2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 #include <asm/i8259.h>
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <linux/mc146818rtc.h>
52 struct rtc_device
*rtc
;
55 struct resource
*iomem
;
56 time64_t alarm_expires
;
58 void (*wake_on
)(struct device
*);
59 void (*wake_off
)(struct device
*);
64 /* newer hardware extends the original register set */
69 struct rtc_wkalrm saved_wkalrm
;
72 /* both platform and pnp busses use negative numbers for invalid irqs */
73 #define is_valid_irq(n) ((n) > 0)
75 static const char driver_name
[] = "rtc_cmos";
77 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
81 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
83 static inline int is_intr(u8 rtc_intr
)
85 if (!(rtc_intr
& RTC_IRQF
))
87 return rtc_intr
& RTC_IRQMASK
;
90 /*----------------------------------------------------------------*/
92 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94 * used in a broken "legacy replacement" mode. The breakage includes
95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
98 * When that broken mode is in use, platform glue provides a partial
99 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
100 * want to use HPET for anything except those IRQs though...
102 #ifdef CONFIG_HPET_EMULATE_RTC
103 #include <asm/hpet.h>
106 static inline int is_hpet_enabled(void)
111 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
116 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
122 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
127 static inline int hpet_set_periodic_freq(unsigned long freq
)
132 static inline int hpet_rtc_dropped_irq(void)
137 static inline int hpet_rtc_timer_init(void)
142 extern irq_handler_t hpet_rtc_interrupt
;
144 static inline int hpet_register_irq_handler(irq_handler_t handler
)
149 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
156 /*----------------------------------------------------------------*/
160 /* Most newer x86 systems have two register banks, the first used
161 * for RTC and NVRAM and the second only for NVRAM. Caller must
162 * own rtc_lock ... and we won't worry about access during NMI.
164 #define can_bank2 true
166 static inline unsigned char cmos_read_bank2(unsigned char addr
)
168 outb(addr
, RTC_PORT(2));
169 return inb(RTC_PORT(3));
172 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
174 outb(addr
, RTC_PORT(2));
175 outb(val
, RTC_PORT(3));
180 #define can_bank2 false
182 static inline unsigned char cmos_read_bank2(unsigned char addr
)
187 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
193 /*----------------------------------------------------------------*/
195 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
197 /* REVISIT: if the clock has a "century" register, use
198 * that instead of the heuristic in mc146818_get_time().
199 * That'll make Y3K compatility (year > 2070) easy!
201 mc146818_get_time(t
);
205 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
207 /* REVISIT: set the "century" register if available
209 * NOTE: this ignores the issue whereby updating the seconds
210 * takes effect exactly 500ms after we write the register.
211 * (Also queueing and other delays before we get this far.)
213 return mc146818_set_time(t
);
216 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
218 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
219 unsigned char rtc_control
;
221 if (!is_valid_irq(cmos
->irq
))
224 /* Basic alarms only support hour, minute, and seconds fields.
225 * Some also support day and month, for alarms up to a year in
229 spin_lock_irq(&rtc_lock
);
230 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
231 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
232 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
234 if (cmos
->day_alrm
) {
235 /* ignore upper bits on readback per ACPI spec */
236 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
237 if (!t
->time
.tm_mday
)
238 t
->time
.tm_mday
= -1;
240 if (cmos
->mon_alrm
) {
241 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
247 rtc_control
= CMOS_READ(RTC_CONTROL
);
248 spin_unlock_irq(&rtc_lock
);
250 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
251 if (((unsigned)t
->time
.tm_sec
) < 0x60)
252 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
255 if (((unsigned)t
->time
.tm_min
) < 0x60)
256 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
259 if (((unsigned)t
->time
.tm_hour
) < 0x24)
260 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
262 t
->time
.tm_hour
= -1;
264 if (cmos
->day_alrm
) {
265 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
266 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
268 t
->time
.tm_mday
= -1;
270 if (cmos
->mon_alrm
) {
271 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
272 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
279 t
->enabled
= !!(rtc_control
& RTC_AIE
);
285 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
287 unsigned char rtc_intr
;
289 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
290 * allegedly some older rtcs need that to handle irqs properly
292 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
294 if (is_hpet_enabled())
297 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
298 if (is_intr(rtc_intr
))
299 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
302 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
304 unsigned char rtc_control
;
306 /* flush any pending IRQ status, notably for update irqs,
307 * before we enable new IRQs
309 rtc_control
= CMOS_READ(RTC_CONTROL
);
310 cmos_checkintr(cmos
, rtc_control
);
313 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
314 hpet_set_rtc_irq_bit(mask
);
316 cmos_checkintr(cmos
, rtc_control
);
319 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
321 unsigned char rtc_control
;
323 rtc_control
= CMOS_READ(RTC_CONTROL
);
324 rtc_control
&= ~mask
;
325 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
326 hpet_mask_rtc_irq_bit(mask
);
328 cmos_checkintr(cmos
, rtc_control
);
331 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
333 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
334 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
336 if (!is_valid_irq(cmos
->irq
))
339 mon
= t
->time
.tm_mon
+ 1;
340 mday
= t
->time
.tm_mday
;
341 hrs
= t
->time
.tm_hour
;
342 min
= t
->time
.tm_min
;
343 sec
= t
->time
.tm_sec
;
345 rtc_control
= CMOS_READ(RTC_CONTROL
);
346 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
347 /* Writing 0xff means "don't care" or "match all". */
348 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
349 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
350 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
351 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
352 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
355 spin_lock_irq(&rtc_lock
);
357 /* next rtc irq must not be from previous alarm setting */
358 cmos_irq_disable(cmos
, RTC_AIE
);
361 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
362 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
363 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
365 /* the system may support an "enhanced" alarm */
366 if (cmos
->day_alrm
) {
367 CMOS_WRITE(mday
, cmos
->day_alrm
);
369 CMOS_WRITE(mon
, cmos
->mon_alrm
);
372 /* FIXME the HPET alarm glue currently ignores day_alrm
375 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
, t
->time
.tm_sec
);
378 cmos_irq_enable(cmos
, RTC_AIE
);
380 spin_unlock_irq(&rtc_lock
);
382 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
387 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
389 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
392 if (!is_valid_irq(cmos
->irq
))
395 spin_lock_irqsave(&rtc_lock
, flags
);
398 cmos_irq_enable(cmos
, RTC_AIE
);
400 cmos_irq_disable(cmos
, RTC_AIE
);
402 spin_unlock_irqrestore(&rtc_lock
, flags
);
406 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
408 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
410 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
411 unsigned char rtc_control
, valid
;
413 spin_lock_irq(&rtc_lock
);
414 rtc_control
= CMOS_READ(RTC_CONTROL
);
415 valid
= CMOS_READ(RTC_VALID
);
416 spin_unlock_irq(&rtc_lock
);
418 /* NOTE: at least ICH6 reports battery status using a different
419 * (non-RTC) bit; and SQWE is ignored on many current systems.
422 "periodic_IRQ\t: %s\n"
424 "HPET_emulated\t: %s\n"
425 // "square_wave\t: %s\n"
428 "periodic_freq\t: %d\n"
429 "batt_status\t: %s\n",
430 (rtc_control
& RTC_PIE
) ? "yes" : "no",
431 (rtc_control
& RTC_UIE
) ? "yes" : "no",
432 is_hpet_enabled() ? "yes" : "no",
433 // (rtc_control & RTC_SQWE) ? "yes" : "no",
434 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
435 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
437 (valid
& RTC_VRT
) ? "okay" : "dead");
443 #define cmos_procfs NULL
446 static const struct rtc_class_ops cmos_rtc_ops
= {
447 .read_time
= cmos_read_time
,
448 .set_time
= cmos_set_time
,
449 .read_alarm
= cmos_read_alarm
,
450 .set_alarm
= cmos_set_alarm
,
452 .alarm_irq_enable
= cmos_alarm_irq_enable
,
455 /*----------------------------------------------------------------*/
458 * All these chips have at least 64 bytes of address space, shared by
459 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
460 * by boot firmware. Modern chips have 128 or 256 bytes.
463 #define NVRAM_OFFSET (RTC_REG_D + 1)
466 cmos_nvram_read(struct file
*filp
, struct kobject
*kobj
,
467 struct bin_attribute
*attr
,
468 char *buf
, loff_t off
, size_t count
)
473 spin_lock_irq(&rtc_lock
);
474 for (retval
= 0; count
; count
--, off
++, retval
++) {
476 *buf
++ = CMOS_READ(off
);
478 *buf
++ = cmos_read_bank2(off
);
482 spin_unlock_irq(&rtc_lock
);
488 cmos_nvram_write(struct file
*filp
, struct kobject
*kobj
,
489 struct bin_attribute
*attr
,
490 char *buf
, loff_t off
, size_t count
)
492 struct cmos_rtc
*cmos
;
495 cmos
= dev_get_drvdata(container_of(kobj
, struct device
, kobj
));
497 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
498 * checksum on part of the NVRAM data. That's currently ignored
499 * here. If userspace is smart enough to know what fields of
500 * NVRAM to update, updating checksums is also part of its job.
503 spin_lock_irq(&rtc_lock
);
504 for (retval
= 0; count
; count
--, off
++, retval
++) {
505 /* don't trash RTC registers */
506 if (off
== cmos
->day_alrm
507 || off
== cmos
->mon_alrm
508 || off
== cmos
->century
)
511 CMOS_WRITE(*buf
++, off
);
513 cmos_write_bank2(*buf
++, off
);
517 spin_unlock_irq(&rtc_lock
);
522 static struct bin_attribute nvram
= {
525 .mode
= S_IRUGO
| S_IWUSR
,
528 .read
= cmos_nvram_read
,
529 .write
= cmos_nvram_write
,
530 /* size gets set up later */
533 /*----------------------------------------------------------------*/
535 static struct cmos_rtc cmos_rtc
;
537 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
542 spin_lock(&rtc_lock
);
544 /* When the HPET interrupt handler calls us, the interrupt
545 * status is passed as arg1 instead of the irq number. But
546 * always clear irq status, even when HPET is in the way.
548 * Note that HPET and RTC are almost certainly out of phase,
549 * giving different IRQ status ...
551 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
552 rtc_control
= CMOS_READ(RTC_CONTROL
);
553 if (is_hpet_enabled())
554 irqstat
= (unsigned long)irq
& 0xF0;
556 /* If we were suspended, RTC_CONTROL may not be accurate since the
557 * bios may have cleared it.
559 if (!cmos_rtc
.suspend_ctrl
)
560 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
562 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
564 /* All Linux RTC alarms should be treated as if they were oneshot.
565 * Similar code may be needed in system wakeup paths, in case the
566 * alarm woke the system.
568 if (irqstat
& RTC_AIE
) {
569 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
570 rtc_control
&= ~RTC_AIE
;
571 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
572 hpet_mask_rtc_irq_bit(RTC_AIE
);
573 CMOS_READ(RTC_INTR_FLAGS
);
575 spin_unlock(&rtc_lock
);
577 if (is_intr(irqstat
)) {
578 rtc_update_irq(p
, 1, irqstat
);
588 #define INITSECTION __init
591 static int INITSECTION
592 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
594 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
596 unsigned char rtc_control
;
597 unsigned address_space
;
600 /* there can be only one ... */
607 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
609 * REVISIT non-x86 systems may instead use memory space resources
610 * (needing ioremap etc), not i/o space resources like this ...
613 ports
= request_region(ports
->start
, resource_size(ports
),
616 ports
= request_mem_region(ports
->start
, resource_size(ports
),
619 dev_dbg(dev
, "i/o registers already in use\n");
623 cmos_rtc
.irq
= rtc_irq
;
624 cmos_rtc
.iomem
= ports
;
626 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
627 * driver did, but don't reject unknown configs. Old hardware
628 * won't address 128 bytes. Newer chips have multiple banks,
629 * though they may not be listed in one I/O resource.
631 #if defined(CONFIG_ATARI)
633 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
634 || defined(__sparc__) || defined(__mips__) \
635 || defined(__powerpc__) || defined(CONFIG_MN10300)
638 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
641 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
644 /* For ACPI systems extension info comes from the FADT. On others,
645 * board specific setup provides it as appropriate. Systems where
646 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
647 * some almost-clones) can provide hooks to make that behave.
649 * Note that ACPI doesn't preclude putting these registers into
650 * "extended" areas of the chip, including some that we won't yet
651 * expect CMOS_READ and friends to handle.
656 if (info
->address_space
)
657 address_space
= info
->address_space
;
659 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
660 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
661 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
662 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
663 if (info
->rtc_century
&& info
->rtc_century
< 128)
664 cmos_rtc
.century
= info
->rtc_century
;
666 if (info
->wake_on
&& info
->wake_off
) {
667 cmos_rtc
.wake_on
= info
->wake_on
;
668 cmos_rtc
.wake_off
= info
->wake_off
;
673 dev_set_drvdata(dev
, &cmos_rtc
);
675 cmos_rtc
.rtc
= rtc_device_register(driver_name
, dev
,
676 &cmos_rtc_ops
, THIS_MODULE
);
677 if (IS_ERR(cmos_rtc
.rtc
)) {
678 retval
= PTR_ERR(cmos_rtc
.rtc
);
682 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
684 spin_lock_irq(&rtc_lock
);
686 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
687 /* force periodic irq to CMOS reset default of 1024Hz;
689 * REVISIT it's been reported that at least one x86_64 ALI
690 * mobo doesn't use 32KHz here ... for portability we might
691 * need to do something about other clock frequencies.
693 cmos_rtc
.rtc
->irq_freq
= 1024;
694 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
695 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
699 if (is_valid_irq(rtc_irq
))
700 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
702 rtc_control
= CMOS_READ(RTC_CONTROL
);
704 spin_unlock_irq(&rtc_lock
);
707 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
709 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
710 dev_warn(dev
, "only 24-hr supported\n");
715 hpet_rtc_timer_init();
717 if (is_valid_irq(rtc_irq
)) {
718 irq_handler_t rtc_cmos_int_handler
;
720 if (is_hpet_enabled()) {
721 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
722 retval
= hpet_register_irq_handler(cmos_interrupt
);
724 hpet_mask_rtc_irq_bit(RTC_IRQMASK
);
725 dev_warn(dev
, "hpet_register_irq_handler "
726 " failed in rtc_init().");
730 rtc_cmos_int_handler
= cmos_interrupt
;
732 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
733 IRQF_SHARED
, dev_name(&cmos_rtc
.rtc
->dev
),
736 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
741 /* export at least the first block of NVRAM */
742 nvram
.size
= address_space
- NVRAM_OFFSET
;
743 retval
= sysfs_create_bin_file(&dev
->kobj
, &nvram
);
745 dev_dbg(dev
, "can't create nvram file? %d\n", retval
);
749 dev_info(dev
, "%s%s, %zd bytes nvram%s\n",
750 !is_valid_irq(rtc_irq
) ? "no alarms" :
751 cmos_rtc
.mon_alrm
? "alarms up to one year" :
752 cmos_rtc
.day_alrm
? "alarms up to one month" :
753 "alarms up to one day",
754 cmos_rtc
.century
? ", y3k" : "",
756 is_hpet_enabled() ? ", hpet irqs" : "");
761 if (is_valid_irq(rtc_irq
))
762 free_irq(rtc_irq
, cmos_rtc
.rtc
);
765 rtc_device_unregister(cmos_rtc
.rtc
);
768 release_region(ports
->start
, resource_size(ports
));
770 release_mem_region(ports
->start
, resource_size(ports
));
774 static void cmos_do_shutdown(int rtc_irq
)
776 spin_lock_irq(&rtc_lock
);
777 if (is_valid_irq(rtc_irq
))
778 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
779 spin_unlock_irq(&rtc_lock
);
782 static void cmos_do_remove(struct device
*dev
)
784 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
785 struct resource
*ports
;
787 cmos_do_shutdown(cmos
->irq
);
789 sysfs_remove_bin_file(&dev
->kobj
, &nvram
);
791 if (is_valid_irq(cmos
->irq
)) {
792 free_irq(cmos
->irq
, cmos
->rtc
);
793 hpet_unregister_irq_handler(cmos_interrupt
);
796 rtc_device_unregister(cmos
->rtc
);
801 release_region(ports
->start
, resource_size(ports
));
803 release_mem_region(ports
->start
, resource_size(ports
));
809 static int cmos_aie_poweroff(struct device
*dev
)
811 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
815 unsigned char rtc_control
;
817 if (!cmos
->alarm_expires
)
820 spin_lock_irq(&rtc_lock
);
821 rtc_control
= CMOS_READ(RTC_CONTROL
);
822 spin_unlock_irq(&rtc_lock
);
824 /* We only care about the situation where AIE is disabled. */
825 if (rtc_control
& RTC_AIE
)
828 cmos_read_time(dev
, &now
);
829 t_now
= rtc_tm_to_time64(&now
);
832 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
833 * automatically right after shutdown on some buggy boxes.
834 * This automatic rebooting issue won't happen when the alarm
835 * time is larger than now+1 seconds.
837 * If the alarm time is equal to now+1 seconds, the issue can be
838 * prevented by cancelling the alarm.
840 if (cmos
->alarm_expires
== t_now
+ 1) {
841 struct rtc_wkalrm alarm
;
843 /* Cancel the AIE timer by configuring the past time. */
844 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
846 retval
= cmos_set_alarm(dev
, &alarm
);
847 } else if (cmos
->alarm_expires
> t_now
+ 1) {
854 static int cmos_suspend(struct device
*dev
)
856 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
859 /* only the alarm might be a wakeup event source */
860 spin_lock_irq(&rtc_lock
);
861 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
862 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
865 if (device_may_wakeup(dev
))
866 mask
= RTC_IRQMASK
& ~RTC_AIE
;
870 CMOS_WRITE(tmp
, RTC_CONTROL
);
871 hpet_mask_rtc_irq_bit(mask
);
873 cmos_checkintr(cmos
, tmp
);
875 spin_unlock_irq(&rtc_lock
);
878 cmos
->enabled_wake
= 1;
882 enable_irq_wake(cmos
->irq
);
885 cmos_read_alarm(dev
, &cmos
->saved_wkalrm
);
887 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
888 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
894 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
895 * after a detour through G3 "mechanical off", although the ACPI spec
896 * says wakeup should only work from G1/S4 "hibernate". To most users,
897 * distinctions between S4 and S5 are pointless. So when the hardware
898 * allows, don't draw that distinction.
900 static inline int cmos_poweroff(struct device
*dev
)
902 if (!IS_ENABLED(CONFIG_PM
))
905 return cmos_suspend(dev
);
908 static void cmos_check_wkalrm(struct device
*dev
)
910 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
911 struct rtc_wkalrm current_alarm
;
912 time64_t t_current_expires
;
913 time64_t t_saved_expires
;
915 cmos_read_alarm(dev
, ¤t_alarm
);
916 t_current_expires
= rtc_tm_to_time64(¤t_alarm
.time
);
917 t_saved_expires
= rtc_tm_to_time64(&cmos
->saved_wkalrm
.time
);
918 if (t_current_expires
!= t_saved_expires
||
919 cmos
->saved_wkalrm
.enabled
!= current_alarm
.enabled
) {
920 cmos_set_alarm(dev
, &cmos
->saved_wkalrm
);
924 static void cmos_check_acpi_rtc_status(struct device
*dev
,
925 unsigned char *rtc_control
);
927 static int __maybe_unused
cmos_resume(struct device
*dev
)
929 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
932 if (cmos
->enabled_wake
) {
936 disable_irq_wake(cmos
->irq
);
937 cmos
->enabled_wake
= 0;
940 /* The BIOS might have changed the alarm, restore it */
941 cmos_check_wkalrm(dev
);
943 spin_lock_irq(&rtc_lock
);
944 tmp
= cmos
->suspend_ctrl
;
945 cmos
->suspend_ctrl
= 0;
946 /* re-enable any irqs previously active */
947 if (tmp
& RTC_IRQMASK
) {
950 if (device_may_wakeup(dev
))
951 hpet_rtc_timer_init();
954 CMOS_WRITE(tmp
, RTC_CONTROL
);
955 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
957 mask
= CMOS_READ(RTC_INTR_FLAGS
);
958 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
959 if (!is_hpet_enabled() || !is_intr(mask
))
962 /* force one-shot behavior if HPET blocked
963 * the wake alarm's irq
965 rtc_update_irq(cmos
->rtc
, 1, mask
);
967 hpet_mask_rtc_irq_bit(RTC_AIE
);
968 } while (mask
& RTC_AIE
);
971 cmos_check_acpi_rtc_status(dev
, &tmp
);
973 spin_unlock_irq(&rtc_lock
);
975 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
980 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
982 /*----------------------------------------------------------------*/
984 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
985 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
986 * probably list them in similar PNPBIOS tables; so PNP is more common.
988 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
989 * predate even PNPBIOS should set up platform_bus devices.
994 #include <linux/acpi.h>
996 static u32
rtc_handler(void *context
)
998 struct device
*dev
= context
;
999 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1000 unsigned char rtc_control
= 0;
1001 unsigned char rtc_intr
;
1002 unsigned long flags
;
1004 spin_lock_irqsave(&rtc_lock
, flags
);
1005 if (cmos_rtc
.suspend_ctrl
)
1006 rtc_control
= CMOS_READ(RTC_CONTROL
);
1007 if (rtc_control
& RTC_AIE
) {
1008 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
1009 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
1010 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
1011 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
1013 spin_unlock_irqrestore(&rtc_lock
, flags
);
1015 pm_wakeup_event(dev
, 0);
1016 acpi_clear_event(ACPI_EVENT_RTC
);
1017 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1018 return ACPI_INTERRUPT_HANDLED
;
1021 static inline void rtc_wake_setup(struct device
*dev
)
1023 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
1025 * After the RTC handler is installed, the Fixed_RTC event should
1026 * be disabled. Only when the RTC alarm is set will it be enabled.
1028 acpi_clear_event(ACPI_EVENT_RTC
);
1029 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1032 static void rtc_wake_on(struct device
*dev
)
1034 acpi_clear_event(ACPI_EVENT_RTC
);
1035 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1038 static void rtc_wake_off(struct device
*dev
)
1040 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1043 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1044 * its device node and pass extra config data. This helps its driver use
1045 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1046 * that this board's RTC is wakeup-capable (per ACPI spec).
1048 static struct cmos_rtc_board_info acpi_rtc_info
;
1050 static void cmos_wake_setup(struct device
*dev
)
1055 rtc_wake_setup(dev
);
1056 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1057 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1059 /* workaround bug in some ACPI tables */
1060 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1061 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1062 acpi_gbl_FADT
.month_alarm
);
1063 acpi_gbl_FADT
.month_alarm
= 0;
1066 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1067 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1068 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1070 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1071 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1072 dev_info(dev
, "RTC can wake from S4\n");
1074 dev
->platform_data
= &acpi_rtc_info
;
1076 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1077 device_init_wakeup(dev
, 1);
1080 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1081 unsigned char *rtc_control
)
1083 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1084 acpi_event_status rtc_status
;
1087 if (acpi_gbl_FADT
.flags
& ACPI_FADT_FIXED_RTC
)
1090 status
= acpi_get_event_status(ACPI_EVENT_RTC
, &rtc_status
);
1091 if (ACPI_FAILURE(status
)) {
1092 dev_err(dev
, "Could not get RTC status\n");
1093 } else if (rtc_status
& ACPI_EVENT_FLAG_SET
) {
1095 *rtc_control
&= ~RTC_AIE
;
1096 CMOS_WRITE(*rtc_control
, RTC_CONTROL
);
1097 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1098 rtc_update_irq(cmos
->rtc
, 1, mask
);
1104 static void cmos_wake_setup(struct device
*dev
)
1108 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1109 unsigned char *rtc_control
)
1117 #include <linux/pnp.h>
1119 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1121 cmos_wake_setup(&pnp
->dev
);
1123 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0)) {
1124 unsigned int irq
= 0;
1126 /* Some machines contain a PNP entry for the RTC, but
1127 * don't define the IRQ. It should always be safe to
1128 * hardcode it on systems with a legacy PIC.
1130 if (nr_legacy_irqs())
1133 return cmos_do_probe(&pnp
->dev
,
1134 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), irq
);
1136 return cmos_do_probe(&pnp
->dev
,
1137 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1142 static void cmos_pnp_remove(struct pnp_dev
*pnp
)
1144 cmos_do_remove(&pnp
->dev
);
1147 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1149 struct device
*dev
= &pnp
->dev
;
1150 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1152 if (system_state
== SYSTEM_POWER_OFF
) {
1153 int retval
= cmos_poweroff(dev
);
1155 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1159 cmos_do_shutdown(cmos
->irq
);
1162 static const struct pnp_device_id rtc_ids
[] = {
1163 { .id
= "PNP0b00", },
1164 { .id
= "PNP0b01", },
1165 { .id
= "PNP0b02", },
1168 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1170 static struct pnp_driver cmos_pnp_driver
= {
1171 .name
= (char *) driver_name
,
1172 .id_table
= rtc_ids
,
1173 .probe
= cmos_pnp_probe
,
1174 .remove
= cmos_pnp_remove
,
1175 .shutdown
= cmos_pnp_shutdown
,
1177 /* flag ensures resume() gets called, and stops syslog spam */
1178 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1184 #endif /* CONFIG_PNP */
1187 static const struct of_device_id of_cmos_match
[] = {
1189 .compatible
= "motorola,mc146818",
1193 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1195 static __init
void cmos_of_init(struct platform_device
*pdev
)
1197 struct device_node
*node
= pdev
->dev
.of_node
;
1198 struct rtc_time time
;
1205 val
= of_get_property(node
, "ctrl-reg", NULL
);
1207 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1209 val
= of_get_property(node
, "freq-reg", NULL
);
1211 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1213 cmos_read_time(&pdev
->dev
, &time
);
1214 ret
= rtc_valid_tm(&time
);
1216 struct rtc_time def_time
= {
1220 cmos_set_time(&pdev
->dev
, &def_time
);
1224 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1226 /*----------------------------------------------------------------*/
1228 /* Platform setup should have set up an RTC device, when PNP is
1229 * unavailable ... this could happen even on (older) PCs.
1232 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1234 struct resource
*resource
;
1238 cmos_wake_setup(&pdev
->dev
);
1241 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1243 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1244 irq
= platform_get_irq(pdev
, 0);
1248 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1251 static int cmos_platform_remove(struct platform_device
*pdev
)
1253 cmos_do_remove(&pdev
->dev
);
1257 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1259 struct device
*dev
= &pdev
->dev
;
1260 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1262 if (system_state
== SYSTEM_POWER_OFF
) {
1263 int retval
= cmos_poweroff(dev
);
1265 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1269 cmos_do_shutdown(cmos
->irq
);
1272 /* work with hotplug and coldplug */
1273 MODULE_ALIAS("platform:rtc_cmos");
1275 static struct platform_driver cmos_platform_driver
= {
1276 .remove
= cmos_platform_remove
,
1277 .shutdown
= cmos_platform_shutdown
,
1279 .name
= driver_name
,
1281 .of_match_table
= of_match_ptr(of_cmos_match
),
1286 static bool pnp_driver_registered
;
1288 static bool platform_driver_registered
;
1290 static int __init
cmos_init(void)
1295 retval
= pnp_register_driver(&cmos_pnp_driver
);
1297 pnp_driver_registered
= true;
1300 if (!cmos_rtc
.dev
) {
1301 retval
= platform_driver_probe(&cmos_platform_driver
,
1302 cmos_platform_probe
);
1304 platform_driver_registered
= true;
1311 if (pnp_driver_registered
)
1312 pnp_unregister_driver(&cmos_pnp_driver
);
1316 module_init(cmos_init
);
1318 static void __exit
cmos_exit(void)
1321 if (pnp_driver_registered
)
1322 pnp_unregister_driver(&cmos_pnp_driver
);
1324 if (platform_driver_registered
)
1325 platform_driver_unregister(&cmos_platform_driver
);
1327 module_exit(cmos_exit
);
1330 MODULE_AUTHOR("David Brownell");
1331 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1332 MODULE_LICENSE("GPL");