2 * intel_hdmi_audio.c - Intel HDMI audio driver
4 * Copyright (C) 2016 Intel Corp
5 * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6 * Ramesh Babu K V <ramesh.babu@intel.com>
7 * Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8 * Jerome Anand <jerome.anand@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2 of the License.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21 * ALSA driver for Intel HDMI audio
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
45 #define for_each_pipe(card_ctx, pipe) \
46 for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48 for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index
= SNDRV_DEFAULT_IDX1
;
52 static char *hdmi_card_id
= SNDRV_DEFAULT_STR1
;
54 module_param_named(index
, hdmi_card_index
, int, 0444);
55 MODULE_PARM_DESC(index
,
56 "Index value for INTEL Intel HDMI Audio controller.");
57 module_param_named(id
, hdmi_card_id
, charp
, 0444);
59 "ID string for INTEL Intel HDMI Audio controller.");
62 * ELD SA bits in the CEA Speaker Allocation data block
64 static const int eld_speaker_allocation_bits
[] = {
72 /* the following are not defined in ELD yet */
77 * This is an ordered list!
79 * The preceding ones have better chances to be selected by
80 * hdmi_channel_allocation().
82 static struct cea_channel_speaker_allocation channel_allocations
[] = {
83 /* channel: 7 6 5 4 3 2 1 0 */
84 { .ca_index
= 0x00, .speakers
= { 0, 0, 0, 0, 0, 0, FR
, FL
} },
86 { .ca_index
= 0x01, .speakers
= { 0, 0, 0, 0, 0, LFE
, FR
, FL
} },
88 { .ca_index
= 0x02, .speakers
= { 0, 0, 0, 0, FC
, 0, FR
, FL
} },
90 { .ca_index
= 0x08, .speakers
= { 0, 0, RR
, RL
, 0, 0, FR
, FL
} },
92 { .ca_index
= 0x09, .speakers
= { 0, 0, RR
, RL
, 0, LFE
, FR
, FL
} },
94 { .ca_index
= 0x0a, .speakers
= { 0, 0, RR
, RL
, FC
, 0, FR
, FL
} },
96 { .ca_index
= 0x0b, .speakers
= { 0, 0, RR
, RL
, FC
, LFE
, FR
, FL
} },
98 { .ca_index
= 0x0f, .speakers
= { 0, RC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
100 { .ca_index
= 0x13, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
102 { .ca_index
= 0x03, .speakers
= { 0, 0, 0, 0, FC
, LFE
, FR
, FL
} },
103 { .ca_index
= 0x04, .speakers
= { 0, 0, 0, RC
, 0, 0, FR
, FL
} },
104 { .ca_index
= 0x05, .speakers
= { 0, 0, 0, RC
, 0, LFE
, FR
, FL
} },
105 { .ca_index
= 0x06, .speakers
= { 0, 0, 0, RC
, FC
, 0, FR
, FL
} },
106 { .ca_index
= 0x07, .speakers
= { 0, 0, 0, RC
, FC
, LFE
, FR
, FL
} },
107 { .ca_index
= 0x0c, .speakers
= { 0, RC
, RR
, RL
, 0, 0, FR
, FL
} },
108 { .ca_index
= 0x0d, .speakers
= { 0, RC
, RR
, RL
, 0, LFE
, FR
, FL
} },
109 { .ca_index
= 0x0e, .speakers
= { 0, RC
, RR
, RL
, FC
, 0, FR
, FL
} },
110 { .ca_index
= 0x10, .speakers
= { RRC
, RLC
, RR
, RL
, 0, 0, FR
, FL
} },
111 { .ca_index
= 0x11, .speakers
= { RRC
, RLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
112 { .ca_index
= 0x12, .speakers
= { RRC
, RLC
, RR
, RL
, FC
, 0, FR
, FL
} },
113 { .ca_index
= 0x14, .speakers
= { FRC
, FLC
, 0, 0, 0, 0, FR
, FL
} },
114 { .ca_index
= 0x15, .speakers
= { FRC
, FLC
, 0, 0, 0, LFE
, FR
, FL
} },
115 { .ca_index
= 0x16, .speakers
= { FRC
, FLC
, 0, 0, FC
, 0, FR
, FL
} },
116 { .ca_index
= 0x17, .speakers
= { FRC
, FLC
, 0, 0, FC
, LFE
, FR
, FL
} },
117 { .ca_index
= 0x18, .speakers
= { FRC
, FLC
, 0, RC
, 0, 0, FR
, FL
} },
118 { .ca_index
= 0x19, .speakers
= { FRC
, FLC
, 0, RC
, 0, LFE
, FR
, FL
} },
119 { .ca_index
= 0x1a, .speakers
= { FRC
, FLC
, 0, RC
, FC
, 0, FR
, FL
} },
120 { .ca_index
= 0x1b, .speakers
= { FRC
, FLC
, 0, RC
, FC
, LFE
, FR
, FL
} },
121 { .ca_index
= 0x1c, .speakers
= { FRC
, FLC
, RR
, RL
, 0, 0, FR
, FL
} },
122 { .ca_index
= 0x1d, .speakers
= { FRC
, FLC
, RR
, RL
, 0, LFE
, FR
, FL
} },
123 { .ca_index
= 0x1e, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, 0, FR
, FL
} },
124 { .ca_index
= 0x1f, .speakers
= { FRC
, FLC
, RR
, RL
, FC
, LFE
, FR
, FL
} },
127 static const struct channel_map_table map_tables
[] = {
128 { SNDRV_CHMAP_FL
, 0x00, FL
},
129 { SNDRV_CHMAP_FR
, 0x01, FR
},
130 { SNDRV_CHMAP_RL
, 0x04, RL
},
131 { SNDRV_CHMAP_RR
, 0x05, RR
},
132 { SNDRV_CHMAP_LFE
, 0x02, LFE
},
133 { SNDRV_CHMAP_FC
, 0x03, FC
},
134 { SNDRV_CHMAP_RLC
, 0x06, RLC
},
135 { SNDRV_CHMAP_RRC
, 0x07, RRC
},
139 /* hardware capability structure */
140 static const struct snd_pcm_hardware had_pcm_hardware
= {
141 .info
= (SNDRV_PCM_INFO_INTERLEAVED
|
142 SNDRV_PCM_INFO_MMAP
|
143 SNDRV_PCM_INFO_MMAP_VALID
|
144 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP
),
145 .formats
= (SNDRV_PCM_FMTBIT_S16_LE
|
146 SNDRV_PCM_FMTBIT_S24_LE
|
147 SNDRV_PCM_FMTBIT_S32_LE
),
148 .rates
= SNDRV_PCM_RATE_32000
|
149 SNDRV_PCM_RATE_44100
|
150 SNDRV_PCM_RATE_48000
|
151 SNDRV_PCM_RATE_88200
|
152 SNDRV_PCM_RATE_96000
|
153 SNDRV_PCM_RATE_176400
|
154 SNDRV_PCM_RATE_192000
,
155 .rate_min
= HAD_MIN_RATE
,
156 .rate_max
= HAD_MAX_RATE
,
157 .channels_min
= HAD_MIN_CHANNEL
,
158 .channels_max
= HAD_MAX_CHANNEL
,
159 .buffer_bytes_max
= HAD_MAX_BUFFER
,
160 .period_bytes_min
= HAD_MIN_PERIOD_BYTES
,
161 .period_bytes_max
= HAD_MAX_PERIOD_BYTES
,
162 .periods_min
= HAD_MIN_PERIODS
,
163 .periods_max
= HAD_MAX_PERIODS
,
164 .fifo_size
= HAD_FIFO_SIZE
,
167 /* Get the active PCM substream;
168 * Call had_substream_put() for unreferecing.
169 * Don't call this inside had_spinlock, as it takes by itself
171 static struct snd_pcm_substream
*
172 had_substream_get(struct snd_intelhad
*intelhaddata
)
174 struct snd_pcm_substream
*substream
;
177 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
178 substream
= intelhaddata
->stream_info
.substream
;
180 intelhaddata
->stream_info
.substream_refcount
++;
181 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
185 /* Unref the active PCM substream;
186 * Don't call this inside had_spinlock, as it takes by itself
188 static void had_substream_put(struct snd_intelhad
*intelhaddata
)
192 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
193 intelhaddata
->stream_info
.substream_refcount
--;
194 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
197 static u32
had_config_offset(int pipe
)
202 return AUDIO_HDMI_CONFIG_A
;
204 return AUDIO_HDMI_CONFIG_B
;
206 return AUDIO_HDMI_CONFIG_C
;
210 /* Register access functions */
211 static u32
had_read_register_raw(struct snd_intelhad_card
*card_ctx
,
214 return ioread32(card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
217 static void had_write_register_raw(struct snd_intelhad_card
*card_ctx
,
218 int pipe
, u32 reg
, u32 val
)
220 iowrite32(val
, card_ctx
->mmio_start
+ had_config_offset(pipe
) + reg
);
223 static void had_read_register(struct snd_intelhad
*ctx
, u32 reg
, u32
*val
)
228 *val
= had_read_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
);
231 static void had_write_register(struct snd_intelhad
*ctx
, u32 reg
, u32 val
)
234 had_write_register_raw(ctx
->card_ctx
, ctx
->pipe
, reg
, val
);
238 * enable / disable audio configuration
240 * The normal read/modify should not directly be used on VLV2 for
241 * updating AUD_CONFIG register.
243 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
244 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
245 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
246 * register. This field should be 1xy binary for configuration with 6 or
247 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
248 * causes the "channels" field to be updated as 0xy binary resulting in
249 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
250 * appropriate value when doing read-modify of AUD_CONFIG register.
252 static void had_enable_audio(struct snd_intelhad
*intelhaddata
,
255 /* update the cached value */
256 intelhaddata
->aud_config
.regx
.aud_en
= enable
;
257 had_write_register(intelhaddata
, AUD_CONFIG
,
258 intelhaddata
->aud_config
.regval
);
261 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
262 static void had_ack_irqs(struct snd_intelhad
*ctx
)
268 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
269 status_reg
|= HDMI_AUDIO_BUFFER_DONE
| HDMI_AUDIO_UNDERRUN
;
270 had_write_register(ctx
, AUD_HDMI_STATUS
, status_reg
);
271 had_read_register(ctx
, AUD_HDMI_STATUS
, &status_reg
);
274 /* Reset buffer pointers */
275 static void had_reset_audio(struct snd_intelhad
*intelhaddata
)
277 had_write_register(intelhaddata
, AUD_HDMI_STATUS
,
278 AUD_HDMI_STATUSG_MASK_FUNCRST
);
279 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, 0);
283 * initialize audio channel status registers
284 * This function is called in the prepare callback
286 static int had_prog_status_reg(struct snd_pcm_substream
*substream
,
287 struct snd_intelhad
*intelhaddata
)
289 union aud_cfg cfg_val
= {.regval
= 0};
290 union aud_ch_status_0 ch_stat0
= {.regval
= 0};
291 union aud_ch_status_1 ch_stat1
= {.regval
= 0};
293 ch_stat0
.regx
.lpcm_id
= (intelhaddata
->aes_bits
&
294 IEC958_AES0_NONAUDIO
) >> 1;
295 ch_stat0
.regx
.clk_acc
= (intelhaddata
->aes_bits
&
296 IEC958_AES3_CON_CLOCK
) >> 4;
297 cfg_val
.regx
.val_bit
= ch_stat0
.regx
.lpcm_id
;
299 switch (substream
->runtime
->rate
) {
300 case AUD_SAMPLE_RATE_32
:
301 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_32KHZ
;
304 case AUD_SAMPLE_RATE_44_1
:
305 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_44KHZ
;
307 case AUD_SAMPLE_RATE_48
:
308 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_48KHZ
;
310 case AUD_SAMPLE_RATE_88_2
:
311 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_88KHZ
;
313 case AUD_SAMPLE_RATE_96
:
314 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_96KHZ
;
316 case AUD_SAMPLE_RATE_176_4
:
317 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_176KHZ
;
319 case AUD_SAMPLE_RATE_192
:
320 ch_stat0
.regx
.samp_freq
= CH_STATUS_MAP_192KHZ
;
324 /* control should never come here */
328 had_write_register(intelhaddata
,
329 AUD_CH_STATUS_0
, ch_stat0
.regval
);
331 switch (substream
->runtime
->format
) {
332 case SNDRV_PCM_FORMAT_S16_LE
:
333 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_20
;
334 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_16BITS
;
336 case SNDRV_PCM_FORMAT_S24_LE
:
337 case SNDRV_PCM_FORMAT_S32_LE
:
338 ch_stat1
.regx
.max_wrd_len
= MAX_SMPL_WIDTH_24
;
339 ch_stat1
.regx
.wrd_len
= SMPL_WIDTH_24BITS
;
345 had_write_register(intelhaddata
,
346 AUD_CH_STATUS_1
, ch_stat1
.regval
);
351 * function to initialize audio
352 * registers and buffer confgiuration registers
353 * This function is called in the prepare callback
355 static int had_init_audio_ctrl(struct snd_pcm_substream
*substream
,
356 struct snd_intelhad
*intelhaddata
)
358 union aud_cfg cfg_val
= {.regval
= 0};
359 union aud_buf_config buf_cfg
= {.regval
= 0};
362 had_prog_status_reg(substream
, intelhaddata
);
364 buf_cfg
.regx
.audio_fifo_watermark
= FIFO_THRESHOLD
;
365 buf_cfg
.regx
.dma_fifo_watermark
= DMA_FIFO_THRESHOLD
;
366 buf_cfg
.regx
.aud_delay
= 0;
367 had_write_register(intelhaddata
, AUD_BUF_CONFIG
, buf_cfg
.regval
);
369 channels
= substream
->runtime
->channels
;
370 cfg_val
.regx
.num_ch
= channels
- 2;
372 cfg_val
.regx
.layout
= LAYOUT0
;
374 cfg_val
.regx
.layout
= LAYOUT1
;
376 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S16_LE
)
377 cfg_val
.regx
.packet_mode
= 1;
379 if (substream
->runtime
->format
== SNDRV_PCM_FORMAT_S32_LE
)
380 cfg_val
.regx
.left_align
= 1;
382 cfg_val
.regx
.val_bit
= 1;
384 /* fix up the DP bits */
385 if (intelhaddata
->dp_output
) {
386 cfg_val
.regx
.dp_modei
= 1;
387 cfg_val
.regx
.set
= 1;
390 had_write_register(intelhaddata
, AUD_CONFIG
, cfg_val
.regval
);
391 intelhaddata
->aud_config
= cfg_val
;
396 * Compute derived values in channel_allocations[].
398 static void init_channel_allocations(void)
401 struct cea_channel_speaker_allocation
*p
;
403 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
404 p
= channel_allocations
+ i
;
407 for (j
= 0; j
< ARRAY_SIZE(p
->speakers
); j
++)
408 if (p
->speakers
[j
]) {
410 p
->spk_mask
|= p
->speakers
[j
];
416 * The transformation takes two steps:
418 * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
419 * spk_mask => (channel_allocations[]) => ai->CA
421 * TODO: it could select the wrong CA from multiple candidates.
423 static int had_channel_allocation(struct snd_intelhad
*intelhaddata
,
431 * CA defaults to 0 for basic stereo audio
437 * expand ELD's speaker allocation mask
439 * ELD tells the speaker mask in a compact(paired) form,
440 * expand ELD's notions to match the ones used by Audio InfoFrame.
443 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
444 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
445 spk_mask
|= eld_speaker_allocation_bits
[i
];
448 /* search for the first working match in the CA table */
449 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
450 if (channels
== channel_allocations
[i
].channels
&&
451 (spk_mask
& channel_allocations
[i
].spk_mask
) ==
452 channel_allocations
[i
].spk_mask
) {
453 ca
= channel_allocations
[i
].ca_index
;
458 dev_dbg(intelhaddata
->dev
, "select CA 0x%x for %d\n", ca
, channels
);
463 /* from speaker bit mask to ALSA API channel position */
464 static int spk_to_chmap(int spk
)
466 const struct channel_map_table
*t
= map_tables
;
468 for (; t
->map
; t
++) {
469 if (t
->spk_mask
== spk
)
475 static void had_build_channel_allocation_map(struct snd_intelhad
*intelhaddata
)
479 struct snd_pcm_chmap_elem
*chmap
;
480 u8 eld_high
, eld_high_mask
= 0xF0;
483 kfree(intelhaddata
->chmap
->chmap
);
484 intelhaddata
->chmap
->chmap
= NULL
;
486 chmap
= kzalloc(sizeof(*chmap
), GFP_KERNEL
);
490 dev_dbg(intelhaddata
->dev
, "eld speaker = %x\n",
491 intelhaddata
->eld
[DRM_ELD_SPEAKER
]);
493 /* WA: Fix the max channel supported to 8 */
496 * Sink may support more than 8 channels, if eld_high has more than
497 * one bit set. SOC supports max 8 channels.
498 * Refer eld_speaker_allocation_bits, for sink speaker allocation
501 /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
502 eld_high
= intelhaddata
->eld
[DRM_ELD_SPEAKER
] & eld_high_mask
;
503 if ((eld_high
& (eld_high
-1)) && (eld_high
> 0x1F)) {
504 /* eld_high & (eld_high-1): if more than 1 bit set */
505 /* 0x1F: 7 channels */
506 for (i
= 1; i
< 4; i
++) {
507 high_msb
= eld_high
& (0x80 >> i
);
509 intelhaddata
->eld
[DRM_ELD_SPEAKER
] &=
516 for (i
= 0; i
< ARRAY_SIZE(eld_speaker_allocation_bits
); i
++) {
517 if (intelhaddata
->eld
[DRM_ELD_SPEAKER
] & (1 << i
))
518 spk_mask
|= eld_speaker_allocation_bits
[i
];
521 for (i
= 0; i
< ARRAY_SIZE(channel_allocations
); i
++) {
522 if (spk_mask
== channel_allocations
[i
].spk_mask
) {
523 for (c
= 0; c
< channel_allocations
[i
].channels
; c
++) {
524 chmap
->map
[c
] = spk_to_chmap(
525 channel_allocations
[i
].speakers
[
526 (MAX_SPEAKERS
- 1) - c
]);
528 chmap
->channels
= channel_allocations
[i
].channels
;
529 intelhaddata
->chmap
->chmap
= chmap
;
533 if (i
>= ARRAY_SIZE(channel_allocations
))
538 * ALSA API channel-map control callbacks
540 static int had_chmap_ctl_info(struct snd_kcontrol
*kcontrol
,
541 struct snd_ctl_elem_info
*uinfo
)
543 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
544 uinfo
->count
= HAD_MAX_CHANNEL
;
545 uinfo
->value
.integer
.min
= 0;
546 uinfo
->value
.integer
.max
= SNDRV_CHMAP_LAST
;
550 static int had_chmap_ctl_get(struct snd_kcontrol
*kcontrol
,
551 struct snd_ctl_elem_value
*ucontrol
)
553 struct snd_pcm_chmap
*info
= snd_kcontrol_chip(kcontrol
);
554 struct snd_intelhad
*intelhaddata
= info
->private_data
;
556 const struct snd_pcm_chmap_elem
*chmap
;
558 memset(ucontrol
->value
.integer
.value
, 0,
559 sizeof(long) * HAD_MAX_CHANNEL
);
560 mutex_lock(&intelhaddata
->mutex
);
561 if (!intelhaddata
->chmap
->chmap
) {
562 mutex_unlock(&intelhaddata
->mutex
);
566 chmap
= intelhaddata
->chmap
->chmap
;
567 for (i
= 0; i
< chmap
->channels
; i
++)
568 ucontrol
->value
.integer
.value
[i
] = chmap
->map
[i
];
569 mutex_unlock(&intelhaddata
->mutex
);
574 static int had_register_chmap_ctls(struct snd_intelhad
*intelhaddata
,
579 err
= snd_pcm_add_chmap_ctls(pcm
, SNDRV_PCM_STREAM_PLAYBACK
,
580 NULL
, 0, (unsigned long)intelhaddata
,
581 &intelhaddata
->chmap
);
585 intelhaddata
->chmap
->private_data
= intelhaddata
;
586 intelhaddata
->chmap
->kctl
->info
= had_chmap_ctl_info
;
587 intelhaddata
->chmap
->kctl
->get
= had_chmap_ctl_get
;
588 intelhaddata
->chmap
->chmap
= NULL
;
593 * Initialize Data Island Packets registers
594 * This function is called in the prepare callback
596 static void had_prog_dip(struct snd_pcm_substream
*substream
,
597 struct snd_intelhad
*intelhaddata
)
600 union aud_ctrl_st ctrl_state
= {.regval
= 0};
601 union aud_info_frame2 frame2
= {.regval
= 0};
602 union aud_info_frame3 frame3
= {.regval
= 0};
608 channels
= substream
->runtime
->channels
;
610 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
612 ca
= had_channel_allocation(intelhaddata
, channels
);
613 if (intelhaddata
->dp_output
) {
614 info_frame
= DP_INFO_FRAME_WORD1
;
615 frame2
.regval
= (substream
->runtime
->channels
- 1) | (ca
<< 24);
617 info_frame
= HDMI_INFO_FRAME_WORD1
;
618 frame2
.regx
.chnl_cnt
= substream
->runtime
->channels
- 1;
619 frame3
.regx
.chnl_alloc
= ca
;
621 /* Calculte the byte wide checksum for all valid DIP words */
622 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
623 checksum
+= (info_frame
>> (i
* 8)) & 0xff;
624 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
625 checksum
+= (frame2
.regval
>> (i
* 8)) & 0xff;
626 for (i
= 0; i
< BYTES_PER_WORD
; i
++)
627 checksum
+= (frame3
.regval
>> (i
* 8)) & 0xff;
629 frame2
.regx
.chksum
= -(checksum
);
632 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, info_frame
);
633 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame2
.regval
);
634 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, frame3
.regval
);
636 /* program remaining DIP words with zero */
637 for (i
= 0; i
< HAD_MAX_DIP_WORDS
-VALID_DIP_WORDS
; i
++)
638 had_write_register(intelhaddata
, AUD_HDMIW_INFOFR
, 0x0);
640 ctrl_state
.regx
.dip_freq
= 1;
641 ctrl_state
.regx
.dip_en_sta
= 1;
642 had_write_register(intelhaddata
, AUD_CNTL_ST
, ctrl_state
.regval
);
645 static int had_calculate_maud_value(u32 aud_samp_freq
, u32 link_rate
)
649 /* Select maud according to DP 1.2 spec */
650 if (link_rate
== DP_2_7_GHZ
) {
651 switch (aud_samp_freq
) {
652 case AUD_SAMPLE_RATE_32
:
653 maud_val
= AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL
;
656 case AUD_SAMPLE_RATE_44_1
:
657 maud_val
= AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL
;
660 case AUD_SAMPLE_RATE_48
:
661 maud_val
= AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL
;
664 case AUD_SAMPLE_RATE_88_2
:
665 maud_val
= AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL
;
668 case AUD_SAMPLE_RATE_96
:
669 maud_val
= AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL
;
672 case AUD_SAMPLE_RATE_176_4
:
673 maud_val
= AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL
;
677 maud_val
= HAD_MAX_RATE_DP_2_7_MAUD_VAL
;
684 } else if (link_rate
== DP_1_62_GHZ
) {
685 switch (aud_samp_freq
) {
686 case AUD_SAMPLE_RATE_32
:
687 maud_val
= AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL
;
690 case AUD_SAMPLE_RATE_44_1
:
691 maud_val
= AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL
;
694 case AUD_SAMPLE_RATE_48
:
695 maud_val
= AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL
;
698 case AUD_SAMPLE_RATE_88_2
:
699 maud_val
= AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL
;
702 case AUD_SAMPLE_RATE_96
:
703 maud_val
= AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL
;
706 case AUD_SAMPLE_RATE_176_4
:
707 maud_val
= AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL
;
711 maud_val
= HAD_MAX_RATE_DP_1_62_MAUD_VAL
;
725 * Program HDMI audio CTS value
727 * @aud_samp_freq: sampling frequency of audio data
728 * @tmds: sampling frequency of the display data
729 * @link_rate: DP link rate
730 * @n_param: N value, depends on aud_samp_freq
731 * @intelhaddata: substream private data
733 * Program CTS register based on the audio and display sampling frequency
735 static void had_prog_cts(u32 aud_samp_freq
, u32 tmds
, u32 link_rate
,
736 u32 n_param
, struct snd_intelhad
*intelhaddata
)
739 u64 dividend
, divisor
;
741 if (intelhaddata
->dp_output
) {
742 /* Substitute cts_val with Maud according to DP 1.2 spec*/
743 cts_val
= had_calculate_maud_value(aud_samp_freq
, link_rate
);
745 /* Calculate CTS according to HDMI 1.3a spec*/
746 dividend
= (u64
)tmds
* n_param
*1000;
747 divisor
= 128 * aud_samp_freq
;
748 cts_val
= div64_u64(dividend
, divisor
);
750 dev_dbg(intelhaddata
->dev
, "TMDS value=%d, N value=%d, CTS Value=%d\n",
751 tmds
, n_param
, cts_val
);
752 had_write_register(intelhaddata
, AUD_HDMI_CTS
, (BIT(24) | cts_val
));
755 static int had_calculate_n_value(u32 aud_samp_freq
)
759 /* Select N according to HDMI 1.3a spec*/
760 switch (aud_samp_freq
) {
761 case AUD_SAMPLE_RATE_32
:
765 case AUD_SAMPLE_RATE_44_1
:
769 case AUD_SAMPLE_RATE_48
:
773 case AUD_SAMPLE_RATE_88_2
:
777 case AUD_SAMPLE_RATE_96
:
781 case AUD_SAMPLE_RATE_176_4
:
797 * Program HDMI audio N value
799 * @aud_samp_freq: sampling frequency of audio data
800 * @n_param: N value, depends on aud_samp_freq
801 * @intelhaddata: substream private data
803 * This function is called in the prepare callback.
804 * It programs based on the audio and display sampling frequency
806 static int had_prog_n(u32 aud_samp_freq
, u32
*n_param
,
807 struct snd_intelhad
*intelhaddata
)
811 if (intelhaddata
->dp_output
) {
813 * According to DP specs, Maud and Naud values hold
814 * a relationship, which is stated as:
815 * Maud/Naud = 512 * fs / f_LS_Clk
816 * where, fs is the sampling frequency of the audio stream
817 * and Naud is 32768 for Async clock.
822 n_val
= had_calculate_n_value(aud_samp_freq
);
827 had_write_register(intelhaddata
, AUD_N_ENABLE
, (BIT(24) | n_val
));
833 * PCM ring buffer handling
835 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
836 * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping
837 * moves at each period elapsed. The below illustrates how it works:
840 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
841 * BD | 0 | 1 | 2 | 3 |
843 * At time=1 (period elapsed)
844 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845 * BD | 1 | 2 | 3 | 0 |
847 * At time=2 (second period elapsed)
848 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849 * BD | 2 | 3 | 0 | 1 |
851 * The bd_head field points to the index of the BD to be read. It's also the
852 * position to be filled at next. The pcm_head and the pcm_filled fields
853 * point to the indices of the current position and of the next position to
854 * be filled, respectively. For PCM buffer there are both _head and _filled
855 * because they may be difference when nperiods > 4. For example, in the
856 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
858 * pcm_head (=1) --v v-- pcm_filled (=5)
859 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
860 * BD | 1 | 2 | 3 | 0 |
861 * bd_head (=1) --^ ^-- next to fill (= bd_head)
863 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
864 * the hardware skips those BDs in the loop.
866 * An exceptional setup is the case with nperiods=1. Since we have to update
867 * BDs after finishing one BD processing, we'd need at least two BDs, where
868 * both BDs point to the same content, the same address, the same size of the
872 #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
873 #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
875 /* Set up a buffer descriptor at the "filled" position */
876 static void had_prog_bd(struct snd_pcm_substream
*substream
,
877 struct snd_intelhad
*intelhaddata
)
879 int idx
= intelhaddata
->bd_head
;
880 int ofs
= intelhaddata
->pcmbuf_filled
* intelhaddata
->period_bytes
;
881 u32 addr
= substream
->runtime
->dma_addr
+ ofs
;
883 addr
|= AUD_BUF_VALID
;
884 if (!substream
->runtime
->no_period_wakeup
)
885 addr
|= AUD_BUF_INTR_EN
;
886 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), addr
);
887 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
),
888 intelhaddata
->period_bytes
);
890 /* advance the indices to the next */
891 intelhaddata
->bd_head
++;
892 intelhaddata
->bd_head
%= intelhaddata
->num_bds
;
893 intelhaddata
->pcmbuf_filled
++;
894 intelhaddata
->pcmbuf_filled
%= substream
->runtime
->periods
;
897 /* invalidate a buffer descriptor with the given index */
898 static void had_invalidate_bd(struct snd_intelhad
*intelhaddata
,
901 had_write_register(intelhaddata
, AUD_BUF_ADDR(idx
), 0);
902 had_write_register(intelhaddata
, AUD_BUF_LEN(idx
), 0);
905 /* Initial programming of ring buffer */
906 static void had_init_ringbuf(struct snd_pcm_substream
*substream
,
907 struct snd_intelhad
*intelhaddata
)
909 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
912 num_periods
= runtime
->periods
;
913 intelhaddata
->num_bds
= min(num_periods
, HAD_NUM_OF_RING_BUFS
);
914 /* set the minimum 2 BDs for num_periods=1 */
915 intelhaddata
->num_bds
= max(intelhaddata
->num_bds
, 2U);
916 intelhaddata
->period_bytes
=
917 frames_to_bytes(runtime
, runtime
->period_size
);
918 WARN_ON(intelhaddata
->period_bytes
& 0x3f);
920 intelhaddata
->bd_head
= 0;
921 intelhaddata
->pcmbuf_head
= 0;
922 intelhaddata
->pcmbuf_filled
= 0;
924 for (i
= 0; i
< HAD_NUM_OF_RING_BUFS
; i
++) {
925 if (i
< intelhaddata
->num_bds
)
926 had_prog_bd(substream
, intelhaddata
);
927 else /* invalidate the rest */
928 had_invalidate_bd(intelhaddata
, i
);
931 intelhaddata
->bd_head
= 0; /* reset at head again before starting */
934 /* process a bd, advance to the next */
935 static void had_advance_ringbuf(struct snd_pcm_substream
*substream
,
936 struct snd_intelhad
*intelhaddata
)
938 int num_periods
= substream
->runtime
->periods
;
940 /* reprogram the next buffer */
941 had_prog_bd(substream
, intelhaddata
);
943 /* proceed to next */
944 intelhaddata
->pcmbuf_head
++;
945 intelhaddata
->pcmbuf_head
%= num_periods
;
948 /* process the current BD(s);
949 * returns the current PCM buffer byte position, or -EPIPE for underrun.
951 static int had_process_ringbuf(struct snd_pcm_substream
*substream
,
952 struct snd_intelhad
*intelhaddata
)
958 spin_lock_irqsave(&intelhaddata
->had_spinlock
, flags
);
960 /* get the remaining bytes on the buffer */
961 had_read_register(intelhaddata
,
962 AUD_BUF_LEN(intelhaddata
->bd_head
),
964 if (len
< 0 || len
> intelhaddata
->period_bytes
) {
965 dev_dbg(intelhaddata
->dev
, "Invalid buf length %d\n",
971 if (len
> 0) /* OK, this is the current buffer */
974 /* len=0 => already empty, check the next buffer */
975 if (++processed
>= intelhaddata
->num_bds
) {
976 len
= -EPIPE
; /* all empty? - report underrun */
979 had_advance_ringbuf(substream
, intelhaddata
);
982 len
= intelhaddata
->period_bytes
- len
;
983 len
+= intelhaddata
->period_bytes
* intelhaddata
->pcmbuf_head
;
985 spin_unlock_irqrestore(&intelhaddata
->had_spinlock
, flags
);
989 /* called from irq handler */
990 static void had_process_buffer_done(struct snd_intelhad
*intelhaddata
)
992 struct snd_pcm_substream
*substream
;
994 substream
= had_substream_get(intelhaddata
);
996 return; /* no stream? - bail out */
998 if (!intelhaddata
->connected
) {
999 snd_pcm_stop_xrun(substream
);
1000 goto out
; /* disconnected? - bail out */
1003 /* process or stop the stream */
1004 if (had_process_ringbuf(substream
, intelhaddata
) < 0)
1005 snd_pcm_stop_xrun(substream
);
1007 snd_pcm_period_elapsed(substream
);
1010 had_substream_put(intelhaddata
);
1014 * The interrupt status 'sticky' bits might not be cleared by
1015 * setting '1' to that bit once...
1017 static void wait_clear_underrun_bit(struct snd_intelhad
*intelhaddata
)
1022 for (i
= 0; i
< 100; i
++) {
1023 /* clear bit30, 31 AUD_HDMI_STATUS */
1024 had_read_register(intelhaddata
, AUD_HDMI_STATUS
, &val
);
1025 if (!(val
& AUD_HDMI_STATUS_MASK_UNDERRUN
))
1029 had_write_register(intelhaddata
, AUD_HDMI_STATUS
, val
);
1031 dev_err(intelhaddata
->dev
, "Unable to clear UNDERRUN bits\n");
1034 /* Perform some reset procedure but only when need_reset is set;
1035 * this is called from prepare or hw_free callbacks once after trigger STOP
1036 * or underrun has been processed in order to settle down the h/w state.
1038 static void had_do_reset(struct snd_intelhad
*intelhaddata
)
1040 if (!intelhaddata
->need_reset
|| !intelhaddata
->connected
)
1043 /* Reset buffer pointers */
1044 had_reset_audio(intelhaddata
);
1045 wait_clear_underrun_bit(intelhaddata
);
1046 intelhaddata
->need_reset
= false;
1049 /* called from irq handler */
1050 static void had_process_buffer_underrun(struct snd_intelhad
*intelhaddata
)
1052 struct snd_pcm_substream
*substream
;
1054 /* Report UNDERRUN error to above layers */
1055 substream
= had_substream_get(intelhaddata
);
1057 snd_pcm_stop_xrun(substream
);
1058 had_substream_put(intelhaddata
);
1060 intelhaddata
->need_reset
= true;
1064 * ALSA PCM open callback
1066 static int had_pcm_open(struct snd_pcm_substream
*substream
)
1068 struct snd_intelhad
*intelhaddata
;
1069 struct snd_pcm_runtime
*runtime
;
1072 intelhaddata
= snd_pcm_substream_chip(substream
);
1073 runtime
= substream
->runtime
;
1075 pm_runtime_get_sync(intelhaddata
->dev
);
1077 /* set the runtime hw parameter with local snd_pcm_hardware struct */
1078 runtime
->hw
= had_pcm_hardware
;
1080 retval
= snd_pcm_hw_constraint_integer(runtime
,
1081 SNDRV_PCM_HW_PARAM_PERIODS
);
1085 /* Make sure, that the period size is always aligned
1088 retval
= snd_pcm_hw_constraint_step(substream
->runtime
, 0,
1089 SNDRV_PCM_HW_PARAM_PERIOD_BYTES
, 64);
1093 retval
= snd_pcm_hw_constraint_msbits(runtime
, 0, 32, 24);
1097 /* expose PCM substream */
1098 spin_lock_irq(&intelhaddata
->had_spinlock
);
1099 intelhaddata
->stream_info
.substream
= substream
;
1100 intelhaddata
->stream_info
.substream_refcount
++;
1101 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1105 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1106 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1111 * ALSA PCM close callback
1113 static int had_pcm_close(struct snd_pcm_substream
*substream
)
1115 struct snd_intelhad
*intelhaddata
;
1117 intelhaddata
= snd_pcm_substream_chip(substream
);
1119 /* unreference and sync with the pending PCM accesses */
1120 spin_lock_irq(&intelhaddata
->had_spinlock
);
1121 intelhaddata
->stream_info
.substream
= NULL
;
1122 intelhaddata
->stream_info
.substream_refcount
--;
1123 while (intelhaddata
->stream_info
.substream_refcount
> 0) {
1124 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1126 spin_lock_irq(&intelhaddata
->had_spinlock
);
1128 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1130 pm_runtime_mark_last_busy(intelhaddata
->dev
);
1131 pm_runtime_put_autosuspend(intelhaddata
->dev
);
1136 * ALSA PCM hw_params callback
1138 static int had_pcm_hw_params(struct snd_pcm_substream
*substream
,
1139 struct snd_pcm_hw_params
*hw_params
)
1141 struct snd_intelhad
*intelhaddata
;
1143 int pages
, buf_size
, retval
;
1145 intelhaddata
= snd_pcm_substream_chip(substream
);
1146 buf_size
= params_buffer_bytes(hw_params
);
1147 retval
= snd_pcm_lib_malloc_pages(substream
, buf_size
);
1150 dev_dbg(intelhaddata
->dev
, "%s:allocated memory = %d\n",
1151 __func__
, buf_size
);
1152 /* mark the pages as uncached region */
1153 addr
= (unsigned long) substream
->runtime
->dma_area
;
1154 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1155 retval
= set_memory_uc(addr
, pages
);
1157 dev_err(intelhaddata
->dev
, "set_memory_uc failed.Error:%d\n",
1161 memset(substream
->runtime
->dma_area
, 0, buf_size
);
1167 * ALSA PCM hw_free callback
1169 static int had_pcm_hw_free(struct snd_pcm_substream
*substream
)
1171 struct snd_intelhad
*intelhaddata
;
1175 intelhaddata
= snd_pcm_substream_chip(substream
);
1176 had_do_reset(intelhaddata
);
1178 /* mark back the pages as cached/writeback region before the free */
1179 if (substream
->runtime
->dma_area
!= NULL
) {
1180 addr
= (unsigned long) substream
->runtime
->dma_area
;
1181 pages
= (substream
->runtime
->dma_bytes
+ PAGE_SIZE
- 1) /
1183 set_memory_wb(addr
, pages
);
1184 return snd_pcm_lib_free_pages(substream
);
1190 * ALSA PCM trigger callback
1192 static int had_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
1195 struct snd_intelhad
*intelhaddata
;
1197 intelhaddata
= snd_pcm_substream_chip(substream
);
1199 spin_lock(&intelhaddata
->had_spinlock
);
1201 case SNDRV_PCM_TRIGGER_START
:
1202 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1203 case SNDRV_PCM_TRIGGER_RESUME
:
1205 had_ack_irqs(intelhaddata
); /* FIXME: do we need this? */
1206 had_enable_audio(intelhaddata
, true);
1209 case SNDRV_PCM_TRIGGER_STOP
:
1210 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1212 had_enable_audio(intelhaddata
, false);
1213 intelhaddata
->need_reset
= true;
1219 spin_unlock(&intelhaddata
->had_spinlock
);
1224 * ALSA PCM prepare callback
1226 static int had_pcm_prepare(struct snd_pcm_substream
*substream
)
1229 u32 disp_samp_freq
, n_param
;
1231 struct snd_intelhad
*intelhaddata
;
1232 struct snd_pcm_runtime
*runtime
;
1234 intelhaddata
= snd_pcm_substream_chip(substream
);
1235 runtime
= substream
->runtime
;
1237 dev_dbg(intelhaddata
->dev
, "period_size=%d\n",
1238 (int)frames_to_bytes(runtime
, runtime
->period_size
));
1239 dev_dbg(intelhaddata
->dev
, "periods=%d\n", runtime
->periods
);
1240 dev_dbg(intelhaddata
->dev
, "buffer_size=%d\n",
1241 (int)snd_pcm_lib_buffer_bytes(substream
));
1242 dev_dbg(intelhaddata
->dev
, "rate=%d\n", runtime
->rate
);
1243 dev_dbg(intelhaddata
->dev
, "channels=%d\n", runtime
->channels
);
1245 had_do_reset(intelhaddata
);
1247 /* Get N value in KHz */
1248 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1250 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1252 dev_err(intelhaddata
->dev
,
1253 "programming N value failed %#x\n", retval
);
1257 if (intelhaddata
->dp_output
)
1258 link_rate
= intelhaddata
->link_rate
;
1260 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1261 n_param
, intelhaddata
);
1263 had_prog_dip(substream
, intelhaddata
);
1265 retval
= had_init_audio_ctrl(substream
, intelhaddata
);
1267 /* Prog buffer address */
1268 had_init_ringbuf(substream
, intelhaddata
);
1271 * Program channel mapping in following order:
1272 * FL, FR, C, LFE, RL, RR
1275 had_write_register(intelhaddata
, AUD_BUF_CH_SWAP
, SWAP_LFE_CENTER
);
1282 * ALSA PCM pointer callback
1284 static snd_pcm_uframes_t
had_pcm_pointer(struct snd_pcm_substream
*substream
)
1286 struct snd_intelhad
*intelhaddata
;
1289 intelhaddata
= snd_pcm_substream_chip(substream
);
1291 if (!intelhaddata
->connected
)
1292 return SNDRV_PCM_POS_XRUN
;
1294 len
= had_process_ringbuf(substream
, intelhaddata
);
1296 return SNDRV_PCM_POS_XRUN
;
1297 len
= bytes_to_frames(substream
->runtime
, len
);
1298 /* wrapping may happen when periods=1 */
1299 len
%= substream
->runtime
->buffer_size
;
1304 * ALSA PCM mmap callback
1306 static int had_pcm_mmap(struct snd_pcm_substream
*substream
,
1307 struct vm_area_struct
*vma
)
1309 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1310 return remap_pfn_range(vma
, vma
->vm_start
,
1311 substream
->dma_buffer
.addr
>> PAGE_SHIFT
,
1312 vma
->vm_end
- vma
->vm_start
, vma
->vm_page_prot
);
1318 static const struct snd_pcm_ops had_pcm_ops
= {
1319 .open
= had_pcm_open
,
1320 .close
= had_pcm_close
,
1321 .ioctl
= snd_pcm_lib_ioctl
,
1322 .hw_params
= had_pcm_hw_params
,
1323 .hw_free
= had_pcm_hw_free
,
1324 .prepare
= had_pcm_prepare
,
1325 .trigger
= had_pcm_trigger
,
1326 .pointer
= had_pcm_pointer
,
1327 .mmap
= had_pcm_mmap
,
1330 /* process mode change of the running stream; called in mutex */
1331 static int had_process_mode_change(struct snd_intelhad
*intelhaddata
)
1333 struct snd_pcm_substream
*substream
;
1335 u32 disp_samp_freq
, n_param
;
1338 substream
= had_substream_get(intelhaddata
);
1343 had_enable_audio(intelhaddata
, false);
1345 /* Update CTS value */
1346 disp_samp_freq
= intelhaddata
->tmds_clock_speed
;
1348 retval
= had_prog_n(substream
->runtime
->rate
, &n_param
, intelhaddata
);
1350 dev_err(intelhaddata
->dev
,
1351 "programming N value failed %#x\n", retval
);
1355 if (intelhaddata
->dp_output
)
1356 link_rate
= intelhaddata
->link_rate
;
1358 had_prog_cts(substream
->runtime
->rate
, disp_samp_freq
, link_rate
,
1359 n_param
, intelhaddata
);
1362 had_enable_audio(intelhaddata
, true);
1365 had_substream_put(intelhaddata
);
1369 /* process hot plug, called from wq with mutex locked */
1370 static void had_process_hot_plug(struct snd_intelhad
*intelhaddata
)
1372 struct snd_pcm_substream
*substream
;
1374 spin_lock_irq(&intelhaddata
->had_spinlock
);
1375 if (intelhaddata
->connected
) {
1376 dev_dbg(intelhaddata
->dev
, "Device already connected\n");
1377 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1382 had_enable_audio(intelhaddata
, false);
1384 intelhaddata
->connected
= true;
1385 dev_dbg(intelhaddata
->dev
,
1386 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1387 __func__
, __LINE__
);
1388 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1390 had_build_channel_allocation_map(intelhaddata
);
1392 /* Report to above ALSA layer */
1393 substream
= had_substream_get(intelhaddata
);
1395 snd_pcm_stop_xrun(substream
);
1396 had_substream_put(intelhaddata
);
1399 snd_jack_report(intelhaddata
->jack
, SND_JACK_AVOUT
);
1402 /* process hot unplug, called from wq with mutex locked */
1403 static void had_process_hot_unplug(struct snd_intelhad
*intelhaddata
)
1405 struct snd_pcm_substream
*substream
;
1407 spin_lock_irq(&intelhaddata
->had_spinlock
);
1408 if (!intelhaddata
->connected
) {
1409 dev_dbg(intelhaddata
->dev
, "Device already disconnected\n");
1410 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1416 had_enable_audio(intelhaddata
, false);
1418 intelhaddata
->connected
= false;
1419 dev_dbg(intelhaddata
->dev
,
1420 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1421 __func__
, __LINE__
);
1422 spin_unlock_irq(&intelhaddata
->had_spinlock
);
1424 kfree(intelhaddata
->chmap
->chmap
);
1425 intelhaddata
->chmap
->chmap
= NULL
;
1427 /* Report to above ALSA layer */
1428 substream
= had_substream_get(intelhaddata
);
1430 snd_pcm_stop_xrun(substream
);
1431 had_substream_put(intelhaddata
);
1434 snd_jack_report(intelhaddata
->jack
, 0);
1438 * ALSA iec958 and ELD controls
1441 static int had_iec958_info(struct snd_kcontrol
*kcontrol
,
1442 struct snd_ctl_elem_info
*uinfo
)
1444 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_IEC958
;
1449 static int had_iec958_get(struct snd_kcontrol
*kcontrol
,
1450 struct snd_ctl_elem_value
*ucontrol
)
1452 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1454 mutex_lock(&intelhaddata
->mutex
);
1455 ucontrol
->value
.iec958
.status
[0] = (intelhaddata
->aes_bits
>> 0) & 0xff;
1456 ucontrol
->value
.iec958
.status
[1] = (intelhaddata
->aes_bits
>> 8) & 0xff;
1457 ucontrol
->value
.iec958
.status
[2] =
1458 (intelhaddata
->aes_bits
>> 16) & 0xff;
1459 ucontrol
->value
.iec958
.status
[3] =
1460 (intelhaddata
->aes_bits
>> 24) & 0xff;
1461 mutex_unlock(&intelhaddata
->mutex
);
1465 static int had_iec958_mask_get(struct snd_kcontrol
*kcontrol
,
1466 struct snd_ctl_elem_value
*ucontrol
)
1468 ucontrol
->value
.iec958
.status
[0] = 0xff;
1469 ucontrol
->value
.iec958
.status
[1] = 0xff;
1470 ucontrol
->value
.iec958
.status
[2] = 0xff;
1471 ucontrol
->value
.iec958
.status
[3] = 0xff;
1475 static int had_iec958_put(struct snd_kcontrol
*kcontrol
,
1476 struct snd_ctl_elem_value
*ucontrol
)
1479 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1482 val
= (ucontrol
->value
.iec958
.status
[0] << 0) |
1483 (ucontrol
->value
.iec958
.status
[1] << 8) |
1484 (ucontrol
->value
.iec958
.status
[2] << 16) |
1485 (ucontrol
->value
.iec958
.status
[3] << 24);
1486 mutex_lock(&intelhaddata
->mutex
);
1487 if (intelhaddata
->aes_bits
!= val
) {
1488 intelhaddata
->aes_bits
= val
;
1491 mutex_unlock(&intelhaddata
->mutex
);
1495 static int had_ctl_eld_info(struct snd_kcontrol
*kcontrol
,
1496 struct snd_ctl_elem_info
*uinfo
)
1498 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BYTES
;
1499 uinfo
->count
= HDMI_MAX_ELD_BYTES
;
1503 static int had_ctl_eld_get(struct snd_kcontrol
*kcontrol
,
1504 struct snd_ctl_elem_value
*ucontrol
)
1506 struct snd_intelhad
*intelhaddata
= snd_kcontrol_chip(kcontrol
);
1508 mutex_lock(&intelhaddata
->mutex
);
1509 memcpy(ucontrol
->value
.bytes
.data
, intelhaddata
->eld
,
1510 HDMI_MAX_ELD_BYTES
);
1511 mutex_unlock(&intelhaddata
->mutex
);
1515 static const struct snd_kcontrol_new had_controls
[] = {
1517 .access
= SNDRV_CTL_ELEM_ACCESS_READ
,
1518 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1519 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, MASK
),
1520 .info
= had_iec958_info
, /* shared */
1521 .get
= had_iec958_mask_get
,
1524 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1525 .name
= SNDRV_CTL_NAME_IEC958("", PLAYBACK
, DEFAULT
),
1526 .info
= had_iec958_info
,
1527 .get
= had_iec958_get
,
1528 .put
= had_iec958_put
,
1531 .access
= (SNDRV_CTL_ELEM_ACCESS_READ
|
1532 SNDRV_CTL_ELEM_ACCESS_VOLATILE
),
1533 .iface
= SNDRV_CTL_ELEM_IFACE_PCM
,
1535 .info
= had_ctl_eld_info
,
1536 .get
= had_ctl_eld_get
,
1541 * audio interrupt handler
1543 static irqreturn_t
display_pipe_interrupt_handler(int irq
, void *dev_id
)
1545 struct snd_intelhad_card
*card_ctx
= dev_id
;
1546 u32 audio_stat
[3] = {};
1549 for_each_pipe(card_ctx
, pipe
) {
1550 /* use raw register access to ack IRQs even while disconnected */
1551 audio_stat
[pipe
] = had_read_register_raw(card_ctx
, pipe
,
1553 (HDMI_AUDIO_UNDERRUN
| HDMI_AUDIO_BUFFER_DONE
);
1555 if (audio_stat
[pipe
])
1556 had_write_register_raw(card_ctx
, pipe
,
1557 AUD_HDMI_STATUS
, audio_stat
[pipe
]);
1560 for_each_port(card_ctx
, port
) {
1561 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1562 int pipe
= ctx
->pipe
;
1567 if (audio_stat
[pipe
] & HDMI_AUDIO_BUFFER_DONE
)
1568 had_process_buffer_done(ctx
);
1569 if (audio_stat
[pipe
] & HDMI_AUDIO_UNDERRUN
)
1570 had_process_buffer_underrun(ctx
);
1577 * monitor plug/unplug notification from i915; just kick off the work
1579 static void notify_audio_lpe(struct platform_device
*pdev
, int port
)
1581 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1582 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1584 schedule_work(&ctx
->hdmi_audio_wq
);
1587 /* the work to handle monitor hot plug/unplug */
1588 static void had_audio_wq(struct work_struct
*work
)
1590 struct snd_intelhad
*ctx
=
1591 container_of(work
, struct snd_intelhad
, hdmi_audio_wq
);
1592 struct intel_hdmi_lpe_audio_pdata
*pdata
= ctx
->dev
->platform_data
;
1593 struct intel_hdmi_lpe_audio_port_pdata
*ppdata
= &pdata
->port
[ctx
->port
];
1595 pm_runtime_get_sync(ctx
->dev
);
1596 mutex_lock(&ctx
->mutex
);
1597 if (ppdata
->pipe
< 0) {
1598 dev_dbg(ctx
->dev
, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1599 __func__
, ctx
->port
);
1601 memset(ctx
->eld
, 0, sizeof(ctx
->eld
)); /* clear the old ELD */
1603 ctx
->dp_output
= false;
1604 ctx
->tmds_clock_speed
= 0;
1607 /* Shut down the stream */
1608 had_process_hot_unplug(ctx
);
1612 dev_dbg(ctx
->dev
, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1613 __func__
, ctx
->port
, ppdata
->ls_clock
);
1615 memcpy(ctx
->eld
, ppdata
->eld
, sizeof(ctx
->eld
));
1617 ctx
->dp_output
= ppdata
->dp_output
;
1618 if (ctx
->dp_output
) {
1619 ctx
->tmds_clock_speed
= 0;
1620 ctx
->link_rate
= ppdata
->ls_clock
;
1622 ctx
->tmds_clock_speed
= ppdata
->ls_clock
;
1627 * Shut down the stream before we change
1628 * the pipe assignment for this pcm device
1630 had_process_hot_plug(ctx
);
1632 ctx
->pipe
= ppdata
->pipe
;
1634 /* Restart the stream if necessary */
1635 had_process_mode_change(ctx
);
1638 mutex_unlock(&ctx
->mutex
);
1639 pm_runtime_mark_last_busy(ctx
->dev
);
1640 pm_runtime_put_autosuspend(ctx
->dev
);
1646 static int had_create_jack(struct snd_intelhad
*ctx
,
1647 struct snd_pcm
*pcm
)
1652 snprintf(hdmi_str
, sizeof(hdmi_str
),
1653 "HDMI/DP,pcm=%d", pcm
->device
);
1655 err
= snd_jack_new(ctx
->card_ctx
->card
, hdmi_str
,
1656 SND_JACK_AVOUT
, &ctx
->jack
,
1660 ctx
->jack
->private_data
= ctx
;
1668 static int hdmi_lpe_audio_runtime_suspend(struct device
*dev
)
1670 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1673 for_each_port(card_ctx
, port
) {
1674 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1675 struct snd_pcm_substream
*substream
;
1677 substream
= had_substream_get(ctx
);
1679 snd_pcm_suspend(substream
);
1680 had_substream_put(ctx
);
1687 static int __maybe_unused
hdmi_lpe_audio_suspend(struct device
*dev
)
1689 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1692 err
= hdmi_lpe_audio_runtime_suspend(dev
);
1694 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D3hot
);
1698 static int hdmi_lpe_audio_runtime_resume(struct device
*dev
)
1700 pm_runtime_mark_last_busy(dev
);
1704 static int __maybe_unused
hdmi_lpe_audio_resume(struct device
*dev
)
1706 struct snd_intelhad_card
*card_ctx
= dev_get_drvdata(dev
);
1708 hdmi_lpe_audio_runtime_resume(dev
);
1709 snd_power_change_state(card_ctx
->card
, SNDRV_CTL_POWER_D0
);
1713 /* release resources */
1714 static void hdmi_lpe_audio_free(struct snd_card
*card
)
1716 struct snd_intelhad_card
*card_ctx
= card
->private_data
;
1717 struct intel_hdmi_lpe_audio_pdata
*pdata
= card_ctx
->dev
->platform_data
;
1720 spin_lock_irq(&pdata
->lpe_audio_slock
);
1721 pdata
->notify_audio_lpe
= NULL
;
1722 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1724 for_each_port(card_ctx
, port
) {
1725 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1727 cancel_work_sync(&ctx
->hdmi_audio_wq
);
1730 if (card_ctx
->mmio_start
)
1731 iounmap(card_ctx
->mmio_start
);
1732 if (card_ctx
->irq
>= 0)
1733 free_irq(card_ctx
->irq
, card_ctx
);
1737 * hdmi_lpe_audio_probe - start bridge with i915
1739 * This function is called when the i915 driver creates the
1740 * hdmi-lpe-audio platform device.
1742 static int hdmi_lpe_audio_probe(struct platform_device
*pdev
)
1744 struct snd_card
*card
;
1745 struct snd_intelhad_card
*card_ctx
;
1746 struct snd_pcm
*pcm
;
1747 struct intel_hdmi_lpe_audio_pdata
*pdata
;
1749 struct resource
*res_mmio
;
1752 pdata
= pdev
->dev
.platform_data
;
1754 dev_err(&pdev
->dev
, "%s: quit: pdata not allocated by i915!!\n", __func__
);
1759 irq
= platform_get_irq(pdev
, 0);
1761 dev_err(&pdev
->dev
, "Could not get irq resource: %d\n", irq
);
1765 res_mmio
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1767 dev_err(&pdev
->dev
, "Could not get IO_MEM resources\n");
1771 /* create a card instance with ALSA framework */
1772 ret
= snd_card_new(&pdev
->dev
, hdmi_card_index
, hdmi_card_id
,
1773 THIS_MODULE
, sizeof(*card_ctx
), &card
);
1777 card_ctx
= card
->private_data
;
1778 card_ctx
->dev
= &pdev
->dev
;
1779 card_ctx
->card
= card
;
1780 strcpy(card
->driver
, INTEL_HAD
);
1781 strcpy(card
->shortname
, "Intel HDMI/DP LPE Audio");
1782 strcpy(card
->longname
, "Intel HDMI/DP LPE Audio");
1786 card
->private_free
= hdmi_lpe_audio_free
;
1788 platform_set_drvdata(pdev
, card_ctx
);
1790 dev_dbg(&pdev
->dev
, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1791 __func__
, (unsigned int)res_mmio
->start
,
1792 (unsigned int)res_mmio
->end
);
1794 card_ctx
->mmio_start
= ioremap_nocache(res_mmio
->start
,
1795 (size_t)(resource_size(res_mmio
)));
1796 if (!card_ctx
->mmio_start
) {
1797 dev_err(&pdev
->dev
, "Could not get ioremap\n");
1802 /* setup interrupt handler */
1803 ret
= request_irq(irq
, display_pipe_interrupt_handler
, 0,
1804 pdev
->name
, card_ctx
);
1806 dev_err(&pdev
->dev
, "request_irq failed\n");
1810 card_ctx
->irq
= irq
;
1812 /* only 32bit addressable */
1813 dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1814 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1816 init_channel_allocations();
1818 card_ctx
->num_pipes
= pdata
->num_pipes
;
1819 card_ctx
->num_ports
= pdata
->num_ports
;
1821 for_each_port(card_ctx
, port
) {
1822 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1825 ctx
->card_ctx
= card_ctx
;
1826 ctx
->dev
= card_ctx
->dev
;
1830 INIT_WORK(&ctx
->hdmi_audio_wq
, had_audio_wq
);
1832 ret
= snd_pcm_new(card
, INTEL_HAD
, port
, MAX_PB_STREAMS
,
1833 MAX_CAP_STREAMS
, &pcm
);
1837 /* setup private data which can be retrieved when required */
1838 pcm
->private_data
= ctx
;
1839 pcm
->info_flags
= 0;
1840 strncpy(pcm
->name
, card
->shortname
, strlen(card
->shortname
));
1841 /* setup the ops for playabck */
1842 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &had_pcm_ops
);
1844 /* allocate dma pages;
1845 * try to allocate 600k buffer as default which is large enough
1847 snd_pcm_lib_preallocate_pages_for_all(pcm
,
1848 SNDRV_DMA_TYPE_DEV
, NULL
,
1849 HAD_DEFAULT_BUFFER
, HAD_MAX_BUFFER
);
1851 /* create controls */
1852 for (i
= 0; i
< ARRAY_SIZE(had_controls
); i
++) {
1853 struct snd_kcontrol
*kctl
;
1855 kctl
= snd_ctl_new1(&had_controls
[i
], ctx
);
1861 kctl
->id
.device
= pcm
->device
;
1863 ret
= snd_ctl_add(card
, kctl
);
1868 /* Register channel map controls */
1869 ret
= had_register_chmap_ctls(ctx
, pcm
);
1873 ret
= had_create_jack(ctx
, pcm
);
1878 ret
= snd_card_register(card
);
1882 spin_lock_irq(&pdata
->lpe_audio_slock
);
1883 pdata
->notify_audio_lpe
= notify_audio_lpe
;
1884 spin_unlock_irq(&pdata
->lpe_audio_slock
);
1886 pm_runtime_use_autosuspend(&pdev
->dev
);
1887 pm_runtime_mark_last_busy(&pdev
->dev
);
1888 pm_runtime_set_active(&pdev
->dev
);
1890 dev_dbg(&pdev
->dev
, "%s: handle pending notification\n", __func__
);
1891 for_each_port(card_ctx
, port
) {
1892 struct snd_intelhad
*ctx
= &card_ctx
->pcm_ctx
[port
];
1894 schedule_work(&ctx
->hdmi_audio_wq
);
1900 snd_card_free(card
);
1905 * hdmi_lpe_audio_remove - stop bridge with i915
1907 * This function is called when the platform device is destroyed.
1909 static int hdmi_lpe_audio_remove(struct platform_device
*pdev
)
1911 struct snd_intelhad_card
*card_ctx
= platform_get_drvdata(pdev
);
1913 snd_card_free(card_ctx
->card
);
1917 static const struct dev_pm_ops hdmi_lpe_audio_pm
= {
1918 SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend
, hdmi_lpe_audio_resume
)
1919 SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend
,
1920 hdmi_lpe_audio_runtime_resume
, NULL
)
1923 static struct platform_driver hdmi_lpe_audio_driver
= {
1925 .name
= "hdmi-lpe-audio",
1926 .pm
= &hdmi_lpe_audio_pm
,
1928 .probe
= hdmi_lpe_audio_probe
,
1929 .remove
= hdmi_lpe_audio_remove
,
1932 module_platform_driver(hdmi_lpe_audio_driver
);
1933 MODULE_ALIAS("platform:hdmi_lpe_audio");
1935 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1936 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1937 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1938 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1939 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1940 MODULE_LICENSE("GPL v2");
1941 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");