x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
blobc554e529fc4e0af49ad9ae2339ff808357c1d27e
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <linux/mc146818rtc.h>
51 struct cmos_rtc {
52 struct rtc_device *rtc;
53 struct device *dev;
54 int irq;
55 struct resource *iomem;
56 time64_t alarm_expires;
58 void (*wake_on)(struct device *);
59 void (*wake_off)(struct device *);
61 u8 enabled_wake;
62 u8 suspend_ctrl;
64 /* newer hardware extends the original register set */
65 u8 day_alrm;
66 u8 mon_alrm;
67 u8 century;
69 struct rtc_wkalrm saved_wkalrm;
72 /* both platform and pnp busses use negative numbers for invalid irqs */
73 #define is_valid_irq(n) ((n) > 0)
75 static const char driver_name[] = "rtc_cmos";
77 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
81 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
83 static inline int is_intr(u8 rtc_intr)
85 if (!(rtc_intr & RTC_IRQF))
86 return 0;
87 return rtc_intr & RTC_IRQMASK;
90 /*----------------------------------------------------------------*/
92 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94 * used in a broken "legacy replacement" mode. The breakage includes
95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96 * other (better) use.
98 * When that broken mode is in use, platform glue provides a partial
99 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
100 * want to use HPET for anything except those IRQs though...
102 #ifdef CONFIG_HPET_EMULATE_RTC
103 #include <asm/hpet.h>
104 #else
106 static inline int is_hpet_enabled(void)
108 return 0;
111 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
113 return 0;
116 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
118 return 0;
121 static inline int
122 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
124 return 0;
127 static inline int hpet_set_periodic_freq(unsigned long freq)
129 return 0;
132 static inline int hpet_rtc_dropped_irq(void)
134 return 0;
137 static inline int hpet_rtc_timer_init(void)
139 return 0;
142 extern irq_handler_t hpet_rtc_interrupt;
144 static inline int hpet_register_irq_handler(irq_handler_t handler)
146 return 0;
149 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
151 return 0;
154 #endif
156 /*----------------------------------------------------------------*/
158 #ifdef RTC_PORT
160 /* Most newer x86 systems have two register banks, the first used
161 * for RTC and NVRAM and the second only for NVRAM. Caller must
162 * own rtc_lock ... and we won't worry about access during NMI.
164 #define can_bank2 true
166 static inline unsigned char cmos_read_bank2(unsigned char addr)
168 outb(addr, RTC_PORT(2));
169 return inb(RTC_PORT(3));
172 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
174 outb(addr, RTC_PORT(2));
175 outb(val, RTC_PORT(3));
178 #else
180 #define can_bank2 false
182 static inline unsigned char cmos_read_bank2(unsigned char addr)
184 return 0;
187 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
191 #endif
193 /*----------------------------------------------------------------*/
195 static int cmos_read_time(struct device *dev, struct rtc_time *t)
197 /* REVISIT: if the clock has a "century" register, use
198 * that instead of the heuristic in mc146818_get_time().
199 * That'll make Y3K compatility (year > 2070) easy!
201 mc146818_get_time(t);
202 return 0;
205 static int cmos_set_time(struct device *dev, struct rtc_time *t)
207 /* REVISIT: set the "century" register if available
209 * NOTE: this ignores the issue whereby updating the seconds
210 * takes effect exactly 500ms after we write the register.
211 * (Also queueing and other delays before we get this far.)
213 return mc146818_set_time(t);
216 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
218 struct cmos_rtc *cmos = dev_get_drvdata(dev);
219 unsigned char rtc_control;
221 if (!is_valid_irq(cmos->irq))
222 return -EIO;
224 /* Basic alarms only support hour, minute, and seconds fields.
225 * Some also support day and month, for alarms up to a year in
226 * the future.
229 spin_lock_irq(&rtc_lock);
230 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
231 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
232 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
234 if (cmos->day_alrm) {
235 /* ignore upper bits on readback per ACPI spec */
236 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
237 if (!t->time.tm_mday)
238 t->time.tm_mday = -1;
240 if (cmos->mon_alrm) {
241 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
242 if (!t->time.tm_mon)
243 t->time.tm_mon = -1;
247 rtc_control = CMOS_READ(RTC_CONTROL);
248 spin_unlock_irq(&rtc_lock);
250 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
251 if (((unsigned)t->time.tm_sec) < 0x60)
252 t->time.tm_sec = bcd2bin(t->time.tm_sec);
253 else
254 t->time.tm_sec = -1;
255 if (((unsigned)t->time.tm_min) < 0x60)
256 t->time.tm_min = bcd2bin(t->time.tm_min);
257 else
258 t->time.tm_min = -1;
259 if (((unsigned)t->time.tm_hour) < 0x24)
260 t->time.tm_hour = bcd2bin(t->time.tm_hour);
261 else
262 t->time.tm_hour = -1;
264 if (cmos->day_alrm) {
265 if (((unsigned)t->time.tm_mday) <= 0x31)
266 t->time.tm_mday = bcd2bin(t->time.tm_mday);
267 else
268 t->time.tm_mday = -1;
270 if (cmos->mon_alrm) {
271 if (((unsigned)t->time.tm_mon) <= 0x12)
272 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
273 else
274 t->time.tm_mon = -1;
279 t->enabled = !!(rtc_control & RTC_AIE);
280 t->pending = 0;
282 return 0;
285 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
287 unsigned char rtc_intr;
289 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
290 * allegedly some older rtcs need that to handle irqs properly
292 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
294 if (is_hpet_enabled())
295 return;
297 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
298 if (is_intr(rtc_intr))
299 rtc_update_irq(cmos->rtc, 1, rtc_intr);
302 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
304 unsigned char rtc_control;
306 /* flush any pending IRQ status, notably for update irqs,
307 * before we enable new IRQs
309 rtc_control = CMOS_READ(RTC_CONTROL);
310 cmos_checkintr(cmos, rtc_control);
312 rtc_control |= mask;
313 CMOS_WRITE(rtc_control, RTC_CONTROL);
314 hpet_set_rtc_irq_bit(mask);
316 cmos_checkintr(cmos, rtc_control);
319 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
321 unsigned char rtc_control;
323 rtc_control = CMOS_READ(RTC_CONTROL);
324 rtc_control &= ~mask;
325 CMOS_WRITE(rtc_control, RTC_CONTROL);
326 hpet_mask_rtc_irq_bit(mask);
328 cmos_checkintr(cmos, rtc_control);
331 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
333 struct cmos_rtc *cmos = dev_get_drvdata(dev);
334 unsigned char mon, mday, hrs, min, sec, rtc_control;
336 if (!is_valid_irq(cmos->irq))
337 return -EIO;
339 mon = t->time.tm_mon + 1;
340 mday = t->time.tm_mday;
341 hrs = t->time.tm_hour;
342 min = t->time.tm_min;
343 sec = t->time.tm_sec;
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
347 /* Writing 0xff means "don't care" or "match all". */
348 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
349 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
350 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
351 min = (min < 60) ? bin2bcd(min) : 0xff;
352 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
355 spin_lock_irq(&rtc_lock);
357 /* next rtc irq must not be from previous alarm setting */
358 cmos_irq_disable(cmos, RTC_AIE);
360 /* update alarm */
361 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
362 CMOS_WRITE(min, RTC_MINUTES_ALARM);
363 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
365 /* the system may support an "enhanced" alarm */
366 if (cmos->day_alrm) {
367 CMOS_WRITE(mday, cmos->day_alrm);
368 if (cmos->mon_alrm)
369 CMOS_WRITE(mon, cmos->mon_alrm);
372 /* FIXME the HPET alarm glue currently ignores day_alrm
373 * and mon_alrm ...
375 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
377 if (t->enabled)
378 cmos_irq_enable(cmos, RTC_AIE);
380 spin_unlock_irq(&rtc_lock);
382 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
384 return 0;
387 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
389 struct cmos_rtc *cmos = dev_get_drvdata(dev);
390 unsigned long flags;
392 if (!is_valid_irq(cmos->irq))
393 return -EINVAL;
395 spin_lock_irqsave(&rtc_lock, flags);
397 if (enabled)
398 cmos_irq_enable(cmos, RTC_AIE);
399 else
400 cmos_irq_disable(cmos, RTC_AIE);
402 spin_unlock_irqrestore(&rtc_lock, flags);
403 return 0;
406 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
408 static int cmos_procfs(struct device *dev, struct seq_file *seq)
410 struct cmos_rtc *cmos = dev_get_drvdata(dev);
411 unsigned char rtc_control, valid;
413 spin_lock_irq(&rtc_lock);
414 rtc_control = CMOS_READ(RTC_CONTROL);
415 valid = CMOS_READ(RTC_VALID);
416 spin_unlock_irq(&rtc_lock);
418 /* NOTE: at least ICH6 reports battery status using a different
419 * (non-RTC) bit; and SQWE is ignored on many current systems.
421 seq_printf(seq,
422 "periodic_IRQ\t: %s\n"
423 "update_IRQ\t: %s\n"
424 "HPET_emulated\t: %s\n"
425 // "square_wave\t: %s\n"
426 "BCD\t\t: %s\n"
427 "DST_enable\t: %s\n"
428 "periodic_freq\t: %d\n"
429 "batt_status\t: %s\n",
430 (rtc_control & RTC_PIE) ? "yes" : "no",
431 (rtc_control & RTC_UIE) ? "yes" : "no",
432 is_hpet_enabled() ? "yes" : "no",
433 // (rtc_control & RTC_SQWE) ? "yes" : "no",
434 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
435 (rtc_control & RTC_DST_EN) ? "yes" : "no",
436 cmos->rtc->irq_freq,
437 (valid & RTC_VRT) ? "okay" : "dead");
439 return 0;
442 #else
443 #define cmos_procfs NULL
444 #endif
446 static const struct rtc_class_ops cmos_rtc_ops = {
447 .read_time = cmos_read_time,
448 .set_time = cmos_set_time,
449 .read_alarm = cmos_read_alarm,
450 .set_alarm = cmos_set_alarm,
451 .proc = cmos_procfs,
452 .alarm_irq_enable = cmos_alarm_irq_enable,
455 /*----------------------------------------------------------------*/
458 * All these chips have at least 64 bytes of address space, shared by
459 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
460 * by boot firmware. Modern chips have 128 or 256 bytes.
463 #define NVRAM_OFFSET (RTC_REG_D + 1)
465 static ssize_t
466 cmos_nvram_read(struct file *filp, struct kobject *kobj,
467 struct bin_attribute *attr,
468 char *buf, loff_t off, size_t count)
470 int retval;
472 off += NVRAM_OFFSET;
473 spin_lock_irq(&rtc_lock);
474 for (retval = 0; count; count--, off++, retval++) {
475 if (off < 128)
476 *buf++ = CMOS_READ(off);
477 else if (can_bank2)
478 *buf++ = cmos_read_bank2(off);
479 else
480 break;
482 spin_unlock_irq(&rtc_lock);
484 return retval;
487 static ssize_t
488 cmos_nvram_write(struct file *filp, struct kobject *kobj,
489 struct bin_attribute *attr,
490 char *buf, loff_t off, size_t count)
492 struct cmos_rtc *cmos;
493 int retval;
495 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
497 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
498 * checksum on part of the NVRAM data. That's currently ignored
499 * here. If userspace is smart enough to know what fields of
500 * NVRAM to update, updating checksums is also part of its job.
502 off += NVRAM_OFFSET;
503 spin_lock_irq(&rtc_lock);
504 for (retval = 0; count; count--, off++, retval++) {
505 /* don't trash RTC registers */
506 if (off == cmos->day_alrm
507 || off == cmos->mon_alrm
508 || off == cmos->century)
509 buf++;
510 else if (off < 128)
511 CMOS_WRITE(*buf++, off);
512 else if (can_bank2)
513 cmos_write_bank2(*buf++, off);
514 else
515 break;
517 spin_unlock_irq(&rtc_lock);
519 return retval;
522 static struct bin_attribute nvram = {
523 .attr = {
524 .name = "nvram",
525 .mode = S_IRUGO | S_IWUSR,
528 .read = cmos_nvram_read,
529 .write = cmos_nvram_write,
530 /* size gets set up later */
533 /*----------------------------------------------------------------*/
535 static struct cmos_rtc cmos_rtc;
537 static irqreturn_t cmos_interrupt(int irq, void *p)
539 u8 irqstat;
540 u8 rtc_control;
542 spin_lock(&rtc_lock);
544 /* When the HPET interrupt handler calls us, the interrupt
545 * status is passed as arg1 instead of the irq number. But
546 * always clear irq status, even when HPET is in the way.
548 * Note that HPET and RTC are almost certainly out of phase,
549 * giving different IRQ status ...
551 irqstat = CMOS_READ(RTC_INTR_FLAGS);
552 rtc_control = CMOS_READ(RTC_CONTROL);
553 if (is_hpet_enabled())
554 irqstat = (unsigned long)irq & 0xF0;
556 /* If we were suspended, RTC_CONTROL may not be accurate since the
557 * bios may have cleared it.
559 if (!cmos_rtc.suspend_ctrl)
560 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
561 else
562 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
564 /* All Linux RTC alarms should be treated as if they were oneshot.
565 * Similar code may be needed in system wakeup paths, in case the
566 * alarm woke the system.
568 if (irqstat & RTC_AIE) {
569 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
570 rtc_control &= ~RTC_AIE;
571 CMOS_WRITE(rtc_control, RTC_CONTROL);
572 hpet_mask_rtc_irq_bit(RTC_AIE);
573 CMOS_READ(RTC_INTR_FLAGS);
575 spin_unlock(&rtc_lock);
577 if (is_intr(irqstat)) {
578 rtc_update_irq(p, 1, irqstat);
579 return IRQ_HANDLED;
580 } else
581 return IRQ_NONE;
584 #ifdef CONFIG_PNP
585 #define INITSECTION
587 #else
588 #define INITSECTION __init
589 #endif
591 static int INITSECTION
592 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
594 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
595 int retval = 0;
596 unsigned char rtc_control;
597 unsigned address_space;
598 u32 flags = 0;
600 /* there can be only one ... */
601 if (cmos_rtc.dev)
602 return -EBUSY;
604 if (!ports)
605 return -ENODEV;
607 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
609 * REVISIT non-x86 systems may instead use memory space resources
610 * (needing ioremap etc), not i/o space resources like this ...
612 if (RTC_IOMAPPED)
613 ports = request_region(ports->start, resource_size(ports),
614 driver_name);
615 else
616 ports = request_mem_region(ports->start, resource_size(ports),
617 driver_name);
618 if (!ports) {
619 dev_dbg(dev, "i/o registers already in use\n");
620 return -EBUSY;
623 cmos_rtc.irq = rtc_irq;
624 cmos_rtc.iomem = ports;
626 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
627 * driver did, but don't reject unknown configs. Old hardware
628 * won't address 128 bytes. Newer chips have multiple banks,
629 * though they may not be listed in one I/O resource.
631 #if defined(CONFIG_ATARI)
632 address_space = 64;
633 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
634 || defined(__sparc__) || defined(__mips__) \
635 || defined(__powerpc__) || defined(CONFIG_MN10300)
636 address_space = 128;
637 #else
638 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
639 address_space = 128;
640 #endif
641 if (can_bank2 && ports->end > (ports->start + 1))
642 address_space = 256;
644 /* For ACPI systems extension info comes from the FADT. On others,
645 * board specific setup provides it as appropriate. Systems where
646 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
647 * some almost-clones) can provide hooks to make that behave.
649 * Note that ACPI doesn't preclude putting these registers into
650 * "extended" areas of the chip, including some that we won't yet
651 * expect CMOS_READ and friends to handle.
653 if (info) {
654 if (info->flags)
655 flags = info->flags;
656 if (info->address_space)
657 address_space = info->address_space;
659 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
660 cmos_rtc.day_alrm = info->rtc_day_alarm;
661 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
662 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
663 if (info->rtc_century && info->rtc_century < 128)
664 cmos_rtc.century = info->rtc_century;
666 if (info->wake_on && info->wake_off) {
667 cmos_rtc.wake_on = info->wake_on;
668 cmos_rtc.wake_off = info->wake_off;
672 cmos_rtc.dev = dev;
673 dev_set_drvdata(dev, &cmos_rtc);
675 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
676 &cmos_rtc_ops, THIS_MODULE);
677 if (IS_ERR(cmos_rtc.rtc)) {
678 retval = PTR_ERR(cmos_rtc.rtc);
679 goto cleanup0;
682 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
684 spin_lock_irq(&rtc_lock);
686 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
687 /* force periodic irq to CMOS reset default of 1024Hz;
689 * REVISIT it's been reported that at least one x86_64 ALI
690 * mobo doesn't use 32KHz here ... for portability we might
691 * need to do something about other clock frequencies.
693 cmos_rtc.rtc->irq_freq = 1024;
694 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
695 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
698 /* disable irqs */
699 if (is_valid_irq(rtc_irq))
700 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
702 rtc_control = CMOS_READ(RTC_CONTROL);
704 spin_unlock_irq(&rtc_lock);
706 /* FIXME:
707 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
709 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
710 dev_warn(dev, "only 24-hr supported\n");
711 retval = -ENXIO;
712 goto cleanup1;
715 hpet_rtc_timer_init();
717 if (is_valid_irq(rtc_irq)) {
718 irq_handler_t rtc_cmos_int_handler;
720 if (is_hpet_enabled()) {
721 rtc_cmos_int_handler = hpet_rtc_interrupt;
722 retval = hpet_register_irq_handler(cmos_interrupt);
723 if (retval) {
724 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
725 dev_warn(dev, "hpet_register_irq_handler "
726 " failed in rtc_init().");
727 goto cleanup1;
729 } else
730 rtc_cmos_int_handler = cmos_interrupt;
732 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
733 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
734 cmos_rtc.rtc);
735 if (retval < 0) {
736 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
737 goto cleanup1;
741 /* export at least the first block of NVRAM */
742 nvram.size = address_space - NVRAM_OFFSET;
743 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
744 if (retval < 0) {
745 dev_dbg(dev, "can't create nvram file? %d\n", retval);
746 goto cleanup2;
749 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
750 !is_valid_irq(rtc_irq) ? "no alarms" :
751 cmos_rtc.mon_alrm ? "alarms up to one year" :
752 cmos_rtc.day_alrm ? "alarms up to one month" :
753 "alarms up to one day",
754 cmos_rtc.century ? ", y3k" : "",
755 nvram.size,
756 is_hpet_enabled() ? ", hpet irqs" : "");
758 return 0;
760 cleanup2:
761 if (is_valid_irq(rtc_irq))
762 free_irq(rtc_irq, cmos_rtc.rtc);
763 cleanup1:
764 cmos_rtc.dev = NULL;
765 rtc_device_unregister(cmos_rtc.rtc);
766 cleanup0:
767 if (RTC_IOMAPPED)
768 release_region(ports->start, resource_size(ports));
769 else
770 release_mem_region(ports->start, resource_size(ports));
771 return retval;
774 static void cmos_do_shutdown(int rtc_irq)
776 spin_lock_irq(&rtc_lock);
777 if (is_valid_irq(rtc_irq))
778 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
779 spin_unlock_irq(&rtc_lock);
782 static void cmos_do_remove(struct device *dev)
784 struct cmos_rtc *cmos = dev_get_drvdata(dev);
785 struct resource *ports;
787 cmos_do_shutdown(cmos->irq);
789 sysfs_remove_bin_file(&dev->kobj, &nvram);
791 if (is_valid_irq(cmos->irq)) {
792 free_irq(cmos->irq, cmos->rtc);
793 hpet_unregister_irq_handler(cmos_interrupt);
796 rtc_device_unregister(cmos->rtc);
797 cmos->rtc = NULL;
799 ports = cmos->iomem;
800 if (RTC_IOMAPPED)
801 release_region(ports->start, resource_size(ports));
802 else
803 release_mem_region(ports->start, resource_size(ports));
804 cmos->iomem = NULL;
806 cmos->dev = NULL;
809 static int cmos_aie_poweroff(struct device *dev)
811 struct cmos_rtc *cmos = dev_get_drvdata(dev);
812 struct rtc_time now;
813 time64_t t_now;
814 int retval = 0;
815 unsigned char rtc_control;
817 if (!cmos->alarm_expires)
818 return -EINVAL;
820 spin_lock_irq(&rtc_lock);
821 rtc_control = CMOS_READ(RTC_CONTROL);
822 spin_unlock_irq(&rtc_lock);
824 /* We only care about the situation where AIE is disabled. */
825 if (rtc_control & RTC_AIE)
826 return -EBUSY;
828 cmos_read_time(dev, &now);
829 t_now = rtc_tm_to_time64(&now);
832 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
833 * automatically right after shutdown on some buggy boxes.
834 * This automatic rebooting issue won't happen when the alarm
835 * time is larger than now+1 seconds.
837 * If the alarm time is equal to now+1 seconds, the issue can be
838 * prevented by cancelling the alarm.
840 if (cmos->alarm_expires == t_now + 1) {
841 struct rtc_wkalrm alarm;
843 /* Cancel the AIE timer by configuring the past time. */
844 rtc_time64_to_tm(t_now - 1, &alarm.time);
845 alarm.enabled = 0;
846 retval = cmos_set_alarm(dev, &alarm);
847 } else if (cmos->alarm_expires > t_now + 1) {
848 retval = -EBUSY;
851 return retval;
854 static int cmos_suspend(struct device *dev)
856 struct cmos_rtc *cmos = dev_get_drvdata(dev);
857 unsigned char tmp;
859 /* only the alarm might be a wakeup event source */
860 spin_lock_irq(&rtc_lock);
861 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
862 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
863 unsigned char mask;
865 if (device_may_wakeup(dev))
866 mask = RTC_IRQMASK & ~RTC_AIE;
867 else
868 mask = RTC_IRQMASK;
869 tmp &= ~mask;
870 CMOS_WRITE(tmp, RTC_CONTROL);
871 hpet_mask_rtc_irq_bit(mask);
873 cmos_checkintr(cmos, tmp);
875 spin_unlock_irq(&rtc_lock);
877 if (tmp & RTC_AIE) {
878 cmos->enabled_wake = 1;
879 if (cmos->wake_on)
880 cmos->wake_on(dev);
881 else
882 enable_irq_wake(cmos->irq);
885 cmos_read_alarm(dev, &cmos->saved_wkalrm);
887 dev_dbg(dev, "suspend%s, ctrl %02x\n",
888 (tmp & RTC_AIE) ? ", alarm may wake" : "",
889 tmp);
891 return 0;
894 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
895 * after a detour through G3 "mechanical off", although the ACPI spec
896 * says wakeup should only work from G1/S4 "hibernate". To most users,
897 * distinctions between S4 and S5 are pointless. So when the hardware
898 * allows, don't draw that distinction.
900 static inline int cmos_poweroff(struct device *dev)
902 if (!IS_ENABLED(CONFIG_PM))
903 return -ENOSYS;
905 return cmos_suspend(dev);
908 static void cmos_check_wkalrm(struct device *dev)
910 struct cmos_rtc *cmos = dev_get_drvdata(dev);
911 struct rtc_wkalrm current_alarm;
912 time64_t t_current_expires;
913 time64_t t_saved_expires;
915 cmos_read_alarm(dev, &current_alarm);
916 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
917 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
918 if (t_current_expires != t_saved_expires ||
919 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
920 cmos_set_alarm(dev, &cmos->saved_wkalrm);
924 static void cmos_check_acpi_rtc_status(struct device *dev,
925 unsigned char *rtc_control);
927 static int __maybe_unused cmos_resume(struct device *dev)
929 struct cmos_rtc *cmos = dev_get_drvdata(dev);
930 unsigned char tmp;
932 if (cmos->enabled_wake) {
933 if (cmos->wake_off)
934 cmos->wake_off(dev);
935 else
936 disable_irq_wake(cmos->irq);
937 cmos->enabled_wake = 0;
940 /* The BIOS might have changed the alarm, restore it */
941 cmos_check_wkalrm(dev);
943 spin_lock_irq(&rtc_lock);
944 tmp = cmos->suspend_ctrl;
945 cmos->suspend_ctrl = 0;
946 /* re-enable any irqs previously active */
947 if (tmp & RTC_IRQMASK) {
948 unsigned char mask;
950 if (device_may_wakeup(dev))
951 hpet_rtc_timer_init();
953 do {
954 CMOS_WRITE(tmp, RTC_CONTROL);
955 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
957 mask = CMOS_READ(RTC_INTR_FLAGS);
958 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
959 if (!is_hpet_enabled() || !is_intr(mask))
960 break;
962 /* force one-shot behavior if HPET blocked
963 * the wake alarm's irq
965 rtc_update_irq(cmos->rtc, 1, mask);
966 tmp &= ~RTC_AIE;
967 hpet_mask_rtc_irq_bit(RTC_AIE);
968 } while (mask & RTC_AIE);
970 if (tmp & RTC_AIE)
971 cmos_check_acpi_rtc_status(dev, &tmp);
973 spin_unlock_irq(&rtc_lock);
975 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
977 return 0;
980 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
982 /*----------------------------------------------------------------*/
984 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
985 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
986 * probably list them in similar PNPBIOS tables; so PNP is more common.
988 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
989 * predate even PNPBIOS should set up platform_bus devices.
992 #ifdef CONFIG_ACPI
994 #include <linux/acpi.h>
996 static u32 rtc_handler(void *context)
998 struct device *dev = context;
999 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1000 unsigned char rtc_control = 0;
1001 unsigned char rtc_intr;
1002 unsigned long flags;
1004 spin_lock_irqsave(&rtc_lock, flags);
1005 if (cmos_rtc.suspend_ctrl)
1006 rtc_control = CMOS_READ(RTC_CONTROL);
1007 if (rtc_control & RTC_AIE) {
1008 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1009 CMOS_WRITE(rtc_control, RTC_CONTROL);
1010 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1011 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1013 spin_unlock_irqrestore(&rtc_lock, flags);
1015 pm_wakeup_event(dev, 0);
1016 acpi_clear_event(ACPI_EVENT_RTC);
1017 acpi_disable_event(ACPI_EVENT_RTC, 0);
1018 return ACPI_INTERRUPT_HANDLED;
1021 static inline void rtc_wake_setup(struct device *dev)
1023 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1025 * After the RTC handler is installed, the Fixed_RTC event should
1026 * be disabled. Only when the RTC alarm is set will it be enabled.
1028 acpi_clear_event(ACPI_EVENT_RTC);
1029 acpi_disable_event(ACPI_EVENT_RTC, 0);
1032 static void rtc_wake_on(struct device *dev)
1034 acpi_clear_event(ACPI_EVENT_RTC);
1035 acpi_enable_event(ACPI_EVENT_RTC, 0);
1038 static void rtc_wake_off(struct device *dev)
1040 acpi_disable_event(ACPI_EVENT_RTC, 0);
1043 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1044 * its device node and pass extra config data. This helps its driver use
1045 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1046 * that this board's RTC is wakeup-capable (per ACPI spec).
1048 static struct cmos_rtc_board_info acpi_rtc_info;
1050 static void cmos_wake_setup(struct device *dev)
1052 if (acpi_disabled)
1053 return;
1055 rtc_wake_setup(dev);
1056 acpi_rtc_info.wake_on = rtc_wake_on;
1057 acpi_rtc_info.wake_off = rtc_wake_off;
1059 /* workaround bug in some ACPI tables */
1060 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1061 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1062 acpi_gbl_FADT.month_alarm);
1063 acpi_gbl_FADT.month_alarm = 0;
1066 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1067 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1068 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1070 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1071 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1072 dev_info(dev, "RTC can wake from S4\n");
1074 dev->platform_data = &acpi_rtc_info;
1076 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1077 device_init_wakeup(dev, 1);
1080 static void cmos_check_acpi_rtc_status(struct device *dev,
1081 unsigned char *rtc_control)
1083 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1084 acpi_event_status rtc_status;
1085 acpi_status status;
1087 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1088 return;
1090 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1091 if (ACPI_FAILURE(status)) {
1092 dev_err(dev, "Could not get RTC status\n");
1093 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1094 unsigned char mask;
1095 *rtc_control &= ~RTC_AIE;
1096 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1097 mask = CMOS_READ(RTC_INTR_FLAGS);
1098 rtc_update_irq(cmos->rtc, 1, mask);
1102 #else
1104 static void cmos_wake_setup(struct device *dev)
1108 static void cmos_check_acpi_rtc_status(struct device *dev,
1109 unsigned char *rtc_control)
1113 #endif
1115 #ifdef CONFIG_PNP
1117 #include <linux/pnp.h>
1119 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1121 cmos_wake_setup(&pnp->dev);
1123 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1124 unsigned int irq = 0;
1125 #ifdef CONFIG_X86
1126 /* Some machines contain a PNP entry for the RTC, but
1127 * don't define the IRQ. It should always be safe to
1128 * hardcode it on systems with a legacy PIC.
1130 if (nr_legacy_irqs())
1131 irq = 8;
1132 #endif
1133 return cmos_do_probe(&pnp->dev,
1134 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1135 } else {
1136 return cmos_do_probe(&pnp->dev,
1137 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1138 pnp_irq(pnp, 0));
1142 static void cmos_pnp_remove(struct pnp_dev *pnp)
1144 cmos_do_remove(&pnp->dev);
1147 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1149 struct device *dev = &pnp->dev;
1150 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1152 if (system_state == SYSTEM_POWER_OFF) {
1153 int retval = cmos_poweroff(dev);
1155 if (cmos_aie_poweroff(dev) < 0 && !retval)
1156 return;
1159 cmos_do_shutdown(cmos->irq);
1162 static const struct pnp_device_id rtc_ids[] = {
1163 { .id = "PNP0b00", },
1164 { .id = "PNP0b01", },
1165 { .id = "PNP0b02", },
1166 { },
1168 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1170 static struct pnp_driver cmos_pnp_driver = {
1171 .name = (char *) driver_name,
1172 .id_table = rtc_ids,
1173 .probe = cmos_pnp_probe,
1174 .remove = cmos_pnp_remove,
1175 .shutdown = cmos_pnp_shutdown,
1177 /* flag ensures resume() gets called, and stops syslog spam */
1178 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1179 .driver = {
1180 .pm = &cmos_pm_ops,
1184 #endif /* CONFIG_PNP */
1186 #ifdef CONFIG_OF
1187 static const struct of_device_id of_cmos_match[] = {
1189 .compatible = "motorola,mc146818",
1191 { },
1193 MODULE_DEVICE_TABLE(of, of_cmos_match);
1195 static __init void cmos_of_init(struct platform_device *pdev)
1197 struct device_node *node = pdev->dev.of_node;
1198 struct rtc_time time;
1199 int ret;
1200 const __be32 *val;
1202 if (!node)
1203 return;
1205 val = of_get_property(node, "ctrl-reg", NULL);
1206 if (val)
1207 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1209 val = of_get_property(node, "freq-reg", NULL);
1210 if (val)
1211 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1213 cmos_read_time(&pdev->dev, &time);
1214 ret = rtc_valid_tm(&time);
1215 if (ret) {
1216 struct rtc_time def_time = {
1217 .tm_year = 1,
1218 .tm_mday = 1,
1220 cmos_set_time(&pdev->dev, &def_time);
1223 #else
1224 static inline void cmos_of_init(struct platform_device *pdev) {}
1225 #endif
1226 /*----------------------------------------------------------------*/
1228 /* Platform setup should have set up an RTC device, when PNP is
1229 * unavailable ... this could happen even on (older) PCs.
1232 static int __init cmos_platform_probe(struct platform_device *pdev)
1234 struct resource *resource;
1235 int irq;
1237 cmos_of_init(pdev);
1238 cmos_wake_setup(&pdev->dev);
1240 if (RTC_IOMAPPED)
1241 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1242 else
1243 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1244 irq = platform_get_irq(pdev, 0);
1245 if (irq < 0)
1246 irq = -1;
1248 return cmos_do_probe(&pdev->dev, resource, irq);
1251 static int cmos_platform_remove(struct platform_device *pdev)
1253 cmos_do_remove(&pdev->dev);
1254 return 0;
1257 static void cmos_platform_shutdown(struct platform_device *pdev)
1259 struct device *dev = &pdev->dev;
1260 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1262 if (system_state == SYSTEM_POWER_OFF) {
1263 int retval = cmos_poweroff(dev);
1265 if (cmos_aie_poweroff(dev) < 0 && !retval)
1266 return;
1269 cmos_do_shutdown(cmos->irq);
1272 /* work with hotplug and coldplug */
1273 MODULE_ALIAS("platform:rtc_cmos");
1275 static struct platform_driver cmos_platform_driver = {
1276 .remove = cmos_platform_remove,
1277 .shutdown = cmos_platform_shutdown,
1278 .driver = {
1279 .name = driver_name,
1280 .pm = &cmos_pm_ops,
1281 .of_match_table = of_match_ptr(of_cmos_match),
1285 #ifdef CONFIG_PNP
1286 static bool pnp_driver_registered;
1287 #endif
1288 static bool platform_driver_registered;
1290 static int __init cmos_init(void)
1292 int retval = 0;
1294 #ifdef CONFIG_PNP
1295 retval = pnp_register_driver(&cmos_pnp_driver);
1296 if (retval == 0)
1297 pnp_driver_registered = true;
1298 #endif
1300 if (!cmos_rtc.dev) {
1301 retval = platform_driver_probe(&cmos_platform_driver,
1302 cmos_platform_probe);
1303 if (retval == 0)
1304 platform_driver_registered = true;
1307 if (retval == 0)
1308 return 0;
1310 #ifdef CONFIG_PNP
1311 if (pnp_driver_registered)
1312 pnp_unregister_driver(&cmos_pnp_driver);
1313 #endif
1314 return retval;
1316 module_init(cmos_init);
1318 static void __exit cmos_exit(void)
1320 #ifdef CONFIG_PNP
1321 if (pnp_driver_registered)
1322 pnp_unregister_driver(&cmos_pnp_driver);
1323 #endif
1324 if (platform_driver_registered)
1325 platform_driver_unregister(&cmos_platform_driver);
1327 module_exit(cmos_exit);
1330 MODULE_AUTHOR("David Brownell");
1331 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1332 MODULE_LICENSE("GPL");