2 * Copyright(c) 2015, 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/cpumask.h>
57 struct hfi1_affinity_node_list node_affinity
= {
58 .list
= LIST_HEAD_INIT(node_affinity
.list
),
59 .lock
= __SPIN_LOCK_UNLOCKED(&node_affinity
.lock
),
62 /* Name of IRQ types, indexed by enum irq_type */
63 static const char * const irq_type_names
[] = {
70 /* Per NUMA node count of HFI devices */
71 static unsigned int *hfi1_per_node_cntr
;
73 static inline void init_cpu_mask_set(struct cpu_mask_set
*set
)
75 cpumask_clear(&set
->mask
);
76 cpumask_clear(&set
->used
);
80 /* Initialize non-HT cpu cores mask */
81 void init_real_cpu_mask(void)
83 int possible
, curr_cpu
, i
, ht
;
85 cpumask_clear(&node_affinity
.real_cpu_mask
);
87 /* Start with cpu online mask as the real cpu mask */
88 cpumask_copy(&node_affinity
.real_cpu_mask
, cpu_online_mask
);
91 * Remove HT cores from the real cpu mask. Do this in two steps below.
93 possible
= cpumask_weight(&node_affinity
.real_cpu_mask
);
94 ht
= cpumask_weight(topology_sibling_cpumask(
95 cpumask_first(&node_affinity
.real_cpu_mask
)));
97 * Step 1. Skip over the first N HT siblings and use them as the
98 * "real" cores. Assumes that HT cores are not enumerated in
99 * succession (except in the single core case).
101 curr_cpu
= cpumask_first(&node_affinity
.real_cpu_mask
);
102 for (i
= 0; i
< possible
/ ht
; i
++)
103 curr_cpu
= cpumask_next(curr_cpu
, &node_affinity
.real_cpu_mask
);
105 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to
108 for (; i
< possible
; i
++) {
109 cpumask_clear_cpu(curr_cpu
, &node_affinity
.real_cpu_mask
);
110 curr_cpu
= cpumask_next(curr_cpu
, &node_affinity
.real_cpu_mask
);
114 int node_affinity_init(void)
117 struct pci_dev
*dev
= NULL
;
118 const struct pci_device_id
*ids
= hfi1_pci_tbl
;
120 cpumask_clear(&node_affinity
.proc
.used
);
121 cpumask_copy(&node_affinity
.proc
.mask
, cpu_online_mask
);
123 node_affinity
.proc
.gen
= 0;
124 node_affinity
.num_core_siblings
=
125 cpumask_weight(topology_sibling_cpumask(
126 cpumask_first(&node_affinity
.proc
.mask
)
128 node_affinity
.num_online_nodes
= num_online_nodes();
129 node_affinity
.num_online_cpus
= num_online_cpus();
132 * The real cpu mask is part of the affinity struct but it has to be
133 * initialized early. It is needed to calculate the number of user
134 * contexts in set_up_context_variables().
136 init_real_cpu_mask();
138 hfi1_per_node_cntr
= kcalloc(num_possible_nodes(),
139 sizeof(*hfi1_per_node_cntr
), GFP_KERNEL
);
140 if (!hfi1_per_node_cntr
)
143 while (ids
->vendor
) {
145 while ((dev
= pci_get_device(ids
->vendor
, ids
->device
, dev
))) {
146 node
= pcibus_to_node(dev
->bus
);
148 node
= numa_node_id();
150 hfi1_per_node_cntr
[node
]++;
158 void node_affinity_destroy(void)
160 struct list_head
*pos
, *q
;
161 struct hfi1_affinity_node
*entry
;
163 spin_lock(&node_affinity
.lock
);
164 list_for_each_safe(pos
, q
, &node_affinity
.list
) {
165 entry
= list_entry(pos
, struct hfi1_affinity_node
,
170 spin_unlock(&node_affinity
.lock
);
171 kfree(hfi1_per_node_cntr
);
174 static struct hfi1_affinity_node
*node_affinity_allocate(int node
)
176 struct hfi1_affinity_node
*entry
;
178 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
182 INIT_LIST_HEAD(&entry
->list
);
188 * It appends an entry to the list.
189 * It *must* be called with node_affinity.lock held.
191 static void node_affinity_add_tail(struct hfi1_affinity_node
*entry
)
193 list_add_tail(&entry
->list
, &node_affinity
.list
);
196 /* It must be called with node_affinity.lock held */
197 static struct hfi1_affinity_node
*node_affinity_lookup(int node
)
199 struct list_head
*pos
;
200 struct hfi1_affinity_node
*entry
;
202 list_for_each(pos
, &node_affinity
.list
) {
203 entry
= list_entry(pos
, struct hfi1_affinity_node
, list
);
204 if (entry
->node
== node
)
212 * Interrupt affinity.
214 * non-rcv avail gets a default mask that
215 * starts as possible cpus with threads reset
216 * and each rcv avail reset.
218 * rcv avail gets node relative 1 wrapping back
219 * to the node relative 1 as necessary.
222 int hfi1_dev_affinity_init(struct hfi1_devdata
*dd
)
224 int node
= pcibus_to_node(dd
->pcidev
->bus
);
225 struct hfi1_affinity_node
*entry
;
226 const struct cpumask
*local_mask
;
227 int curr_cpu
, possible
, i
;
230 node
= numa_node_id();
233 local_mask
= cpumask_of_node(dd
->node
);
234 if (cpumask_first(local_mask
) >= nr_cpu_ids
)
235 local_mask
= topology_core_cpumask(0);
237 spin_lock(&node_affinity
.lock
);
238 entry
= node_affinity_lookup(dd
->node
);
239 spin_unlock(&node_affinity
.lock
);
242 * If this is the first time this NUMA node's affinity is used,
243 * create an entry in the global affinity structure and initialize it.
246 entry
= node_affinity_allocate(node
);
249 "Unable to allocate global affinity node\n");
252 init_cpu_mask_set(&entry
->def_intr
);
253 init_cpu_mask_set(&entry
->rcv_intr
);
254 cpumask_clear(&entry
->general_intr_mask
);
255 /* Use the "real" cpu mask of this node as the default */
256 cpumask_and(&entry
->def_intr
.mask
, &node_affinity
.real_cpu_mask
,
259 /* fill in the receive list */
260 possible
= cpumask_weight(&entry
->def_intr
.mask
);
261 curr_cpu
= cpumask_first(&entry
->def_intr
.mask
);
264 /* only one CPU, everyone will use it */
265 cpumask_set_cpu(curr_cpu
, &entry
->rcv_intr
.mask
);
266 cpumask_set_cpu(curr_cpu
, &entry
->general_intr_mask
);
269 * The general/control context will be the first CPU in
270 * the default list, so it is removed from the default
271 * list and added to the general interrupt list.
273 cpumask_clear_cpu(curr_cpu
, &entry
->def_intr
.mask
);
274 cpumask_set_cpu(curr_cpu
, &entry
->general_intr_mask
);
275 curr_cpu
= cpumask_next(curr_cpu
,
276 &entry
->def_intr
.mask
);
279 * Remove the remaining kernel receive queues from
280 * the default list and add them to the receive list.
283 i
< (dd
->n_krcv_queues
- 1) *
284 hfi1_per_node_cntr
[dd
->node
];
286 cpumask_clear_cpu(curr_cpu
,
287 &entry
->def_intr
.mask
);
288 cpumask_set_cpu(curr_cpu
,
289 &entry
->rcv_intr
.mask
);
290 curr_cpu
= cpumask_next(curr_cpu
,
291 &entry
->def_intr
.mask
);
292 if (curr_cpu
>= nr_cpu_ids
)
297 * If there ends up being 0 CPU cores leftover for SDMA
298 * engines, use the same CPU cores as general/control
301 if (cpumask_weight(&entry
->def_intr
.mask
) == 0)
302 cpumask_copy(&entry
->def_intr
.mask
,
303 &entry
->general_intr_mask
);
306 spin_lock(&node_affinity
.lock
);
307 node_affinity_add_tail(entry
);
308 spin_unlock(&node_affinity
.lock
);
314 int hfi1_get_irq_affinity(struct hfi1_devdata
*dd
, struct hfi1_msix_entry
*msix
)
318 struct hfi1_affinity_node
*entry
;
319 struct cpu_mask_set
*set
= NULL
;
320 struct sdma_engine
*sde
= NULL
;
321 struct hfi1_ctxtdata
*rcd
= NULL
;
326 cpumask_clear(&msix
->mask
);
328 ret
= zalloc_cpumask_var(&diff
, GFP_KERNEL
);
332 spin_lock(&node_affinity
.lock
);
333 entry
= node_affinity_lookup(dd
->node
);
334 spin_unlock(&node_affinity
.lock
);
336 switch (msix
->type
) {
338 sde
= (struct sdma_engine
*)msix
->arg
;
339 scnprintf(extra
, 64, "engine %u", sde
->this_idx
);
340 set
= &entry
->def_intr
;
343 cpu
= cpumask_first(&entry
->general_intr_mask
);
346 rcd
= (struct hfi1_ctxtdata
*)msix
->arg
;
347 if (rcd
->ctxt
== HFI1_CTRL_CTXT
)
348 cpu
= cpumask_first(&entry
->general_intr_mask
);
350 set
= &entry
->rcv_intr
;
351 scnprintf(extra
, 64, "ctxt %u", rcd
->ctxt
);
354 dd_dev_err(dd
, "Invalid IRQ type %d\n", msix
->type
);
359 * The general and control contexts are placed on a particular
360 * CPU, which is set above. Skip accounting for it. Everything else
361 * finds its CPU here.
363 if (cpu
== -1 && set
) {
364 spin_lock(&node_affinity
.lock
);
365 if (cpumask_equal(&set
->mask
, &set
->used
)) {
367 * We've used up all the CPUs, bump up the generation
368 * and reset the 'used' map
371 cpumask_clear(&set
->used
);
373 cpumask_andnot(diff
, &set
->mask
, &set
->used
);
374 cpu
= cpumask_first(diff
);
375 cpumask_set_cpu(cpu
, &set
->used
);
376 spin_unlock(&node_affinity
.lock
);
379 switch (msix
->type
) {
389 cpumask_set_cpu(cpu
, &msix
->mask
);
390 dd_dev_info(dd
, "IRQ vector: %u, type %s %s -> cpu: %d\n",
391 msix
->msix
.vector
, irq_type_names
[msix
->type
],
393 irq_set_affinity_hint(msix
->msix
.vector
, &msix
->mask
);
395 free_cpumask_var(diff
);
399 void hfi1_put_irq_affinity(struct hfi1_devdata
*dd
,
400 struct hfi1_msix_entry
*msix
)
402 struct cpu_mask_set
*set
= NULL
;
403 struct hfi1_ctxtdata
*rcd
;
404 struct hfi1_affinity_node
*entry
;
406 spin_lock(&node_affinity
.lock
);
407 entry
= node_affinity_lookup(dd
->node
);
408 spin_unlock(&node_affinity
.lock
);
410 switch (msix
->type
) {
412 set
= &entry
->def_intr
;
415 /* Don't do accounting for general contexts */
418 rcd
= (struct hfi1_ctxtdata
*)msix
->arg
;
419 /* Don't do accounting for control contexts */
420 if (rcd
->ctxt
!= HFI1_CTRL_CTXT
)
421 set
= &entry
->rcv_intr
;
428 spin_lock(&node_affinity
.lock
);
429 cpumask_andnot(&set
->used
, &set
->used
, &msix
->mask
);
430 if (cpumask_empty(&set
->used
) && set
->gen
) {
432 cpumask_copy(&set
->used
, &set
->mask
);
434 spin_unlock(&node_affinity
.lock
);
437 irq_set_affinity_hint(msix
->msix
.vector
, NULL
);
438 cpumask_clear(&msix
->mask
);
441 /* This should be called with node_affinity.lock held */
442 static void find_hw_thread_mask(uint hw_thread_no
, cpumask_var_t hw_thread_mask
,
443 struct hfi1_affinity_node_list
*affinity
)
445 int possible
, curr_cpu
, i
;
446 uint num_cores_per_socket
= node_affinity
.num_online_cpus
/
447 affinity
->num_core_siblings
/
448 node_affinity
.num_online_nodes
;
450 cpumask_copy(hw_thread_mask
, &affinity
->proc
.mask
);
451 if (affinity
->num_core_siblings
> 0) {
452 /* Removing other siblings not needed for now */
453 possible
= cpumask_weight(hw_thread_mask
);
454 curr_cpu
= cpumask_first(hw_thread_mask
);
456 i
< num_cores_per_socket
* node_affinity
.num_online_nodes
;
458 curr_cpu
= cpumask_next(curr_cpu
, hw_thread_mask
);
460 for (; i
< possible
; i
++) {
461 cpumask_clear_cpu(curr_cpu
, hw_thread_mask
);
462 curr_cpu
= cpumask_next(curr_cpu
, hw_thread_mask
);
465 /* Identifying correct HW threads within physical cores */
466 cpumask_shift_left(hw_thread_mask
, hw_thread_mask
,
467 num_cores_per_socket
*
468 node_affinity
.num_online_nodes
*
473 int hfi1_get_proc_affinity(int node
)
475 int cpu
= -1, ret
, i
;
476 struct hfi1_affinity_node
*entry
;
477 cpumask_var_t diff
, hw_thread_mask
, available_mask
, intrs_mask
;
478 const struct cpumask
*node_mask
,
479 *proc_mask
= tsk_cpus_allowed(current
);
480 struct hfi1_affinity_node_list
*affinity
= &node_affinity
;
481 struct cpu_mask_set
*set
= &affinity
->proc
;
484 * check whether process/context affinity has already
487 if (cpumask_weight(proc_mask
) == 1) {
488 hfi1_cdbg(PROC
, "PID %u %s affinity set to CPU %*pbl",
489 current
->pid
, current
->comm
,
490 cpumask_pr_args(proc_mask
));
492 * Mark the pre-set CPU as used. This is atomic so we don't
495 cpu
= cpumask_first(proc_mask
);
496 cpumask_set_cpu(cpu
, &set
->used
);
498 } else if (cpumask_weight(proc_mask
) < cpumask_weight(&set
->mask
)) {
499 hfi1_cdbg(PROC
, "PID %u %s affinity set to CPU set(s) %*pbl",
500 current
->pid
, current
->comm
,
501 cpumask_pr_args(proc_mask
));
506 * The process does not have a preset CPU affinity so find one to
507 * recommend using the following algorithm:
509 * For each user process that is opening a context on HFI Y:
510 * a) If all cores are filled, reinitialize the bitmask
511 * b) Fill real cores first, then HT cores (First set of HT
512 * cores on all physical cores, then second set of HT core,
513 * and, so on) in the following order:
515 * 1. Same NUMA node as HFI Y and not running an IRQ
517 * 2. Same NUMA node as HFI Y and running an IRQ handler
518 * 3. Different NUMA node to HFI Y and not running an IRQ
520 * 4. Different NUMA node to HFI Y and running an IRQ
522 * c) Mark core as filled in the bitmask. As user processes are
523 * done, clear cores from the bitmask.
526 ret
= zalloc_cpumask_var(&diff
, GFP_KERNEL
);
529 ret
= zalloc_cpumask_var(&hw_thread_mask
, GFP_KERNEL
);
532 ret
= zalloc_cpumask_var(&available_mask
, GFP_KERNEL
);
534 goto free_hw_thread_mask
;
535 ret
= zalloc_cpumask_var(&intrs_mask
, GFP_KERNEL
);
537 goto free_available_mask
;
539 spin_lock(&affinity
->lock
);
541 * If we've used all available HW threads, clear the mask and start
544 if (cpumask_equal(&set
->mask
, &set
->used
)) {
546 cpumask_clear(&set
->used
);
550 * If NUMA node has CPUs used by interrupt handlers, include them in the
551 * interrupt handler mask.
553 entry
= node_affinity_lookup(node
);
555 cpumask_copy(intrs_mask
, (entry
->def_intr
.gen
?
556 &entry
->def_intr
.mask
:
557 &entry
->def_intr
.used
));
558 cpumask_or(intrs_mask
, intrs_mask
, (entry
->rcv_intr
.gen
?
559 &entry
->rcv_intr
.mask
:
560 &entry
->rcv_intr
.used
));
561 cpumask_or(intrs_mask
, intrs_mask
, &entry
->general_intr_mask
);
563 hfi1_cdbg(PROC
, "CPUs used by interrupts: %*pbl",
564 cpumask_pr_args(intrs_mask
));
566 cpumask_copy(hw_thread_mask
, &set
->mask
);
569 * If HT cores are enabled, identify which HW threads within the
570 * physical cores should be used.
572 if (affinity
->num_core_siblings
> 0) {
573 for (i
= 0; i
< affinity
->num_core_siblings
; i
++) {
574 find_hw_thread_mask(i
, hw_thread_mask
, affinity
);
577 * If there's at least one available core for this HW
578 * thread number, stop looking for a core.
580 * diff will always be not empty at least once in this
581 * loop as the used mask gets reset when
582 * (set->mask == set->used) before this loop.
584 cpumask_andnot(diff
, hw_thread_mask
, &set
->used
);
585 if (!cpumask_empty(diff
))
589 hfi1_cdbg(PROC
, "Same available HW thread on all physical CPUs: %*pbl",
590 cpumask_pr_args(hw_thread_mask
));
592 node_mask
= cpumask_of_node(node
);
593 hfi1_cdbg(PROC
, "Device on NUMA %u, CPUs %*pbl", node
,
594 cpumask_pr_args(node_mask
));
596 /* Get cpumask of available CPUs on preferred NUMA */
597 cpumask_and(available_mask
, hw_thread_mask
, node_mask
);
598 cpumask_andnot(available_mask
, available_mask
, &set
->used
);
599 hfi1_cdbg(PROC
, "Available CPUs on NUMA %u: %*pbl", node
,
600 cpumask_pr_args(available_mask
));
603 * At first, we don't want to place processes on the same
604 * CPUs as interrupt handlers. Then, CPUs running interrupt
607 * 1) If diff is not empty, then there are CPUs not running
608 * non-interrupt handlers available, so diff gets copied
609 * over to available_mask.
610 * 2) If diff is empty, then all CPUs not running interrupt
611 * handlers are taken, so available_mask contains all
612 * available CPUs running interrupt handlers.
613 * 3) If available_mask is empty, then all CPUs on the
614 * preferred NUMA node are taken, so other NUMA nodes are
615 * used for process assignments using the same method as
616 * the preferred NUMA node.
618 cpumask_andnot(diff
, available_mask
, intrs_mask
);
619 if (!cpumask_empty(diff
))
620 cpumask_copy(available_mask
, diff
);
622 /* If we don't have CPUs on the preferred node, use other NUMA nodes */
623 if (cpumask_empty(available_mask
)) {
624 cpumask_andnot(available_mask
, hw_thread_mask
, &set
->used
);
625 /* Excluding preferred NUMA cores */
626 cpumask_andnot(available_mask
, available_mask
, node_mask
);
628 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
629 cpumask_pr_args(available_mask
));
632 * At first, we don't want to place processes on the same
633 * CPUs as interrupt handlers.
635 cpumask_andnot(diff
, available_mask
, intrs_mask
);
636 if (!cpumask_empty(diff
))
637 cpumask_copy(available_mask
, diff
);
639 hfi1_cdbg(PROC
, "Possible CPUs for process: %*pbl",
640 cpumask_pr_args(available_mask
));
642 cpu
= cpumask_first(available_mask
);
643 if (cpu
>= nr_cpu_ids
) /* empty */
646 cpumask_set_cpu(cpu
, &set
->used
);
647 spin_unlock(&affinity
->lock
);
648 hfi1_cdbg(PROC
, "Process assigned to CPU %d", cpu
);
650 free_cpumask_var(intrs_mask
);
652 free_cpumask_var(available_mask
);
654 free_cpumask_var(hw_thread_mask
);
656 free_cpumask_var(diff
);
661 void hfi1_put_proc_affinity(int cpu
)
663 struct hfi1_affinity_node_list
*affinity
= &node_affinity
;
664 struct cpu_mask_set
*set
= &affinity
->proc
;
668 spin_lock(&affinity
->lock
);
669 cpumask_clear_cpu(cpu
, &set
->used
);
670 hfi1_cdbg(PROC
, "Returning CPU %d for future process assignment", cpu
);
671 if (cpumask_empty(&set
->used
) && set
->gen
) {
673 cpumask_copy(&set
->used
, &set
->mask
);
675 spin_unlock(&affinity
->lock
);
678 /* Prevents concurrent reads and writes of the sdma_affinity attrib */
679 static DEFINE_MUTEX(sdma_affinity_mutex
);
681 int hfi1_set_sdma_affinity(struct hfi1_devdata
*dd
, const char *buf
,
684 struct hfi1_affinity_node
*entry
;
688 spin_lock(&node_affinity
.lock
);
689 entry
= node_affinity_lookup(dd
->node
);
690 spin_unlock(&node_affinity
.lock
);
695 ret
= cpulist_parse(buf
, &mask
);
699 if (!cpumask_subset(&mask
, cpu_online_mask
) || cpumask_empty(&mask
)) {
700 dd_dev_warn(dd
, "Invalid CPU mask\n");
704 mutex_lock(&sdma_affinity_mutex
);
705 /* reset the SDMA interrupt affinity details */
706 init_cpu_mask_set(&entry
->def_intr
);
707 cpumask_copy(&entry
->def_intr
.mask
, &mask
);
709 * Reassign the affinity for each SDMA interrupt.
711 for (i
= 0; i
< dd
->num_msix_entries
; i
++) {
712 struct hfi1_msix_entry
*msix
;
714 msix
= &dd
->msix_entries
[i
];
715 if (msix
->type
!= IRQ_SDMA
)
718 ret
= hfi1_get_irq_affinity(dd
, msix
);
724 mutex_unlock(&sdma_affinity_mutex
);
725 return ret
? ret
: strnlen(buf
, PAGE_SIZE
);
728 int hfi1_get_sdma_affinity(struct hfi1_devdata
*dd
, char *buf
)
730 struct hfi1_affinity_node
*entry
;
732 spin_lock(&node_affinity
.lock
);
733 entry
= node_affinity_lookup(dd
->node
);
734 spin_unlock(&node_affinity
.lock
);
739 mutex_lock(&sdma_affinity_mutex
);
740 cpumap_print_to_pagebuf(true, buf
, &entry
->def_intr
.mask
);
741 mutex_unlock(&sdma_affinity_mutex
);
742 return strnlen(buf
, PAGE_SIZE
);