1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
82 /* number of audit rules */
85 /* determines whether we collect data for signals sent */
88 struct audit_aux_data
{
89 struct audit_aux_data
*next
;
93 #define AUDIT_AUX_IPCPERM 0
95 /* Number of target pids per aux struct. */
96 #define AUDIT_AUX_PIDS 16
98 struct audit_aux_data_pids
{
99 struct audit_aux_data d
;
100 pid_t target_pid
[AUDIT_AUX_PIDS
];
101 kuid_t target_auid
[AUDIT_AUX_PIDS
];
102 kuid_t target_uid
[AUDIT_AUX_PIDS
];
103 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
104 u32 target_sid
[AUDIT_AUX_PIDS
];
105 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
109 struct audit_aux_data_bprm_fcaps
{
110 struct audit_aux_data d
;
111 struct audit_cap_data fcap
;
112 unsigned int fcap_ver
;
113 struct audit_cap_data old_pcap
;
114 struct audit_cap_data new_pcap
;
117 struct audit_tree_refs
{
118 struct audit_tree_refs
*next
;
119 struct audit_chunk
*c
[31];
122 static inline int open_arg(int flags
, int mask
)
124 int n
= ACC_MODE(flags
);
125 if (flags
& (O_TRUNC
| O_CREAT
))
126 n
|= AUDIT_PERM_WRITE
;
130 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
137 switch (audit_classify_syscall(ctx
->arch
, n
)) {
139 if ((mask
& AUDIT_PERM_WRITE
) &&
140 audit_match_class(AUDIT_CLASS_WRITE
, n
))
142 if ((mask
& AUDIT_PERM_READ
) &&
143 audit_match_class(AUDIT_CLASS_READ
, n
))
145 if ((mask
& AUDIT_PERM_ATTR
) &&
146 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
149 case 1: /* 32bit on biarch */
150 if ((mask
& AUDIT_PERM_WRITE
) &&
151 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
153 if ((mask
& AUDIT_PERM_READ
) &&
154 audit_match_class(AUDIT_CLASS_READ_32
, n
))
156 if ((mask
& AUDIT_PERM_ATTR
) &&
157 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
161 return mask
& ACC_MODE(ctx
->argv
[1]);
163 return mask
& ACC_MODE(ctx
->argv
[2]);
164 case 4: /* socketcall */
165 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
167 return mask
& AUDIT_PERM_EXEC
;
173 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
175 struct audit_names
*n
;
176 umode_t mode
= (umode_t
)val
;
181 list_for_each_entry(n
, &ctx
->names_list
, list
) {
182 if ((n
->ino
!= -1) &&
183 ((n
->mode
& S_IFMT
) == mode
))
191 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
192 * ->first_trees points to its beginning, ->trees - to the current end of data.
193 * ->tree_count is the number of free entries in array pointed to by ->trees.
194 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
195 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
196 * it's going to remain 1-element for almost any setup) until we free context itself.
197 * References in it _are_ dropped - at the same time we free/drop aux stuff.
200 #ifdef CONFIG_AUDIT_TREE
201 static void audit_set_auditable(struct audit_context
*ctx
)
205 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
209 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
211 struct audit_tree_refs
*p
= ctx
->trees
;
212 int left
= ctx
->tree_count
;
214 p
->c
[--left
] = chunk
;
215 ctx
->tree_count
= left
;
224 ctx
->tree_count
= 30;
230 static int grow_tree_refs(struct audit_context
*ctx
)
232 struct audit_tree_refs
*p
= ctx
->trees
;
233 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
239 p
->next
= ctx
->trees
;
241 ctx
->first_trees
= ctx
->trees
;
242 ctx
->tree_count
= 31;
247 static void unroll_tree_refs(struct audit_context
*ctx
,
248 struct audit_tree_refs
*p
, int count
)
250 #ifdef CONFIG_AUDIT_TREE
251 struct audit_tree_refs
*q
;
254 /* we started with empty chain */
255 p
= ctx
->first_trees
;
257 /* if the very first allocation has failed, nothing to do */
262 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
264 audit_put_chunk(q
->c
[n
]);
268 while (n
-- > ctx
->tree_count
) {
269 audit_put_chunk(q
->c
[n
]);
273 ctx
->tree_count
= count
;
277 static void free_tree_refs(struct audit_context
*ctx
)
279 struct audit_tree_refs
*p
, *q
;
280 for (p
= ctx
->first_trees
; p
; p
= q
) {
286 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
288 #ifdef CONFIG_AUDIT_TREE
289 struct audit_tree_refs
*p
;
294 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
295 for (n
= 0; n
< 31; n
++)
296 if (audit_tree_match(p
->c
[n
], tree
))
301 for (n
= ctx
->tree_count
; n
< 31; n
++)
302 if (audit_tree_match(p
->c
[n
], tree
))
309 static int audit_compare_uid(kuid_t uid
,
310 struct audit_names
*name
,
311 struct audit_field
*f
,
312 struct audit_context
*ctx
)
314 struct audit_names
*n
;
318 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
324 list_for_each_entry(n
, &ctx
->names_list
, list
) {
325 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
333 static int audit_compare_gid(kgid_t gid
,
334 struct audit_names
*name
,
335 struct audit_field
*f
,
336 struct audit_context
*ctx
)
338 struct audit_names
*n
;
342 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
348 list_for_each_entry(n
, &ctx
->names_list
, list
) {
349 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
357 static int audit_field_compare(struct task_struct
*tsk
,
358 const struct cred
*cred
,
359 struct audit_field
*f
,
360 struct audit_context
*ctx
,
361 struct audit_names
*name
)
364 /* process to file object comparisons */
365 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
366 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
367 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
368 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
369 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
370 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
371 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
372 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
373 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
374 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
375 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
376 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
377 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
378 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
379 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
380 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
381 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
382 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
383 /* uid comparisons */
384 case AUDIT_COMPARE_UID_TO_AUID
:
385 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
386 case AUDIT_COMPARE_UID_TO_EUID
:
387 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
388 case AUDIT_COMPARE_UID_TO_SUID
:
389 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
390 case AUDIT_COMPARE_UID_TO_FSUID
:
391 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
392 /* auid comparisons */
393 case AUDIT_COMPARE_AUID_TO_EUID
:
394 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
395 case AUDIT_COMPARE_AUID_TO_SUID
:
396 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
397 case AUDIT_COMPARE_AUID_TO_FSUID
:
398 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
399 /* euid comparisons */
400 case AUDIT_COMPARE_EUID_TO_SUID
:
401 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
402 case AUDIT_COMPARE_EUID_TO_FSUID
:
403 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
404 /* suid comparisons */
405 case AUDIT_COMPARE_SUID_TO_FSUID
:
406 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
407 /* gid comparisons */
408 case AUDIT_COMPARE_GID_TO_EGID
:
409 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
410 case AUDIT_COMPARE_GID_TO_SGID
:
411 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
412 case AUDIT_COMPARE_GID_TO_FSGID
:
413 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
414 /* egid comparisons */
415 case AUDIT_COMPARE_EGID_TO_SGID
:
416 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
417 case AUDIT_COMPARE_EGID_TO_FSGID
:
418 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
419 /* sgid comparison */
420 case AUDIT_COMPARE_SGID_TO_FSGID
:
421 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
423 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
429 /* Determine if any context name data matches a rule's watch data */
430 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * If task_creation is true, this is an explicit indication that we are
434 * filtering a task rule at task creation time. This and tsk == current are
435 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 static int audit_filter_rules(struct task_struct
*tsk
,
438 struct audit_krule
*rule
,
439 struct audit_context
*ctx
,
440 struct audit_names
*name
,
441 enum audit_state
*state
,
444 const struct cred
*cred
;
448 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
450 for (i
= 0; i
< rule
->field_count
; i
++) {
451 struct audit_field
*f
= &rule
->fields
[i
];
452 struct audit_names
*n
;
457 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
462 ctx
->ppid
= sys_getppid();
463 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
467 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
470 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
473 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
476 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
479 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
480 if (f
->op
== Audit_equal
) {
482 result
= in_group_p(f
->gid
);
483 } else if (f
->op
== Audit_not_equal
) {
485 result
= !in_group_p(f
->gid
);
489 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
490 if (f
->op
== Audit_equal
) {
492 result
= in_egroup_p(f
->gid
);
493 } else if (f
->op
== Audit_not_equal
) {
495 result
= !in_egroup_p(f
->gid
);
499 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
502 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
505 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
509 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
513 if (ctx
&& ctx
->return_valid
)
514 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
517 if (ctx
&& ctx
->return_valid
) {
519 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
521 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
526 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
527 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
530 list_for_each_entry(n
, &ctx
->names_list
, list
) {
531 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
532 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
541 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
542 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
545 list_for_each_entry(n
, &ctx
->names_list
, list
) {
546 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
547 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
556 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
558 list_for_each_entry(n
, &ctx
->names_list
, list
) {
559 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
568 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
570 list_for_each_entry(n
, &ctx
->names_list
, list
) {
571 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
580 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
582 list_for_each_entry(n
, &ctx
->names_list
, list
) {
583 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
592 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
596 result
= match_tree_refs(ctx
, rule
->tree
);
601 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
603 case AUDIT_LOGINUID_SET
:
604 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
606 case AUDIT_SUBJ_USER
:
607 case AUDIT_SUBJ_ROLE
:
608 case AUDIT_SUBJ_TYPE
:
611 /* NOTE: this may return negative values indicating
612 a temporary error. We simply treat this as a
613 match for now to avoid losing information that
614 may be wanted. An error message will also be
618 security_task_getsecid(tsk
, &sid
);
621 result
= security_audit_rule_match(sid
, f
->type
,
630 case AUDIT_OBJ_LEV_LOW
:
631 case AUDIT_OBJ_LEV_HIGH
:
632 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
635 /* Find files that match */
637 result
= security_audit_rule_match(
638 name
->osid
, f
->type
, f
->op
,
641 list_for_each_entry(n
, &ctx
->names_list
, list
) {
642 if (security_audit_rule_match(n
->osid
, f
->type
,
650 /* Find ipc objects that match */
651 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
653 if (security_audit_rule_match(ctx
->ipc
.osid
,
664 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
666 case AUDIT_FILTERKEY
:
667 /* ignore this field for filtering */
671 result
= audit_match_perm(ctx
, f
->val
);
674 result
= audit_match_filetype(ctx
, f
->val
);
676 case AUDIT_FIELD_COMPARE
:
677 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
685 if (rule
->prio
<= ctx
->prio
)
687 if (rule
->filterkey
) {
688 kfree(ctx
->filterkey
);
689 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
691 ctx
->prio
= rule
->prio
;
693 switch (rule
->action
) {
694 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
695 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
700 /* At process creation time, we can determine if system-call auditing is
701 * completely disabled for this task. Since we only have the task
702 * structure at this point, we can only check uid and gid.
704 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
706 struct audit_entry
*e
;
707 enum audit_state state
;
710 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
711 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
713 if (state
== AUDIT_RECORD_CONTEXT
)
714 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
720 return AUDIT_BUILD_CONTEXT
;
723 /* At syscall entry and exit time, this filter is called if the
724 * audit_state is not low enough that auditing cannot take place, but is
725 * also not high enough that we already know we have to write an audit
726 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
728 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
729 struct audit_context
*ctx
,
730 struct list_head
*list
)
732 struct audit_entry
*e
;
733 enum audit_state state
;
735 if (audit_pid
&& tsk
->tgid
== audit_pid
)
736 return AUDIT_DISABLED
;
739 if (!list_empty(list
)) {
740 int word
= AUDIT_WORD(ctx
->major
);
741 int bit
= AUDIT_BIT(ctx
->major
);
743 list_for_each_entry_rcu(e
, list
, list
) {
744 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
745 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
748 ctx
->current_state
= state
;
754 return AUDIT_BUILD_CONTEXT
;
758 * Given an audit_name check the inode hash table to see if they match.
759 * Called holding the rcu read lock to protect the use of audit_inode_hash
761 static int audit_filter_inode_name(struct task_struct
*tsk
,
762 struct audit_names
*n
,
763 struct audit_context
*ctx
) {
765 int h
= audit_hash_ino((u32
)n
->ino
);
766 struct list_head
*list
= &audit_inode_hash
[h
];
767 struct audit_entry
*e
;
768 enum audit_state state
;
770 word
= AUDIT_WORD(ctx
->major
);
771 bit
= AUDIT_BIT(ctx
->major
);
773 if (list_empty(list
))
776 list_for_each_entry_rcu(e
, list
, list
) {
777 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
778 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
779 ctx
->current_state
= state
;
787 /* At syscall exit time, this filter is called if any audit_names have been
788 * collected during syscall processing. We only check rules in sublists at hash
789 * buckets applicable to the inode numbers in audit_names.
790 * Regarding audit_state, same rules apply as for audit_filter_syscall().
792 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
794 struct audit_names
*n
;
796 if (audit_pid
&& tsk
->tgid
== audit_pid
)
801 list_for_each_entry(n
, &ctx
->names_list
, list
) {
802 if (audit_filter_inode_name(tsk
, n
, ctx
))
808 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
812 struct audit_context
*context
= tsk
->audit_context
;
816 context
->return_valid
= return_valid
;
819 * we need to fix up the return code in the audit logs if the actual
820 * return codes are later going to be fixed up by the arch specific
823 * This is actually a test for:
824 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
825 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
827 * but is faster than a bunch of ||
829 if (unlikely(return_code
<= -ERESTARTSYS
) &&
830 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
831 (return_code
!= -ENOIOCTLCMD
))
832 context
->return_code
= -EINTR
;
834 context
->return_code
= return_code
;
836 if (context
->in_syscall
&& !context
->dummy
) {
837 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
838 audit_filter_inodes(tsk
, context
);
841 tsk
->audit_context
= NULL
;
845 static inline void audit_free_names(struct audit_context
*context
)
847 struct audit_names
*n
, *next
;
850 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
853 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
854 " name_count=%d put_count=%d"
855 " ino_count=%d [NOT freeing]\n",
857 context
->serial
, context
->major
, context
->in_syscall
,
858 context
->name_count
, context
->put_count
,
860 list_for_each_entry(n
, &context
->names_list
, list
) {
861 printk(KERN_ERR
"names[%d] = %p = %s\n", i
++,
862 n
->name
, n
->name
->name
?: "(null)");
869 context
->put_count
= 0;
870 context
->ino_count
= 0;
873 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
875 if (n
->name
&& n
->name_put
)
876 final_putname(n
->name
);
880 context
->name_count
= 0;
881 path_put(&context
->pwd
);
882 context
->pwd
.dentry
= NULL
;
883 context
->pwd
.mnt
= NULL
;
886 static inline void audit_free_aux(struct audit_context
*context
)
888 struct audit_aux_data
*aux
;
890 while ((aux
= context
->aux
)) {
891 context
->aux
= aux
->next
;
894 while ((aux
= context
->aux_pids
)) {
895 context
->aux_pids
= aux
->next
;
900 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
902 struct audit_context
*context
;
904 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
907 context
->state
= state
;
908 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
909 INIT_LIST_HEAD(&context
->killed_trees
);
910 INIT_LIST_HEAD(&context
->names_list
);
915 * audit_alloc - allocate an audit context block for a task
918 * Filter on the task information and allocate a per-task audit context
919 * if necessary. Doing so turns on system call auditing for the
920 * specified task. This is called from copy_process, so no lock is
923 int audit_alloc(struct task_struct
*tsk
)
925 struct audit_context
*context
;
926 enum audit_state state
;
929 if (likely(!audit_ever_enabled
))
930 return 0; /* Return if not auditing. */
932 state
= audit_filter_task(tsk
, &key
);
933 if (state
== AUDIT_DISABLED
) {
934 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
938 if (!(context
= audit_alloc_context(state
))) {
940 audit_log_lost("out of memory in audit_alloc");
943 context
->filterkey
= key
;
945 tsk
->audit_context
= context
;
946 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
950 static inline void audit_free_context(struct audit_context
*context
)
952 audit_free_names(context
);
953 unroll_tree_refs(context
, NULL
, 0);
954 free_tree_refs(context
);
955 audit_free_aux(context
);
956 kfree(context
->filterkey
);
957 kfree(context
->sockaddr
);
961 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
962 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
965 struct audit_buffer
*ab
;
970 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
974 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
975 from_kuid(&init_user_ns
, auid
),
976 from_kuid(&init_user_ns
, uid
), sessionid
);
978 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
979 audit_log_format(ab
, " obj=(none)");
982 audit_log_format(ab
, " obj=%s", ctx
);
983 security_release_secctx(ctx
, len
);
986 audit_log_format(ab
, " ocomm=");
987 audit_log_untrustedstring(ab
, comm
);
994 * to_send and len_sent accounting are very loose estimates. We aren't
995 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
996 * within about 500 bytes (next page boundary)
998 * why snprintf? an int is up to 12 digits long. if we just assumed when
999 * logging that a[%d]= was going to be 16 characters long we would be wasting
1000 * space in every audit message. In one 7500 byte message we can log up to
1001 * about 1000 min size arguments. That comes down to about 50% waste of space
1002 * if we didn't do the snprintf to find out how long arg_num_len was.
1004 static int audit_log_single_execve_arg(struct audit_context
*context
,
1005 struct audit_buffer
**ab
,
1008 const char __user
*p
,
1011 char arg_num_len_buf
[12];
1012 const char __user
*tmp_p
= p
;
1013 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1014 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1015 size_t len
, len_left
, to_send
;
1016 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1017 unsigned int i
, has_cntl
= 0, too_long
= 0;
1020 /* strnlen_user includes the null we don't want to send */
1021 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1024 * We just created this mm, if we can't find the strings
1025 * we just copied into it something is _very_ wrong. Similar
1026 * for strings that are too long, we should not have created
1029 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1031 send_sig(SIGKILL
, current
, 0);
1035 /* walk the whole argument looking for non-ascii chars */
1037 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1038 to_send
= MAX_EXECVE_AUDIT_LEN
;
1041 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1043 * There is no reason for this copy to be short. We just
1044 * copied them here, and the mm hasn't been exposed to user-
1049 send_sig(SIGKILL
, current
, 0);
1052 buf
[to_send
] = '\0';
1053 has_cntl
= audit_string_contains_control(buf
, to_send
);
1056 * hex messages get logged as 2 bytes, so we can only
1057 * send half as much in each message
1059 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1062 len_left
-= to_send
;
1064 } while (len_left
> 0);
1068 if (len
> max_execve_audit_len
)
1071 /* rewalk the argument actually logging the message */
1072 for (i
= 0; len_left
> 0; i
++) {
1075 if (len_left
> max_execve_audit_len
)
1076 to_send
= max_execve_audit_len
;
1080 /* do we have space left to send this argument in this ab? */
1081 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1083 room_left
-= (to_send
* 2);
1085 room_left
-= to_send
;
1086 if (room_left
< 0) {
1089 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1095 * first record needs to say how long the original string was
1096 * so we can be sure nothing was lost.
1098 if ((i
== 0) && (too_long
))
1099 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1100 has_cntl
? 2*len
: len
);
1103 * normally arguments are small enough to fit and we already
1104 * filled buf above when we checked for control characters
1105 * so don't bother with another copy_from_user
1107 if (len
>= max_execve_audit_len
)
1108 ret
= copy_from_user(buf
, p
, to_send
);
1113 send_sig(SIGKILL
, current
, 0);
1116 buf
[to_send
] = '\0';
1118 /* actually log it */
1119 audit_log_format(*ab
, " a%d", arg_num
);
1121 audit_log_format(*ab
, "[%d]", i
);
1122 audit_log_format(*ab
, "=");
1124 audit_log_n_hex(*ab
, buf
, to_send
);
1126 audit_log_string(*ab
, buf
);
1129 len_left
-= to_send
;
1130 *len_sent
+= arg_num_len
;
1132 *len_sent
+= to_send
* 2;
1134 *len_sent
+= to_send
;
1136 /* include the null we didn't log */
1140 static void audit_log_execve_info(struct audit_context
*context
,
1141 struct audit_buffer
**ab
)
1144 size_t len_sent
= 0;
1145 const char __user
*p
;
1148 p
= (const char __user
*)current
->mm
->arg_start
;
1150 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1153 * we need some kernel buffer to hold the userspace args. Just
1154 * allocate one big one rather than allocating one of the right size
1155 * for every single argument inside audit_log_single_execve_arg()
1156 * should be <8k allocation so should be pretty safe.
1158 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1160 audit_panic("out of memory for argv string\n");
1164 for (i
= 0; i
< context
->execve
.argc
; i
++) {
1165 len
= audit_log_single_execve_arg(context
, ab
, i
,
1174 static void show_special(struct audit_context
*context
, int *call_panic
)
1176 struct audit_buffer
*ab
;
1179 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1183 switch (context
->type
) {
1184 case AUDIT_SOCKETCALL
: {
1185 int nargs
= context
->socketcall
.nargs
;
1186 audit_log_format(ab
, "nargs=%d", nargs
);
1187 for (i
= 0; i
< nargs
; i
++)
1188 audit_log_format(ab
, " a%d=%lx", i
,
1189 context
->socketcall
.args
[i
]);
1192 u32 osid
= context
->ipc
.osid
;
1194 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1195 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1196 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1201 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1202 audit_log_format(ab
, " osid=%u", osid
);
1205 audit_log_format(ab
, " obj=%s", ctx
);
1206 security_release_secctx(ctx
, len
);
1209 if (context
->ipc
.has_perm
) {
1211 ab
= audit_log_start(context
, GFP_KERNEL
,
1212 AUDIT_IPC_SET_PERM
);
1215 audit_log_format(ab
,
1216 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1217 context
->ipc
.qbytes
,
1218 context
->ipc
.perm_uid
,
1219 context
->ipc
.perm_gid
,
1220 context
->ipc
.perm_mode
);
1223 case AUDIT_MQ_OPEN
: {
1224 audit_log_format(ab
,
1225 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1226 "mq_msgsize=%ld mq_curmsgs=%ld",
1227 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1228 context
->mq_open
.attr
.mq_flags
,
1229 context
->mq_open
.attr
.mq_maxmsg
,
1230 context
->mq_open
.attr
.mq_msgsize
,
1231 context
->mq_open
.attr
.mq_curmsgs
);
1233 case AUDIT_MQ_SENDRECV
: {
1234 audit_log_format(ab
,
1235 "mqdes=%d msg_len=%zd msg_prio=%u "
1236 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1237 context
->mq_sendrecv
.mqdes
,
1238 context
->mq_sendrecv
.msg_len
,
1239 context
->mq_sendrecv
.msg_prio
,
1240 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1241 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1243 case AUDIT_MQ_NOTIFY
: {
1244 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1245 context
->mq_notify
.mqdes
,
1246 context
->mq_notify
.sigev_signo
);
1248 case AUDIT_MQ_GETSETATTR
: {
1249 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1250 audit_log_format(ab
,
1251 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253 context
->mq_getsetattr
.mqdes
,
1254 attr
->mq_flags
, attr
->mq_maxmsg
,
1255 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1257 case AUDIT_CAPSET
: {
1258 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1259 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1260 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1261 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1264 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1265 context
->mmap
.flags
);
1267 case AUDIT_EXECVE
: {
1268 audit_log_execve_info(context
, &ab
);
1274 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1276 int i
, call_panic
= 0;
1277 struct audit_buffer
*ab
;
1278 struct audit_aux_data
*aux
;
1279 struct audit_names
*n
;
1281 /* tsk == current */
1282 context
->personality
= tsk
->personality
;
1284 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1286 return; /* audit_panic has been called */
1287 audit_log_format(ab
, "arch=%x syscall=%d",
1288 context
->arch
, context
->major
);
1289 if (context
->personality
!= PER_LINUX
)
1290 audit_log_format(ab
, " per=%lx", context
->personality
);
1291 if (context
->return_valid
)
1292 audit_log_format(ab
, " success=%s exit=%ld",
1293 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1294 context
->return_code
);
1296 audit_log_format(ab
,
1297 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1302 context
->name_count
);
1304 audit_log_task_info(ab
, tsk
);
1305 audit_log_key(ab
, context
->filterkey
);
1308 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1310 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1312 continue; /* audit_panic has been called */
1314 switch (aux
->type
) {
1316 case AUDIT_BPRM_FCAPS
: {
1317 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1318 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1319 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1320 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1321 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1322 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1323 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1324 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1325 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1326 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1327 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1335 show_special(context
, &call_panic
);
1337 if (context
->fds
[0] >= 0) {
1338 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1340 audit_log_format(ab
, "fd0=%d fd1=%d",
1341 context
->fds
[0], context
->fds
[1]);
1346 if (context
->sockaddr_len
) {
1347 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1349 audit_log_format(ab
, "saddr=");
1350 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1351 context
->sockaddr_len
);
1356 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1357 struct audit_aux_data_pids
*axs
= (void *)aux
;
1359 for (i
= 0; i
< axs
->pid_count
; i
++)
1360 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1361 axs
->target_auid
[i
],
1363 axs
->target_sessionid
[i
],
1365 axs
->target_comm
[i
]))
1369 if (context
->target_pid
&&
1370 audit_log_pid_context(context
, context
->target_pid
,
1371 context
->target_auid
, context
->target_uid
,
1372 context
->target_sessionid
,
1373 context
->target_sid
, context
->target_comm
))
1376 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1377 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1379 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1385 list_for_each_entry(n
, &context
->names_list
, list
) {
1388 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1391 /* Send end of event record to help user space know we are finished */
1392 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1396 audit_panic("error converting sid to string");
1400 * audit_free - free a per-task audit context
1401 * @tsk: task whose audit context block to free
1403 * Called from copy_process and do_exit
1405 void __audit_free(struct task_struct
*tsk
)
1407 struct audit_context
*context
;
1409 context
= audit_get_context(tsk
, 0, 0);
1413 /* Check for system calls that do not go through the exit
1414 * function (e.g., exit_group), then free context block.
1415 * We use GFP_ATOMIC here because we might be doing this
1416 * in the context of the idle thread */
1417 /* that can happen only if we are called from do_exit() */
1418 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1419 audit_log_exit(context
, tsk
);
1420 if (!list_empty(&context
->killed_trees
))
1421 audit_kill_trees(&context
->killed_trees
);
1423 audit_free_context(context
);
1427 * audit_syscall_entry - fill in an audit record at syscall entry
1428 * @arch: architecture type
1429 * @major: major syscall type (function)
1430 * @a1: additional syscall register 1
1431 * @a2: additional syscall register 2
1432 * @a3: additional syscall register 3
1433 * @a4: additional syscall register 4
1435 * Fill in audit context at syscall entry. This only happens if the
1436 * audit context was created when the task was created and the state or
1437 * filters demand the audit context be built. If the state from the
1438 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1439 * then the record will be written at syscall exit time (otherwise, it
1440 * will only be written if another part of the kernel requests that it
1443 void __audit_syscall_entry(int arch
, int major
,
1444 unsigned long a1
, unsigned long a2
,
1445 unsigned long a3
, unsigned long a4
)
1447 struct task_struct
*tsk
= current
;
1448 struct audit_context
*context
= tsk
->audit_context
;
1449 enum audit_state state
;
1454 BUG_ON(context
->in_syscall
|| context
->name_count
);
1459 context
->arch
= arch
;
1460 context
->major
= major
;
1461 context
->argv
[0] = a1
;
1462 context
->argv
[1] = a2
;
1463 context
->argv
[2] = a3
;
1464 context
->argv
[3] = a4
;
1466 state
= context
->state
;
1467 context
->dummy
= !audit_n_rules
;
1468 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1470 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1472 if (state
== AUDIT_DISABLED
)
1475 context
->serial
= 0;
1476 context
->ctime
= CURRENT_TIME
;
1477 context
->in_syscall
= 1;
1478 context
->current_state
= state
;
1483 * audit_syscall_exit - deallocate audit context after a system call
1484 * @success: success value of the syscall
1485 * @return_code: return value of the syscall
1487 * Tear down after system call. If the audit context has been marked as
1488 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1489 * filtering, or because some other part of the kernel wrote an audit
1490 * message), then write out the syscall information. In call cases,
1491 * free the names stored from getname().
1493 void __audit_syscall_exit(int success
, long return_code
)
1495 struct task_struct
*tsk
= current
;
1496 struct audit_context
*context
;
1499 success
= AUDITSC_SUCCESS
;
1501 success
= AUDITSC_FAILURE
;
1503 context
= audit_get_context(tsk
, success
, return_code
);
1507 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1508 audit_log_exit(context
, tsk
);
1510 context
->in_syscall
= 0;
1511 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1513 if (!list_empty(&context
->killed_trees
))
1514 audit_kill_trees(&context
->killed_trees
);
1516 audit_free_names(context
);
1517 unroll_tree_refs(context
, NULL
, 0);
1518 audit_free_aux(context
);
1519 context
->aux
= NULL
;
1520 context
->aux_pids
= NULL
;
1521 context
->target_pid
= 0;
1522 context
->target_sid
= 0;
1523 context
->sockaddr_len
= 0;
1525 context
->fds
[0] = -1;
1526 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1527 kfree(context
->filterkey
);
1528 context
->filterkey
= NULL
;
1530 tsk
->audit_context
= context
;
1533 static inline void handle_one(const struct inode
*inode
)
1535 #ifdef CONFIG_AUDIT_TREE
1536 struct audit_context
*context
;
1537 struct audit_tree_refs
*p
;
1538 struct audit_chunk
*chunk
;
1540 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1542 context
= current
->audit_context
;
1544 count
= context
->tree_count
;
1546 chunk
= audit_tree_lookup(inode
);
1550 if (likely(put_tree_ref(context
, chunk
)))
1552 if (unlikely(!grow_tree_refs(context
))) {
1553 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1554 audit_set_auditable(context
);
1555 audit_put_chunk(chunk
);
1556 unroll_tree_refs(context
, p
, count
);
1559 put_tree_ref(context
, chunk
);
1563 static void handle_path(const struct dentry
*dentry
)
1565 #ifdef CONFIG_AUDIT_TREE
1566 struct audit_context
*context
;
1567 struct audit_tree_refs
*p
;
1568 const struct dentry
*d
, *parent
;
1569 struct audit_chunk
*drop
;
1573 context
= current
->audit_context
;
1575 count
= context
->tree_count
;
1580 seq
= read_seqbegin(&rename_lock
);
1582 struct inode
*inode
= d
->d_inode
;
1583 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1584 struct audit_chunk
*chunk
;
1585 chunk
= audit_tree_lookup(inode
);
1587 if (unlikely(!put_tree_ref(context
, chunk
))) {
1593 parent
= d
->d_parent
;
1598 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1601 /* just a race with rename */
1602 unroll_tree_refs(context
, p
, count
);
1605 audit_put_chunk(drop
);
1606 if (grow_tree_refs(context
)) {
1607 /* OK, got more space */
1608 unroll_tree_refs(context
, p
, count
);
1613 "out of memory, audit has lost a tree reference\n");
1614 unroll_tree_refs(context
, p
, count
);
1615 audit_set_auditable(context
);
1622 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1625 struct audit_names
*aname
;
1627 if (context
->name_count
< AUDIT_NAMES
) {
1628 aname
= &context
->preallocated_names
[context
->name_count
];
1629 memset(aname
, 0, sizeof(*aname
));
1631 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1634 aname
->should_free
= true;
1637 aname
->ino
= (unsigned long)-1;
1639 list_add_tail(&aname
->list
, &context
->names_list
);
1641 context
->name_count
++;
1643 context
->ino_count
++;
1649 * audit_reusename - fill out filename with info from existing entry
1650 * @uptr: userland ptr to pathname
1652 * Search the audit_names list for the current audit context. If there is an
1653 * existing entry with a matching "uptr" then return the filename
1654 * associated with that audit_name. If not, return NULL.
1657 __audit_reusename(const __user
char *uptr
)
1659 struct audit_context
*context
= current
->audit_context
;
1660 struct audit_names
*n
;
1662 list_for_each_entry(n
, &context
->names_list
, list
) {
1665 if (n
->name
->uptr
== uptr
)
1672 * audit_getname - add a name to the list
1673 * @name: name to add
1675 * Add a name to the list of audit names for this context.
1676 * Called from fs/namei.c:getname().
1678 void __audit_getname(struct filename
*name
)
1680 struct audit_context
*context
= current
->audit_context
;
1681 struct audit_names
*n
;
1683 if (!context
->in_syscall
) {
1684 #if AUDIT_DEBUG == 2
1685 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1686 __FILE__
, __LINE__
, context
->serial
, name
);
1693 /* The filename _must_ have a populated ->name */
1694 BUG_ON(!name
->name
);
1697 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1702 n
->name_len
= AUDIT_NAME_FULL
;
1706 if (!context
->pwd
.dentry
)
1707 get_fs_pwd(current
->fs
, &context
->pwd
);
1710 /* audit_putname - intercept a putname request
1711 * @name: name to intercept and delay for putname
1713 * If we have stored the name from getname in the audit context,
1714 * then we delay the putname until syscall exit.
1715 * Called from include/linux/fs.h:putname().
1717 void audit_putname(struct filename
*name
)
1719 struct audit_context
*context
= current
->audit_context
;
1722 if (!context
->in_syscall
) {
1723 #if AUDIT_DEBUG == 2
1724 printk(KERN_ERR
"%s:%d(:%d): final_putname(%p)\n",
1725 __FILE__
, __LINE__
, context
->serial
, name
);
1726 if (context
->name_count
) {
1727 struct audit_names
*n
;
1730 list_for_each_entry(n
, &context
->names_list
, list
)
1731 printk(KERN_ERR
"name[%d] = %p = %s\n", i
++,
1732 n
->name
, n
->name
->name
?: "(null)");
1735 final_putname(name
);
1739 ++context
->put_count
;
1740 if (context
->put_count
> context
->name_count
) {
1741 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1742 " in_syscall=%d putname(%p) name_count=%d"
1745 context
->serial
, context
->major
,
1746 context
->in_syscall
, name
->name
,
1747 context
->name_count
, context
->put_count
);
1755 * __audit_inode - store the inode and device from a lookup
1756 * @name: name being audited
1757 * @dentry: dentry being audited
1758 * @flags: attributes for this particular entry
1760 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1763 struct audit_context
*context
= current
->audit_context
;
1764 const struct inode
*inode
= dentry
->d_inode
;
1765 struct audit_names
*n
;
1766 bool parent
= flags
& AUDIT_INODE_PARENT
;
1768 if (!context
->in_syscall
)
1775 /* The struct filename _must_ have a populated ->name */
1776 BUG_ON(!name
->name
);
1779 * If we have a pointer to an audit_names entry already, then we can
1780 * just use it directly if the type is correct.
1785 if (n
->type
== AUDIT_TYPE_PARENT
||
1786 n
->type
== AUDIT_TYPE_UNKNOWN
)
1789 if (n
->type
!= AUDIT_TYPE_PARENT
)
1794 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1795 /* does the name pointer match? */
1796 if (!n
->name
|| n
->name
->name
!= name
->name
)
1799 /* match the correct record type */
1801 if (n
->type
== AUDIT_TYPE_PARENT
||
1802 n
->type
== AUDIT_TYPE_UNKNOWN
)
1805 if (n
->type
!= AUDIT_TYPE_PARENT
)
1811 /* unable to find the name from a previous getname(). Allocate a new
1814 n
= audit_alloc_name(context
, AUDIT_TYPE_NORMAL
);
1819 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1820 n
->type
= AUDIT_TYPE_PARENT
;
1821 if (flags
& AUDIT_INODE_HIDDEN
)
1824 n
->name_len
= AUDIT_NAME_FULL
;
1825 n
->type
= AUDIT_TYPE_NORMAL
;
1827 handle_path(dentry
);
1828 audit_copy_inode(n
, dentry
, inode
);
1832 * __audit_inode_child - collect inode info for created/removed objects
1833 * @parent: inode of dentry parent
1834 * @dentry: dentry being audited
1835 * @type: AUDIT_TYPE_* value that we're looking for
1837 * For syscalls that create or remove filesystem objects, audit_inode
1838 * can only collect information for the filesystem object's parent.
1839 * This call updates the audit context with the child's information.
1840 * Syscalls that create a new filesystem object must be hooked after
1841 * the object is created. Syscalls that remove a filesystem object
1842 * must be hooked prior, in order to capture the target inode during
1843 * unsuccessful attempts.
1845 void __audit_inode_child(const struct inode
*parent
,
1846 const struct dentry
*dentry
,
1847 const unsigned char type
)
1849 struct audit_context
*context
= current
->audit_context
;
1850 const struct inode
*inode
= dentry
->d_inode
;
1851 const char *dname
= dentry
->d_name
.name
;
1852 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1854 if (!context
->in_syscall
)
1860 /* look for a parent entry first */
1861 list_for_each_entry(n
, &context
->names_list
, list
) {
1862 if (!n
->name
|| n
->type
!= AUDIT_TYPE_PARENT
)
1865 if (n
->ino
== parent
->i_ino
&&
1866 !audit_compare_dname_path(dname
, n
->name
->name
, n
->name_len
)) {
1872 /* is there a matching child entry? */
1873 list_for_each_entry(n
, &context
->names_list
, list
) {
1874 /* can only match entries that have a name */
1875 if (!n
->name
|| n
->type
!= type
)
1878 /* if we found a parent, make sure this one is a child of it */
1879 if (found_parent
&& (n
->name
!= found_parent
->name
))
1882 if (!strcmp(dname
, n
->name
->name
) ||
1883 !audit_compare_dname_path(dname
, n
->name
->name
,
1885 found_parent
->name_len
:
1892 if (!found_parent
) {
1893 /* create a new, "anonymous" parent record */
1894 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1897 audit_copy_inode(n
, NULL
, parent
);
1901 found_child
= audit_alloc_name(context
, type
);
1905 /* Re-use the name belonging to the slot for a matching parent
1906 * directory. All names for this context are relinquished in
1907 * audit_free_names() */
1909 found_child
->name
= found_parent
->name
;
1910 found_child
->name_len
= AUDIT_NAME_FULL
;
1911 /* don't call __putname() */
1912 found_child
->name_put
= false;
1916 audit_copy_inode(found_child
, dentry
, inode
);
1918 found_child
->ino
= (unsigned long)-1;
1920 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1923 * auditsc_get_stamp - get local copies of audit_context values
1924 * @ctx: audit_context for the task
1925 * @t: timespec to store time recorded in the audit_context
1926 * @serial: serial value that is recorded in the audit_context
1928 * Also sets the context as auditable.
1930 int auditsc_get_stamp(struct audit_context
*ctx
,
1931 struct timespec
*t
, unsigned int *serial
)
1933 if (!ctx
->in_syscall
)
1936 ctx
->serial
= audit_serial();
1937 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1938 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1939 *serial
= ctx
->serial
;
1942 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
1947 /* global counter which is incremented every time something logs in */
1948 static atomic_t session_id
= ATOMIC_INIT(0);
1950 static int audit_set_loginuid_perm(kuid_t loginuid
)
1952 /* if we are unset, we don't need privs */
1953 if (!audit_loginuid_set(current
))
1955 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1956 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
1958 /* it is set, you need permission */
1959 if (!capable(CAP_AUDIT_CONTROL
))
1961 /* reject if this is not an unset and we don't allow that */
1962 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
1967 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
1968 unsigned int oldsessionid
, unsigned int sessionid
,
1971 struct audit_buffer
*ab
;
1972 uid_t uid
, oldloginuid
, loginuid
;
1977 uid
= from_kuid(&init_user_ns
, task_uid(current
));
1978 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
1979 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
1981 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1984 audit_log_format(ab
, "pid=%d uid=%u"
1985 " old-auid=%u new-auid=%u old-ses=%u new-ses=%u"
1988 oldloginuid
, loginuid
, oldsessionid
, sessionid
,
1994 * audit_set_loginuid - set current task's audit_context loginuid
1995 * @loginuid: loginuid value
1999 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2001 int audit_set_loginuid(kuid_t loginuid
)
2003 struct task_struct
*task
= current
;
2004 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2008 oldloginuid
= audit_get_loginuid(current
);
2009 oldsessionid
= audit_get_sessionid(current
);
2011 rc
= audit_set_loginuid_perm(loginuid
);
2015 /* are we setting or clearing? */
2016 if (uid_valid(loginuid
))
2017 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2019 task
->sessionid
= sessionid
;
2020 task
->loginuid
= loginuid
;
2022 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2027 * __audit_mq_open - record audit data for a POSIX MQ open
2030 * @attr: queue attributes
2033 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2035 struct audit_context
*context
= current
->audit_context
;
2038 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2040 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2042 context
->mq_open
.oflag
= oflag
;
2043 context
->mq_open
.mode
= mode
;
2045 context
->type
= AUDIT_MQ_OPEN
;
2049 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2050 * @mqdes: MQ descriptor
2051 * @msg_len: Message length
2052 * @msg_prio: Message priority
2053 * @abs_timeout: Message timeout in absolute time
2056 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2057 const struct timespec
*abs_timeout
)
2059 struct audit_context
*context
= current
->audit_context
;
2060 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2063 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2065 memset(p
, 0, sizeof(struct timespec
));
2067 context
->mq_sendrecv
.mqdes
= mqdes
;
2068 context
->mq_sendrecv
.msg_len
= msg_len
;
2069 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2071 context
->type
= AUDIT_MQ_SENDRECV
;
2075 * __audit_mq_notify - record audit data for a POSIX MQ notify
2076 * @mqdes: MQ descriptor
2077 * @notification: Notification event
2081 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2083 struct audit_context
*context
= current
->audit_context
;
2086 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2088 context
->mq_notify
.sigev_signo
= 0;
2090 context
->mq_notify
.mqdes
= mqdes
;
2091 context
->type
= AUDIT_MQ_NOTIFY
;
2095 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2096 * @mqdes: MQ descriptor
2100 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2102 struct audit_context
*context
= current
->audit_context
;
2103 context
->mq_getsetattr
.mqdes
= mqdes
;
2104 context
->mq_getsetattr
.mqstat
= *mqstat
;
2105 context
->type
= AUDIT_MQ_GETSETATTR
;
2109 * audit_ipc_obj - record audit data for ipc object
2110 * @ipcp: ipc permissions
2113 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2115 struct audit_context
*context
= current
->audit_context
;
2116 context
->ipc
.uid
= ipcp
->uid
;
2117 context
->ipc
.gid
= ipcp
->gid
;
2118 context
->ipc
.mode
= ipcp
->mode
;
2119 context
->ipc
.has_perm
= 0;
2120 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2121 context
->type
= AUDIT_IPC
;
2125 * audit_ipc_set_perm - record audit data for new ipc permissions
2126 * @qbytes: msgq bytes
2127 * @uid: msgq user id
2128 * @gid: msgq group id
2129 * @mode: msgq mode (permissions)
2131 * Called only after audit_ipc_obj().
2133 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2135 struct audit_context
*context
= current
->audit_context
;
2137 context
->ipc
.qbytes
= qbytes
;
2138 context
->ipc
.perm_uid
= uid
;
2139 context
->ipc
.perm_gid
= gid
;
2140 context
->ipc
.perm_mode
= mode
;
2141 context
->ipc
.has_perm
= 1;
2144 void __audit_bprm(struct linux_binprm
*bprm
)
2146 struct audit_context
*context
= current
->audit_context
;
2148 context
->type
= AUDIT_EXECVE
;
2149 context
->execve
.argc
= bprm
->argc
;
2154 * audit_socketcall - record audit data for sys_socketcall
2155 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2159 int __audit_socketcall(int nargs
, unsigned long *args
)
2161 struct audit_context
*context
= current
->audit_context
;
2163 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2165 context
->type
= AUDIT_SOCKETCALL
;
2166 context
->socketcall
.nargs
= nargs
;
2167 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2172 * __audit_fd_pair - record audit data for pipe and socketpair
2173 * @fd1: the first file descriptor
2174 * @fd2: the second file descriptor
2177 void __audit_fd_pair(int fd1
, int fd2
)
2179 struct audit_context
*context
= current
->audit_context
;
2180 context
->fds
[0] = fd1
;
2181 context
->fds
[1] = fd2
;
2185 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2186 * @len: data length in user space
2187 * @a: data address in kernel space
2189 * Returns 0 for success or NULL context or < 0 on error.
2191 int __audit_sockaddr(int len
, void *a
)
2193 struct audit_context
*context
= current
->audit_context
;
2195 if (!context
->sockaddr
) {
2196 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2199 context
->sockaddr
= p
;
2202 context
->sockaddr_len
= len
;
2203 memcpy(context
->sockaddr
, a
, len
);
2207 void __audit_ptrace(struct task_struct
*t
)
2209 struct audit_context
*context
= current
->audit_context
;
2211 context
->target_pid
= t
->pid
;
2212 context
->target_auid
= audit_get_loginuid(t
);
2213 context
->target_uid
= task_uid(t
);
2214 context
->target_sessionid
= audit_get_sessionid(t
);
2215 security_task_getsecid(t
, &context
->target_sid
);
2216 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2220 * audit_signal_info - record signal info for shutting down audit subsystem
2221 * @sig: signal value
2222 * @t: task being signaled
2224 * If the audit subsystem is being terminated, record the task (pid)
2225 * and uid that is doing that.
2227 int __audit_signal_info(int sig
, struct task_struct
*t
)
2229 struct audit_aux_data_pids
*axp
;
2230 struct task_struct
*tsk
= current
;
2231 struct audit_context
*ctx
= tsk
->audit_context
;
2232 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2234 if (audit_pid
&& t
->tgid
== audit_pid
) {
2235 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2236 audit_sig_pid
= tsk
->pid
;
2237 if (uid_valid(tsk
->loginuid
))
2238 audit_sig_uid
= tsk
->loginuid
;
2240 audit_sig_uid
= uid
;
2241 security_task_getsecid(tsk
, &audit_sig_sid
);
2243 if (!audit_signals
|| audit_dummy_context())
2247 /* optimize the common case by putting first signal recipient directly
2248 * in audit_context */
2249 if (!ctx
->target_pid
) {
2250 ctx
->target_pid
= t
->tgid
;
2251 ctx
->target_auid
= audit_get_loginuid(t
);
2252 ctx
->target_uid
= t_uid
;
2253 ctx
->target_sessionid
= audit_get_sessionid(t
);
2254 security_task_getsecid(t
, &ctx
->target_sid
);
2255 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2259 axp
= (void *)ctx
->aux_pids
;
2260 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2261 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2265 axp
->d
.type
= AUDIT_OBJ_PID
;
2266 axp
->d
.next
= ctx
->aux_pids
;
2267 ctx
->aux_pids
= (void *)axp
;
2269 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2271 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2272 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2273 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2274 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2275 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2276 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2283 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2284 * @bprm: pointer to the bprm being processed
2285 * @new: the proposed new credentials
2286 * @old: the old credentials
2288 * Simply check if the proc already has the caps given by the file and if not
2289 * store the priv escalation info for later auditing at the end of the syscall
2293 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2294 const struct cred
*new, const struct cred
*old
)
2296 struct audit_aux_data_bprm_fcaps
*ax
;
2297 struct audit_context
*context
= current
->audit_context
;
2298 struct cpu_vfs_cap_data vcaps
;
2299 struct dentry
*dentry
;
2301 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2305 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2306 ax
->d
.next
= context
->aux
;
2307 context
->aux
= (void *)ax
;
2309 dentry
= dget(bprm
->file
->f_dentry
);
2310 get_vfs_caps_from_disk(dentry
, &vcaps
);
2313 ax
->fcap
.permitted
= vcaps
.permitted
;
2314 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2315 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2316 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2318 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2319 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2320 ax
->old_pcap
.effective
= old
->cap_effective
;
2322 ax
->new_pcap
.permitted
= new->cap_permitted
;
2323 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2324 ax
->new_pcap
.effective
= new->cap_effective
;
2329 * __audit_log_capset - store information about the arguments to the capset syscall
2330 * @new: the new credentials
2331 * @old: the old (current) credentials
2333 * Record the aguments userspace sent to sys_capset for later printing by the
2334 * audit system if applicable
2336 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2338 struct audit_context
*context
= current
->audit_context
;
2339 context
->capset
.pid
= task_pid_nr(current
);
2340 context
->capset
.cap
.effective
= new->cap_effective
;
2341 context
->capset
.cap
.inheritable
= new->cap_effective
;
2342 context
->capset
.cap
.permitted
= new->cap_permitted
;
2343 context
->type
= AUDIT_CAPSET
;
2346 void __audit_mmap_fd(int fd
, int flags
)
2348 struct audit_context
*context
= current
->audit_context
;
2349 context
->mmap
.fd
= fd
;
2350 context
->mmap
.flags
= flags
;
2351 context
->type
= AUDIT_MMAP
;
2354 static void audit_log_task(struct audit_buffer
*ab
)
2358 unsigned int sessionid
;
2359 struct mm_struct
*mm
= current
->mm
;
2361 auid
= audit_get_loginuid(current
);
2362 sessionid
= audit_get_sessionid(current
);
2363 current_uid_gid(&uid
, &gid
);
2365 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2366 from_kuid(&init_user_ns
, auid
),
2367 from_kuid(&init_user_ns
, uid
),
2368 from_kgid(&init_user_ns
, gid
),
2370 audit_log_task_context(ab
);
2371 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2372 audit_log_untrustedstring(ab
, current
->comm
);
2374 down_read(&mm
->mmap_sem
);
2376 audit_log_d_path(ab
, " exe=", &mm
->exe_file
->f_path
);
2377 up_read(&mm
->mmap_sem
);
2379 audit_log_format(ab
, " exe=(null)");
2383 * audit_core_dumps - record information about processes that end abnormally
2384 * @signr: signal value
2386 * If a process ends with a core dump, something fishy is going on and we
2387 * should record the event for investigation.
2389 void audit_core_dumps(long signr
)
2391 struct audit_buffer
*ab
;
2396 if (signr
== SIGQUIT
) /* don't care for those */
2399 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2403 audit_log_format(ab
, " sig=%ld", signr
);
2407 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2409 struct audit_buffer
*ab
;
2411 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2415 audit_log_format(ab
, " sig=%ld", signr
);
2416 audit_log_format(ab
, " syscall=%ld", syscall
);
2417 audit_log_format(ab
, " compat=%d", is_compat_task());
2418 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2419 audit_log_format(ab
, " code=0x%x", code
);
2423 struct list_head
*audit_killed_trees(void)
2425 struct audit_context
*ctx
= current
->audit_context
;
2426 if (likely(!ctx
|| !ctx
->in_syscall
))
2428 return &ctx
->killed_trees
;