(start_pfn),
5670 (end_pfn - start_pfn) << PAGE_SHIFT,
5671 this_nid);
5676 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5677 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5679 * If an architecture guarantees that all ranges registered contain no holes and may
5680 * be freed, this function may be used instead of calling memory_present() manually.
5682 void __init sparse_memory_present_with_active_regions(int nid)
5684 unsigned long start_pfn, end_pfn;
5685 int i, this_nid;
5687 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5688 memory_present(this_nid, start_pfn, end_pfn);
5692 * get_pfn_range_for_nid - Return the start and end page frames for a node
5693 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5694 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5695 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5697 * It returns the start and end page frame of a node based on information
5698 * provided by memblock_set_node(). If called for a node
5699 * with no available memory, a warning is printed and the start and end
5700 * PFNs will be 0.
5702 void __meminit get_pfn_range_for_nid(unsigned int nid,
5703 unsigned long *start_pfn, unsigned long *end_pfn)
5705 unsigned long this_start_pfn, this_end_pfn;
5706 int i;
5708 *start_pfn = -1UL;
5709 *end_pfn = 0;
5711 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5712 *start_pfn = min(*start_pfn, this_start_pfn);
5713 *end_pfn = max(*end_pfn, this_end_pfn);
5716 if (*start_pfn == -1UL)
5717 *start_pfn = 0;
5721 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5722 * assumption is made that zones within a node are ordered in monotonic
5723 * increasing memory addresses so that the "highest" populated zone is used
5725 static void __init find_usable_zone_for_movable(void)
5727 int zone_index;
5728 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5729 if (zone_index == ZONE_MOVABLE)
5730 continue;
5732 if (arch_zone_highest_possible_pfn[zone_index] >
5733 arch_zone_lowest_possible_pfn[zone_index])
5734 break;
5737 VM_BUG_ON(zone_index == -1);
5738 movable_zone = zone_index;
5742 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5743 * because it is sized independent of architecture. Unlike the other zones,
5744 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5745 * in each node depending on the size of each node and how evenly kernelcore
5746 * is distributed. This helper function adjusts the zone ranges
5747 * provided by the architecture for a given node by using the end of the
5748 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5749 * zones within a node are in order of monotonic increases memory addresses
5751 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5752 unsigned long zone_type,
5753 unsigned long node_start_pfn,
5754 unsigned long node_end_pfn,
5755 unsigned long *zone_start_pfn,
5756 unsigned long *zone_end_pfn)
5758 /* Only adjust if ZONE_MOVABLE is on this node */
5759 if (zone_movable_pfn[nid]) {
5760 /* Size ZONE_MOVABLE */
5761 if (zone_type == ZONE_MOVABLE) {
5762 *zone_start_pfn = zone_movable_pfn[nid];
5763 *zone_end_pfn = min(node_end_pfn,
5764 arch_zone_highest_possible_pfn[movable_zone]);
5766 /* Adjust for ZONE_MOVABLE starting within this range */
5767 } else if (!mirrored_kernelcore &&
5768 *zone_start_pfn < zone_movable_pfn[nid] &&
5769 *zone_end_pfn > zone_movable_pfn[nid]) {
5770 *zone_end_pfn = zone_movable_pfn[nid];
5772 /* Check if this whole range is within ZONE_MOVABLE */
5773 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5774 *zone_start_pfn = *zone_end_pfn;
5779 * Return the number of pages a zone spans in a node, including holes
5780 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5782 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5783 unsigned long zone_type,
5784 unsigned long node_start_pfn,
5785 unsigned long node_end_pfn,
5786 unsigned long *zone_start_pfn,
5787 unsigned long *zone_end_pfn,
5788 unsigned long *ignored)
5790 /* When hotadd a new node from cpu_up(), the node should be empty */
5791 if (!node_start_pfn && !node_end_pfn)
5792 return 0;
5794 /* Get the start and end of the zone */
5795 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5796 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5797 adjust_zone_range_for_zone_movable(nid, zone_type,
5798 node_start_pfn, node_end_pfn,
5799 zone_start_pfn, zone_end_pfn);
5801 /* Check that this node has pages within the zone's required range */
5802 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5803 return 0;
5805 /* Move the zone boundaries inside the node if necessary */
5806 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5807 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5809 /* Return the spanned pages */
5810 return *zone_end_pfn - *zone_start_pfn;
5814 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5815 * then all holes in the requested range will be accounted for.
5817 unsigned long __meminit __absent_pages_in_range(int nid,
5818 unsigned long range_start_pfn,
5819 unsigned long range_end_pfn)
5821 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5822 unsigned long start_pfn, end_pfn;
5823 int i;
5825 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5826 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5827 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5828 nr_absent -= end_pfn - start_pfn;
5830 return nr_absent;
5834 * absent_pages_in_range - Return number of page frames in holes within a range
5835 * @start_pfn: The start PFN to start searching for holes
5836 * @end_pfn: The end PFN to stop searching for holes
5838 * It returns the number of pages frames in memory holes within a range.
5840 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5841 unsigned long end_pfn)
5843 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5846 /* Return the number of page frames in holes in a zone on a node */
5847 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5848 unsigned long zone_type,
5849 unsigned long node_start_pfn,
5850 unsigned long node_end_pfn,
5851 unsigned long *ignored)
5853 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5854 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5855 unsigned long zone_start_pfn, zone_end_pfn;
5856 unsigned long nr_absent;
5858 /* When hotadd a new node from cpu_up(), the node should be empty */
5859 if (!node_start_pfn && !node_end_pfn)
5860 return 0;
5862 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5863 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5865 adjust_zone_range_for_zone_movable(nid, zone_type,
5866 node_start_pfn, node_end_pfn,
5867 &zone_start_pfn, &zone_end_pfn);
5868 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5871 * ZONE_MOVABLE handling.
5872 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5873 * and vice versa.
5875 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5876 unsigned long start_pfn, end_pfn;
5877 struct memblock_region *r;
5879 for_each_memblock(memory, r) {
5880 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5881 zone_start_pfn, zone_end_pfn);
5882 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5883 zone_start_pfn, zone_end_pfn);
5885 if (zone_type == ZONE_MOVABLE &&
5886 memblock_is_mirror(r))
5887 nr_absent += end_pfn - start_pfn;
5889 if (zone_type == ZONE_NORMAL &&
5890 !memblock_is_mirror(r))
5891 nr_absent += end_pfn - start_pfn;
5895 return nr_absent;
5898 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5899 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5900 unsigned long zone_type,
5901 unsigned long node_start_pfn,
5902 unsigned long node_end_pfn,
5903 unsigned long *zone_start_pfn,
5904 unsigned long *zone_end_pfn,
5905 unsigned long *zones_size)
5907 unsigned int zone;
5909 *zone_start_pfn = node_start_pfn;
5910 for (zone = 0; zone < zone_type; zone++)
5911 *zone_start_pfn += zones_size[zone];
5913 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5915 return zones_size[zone_type];
5918 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5919 unsigned long zone_type,
5920 unsigned long node_start_pfn,
5921 unsigned long node_end_pfn,
5922 unsigned long *zholes_size)
5924 if (!zholes_size)
5925 return 0;
5927 return zholes_size[zone_type];
5930 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5932 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5933 unsigned long node_start_pfn,
5934 unsigned long node_end_pfn,
5935 unsigned long *zones_size,
5936 unsigned long *zholes_size)
5938 unsigned long realtotalpages = 0, totalpages = 0;
5939 enum zone_type i;
5941 for (i = 0; i < MAX_NR_ZONES; i++) {
5942 struct zone *zone = pgdat->node_zones + i;
5943 unsigned long zone_start_pfn, zone_end_pfn;
5944 unsigned long size, real_size;
5946 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5947 node_start_pfn,
5948 node_end_pfn,
5949 &zone_start_pfn,
5950 &zone_end_pfn,
5951 zones_size);
5952 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5953 node_start_pfn, node_end_pfn,
5954 zholes_size);
5955 if (size)
5956 zone->zone_start_pfn = zone_start_pfn;
5957 else
5958 zone->zone_start_pfn = 0;
5959 zone->spanned_pages = size;
5960 zone->present_pages = real_size;
5962 totalpages += size;
5963 realtotalpages += real_size;
5966 pgdat->node_spanned_pages = totalpages;
5967 pgdat->node_present_pages = realtotalpages;
5968 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5969 realtotalpages);
5972 #ifndef CONFIG_SPARSEMEM
5974 * Calculate the size of the zone->blockflags rounded to an unsigned long
5975 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5976 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5977 * round what is now in bits to nearest long in bits, then return it in
5978 * bytes.
5980 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5982 unsigned long usemapsize;
5984 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5985 usemapsize = roundup(zonesize, pageblock_nr_pages);
5986 usemapsize = usemapsize >> pageblock_order;
5987 usemapsize *= NR_PAGEBLOCK_BITS;
5988 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5990 return usemapsize / 8;
5993 static void __init setup_usemap(struct pglist_data *pgdat,
5994 struct zone *zone,
5995 unsigned long zone_start_pfn,
5996 unsigned long zonesize)
5998 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5999 zone->pageblock_flags = NULL;
6000 if (usemapsize)
6001 zone->pageblock_flags =
6002 memblock_virt_alloc_node_nopanic(usemapsize,
6003 pgdat->node_id);
6005 #else
6006 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6007 unsigned long zone_start_pfn, unsigned long zonesize) {}
6008 #endif /* CONFIG_SPARSEMEM */
6010 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6012 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6013 void __paginginit set_pageblock_order(void)
6015 unsigned int order;
6017 /* Check that pageblock_nr_pages has not already been setup */
6018 if (pageblock_order)
6019 return;
6021 if (HPAGE_SHIFT > PAGE_SHIFT)
6022 order = HUGETLB_PAGE_ORDER;
6023 else
6024 order = MAX_ORDER - 1;
6027 * Assume the largest contiguous order of interest is a huge page.
6028 * This value may be variable depending on boot parameters on IA64 and
6029 * powerpc.
6031 pageblock_order = order;
6033 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6036 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6037 * is unused as pageblock_order is set at compile-time. See
6038 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6039 * the kernel config
6041 void __paginginit set_pageblock_order(void)
6045 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6047 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6048 unsigned long present_pages)
6050 unsigned long pages = spanned_pages;
6053 * Provide a more accurate estimation if there are holes within
6054 * the zone and SPARSEMEM is in use. If there are holes within the
6055 * zone, each populated memory region may cost us one or two extra
6056 * memmap pages due to alignment because memmap pages for each
6057 * populated regions may not be naturally aligned on page boundary.
6058 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6060 if (spanned_pages > present_pages + (present_pages >> 4) &&
6061 IS_ENABLED(CONFIG_SPARSEMEM))
6062 pages = present_pages;
6064 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6068 * Set up the zone data structures:
6069 * - mark all pages reserved
6070 * - mark all memory queues empty
6071 * - clear the memory bitmaps
6073 * NOTE: pgdat should get zeroed by caller.
6075 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6077 enum zone_type j;
6078 int nid = pgdat->node_id;
6080 pgdat_resize_init(pgdat);
6081 #ifdef CONFIG_NUMA_BALANCING
6082 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6083 pgdat->numabalancing_migrate_nr_pages = 0;
6084 pgdat->numabalancing_migrate_next_window = jiffies;
6085 #endif
6086 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6087 spin_lock_init(&pgdat->split_queue_lock);
6088 INIT_LIST_HEAD(&pgdat->split_queue);
6089 pgdat->split_queue_len = 0;
6090 #endif
6091 init_waitqueue_head(&pgdat->kswapd_wait);
6092 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6093 #ifdef CONFIG_COMPACTION
6094 init_waitqueue_head(&pgdat->kcompactd_wait);
6095 #endif
6096 pgdat_page_ext_init(pgdat);
6097 spin_lock_init(&pgdat->lru_lock);
6098 lruvec_init(node_lruvec(pgdat));
6100 pgdat->per_cpu_nodestats = &boot_nodestats;
6102 for (j = 0; j < MAX_NR_ZONES; j++) {
6103 struct zone *zone = pgdat->node_zones + j;
6104 unsigned long size, realsize, freesize, memmap_pages;
6105 unsigned long zone_start_pfn = zone->zone_start_pfn;
6107 size = zone->spanned_pages;
6108 realsize = freesize = zone->present_pages;
6111 * Adjust freesize so that it accounts for how much memory
6112 * is used by this zone for memmap. This affects the watermark
6113 * and per-cpu initialisations
6115 memmap_pages = calc_memmap_size(size, realsize);
6116 if (!is_highmem_idx(j)) {
6117 if (freesize >= memmap_pages) {
6118 freesize -= memmap_pages;
6119 if (memmap_pages)
6120 printk(KERN_DEBUG
6121 " %s zone: %lu pages used for memmap\n",
6122 zone_names[j], memmap_pages);
6123 } else
6124 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6125 zone_names[j], memmap_pages, freesize);
6128 /* Account for reserved pages */
6129 if (j == 0 && freesize > dma_reserve) {
6130 freesize -= dma_reserve;
6131 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6132 zone_names[0], dma_reserve);
6135 if (!is_highmem_idx(j))
6136 nr_kernel_pages += freesize;
6137 /* Charge for highmem memmap if there are enough kernel pages */
6138 else if (nr_kernel_pages > memmap_pages * 2)
6139 nr_kernel_pages -= memmap_pages;
6140 nr_all_pages += freesize;
6143 * Set an approximate value for lowmem here, it will be adjusted
6144 * when the bootmem allocator frees pages into the buddy system.
6145 * And all highmem pages will be managed by the buddy system.
6147 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6148 #ifdef CONFIG_NUMA
6149 zone->node = nid;
6150 #endif
6151 zone->name = zone_names[j];
6152 zone->zone_pgdat = pgdat;
6153 spin_lock_init(&zone->lock);
6154 zone_seqlock_init(zone);
6155 zone_pcp_init(zone);
6157 if (!size)
6158 continue;
6160 set_pageblock_order();
6161 setup_usemap(pgdat, zone, zone_start_pfn, size);
6162 init_currently_empty_zone(zone, zone_start_pfn, size);
6163 memmap_init(size, nid, j, zone_start_pfn);
6167 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6168 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6170 unsigned long __maybe_unused start = 0;
6171 unsigned long __maybe_unused offset = 0;
6173 /* Skip empty nodes */
6174 if (!pgdat->node_spanned_pages)
6175 return;
6177 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6178 offset = pgdat->node_start_pfn - start;
6179 /* ia64 gets its own node_mem_map, before this, without bootmem */
6180 if (!pgdat->node_mem_map) {
6181 unsigned long size, end;
6182 struct page *map;
6185 * The zone's endpoints aren't required to be MAX_ORDER
6186 * aligned but the node_mem_map endpoints must be in order
6187 * for the buddy allocator to function correctly.
6189 end = pgdat_end_pfn(pgdat);
6190 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6191 size = (end - start) * sizeof(struct page);
6192 map = alloc_remap(pgdat->node_id, size);
6193 if (!map)
6194 map = memblock_virt_alloc_node_nopanic(size,
6195 pgdat->node_id);
6196 pgdat->node_mem_map = map + offset;
6198 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6199 __func__, pgdat->node_id, (unsigned long)pgdat,
6200 (unsigned long)pgdat->node_mem_map);
6201 #ifndef CONFIG_NEED_MULTIPLE_NODES
6203 * With no DISCONTIG, the global mem_map is just set as node 0's
6205 if (pgdat == NODE_DATA(0)) {
6206 mem_map = NODE_DATA(0)->node_mem_map;
6207 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6208 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6209 mem_map -= offset;
6210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6212 #endif
6214 #else
6215 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6216 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6218 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6219 unsigned long node_start_pfn, unsigned long *zholes_size)
6221 pg_data_t *pgdat = NODE_DATA(nid);
6222 unsigned long start_pfn = 0;
6223 unsigned long end_pfn = 0;
6225 /* pg_data_t should be reset to zero when it's allocated */
6226 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6228 pgdat->node_id = nid;
6229 pgdat->node_start_pfn = node_start_pfn;
6230 pgdat->per_cpu_nodestats = NULL;
6231 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6232 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6233 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6234 (u64)start_pfn << PAGE_SHIFT,
6235 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6236 #else
6237 start_pfn = node_start_pfn;
6238 #endif
6239 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6240 zones_size, zholes_size);
6242 alloc_node_mem_map(pgdat);
6244 reset_deferred_meminit(pgdat);
6245 free_area_init_core(pgdat);
6248 #ifdef CONFIG_HAVE_MEMBLOCK
6250 * Only struct pages that are backed by physical memory are zeroed and
6251 * initialized by going through __init_single_page(). But, there are some
6252 * struct pages which are reserved in memblock allocator and their fields
6253 * may be accessed (for example page_to_pfn() on some configuration accesses
6254 * flags). We must explicitly zero those struct pages.
6256 void __paginginit zero_resv_unavail(void)
6258 phys_addr_t start, end;
6259 unsigned long pfn;
6260 u64 i, pgcnt;
6263 * Loop through ranges that are reserved, but do not have reported
6264 * physical memory backing.
6266 pgcnt = 0;
6267 for_each_resv_unavail_range(i, &start, &end) {
6268 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6269 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6270 continue;
6271 mm_zero_struct_page(pfn_to_page(pfn));
6272 pgcnt++;
6277 * Struct pages that do not have backing memory. This could be because
6278 * firmware is using some of this memory, or for some other reasons.
6279 * Once memblock is changed so such behaviour is not allowed: i.e.
6280 * list of "reserved" memory must be a subset of list of "memory", then
6281 * this code can be removed.
6283 if (pgcnt)
6284 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6286 #endif /* CONFIG_HAVE_MEMBLOCK */
6288 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6290 #if MAX_NUMNODES > 1
6292 * Figure out the number of possible node ids.
6294 void __init setup_nr_node_ids(void)
6296 unsigned int highest;
6298 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6299 nr_node_ids = highest + 1;
6301 #endif
6304 * node_map_pfn_alignment - determine the maximum internode alignment
6306 * This function should be called after node map is populated and sorted.
6307 * It calculates the maximum power of two alignment which can distinguish
6308 * all the nodes.
6310 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6311 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6312 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6313 * shifted, 1GiB is enough and this function will indicate so.
6315 * This is used to test whether pfn -> nid mapping of the chosen memory
6316 * model has fine enough granularity to avoid incorrect mapping for the
6317 * populated node map.
6319 * Returns the determined alignment in pfn's. 0 if there is no alignment
6320 * requirement (single node).
6322 unsigned long __init node_map_pfn_alignment(void)
6324 unsigned long accl_mask = 0, last_end = 0;
6325 unsigned long start, end, mask;
6326 int last_nid = -1;
6327 int i, nid;
6329 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6330 if (!start || last_nid < 0 || last_nid == nid) {
6331 last_nid = nid;
6332 last_end = end;
6333 continue;
6337 * Start with a mask granular enough to pin-point to the
6338 * start pfn and tick off bits one-by-one until it becomes
6339 * too coarse to separate the current node from the last.
6341 mask = ~((1 << __ffs(start)) - 1);
6342 while (mask && last_end <= (start & (mask << 1)))
6343 mask <<= 1;
6345 /* accumulate all internode masks */
6346 accl_mask |= mask;
6349 /* convert mask to number of pages */
6350 return ~accl_mask + 1;
6353 /* Find the lowest pfn for a node */
6354 static unsigned long __init find_min_pfn_for_node(int nid)
6356 unsigned long min_pfn = ULONG_MAX;
6357 unsigned long start_pfn;
6358 int i;
6360 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6361 min_pfn = min(min_pfn, start_pfn);
6363 if (min_pfn == ULONG_MAX) {
6364 pr_warn("Could not find start_pfn for node %d\n", nid);
6365 return 0;
6368 return min_pfn;
6372 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6374 * It returns the minimum PFN based on information provided via
6375 * memblock_set_node().
6377 unsigned long __init find_min_pfn_with_active_regions(void)
6379 return find_min_pfn_for_node(MAX_NUMNODES);
6383 * early_calculate_totalpages()
6384 * Sum pages in active regions for movable zone.
6385 * Populate N_MEMORY for calculating usable_nodes.
6387 static unsigned long __init early_calculate_totalpages(void)
6389 unsigned long totalpages = 0;
6390 unsigned long start_pfn, end_pfn;
6391 int i, nid;
6393 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6394 unsigned long pages = end_pfn - start_pfn;
6396 totalpages += pages;
6397 if (pages)
6398 node_set_state(nid, N_MEMORY);
6400 return totalpages;
6404 * Find the PFN the Movable zone begins in each node. Kernel memory
6405 * is spread evenly between nodes as long as the nodes have enough
6406 * memory. When they don't, some nodes will have more kernelcore than
6407 * others
6409 static void __init find_zone_movable_pfns_for_nodes(void)
6411 int i, nid;
6412 unsigned long usable_startpfn;
6413 unsigned long kernelcore_node, kernelcore_remaining;
6414 /* save the state before borrow the nodemask */
6415 nodemask_t saved_node_state = node_states[N_MEMORY];
6416 unsigned long totalpages = early_calculate_totalpages();
6417 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6418 struct memblock_region *r;
6420 /* Need to find movable_zone earlier when movable_node is specified. */
6421 find_usable_zone_for_movable();
6424 * If movable_node is specified, ignore kernelcore and movablecore
6425 * options.
6427 if (movable_node_is_enabled()) {
6428 for_each_memblock(memory, r) {
6429 if (!memblock_is_hotpluggable(r))
6430 continue;
6432 nid = r->nid;
6434 usable_startpfn = PFN_DOWN(r->base);
6435 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6436 min(usable_startpfn, zone_movable_pfn[nid]) :
6437 usable_startpfn;
6440 goto out2;
6444 * If kernelcore=mirror is specified, ignore movablecore option
6446 if (mirrored_kernelcore) {
6447 bool mem_below_4gb_not_mirrored = false;
6449 for_each_memblock(memory, r) {
6450 if (memblock_is_mirror(r))
6451 continue;
6453 nid = r->nid;
6455 usable_startpfn = memblock_region_memory_base_pfn(r);
6457 if (usable_startpfn < 0x100000) {
6458 mem_below_4gb_not_mirrored = true;
6459 continue;
6462 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6463 min(usable_startpfn, zone_movable_pfn[nid]) :
6464 usable_startpfn;
6467 if (mem_below_4gb_not_mirrored)
6468 pr_warn("This configuration results in unmirrored kernel memory.");
6470 goto out2;
6474 * If movablecore=nn[KMG] was specified, calculate what size of
6475 * kernelcore that corresponds so that memory usable for
6476 * any allocation type is evenly spread. If both kernelcore
6477 * and movablecore are specified, then the value of kernelcore
6478 * will be used for required_kernelcore if it's greater than
6479 * what movablecore would have allowed.
6481 if (required_movablecore) {
6482 unsigned long corepages;
6485 * Round-up so that ZONE_MOVABLE is at least as large as what
6486 * was requested by the user
6488 required_movablecore =
6489 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6490 required_movablecore = min(totalpages, required_movablecore);
6491 corepages = totalpages - required_movablecore;
6493 required_kernelcore = max(required_kernelcore, corepages);
6497 * If kernelcore was not specified or kernelcore size is larger
6498 * than totalpages, there is no ZONE_MOVABLE.
6500 if (!required_kernelcore || required_kernelcore >= totalpages)
6501 goto out;
6503 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6504 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6506 restart:
6507 /* Spread kernelcore memory as evenly as possible throughout nodes */
6508 kernelcore_node = required_kernelcore / usable_nodes;
6509 for_each_node_state(nid, N_MEMORY) {
6510 unsigned long start_pfn, end_pfn;
6513 * Recalculate kernelcore_node if the division per node
6514 * now exceeds what is necessary to satisfy the requested
6515 * amount of memory for the kernel
6517 if (required_kernelcore < kernelcore_node)
6518 kernelcore_node = required_kernelcore / usable_nodes;
6521 * As the map is walked, we track how much memory is usable
6522 * by the kernel using kernelcore_remaining. When it is
6523 * 0, the rest of the node is usable by ZONE_MOVABLE
6525 kernelcore_remaining = kernelcore_node;
6527 /* Go through each range of PFNs within this node */
6528 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6529 unsigned long size_pages;
6531 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6532 if (start_pfn >= end_pfn)
6533 continue;
6535 /* Account for what is only usable for kernelcore */
6536 if (start_pfn < usable_startpfn) {
6537 unsigned long kernel_pages;
6538 kernel_pages = min(end_pfn, usable_startpfn)
6539 - start_pfn;
6541 kernelcore_remaining -= min(kernel_pages,
6542 kernelcore_remaining);
6543 required_kernelcore -= min(kernel_pages,
6544 required_kernelcore);
6546 /* Continue if range is now fully accounted */
6547 if (end_pfn <= usable_startpfn) {
6550 * Push zone_movable_pfn to the end so
6551 * that if we have to rebalance
6552 * kernelcore across nodes, we will
6553 * not double account here
6555 zone_movable_pfn[nid] = end_pfn;
6556 continue;
6558 start_pfn = usable_startpfn;
6562 * The usable PFN range for ZONE_MOVABLE is from
6563 * start_pfn->end_pfn. Calculate size_pages as the
6564 * number of pages used as kernelcore
6566 size_pages = end_pfn - start_pfn;
6567 if (size_pages > kernelcore_remaining)
6568 size_pages = kernelcore_remaining;
6569 zone_movable_pfn[nid] = start_pfn + size_pages;
6572 * Some kernelcore has been met, update counts and
6573 * break if the kernelcore for this node has been
6574 * satisfied
6576 required_kernelcore -= min(required_kernelcore,
6577 size_pages);
6578 kernelcore_remaining -= size_pages;
6579 if (!kernelcore_remaining)
6580 break;
6585 * If there is still required_kernelcore, we do another pass with one
6586 * less node in the count. This will push zone_movable_pfn[nid] further
6587 * along on the nodes that still have memory until kernelcore is
6588 * satisfied
6590 usable_nodes--;
6591 if (usable_nodes && required_kernelcore > usable_nodes)
6592 goto restart;
6594 out2:
6595 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6596 for (nid = 0; nid < MAX_NUMNODES; nid++)
6597 zone_movable_pfn[nid] =
6598 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6600 out:
6601 /* restore the node_state */
6602 node_states[N_MEMORY] = saved_node_state;
6605 /* Any regular or high memory on that node ? */
6606 static void check_for_memory(pg_data_t *pgdat, int nid)
6608 enum zone_type zone_type;
6610 if (N_MEMORY == N_NORMAL_MEMORY)
6611 return;
6613 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6614 struct zone *zone = &pgdat->node_zones[zone_type];
6615 if (populated_zone(zone)) {
6616 node_set_state(nid, N_HIGH_MEMORY);
6617 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6618 zone_type <= ZONE_NORMAL)
6619 node_set_state(nid, N_NORMAL_MEMORY);
6620 break;
6626 * free_area_init_nodes - Initialise all pg_data_t and zone data
6627 * @max_zone_pfn: an array of max PFNs for each zone
6629 * This will call free_area_init_node() for each active node in the system.
6630 * Using the page ranges provided by memblock_set_node(), the size of each
6631 * zone in each node and their holes is calculated. If the maximum PFN
6632 * between two adjacent zones match, it is assumed that the zone is empty.
6633 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6634 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6635 * starts where the previous one ended. For example, ZONE_DMA32 starts
6636 * at arch_max_dma_pfn.
6638 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6640 unsigned long start_pfn, end_pfn;
6641 int i, nid;
6643 /* Record where the zone boundaries are */
6644 memset(arch_zone_lowest_possible_pfn, 0,
6645 sizeof(arch_zone_lowest_possible_pfn));
6646 memset(arch_zone_highest_possible_pfn, 0,
6647 sizeof(arch_zone_highest_possible_pfn));
6649 start_pfn = find_min_pfn_with_active_regions();
6651 for (i = 0; i < MAX_NR_ZONES; i++) {
6652 if (i == ZONE_MOVABLE)
6653 continue;
6655 end_pfn = max(max_zone_pfn[i], start_pfn);
6656 arch_zone_lowest_possible_pfn[i] = start_pfn;
6657 arch_zone_highest_possible_pfn[i] = end_pfn;
6659 start_pfn = end_pfn;
6662 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6663 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6664 find_zone_movable_pfns_for_nodes();
6666 /* Print out the zone ranges */
6667 pr_info("Zone ranges:\n");
6668 for (i = 0; i < MAX_NR_ZONES; i++) {
6669 if (i == ZONE_MOVABLE)
6670 continue;
6671 pr_info(" %-8s ", zone_names[i]);
6672 if (arch_zone_lowest_possible_pfn[i] ==
6673 arch_zone_highest_possible_pfn[i])
6674 pr_cont("empty\n");
6675 else
6676 pr_cont("[mem %#018Lx-%#018Lx]\n",
6677 (u64)arch_zone_lowest_possible_pfn[i]
6678 << PAGE_SHIFT,
6679 ((u64)arch_zone_highest_possible_pfn[i]
6680 << PAGE_SHIFT) - 1);
6683 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6684 pr_info("Movable zone start for each node\n");
6685 for (i = 0; i < MAX_NUMNODES; i++) {
6686 if (zone_movable_pfn[i])
6687 pr_info(" Node %d: %#018Lx\n", i,
6688 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6691 /* Print out the early node map */
6692 pr_info("Early memory node ranges\n");
6693 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6694 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6695 (u64)start_pfn << PAGE_SHIFT,
6696 ((u64)end_pfn << PAGE_SHIFT) - 1);
6698 /* Initialise every node */
6699 mminit_verify_pageflags_layout();
6700 setup_nr_node_ids();
6701 for_each_online_node(nid) {
6702 pg_data_t *pgdat = NODE_DATA(nid);
6703 free_area_init_node(nid, NULL,
6704 find_min_pfn_for_node(nid), NULL);
6706 /* Any memory on that node */
6707 if (pgdat->node_present_pages)
6708 node_set_state(nid, N_MEMORY);
6709 check_for_memory(pgdat, nid);
6711 zero_resv_unavail();
6714 static int __init cmdline_parse_core(char *p, unsigned long *core)
6716 unsigned long long coremem;
6717 if (!p)
6718 return -EINVAL;
6720 coremem = memparse(p, &p);
6721 *core = coremem >> PAGE_SHIFT;
6723 /* Paranoid check that UL is enough for the coremem value */
6724 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6726 return 0;
6730 * kernelcore=size sets the amount of memory for use for allocations that
6731 * cannot be reclaimed or migrated.
6733 static int __init cmdline_parse_kernelcore(char *p)
6735 /* parse kernelcore=mirror */
6736 if (parse_option_str(p, "mirror")) {
6737 mirrored_kernelcore = true;
6738 return 0;
6741 return cmdline_parse_core(p, &required_kernelcore);
6745 * movablecore=size sets the amount of memory for use for allocations that
6746 * can be reclaimed or migrated.
6748 static int __init cmdline_parse_movablecore(char *p)
6750 return cmdline_parse_core(p, &required_movablecore);
6753 early_param("kernelcore", cmdline_parse_kernelcore);
6754 early_param("movablecore", cmdline_parse_movablecore);
6756 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6758 void adjust_managed_page_count(struct page *page, long count)
6760 spin_lock(&managed_page_count_lock);
6761 page_zone(page)->managed_pages += count;
6762 totalram_pages += count;
6763 #ifdef CONFIG_HIGHMEM
6764 if (PageHighMem(page))
6765 totalhigh_pages += count;
6766 #endif
6767 spin_unlock(&managed_page_count_lock);
6769 EXPORT_SYMBOL(adjust_managed_page_count);
6771 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6773 void *pos;
6774 unsigned long pages = 0;
6776 start = (void *)PAGE_ALIGN((unsigned long)start);
6777 end = (void *)((unsigned long)end & PAGE_MASK);
6778 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6779 if ((unsigned int)poison <= 0xFF)
6780 memset(pos, poison, PAGE_SIZE);
6781 free_reserved_page(virt_to_page(pos));
6784 if (pages && s)
6785 pr_info("Freeing %s memory: %ldK\n",
6786 s, pages << (PAGE_SHIFT - 10));
6788 return pages;
6790 EXPORT_SYMBOL(free_reserved_area);
6792 #ifdef CONFIG_HIGHMEM
6793 void free_highmem_page(struct page *page)
6795 __free_reserved_page(page);
6796 totalram_pages++;
6797 page_zone(page)->managed_pages++;
6798 totalhigh_pages++;
6800 #endif
6803 void __init mem_init_print_info(const char *str)
6805 unsigned long physpages, codesize, datasize, rosize, bss_size;
6806 unsigned long init_code_size, init_data_size;
6808 physpages = get_num_physpages();
6809 codesize = _etext - _stext;
6810 datasize = _edata - _sdata;
6811 rosize = __end_rodata - __start_rodata;
6812 bss_size = __bss_stop - __bss_start;
6813 init_data_size = __init_end - __init_begin;
6814 init_code_size = _einittext - _sinittext;
6817 * Detect special cases and adjust section sizes accordingly:
6818 * 1) .init.* may be embedded into .data sections
6819 * 2) .init.text.* may be out of [__init_begin, __init_end],
6820 * please refer to arch/tile/kernel/vmlinux.lds.S.
6821 * 3) .rodata.* may be embedded into .text or .data sections.
6823 #define adj_init_size(start, end, size, pos, adj) \
6824 do { \
6825 if (start <= pos && pos < end && size > adj) \
6826 size -= adj; \
6827 } while (0)
6829 adj_init_size(__init_begin, __init_end, init_data_size,
6830 _sinittext, init_code_size);
6831 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6832 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6833 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6834 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6836 #undef adj_init_size
6838 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6839 #ifdef CONFIG_HIGHMEM
6840 ", %luK highmem"
6841 #endif
6842 "%s%s)\n",
6843 nr_free_pages() << (PAGE_SHIFT - 10),
6844 physpages << (PAGE_SHIFT - 10),
6845 codesize >> 10, datasize >> 10, rosize >> 10,
6846 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6847 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6848 totalcma_pages << (PAGE_SHIFT - 10),
6849 #ifdef CONFIG_HIGHMEM
6850 totalhigh_pages << (PAGE_SHIFT - 10),
6851 #endif
6852 str ? ", " : "", str ? str : "");
6856 * set_dma_reserve - set the specified number of pages reserved in the first zone
6857 * @new_dma_reserve: The number of pages to mark reserved
6859 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6860 * In the DMA zone, a significant percentage may be consumed by kernel image
6861 * and other unfreeable allocations which can skew the watermarks badly. This
6862 * function may optionally be used to account for unfreeable pages in the
6863 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6864 * smaller per-cpu batchsize.
6866 void __init set_dma_reserve(unsigned long new_dma_reserve)
6868 dma_reserve = new_dma_reserve;
6871 void __init free_area_init(unsigned long *zones_size)
6873 free_area_init_node(0, zones_size,
6874 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6875 zero_resv_unavail();
6878 static int page_alloc_cpu_dead(unsigned int cpu)
6881 lru_add_drain_cpu(cpu);
6882 drain_pages(cpu);
6885 * Spill the event counters of the dead processor
6886 * into the current processors event counters.
6887 * This artificially elevates the count of the current
6888 * processor.
6890 vm_events_fold_cpu(cpu);
6893 * Zero the differential counters of the dead processor
6894 * so that the vm statistics are consistent.
6896 * This is only okay since the processor is dead and cannot
6897 * race with what we are doing.
6899 cpu_vm_stats_fold(cpu);
6900 return 0;
6903 void __init page_alloc_init(void)
6905 int ret;
6907 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6908 "mm/page_alloc:dead", NULL,
6909 page_alloc_cpu_dead);
6910 WARN_ON(ret < 0);
6914 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6915 * or min_free_kbytes changes.
6917 static void calculate_totalreserve_pages(void)
6919 struct pglist_data *pgdat;
6920 unsigned long reserve_pages = 0;
6921 enum zone_type i, j;
6923 for_each_online_pgdat(pgdat) {
6925 pgdat->totalreserve_pages = 0;
6927 for (i = 0; i < MAX_NR_ZONES; i++) {
6928 struct zone *zone = pgdat->node_zones + i;
6929 long max = 0;
6931 /* Find valid and maximum lowmem_reserve in the zone */
6932 for (j = i; j < MAX_NR_ZONES; j++) {
6933 if (zone->lowmem_reserve[j] > max)
6934 max = zone->lowmem_reserve[j];
6937 /* we treat the high watermark as reserved pages. */
6938 max += high_wmark_pages(zone);
6940 if (max > zone->managed_pages)
6941 max = zone->managed_pages;
6943 pgdat->totalreserve_pages += max;
6945 reserve_pages += max;
6948 totalreserve_pages = reserve_pages;
6952 * setup_per_zone_lowmem_reserve - called whenever
6953 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6954 * has a correct pages reserved value, so an adequate number of
6955 * pages are left in the zone after a successful __alloc_pages().
6957 static void setup_per_zone_lowmem_reserve(void)
6959 struct pglist_data *pgdat;
6960 enum zone_type j, idx;
6962 for_each_online_pgdat(pgdat) {
6963 for (j = 0; j < MAX_NR_ZONES; j++) {
6964 struct zone *zone = pgdat->node_zones + j;
6965 unsigned long managed_pages = zone->managed_pages;
6967 zone->lowmem_reserve[j] = 0;
6969 idx = j;
6970 while (idx) {
6971 struct zone *lower_zone;
6973 idx--;
6975 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6976 sysctl_lowmem_reserve_ratio[idx] = 1;
6978 lower_zone = pgdat->node_zones + idx;
6979 lower_zone->lowmem_reserve[j] = managed_pages /
6980 sysctl_lowmem_reserve_ratio[idx];
6981 managed_pages += lower_zone->managed_pages;
6986 /* update totalreserve_pages */
6987 calculate_totalreserve_pages();
6990 static void __setup_per_zone_wmarks(void)
6992 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6993 unsigned long lowmem_pages = 0;
6994 struct zone *zone;
6995 unsigned long flags;
6997 /* Calculate total number of !ZONE_HIGHMEM pages */
6998 for_each_zone(zone) {
6999 if (!is_highmem(zone))
7000 lowmem_pages += zone->managed_pages;
7003 for_each_zone(zone) {
7004 u64 tmp;
7006 spin_lock_irqsave(&zone->lock, flags);
7007 tmp = (u64)pages_min * zone->managed_pages;
7008 do_div(tmp, lowmem_pages);
7009 if (is_highmem(zone)) {
7011 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7012 * need highmem pages, so cap pages_min to a small
7013 * value here.
7015 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7016 * deltas control asynch page reclaim, and so should
7017 * not be capped for highmem.
7019 unsigned long min_pages;
7021 min_pages = zone->managed_pages / 1024;
7022 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7023 zone->watermark[WMARK_MIN] = min_pages;
7024 } else {
7026 * If it's a lowmem zone, reserve a number of pages
7027 * proportionate to the zone's size.
7029 zone->watermark[WMARK_MIN] = tmp;
7033 * Set the kswapd watermarks distance according to the
7034 * scale factor in proportion to available memory, but
7035 * ensure a minimum size on small systems.
7037 tmp = max_t(u64, tmp >> 2,
7038 mult_frac(zone->managed_pages,
7039 watermark_scale_factor, 10000));
7041 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7042 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7044 spin_unlock_irqrestore(&zone->lock, flags);
7047 /* update totalreserve_pages */
7048 calculate_totalreserve_pages();
7052 * setup_per_zone_wmarks - called when min_free_kbytes changes
7053 * or when memory is hot-{added|removed}
7055 * Ensures that the watermark[min,low,high] values for each zone are set
7056 * correctly with respect to min_free_kbytes.
7058 void setup_per_zone_wmarks(void)
7060 static DEFINE_SPINLOCK(lock);
7062 spin_lock(&lock);
7063 __setup_per_zone_wmarks();
7064 spin_unlock(&lock);
7068 * Initialise min_free_kbytes.
7070 * For small machines we want it small (128k min). For large machines
7071 * we want it large (64MB max). But it is not linear, because network
7072 * bandwidth does not increase linearly with machine size. We use
7074 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7075 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7077 * which yields
7079 * 16MB: 512k
7080 * 32MB: 724k
7081 * 64MB: 1024k
7082 * 128MB: 1448k
7083 * 256MB: 2048k
7084 * 512MB: 2896k
7085 * 1024MB: 4096k
7086 * 2048MB: 5792k
7087 * 4096MB: 8192k
7088 * 8192MB: 11584k
7089 * 16384MB: 16384k
7091 int __meminit init_per_zone_wmark_min(void)
7093 unsigned long lowmem_kbytes;
7094 int new_min_free_kbytes;
7096 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7097 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7099 if (new_min_free_kbytes > user_min_free_kbytes) {
7100 min_free_kbytes = new_min_free_kbytes;
7101 if (min_free_kbytes < 128)
7102 min_free_kbytes = 128;
7103 if (min_free_kbytes > 65536)
7104 min_free_kbytes = 65536;
7105 } else {
7106 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7107 new_min_free_kbytes, user_min_free_kbytes);
7109 setup_per_zone_wmarks();
7110 refresh_zone_stat_thresholds();
7111 setup_per_zone_lowmem_reserve();
7113 #ifdef CONFIG_NUMA
7114 setup_min_unmapped_ratio();
7115 setup_min_slab_ratio();
7116 #endif
7118 return 0;
7120 core_initcall(init_per_zone_wmark_min)
7123 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7124 * that we can call two helper functions whenever min_free_kbytes
7125 * changes.
7127 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7128 void __user *buffer, size_t *length, loff_t *ppos)
7130 int rc;
7132 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7133 if (rc)
7134 return rc;
7136 if (write) {
7137 user_min_free_kbytes = min_free_kbytes;
7138 setup_per_zone_wmarks();
7140 return 0;
7143 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7144 void __user *buffer, size_t *length, loff_t *ppos)
7146 int rc;
7148 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7149 if (rc)
7150 return rc;
7152 if (write)
7153 setup_per_zone_wmarks();
7155 return 0;
7158 #ifdef CONFIG_NUMA
7159 static void setup_min_unmapped_ratio(void)
7161 pg_data_t *pgdat;
7162 struct zone *zone;
7164 for_each_online_pgdat(pgdat)
7165 pgdat->min_unmapped_pages = 0;
7167 for_each_zone(zone)
7168 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7169 sysctl_min_unmapped_ratio) / 100;
7173 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7174 void __user *buffer, size_t *length, loff_t *ppos)
7176 int rc;
7178 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7179 if (rc)
7180 return rc;
7182 setup_min_unmapped_ratio();
7184 return 0;
7187 static void setup_min_slab_ratio(void)
7189 pg_data_t *pgdat;
7190 struct zone *zone;
7192 for_each_online_pgdat(pgdat)
7193 pgdat->min_slab_pages = 0;
7195 for_each_zone(zone)
7196 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7197 sysctl_min_slab_ratio) / 100;
7200 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7201 void __user *buffer, size_t *length, loff_t *ppos)
7203 int rc;
7205 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7206 if (rc)
7207 return rc;
7209 setup_min_slab_ratio();
7211 return 0;
7213 #endif
7216 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7217 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7218 * whenever sysctl_lowmem_reserve_ratio changes.
7220 * The reserve ratio obviously has absolutely no relation with the
7221 * minimum watermarks. The lowmem reserve ratio can only make sense
7222 * if in function of the boot time zone sizes.
7224 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7225 void __user *buffer, size_t *length, loff_t *ppos)
7227 proc_dointvec_minmax(table, write, buffer, length, ppos);
7228 setup_per_zone_lowmem_reserve();
7229 return 0;
7233 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7234 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7235 * pagelist can have before it gets flushed back to buddy allocator.
7237 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7238 void __user *buffer, size_t *length, loff_t *ppos)
7240 struct zone *zone;
7241 int old_percpu_pagelist_fraction;
7242 int ret;
7244 mutex_lock(&pcp_batch_high_lock);
7245 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7247 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7248 if (!write || ret < 0)
7249 goto out;
7251 /* Sanity checking to avoid pcp imbalance */
7252 if (percpu_pagelist_fraction &&
7253 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7254 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7255 ret = -EINVAL;
7256 goto out;
7259 /* No change? */
7260 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7261 goto out;
7263 for_each_populated_zone(zone) {
7264 unsigned int cpu;
7266 for_each_possible_cpu(cpu)
7267 pageset_set_high_and_batch(zone,
7268 per_cpu_ptr(zone->pageset, cpu));
7270 out:
7271 mutex_unlock(&pcp_batch_high_lock);
7272 return ret;
7275 #ifdef CONFIG_NUMA
7276 int hashdist = HASHDIST_DEFAULT;
7278 static int __init set_hashdist(char *str)
7280 if (!str)
7281 return 0;
7282 hashdist = simple_strtoul(str, &str, 0);
7283 return 1;
7285 __setup("hashdist=", set_hashdist);
7286 #endif
7288 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7290 * Returns the number of pages that arch has reserved but
7291 * is not known to alloc_large_system_hash().
7293 static unsigned long __init arch_reserved_kernel_pages(void)
7295 return 0;
7297 #endif
7300 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7301 * machines. As memory size is increased the scale is also increased but at
7302 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7303 * quadruples the scale is increased by one, which means the size of hash table
7304 * only doubles, instead of quadrupling as well.
7305 * Because 32-bit systems cannot have large physical memory, where this scaling
7306 * makes sense, it is disabled on such platforms.
7308 #if __BITS_PER_LONG > 32
7309 #define ADAPT_SCALE_BASE (64ul << 30)
7310 #define ADAPT_SCALE_SHIFT 2
7311 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7312 #endif
7315 * allocate a large system hash table from bootmem
7316 * - it is assumed that the hash table must contain an exact power-of-2
7317 * quantity of entries
7318 * - limit is the number of hash buckets, not the total allocation size
7320 void *__init alloc_large_system_hash(const char *tablename,
7321 unsigned long bucketsize,
7322 unsigned long numentries,
7323 int scale,
7324 int flags,
7325 unsigned int *_hash_shift,
7326 unsigned int *_hash_mask,
7327 unsigned long low_limit,
7328 unsigned long high_limit)
7330 unsigned long long max = high_limit;
7331 unsigned long log2qty, size;
7332 void *table = NULL;
7333 gfp_t gfp_flags;
7335 /* allow the kernel cmdline to have a say */
7336 if (!numentries) {
7337 /* round applicable memory size up to nearest megabyte */
7338 numentries = nr_kernel_pages;
7339 numentries -= arch_reserved_kernel_pages();
7341 /* It isn't necessary when PAGE_SIZE >= 1MB */
7342 if (PAGE_SHIFT < 20)
7343 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7345 #if __BITS_PER_LONG > 32
7346 if (!high_limit) {
7347 unsigned long adapt;
7349 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7350 adapt <<= ADAPT_SCALE_SHIFT)
7351 scale++;
7353 #endif
7355 /* limit to 1 bucket per 2^scale bytes of low memory */
7356 if (scale > PAGE_SHIFT)
7357 numentries >>= (scale - PAGE_SHIFT);
7358 else
7359 numentries <<= (PAGE_SHIFT - scale);
7361 /* Make sure we've got at least a 0-order allocation.. */
7362 if (unlikely(flags & HASH_SMALL)) {
7363 /* Makes no sense without HASH_EARLY */
7364 WARN_ON(!(flags & HASH_EARLY));
7365 if (!(numentries >> *_hash_shift)) {
7366 numentries = 1UL << *_hash_shift;
7367 BUG_ON(!numentries);
7369 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7370 numentries = PAGE_SIZE / bucketsize;
7372 numentries = roundup_pow_of_two(numentries);
7374 /* limit allocation size to 1/16 total memory by default */
7375 if (max == 0) {
7376 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7377 do_div(max, bucketsize);
7379 max = min(max, 0x80000000ULL);
7381 if (numentries < low_limit)
7382 numentries = low_limit;
7383 if (numentries > max)
7384 numentries = max;
7386 log2qty = ilog2(numentries);
7388 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7389 do {
7390 size = bucketsize << log2qty;
7391 if (flags & HASH_EARLY) {
7392 if (flags & HASH_ZERO)
7393 table = memblock_virt_alloc_nopanic(size, 0);
7394 else
7395 table = memblock_virt_alloc_raw(size, 0);
7396 } else if (hashdist) {
7397 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7398 } else {
7400 * If bucketsize is not a power-of-two, we may free
7401 * some pages at the end of hash table which
7402 * alloc_pages_exact() automatically does
7404 if (get_order(size) < MAX_ORDER) {
7405 table = alloc_pages_exact(size, gfp_flags);
7406 kmemleak_alloc(table, size, 1, gfp_flags);
7409 } while (!table && size > PAGE_SIZE && --log2qty);
7411 if (!table)
7412 panic("Failed to allocate %s hash table\n", tablename);
7414 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7415 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7417 if (_hash_shift)
7418 *_hash_shift = log2qty;
7419 if (_hash_mask)
7420 *_hash_mask = (1 << log2qty) - 1;
7422 return table;
7426 * This function checks whether pageblock includes unmovable pages or not.
7427 * If @count is not zero, it is okay to include less @count unmovable pages
7429 * PageLRU check without isolation or lru_lock could race so that
7430 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7431 * check without lock_page also may miss some movable non-lru pages at
7432 * race condition. So you can't expect this function should be exact.
7434 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7435 int migratetype,
7436 bool skip_hwpoisoned_pages)
7438 unsigned long pfn, iter, found;
7441 * For avoiding noise data, lru_add_drain_all() should be called
7442 * If ZONE_MOVABLE, the zone never contains unmovable pages
7444 if (zone_idx(zone) == ZONE_MOVABLE)
7445 return false;
7448 * CMA allocations (alloc_contig_range) really need to mark isolate
7449 * CMA pageblocks even when they are not movable in fact so consider
7450 * them movable here.
7452 if (is_migrate_cma(migratetype) &&
7453 is_migrate_cma(get_pageblock_migratetype(page)))
7454 return false;
7456 pfn = page_to_pfn(page);
7457 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7458 unsigned long check = pfn + iter;
7460 if (!pfn_valid_within(check))
7461 continue;
7463 page = pfn_to_page(check);
7465 if (PageReserved(page))
7466 return true;
7469 * Hugepages are not in LRU lists, but they're movable.
7470 * We need not scan over tail pages bacause we don't
7471 * handle each tail page individually in migration.
7473 if (PageHuge(page)) {
7474 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7475 continue;
7479 * We can't use page_count without pin a page
7480 * because another CPU can free compound page.
7481 * This check already skips compound tails of THP
7482 * because their page->_refcount is zero at all time.
7484 if (!page_ref_count(page)) {
7485 if (PageBuddy(page))
7486 iter += (1 << page_order(page)) - 1;
7487 continue;
7491 * The HWPoisoned page may be not in buddy system, and
7492 * page_count() is not 0.
7494 if (skip_hwpoisoned_pages && PageHWPoison(page))
7495 continue;
7497 if (__PageMovable(page))
7498 continue;
7500 if (!PageLRU(page))
7501 found++;
7503 * If there are RECLAIMABLE pages, we need to check
7504 * it. But now, memory offline itself doesn't call
7505 * shrink_node_slabs() and it still to be fixed.
7508 * If the page is not RAM, page_count()should be 0.
7509 * we don't need more check. This is an _used_ not-movable page.
7511 * The problematic thing here is PG_reserved pages. PG_reserved
7512 * is set to both of a memory hole page and a _used_ kernel
7513 * page at boot.
7515 if (found > count)
7516 return true;
7518 return false;
7521 bool is_pageblock_removable_nolock(struct page *page)
7523 struct zone *zone;
7524 unsigned long pfn;
7527 * We have to be careful here because we are iterating over memory
7528 * sections which are not zone aware so we might end up outside of
7529 * the zone but still within the section.
7530 * We have to take care about the node as well. If the node is offline
7531 * its NODE_DATA will be NULL - see page_zone.
7533 if (!node_online(page_to_nid(page)))
7534 return false;
7536 zone = page_zone(page);
7537 pfn = page_to_pfn(page);
7538 if (!zone_spans_pfn(zone, pfn))
7539 return false;
7541 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7544 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7546 static unsigned long pfn_max_align_down(unsigned long pfn)
7548 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7549 pageblock_nr_pages) - 1);
7552 static unsigned long pfn_max_align_up(unsigned long pfn)
7554 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7555 pageblock_nr_pages));
7558 /* [start, end) must belong to a single zone. */
7559 static int __alloc_contig_migrate_range(struct compact_control *cc,
7560 unsigned long start, unsigned long end)
7562 /* This function is based on compact_zone() from compaction.c. */
7563 unsigned long nr_reclaimed;
7564 unsigned long pfn = start;
7565 unsigned int tries = 0;
7566 int ret = 0;
7568 migrate_prep();
7570 while (pfn < end || !list_empty(&cc->migratepages)) {
7571 if (fatal_signal_pending(current)) {
7572 ret = -EINTR;
7573 break;
7576 if (list_empty(&cc->migratepages)) {
7577 cc->nr_migratepages = 0;
7578 pfn = isolate_migratepages_range(cc, pfn, end);
7579 if (!pfn) {
7580 ret = -EINTR;
7581 break;
7583 tries = 0;
7584 } else if (++tries == 5) {
7585 ret = ret < 0 ? ret : -EBUSY;
7586 break;
7589 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7590 &cc->migratepages);
7591 cc->nr_migratepages -= nr_reclaimed;
7593 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7594 NULL, 0, cc->mode, MR_CMA);
7596 if (ret < 0) {
7597 putback_movable_pages(&cc->migratepages);
7598 return ret;
7600 return 0;
7604 * alloc_contig_range() -- tries to allocate given range of pages
7605 * @start: start PFN to allocate
7606 * @end: one-past-the-last PFN to allocate
7607 * @migratetype: migratetype of the underlaying pageblocks (either
7608 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7609 * in range must have the same migratetype and it must
7610 * be either of the two.
7611 * @gfp_mask: GFP mask to use during compaction
7613 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7614 * aligned, however it's the caller's responsibility to guarantee that
7615 * we are the only thread that changes migrate type of pageblocks the
7616 * pages fall in.
7618 * The PFN range must belong to a single zone.
7620 * Returns zero on success or negative error code. On success all
7621 * pages which PFN is in [start, end) are allocated for the caller and
7622 * need to be freed with free_contig_range().
7624 int alloc_contig_range(unsigned long start, unsigned long end,
7625 unsigned migratetype, gfp_t gfp_mask)
7627 unsigned long outer_start, outer_end;
7628 unsigned int order;
7629 int ret = 0;
7631 struct compact_control cc = {
7632 .nr_migratepages = 0,
7633 .order = -1,
7634 .zone = page_zone(pfn_to_page(start)),
7635 .mode = MIGRATE_SYNC,
7636 .ignore_skip_hint = true,
7637 .no_set_skip_hint = true,
7638 .gfp_mask = current_gfp_context(gfp_mask),
7640 INIT_LIST_HEAD(&cc.migratepages);
7643 * What we do here is we mark all pageblocks in range as
7644 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7645 * have different sizes, and due to the way page allocator
7646 * work, we align the range to biggest of the two pages so
7647 * that page allocator won't try to merge buddies from
7648 * different pageblocks and change MIGRATE_ISOLATE to some
7649 * other migration type.
7651 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7652 * migrate the pages from an unaligned range (ie. pages that
7653 * we are interested in). This will put all the pages in
7654 * range back to page allocator as MIGRATE_ISOLATE.
7656 * When this is done, we take the pages in range from page
7657 * allocator removing them from the buddy system. This way
7658 * page allocator will never consider using them.
7660 * This lets us mark the pageblocks back as
7661 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7662 * aligned range but not in the unaligned, original range are
7663 * put back to page allocator so that buddy can use them.
7666 ret = start_isolate_page_range(pfn_max_align_down(start),
7667 pfn_max_align_up(end), migratetype,
7668 false);
7669 if (ret)
7670 return ret;
7673 * In case of -EBUSY, we'd like to know which page causes problem.
7674 * So, just fall through. test_pages_isolated() has a tracepoint
7675 * which will report the busy page.
7677 * It is possible that busy pages could become available before
7678 * the call to test_pages_isolated, and the range will actually be
7679 * allocated. So, if we fall through be sure to clear ret so that
7680 * -EBUSY is not accidentally used or returned to caller.
7682 ret = __alloc_contig_migrate_range(&cc, start, end);
7683 if (ret && ret != -EBUSY)
7684 goto done;
7685 ret =0;
7688 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7689 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7690 * more, all pages in [start, end) are free in page allocator.
7691 * What we are going to do is to allocate all pages from
7692 * [start, end) (that is remove them from page allocator).
7694 * The only problem is that pages at the beginning and at the
7695 * end of interesting range may be not aligned with pages that
7696 * page allocator holds, ie. they can be part of higher order
7697 * pages. Because of this, we reserve the bigger range and
7698 * once this is done free the pages we are not interested in.
7700 * We don't have to hold zone->lock here because the pages are
7701 * isolated thus they won't get removed from buddy.
7704 lru_add_drain_all();
7705 drain_all_pages(cc.zone);
7707 order = 0;
7708 outer_start = start;
7709 while (!PageBuddy(pfn_to_page(outer_start))) {
7710 if (++order >= MAX_ORDER) {
7711 outer_start = start;
7712 break;
7714 outer_start &= ~0UL << order;
7717 if (outer_start != start) {
7718 order = page_order(pfn_to_page(outer_start));
7721 * outer_start page could be small order buddy page and
7722 * it doesn't include start page. Adjust outer_start
7723 * in this case to report failed page properly
7724 * on tracepoint in test_pages_isolated()
7726 if (outer_start + (1UL << order) <= start)
7727 outer_start = start;
7730 /* Make sure the range is really isolated. */
7731 if (test_pages_isolated(outer_start, end, false)) {
7732 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7733 __func__, outer_start, end);
7734 ret = -EBUSY;
7735 goto done;
7738 /* Grab isolated pages from freelists. */
7739 outer_end = isolate_freepages_range(&cc, outer_start, end);
7740 if (!outer_end) {
7741 ret = -EBUSY;
7742 goto done;
7745 /* Free head and tail (if any) */
7746 if (start != outer_start)
7747 free_contig_range(outer_start, start - outer_start);
7748 if (end != outer_end)
7749 free_contig_range(end, outer_end - end);
7751 done:
7752 undo_isolate_page_range(pfn_max_align_down(start),
7753 pfn_max_align_up(end), migratetype);
7754 return ret;
7757 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7759 unsigned int count = 0;
7761 for (; nr_pages--; pfn++) {
7762 struct page *page = pfn_to_page(pfn);
7764 count += page_count(page) != 1;
7765 __free_page(page);
7767 WARN(count != 0, "%d pages are still in use!\n", count);
7769 #endif
7771 #ifdef CONFIG_MEMORY_HOTPLUG
7773 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7774 * page high values need to be recalulated.
7776 void __meminit zone_pcp_update(struct zone *zone)
7778 unsigned cpu;
7779 mutex_lock(&pcp_batch_high_lock);
7780 for_each_possible_cpu(cpu)
7781 pageset_set_high_and_batch(zone,
7782 per_cpu_ptr(zone->pageset, cpu));
7783 mutex_unlock(&pcp_batch_high_lock);
7785 #endif
7787 void zone_pcp_reset(struct zone *zone)
7789 unsigned long flags;
7790 int cpu;
7791 struct per_cpu_pageset *pset;
7793 /* avoid races with drain_pages() */
7794 local_irq_save(flags);
7795 if (zone->pageset != &boot_pageset) {
7796 for_each_online_cpu(cpu) {
7797 pset = per_cpu_ptr(zone->pageset, cpu);
7798 drain_zonestat(zone, pset);
7800 free_percpu(zone->pageset);
7801 zone->pageset = &boot_pageset;
7803 local_irq_restore(flags);
7806 #ifdef CONFIG_MEMORY_HOTREMOVE
7808 * All pages in the range must be in a single zone and isolated
7809 * before calling this.
7811 void
7812 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7814 struct page *page;
7815 struct zone *zone;
7816 unsigned int order, i;
7817 unsigned long pfn;
7818 unsigned long flags;
7819 /* find the first valid pfn */
7820 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7821 if (pfn_valid(pfn))
7822 break;
7823 if (pfn == end_pfn)
7824 return;
7825 offline_mem_sections(pfn, end_pfn);
7826 zone = page_zone(pfn_to_page(pfn));
7827 spin_lock_irqsave(&zone->lock, flags);
7828 pfn = start_pfn;
7829 while (pfn < end_pfn) {
7830 if (!pfn_valid(pfn)) {
7831 pfn++;
7832 continue;
7834 page = pfn_to_page(pfn);
7836 * The HWPoisoned page may be not in buddy system, and
7837 * page_count() is not 0.
7839 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7840 pfn++;
7841 SetPageReserved(page);
7842 continue;
7845 BUG_ON(page_count(page));
7846 BUG_ON(!PageBuddy(page));
7847 order = page_order(page);
7848 #ifdef CONFIG_DEBUG_VM
7849 pr_info("remove from free list %lx %d %lx\n",
7850 pfn, 1 << order, end_pfn);
7851 #endif
7852 list_del(&page->lru);
7853 rmv_page_order(page);
7854 zone->free_area[order].nr_free--;
7855 for (i = 0; i < (1 << order); i++)
7856 SetPageReserved((page+i));
7857 pfn += (1 << order);
7859 spin_unlock_irqrestore(&zone->lock, flags);
7861 #endif
7863 bool is_free_buddy_page(struct page *page)
7865 struct zone *zone = page_zone(page);
7866 unsigned long pfn = page_to_pfn(page);
7867 unsigned long flags;
7868 unsigned int order;
7870 spin_lock_irqsave(&zone->lock, flags);
7871 for (order = 0; order < MAX_ORDER; order++) {
7872 struct page *page_head = page - (pfn & ((1 << order) - 1));
7874 if (PageBuddy(page_head) && page_order(page_head) >= order)
7875 break;
7877 spin_unlock_irqrestore(&zone->lock, flags);
7879 return order < MAX_ORDER;