1 // SPDX-License-Identifier: GPL-2.0
3 * blk-mq scheduling framework
5 * Copyright (C) 2016 Jens Axboe
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
12 #include <trace/events/block.h>
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
21 void blk_mq_sched_assign_ioc(struct request
*rq
)
23 struct request_queue
*q
= rq
->q
;
24 struct io_context
*ioc
;
28 * May not have an IO context if it's a passthrough request
30 ioc
= current
->io_context
;
34 spin_lock_irq(&q
->queue_lock
);
35 icq
= ioc_lookup_icq(ioc
, q
);
36 spin_unlock_irq(&q
->queue_lock
);
39 icq
= ioc_create_icq(ioc
, q
, GFP_ATOMIC
);
43 get_io_context(icq
->ioc
);
48 * Mark a hardware queue as needing a restart. For shared queues, maintain
49 * a count of how many hardware queues are marked for restart.
51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx
*hctx
)
53 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
56 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx
);
60 void blk_mq_sched_restart(struct blk_mq_hw_ctx
*hctx
)
62 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
64 clear_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
67 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 * meantime new request added to hctx->dispatch is missed to check in
71 * blk_mq_run_hw_queue().
75 blk_mq_run_hw_queue(hctx
, true);
78 static int sched_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
80 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
81 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
83 return rqa
->mq_hctx
> rqb
->mq_hctx
;
86 static bool blk_mq_dispatch_hctx_list(struct list_head
*rq_list
)
88 struct blk_mq_hw_ctx
*hctx
=
89 list_first_entry(rq_list
, struct request
, queuelist
)->mq_hctx
;
92 unsigned int count
= 0;
94 list_for_each_entry(rq
, rq_list
, queuelist
) {
95 if (rq
->mq_hctx
!= hctx
) {
96 list_cut_before(&hctx_list
, rq_list
, &rq
->queuelist
);
101 list_splice_tail_init(rq_list
, &hctx_list
);
104 return blk_mq_dispatch_rq_list(hctx
, &hctx_list
, count
);
107 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
110 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
111 * its queue by itself in its completion handler, so we don't need to
112 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
115 * be run again. This is necessary to avoid starving flushes.
117 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx
*hctx
)
119 struct request_queue
*q
= hctx
->queue
;
120 struct elevator_queue
*e
= q
->elevator
;
121 bool multi_hctxs
= false, run_queue
= false;
122 bool dispatched
= false, busy
= false;
123 unsigned int max_dispatch
;
127 if (hctx
->dispatch_busy
)
130 max_dispatch
= hctx
->queue
->nr_requests
;
135 if (e
->type
->ops
.has_work
&& !e
->type
->ops
.has_work(hctx
))
138 if (!list_empty_careful(&hctx
->dispatch
)) {
143 if (!blk_mq_get_dispatch_budget(q
))
146 rq
= e
->type
->ops
.dispatch_request(hctx
);
148 blk_mq_put_dispatch_budget(q
);
150 * We're releasing without dispatching. Holding the
151 * budget could have blocked any "hctx"s with the
152 * same queue and if we didn't dispatch then there's
153 * no guarantee anyone will kick the queue. Kick it
161 * Now this rq owns the budget which has to be released
162 * if this rq won't be queued to driver via .queue_rq()
163 * in blk_mq_dispatch_rq_list().
165 list_add_tail(&rq
->queuelist
, &rq_list
);
166 if (rq
->mq_hctx
!= hctx
)
168 } while (++count
< max_dispatch
);
172 blk_mq_delay_run_hw_queues(q
, BLK_MQ_BUDGET_DELAY
);
173 } else if (multi_hctxs
) {
175 * Requests from different hctx may be dequeued from some
176 * schedulers, such as bfq and deadline.
178 * Sort the requests in the list according to their hctx,
179 * dispatch batching requests from same hctx at a time.
181 list_sort(NULL
, &rq_list
, sched_rq_cmp
);
183 dispatched
|= blk_mq_dispatch_hctx_list(&rq_list
);
184 } while (!list_empty(&rq_list
));
186 dispatched
= blk_mq_dispatch_rq_list(hctx
, &rq_list
, count
);
194 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx
*hctx
)
199 ret
= __blk_mq_do_dispatch_sched(hctx
);
205 static struct blk_mq_ctx
*blk_mq_next_ctx(struct blk_mq_hw_ctx
*hctx
,
206 struct blk_mq_ctx
*ctx
)
208 unsigned short idx
= ctx
->index_hw
[hctx
->type
];
210 if (++idx
== hctx
->nr_ctx
)
213 return hctx
->ctxs
[idx
];
217 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
218 * its queue by itself in its completion handler, so we don't need to
219 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
221 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
222 * be run again. This is necessary to avoid starving flushes.
224 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx
*hctx
)
226 struct request_queue
*q
= hctx
->queue
;
228 struct blk_mq_ctx
*ctx
= READ_ONCE(hctx
->dispatch_from
);
233 if (!list_empty_careful(&hctx
->dispatch
)) {
238 if (!sbitmap_any_bit_set(&hctx
->ctx_map
))
241 if (!blk_mq_get_dispatch_budget(q
))
244 rq
= blk_mq_dequeue_from_ctx(hctx
, ctx
);
246 blk_mq_put_dispatch_budget(q
);
248 * We're releasing without dispatching. Holding the
249 * budget could have blocked any "hctx"s with the
250 * same queue and if we didn't dispatch then there's
251 * no guarantee anyone will kick the queue. Kick it
254 blk_mq_delay_run_hw_queues(q
, BLK_MQ_BUDGET_DELAY
);
259 * Now this rq owns the budget which has to be released
260 * if this rq won't be queued to driver via .queue_rq()
261 * in blk_mq_dispatch_rq_list().
263 list_add(&rq
->queuelist
, &rq_list
);
265 /* round robin for fair dispatch */
266 ctx
= blk_mq_next_ctx(hctx
, rq
->mq_ctx
);
268 } while (blk_mq_dispatch_rq_list(rq
->mq_hctx
, &rq_list
, 1));
270 WRITE_ONCE(hctx
->dispatch_from
, ctx
);
274 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx
*hctx
)
276 struct request_queue
*q
= hctx
->queue
;
277 struct elevator_queue
*e
= q
->elevator
;
278 const bool has_sched_dispatch
= e
&& e
->type
->ops
.dispatch_request
;
283 * If we have previous entries on our dispatch list, grab them first for
284 * more fair dispatch.
286 if (!list_empty_careful(&hctx
->dispatch
)) {
287 spin_lock(&hctx
->lock
);
288 if (!list_empty(&hctx
->dispatch
))
289 list_splice_init(&hctx
->dispatch
, &rq_list
);
290 spin_unlock(&hctx
->lock
);
294 * Only ask the scheduler for requests, if we didn't have residual
295 * requests from the dispatch list. This is to avoid the case where
296 * we only ever dispatch a fraction of the requests available because
297 * of low device queue depth. Once we pull requests out of the IO
298 * scheduler, we can no longer merge or sort them. So it's best to
299 * leave them there for as long as we can. Mark the hw queue as
300 * needing a restart in that case.
302 * We want to dispatch from the scheduler if there was nothing
303 * on the dispatch list or we were able to dispatch from the
306 if (!list_empty(&rq_list
)) {
307 blk_mq_sched_mark_restart_hctx(hctx
);
308 if (blk_mq_dispatch_rq_list(hctx
, &rq_list
, 0)) {
309 if (has_sched_dispatch
)
310 ret
= blk_mq_do_dispatch_sched(hctx
);
312 ret
= blk_mq_do_dispatch_ctx(hctx
);
314 } else if (has_sched_dispatch
) {
315 ret
= blk_mq_do_dispatch_sched(hctx
);
316 } else if (hctx
->dispatch_busy
) {
317 /* dequeue request one by one from sw queue if queue is busy */
318 ret
= blk_mq_do_dispatch_ctx(hctx
);
320 blk_mq_flush_busy_ctxs(hctx
, &rq_list
);
321 blk_mq_dispatch_rq_list(hctx
, &rq_list
, 0);
327 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx
*hctx
)
329 struct request_queue
*q
= hctx
->queue
;
331 /* RCU or SRCU read lock is needed before checking quiesced flag */
332 if (unlikely(blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)))
338 * A return of -EAGAIN is an indication that hctx->dispatch is not
339 * empty and we must run again in order to avoid starving flushes.
341 if (__blk_mq_sched_dispatch_requests(hctx
) == -EAGAIN
) {
342 if (__blk_mq_sched_dispatch_requests(hctx
) == -EAGAIN
)
343 blk_mq_run_hw_queue(hctx
, true);
347 bool __blk_mq_sched_bio_merge(struct request_queue
*q
, struct bio
*bio
,
348 unsigned int nr_segs
)
350 struct elevator_queue
*e
= q
->elevator
;
351 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
352 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, bio
->bi_opf
, ctx
);
356 if (e
&& e
->type
->ops
.bio_merge
)
357 return e
->type
->ops
.bio_merge(hctx
, bio
, nr_segs
);
360 if (!(hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) ||
361 list_empty_careful(&ctx
->rq_lists
[type
]))
364 /* default per sw-queue merge */
365 spin_lock(&ctx
->lock
);
367 * Reverse check our software queue for entries that we could
368 * potentially merge with. Currently includes a hand-wavy stop
369 * count of 8, to not spend too much time checking for merges.
371 if (blk_bio_list_merge(q
, &ctx
->rq_lists
[type
], bio
, nr_segs
)) {
376 spin_unlock(&ctx
->lock
);
381 bool blk_mq_sched_try_insert_merge(struct request_queue
*q
, struct request
*rq
)
383 return rq_mergeable(rq
) && elv_attempt_insert_merge(q
, rq
);
385 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge
);
387 void blk_mq_sched_request_inserted(struct request
*rq
)
389 trace_block_rq_insert(rq
);
391 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted
);
393 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx
*hctx
,
398 * dispatch flush and passthrough rq directly
400 * passthrough request has to be added to hctx->dispatch directly.
401 * For some reason, device may be in one situation which can't
402 * handle FS request, so STS_RESOURCE is always returned and the
403 * FS request will be added to hctx->dispatch. However passthrough
404 * request may be required at that time for fixing the problem. If
405 * passthrough request is added to scheduler queue, there isn't any
406 * chance to dispatch it given we prioritize requests in hctx->dispatch.
408 if ((rq
->rq_flags
& RQF_FLUSH_SEQ
) || blk_rq_is_passthrough(rq
))
412 rq
->rq_flags
|= RQF_SORTED
;
417 void blk_mq_sched_insert_request(struct request
*rq
, bool at_head
,
418 bool run_queue
, bool async
)
420 struct request_queue
*q
= rq
->q
;
421 struct elevator_queue
*e
= q
->elevator
;
422 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
423 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
425 WARN_ON(e
&& (rq
->tag
!= BLK_MQ_NO_TAG
));
427 if (blk_mq_sched_bypass_insert(hctx
, !!e
, rq
)) {
429 * Firstly normal IO request is inserted to scheduler queue or
430 * sw queue, meantime we add flush request to dispatch queue(
431 * hctx->dispatch) directly and there is at most one in-flight
432 * flush request for each hw queue, so it doesn't matter to add
433 * flush request to tail or front of the dispatch queue.
435 * Secondly in case of NCQ, flush request belongs to non-NCQ
436 * command, and queueing it will fail when there is any
437 * in-flight normal IO request(NCQ command). When adding flush
438 * rq to the front of hctx->dispatch, it is easier to introduce
439 * extra time to flush rq's latency because of S_SCHED_RESTART
440 * compared with adding to the tail of dispatch queue, then
441 * chance of flush merge is increased, and less flush requests
442 * will be issued to controller. It is observed that ~10% time
443 * is saved in blktests block/004 on disk attached to AHCI/NCQ
444 * drive when adding flush rq to the front of hctx->dispatch.
446 * Simply queue flush rq to the front of hctx->dispatch so that
447 * intensive flush workloads can benefit in case of NCQ HW.
449 at_head
= (rq
->rq_flags
& RQF_FLUSH_SEQ
) ? true : at_head
;
450 blk_mq_request_bypass_insert(rq
, at_head
, false);
454 if (e
&& e
->type
->ops
.insert_requests
) {
457 list_add(&rq
->queuelist
, &list
);
458 e
->type
->ops
.insert_requests(hctx
, &list
, at_head
);
460 spin_lock(&ctx
->lock
);
461 __blk_mq_insert_request(hctx
, rq
, at_head
);
462 spin_unlock(&ctx
->lock
);
467 blk_mq_run_hw_queue(hctx
, async
);
470 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx
*hctx
,
471 struct blk_mq_ctx
*ctx
,
472 struct list_head
*list
, bool run_queue_async
)
474 struct elevator_queue
*e
;
475 struct request_queue
*q
= hctx
->queue
;
478 * blk_mq_sched_insert_requests() is called from flush plug
479 * context only, and hold one usage counter to prevent queue
480 * from being released.
482 percpu_ref_get(&q
->q_usage_counter
);
484 e
= hctx
->queue
->elevator
;
485 if (e
&& e
->type
->ops
.insert_requests
)
486 e
->type
->ops
.insert_requests(hctx
, list
, false);
489 * try to issue requests directly if the hw queue isn't
490 * busy in case of 'none' scheduler, and this way may save
491 * us one extra enqueue & dequeue to sw queue.
493 if (!hctx
->dispatch_busy
&& !e
&& !run_queue_async
) {
494 blk_mq_try_issue_list_directly(hctx
, list
);
495 if (list_empty(list
))
498 blk_mq_insert_requests(hctx
, ctx
, list
);
501 blk_mq_run_hw_queue(hctx
, run_queue_async
);
503 percpu_ref_put(&q
->q_usage_counter
);
506 static void blk_mq_sched_free_tags(struct blk_mq_tag_set
*set
,
507 struct blk_mq_hw_ctx
*hctx
,
508 unsigned int hctx_idx
)
510 unsigned int flags
= set
->flags
& ~BLK_MQ_F_TAG_HCTX_SHARED
;
512 if (hctx
->sched_tags
) {
513 blk_mq_free_rqs(set
, hctx
->sched_tags
, hctx_idx
);
514 blk_mq_free_rq_map(hctx
->sched_tags
, flags
);
515 hctx
->sched_tags
= NULL
;
519 static int blk_mq_sched_alloc_tags(struct request_queue
*q
,
520 struct blk_mq_hw_ctx
*hctx
,
521 unsigned int hctx_idx
)
523 struct blk_mq_tag_set
*set
= q
->tag_set
;
524 /* Clear HCTX_SHARED so tags are init'ed */
525 unsigned int flags
= set
->flags
& ~BLK_MQ_F_TAG_HCTX_SHARED
;
528 hctx
->sched_tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, q
->nr_requests
,
529 set
->reserved_tags
, flags
);
530 if (!hctx
->sched_tags
)
533 ret
= blk_mq_alloc_rqs(set
, hctx
->sched_tags
, hctx_idx
, q
->nr_requests
);
535 blk_mq_sched_free_tags(set
, hctx
, hctx_idx
);
540 /* called in queue's release handler, tagset has gone away */
541 static void blk_mq_sched_tags_teardown(struct request_queue
*q
)
543 struct blk_mq_hw_ctx
*hctx
;
546 queue_for_each_hw_ctx(q
, hctx
, i
) {
547 /* Clear HCTX_SHARED so tags are freed */
548 unsigned int flags
= hctx
->flags
& ~BLK_MQ_F_TAG_HCTX_SHARED
;
550 if (hctx
->sched_tags
) {
551 blk_mq_free_rq_map(hctx
->sched_tags
, flags
);
552 hctx
->sched_tags
= NULL
;
557 int blk_mq_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
559 struct blk_mq_hw_ctx
*hctx
;
560 struct elevator_queue
*eq
;
566 q
->nr_requests
= q
->tag_set
->queue_depth
;
571 * Default to double of smaller one between hw queue_depth and 128,
572 * since we don't split into sync/async like the old code did.
573 * Additionally, this is a per-hw queue depth.
575 q
->nr_requests
= 2 * min_t(unsigned int, q
->tag_set
->queue_depth
,
578 queue_for_each_hw_ctx(q
, hctx
, i
) {
579 ret
= blk_mq_sched_alloc_tags(q
, hctx
, i
);
584 ret
= e
->ops
.init_sched(q
, e
);
588 blk_mq_debugfs_register_sched(q
);
590 queue_for_each_hw_ctx(q
, hctx
, i
) {
591 if (e
->ops
.init_hctx
) {
592 ret
= e
->ops
.init_hctx(hctx
, i
);
595 blk_mq_sched_free_requests(q
);
596 blk_mq_exit_sched(q
, eq
);
597 kobject_put(&eq
->kobj
);
601 blk_mq_debugfs_register_sched_hctx(q
, hctx
);
607 blk_mq_sched_free_requests(q
);
608 blk_mq_sched_tags_teardown(q
);
614 * called in either blk_queue_cleanup or elevator_switch, tagset
615 * is required for freeing requests
617 void blk_mq_sched_free_requests(struct request_queue
*q
)
619 struct blk_mq_hw_ctx
*hctx
;
622 queue_for_each_hw_ctx(q
, hctx
, i
) {
623 if (hctx
->sched_tags
)
624 blk_mq_free_rqs(q
->tag_set
, hctx
->sched_tags
, i
);
628 void blk_mq_exit_sched(struct request_queue
*q
, struct elevator_queue
*e
)
630 struct blk_mq_hw_ctx
*hctx
;
633 queue_for_each_hw_ctx(q
, hctx
, i
) {
634 blk_mq_debugfs_unregister_sched_hctx(hctx
);
635 if (e
->type
->ops
.exit_hctx
&& hctx
->sched_data
) {
636 e
->type
->ops
.exit_hctx(hctx
, i
);
637 hctx
->sched_data
= NULL
;
640 blk_mq_debugfs_unregister_sched(q
);
641 if (e
->type
->ops
.exit_sched
)
642 e
->type
->ops
.exit_sched(e
);
643 blk_mq_sched_tags_teardown(q
);