Merge tag 'io_uring-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
blob51e80bc70d42325d14aea0baa72dff39b1113f48
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
9 /*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
49 #ifdef CONFIG_ACPI
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
61 static inline int cmos_use_acpi_alarm(void)
63 return use_acpi_alarm;
65 #else /* !CONFIG_ACPI */
67 static inline int cmos_use_acpi_alarm(void)
69 return 0;
71 #endif
73 struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
83 u8 enabled_wake;
84 u8 suspend_ctrl;
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
91 struct rtc_wkalrm saved_wkalrm;
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
97 static const char driver_name[] = "rtc_cmos";
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
105 static inline int is_intr(u8 rtc_intr)
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
112 /*----------------------------------------------------------------*/
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
128 static inline int is_hpet_enabled(void)
130 return 0;
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
135 return 0;
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
140 return 0;
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
146 return 0;
149 static inline int hpet_set_periodic_freq(unsigned long freq)
151 return 0;
154 static inline int hpet_rtc_dropped_irq(void)
156 return 0;
159 static inline int hpet_rtc_timer_init(void)
161 return 0;
164 extern irq_handler_t hpet_rtc_interrupt;
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
168 return 0;
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
173 return 0;
176 #endif
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
184 /*----------------------------------------------------------------*/
186 #ifdef RTC_PORT
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
192 #define can_bank2 true
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
206 #else
208 #define can_bank2 false
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
212 return 0;
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
219 #endif
221 /*----------------------------------------------------------------*/
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
229 if (!pm_trace_rtc_valid())
230 return -EIO;
232 /* REVISIT: if the clock has a "century" register, use
233 * that instead of the heuristic in mc146818_get_time().
234 * That'll make Y3K compatility (year > 2070) easy!
236 mc146818_get_time(t);
237 return 0;
240 static int cmos_set_time(struct device *dev, struct rtc_time *t)
242 /* REVISIT: set the "century" register if available
244 * NOTE: this ignores the issue whereby updating the seconds
245 * takes effect exactly 500ms after we write the register.
246 * (Also queueing and other delays before we get this far.)
248 return mc146818_set_time(t);
251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
256 /* This not only a rtc_op, but also called directly */
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
260 /* Basic alarms only support hour, minute, and seconds fields.
261 * Some also support day and month, for alarms up to a year in
262 * the future.
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
270 if (cmos->day_alrm) {
271 /* ignore upper bits on readback per ACPI spec */
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 else
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 else
304 t->time.tm_mday = -1;
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
318 return 0;
321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
323 unsigned char rtc_intr;
325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 * allegedly some older rtcs need that to handle irqs properly
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
330 if (use_hpet_alarm())
331 return;
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
340 unsigned char rtc_control;
342 /* flush any pending IRQ status, notably for update irqs,
343 * before we enable new IRQs
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
358 cmos_checkintr(cmos, rtc_control);
361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
363 unsigned char rtc_control;
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
376 cmos_checkintr(cmos, rtc_control);
379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
384 cmos_read_time(dev, &now);
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
443 return 0;
446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
449 unsigned char mon, mday, hrs, min, sec, rtc_control;
450 int ret;
452 /* This not only a rtc_op, but also called directly */
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
460 mon = t->time.tm_mon + 1;
461 mday = t->time.tm_mday;
462 hrs = t->time.tm_hour;
463 min = t->time.tm_min;
464 sec = t->time.tm_sec;
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468 /* Writing 0xff means "don't care" or "match all". */
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
476 spin_lock_irq(&rtc_lock);
478 /* next rtc irq must not be from previous alarm setting */
479 cmos_irq_disable(cmos, RTC_AIE);
481 /* update alarm */
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
486 /* the system may support an "enhanced" alarm */
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
493 if (use_hpet_alarm()) {
495 * FIXME the HPET alarm glue currently ignores day_alrm
496 * and mon_alrm ...
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
505 spin_unlock_irq(&rtc_lock);
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
509 return 0;
512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
515 unsigned long flags;
517 spin_lock_irqsave(&rtc_lock, flags);
519 if (enabled)
520 cmos_irq_enable(cmos, RTC_AIE);
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
530 static int cmos_procfs(struct device *dev, struct seq_file *seq)
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
540 /* NOTE: at least ICH6 reports battery status using a different
541 * (non-RTC) bit; and SQWE is ignored on many current systems.
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547 // "square_wave\t: %s\n"
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555 // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
561 return 0;
564 #else
565 #define cmos_procfs NULL
566 #endif
568 static const struct rtc_class_ops cmos_rtc_ops = {
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
574 .alarm_irq_enable = cmos_alarm_irq_enable,
577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
583 /*----------------------------------------------------------------*/
586 * All these chips have at least 64 bytes of address space, shared by
587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
588 * by boot firmware. Modern chips have 128 or 256 bytes.
591 #define NVRAM_OFFSET (RTC_REG_D + 1)
593 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
596 unsigned char *buf = val;
597 int retval;
599 off += NVRAM_OFFSET;
600 spin_lock_irq(&rtc_lock);
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
609 spin_unlock_irq(&rtc_lock);
611 return retval;
614 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
619 int retval;
621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
622 * checksum on part of the NVRAM data. That's currently ignored
623 * here. If userspace is smart enough to know what fields of
624 * NVRAM to update, updating checksums is also part of its job.
626 off += NVRAM_OFFSET;
627 spin_lock_irq(&rtc_lock);
628 for (retval = 0; count; count--, off++, retval++) {
629 /* don't trash RTC registers */
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
634 else if (off < 128)
635 CMOS_WRITE(*buf++, off);
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
641 spin_unlock_irq(&rtc_lock);
643 return retval;
646 /*----------------------------------------------------------------*/
648 static struct cmos_rtc cmos_rtc;
650 static irqreturn_t cmos_interrupt(int irq, void *p)
652 unsigned long flags;
653 u8 irqstat;
654 u8 rtc_control;
656 spin_lock_irqsave(&rtc_lock, flags);
658 /* When the HPET interrupt handler calls us, the interrupt
659 * status is passed as arg1 instead of the irq number. But
660 * always clear irq status, even when HPET is in the way.
662 * Note that HPET and RTC are almost certainly out of phase,
663 * giving different IRQ status ...
665 irqstat = CMOS_READ(RTC_INTR_FLAGS);
666 rtc_control = CMOS_READ(RTC_CONTROL);
667 if (use_hpet_alarm())
668 irqstat = (unsigned long)irq & 0xF0;
670 /* If we were suspended, RTC_CONTROL may not be accurate since the
671 * bios may have cleared it.
673 if (!cmos_rtc.suspend_ctrl)
674 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
675 else
676 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
678 /* All Linux RTC alarms should be treated as if they were oneshot.
679 * Similar code may be needed in system wakeup paths, in case the
680 * alarm woke the system.
682 if (irqstat & RTC_AIE) {
683 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
684 rtc_control &= ~RTC_AIE;
685 CMOS_WRITE(rtc_control, RTC_CONTROL);
686 if (use_hpet_alarm())
687 hpet_mask_rtc_irq_bit(RTC_AIE);
688 CMOS_READ(RTC_INTR_FLAGS);
690 spin_unlock_irqrestore(&rtc_lock, flags);
692 if (is_intr(irqstat)) {
693 rtc_update_irq(p, 1, irqstat);
694 return IRQ_HANDLED;
695 } else
696 return IRQ_NONE;
699 #ifdef CONFIG_PNP
700 #define INITSECTION
702 #else
703 #define INITSECTION __init
704 #endif
706 static int INITSECTION
707 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
709 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
710 int retval = 0;
711 unsigned char rtc_control;
712 unsigned address_space;
713 u32 flags = 0;
714 struct nvmem_config nvmem_cfg = {
715 .name = "cmos_nvram",
716 .word_size = 1,
717 .stride = 1,
718 .reg_read = cmos_nvram_read,
719 .reg_write = cmos_nvram_write,
720 .priv = &cmos_rtc,
723 /* there can be only one ... */
724 if (cmos_rtc.dev)
725 return -EBUSY;
727 if (!ports)
728 return -ENODEV;
730 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
732 * REVISIT non-x86 systems may instead use memory space resources
733 * (needing ioremap etc), not i/o space resources like this ...
735 if (RTC_IOMAPPED)
736 ports = request_region(ports->start, resource_size(ports),
737 driver_name);
738 else
739 ports = request_mem_region(ports->start, resource_size(ports),
740 driver_name);
741 if (!ports) {
742 dev_dbg(dev, "i/o registers already in use\n");
743 return -EBUSY;
746 cmos_rtc.irq = rtc_irq;
747 cmos_rtc.iomem = ports;
749 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
750 * driver did, but don't reject unknown configs. Old hardware
751 * won't address 128 bytes. Newer chips have multiple banks,
752 * though they may not be listed in one I/O resource.
754 #if defined(CONFIG_ATARI)
755 address_space = 64;
756 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
757 || defined(__sparc__) || defined(__mips__) \
758 || defined(__powerpc__)
759 address_space = 128;
760 #else
761 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
762 address_space = 128;
763 #endif
764 if (can_bank2 && ports->end > (ports->start + 1))
765 address_space = 256;
767 /* For ACPI systems extension info comes from the FADT. On others,
768 * board specific setup provides it as appropriate. Systems where
769 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
770 * some almost-clones) can provide hooks to make that behave.
772 * Note that ACPI doesn't preclude putting these registers into
773 * "extended" areas of the chip, including some that we won't yet
774 * expect CMOS_READ and friends to handle.
776 if (info) {
777 if (info->flags)
778 flags = info->flags;
779 if (info->address_space)
780 address_space = info->address_space;
782 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
783 cmos_rtc.day_alrm = info->rtc_day_alarm;
784 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
785 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
786 if (info->rtc_century && info->rtc_century < 128)
787 cmos_rtc.century = info->rtc_century;
789 if (info->wake_on && info->wake_off) {
790 cmos_rtc.wake_on = info->wake_on;
791 cmos_rtc.wake_off = info->wake_off;
795 cmos_rtc.dev = dev;
796 dev_set_drvdata(dev, &cmos_rtc);
798 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
799 if (IS_ERR(cmos_rtc.rtc)) {
800 retval = PTR_ERR(cmos_rtc.rtc);
801 goto cleanup0;
804 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
806 spin_lock_irq(&rtc_lock);
808 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
809 /* force periodic irq to CMOS reset default of 1024Hz;
811 * REVISIT it's been reported that at least one x86_64 ALI
812 * mobo doesn't use 32KHz here ... for portability we might
813 * need to do something about other clock frequencies.
815 cmos_rtc.rtc->irq_freq = 1024;
816 if (use_hpet_alarm())
817 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
818 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
821 /* disable irqs */
822 if (is_valid_irq(rtc_irq))
823 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
825 rtc_control = CMOS_READ(RTC_CONTROL);
827 spin_unlock_irq(&rtc_lock);
829 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
830 dev_warn(dev, "only 24-hr supported\n");
831 retval = -ENXIO;
832 goto cleanup1;
835 if (use_hpet_alarm())
836 hpet_rtc_timer_init();
838 if (is_valid_irq(rtc_irq)) {
839 irq_handler_t rtc_cmos_int_handler;
841 if (use_hpet_alarm()) {
842 rtc_cmos_int_handler = hpet_rtc_interrupt;
843 retval = hpet_register_irq_handler(cmos_interrupt);
844 if (retval) {
845 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
846 dev_warn(dev, "hpet_register_irq_handler "
847 " failed in rtc_init().");
848 goto cleanup1;
850 } else
851 rtc_cmos_int_handler = cmos_interrupt;
853 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
854 0, dev_name(&cmos_rtc.rtc->dev),
855 cmos_rtc.rtc);
856 if (retval < 0) {
857 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
858 goto cleanup1;
861 cmos_rtc.rtc->ops = &cmos_rtc_ops;
862 } else {
863 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
866 retval = devm_rtc_register_device(cmos_rtc.rtc);
867 if (retval)
868 goto cleanup2;
870 /* Set the sync offset for the periodic 11min update correct */
871 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
873 /* export at least the first block of NVRAM */
874 nvmem_cfg.size = address_space - NVRAM_OFFSET;
875 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
877 dev_info(dev, "%s%s, %d bytes nvram%s\n",
878 !is_valid_irq(rtc_irq) ? "no alarms" :
879 cmos_rtc.mon_alrm ? "alarms up to one year" :
880 cmos_rtc.day_alrm ? "alarms up to one month" :
881 "alarms up to one day",
882 cmos_rtc.century ? ", y3k" : "",
883 nvmem_cfg.size,
884 use_hpet_alarm() ? ", hpet irqs" : "");
886 return 0;
888 cleanup2:
889 if (is_valid_irq(rtc_irq))
890 free_irq(rtc_irq, cmos_rtc.rtc);
891 cleanup1:
892 cmos_rtc.dev = NULL;
893 cleanup0:
894 if (RTC_IOMAPPED)
895 release_region(ports->start, resource_size(ports));
896 else
897 release_mem_region(ports->start, resource_size(ports));
898 return retval;
901 static void cmos_do_shutdown(int rtc_irq)
903 spin_lock_irq(&rtc_lock);
904 if (is_valid_irq(rtc_irq))
905 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
906 spin_unlock_irq(&rtc_lock);
909 static void cmos_do_remove(struct device *dev)
911 struct cmos_rtc *cmos = dev_get_drvdata(dev);
912 struct resource *ports;
914 cmos_do_shutdown(cmos->irq);
916 if (is_valid_irq(cmos->irq)) {
917 free_irq(cmos->irq, cmos->rtc);
918 if (use_hpet_alarm())
919 hpet_unregister_irq_handler(cmos_interrupt);
922 cmos->rtc = NULL;
924 ports = cmos->iomem;
925 if (RTC_IOMAPPED)
926 release_region(ports->start, resource_size(ports));
927 else
928 release_mem_region(ports->start, resource_size(ports));
929 cmos->iomem = NULL;
931 cmos->dev = NULL;
934 static int cmos_aie_poweroff(struct device *dev)
936 struct cmos_rtc *cmos = dev_get_drvdata(dev);
937 struct rtc_time now;
938 time64_t t_now;
939 int retval = 0;
940 unsigned char rtc_control;
942 if (!cmos->alarm_expires)
943 return -EINVAL;
945 spin_lock_irq(&rtc_lock);
946 rtc_control = CMOS_READ(RTC_CONTROL);
947 spin_unlock_irq(&rtc_lock);
949 /* We only care about the situation where AIE is disabled. */
950 if (rtc_control & RTC_AIE)
951 return -EBUSY;
953 cmos_read_time(dev, &now);
954 t_now = rtc_tm_to_time64(&now);
957 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
958 * automatically right after shutdown on some buggy boxes.
959 * This automatic rebooting issue won't happen when the alarm
960 * time is larger than now+1 seconds.
962 * If the alarm time is equal to now+1 seconds, the issue can be
963 * prevented by cancelling the alarm.
965 if (cmos->alarm_expires == t_now + 1) {
966 struct rtc_wkalrm alarm;
968 /* Cancel the AIE timer by configuring the past time. */
969 rtc_time64_to_tm(t_now - 1, &alarm.time);
970 alarm.enabled = 0;
971 retval = cmos_set_alarm(dev, &alarm);
972 } else if (cmos->alarm_expires > t_now + 1) {
973 retval = -EBUSY;
976 return retval;
979 static int cmos_suspend(struct device *dev)
981 struct cmos_rtc *cmos = dev_get_drvdata(dev);
982 unsigned char tmp;
984 /* only the alarm might be a wakeup event source */
985 spin_lock_irq(&rtc_lock);
986 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
987 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
988 unsigned char mask;
990 if (device_may_wakeup(dev))
991 mask = RTC_IRQMASK & ~RTC_AIE;
992 else
993 mask = RTC_IRQMASK;
994 tmp &= ~mask;
995 CMOS_WRITE(tmp, RTC_CONTROL);
996 if (use_hpet_alarm())
997 hpet_mask_rtc_irq_bit(mask);
998 cmos_checkintr(cmos, tmp);
1000 spin_unlock_irq(&rtc_lock);
1002 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1003 cmos->enabled_wake = 1;
1004 if (cmos->wake_on)
1005 cmos->wake_on(dev);
1006 else
1007 enable_irq_wake(cmos->irq);
1010 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1011 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1013 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1014 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1015 tmp);
1017 return 0;
1020 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1021 * after a detour through G3 "mechanical off", although the ACPI spec
1022 * says wakeup should only work from G1/S4 "hibernate". To most users,
1023 * distinctions between S4 and S5 are pointless. So when the hardware
1024 * allows, don't draw that distinction.
1026 static inline int cmos_poweroff(struct device *dev)
1028 if (!IS_ENABLED(CONFIG_PM))
1029 return -ENOSYS;
1031 return cmos_suspend(dev);
1034 static void cmos_check_wkalrm(struct device *dev)
1036 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1037 struct rtc_wkalrm current_alarm;
1038 time64_t t_now;
1039 time64_t t_current_expires;
1040 time64_t t_saved_expires;
1041 struct rtc_time now;
1043 /* Check if we have RTC Alarm armed */
1044 if (!(cmos->suspend_ctrl & RTC_AIE))
1045 return;
1047 cmos_read_time(dev, &now);
1048 t_now = rtc_tm_to_time64(&now);
1051 * ACPI RTC wake event is cleared after resume from STR,
1052 * ACK the rtc irq here
1054 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1055 cmos_interrupt(0, (void *)cmos->rtc);
1056 return;
1059 memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1060 cmos_read_alarm(dev, &current_alarm);
1061 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1062 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1063 if (t_current_expires != t_saved_expires ||
1064 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1065 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1069 static void cmos_check_acpi_rtc_status(struct device *dev,
1070 unsigned char *rtc_control);
1072 static int __maybe_unused cmos_resume(struct device *dev)
1074 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1075 unsigned char tmp;
1077 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1078 if (cmos->wake_off)
1079 cmos->wake_off(dev);
1080 else
1081 disable_irq_wake(cmos->irq);
1082 cmos->enabled_wake = 0;
1085 /* The BIOS might have changed the alarm, restore it */
1086 cmos_check_wkalrm(dev);
1088 spin_lock_irq(&rtc_lock);
1089 tmp = cmos->suspend_ctrl;
1090 cmos->suspend_ctrl = 0;
1091 /* re-enable any irqs previously active */
1092 if (tmp & RTC_IRQMASK) {
1093 unsigned char mask;
1095 if (device_may_wakeup(dev) && use_hpet_alarm())
1096 hpet_rtc_timer_init();
1098 do {
1099 CMOS_WRITE(tmp, RTC_CONTROL);
1100 if (use_hpet_alarm())
1101 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1103 mask = CMOS_READ(RTC_INTR_FLAGS);
1104 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1105 if (!use_hpet_alarm() || !is_intr(mask))
1106 break;
1108 /* force one-shot behavior if HPET blocked
1109 * the wake alarm's irq
1111 rtc_update_irq(cmos->rtc, 1, mask);
1112 tmp &= ~RTC_AIE;
1113 hpet_mask_rtc_irq_bit(RTC_AIE);
1114 } while (mask & RTC_AIE);
1116 if (tmp & RTC_AIE)
1117 cmos_check_acpi_rtc_status(dev, &tmp);
1119 spin_unlock_irq(&rtc_lock);
1121 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1123 return 0;
1126 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1128 /*----------------------------------------------------------------*/
1130 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1131 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1132 * probably list them in similar PNPBIOS tables; so PNP is more common.
1134 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1135 * predate even PNPBIOS should set up platform_bus devices.
1138 #ifdef CONFIG_ACPI
1140 #include <linux/acpi.h>
1142 static u32 rtc_handler(void *context)
1144 struct device *dev = context;
1145 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1146 unsigned char rtc_control = 0;
1147 unsigned char rtc_intr;
1148 unsigned long flags;
1152 * Always update rtc irq when ACPI is used as RTC Alarm.
1153 * Or else, ACPI SCI is enabled during suspend/resume only,
1154 * update rtc irq in that case.
1156 if (cmos_use_acpi_alarm())
1157 cmos_interrupt(0, (void *)cmos->rtc);
1158 else {
1159 /* Fix me: can we use cmos_interrupt() here as well? */
1160 spin_lock_irqsave(&rtc_lock, flags);
1161 if (cmos_rtc.suspend_ctrl)
1162 rtc_control = CMOS_READ(RTC_CONTROL);
1163 if (rtc_control & RTC_AIE) {
1164 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1165 CMOS_WRITE(rtc_control, RTC_CONTROL);
1166 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1167 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1169 spin_unlock_irqrestore(&rtc_lock, flags);
1172 pm_wakeup_hard_event(dev);
1173 acpi_clear_event(ACPI_EVENT_RTC);
1174 acpi_disable_event(ACPI_EVENT_RTC, 0);
1175 return ACPI_INTERRUPT_HANDLED;
1178 static inline void rtc_wake_setup(struct device *dev)
1180 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1182 * After the RTC handler is installed, the Fixed_RTC event should
1183 * be disabled. Only when the RTC alarm is set will it be enabled.
1185 acpi_clear_event(ACPI_EVENT_RTC);
1186 acpi_disable_event(ACPI_EVENT_RTC, 0);
1189 static void rtc_wake_on(struct device *dev)
1191 acpi_clear_event(ACPI_EVENT_RTC);
1192 acpi_enable_event(ACPI_EVENT_RTC, 0);
1195 static void rtc_wake_off(struct device *dev)
1197 acpi_disable_event(ACPI_EVENT_RTC, 0);
1200 #ifdef CONFIG_X86
1201 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1202 static void use_acpi_alarm_quirks(void)
1204 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1205 return;
1207 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1208 return;
1210 if (!is_hpet_enabled())
1211 return;
1213 if (dmi_get_bios_year() < 2015)
1214 return;
1216 use_acpi_alarm = true;
1218 #else
1219 static inline void use_acpi_alarm_quirks(void) { }
1220 #endif
1222 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1223 * its device node and pass extra config data. This helps its driver use
1224 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1225 * that this board's RTC is wakeup-capable (per ACPI spec).
1227 static struct cmos_rtc_board_info acpi_rtc_info;
1229 static void cmos_wake_setup(struct device *dev)
1231 if (acpi_disabled)
1232 return;
1234 use_acpi_alarm_quirks();
1236 rtc_wake_setup(dev);
1237 acpi_rtc_info.wake_on = rtc_wake_on;
1238 acpi_rtc_info.wake_off = rtc_wake_off;
1240 /* workaround bug in some ACPI tables */
1241 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1242 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1243 acpi_gbl_FADT.month_alarm);
1244 acpi_gbl_FADT.month_alarm = 0;
1247 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1248 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1249 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1251 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1252 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1253 dev_info(dev, "RTC can wake from S4\n");
1255 dev->platform_data = &acpi_rtc_info;
1257 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1258 device_init_wakeup(dev, 1);
1261 static void cmos_check_acpi_rtc_status(struct device *dev,
1262 unsigned char *rtc_control)
1264 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1265 acpi_event_status rtc_status;
1266 acpi_status status;
1268 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1269 return;
1271 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1272 if (ACPI_FAILURE(status)) {
1273 dev_err(dev, "Could not get RTC status\n");
1274 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1275 unsigned char mask;
1276 *rtc_control &= ~RTC_AIE;
1277 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1278 mask = CMOS_READ(RTC_INTR_FLAGS);
1279 rtc_update_irq(cmos->rtc, 1, mask);
1283 #else
1285 static void cmos_wake_setup(struct device *dev)
1289 static void cmos_check_acpi_rtc_status(struct device *dev,
1290 unsigned char *rtc_control)
1294 #endif
1296 #ifdef CONFIG_PNP
1298 #include <linux/pnp.h>
1300 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1302 cmos_wake_setup(&pnp->dev);
1304 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1305 unsigned int irq = 0;
1306 #ifdef CONFIG_X86
1307 /* Some machines contain a PNP entry for the RTC, but
1308 * don't define the IRQ. It should always be safe to
1309 * hardcode it on systems with a legacy PIC.
1311 if (nr_legacy_irqs())
1312 irq = RTC_IRQ;
1313 #endif
1314 return cmos_do_probe(&pnp->dev,
1315 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1316 } else {
1317 return cmos_do_probe(&pnp->dev,
1318 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1319 pnp_irq(pnp, 0));
1323 static void cmos_pnp_remove(struct pnp_dev *pnp)
1325 cmos_do_remove(&pnp->dev);
1328 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1330 struct device *dev = &pnp->dev;
1331 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1333 if (system_state == SYSTEM_POWER_OFF) {
1334 int retval = cmos_poweroff(dev);
1336 if (cmos_aie_poweroff(dev) < 0 && !retval)
1337 return;
1340 cmos_do_shutdown(cmos->irq);
1343 static const struct pnp_device_id rtc_ids[] = {
1344 { .id = "PNP0b00", },
1345 { .id = "PNP0b01", },
1346 { .id = "PNP0b02", },
1347 { },
1349 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1351 static struct pnp_driver cmos_pnp_driver = {
1352 .name = driver_name,
1353 .id_table = rtc_ids,
1354 .probe = cmos_pnp_probe,
1355 .remove = cmos_pnp_remove,
1356 .shutdown = cmos_pnp_shutdown,
1358 /* flag ensures resume() gets called, and stops syslog spam */
1359 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1360 .driver = {
1361 .pm = &cmos_pm_ops,
1365 #endif /* CONFIG_PNP */
1367 #ifdef CONFIG_OF
1368 static const struct of_device_id of_cmos_match[] = {
1370 .compatible = "motorola,mc146818",
1372 { },
1374 MODULE_DEVICE_TABLE(of, of_cmos_match);
1376 static __init void cmos_of_init(struct platform_device *pdev)
1378 struct device_node *node = pdev->dev.of_node;
1379 const __be32 *val;
1381 if (!node)
1382 return;
1384 val = of_get_property(node, "ctrl-reg", NULL);
1385 if (val)
1386 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1388 val = of_get_property(node, "freq-reg", NULL);
1389 if (val)
1390 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1392 #else
1393 static inline void cmos_of_init(struct platform_device *pdev) {}
1394 #endif
1395 /*----------------------------------------------------------------*/
1397 /* Platform setup should have set up an RTC device, when PNP is
1398 * unavailable ... this could happen even on (older) PCs.
1401 static int __init cmos_platform_probe(struct platform_device *pdev)
1403 struct resource *resource;
1404 int irq;
1406 cmos_of_init(pdev);
1407 cmos_wake_setup(&pdev->dev);
1409 if (RTC_IOMAPPED)
1410 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1411 else
1412 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1413 irq = platform_get_irq(pdev, 0);
1414 if (irq < 0)
1415 irq = -1;
1417 return cmos_do_probe(&pdev->dev, resource, irq);
1420 static int cmos_platform_remove(struct platform_device *pdev)
1422 cmos_do_remove(&pdev->dev);
1423 return 0;
1426 static void cmos_platform_shutdown(struct platform_device *pdev)
1428 struct device *dev = &pdev->dev;
1429 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1431 if (system_state == SYSTEM_POWER_OFF) {
1432 int retval = cmos_poweroff(dev);
1434 if (cmos_aie_poweroff(dev) < 0 && !retval)
1435 return;
1438 cmos_do_shutdown(cmos->irq);
1441 /* work with hotplug and coldplug */
1442 MODULE_ALIAS("platform:rtc_cmos");
1444 static struct platform_driver cmos_platform_driver = {
1445 .remove = cmos_platform_remove,
1446 .shutdown = cmos_platform_shutdown,
1447 .driver = {
1448 .name = driver_name,
1449 .pm = &cmos_pm_ops,
1450 .of_match_table = of_match_ptr(of_cmos_match),
1454 #ifdef CONFIG_PNP
1455 static bool pnp_driver_registered;
1456 #endif
1457 static bool platform_driver_registered;
1459 static int __init cmos_init(void)
1461 int retval = 0;
1463 #ifdef CONFIG_PNP
1464 retval = pnp_register_driver(&cmos_pnp_driver);
1465 if (retval == 0)
1466 pnp_driver_registered = true;
1467 #endif
1469 if (!cmos_rtc.dev) {
1470 retval = platform_driver_probe(&cmos_platform_driver,
1471 cmos_platform_probe);
1472 if (retval == 0)
1473 platform_driver_registered = true;
1476 if (retval == 0)
1477 return 0;
1479 #ifdef CONFIG_PNP
1480 if (pnp_driver_registered)
1481 pnp_unregister_driver(&cmos_pnp_driver);
1482 #endif
1483 return retval;
1485 module_init(cmos_init);
1487 static void __exit cmos_exit(void)
1489 #ifdef CONFIG_PNP
1490 if (pnp_driver_registered)
1491 pnp_unregister_driver(&cmos_pnp_driver);
1492 #endif
1493 if (platform_driver_registered)
1494 platform_driver_unregister(&cmos_platform_driver);
1496 module_exit(cmos_exit);
1499 MODULE_AUTHOR("David Brownell");
1500 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1501 MODULE_LICENSE("GPL");