1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
81 #include "page_reporting.h"
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t
;
86 /* No special request */
87 #define FPI_NONE ((__force fpi_t)0)
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock
);
113 #define MIN_PERCPU_PAGELIST_FRACTION (8)
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node
);
117 EXPORT_PER_CPU_SYMBOL(numa_node
);
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
129 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
133 /* work_structs for global per-cpu drains */
136 struct work_struct work
;
138 static DEFINE_MUTEX(pcpu_drain_mutex
);
139 static DEFINE_PER_CPU(struct pcpu_drain
, pcpu_drain
);
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy
;
143 EXPORT_SYMBOL(latent_entropy
);
147 * Array of node states.
149 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
150 [N_POSSIBLE
] = NODE_MASK_ALL
,
151 [N_ONLINE
] = { { [0] = 1UL } },
153 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
157 [N_MEMORY
] = { { [0] = 1UL } },
158 [N_CPU
] = { { [0] = 1UL } },
161 EXPORT_SYMBOL(node_states
);
163 atomic_long_t _totalram_pages __read_mostly
;
164 EXPORT_SYMBOL(_totalram_pages
);
165 unsigned long totalreserve_pages __read_mostly
;
166 unsigned long totalcma_pages __read_mostly
;
168 int percpu_pagelist_fraction
;
169 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc
);
171 EXPORT_SYMBOL(init_on_alloc
);
173 DEFINE_STATIC_KEY_FALSE(init_on_free
);
174 EXPORT_SYMBOL(init_on_free
);
176 static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON
);
178 static int __init
early_init_on_alloc(char *buf
)
181 return kstrtobool(buf
, &_init_on_alloc_enabled_early
);
183 early_param("init_on_alloc", early_init_on_alloc
);
185 static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON
);
187 static int __init
early_init_on_free(char *buf
)
189 return kstrtobool(buf
, &_init_on_free_enabled_early
);
191 early_param("init_on_free", early_init_on_free
);
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
201 static inline int get_pcppage_migratetype(struct page
*page
)
206 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
208 page
->index
= migratetype
;
211 #ifdef CONFIG_PM_SLEEP
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
222 static gfp_t saved_gfp_mask
;
224 void pm_restore_gfp_mask(void)
226 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
227 if (saved_gfp_mask
) {
228 gfp_allowed_mask
= saved_gfp_mask
;
233 void pm_restrict_gfp_mask(void)
235 WARN_ON(!mutex_is_locked(&system_transition_mutex
));
236 WARN_ON(saved_gfp_mask
);
237 saved_gfp_mask
= gfp_allowed_mask
;
238 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
241 bool pm_suspended_storage(void)
243 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
247 #endif /* CONFIG_PM_SLEEP */
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly
;
253 static void __free_pages_ok(struct page
*page
, unsigned int order
,
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
267 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
268 #ifdef CONFIG_ZONE_DMA
271 #ifdef CONFIG_ZONE_DMA32
275 #ifdef CONFIG_HIGHMEM
281 static char * const zone_names
[MAX_NR_ZONES
] = {
282 #ifdef CONFIG_ZONE_DMA
285 #ifdef CONFIG_ZONE_DMA32
289 #ifdef CONFIG_HIGHMEM
293 #ifdef CONFIG_ZONE_DEVICE
298 const char * const migratetype_names
[MIGRATE_TYPES
] = {
306 #ifdef CONFIG_MEMORY_ISOLATION
311 compound_page_dtor
* const compound_page_dtors
[NR_COMPOUND_DTORS
] = {
312 [NULL_COMPOUND_DTOR
] = NULL
,
313 [COMPOUND_PAGE_DTOR
] = free_compound_page
,
314 #ifdef CONFIG_HUGETLB_PAGE
315 [HUGETLB_PAGE_DTOR
] = free_huge_page
,
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 [TRANSHUGE_PAGE_DTOR
] = free_transhuge_page
,
322 int min_free_kbytes
= 1024;
323 int user_min_free_kbytes
= -1;
324 #ifdef CONFIG_DISCONTIGMEM
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
334 int watermark_boost_factor __read_mostly
;
336 int watermark_boost_factor __read_mostly
= 15000;
338 int watermark_scale_factor
= 10;
340 static unsigned long nr_kernel_pages __initdata
;
341 static unsigned long nr_all_pages __initdata
;
342 static unsigned long dma_reserve __initdata
;
344 static unsigned long arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
345 static unsigned long arch_zone_highest_possible_pfn
[MAX_NR_ZONES
] __initdata
;
346 static unsigned long required_kernelcore __initdata
;
347 static unsigned long required_kernelcore_percent __initdata
;
348 static unsigned long required_movablecore __initdata
;
349 static unsigned long required_movablecore_percent __initdata
;
350 static unsigned long zone_movable_pfn
[MAX_NUMNODES
] __initdata
;
351 static bool mirrored_kernelcore __meminitdata
;
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
355 EXPORT_SYMBOL(movable_zone
);
358 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
359 unsigned int nr_online_nodes __read_mostly
= 1;
360 EXPORT_SYMBOL(nr_node_ids
);
361 EXPORT_SYMBOL(nr_online_nodes
);
364 int page_group_by_mobility_disabled __read_mostly
;
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages
);
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
387 static inline void kasan_free_nondeferred_pages(struct page
*page
, int order
)
389 if (!static_branch_unlikely(&deferred_pages
))
390 kasan_free_pages(page
, order
);
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
396 int nid
= early_pfn_to_nid(pfn
);
398 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
405 * Returns true when the remaining initialisation should be deferred until
406 * later in the boot cycle when it can be parallelised.
408 static bool __meminit
409 defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
411 static unsigned long prev_end_pfn
, nr_initialised
;
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
417 if (prev_end_pfn
!= end_pfn
) {
418 prev_end_pfn
= end_pfn
;
422 /* Always populate low zones for address-constrained allocations */
423 if (end_pfn
< pgdat_end_pfn(NODE_DATA(nid
)))
426 if (NODE_DATA(nid
)->first_deferred_pfn
!= ULONG_MAX
)
429 * We start only with one section of pages, more pages are added as
430 * needed until the rest of deferred pages are initialized.
433 if ((nr_initialised
> PAGES_PER_SECTION
) &&
434 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
435 NODE_DATA(nid
)->first_deferred_pfn
= pfn
;
441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
443 static inline bool early_page_uninitialised(unsigned long pfn
)
448 static inline bool defer_init(int nid
, unsigned long pfn
, unsigned long end_pfn
)
454 /* Return a pointer to the bitmap storing bits affecting a block of pages */
455 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
458 #ifdef CONFIG_SPARSEMEM
459 return section_to_usemap(__pfn_to_section(pfn
));
461 return page_zone(page
)->pageblock_flags
;
462 #endif /* CONFIG_SPARSEMEM */
465 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
467 #ifdef CONFIG_SPARSEMEM
468 pfn
&= (PAGES_PER_SECTION
-1);
470 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
471 #endif /* CONFIG_SPARSEMEM */
472 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
475 static __always_inline
476 unsigned long __get_pfnblock_flags_mask(struct page
*page
,
480 unsigned long *bitmap
;
481 unsigned long bitidx
, word_bitidx
;
484 bitmap
= get_pageblock_bitmap(page
, pfn
);
485 bitidx
= pfn_to_bitidx(page
, pfn
);
486 word_bitidx
= bitidx
/ BITS_PER_LONG
;
487 bitidx
&= (BITS_PER_LONG
-1);
489 word
= bitmap
[word_bitidx
];
490 return (word
>> bitidx
) & mask
;
494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495 * @page: The page within the block of interest
496 * @pfn: The target page frame number
497 * @mask: mask of bits that the caller is interested in
499 * Return: pageblock_bits flags
501 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
504 return __get_pfnblock_flags_mask(page
, pfn
, mask
);
507 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
509 return __get_pfnblock_flags_mask(page
, pfn
, MIGRATETYPE_MASK
);
513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514 * @page: The page within the block of interest
515 * @flags: The flags to set
516 * @pfn: The target page frame number
517 * @mask: mask of bits that the caller is interested in
519 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
523 unsigned long *bitmap
;
524 unsigned long bitidx
, word_bitidx
;
525 unsigned long old_word
, word
;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
528 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
530 bitmap
= get_pageblock_bitmap(page
, pfn
);
531 bitidx
= pfn_to_bitidx(page
, pfn
);
532 word_bitidx
= bitidx
/ BITS_PER_LONG
;
533 bitidx
&= (BITS_PER_LONG
-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
540 word
= READ_ONCE(bitmap
[word_bitidx
]);
542 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
543 if (word
== old_word
)
549 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
551 if (unlikely(page_group_by_mobility_disabled
&&
552 migratetype
< MIGRATE_PCPTYPES
))
553 migratetype
= MIGRATE_UNMOVABLE
;
555 set_pfnblock_flags_mask(page
, (unsigned long)migratetype
,
556 page_to_pfn(page
), MIGRATETYPE_MASK
);
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
564 unsigned long pfn
= page_to_pfn(page
);
565 unsigned long sp
, start_pfn
;
568 seq
= zone_span_seqbegin(zone
);
569 start_pfn
= zone
->zone_start_pfn
;
570 sp
= zone
->spanned_pages
;
571 if (!zone_spans_pfn(zone
, pfn
))
573 } while (zone_span_seqretry(zone
, seq
));
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn
, zone_to_nid(zone
), zone
->name
,
578 start_pfn
, start_pfn
+ sp
);
583 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
585 if (!pfn_valid_within(page_to_pfn(page
)))
587 if (zone
!= page_zone(page
))
593 * Temporary debugging check for pages not lying within a given zone.
595 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
597 if (page_outside_zone_boundaries(zone
, page
))
599 if (!page_is_consistent(zone
, page
))
605 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
611 static void bad_page(struct page
*page
, const char *reason
)
613 static unsigned long resume
;
614 static unsigned long nr_shown
;
615 static unsigned long nr_unshown
;
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
621 if (nr_shown
== 60) {
622 if (time_before(jiffies
, resume
)) {
628 "BUG: Bad page state: %lu messages suppressed\n",
635 resume
= jiffies
+ 60 * HZ
;
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current
->comm
, page_to_pfn(page
));
639 __dump_page(page
, reason
);
640 dump_page_owner(page
);
645 /* Leave bad fields for debug, except PageBuddy could make trouble */
646 page_mapcount_reset(page
); /* remove PageBuddy */
647 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
651 * Higher-order pages are called "compound pages". They are structured thusly:
653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
661 * The first tail page's ->compound_order holds the order of allocation.
662 * This usage means that zero-order pages may not be compound.
665 void free_compound_page(struct page
*page
)
667 mem_cgroup_uncharge(page
);
668 __free_pages_ok(page
, compound_order(page
), FPI_NONE
);
671 void prep_compound_page(struct page
*page
, unsigned int order
)
674 int nr_pages
= 1 << order
;
677 for (i
= 1; i
< nr_pages
; i
++) {
678 struct page
*p
= page
+ i
;
679 set_page_count(p
, 0);
680 p
->mapping
= TAIL_MAPPING
;
681 set_compound_head(p
, page
);
684 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
685 set_compound_order(page
, order
);
686 atomic_set(compound_mapcount_ptr(page
), -1);
687 if (hpage_pincount_available(page
))
688 atomic_set(compound_pincount_ptr(page
), 0);
691 #ifdef CONFIG_DEBUG_PAGEALLOC
692 unsigned int _debug_guardpage_minorder
;
694 bool _debug_pagealloc_enabled_early __read_mostly
695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early
);
697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled
);
698 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled
);
702 static int __init
early_debug_pagealloc(char *buf
)
704 return kstrtobool(buf
, &_debug_pagealloc_enabled_early
);
706 early_param("debug_pagealloc", early_debug_pagealloc
);
708 static int __init
debug_guardpage_minorder_setup(char *buf
)
712 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
713 pr_err("Bad debug_guardpage_minorder value\n");
716 _debug_guardpage_minorder
= res
;
717 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
722 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
723 unsigned int order
, int migratetype
)
725 if (!debug_guardpage_enabled())
728 if (order
>= debug_guardpage_minorder())
731 __SetPageGuard(page
);
732 INIT_LIST_HEAD(&page
->lru
);
733 set_page_private(page
, order
);
734 /* Guard pages are not available for any usage */
735 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
740 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
741 unsigned int order
, int migratetype
)
743 if (!debug_guardpage_enabled())
746 __ClearPageGuard(page
);
748 set_page_private(page
, 0);
749 if (!is_migrate_isolate(migratetype
))
750 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
753 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
754 unsigned int order
, int migratetype
) { return false; }
755 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
756 unsigned int order
, int migratetype
) {}
760 * Enable static keys related to various memory debugging and hardening options.
761 * Some override others, and depend on early params that are evaluated in the
762 * order of appearance. So we need to first gather the full picture of what was
763 * enabled, and then make decisions.
765 void init_mem_debugging_and_hardening(void)
767 if (_init_on_alloc_enabled_early
) {
768 if (page_poisoning_enabled())
769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 "will take precedence over init_on_alloc\n");
772 static_branch_enable(&init_on_alloc
);
774 if (_init_on_free_enabled_early
) {
775 if (page_poisoning_enabled())
776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 "will take precedence over init_on_free\n");
779 static_branch_enable(&init_on_free
);
782 #ifdef CONFIG_PAGE_POISONING
784 * Page poisoning is debug page alloc for some arches. If
785 * either of those options are enabled, enable poisoning.
787 if (page_poisoning_enabled() ||
788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC
) &&
789 debug_pagealloc_enabled()))
790 static_branch_enable(&_page_poisoning_enabled
);
793 #ifdef CONFIG_DEBUG_PAGEALLOC
794 if (!debug_pagealloc_enabled())
797 static_branch_enable(&_debug_pagealloc_enabled
);
799 if (!debug_guardpage_minorder())
802 static_branch_enable(&_debug_guardpage_enabled
);
806 static inline void set_buddy_order(struct page
*page
, unsigned int order
)
808 set_page_private(page
, order
);
809 __SetPageBuddy(page
);
813 * This function checks whether a page is free && is the buddy
814 * we can coalesce a page and its buddy if
815 * (a) the buddy is not in a hole (check before calling!) &&
816 * (b) the buddy is in the buddy system &&
817 * (c) a page and its buddy have the same order &&
818 * (d) a page and its buddy are in the same zone.
820 * For recording whether a page is in the buddy system, we set PageBuddy.
821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
823 * For recording page's order, we use page_private(page).
825 static inline bool page_is_buddy(struct page
*page
, struct page
*buddy
,
828 if (!page_is_guard(buddy
) && !PageBuddy(buddy
))
831 if (buddy_order(buddy
) != order
)
835 * zone check is done late to avoid uselessly calculating
836 * zone/node ids for pages that could never merge.
838 if (page_zone_id(page
) != page_zone_id(buddy
))
841 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
846 #ifdef CONFIG_COMPACTION
847 static inline struct capture_control
*task_capc(struct zone
*zone
)
849 struct capture_control
*capc
= current
->capture_control
;
851 return unlikely(capc
) &&
852 !(current
->flags
& PF_KTHREAD
) &&
854 capc
->cc
->zone
== zone
? capc
: NULL
;
858 compaction_capture(struct capture_control
*capc
, struct page
*page
,
859 int order
, int migratetype
)
861 if (!capc
|| order
!= capc
->cc
->order
)
864 /* Do not accidentally pollute CMA or isolated regions*/
865 if (is_migrate_cma(migratetype
) ||
866 is_migrate_isolate(migratetype
))
870 * Do not let lower order allocations polluate a movable pageblock.
871 * This might let an unmovable request use a reclaimable pageblock
872 * and vice-versa but no more than normal fallback logic which can
873 * have trouble finding a high-order free page.
875 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
)
883 static inline struct capture_control
*task_capc(struct zone
*zone
)
889 compaction_capture(struct capture_control
*capc
, struct page
*page
,
890 int order
, int migratetype
)
894 #endif /* CONFIG_COMPACTION */
896 /* Used for pages not on another list */
897 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
898 unsigned int order
, int migratetype
)
900 struct free_area
*area
= &zone
->free_area
[order
];
902 list_add(&page
->lru
, &area
->free_list
[migratetype
]);
906 /* Used for pages not on another list */
907 static inline void add_to_free_list_tail(struct page
*page
, struct zone
*zone
,
908 unsigned int order
, int migratetype
)
910 struct free_area
*area
= &zone
->free_area
[order
];
912 list_add_tail(&page
->lru
, &area
->free_list
[migratetype
]);
917 * Used for pages which are on another list. Move the pages to the tail
918 * of the list - so the moved pages won't immediately be considered for
919 * allocation again (e.g., optimization for memory onlining).
921 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
922 unsigned int order
, int migratetype
)
924 struct free_area
*area
= &zone
->free_area
[order
];
926 list_move_tail(&page
->lru
, &area
->free_list
[migratetype
]);
929 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
932 /* clear reported state and update reported page count */
933 if (page_reported(page
))
934 __ClearPageReported(page
);
936 list_del(&page
->lru
);
937 __ClearPageBuddy(page
);
938 set_page_private(page
, 0);
939 zone
->free_area
[order
].nr_free
--;
943 * If this is not the largest possible page, check if the buddy
944 * of the next-highest order is free. If it is, it's possible
945 * that pages are being freed that will coalesce soon. In case,
946 * that is happening, add the free page to the tail of the list
947 * so it's less likely to be used soon and more likely to be merged
948 * as a higher order page
951 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
952 struct page
*page
, unsigned int order
)
954 struct page
*higher_page
, *higher_buddy
;
955 unsigned long combined_pfn
;
957 if (order
>= MAX_ORDER
- 2)
960 if (!pfn_valid_within(buddy_pfn
))
963 combined_pfn
= buddy_pfn
& pfn
;
964 higher_page
= page
+ (combined_pfn
- pfn
);
965 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
966 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
968 return pfn_valid_within(buddy_pfn
) &&
969 page_is_buddy(higher_page
, higher_buddy
, order
+ 1);
973 * Freeing function for a buddy system allocator.
975 * The concept of a buddy system is to maintain direct-mapped table
976 * (containing bit values) for memory blocks of various "orders".
977 * The bottom level table contains the map for the smallest allocatable
978 * units of memory (here, pages), and each level above it describes
979 * pairs of units from the levels below, hence, "buddies".
980 * At a high level, all that happens here is marking the table entry
981 * at the bottom level available, and propagating the changes upward
982 * as necessary, plus some accounting needed to play nicely with other
983 * parts of the VM system.
984 * At each level, we keep a list of pages, which are heads of continuous
985 * free pages of length of (1 << order) and marked with PageBuddy.
986 * Page's order is recorded in page_private(page) field.
987 * So when we are allocating or freeing one, we can derive the state of the
988 * other. That is, if we allocate a small block, and both were
989 * free, the remainder of the region must be split into blocks.
990 * If a block is freed, and its buddy is also free, then this
991 * triggers coalescing into a block of larger size.
996 static inline void __free_one_page(struct page
*page
,
998 struct zone
*zone
, unsigned int order
,
999 int migratetype
, fpi_t fpi_flags
)
1001 struct capture_control
*capc
= task_capc(zone
);
1002 unsigned long buddy_pfn
;
1003 unsigned long combined_pfn
;
1004 unsigned int max_order
;
1008 max_order
= min_t(unsigned int, MAX_ORDER
- 1, pageblock_order
);
1010 VM_BUG_ON(!zone_is_initialized(zone
));
1011 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
1013 VM_BUG_ON(migratetype
== -1);
1014 if (likely(!is_migrate_isolate(migratetype
)))
1015 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
1017 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
1018 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1021 while (order
< max_order
) {
1022 if (compaction_capture(capc
, page
, order
, migratetype
)) {
1023 __mod_zone_freepage_state(zone
, -(1 << order
),
1027 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
1028 buddy
= page
+ (buddy_pfn
- pfn
);
1030 if (!pfn_valid_within(buddy_pfn
))
1032 if (!page_is_buddy(page
, buddy
, order
))
1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 * merge with it and move up one order.
1038 if (page_is_guard(buddy
))
1039 clear_page_guard(zone
, buddy
, order
, migratetype
);
1041 del_page_from_free_list(buddy
, zone
, order
);
1042 combined_pfn
= buddy_pfn
& pfn
;
1043 page
= page
+ (combined_pfn
- pfn
);
1047 if (order
< MAX_ORDER
- 1) {
1048 /* If we are here, it means order is >= pageblock_order.
1049 * We want to prevent merge between freepages on isolate
1050 * pageblock and normal pageblock. Without this, pageblock
1051 * isolation could cause incorrect freepage or CMA accounting.
1053 * We don't want to hit this code for the more frequent
1054 * low-order merging.
1056 if (unlikely(has_isolate_pageblock(zone
))) {
1059 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
1060 buddy
= page
+ (buddy_pfn
- pfn
);
1061 buddy_mt
= get_pageblock_migratetype(buddy
);
1063 if (migratetype
!= buddy_mt
1064 && (is_migrate_isolate(migratetype
) ||
1065 is_migrate_isolate(buddy_mt
)))
1068 max_order
= order
+ 1;
1069 goto continue_merging
;
1073 set_buddy_order(page
, order
);
1075 if (fpi_flags
& FPI_TO_TAIL
)
1077 else if (is_shuffle_order(order
))
1078 to_tail
= shuffle_pick_tail();
1080 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
1083 add_to_free_list_tail(page
, zone
, order
, migratetype
);
1085 add_to_free_list(page
, zone
, order
, migratetype
);
1087 /* Notify page reporting subsystem of freed page */
1088 if (!(fpi_flags
& FPI_SKIP_REPORT_NOTIFY
))
1089 page_reporting_notify_free(order
);
1093 * A bad page could be due to a number of fields. Instead of multiple branches,
1094 * try and check multiple fields with one check. The caller must do a detailed
1095 * check if necessary.
1097 static inline bool page_expected_state(struct page
*page
,
1098 unsigned long check_flags
)
1100 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1103 if (unlikely((unsigned long)page
->mapping
|
1104 page_ref_count(page
) |
1106 (unsigned long)page_memcg(page
) |
1108 (page
->flags
& check_flags
)))
1114 static const char *page_bad_reason(struct page
*page
, unsigned long flags
)
1116 const char *bad_reason
= NULL
;
1118 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1119 bad_reason
= "nonzero mapcount";
1120 if (unlikely(page
->mapping
!= NULL
))
1121 bad_reason
= "non-NULL mapping";
1122 if (unlikely(page_ref_count(page
) != 0))
1123 bad_reason
= "nonzero _refcount";
1124 if (unlikely(page
->flags
& flags
)) {
1125 if (flags
== PAGE_FLAGS_CHECK_AT_PREP
)
1126 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1128 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1131 if (unlikely(page_memcg(page
)))
1132 bad_reason
= "page still charged to cgroup";
1137 static void check_free_page_bad(struct page
*page
)
1140 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_FREE
));
1143 static inline int check_free_page(struct page
*page
)
1145 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
1148 /* Something has gone sideways, find it */
1149 check_free_page_bad(page
);
1153 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
1158 * We rely page->lru.next never has bit 0 set, unless the page
1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1161 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
1163 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
1167 switch (page
- head_page
) {
1169 /* the first tail page: ->mapping may be compound_mapcount() */
1170 if (unlikely(compound_mapcount(page
))) {
1171 bad_page(page
, "nonzero compound_mapcount");
1177 * the second tail page: ->mapping is
1178 * deferred_list.next -- ignore value.
1182 if (page
->mapping
!= TAIL_MAPPING
) {
1183 bad_page(page
, "corrupted mapping in tail page");
1188 if (unlikely(!PageTail(page
))) {
1189 bad_page(page
, "PageTail not set");
1192 if (unlikely(compound_head(page
) != head_page
)) {
1193 bad_page(page
, "compound_head not consistent");
1198 page
->mapping
= NULL
;
1199 clear_compound_head(page
);
1203 static void kernel_init_free_pages(struct page
*page
, int numpages
)
1207 /* s390's use of memset() could override KASAN redzones. */
1208 kasan_disable_current();
1209 for (i
= 0; i
< numpages
; i
++) {
1210 page_kasan_tag_reset(page
+ i
);
1211 clear_highpage(page
+ i
);
1213 kasan_enable_current();
1216 static __always_inline
bool free_pages_prepare(struct page
*page
,
1217 unsigned int order
, bool check_free
)
1221 VM_BUG_ON_PAGE(PageTail(page
), page
);
1223 trace_mm_page_free(page
, order
);
1225 if (unlikely(PageHWPoison(page
)) && !order
) {
1227 * Do not let hwpoison pages hit pcplists/buddy
1228 * Untie memcg state and reset page's owner
1230 if (memcg_kmem_enabled() && PageMemcgKmem(page
))
1231 __memcg_kmem_uncharge_page(page
, order
);
1232 reset_page_owner(page
, order
);
1237 * Check tail pages before head page information is cleared to
1238 * avoid checking PageCompound for order-0 pages.
1240 if (unlikely(order
)) {
1241 bool compound
= PageCompound(page
);
1244 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1247 ClearPageDoubleMap(page
);
1248 for (i
= 1; i
< (1 << order
); i
++) {
1250 bad
+= free_tail_pages_check(page
, page
+ i
);
1251 if (unlikely(check_free_page(page
+ i
))) {
1255 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1258 if (PageMappingFlags(page
))
1259 page
->mapping
= NULL
;
1260 if (memcg_kmem_enabled() && PageMemcgKmem(page
))
1261 __memcg_kmem_uncharge_page(page
, order
);
1263 bad
+= check_free_page(page
);
1267 page_cpupid_reset_last(page
);
1268 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1269 reset_page_owner(page
, order
);
1271 if (!PageHighMem(page
)) {
1272 debug_check_no_locks_freed(page_address(page
),
1273 PAGE_SIZE
<< order
);
1274 debug_check_no_obj_freed(page_address(page
),
1275 PAGE_SIZE
<< order
);
1277 if (want_init_on_free())
1278 kernel_init_free_pages(page
, 1 << order
);
1280 kernel_poison_pages(page
, 1 << order
);
1283 * arch_free_page() can make the page's contents inaccessible. s390
1284 * does this. So nothing which can access the page's contents should
1285 * happen after this.
1287 arch_free_page(page
, order
);
1289 debug_pagealloc_unmap_pages(page
, 1 << order
);
1291 kasan_free_nondeferred_pages(page
, order
);
1296 #ifdef CONFIG_DEBUG_VM
1298 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1299 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1300 * moved from pcp lists to free lists.
1302 static bool free_pcp_prepare(struct page
*page
)
1304 return free_pages_prepare(page
, 0, true);
1307 static bool bulkfree_pcp_prepare(struct page
*page
)
1309 if (debug_pagealloc_enabled_static())
1310 return check_free_page(page
);
1316 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1317 * moving from pcp lists to free list in order to reduce overhead. With
1318 * debug_pagealloc enabled, they are checked also immediately when being freed
1321 static bool free_pcp_prepare(struct page
*page
)
1323 if (debug_pagealloc_enabled_static())
1324 return free_pages_prepare(page
, 0, true);
1326 return free_pages_prepare(page
, 0, false);
1329 static bool bulkfree_pcp_prepare(struct page
*page
)
1331 return check_free_page(page
);
1333 #endif /* CONFIG_DEBUG_VM */
1335 static inline void prefetch_buddy(struct page
*page
)
1337 unsigned long pfn
= page_to_pfn(page
);
1338 unsigned long buddy_pfn
= __find_buddy_pfn(pfn
, 0);
1339 struct page
*buddy
= page
+ (buddy_pfn
- pfn
);
1345 * Frees a number of pages from the PCP lists
1346 * Assumes all pages on list are in same zone, and of same order.
1347 * count is the number of pages to free.
1349 * If the zone was previously in an "all pages pinned" state then look to
1350 * see if this freeing clears that state.
1352 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1353 * pinned" detection logic.
1355 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1356 struct per_cpu_pages
*pcp
)
1358 int migratetype
= 0;
1360 int prefetch_nr
= READ_ONCE(pcp
->batch
);
1361 bool isolated_pageblocks
;
1362 struct page
*page
, *tmp
;
1366 * Ensure proper count is passed which otherwise would stuck in the
1367 * below while (list_empty(list)) loop.
1369 count
= min(pcp
->count
, count
);
1371 struct list_head
*list
;
1374 * Remove pages from lists in a round-robin fashion. A
1375 * batch_free count is maintained that is incremented when an
1376 * empty list is encountered. This is so more pages are freed
1377 * off fuller lists instead of spinning excessively around empty
1382 if (++migratetype
== MIGRATE_PCPTYPES
)
1384 list
= &pcp
->lists
[migratetype
];
1385 } while (list_empty(list
));
1387 /* This is the only non-empty list. Free them all. */
1388 if (batch_free
== MIGRATE_PCPTYPES
)
1392 page
= list_last_entry(list
, struct page
, lru
);
1393 /* must delete to avoid corrupting pcp list */
1394 list_del(&page
->lru
);
1397 if (bulkfree_pcp_prepare(page
))
1400 list_add_tail(&page
->lru
, &head
);
1403 * We are going to put the page back to the global
1404 * pool, prefetch its buddy to speed up later access
1405 * under zone->lock. It is believed the overhead of
1406 * an additional test and calculating buddy_pfn here
1407 * can be offset by reduced memory latency later. To
1408 * avoid excessive prefetching due to large count, only
1409 * prefetch buddy for the first pcp->batch nr of pages.
1412 prefetch_buddy(page
);
1415 } while (--count
&& --batch_free
&& !list_empty(list
));
1418 spin_lock(&zone
->lock
);
1419 isolated_pageblocks
= has_isolate_pageblock(zone
);
1422 * Use safe version since after __free_one_page(),
1423 * page->lru.next will not point to original list.
1425 list_for_each_entry_safe(page
, tmp
, &head
, lru
) {
1426 int mt
= get_pcppage_migratetype(page
);
1427 /* MIGRATE_ISOLATE page should not go to pcplists */
1428 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1429 /* Pageblock could have been isolated meanwhile */
1430 if (unlikely(isolated_pageblocks
))
1431 mt
= get_pageblock_migratetype(page
);
1433 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
, FPI_NONE
);
1434 trace_mm_page_pcpu_drain(page
, 0, mt
);
1436 spin_unlock(&zone
->lock
);
1439 static void free_one_page(struct zone
*zone
,
1440 struct page
*page
, unsigned long pfn
,
1442 int migratetype
, fpi_t fpi_flags
)
1444 spin_lock(&zone
->lock
);
1445 if (unlikely(has_isolate_pageblock(zone
) ||
1446 is_migrate_isolate(migratetype
))) {
1447 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1449 __free_one_page(page
, pfn
, zone
, order
, migratetype
, fpi_flags
);
1450 spin_unlock(&zone
->lock
);
1453 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1454 unsigned long zone
, int nid
)
1456 mm_zero_struct_page(page
);
1457 set_page_links(page
, zone
, nid
, pfn
);
1458 init_page_count(page
);
1459 page_mapcount_reset(page
);
1460 page_cpupid_reset_last(page
);
1461 page_kasan_tag_reset(page
);
1463 INIT_LIST_HEAD(&page
->lru
);
1464 #ifdef WANT_PAGE_VIRTUAL
1465 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1466 if (!is_highmem_idx(zone
))
1467 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1471 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1472 static void __meminit
init_reserved_page(unsigned long pfn
)
1477 if (!early_page_uninitialised(pfn
))
1480 nid
= early_pfn_to_nid(pfn
);
1481 pgdat
= NODE_DATA(nid
);
1483 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1484 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1486 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1489 __init_single_page(pfn_to_page(pfn
), pfn
, zid
, nid
);
1492 static inline void init_reserved_page(unsigned long pfn
)
1495 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1498 * Initialised pages do not have PageReserved set. This function is
1499 * called for each range allocated by the bootmem allocator and
1500 * marks the pages PageReserved. The remaining valid pages are later
1501 * sent to the buddy page allocator.
1503 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1505 unsigned long start_pfn
= PFN_DOWN(start
);
1506 unsigned long end_pfn
= PFN_UP(end
);
1508 for (; start_pfn
< end_pfn
; start_pfn
++) {
1509 if (pfn_valid(start_pfn
)) {
1510 struct page
*page
= pfn_to_page(start_pfn
);
1512 init_reserved_page(start_pfn
);
1514 /* Avoid false-positive PageTail() */
1515 INIT_LIST_HEAD(&page
->lru
);
1518 * no need for atomic set_bit because the struct
1519 * page is not visible yet so nobody should
1522 __SetPageReserved(page
);
1527 static void __free_pages_ok(struct page
*page
, unsigned int order
,
1530 unsigned long flags
;
1532 unsigned long pfn
= page_to_pfn(page
);
1534 if (!free_pages_prepare(page
, order
, true))
1537 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1538 local_irq_save(flags
);
1539 __count_vm_events(PGFREE
, 1 << order
);
1540 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
,
1542 local_irq_restore(flags
);
1545 void __free_pages_core(struct page
*page
, unsigned int order
)
1547 unsigned int nr_pages
= 1 << order
;
1548 struct page
*p
= page
;
1552 * When initializing the memmap, __init_single_page() sets the refcount
1553 * of all pages to 1 ("allocated"/"not free"). We have to set the
1554 * refcount of all involved pages to 0.
1557 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1559 __ClearPageReserved(p
);
1560 set_page_count(p
, 0);
1562 __ClearPageReserved(p
);
1563 set_page_count(p
, 0);
1565 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1568 * Bypass PCP and place fresh pages right to the tail, primarily
1569 * relevant for memory onlining.
1571 __free_pages_ok(page
, order
, FPI_TO_TAIL
);
1574 #ifdef CONFIG_NEED_MULTIPLE_NODES
1577 * During memory init memblocks map pfns to nids. The search is expensive and
1578 * this caches recent lookups. The implementation of __early_pfn_to_nid
1579 * treats start/end as pfns.
1581 struct mminit_pfnnid_cache
{
1582 unsigned long last_start
;
1583 unsigned long last_end
;
1587 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1590 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1592 static int __meminit
__early_pfn_to_nid(unsigned long pfn
,
1593 struct mminit_pfnnid_cache
*state
)
1595 unsigned long start_pfn
, end_pfn
;
1598 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
1599 return state
->last_nid
;
1601 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
1602 if (nid
!= NUMA_NO_NODE
) {
1603 state
->last_start
= start_pfn
;
1604 state
->last_end
= end_pfn
;
1605 state
->last_nid
= nid
;
1611 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1613 static DEFINE_SPINLOCK(early_pfn_lock
);
1616 spin_lock(&early_pfn_lock
);
1617 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1619 nid
= first_online_node
;
1620 spin_unlock(&early_pfn_lock
);
1624 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1626 void __init
memblock_free_pages(struct page
*page
, unsigned long pfn
,
1629 if (early_page_uninitialised(pfn
))
1631 __free_pages_core(page
, order
);
1635 * Check that the whole (or subset of) a pageblock given by the interval of
1636 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1637 * with the migration of free compaction scanner. The scanners then need to
1638 * use only pfn_valid_within() check for arches that allow holes within
1641 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1643 * It's possible on some configurations to have a setup like node0 node1 node0
1644 * i.e. it's possible that all pages within a zones range of pages do not
1645 * belong to a single zone. We assume that a border between node0 and node1
1646 * can occur within a single pageblock, but not a node0 node1 node0
1647 * interleaving within a single pageblock. It is therefore sufficient to check
1648 * the first and last page of a pageblock and avoid checking each individual
1649 * page in a pageblock.
1651 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1652 unsigned long end_pfn
, struct zone
*zone
)
1654 struct page
*start_page
;
1655 struct page
*end_page
;
1657 /* end_pfn is one past the range we are checking */
1660 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1663 start_page
= pfn_to_online_page(start_pfn
);
1667 if (page_zone(start_page
) != zone
)
1670 end_page
= pfn_to_page(end_pfn
);
1672 /* This gives a shorter code than deriving page_zone(end_page) */
1673 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1679 void set_zone_contiguous(struct zone
*zone
)
1681 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1682 unsigned long block_end_pfn
;
1684 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1685 for (; block_start_pfn
< zone_end_pfn(zone
);
1686 block_start_pfn
= block_end_pfn
,
1687 block_end_pfn
+= pageblock_nr_pages
) {
1689 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1691 if (!__pageblock_pfn_to_page(block_start_pfn
,
1692 block_end_pfn
, zone
))
1697 /* We confirm that there is no hole */
1698 zone
->contiguous
= true;
1701 void clear_zone_contiguous(struct zone
*zone
)
1703 zone
->contiguous
= false;
1706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1707 static void __init
deferred_free_range(unsigned long pfn
,
1708 unsigned long nr_pages
)
1716 page
= pfn_to_page(pfn
);
1718 /* Free a large naturally-aligned chunk if possible */
1719 if (nr_pages
== pageblock_nr_pages
&&
1720 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1721 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1722 __free_pages_core(page
, pageblock_order
);
1726 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1727 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1728 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1729 __free_pages_core(page
, 0);
1733 /* Completion tracking for deferred_init_memmap() threads */
1734 static atomic_t pgdat_init_n_undone __initdata
;
1735 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1737 static inline void __init
pgdat_init_report_one_done(void)
1739 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1740 complete(&pgdat_init_all_done_comp
);
1744 * Returns true if page needs to be initialized or freed to buddy allocator.
1746 * First we check if pfn is valid on architectures where it is possible to have
1747 * holes within pageblock_nr_pages. On systems where it is not possible, this
1748 * function is optimized out.
1750 * Then, we check if a current large page is valid by only checking the validity
1753 static inline bool __init
deferred_pfn_valid(unsigned long pfn
)
1755 if (!pfn_valid_within(pfn
))
1757 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1763 * Free pages to buddy allocator. Try to free aligned pages in
1764 * pageblock_nr_pages sizes.
1766 static void __init
deferred_free_pages(unsigned long pfn
,
1767 unsigned long end_pfn
)
1769 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1770 unsigned long nr_free
= 0;
1772 for (; pfn
< end_pfn
; pfn
++) {
1773 if (!deferred_pfn_valid(pfn
)) {
1774 deferred_free_range(pfn
- nr_free
, nr_free
);
1776 } else if (!(pfn
& nr_pgmask
)) {
1777 deferred_free_range(pfn
- nr_free
, nr_free
);
1783 /* Free the last block of pages to allocator */
1784 deferred_free_range(pfn
- nr_free
, nr_free
);
1788 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1789 * by performing it only once every pageblock_nr_pages.
1790 * Return number of pages initialized.
1792 static unsigned long __init
deferred_init_pages(struct zone
*zone
,
1794 unsigned long end_pfn
)
1796 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1797 int nid
= zone_to_nid(zone
);
1798 unsigned long nr_pages
= 0;
1799 int zid
= zone_idx(zone
);
1800 struct page
*page
= NULL
;
1802 for (; pfn
< end_pfn
; pfn
++) {
1803 if (!deferred_pfn_valid(pfn
)) {
1806 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1807 page
= pfn_to_page(pfn
);
1811 __init_single_page(page
, pfn
, zid
, nid
);
1818 * This function is meant to pre-load the iterator for the zone init.
1819 * Specifically it walks through the ranges until we are caught up to the
1820 * first_init_pfn value and exits there. If we never encounter the value we
1821 * return false indicating there are no valid ranges left.
1824 deferred_init_mem_pfn_range_in_zone(u64
*i
, struct zone
*zone
,
1825 unsigned long *spfn
, unsigned long *epfn
,
1826 unsigned long first_init_pfn
)
1831 * Start out by walking through the ranges in this zone that have
1832 * already been initialized. We don't need to do anything with them
1833 * so we just need to flush them out of the system.
1835 for_each_free_mem_pfn_range_in_zone(j
, zone
, spfn
, epfn
) {
1836 if (*epfn
<= first_init_pfn
)
1838 if (*spfn
< first_init_pfn
)
1839 *spfn
= first_init_pfn
;
1848 * Initialize and free pages. We do it in two loops: first we initialize
1849 * struct page, then free to buddy allocator, because while we are
1850 * freeing pages we can access pages that are ahead (computing buddy
1851 * page in __free_one_page()).
1853 * In order to try and keep some memory in the cache we have the loop
1854 * broken along max page order boundaries. This way we will not cause
1855 * any issues with the buddy page computation.
1857 static unsigned long __init
1858 deferred_init_maxorder(u64
*i
, struct zone
*zone
, unsigned long *start_pfn
,
1859 unsigned long *end_pfn
)
1861 unsigned long mo_pfn
= ALIGN(*start_pfn
+ 1, MAX_ORDER_NR_PAGES
);
1862 unsigned long spfn
= *start_pfn
, epfn
= *end_pfn
;
1863 unsigned long nr_pages
= 0;
1866 /* First we loop through and initialize the page values */
1867 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, start_pfn
, end_pfn
) {
1870 if (mo_pfn
<= *start_pfn
)
1873 t
= min(mo_pfn
, *end_pfn
);
1874 nr_pages
+= deferred_init_pages(zone
, *start_pfn
, t
);
1876 if (mo_pfn
< *end_pfn
) {
1877 *start_pfn
= mo_pfn
;
1882 /* Reset values and now loop through freeing pages as needed */
1885 for_each_free_mem_pfn_range_in_zone_from(j
, zone
, &spfn
, &epfn
) {
1891 t
= min(mo_pfn
, epfn
);
1892 deferred_free_pages(spfn
, t
);
1902 deferred_init_memmap_chunk(unsigned long start_pfn
, unsigned long end_pfn
,
1905 unsigned long spfn
, epfn
;
1906 struct zone
*zone
= arg
;
1909 deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
, start_pfn
);
1912 * Initialize and free pages in MAX_ORDER sized increments so that we
1913 * can avoid introducing any issues with the buddy allocator.
1915 while (spfn
< end_pfn
) {
1916 deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
1921 /* An arch may override for more concurrency. */
1923 deferred_page_init_max_threads(const struct cpumask
*node_cpumask
)
1928 /* Initialise remaining memory on a node */
1929 static int __init
deferred_init_memmap(void *data
)
1931 pg_data_t
*pgdat
= data
;
1932 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1933 unsigned long spfn
= 0, epfn
= 0;
1934 unsigned long first_init_pfn
, flags
;
1935 unsigned long start
= jiffies
;
1937 int zid
, max_threads
;
1940 /* Bind memory initialisation thread to a local node if possible */
1941 if (!cpumask_empty(cpumask
))
1942 set_cpus_allowed_ptr(current
, cpumask
);
1944 pgdat_resize_lock(pgdat
, &flags
);
1945 first_init_pfn
= pgdat
->first_deferred_pfn
;
1946 if (first_init_pfn
== ULONG_MAX
) {
1947 pgdat_resize_unlock(pgdat
, &flags
);
1948 pgdat_init_report_one_done();
1952 /* Sanity check boundaries */
1953 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1954 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1955 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1958 * Once we unlock here, the zone cannot be grown anymore, thus if an
1959 * interrupt thread must allocate this early in boot, zone must be
1960 * pre-grown prior to start of deferred page initialization.
1962 pgdat_resize_unlock(pgdat
, &flags
);
1964 /* Only the highest zone is deferred so find it */
1965 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1966 zone
= pgdat
->node_zones
+ zid
;
1967 if (first_init_pfn
< zone_end_pfn(zone
))
1971 /* If the zone is empty somebody else may have cleared out the zone */
1972 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1976 max_threads
= deferred_page_init_max_threads(cpumask
);
1978 while (spfn
< epfn
) {
1979 unsigned long epfn_align
= ALIGN(epfn
, PAGES_PER_SECTION
);
1980 struct padata_mt_job job
= {
1981 .thread_fn
= deferred_init_memmap_chunk
,
1984 .size
= epfn_align
- spfn
,
1985 .align
= PAGES_PER_SECTION
,
1986 .min_chunk
= PAGES_PER_SECTION
,
1987 .max_threads
= max_threads
,
1990 padata_do_multithreaded(&job
);
1991 deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
1995 /* Sanity check that the next zone really is unpopulated */
1996 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1998 pr_info("node %d deferred pages initialised in %ums\n",
1999 pgdat
->node_id
, jiffies_to_msecs(jiffies
- start
));
2001 pgdat_init_report_one_done();
2006 * If this zone has deferred pages, try to grow it by initializing enough
2007 * deferred pages to satisfy the allocation specified by order, rounded up to
2008 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2009 * of SECTION_SIZE bytes by initializing struct pages in increments of
2010 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2012 * Return true when zone was grown, otherwise return false. We return true even
2013 * when we grow less than requested, to let the caller decide if there are
2014 * enough pages to satisfy the allocation.
2016 * Note: We use noinline because this function is needed only during boot, and
2017 * it is called from a __ref function _deferred_grow_zone. This way we are
2018 * making sure that it is not inlined into permanent text section.
2020 static noinline
bool __init
2021 deferred_grow_zone(struct zone
*zone
, unsigned int order
)
2023 unsigned long nr_pages_needed
= ALIGN(1 << order
, PAGES_PER_SECTION
);
2024 pg_data_t
*pgdat
= zone
->zone_pgdat
;
2025 unsigned long first_deferred_pfn
= pgdat
->first_deferred_pfn
;
2026 unsigned long spfn
, epfn
, flags
;
2027 unsigned long nr_pages
= 0;
2030 /* Only the last zone may have deferred pages */
2031 if (zone_end_pfn(zone
) != pgdat_end_pfn(pgdat
))
2034 pgdat_resize_lock(pgdat
, &flags
);
2037 * If someone grew this zone while we were waiting for spinlock, return
2038 * true, as there might be enough pages already.
2040 if (first_deferred_pfn
!= pgdat
->first_deferred_pfn
) {
2041 pgdat_resize_unlock(pgdat
, &flags
);
2045 /* If the zone is empty somebody else may have cleared out the zone */
2046 if (!deferred_init_mem_pfn_range_in_zone(&i
, zone
, &spfn
, &epfn
,
2047 first_deferred_pfn
)) {
2048 pgdat
->first_deferred_pfn
= ULONG_MAX
;
2049 pgdat_resize_unlock(pgdat
, &flags
);
2050 /* Retry only once. */
2051 return first_deferred_pfn
!= ULONG_MAX
;
2055 * Initialize and free pages in MAX_ORDER sized increments so
2056 * that we can avoid introducing any issues with the buddy
2059 while (spfn
< epfn
) {
2060 /* update our first deferred PFN for this section */
2061 first_deferred_pfn
= spfn
;
2063 nr_pages
+= deferred_init_maxorder(&i
, zone
, &spfn
, &epfn
);
2064 touch_nmi_watchdog();
2066 /* We should only stop along section boundaries */
2067 if ((first_deferred_pfn
^ spfn
) < PAGES_PER_SECTION
)
2070 /* If our quota has been met we can stop here */
2071 if (nr_pages
>= nr_pages_needed
)
2075 pgdat
->first_deferred_pfn
= spfn
;
2076 pgdat_resize_unlock(pgdat
, &flags
);
2078 return nr_pages
> 0;
2082 * deferred_grow_zone() is __init, but it is called from
2083 * get_page_from_freelist() during early boot until deferred_pages permanently
2084 * disables this call. This is why we have refdata wrapper to avoid warning,
2085 * and to ensure that the function body gets unloaded.
2088 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
2090 return deferred_grow_zone(zone
, order
);
2093 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2095 void __init
page_alloc_init_late(void)
2100 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2102 /* There will be num_node_state(N_MEMORY) threads */
2103 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
2104 for_each_node_state(nid
, N_MEMORY
) {
2105 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
2108 /* Block until all are initialised */
2109 wait_for_completion(&pgdat_init_all_done_comp
);
2112 * The number of managed pages has changed due to the initialisation
2113 * so the pcpu batch and high limits needs to be updated or the limits
2114 * will be artificially small.
2116 for_each_populated_zone(zone
)
2117 zone_pcp_update(zone
);
2120 * We initialized the rest of the deferred pages. Permanently disable
2121 * on-demand struct page initialization.
2123 static_branch_disable(&deferred_pages
);
2125 /* Reinit limits that are based on free pages after the kernel is up */
2126 files_maxfiles_init();
2131 /* Discard memblock private memory */
2134 for_each_node_state(nid
, N_MEMORY
)
2135 shuffle_free_memory(NODE_DATA(nid
));
2137 for_each_populated_zone(zone
)
2138 set_zone_contiguous(zone
);
2142 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2143 void __init
init_cma_reserved_pageblock(struct page
*page
)
2145 unsigned i
= pageblock_nr_pages
;
2146 struct page
*p
= page
;
2149 __ClearPageReserved(p
);
2150 set_page_count(p
, 0);
2153 set_pageblock_migratetype(page
, MIGRATE_CMA
);
2155 if (pageblock_order
>= MAX_ORDER
) {
2156 i
= pageblock_nr_pages
;
2159 set_page_refcounted(p
);
2160 __free_pages(p
, MAX_ORDER
- 1);
2161 p
+= MAX_ORDER_NR_PAGES
;
2162 } while (i
-= MAX_ORDER_NR_PAGES
);
2164 set_page_refcounted(page
);
2165 __free_pages(page
, pageblock_order
);
2168 adjust_managed_page_count(page
, pageblock_nr_pages
);
2173 * The order of subdivision here is critical for the IO subsystem.
2174 * Please do not alter this order without good reasons and regression
2175 * testing. Specifically, as large blocks of memory are subdivided,
2176 * the order in which smaller blocks are delivered depends on the order
2177 * they're subdivided in this function. This is the primary factor
2178 * influencing the order in which pages are delivered to the IO
2179 * subsystem according to empirical testing, and this is also justified
2180 * by considering the behavior of a buddy system containing a single
2181 * large block of memory acted on by a series of small allocations.
2182 * This behavior is a critical factor in sglist merging's success.
2186 static inline void expand(struct zone
*zone
, struct page
*page
,
2187 int low
, int high
, int migratetype
)
2189 unsigned long size
= 1 << high
;
2191 while (high
> low
) {
2194 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
2197 * Mark as guard pages (or page), that will allow to
2198 * merge back to allocator when buddy will be freed.
2199 * Corresponding page table entries will not be touched,
2200 * pages will stay not present in virtual address space
2202 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
2205 add_to_free_list(&page
[size
], zone
, high
, migratetype
);
2206 set_buddy_order(&page
[size
], high
);
2210 static void check_new_page_bad(struct page
*page
)
2212 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
2213 /* Don't complain about hwpoisoned pages */
2214 page_mapcount_reset(page
); /* remove PageBuddy */
2219 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_PREP
));
2223 * This page is about to be returned from the page allocator
2225 static inline int check_new_page(struct page
*page
)
2227 if (likely(page_expected_state(page
,
2228 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
2231 check_new_page_bad(page
);
2235 #ifdef CONFIG_DEBUG_VM
2237 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2238 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2239 * also checked when pcp lists are refilled from the free lists.
2241 static inline bool check_pcp_refill(struct page
*page
)
2243 if (debug_pagealloc_enabled_static())
2244 return check_new_page(page
);
2249 static inline bool check_new_pcp(struct page
*page
)
2251 return check_new_page(page
);
2255 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2256 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2257 * enabled, they are also checked when being allocated from the pcp lists.
2259 static inline bool check_pcp_refill(struct page
*page
)
2261 return check_new_page(page
);
2263 static inline bool check_new_pcp(struct page
*page
)
2265 if (debug_pagealloc_enabled_static())
2266 return check_new_page(page
);
2270 #endif /* CONFIG_DEBUG_VM */
2272 static bool check_new_pages(struct page
*page
, unsigned int order
)
2275 for (i
= 0; i
< (1 << order
); i
++) {
2276 struct page
*p
= page
+ i
;
2278 if (unlikely(check_new_page(p
)))
2285 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
2288 set_page_private(page
, 0);
2289 set_page_refcounted(page
);
2291 arch_alloc_page(page
, order
);
2292 debug_pagealloc_map_pages(page
, 1 << order
);
2293 kasan_alloc_pages(page
, order
);
2294 kernel_unpoison_pages(page
, 1 << order
);
2295 set_page_owner(page
, order
, gfp_flags
);
2297 if (!want_init_on_free() && want_init_on_alloc(gfp_flags
))
2298 kernel_init_free_pages(page
, 1 << order
);
2301 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
2302 unsigned int alloc_flags
)
2304 post_alloc_hook(page
, order
, gfp_flags
);
2306 if (order
&& (gfp_flags
& __GFP_COMP
))
2307 prep_compound_page(page
, order
);
2310 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2311 * allocate the page. The expectation is that the caller is taking
2312 * steps that will free more memory. The caller should avoid the page
2313 * being used for !PFMEMALLOC purposes.
2315 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2316 set_page_pfmemalloc(page
);
2318 clear_page_pfmemalloc(page
);
2322 * Go through the free lists for the given migratetype and remove
2323 * the smallest available page from the freelists
2325 static __always_inline
2326 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
2329 unsigned int current_order
;
2330 struct free_area
*area
;
2333 /* Find a page of the appropriate size in the preferred list */
2334 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
2335 area
= &(zone
->free_area
[current_order
]);
2336 page
= get_page_from_free_area(area
, migratetype
);
2339 del_page_from_free_list(page
, zone
, current_order
);
2340 expand(zone
, page
, order
, current_order
, migratetype
);
2341 set_pcppage_migratetype(page
, migratetype
);
2350 * This array describes the order lists are fallen back to when
2351 * the free lists for the desirable migrate type are depleted
2353 static int fallbacks
[MIGRATE_TYPES
][3] = {
2354 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2355 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
2356 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
2358 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
2360 #ifdef CONFIG_MEMORY_ISOLATION
2361 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
2366 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2369 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
2372 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
2373 unsigned int order
) { return NULL
; }
2377 * Move the free pages in a range to the freelist tail of the requested type.
2378 * Note that start_page and end_pages are not aligned on a pageblock
2379 * boundary. If alignment is required, use move_freepages_block()
2381 static int move_freepages(struct zone
*zone
,
2382 struct page
*start_page
, struct page
*end_page
,
2383 int migratetype
, int *num_movable
)
2387 int pages_moved
= 0;
2389 for (page
= start_page
; page
<= end_page
;) {
2390 if (!pfn_valid_within(page_to_pfn(page
))) {
2395 if (!PageBuddy(page
)) {
2397 * We assume that pages that could be isolated for
2398 * migration are movable. But we don't actually try
2399 * isolating, as that would be expensive.
2402 (PageLRU(page
) || __PageMovable(page
)))
2409 /* Make sure we are not inadvertently changing nodes */
2410 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
2411 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
2413 order
= buddy_order(page
);
2414 move_to_free_list(page
, zone
, order
, migratetype
);
2416 pages_moved
+= 1 << order
;
2422 int move_freepages_block(struct zone
*zone
, struct page
*page
,
2423 int migratetype
, int *num_movable
)
2425 unsigned long start_pfn
, end_pfn
;
2426 struct page
*start_page
, *end_page
;
2431 start_pfn
= page_to_pfn(page
);
2432 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
2433 start_page
= pfn_to_page(start_pfn
);
2434 end_page
= start_page
+ pageblock_nr_pages
- 1;
2435 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
2437 /* Do not cross zone boundaries */
2438 if (!zone_spans_pfn(zone
, start_pfn
))
2440 if (!zone_spans_pfn(zone
, end_pfn
))
2443 return move_freepages(zone
, start_page
, end_page
, migratetype
,
2447 static void change_pageblock_range(struct page
*pageblock_page
,
2448 int start_order
, int migratetype
)
2450 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
2452 while (nr_pageblocks
--) {
2453 set_pageblock_migratetype(pageblock_page
, migratetype
);
2454 pageblock_page
+= pageblock_nr_pages
;
2459 * When we are falling back to another migratetype during allocation, try to
2460 * steal extra free pages from the same pageblocks to satisfy further
2461 * allocations, instead of polluting multiple pageblocks.
2463 * If we are stealing a relatively large buddy page, it is likely there will
2464 * be more free pages in the pageblock, so try to steal them all. For
2465 * reclaimable and unmovable allocations, we steal regardless of page size,
2466 * as fragmentation caused by those allocations polluting movable pageblocks
2467 * is worse than movable allocations stealing from unmovable and reclaimable
2470 static bool can_steal_fallback(unsigned int order
, int start_mt
)
2473 * Leaving this order check is intended, although there is
2474 * relaxed order check in next check. The reason is that
2475 * we can actually steal whole pageblock if this condition met,
2476 * but, below check doesn't guarantee it and that is just heuristic
2477 * so could be changed anytime.
2479 if (order
>= pageblock_order
)
2482 if (order
>= pageblock_order
/ 2 ||
2483 start_mt
== MIGRATE_RECLAIMABLE
||
2484 start_mt
== MIGRATE_UNMOVABLE
||
2485 page_group_by_mobility_disabled
)
2491 static inline bool boost_watermark(struct zone
*zone
)
2493 unsigned long max_boost
;
2495 if (!watermark_boost_factor
)
2498 * Don't bother in zones that are unlikely to produce results.
2499 * On small machines, including kdump capture kernels running
2500 * in a small area, boosting the watermark can cause an out of
2501 * memory situation immediately.
2503 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
2506 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
2507 watermark_boost_factor
, 10000);
2510 * high watermark may be uninitialised if fragmentation occurs
2511 * very early in boot so do not boost. We do not fall
2512 * through and boost by pageblock_nr_pages as failing
2513 * allocations that early means that reclaim is not going
2514 * to help and it may even be impossible to reclaim the
2515 * boosted watermark resulting in a hang.
2520 max_boost
= max(pageblock_nr_pages
, max_boost
);
2522 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
2529 * This function implements actual steal behaviour. If order is large enough,
2530 * we can steal whole pageblock. If not, we first move freepages in this
2531 * pageblock to our migratetype and determine how many already-allocated pages
2532 * are there in the pageblock with a compatible migratetype. If at least half
2533 * of pages are free or compatible, we can change migratetype of the pageblock
2534 * itself, so pages freed in the future will be put on the correct free list.
2536 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2537 unsigned int alloc_flags
, int start_type
, bool whole_block
)
2539 unsigned int current_order
= buddy_order(page
);
2540 int free_pages
, movable_pages
, alike_pages
;
2543 old_block_type
= get_pageblock_migratetype(page
);
2546 * This can happen due to races and we want to prevent broken
2547 * highatomic accounting.
2549 if (is_migrate_highatomic(old_block_type
))
2552 /* Take ownership for orders >= pageblock_order */
2553 if (current_order
>= pageblock_order
) {
2554 change_pageblock_range(page
, current_order
, start_type
);
2559 * Boost watermarks to increase reclaim pressure to reduce the
2560 * likelihood of future fallbacks. Wake kswapd now as the node
2561 * may be balanced overall and kswapd will not wake naturally.
2563 if (boost_watermark(zone
) && (alloc_flags
& ALLOC_KSWAPD
))
2564 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
2566 /* We are not allowed to try stealing from the whole block */
2570 free_pages
= move_freepages_block(zone
, page
, start_type
,
2573 * Determine how many pages are compatible with our allocation.
2574 * For movable allocation, it's the number of movable pages which
2575 * we just obtained. For other types it's a bit more tricky.
2577 if (start_type
== MIGRATE_MOVABLE
) {
2578 alike_pages
= movable_pages
;
2581 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2582 * to MOVABLE pageblock, consider all non-movable pages as
2583 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2584 * vice versa, be conservative since we can't distinguish the
2585 * exact migratetype of non-movable pages.
2587 if (old_block_type
== MIGRATE_MOVABLE
)
2588 alike_pages
= pageblock_nr_pages
2589 - (free_pages
+ movable_pages
);
2594 /* moving whole block can fail due to zone boundary conditions */
2599 * If a sufficient number of pages in the block are either free or of
2600 * comparable migratability as our allocation, claim the whole block.
2602 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2603 page_group_by_mobility_disabled
)
2604 set_pageblock_migratetype(page
, start_type
);
2609 move_to_free_list(page
, zone
, current_order
, start_type
);
2613 * Check whether there is a suitable fallback freepage with requested order.
2614 * If only_stealable is true, this function returns fallback_mt only if
2615 * we can steal other freepages all together. This would help to reduce
2616 * fragmentation due to mixed migratetype pages in one pageblock.
2618 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2619 int migratetype
, bool only_stealable
, bool *can_steal
)
2624 if (area
->nr_free
== 0)
2629 fallback_mt
= fallbacks
[migratetype
][i
];
2630 if (fallback_mt
== MIGRATE_TYPES
)
2633 if (free_area_empty(area
, fallback_mt
))
2636 if (can_steal_fallback(order
, migratetype
))
2639 if (!only_stealable
)
2650 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2651 * there are no empty page blocks that contain a page with a suitable order
2653 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2654 unsigned int alloc_order
)
2657 unsigned long max_managed
, flags
;
2660 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2661 * Check is race-prone but harmless.
2663 max_managed
= (zone_managed_pages(zone
) / 100) + pageblock_nr_pages
;
2664 if (zone
->nr_reserved_highatomic
>= max_managed
)
2667 spin_lock_irqsave(&zone
->lock
, flags
);
2669 /* Recheck the nr_reserved_highatomic limit under the lock */
2670 if (zone
->nr_reserved_highatomic
>= max_managed
)
2674 mt
= get_pageblock_migratetype(page
);
2675 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2676 && !is_migrate_cma(mt
)) {
2677 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2678 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2679 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2683 spin_unlock_irqrestore(&zone
->lock
, flags
);
2687 * Used when an allocation is about to fail under memory pressure. This
2688 * potentially hurts the reliability of high-order allocations when under
2689 * intense memory pressure but failed atomic allocations should be easier
2690 * to recover from than an OOM.
2692 * If @force is true, try to unreserve a pageblock even though highatomic
2693 * pageblock is exhausted.
2695 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2698 struct zonelist
*zonelist
= ac
->zonelist
;
2699 unsigned long flags
;
2706 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->highest_zoneidx
,
2709 * Preserve at least one pageblock unless memory pressure
2712 if (!force
&& zone
->nr_reserved_highatomic
<=
2716 spin_lock_irqsave(&zone
->lock
, flags
);
2717 for (order
= 0; order
< MAX_ORDER
; order
++) {
2718 struct free_area
*area
= &(zone
->free_area
[order
]);
2720 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2725 * In page freeing path, migratetype change is racy so
2726 * we can counter several free pages in a pageblock
2727 * in this loop althoug we changed the pageblock type
2728 * from highatomic to ac->migratetype. So we should
2729 * adjust the count once.
2731 if (is_migrate_highatomic_page(page
)) {
2733 * It should never happen but changes to
2734 * locking could inadvertently allow a per-cpu
2735 * drain to add pages to MIGRATE_HIGHATOMIC
2736 * while unreserving so be safe and watch for
2739 zone
->nr_reserved_highatomic
-= min(
2741 zone
->nr_reserved_highatomic
);
2745 * Convert to ac->migratetype and avoid the normal
2746 * pageblock stealing heuristics. Minimally, the caller
2747 * is doing the work and needs the pages. More
2748 * importantly, if the block was always converted to
2749 * MIGRATE_UNMOVABLE or another type then the number
2750 * of pageblocks that cannot be completely freed
2753 set_pageblock_migratetype(page
, ac
->migratetype
);
2754 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2757 spin_unlock_irqrestore(&zone
->lock
, flags
);
2761 spin_unlock_irqrestore(&zone
->lock
, flags
);
2768 * Try finding a free buddy page on the fallback list and put it on the free
2769 * list of requested migratetype, possibly along with other pages from the same
2770 * block, depending on fragmentation avoidance heuristics. Returns true if
2771 * fallback was found so that __rmqueue_smallest() can grab it.
2773 * The use of signed ints for order and current_order is a deliberate
2774 * deviation from the rest of this file, to make the for loop
2775 * condition simpler.
2777 static __always_inline
bool
2778 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2779 unsigned int alloc_flags
)
2781 struct free_area
*area
;
2783 int min_order
= order
;
2789 * Do not steal pages from freelists belonging to other pageblocks
2790 * i.e. orders < pageblock_order. If there are no local zones free,
2791 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2793 if (alloc_flags
& ALLOC_NOFRAGMENT
)
2794 min_order
= pageblock_order
;
2797 * Find the largest available free page in the other list. This roughly
2798 * approximates finding the pageblock with the most free pages, which
2799 * would be too costly to do exactly.
2801 for (current_order
= MAX_ORDER
- 1; current_order
>= min_order
;
2803 area
= &(zone
->free_area
[current_order
]);
2804 fallback_mt
= find_suitable_fallback(area
, current_order
,
2805 start_migratetype
, false, &can_steal
);
2806 if (fallback_mt
== -1)
2810 * We cannot steal all free pages from the pageblock and the
2811 * requested migratetype is movable. In that case it's better to
2812 * steal and split the smallest available page instead of the
2813 * largest available page, because even if the next movable
2814 * allocation falls back into a different pageblock than this
2815 * one, it won't cause permanent fragmentation.
2817 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2818 && current_order
> order
)
2827 for (current_order
= order
; current_order
< MAX_ORDER
;
2829 area
= &(zone
->free_area
[current_order
]);
2830 fallback_mt
= find_suitable_fallback(area
, current_order
,
2831 start_migratetype
, false, &can_steal
);
2832 if (fallback_mt
!= -1)
2837 * This should not happen - we already found a suitable fallback
2838 * when looking for the largest page.
2840 VM_BUG_ON(current_order
== MAX_ORDER
);
2843 page
= get_page_from_free_area(area
, fallback_mt
);
2845 steal_suitable_fallback(zone
, page
, alloc_flags
, start_migratetype
,
2848 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2849 start_migratetype
, fallback_mt
);
2856 * Do the hard work of removing an element from the buddy allocator.
2857 * Call me with the zone->lock already held.
2859 static __always_inline
struct page
*
2860 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2861 unsigned int alloc_flags
)
2865 if (IS_ENABLED(CONFIG_CMA
)) {
2867 * Balance movable allocations between regular and CMA areas by
2868 * allocating from CMA when over half of the zone's free memory
2869 * is in the CMA area.
2871 if (alloc_flags
& ALLOC_CMA
&&
2872 zone_page_state(zone
, NR_FREE_CMA_PAGES
) >
2873 zone_page_state(zone
, NR_FREE_PAGES
) / 2) {
2874 page
= __rmqueue_cma_fallback(zone
, order
);
2880 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2881 if (unlikely(!page
)) {
2882 if (alloc_flags
& ALLOC_CMA
)
2883 page
= __rmqueue_cma_fallback(zone
, order
);
2885 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
,
2891 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2896 * Obtain a specified number of elements from the buddy allocator, all under
2897 * a single hold of the lock, for efficiency. Add them to the supplied list.
2898 * Returns the number of new pages which were placed at *list.
2900 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2901 unsigned long count
, struct list_head
*list
,
2902 int migratetype
, unsigned int alloc_flags
)
2906 spin_lock(&zone
->lock
);
2907 for (i
= 0; i
< count
; ++i
) {
2908 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2910 if (unlikely(page
== NULL
))
2913 if (unlikely(check_pcp_refill(page
)))
2917 * Split buddy pages returned by expand() are received here in
2918 * physical page order. The page is added to the tail of
2919 * caller's list. From the callers perspective, the linked list
2920 * is ordered by page number under some conditions. This is
2921 * useful for IO devices that can forward direction from the
2922 * head, thus also in the physical page order. This is useful
2923 * for IO devices that can merge IO requests if the physical
2924 * pages are ordered properly.
2926 list_add_tail(&page
->lru
, list
);
2928 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2929 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2934 * i pages were removed from the buddy list even if some leak due
2935 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2936 * on i. Do not confuse with 'alloced' which is the number of
2937 * pages added to the pcp list.
2939 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2940 spin_unlock(&zone
->lock
);
2946 * Called from the vmstat counter updater to drain pagesets of this
2947 * currently executing processor on remote nodes after they have
2950 * Note that this function must be called with the thread pinned to
2951 * a single processor.
2953 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2955 unsigned long flags
;
2956 int to_drain
, batch
;
2958 local_irq_save(flags
);
2959 batch
= READ_ONCE(pcp
->batch
);
2960 to_drain
= min(pcp
->count
, batch
);
2962 free_pcppages_bulk(zone
, to_drain
, pcp
);
2963 local_irq_restore(flags
);
2968 * Drain pcplists of the indicated processor and zone.
2970 * The processor must either be the current processor and the
2971 * thread pinned to the current processor or a processor that
2974 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2976 unsigned long flags
;
2977 struct per_cpu_pageset
*pset
;
2978 struct per_cpu_pages
*pcp
;
2980 local_irq_save(flags
);
2981 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2985 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2986 local_irq_restore(flags
);
2990 * Drain pcplists of all zones on the indicated processor.
2992 * The processor must either be the current processor and the
2993 * thread pinned to the current processor or a processor that
2996 static void drain_pages(unsigned int cpu
)
3000 for_each_populated_zone(zone
) {
3001 drain_pages_zone(cpu
, zone
);
3006 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3008 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3009 * the single zone's pages.
3011 void drain_local_pages(struct zone
*zone
)
3013 int cpu
= smp_processor_id();
3016 drain_pages_zone(cpu
, zone
);
3021 static void drain_local_pages_wq(struct work_struct
*work
)
3023 struct pcpu_drain
*drain
;
3025 drain
= container_of(work
, struct pcpu_drain
, work
);
3028 * drain_all_pages doesn't use proper cpu hotplug protection so
3029 * we can race with cpu offline when the WQ can move this from
3030 * a cpu pinned worker to an unbound one. We can operate on a different
3031 * cpu which is allright but we also have to make sure to not move to
3035 drain_local_pages(drain
->zone
);
3040 * The implementation of drain_all_pages(), exposing an extra parameter to
3041 * drain on all cpus.
3043 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3044 * not empty. The check for non-emptiness can however race with a free to
3045 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3046 * that need the guarantee that every CPU has drained can disable the
3047 * optimizing racy check.
3049 static void __drain_all_pages(struct zone
*zone
, bool force_all_cpus
)
3054 * Allocate in the BSS so we wont require allocation in
3055 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3057 static cpumask_t cpus_with_pcps
;
3060 * Make sure nobody triggers this path before mm_percpu_wq is fully
3063 if (WARN_ON_ONCE(!mm_percpu_wq
))
3067 * Do not drain if one is already in progress unless it's specific to
3068 * a zone. Such callers are primarily CMA and memory hotplug and need
3069 * the drain to be complete when the call returns.
3071 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
3074 mutex_lock(&pcpu_drain_mutex
);
3078 * We don't care about racing with CPU hotplug event
3079 * as offline notification will cause the notified
3080 * cpu to drain that CPU pcps and on_each_cpu_mask
3081 * disables preemption as part of its processing
3083 for_each_online_cpu(cpu
) {
3084 struct per_cpu_pageset
*pcp
;
3086 bool has_pcps
= false;
3088 if (force_all_cpus
) {
3090 * The pcp.count check is racy, some callers need a
3091 * guarantee that no cpu is missed.
3095 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3099 for_each_populated_zone(z
) {
3100 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
3101 if (pcp
->pcp
.count
) {
3109 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
3111 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
3114 for_each_cpu(cpu
, &cpus_with_pcps
) {
3115 struct pcpu_drain
*drain
= per_cpu_ptr(&pcpu_drain
, cpu
);
3118 INIT_WORK(&drain
->work
, drain_local_pages_wq
);
3119 queue_work_on(cpu
, mm_percpu_wq
, &drain
->work
);
3121 for_each_cpu(cpu
, &cpus_with_pcps
)
3122 flush_work(&per_cpu_ptr(&pcpu_drain
, cpu
)->work
);
3124 mutex_unlock(&pcpu_drain_mutex
);
3128 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3130 * When zone parameter is non-NULL, spill just the single zone's pages.
3132 * Note that this can be extremely slow as the draining happens in a workqueue.
3134 void drain_all_pages(struct zone
*zone
)
3136 __drain_all_pages(zone
, false);
3139 #ifdef CONFIG_HIBERNATION
3142 * Touch the watchdog for every WD_PAGE_COUNT pages.
3144 #define WD_PAGE_COUNT (128*1024)
3146 void mark_free_pages(struct zone
*zone
)
3148 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
3149 unsigned long flags
;
3150 unsigned int order
, t
;
3153 if (zone_is_empty(zone
))
3156 spin_lock_irqsave(&zone
->lock
, flags
);
3158 max_zone_pfn
= zone_end_pfn(zone
);
3159 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
3160 if (pfn_valid(pfn
)) {
3161 page
= pfn_to_page(pfn
);
3163 if (!--page_count
) {
3164 touch_nmi_watchdog();
3165 page_count
= WD_PAGE_COUNT
;
3168 if (page_zone(page
) != zone
)
3171 if (!swsusp_page_is_forbidden(page
))
3172 swsusp_unset_page_free(page
);
3175 for_each_migratetype_order(order
, t
) {
3176 list_for_each_entry(page
,
3177 &zone
->free_area
[order
].free_list
[t
], lru
) {
3180 pfn
= page_to_pfn(page
);
3181 for (i
= 0; i
< (1UL << order
); i
++) {
3182 if (!--page_count
) {
3183 touch_nmi_watchdog();
3184 page_count
= WD_PAGE_COUNT
;
3186 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
3190 spin_unlock_irqrestore(&zone
->lock
, flags
);
3192 #endif /* CONFIG_PM */
3194 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
3198 if (!free_pcp_prepare(page
))
3201 migratetype
= get_pfnblock_migratetype(page
, pfn
);
3202 set_pcppage_migratetype(page
, migratetype
);
3206 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
3208 struct zone
*zone
= page_zone(page
);
3209 struct per_cpu_pages
*pcp
;
3212 migratetype
= get_pcppage_migratetype(page
);
3213 __count_vm_event(PGFREE
);
3216 * We only track unmovable, reclaimable and movable on pcp lists.
3217 * Free ISOLATE pages back to the allocator because they are being
3218 * offlined but treat HIGHATOMIC as movable pages so we can get those
3219 * areas back if necessary. Otherwise, we may have to free
3220 * excessively into the page allocator
3222 if (migratetype
>= MIGRATE_PCPTYPES
) {
3223 if (unlikely(is_migrate_isolate(migratetype
))) {
3224 free_one_page(zone
, page
, pfn
, 0, migratetype
,
3228 migratetype
= MIGRATE_MOVABLE
;
3231 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3232 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
3234 if (pcp
->count
>= READ_ONCE(pcp
->high
))
3235 free_pcppages_bulk(zone
, READ_ONCE(pcp
->batch
), pcp
);
3239 * Free a 0-order page
3241 void free_unref_page(struct page
*page
)
3243 unsigned long flags
;
3244 unsigned long pfn
= page_to_pfn(page
);
3246 if (!free_unref_page_prepare(page
, pfn
))
3249 local_irq_save(flags
);
3250 free_unref_page_commit(page
, pfn
);
3251 local_irq_restore(flags
);
3255 * Free a list of 0-order pages
3257 void free_unref_page_list(struct list_head
*list
)
3259 struct page
*page
, *next
;
3260 unsigned long flags
, pfn
;
3261 int batch_count
= 0;
3263 /* Prepare pages for freeing */
3264 list_for_each_entry_safe(page
, next
, list
, lru
) {
3265 pfn
= page_to_pfn(page
);
3266 if (!free_unref_page_prepare(page
, pfn
))
3267 list_del(&page
->lru
);
3268 set_page_private(page
, pfn
);
3271 local_irq_save(flags
);
3272 list_for_each_entry_safe(page
, next
, list
, lru
) {
3273 unsigned long pfn
= page_private(page
);
3275 set_page_private(page
, 0);
3276 trace_mm_page_free_batched(page
);
3277 free_unref_page_commit(page
, pfn
);
3280 * Guard against excessive IRQ disabled times when we get
3281 * a large list of pages to free.
3283 if (++batch_count
== SWAP_CLUSTER_MAX
) {
3284 local_irq_restore(flags
);
3286 local_irq_save(flags
);
3289 local_irq_restore(flags
);
3293 * split_page takes a non-compound higher-order page, and splits it into
3294 * n (1<<order) sub-pages: page[0..n]
3295 * Each sub-page must be freed individually.
3297 * Note: this is probably too low level an operation for use in drivers.
3298 * Please consult with lkml before using this in your driver.
3300 void split_page(struct page
*page
, unsigned int order
)
3304 VM_BUG_ON_PAGE(PageCompound(page
), page
);
3305 VM_BUG_ON_PAGE(!page_count(page
), page
);
3307 for (i
= 1; i
< (1 << order
); i
++)
3308 set_page_refcounted(page
+ i
);
3309 split_page_owner(page
, 1 << order
);
3311 EXPORT_SYMBOL_GPL(split_page
);
3313 int __isolate_free_page(struct page
*page
, unsigned int order
)
3315 unsigned long watermark
;
3319 BUG_ON(!PageBuddy(page
));
3321 zone
= page_zone(page
);
3322 mt
= get_pageblock_migratetype(page
);
3324 if (!is_migrate_isolate(mt
)) {
3326 * Obey watermarks as if the page was being allocated. We can
3327 * emulate a high-order watermark check with a raised order-0
3328 * watermark, because we already know our high-order page
3331 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
3332 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
3335 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
3338 /* Remove page from free list */
3340 del_page_from_free_list(page
, zone
, order
);
3343 * Set the pageblock if the isolated page is at least half of a
3346 if (order
>= pageblock_order
- 1) {
3347 struct page
*endpage
= page
+ (1 << order
) - 1;
3348 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
3349 int mt
= get_pageblock_migratetype(page
);
3350 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
3351 && !is_migrate_highatomic(mt
))
3352 set_pageblock_migratetype(page
,
3358 return 1UL << order
;
3362 * __putback_isolated_page - Return a now-isolated page back where we got it
3363 * @page: Page that was isolated
3364 * @order: Order of the isolated page
3365 * @mt: The page's pageblock's migratetype
3367 * This function is meant to return a page pulled from the free lists via
3368 * __isolate_free_page back to the free lists they were pulled from.
3370 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
3372 struct zone
*zone
= page_zone(page
);
3374 /* zone lock should be held when this function is called */
3375 lockdep_assert_held(&zone
->lock
);
3377 /* Return isolated page to tail of freelist. */
3378 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
,
3379 FPI_SKIP_REPORT_NOTIFY
| FPI_TO_TAIL
);
3383 * Update NUMA hit/miss statistics
3385 * Must be called with interrupts disabled.
3387 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
3390 enum numa_stat_item local_stat
= NUMA_LOCAL
;
3392 /* skip numa counters update if numa stats is disabled */
3393 if (!static_branch_likely(&vm_numa_stat_key
))
3396 if (zone_to_nid(z
) != numa_node_id())
3397 local_stat
= NUMA_OTHER
;
3399 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
3400 __inc_numa_state(z
, NUMA_HIT
);
3402 __inc_numa_state(z
, NUMA_MISS
);
3403 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
3405 __inc_numa_state(z
, local_stat
);
3409 /* Remove page from the per-cpu list, caller must protect the list */
3410 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
3411 unsigned int alloc_flags
,
3412 struct per_cpu_pages
*pcp
,
3413 struct list_head
*list
)
3418 if (list_empty(list
)) {
3419 pcp
->count
+= rmqueue_bulk(zone
, 0,
3420 READ_ONCE(pcp
->batch
), list
,
3421 migratetype
, alloc_flags
);
3422 if (unlikely(list_empty(list
)))
3426 page
= list_first_entry(list
, struct page
, lru
);
3427 list_del(&page
->lru
);
3429 } while (check_new_pcp(page
));
3434 /* Lock and remove page from the per-cpu list */
3435 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3436 struct zone
*zone
, gfp_t gfp_flags
,
3437 int migratetype
, unsigned int alloc_flags
)
3439 struct per_cpu_pages
*pcp
;
3440 struct list_head
*list
;
3442 unsigned long flags
;
3444 local_irq_save(flags
);
3445 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
3446 list
= &pcp
->lists
[migratetype
];
3447 page
= __rmqueue_pcplist(zone
, migratetype
, alloc_flags
, pcp
, list
);
3449 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1);
3450 zone_statistics(preferred_zone
, zone
);
3452 local_irq_restore(flags
);
3457 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3460 struct page
*rmqueue(struct zone
*preferred_zone
,
3461 struct zone
*zone
, unsigned int order
,
3462 gfp_t gfp_flags
, unsigned int alloc_flags
,
3465 unsigned long flags
;
3468 if (likely(order
== 0)) {
3470 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3471 * we need to skip it when CMA area isn't allowed.
3473 if (!IS_ENABLED(CONFIG_CMA
) || alloc_flags
& ALLOC_CMA
||
3474 migratetype
!= MIGRATE_MOVABLE
) {
3475 page
= rmqueue_pcplist(preferred_zone
, zone
, gfp_flags
,
3476 migratetype
, alloc_flags
);
3482 * We most definitely don't want callers attempting to
3483 * allocate greater than order-1 page units with __GFP_NOFAIL.
3485 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
3486 spin_lock_irqsave(&zone
->lock
, flags
);
3491 * order-0 request can reach here when the pcplist is skipped
3492 * due to non-CMA allocation context. HIGHATOMIC area is
3493 * reserved for high-order atomic allocation, so order-0
3494 * request should skip it.
3496 if (order
> 0 && alloc_flags
& ALLOC_HARDER
) {
3497 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
3499 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
3502 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
3503 } while (page
&& check_new_pages(page
, order
));
3504 spin_unlock(&zone
->lock
);
3507 __mod_zone_freepage_state(zone
, -(1 << order
),
3508 get_pcppage_migratetype(page
));
3510 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3511 zone_statistics(preferred_zone
, zone
);
3512 local_irq_restore(flags
);
3515 /* Separate test+clear to avoid unnecessary atomics */
3516 if (test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
)) {
3517 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3518 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3521 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3525 local_irq_restore(flags
);
3529 #ifdef CONFIG_FAIL_PAGE_ALLOC
3532 struct fault_attr attr
;
3534 bool ignore_gfp_highmem
;
3535 bool ignore_gfp_reclaim
;
3537 } fail_page_alloc
= {
3538 .attr
= FAULT_ATTR_INITIALIZER
,
3539 .ignore_gfp_reclaim
= true,
3540 .ignore_gfp_highmem
= true,
3544 static int __init
setup_fail_page_alloc(char *str
)
3546 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
3548 __setup("fail_page_alloc=", setup_fail_page_alloc
);
3550 static bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3552 if (order
< fail_page_alloc
.min_order
)
3554 if (gfp_mask
& __GFP_NOFAIL
)
3556 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
3558 if (fail_page_alloc
.ignore_gfp_reclaim
&&
3559 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
3562 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
3565 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3567 static int __init
fail_page_alloc_debugfs(void)
3569 umode_t mode
= S_IFREG
| 0600;
3572 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
3573 &fail_page_alloc
.attr
);
3575 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
3576 &fail_page_alloc
.ignore_gfp_reclaim
);
3577 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
3578 &fail_page_alloc
.ignore_gfp_highmem
);
3579 debugfs_create_u32("min-order", mode
, dir
, &fail_page_alloc
.min_order
);
3584 late_initcall(fail_page_alloc_debugfs
);
3586 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3588 #else /* CONFIG_FAIL_PAGE_ALLOC */
3590 static inline bool __should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3595 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3597 noinline
bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
3599 return __should_fail_alloc_page(gfp_mask
, order
);
3601 ALLOW_ERROR_INJECTION(should_fail_alloc_page
, TRUE
);
3603 static inline long __zone_watermark_unusable_free(struct zone
*z
,
3604 unsigned int order
, unsigned int alloc_flags
)
3606 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3607 long unusable_free
= (1 << order
) - 1;
3610 * If the caller does not have rights to ALLOC_HARDER then subtract
3611 * the high-atomic reserves. This will over-estimate the size of the
3612 * atomic reserve but it avoids a search.
3614 if (likely(!alloc_harder
))
3615 unusable_free
+= z
->nr_reserved_highatomic
;
3618 /* If allocation can't use CMA areas don't use free CMA pages */
3619 if (!(alloc_flags
& ALLOC_CMA
))
3620 unusable_free
+= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3623 return unusable_free
;
3627 * Return true if free base pages are above 'mark'. For high-order checks it
3628 * will return true of the order-0 watermark is reached and there is at least
3629 * one free page of a suitable size. Checking now avoids taking the zone lock
3630 * to check in the allocation paths if no pages are free.
3632 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3633 int highest_zoneidx
, unsigned int alloc_flags
,
3638 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3640 /* free_pages may go negative - that's OK */
3641 free_pages
-= __zone_watermark_unusable_free(z
, order
, alloc_flags
);
3643 if (alloc_flags
& ALLOC_HIGH
)
3646 if (unlikely(alloc_harder
)) {
3648 * OOM victims can try even harder than normal ALLOC_HARDER
3649 * users on the grounds that it's definitely going to be in
3650 * the exit path shortly and free memory. Any allocation it
3651 * makes during the free path will be small and short-lived.
3653 if (alloc_flags
& ALLOC_OOM
)
3660 * Check watermarks for an order-0 allocation request. If these
3661 * are not met, then a high-order request also cannot go ahead
3662 * even if a suitable page happened to be free.
3664 if (free_pages
<= min
+ z
->lowmem_reserve
[highest_zoneidx
])
3667 /* If this is an order-0 request then the watermark is fine */
3671 /* For a high-order request, check at least one suitable page is free */
3672 for (o
= order
; o
< MAX_ORDER
; o
++) {
3673 struct free_area
*area
= &z
->free_area
[o
];
3679 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3680 if (!free_area_empty(area
, mt
))
3685 if ((alloc_flags
& ALLOC_CMA
) &&
3686 !free_area_empty(area
, MIGRATE_CMA
)) {
3690 if (alloc_harder
&& !free_area_empty(area
, MIGRATE_HIGHATOMIC
))
3696 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3697 int highest_zoneidx
, unsigned int alloc_flags
)
3699 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3700 zone_page_state(z
, NR_FREE_PAGES
));
3703 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3704 unsigned long mark
, int highest_zoneidx
,
3705 unsigned int alloc_flags
, gfp_t gfp_mask
)
3709 free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3712 * Fast check for order-0 only. If this fails then the reserves
3713 * need to be calculated.
3718 fast_free
= free_pages
;
3719 fast_free
-= __zone_watermark_unusable_free(z
, 0, alloc_flags
);
3720 if (fast_free
> mark
+ z
->lowmem_reserve
[highest_zoneidx
])
3724 if (__zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3728 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3729 * when checking the min watermark. The min watermark is the
3730 * point where boosting is ignored so that kswapd is woken up
3731 * when below the low watermark.
3733 if (unlikely(!order
&& (gfp_mask
& __GFP_ATOMIC
) && z
->watermark_boost
3734 && ((alloc_flags
& ALLOC_WMARK_MASK
) == WMARK_MIN
))) {
3735 mark
= z
->_watermark
[WMARK_MIN
];
3736 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
,
3737 alloc_flags
, free_pages
);
3743 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3744 unsigned long mark
, int highest_zoneidx
)
3746 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3748 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3749 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3751 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, 0,
3756 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3758 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3759 node_reclaim_distance
;
3761 #else /* CONFIG_NUMA */
3762 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3766 #endif /* CONFIG_NUMA */
3769 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3770 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3771 * premature use of a lower zone may cause lowmem pressure problems that
3772 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3773 * probably too small. It only makes sense to spread allocations to avoid
3774 * fragmentation between the Normal and DMA32 zones.
3776 static inline unsigned int
3777 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3779 unsigned int alloc_flags
;
3782 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3785 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3787 #ifdef CONFIG_ZONE_DMA32
3791 if (zone_idx(zone
) != ZONE_NORMAL
)
3795 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3796 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3797 * on UMA that if Normal is populated then so is DMA32.
3799 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3800 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3803 alloc_flags
|= ALLOC_NOFRAGMENT
;
3804 #endif /* CONFIG_ZONE_DMA32 */
3808 static inline unsigned int current_alloc_flags(gfp_t gfp_mask
,
3809 unsigned int alloc_flags
)
3812 unsigned int pflags
= current
->flags
;
3814 if (!(pflags
& PF_MEMALLOC_NOCMA
) &&
3815 gfp_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3816 alloc_flags
|= ALLOC_CMA
;
3823 * get_page_from_freelist goes through the zonelist trying to allocate
3826 static struct page
*
3827 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3828 const struct alloc_context
*ac
)
3832 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3837 * Scan zonelist, looking for a zone with enough free.
3838 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3840 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3841 z
= ac
->preferred_zoneref
;
3842 for_next_zone_zonelist_nodemask(zone
, z
, ac
->highest_zoneidx
,
3847 if (cpusets_enabled() &&
3848 (alloc_flags
& ALLOC_CPUSET
) &&
3849 !__cpuset_zone_allowed(zone
, gfp_mask
))
3852 * When allocating a page cache page for writing, we
3853 * want to get it from a node that is within its dirty
3854 * limit, such that no single node holds more than its
3855 * proportional share of globally allowed dirty pages.
3856 * The dirty limits take into account the node's
3857 * lowmem reserves and high watermark so that kswapd
3858 * should be able to balance it without having to
3859 * write pages from its LRU list.
3861 * XXX: For now, allow allocations to potentially
3862 * exceed the per-node dirty limit in the slowpath
3863 * (spread_dirty_pages unset) before going into reclaim,
3864 * which is important when on a NUMA setup the allowed
3865 * nodes are together not big enough to reach the
3866 * global limit. The proper fix for these situations
3867 * will require awareness of nodes in the
3868 * dirty-throttling and the flusher threads.
3870 if (ac
->spread_dirty_pages
) {
3871 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3874 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3875 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3880 if (no_fallback
&& nr_online_nodes
> 1 &&
3881 zone
!= ac
->preferred_zoneref
->zone
) {
3885 * If moving to a remote node, retry but allow
3886 * fragmenting fallbacks. Locality is more important
3887 * than fragmentation avoidance.
3889 local_nid
= zone_to_nid(ac
->preferred_zoneref
->zone
);
3890 if (zone_to_nid(zone
) != local_nid
) {
3891 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3896 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3897 if (!zone_watermark_fast(zone
, order
, mark
,
3898 ac
->highest_zoneidx
, alloc_flags
,
3902 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3904 * Watermark failed for this zone, but see if we can
3905 * grow this zone if it contains deferred pages.
3907 if (static_branch_unlikely(&deferred_pages
)) {
3908 if (_deferred_grow_zone(zone
, order
))
3912 /* Checked here to keep the fast path fast */
3913 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3914 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3917 if (node_reclaim_mode
== 0 ||
3918 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3921 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3923 case NODE_RECLAIM_NOSCAN
:
3926 case NODE_RECLAIM_FULL
:
3927 /* scanned but unreclaimable */
3930 /* did we reclaim enough */
3931 if (zone_watermark_ok(zone
, order
, mark
,
3932 ac
->highest_zoneidx
, alloc_flags
))
3940 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3941 gfp_mask
, alloc_flags
, ac
->migratetype
);
3943 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3946 * If this is a high-order atomic allocation then check
3947 * if the pageblock should be reserved for the future
3949 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3950 reserve_highatomic_pageblock(page
, zone
, order
);
3954 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3955 /* Try again if zone has deferred pages */
3956 if (static_branch_unlikely(&deferred_pages
)) {
3957 if (_deferred_grow_zone(zone
, order
))
3965 * It's possible on a UMA machine to get through all zones that are
3966 * fragmented. If avoiding fragmentation, reset and try again.
3969 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3976 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3978 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3981 * This documents exceptions given to allocations in certain
3982 * contexts that are allowed to allocate outside current's set
3985 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3986 if (tsk_is_oom_victim(current
) ||
3987 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3988 filter
&= ~SHOW_MEM_FILTER_NODES
;
3989 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3990 filter
&= ~SHOW_MEM_FILTER_NODES
;
3992 show_mem(filter
, nodemask
);
3995 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3997 struct va_format vaf
;
3999 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
4001 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
4004 va_start(args
, fmt
);
4007 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4008 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
4009 nodemask_pr_args(nodemask
));
4012 cpuset_print_current_mems_allowed();
4015 warn_alloc_show_mem(gfp_mask
, nodemask
);
4018 static inline struct page
*
4019 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
4020 unsigned int alloc_flags
,
4021 const struct alloc_context
*ac
)
4025 page
= get_page_from_freelist(gfp_mask
, order
,
4026 alloc_flags
|ALLOC_CPUSET
, ac
);
4028 * fallback to ignore cpuset restriction if our nodes
4032 page
= get_page_from_freelist(gfp_mask
, order
,
4038 static inline struct page
*
4039 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
4040 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
4042 struct oom_control oc
= {
4043 .zonelist
= ac
->zonelist
,
4044 .nodemask
= ac
->nodemask
,
4046 .gfp_mask
= gfp_mask
,
4051 *did_some_progress
= 0;
4054 * Acquire the oom lock. If that fails, somebody else is
4055 * making progress for us.
4057 if (!mutex_trylock(&oom_lock
)) {
4058 *did_some_progress
= 1;
4059 schedule_timeout_uninterruptible(1);
4064 * Go through the zonelist yet one more time, keep very high watermark
4065 * here, this is only to catch a parallel oom killing, we must fail if
4066 * we're still under heavy pressure. But make sure that this reclaim
4067 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4068 * allocation which will never fail due to oom_lock already held.
4070 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
4071 ~__GFP_DIRECT_RECLAIM
, order
,
4072 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
4076 /* Coredumps can quickly deplete all memory reserves */
4077 if (current
->flags
& PF_DUMPCORE
)
4079 /* The OOM killer will not help higher order allocs */
4080 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
4083 * We have already exhausted all our reclaim opportunities without any
4084 * success so it is time to admit defeat. We will skip the OOM killer
4085 * because it is very likely that the caller has a more reasonable
4086 * fallback than shooting a random task.
4088 * The OOM killer may not free memory on a specific node.
4090 if (gfp_mask
& (__GFP_RETRY_MAYFAIL
| __GFP_THISNODE
))
4092 /* The OOM killer does not needlessly kill tasks for lowmem */
4093 if (ac
->highest_zoneidx
< ZONE_NORMAL
)
4095 if (pm_suspended_storage())
4098 * XXX: GFP_NOFS allocations should rather fail than rely on
4099 * other request to make a forward progress.
4100 * We are in an unfortunate situation where out_of_memory cannot
4101 * do much for this context but let's try it to at least get
4102 * access to memory reserved if the current task is killed (see
4103 * out_of_memory). Once filesystems are ready to handle allocation
4104 * failures more gracefully we should just bail out here.
4107 /* Exhausted what can be done so it's blame time */
4108 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
4109 *did_some_progress
= 1;
4112 * Help non-failing allocations by giving them access to memory
4115 if (gfp_mask
& __GFP_NOFAIL
)
4116 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
4117 ALLOC_NO_WATERMARKS
, ac
);
4120 mutex_unlock(&oom_lock
);
4125 * Maximum number of compaction retries wit a progress before OOM
4126 * killer is consider as the only way to move forward.
4128 #define MAX_COMPACT_RETRIES 16
4130 #ifdef CONFIG_COMPACTION
4131 /* Try memory compaction for high-order allocations before reclaim */
4132 static struct page
*
4133 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4134 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4135 enum compact_priority prio
, enum compact_result
*compact_result
)
4137 struct page
*page
= NULL
;
4138 unsigned long pflags
;
4139 unsigned int noreclaim_flag
;
4144 psi_memstall_enter(&pflags
);
4145 noreclaim_flag
= memalloc_noreclaim_save();
4147 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
4150 memalloc_noreclaim_restore(noreclaim_flag
);
4151 psi_memstall_leave(&pflags
);
4154 * At least in one zone compaction wasn't deferred or skipped, so let's
4155 * count a compaction stall
4157 count_vm_event(COMPACTSTALL
);
4159 /* Prep a captured page if available */
4161 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
4163 /* Try get a page from the freelist if available */
4165 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4168 struct zone
*zone
= page_zone(page
);
4170 zone
->compact_blockskip_flush
= false;
4171 compaction_defer_reset(zone
, order
, true);
4172 count_vm_event(COMPACTSUCCESS
);
4177 * It's bad if compaction run occurs and fails. The most likely reason
4178 * is that pages exist, but not enough to satisfy watermarks.
4180 count_vm_event(COMPACTFAIL
);
4188 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
4189 enum compact_result compact_result
,
4190 enum compact_priority
*compact_priority
,
4191 int *compaction_retries
)
4193 int max_retries
= MAX_COMPACT_RETRIES
;
4196 int retries
= *compaction_retries
;
4197 enum compact_priority priority
= *compact_priority
;
4202 if (compaction_made_progress(compact_result
))
4203 (*compaction_retries
)++;
4206 * compaction considers all the zone as desperately out of memory
4207 * so it doesn't really make much sense to retry except when the
4208 * failure could be caused by insufficient priority
4210 if (compaction_failed(compact_result
))
4211 goto check_priority
;
4214 * compaction was skipped because there are not enough order-0 pages
4215 * to work with, so we retry only if it looks like reclaim can help.
4217 if (compaction_needs_reclaim(compact_result
)) {
4218 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
4223 * make sure the compaction wasn't deferred or didn't bail out early
4224 * due to locks contention before we declare that we should give up.
4225 * But the next retry should use a higher priority if allowed, so
4226 * we don't just keep bailing out endlessly.
4228 if (compaction_withdrawn(compact_result
)) {
4229 goto check_priority
;
4233 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4234 * costly ones because they are de facto nofail and invoke OOM
4235 * killer to move on while costly can fail and users are ready
4236 * to cope with that. 1/4 retries is rather arbitrary but we
4237 * would need much more detailed feedback from compaction to
4238 * make a better decision.
4240 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
4242 if (*compaction_retries
<= max_retries
) {
4248 * Make sure there are attempts at the highest priority if we exhausted
4249 * all retries or failed at the lower priorities.
4252 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
4253 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
4255 if (*compact_priority
> min_priority
) {
4256 (*compact_priority
)--;
4257 *compaction_retries
= 0;
4261 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
4265 static inline struct page
*
4266 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
4267 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4268 enum compact_priority prio
, enum compact_result
*compact_result
)
4270 *compact_result
= COMPACT_SKIPPED
;
4275 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
4276 enum compact_result compact_result
,
4277 enum compact_priority
*compact_priority
,
4278 int *compaction_retries
)
4283 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
4287 * There are setups with compaction disabled which would prefer to loop
4288 * inside the allocator rather than hit the oom killer prematurely.
4289 * Let's give them a good hope and keep retrying while the order-0
4290 * watermarks are OK.
4292 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4293 ac
->highest_zoneidx
, ac
->nodemask
) {
4294 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
4295 ac
->highest_zoneidx
, alloc_flags
))
4300 #endif /* CONFIG_COMPACTION */
4302 #ifdef CONFIG_LOCKDEP
4303 static struct lockdep_map __fs_reclaim_map
=
4304 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
4306 static bool __need_reclaim(gfp_t gfp_mask
)
4308 /* no reclaim without waiting on it */
4309 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
4312 /* this guy won't enter reclaim */
4313 if (current
->flags
& PF_MEMALLOC
)
4316 if (gfp_mask
& __GFP_NOLOCKDEP
)
4322 void __fs_reclaim_acquire(void)
4324 lock_map_acquire(&__fs_reclaim_map
);
4327 void __fs_reclaim_release(void)
4329 lock_map_release(&__fs_reclaim_map
);
4332 void fs_reclaim_acquire(gfp_t gfp_mask
)
4334 gfp_mask
= current_gfp_context(gfp_mask
);
4336 if (__need_reclaim(gfp_mask
)) {
4337 if (gfp_mask
& __GFP_FS
)
4338 __fs_reclaim_acquire();
4340 #ifdef CONFIG_MMU_NOTIFIER
4341 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map
);
4342 lock_map_release(&__mmu_notifier_invalidate_range_start_map
);
4347 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
4349 void fs_reclaim_release(gfp_t gfp_mask
)
4351 gfp_mask
= current_gfp_context(gfp_mask
);
4353 if (__need_reclaim(gfp_mask
)) {
4354 if (gfp_mask
& __GFP_FS
)
4355 __fs_reclaim_release();
4358 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
4361 /* Perform direct synchronous page reclaim */
4362 static unsigned long
4363 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
4364 const struct alloc_context
*ac
)
4366 unsigned int noreclaim_flag
;
4367 unsigned long pflags
, progress
;
4371 /* We now go into synchronous reclaim */
4372 cpuset_memory_pressure_bump();
4373 psi_memstall_enter(&pflags
);
4374 fs_reclaim_acquire(gfp_mask
);
4375 noreclaim_flag
= memalloc_noreclaim_save();
4377 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
4380 memalloc_noreclaim_restore(noreclaim_flag
);
4381 fs_reclaim_release(gfp_mask
);
4382 psi_memstall_leave(&pflags
);
4389 /* The really slow allocator path where we enter direct reclaim */
4390 static inline struct page
*
4391 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
4392 unsigned int alloc_flags
, const struct alloc_context
*ac
,
4393 unsigned long *did_some_progress
)
4395 struct page
*page
= NULL
;
4396 bool drained
= false;
4398 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
4399 if (unlikely(!(*did_some_progress
)))
4403 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4406 * If an allocation failed after direct reclaim, it could be because
4407 * pages are pinned on the per-cpu lists or in high alloc reserves.
4408 * Shrink them and try again
4410 if (!page
&& !drained
) {
4411 unreserve_highatomic_pageblock(ac
, false);
4412 drain_all_pages(NULL
);
4420 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
4421 const struct alloc_context
*ac
)
4425 pg_data_t
*last_pgdat
= NULL
;
4426 enum zone_type highest_zoneidx
= ac
->highest_zoneidx
;
4428 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, highest_zoneidx
,
4430 if (last_pgdat
!= zone
->zone_pgdat
)
4431 wakeup_kswapd(zone
, gfp_mask
, order
, highest_zoneidx
);
4432 last_pgdat
= zone
->zone_pgdat
;
4436 static inline unsigned int
4437 gfp_to_alloc_flags(gfp_t gfp_mask
)
4439 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4442 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4443 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4444 * to save two branches.
4446 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
4447 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
4450 * The caller may dip into page reserves a bit more if the caller
4451 * cannot run direct reclaim, or if the caller has realtime scheduling
4452 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4453 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4455 alloc_flags
|= (__force
int)
4456 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
4458 if (gfp_mask
& __GFP_ATOMIC
) {
4460 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4461 * if it can't schedule.
4463 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
4464 alloc_flags
|= ALLOC_HARDER
;
4466 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4467 * comment for __cpuset_node_allowed().
4469 alloc_flags
&= ~ALLOC_CPUSET
;
4470 } else if (unlikely(rt_task(current
)) && !in_interrupt())
4471 alloc_flags
|= ALLOC_HARDER
;
4473 alloc_flags
= current_alloc_flags(gfp_mask
, alloc_flags
);
4478 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4480 if (!tsk_is_oom_victim(tsk
))
4484 * !MMU doesn't have oom reaper so give access to memory reserves
4485 * only to the thread with TIF_MEMDIE set
4487 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4494 * Distinguish requests which really need access to full memory
4495 * reserves from oom victims which can live with a portion of it
4497 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4499 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4501 if (gfp_mask
& __GFP_MEMALLOC
)
4502 return ALLOC_NO_WATERMARKS
;
4503 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4504 return ALLOC_NO_WATERMARKS
;
4505 if (!in_interrupt()) {
4506 if (current
->flags
& PF_MEMALLOC
)
4507 return ALLOC_NO_WATERMARKS
;
4508 else if (oom_reserves_allowed(current
))
4515 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4517 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4521 * Checks whether it makes sense to retry the reclaim to make a forward progress
4522 * for the given allocation request.
4524 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4525 * without success, or when we couldn't even meet the watermark if we
4526 * reclaimed all remaining pages on the LRU lists.
4528 * Returns true if a retry is viable or false to enter the oom path.
4531 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4532 struct alloc_context
*ac
, int alloc_flags
,
4533 bool did_some_progress
, int *no_progress_loops
)
4540 * Costly allocations might have made a progress but this doesn't mean
4541 * their order will become available due to high fragmentation so
4542 * always increment the no progress counter for them
4544 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4545 *no_progress_loops
= 0;
4547 (*no_progress_loops
)++;
4550 * Make sure we converge to OOM if we cannot make any progress
4551 * several times in the row.
4553 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
4554 /* Before OOM, exhaust highatomic_reserve */
4555 return unreserve_highatomic_pageblock(ac
, true);
4559 * Keep reclaiming pages while there is a chance this will lead
4560 * somewhere. If none of the target zones can satisfy our allocation
4561 * request even if all reclaimable pages are considered then we are
4562 * screwed and have to go OOM.
4564 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4565 ac
->highest_zoneidx
, ac
->nodemask
) {
4566 unsigned long available
;
4567 unsigned long reclaimable
;
4568 unsigned long min_wmark
= min_wmark_pages(zone
);
4571 available
= reclaimable
= zone_reclaimable_pages(zone
);
4572 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4575 * Would the allocation succeed if we reclaimed all
4576 * reclaimable pages?
4578 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4579 ac
->highest_zoneidx
, alloc_flags
, available
);
4580 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4581 available
, min_wmark
, *no_progress_loops
, wmark
);
4584 * If we didn't make any progress and have a lot of
4585 * dirty + writeback pages then we should wait for
4586 * an IO to complete to slow down the reclaim and
4587 * prevent from pre mature OOM
4589 if (!did_some_progress
) {
4590 unsigned long write_pending
;
4592 write_pending
= zone_page_state_snapshot(zone
,
4593 NR_ZONE_WRITE_PENDING
);
4595 if (2 * write_pending
> reclaimable
) {
4596 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
4608 * Memory allocation/reclaim might be called from a WQ context and the
4609 * current implementation of the WQ concurrency control doesn't
4610 * recognize that a particular WQ is congested if the worker thread is
4611 * looping without ever sleeping. Therefore we have to do a short sleep
4612 * here rather than calling cond_resched().
4614 if (current
->flags
& PF_WQ_WORKER
)
4615 schedule_timeout_uninterruptible(1);
4622 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4625 * It's possible that cpuset's mems_allowed and the nodemask from
4626 * mempolicy don't intersect. This should be normally dealt with by
4627 * policy_nodemask(), but it's possible to race with cpuset update in
4628 * such a way the check therein was true, and then it became false
4629 * before we got our cpuset_mems_cookie here.
4630 * This assumes that for all allocations, ac->nodemask can come only
4631 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4632 * when it does not intersect with the cpuset restrictions) or the
4633 * caller can deal with a violated nodemask.
4635 if (cpusets_enabled() && ac
->nodemask
&&
4636 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4637 ac
->nodemask
= NULL
;
4642 * When updating a task's mems_allowed or mempolicy nodemask, it is
4643 * possible to race with parallel threads in such a way that our
4644 * allocation can fail while the mask is being updated. If we are about
4645 * to fail, check if the cpuset changed during allocation and if so,
4648 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4654 static inline struct page
*
4655 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4656 struct alloc_context
*ac
)
4658 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4659 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4660 struct page
*page
= NULL
;
4661 unsigned int alloc_flags
;
4662 unsigned long did_some_progress
;
4663 enum compact_priority compact_priority
;
4664 enum compact_result compact_result
;
4665 int compaction_retries
;
4666 int no_progress_loops
;
4667 unsigned int cpuset_mems_cookie
;
4671 * We also sanity check to catch abuse of atomic reserves being used by
4672 * callers that are not in atomic context.
4674 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
4675 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
4676 gfp_mask
&= ~__GFP_ATOMIC
;
4679 compaction_retries
= 0;
4680 no_progress_loops
= 0;
4681 compact_priority
= DEF_COMPACT_PRIORITY
;
4682 cpuset_mems_cookie
= read_mems_allowed_begin();
4685 * The fast path uses conservative alloc_flags to succeed only until
4686 * kswapd needs to be woken up, and to avoid the cost of setting up
4687 * alloc_flags precisely. So we do that now.
4689 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
4692 * We need to recalculate the starting point for the zonelist iterator
4693 * because we might have used different nodemask in the fast path, or
4694 * there was a cpuset modification and we are retrying - otherwise we
4695 * could end up iterating over non-eligible zones endlessly.
4697 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4698 ac
->highest_zoneidx
, ac
->nodemask
);
4699 if (!ac
->preferred_zoneref
->zone
)
4702 if (alloc_flags
& ALLOC_KSWAPD
)
4703 wake_all_kswapds(order
, gfp_mask
, ac
);
4706 * The adjusted alloc_flags might result in immediate success, so try
4709 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4714 * For costly allocations, try direct compaction first, as it's likely
4715 * that we have enough base pages and don't need to reclaim. For non-
4716 * movable high-order allocations, do that as well, as compaction will
4717 * try prevent permanent fragmentation by migrating from blocks of the
4719 * Don't try this for allocations that are allowed to ignore
4720 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4722 if (can_direct_reclaim
&&
4724 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4725 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4726 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4728 INIT_COMPACT_PRIORITY
,
4734 * Checks for costly allocations with __GFP_NORETRY, which
4735 * includes some THP page fault allocations
4737 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4739 * If allocating entire pageblock(s) and compaction
4740 * failed because all zones are below low watermarks
4741 * or is prohibited because it recently failed at this
4742 * order, fail immediately unless the allocator has
4743 * requested compaction and reclaim retry.
4746 * - potentially very expensive because zones are far
4747 * below their low watermarks or this is part of very
4748 * bursty high order allocations,
4749 * - not guaranteed to help because isolate_freepages()
4750 * may not iterate over freed pages as part of its
4752 * - unlikely to make entire pageblocks free on its
4755 if (compact_result
== COMPACT_SKIPPED
||
4756 compact_result
== COMPACT_DEFERRED
)
4760 * Looks like reclaim/compaction is worth trying, but
4761 * sync compaction could be very expensive, so keep
4762 * using async compaction.
4764 compact_priority
= INIT_COMPACT_PRIORITY
;
4769 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4770 if (alloc_flags
& ALLOC_KSWAPD
)
4771 wake_all_kswapds(order
, gfp_mask
, ac
);
4773 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4775 alloc_flags
= current_alloc_flags(gfp_mask
, reserve_flags
);
4778 * Reset the nodemask and zonelist iterators if memory policies can be
4779 * ignored. These allocations are high priority and system rather than
4782 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4783 ac
->nodemask
= NULL
;
4784 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4785 ac
->highest_zoneidx
, ac
->nodemask
);
4788 /* Attempt with potentially adjusted zonelist and alloc_flags */
4789 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4793 /* Caller is not willing to reclaim, we can't balance anything */
4794 if (!can_direct_reclaim
)
4797 /* Avoid recursion of direct reclaim */
4798 if (current
->flags
& PF_MEMALLOC
)
4801 /* Try direct reclaim and then allocating */
4802 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4803 &did_some_progress
);
4807 /* Try direct compaction and then allocating */
4808 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4809 compact_priority
, &compact_result
);
4813 /* Do not loop if specifically requested */
4814 if (gfp_mask
& __GFP_NORETRY
)
4818 * Do not retry costly high order allocations unless they are
4819 * __GFP_RETRY_MAYFAIL
4821 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4824 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4825 did_some_progress
> 0, &no_progress_loops
))
4829 * It doesn't make any sense to retry for the compaction if the order-0
4830 * reclaim is not able to make any progress because the current
4831 * implementation of the compaction depends on the sufficient amount
4832 * of free memory (see __compaction_suitable)
4834 if (did_some_progress
> 0 &&
4835 should_compact_retry(ac
, order
, alloc_flags
,
4836 compact_result
, &compact_priority
,
4837 &compaction_retries
))
4841 /* Deal with possible cpuset update races before we start OOM killing */
4842 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4845 /* Reclaim has failed us, start killing things */
4846 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4850 /* Avoid allocations with no watermarks from looping endlessly */
4851 if (tsk_is_oom_victim(current
) &&
4852 (alloc_flags
& ALLOC_OOM
||
4853 (gfp_mask
& __GFP_NOMEMALLOC
)))
4856 /* Retry as long as the OOM killer is making progress */
4857 if (did_some_progress
) {
4858 no_progress_loops
= 0;
4863 /* Deal with possible cpuset update races before we fail */
4864 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4868 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4871 if (gfp_mask
& __GFP_NOFAIL
) {
4873 * All existing users of the __GFP_NOFAIL are blockable, so warn
4874 * of any new users that actually require GFP_NOWAIT
4876 if (WARN_ON_ONCE(!can_direct_reclaim
))
4880 * PF_MEMALLOC request from this context is rather bizarre
4881 * because we cannot reclaim anything and only can loop waiting
4882 * for somebody to do a work for us
4884 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4887 * non failing costly orders are a hard requirement which we
4888 * are not prepared for much so let's warn about these users
4889 * so that we can identify them and convert them to something
4892 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4895 * Help non-failing allocations by giving them access to memory
4896 * reserves but do not use ALLOC_NO_WATERMARKS because this
4897 * could deplete whole memory reserves which would just make
4898 * the situation worse
4900 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4908 warn_alloc(gfp_mask
, ac
->nodemask
,
4909 "page allocation failure: order:%u", order
);
4914 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4915 int preferred_nid
, nodemask_t
*nodemask
,
4916 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4917 unsigned int *alloc_flags
)
4919 ac
->highest_zoneidx
= gfp_zone(gfp_mask
);
4920 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4921 ac
->nodemask
= nodemask
;
4922 ac
->migratetype
= gfp_migratetype(gfp_mask
);
4924 if (cpusets_enabled()) {
4925 *alloc_mask
|= __GFP_HARDWALL
;
4927 * When we are in the interrupt context, it is irrelevant
4928 * to the current task context. It means that any node ok.
4930 if (!in_interrupt() && !ac
->nodemask
)
4931 ac
->nodemask
= &cpuset_current_mems_allowed
;
4933 *alloc_flags
|= ALLOC_CPUSET
;
4936 fs_reclaim_acquire(gfp_mask
);
4937 fs_reclaim_release(gfp_mask
);
4939 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4941 if (should_fail_alloc_page(gfp_mask
, order
))
4944 *alloc_flags
= current_alloc_flags(gfp_mask
, *alloc_flags
);
4946 /* Dirty zone balancing only done in the fast path */
4947 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4950 * The preferred zone is used for statistics but crucially it is
4951 * also used as the starting point for the zonelist iterator. It
4952 * may get reset for allocations that ignore memory policies.
4954 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4955 ac
->highest_zoneidx
, ac
->nodemask
);
4961 * This is the 'heart' of the zoned buddy allocator.
4964 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4965 nodemask_t
*nodemask
)
4968 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4969 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4970 struct alloc_context ac
= { };
4973 * There are several places where we assume that the order value is sane
4974 * so bail out early if the request is out of bound.
4976 if (unlikely(order
>= MAX_ORDER
)) {
4977 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
4981 gfp_mask
&= gfp_allowed_mask
;
4982 alloc_mask
= gfp_mask
;
4983 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4987 * Forbid the first pass from falling back to types that fragment
4988 * memory until all local zones are considered.
4990 alloc_flags
|= alloc_flags_nofragment(ac
.preferred_zoneref
->zone
, gfp_mask
);
4992 /* First allocation attempt */
4993 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4998 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4999 * resp. GFP_NOIO which has to be inherited for all allocation requests
5000 * from a particular context which has been marked by
5001 * memalloc_no{fs,io}_{save,restore}.
5003 alloc_mask
= current_gfp_context(gfp_mask
);
5004 ac
.spread_dirty_pages
= false;
5007 * Restore the original nodemask if it was potentially replaced with
5008 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5010 ac
.nodemask
= nodemask
;
5012 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
5015 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
5016 unlikely(__memcg_kmem_charge_page(page
, gfp_mask
, order
) != 0)) {
5017 __free_pages(page
, order
);
5021 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
5025 EXPORT_SYMBOL(__alloc_pages_nodemask
);
5028 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5029 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5030 * you need to access high mem.
5032 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
5036 page
= alloc_pages(gfp_mask
& ~__GFP_HIGHMEM
, order
);
5039 return (unsigned long) page_address(page
);
5041 EXPORT_SYMBOL(__get_free_pages
);
5043 unsigned long get_zeroed_page(gfp_t gfp_mask
)
5045 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
5047 EXPORT_SYMBOL(get_zeroed_page
);
5049 static inline void free_the_page(struct page
*page
, unsigned int order
)
5051 if (order
== 0) /* Via pcp? */
5052 free_unref_page(page
);
5054 __free_pages_ok(page
, order
, FPI_NONE
);
5058 * __free_pages - Free pages allocated with alloc_pages().
5059 * @page: The page pointer returned from alloc_pages().
5060 * @order: The order of the allocation.
5062 * This function can free multi-page allocations that are not compound
5063 * pages. It does not check that the @order passed in matches that of
5064 * the allocation, so it is easy to leak memory. Freeing more memory
5065 * than was allocated will probably emit a warning.
5067 * If the last reference to this page is speculative, it will be released
5068 * by put_page() which only frees the first page of a non-compound
5069 * allocation. To prevent the remaining pages from being leaked, we free
5070 * the subsequent pages here. If you want to use the page's reference
5071 * count to decide when to free the allocation, you should allocate a
5072 * compound page, and use put_page() instead of __free_pages().
5074 * Context: May be called in interrupt context or while holding a normal
5075 * spinlock, but not in NMI context or while holding a raw spinlock.
5077 void __free_pages(struct page
*page
, unsigned int order
)
5079 if (put_page_testzero(page
))
5080 free_the_page(page
, order
);
5081 else if (!PageHead(page
))
5083 free_the_page(page
+ (1 << order
), order
);
5085 EXPORT_SYMBOL(__free_pages
);
5087 void free_pages(unsigned long addr
, unsigned int order
)
5090 VM_BUG_ON(!virt_addr_valid((void *)addr
));
5091 __free_pages(virt_to_page((void *)addr
), order
);
5095 EXPORT_SYMBOL(free_pages
);
5099 * An arbitrary-length arbitrary-offset area of memory which resides
5100 * within a 0 or higher order page. Multiple fragments within that page
5101 * are individually refcounted, in the page's reference counter.
5103 * The page_frag functions below provide a simple allocation framework for
5104 * page fragments. This is used by the network stack and network device
5105 * drivers to provide a backing region of memory for use as either an
5106 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5108 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
5111 struct page
*page
= NULL
;
5112 gfp_t gfp
= gfp_mask
;
5114 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5115 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
5117 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
5118 PAGE_FRAG_CACHE_MAX_ORDER
);
5119 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
5121 if (unlikely(!page
))
5122 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
5124 nc
->va
= page
? page_address(page
) : NULL
;
5129 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
5131 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
5133 if (page_ref_sub_and_test(page
, count
))
5134 free_the_page(page
, compound_order(page
));
5136 EXPORT_SYMBOL(__page_frag_cache_drain
);
5138 void *page_frag_alloc(struct page_frag_cache
*nc
,
5139 unsigned int fragsz
, gfp_t gfp_mask
)
5141 unsigned int size
= PAGE_SIZE
;
5145 if (unlikely(!nc
->va
)) {
5147 page
= __page_frag_cache_refill(nc
, gfp_mask
);
5151 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5152 /* if size can vary use size else just use PAGE_SIZE */
5155 /* Even if we own the page, we do not use atomic_set().
5156 * This would break get_page_unless_zero() users.
5158 page_ref_add(page
, PAGE_FRAG_CACHE_MAX_SIZE
);
5160 /* reset page count bias and offset to start of new frag */
5161 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
5162 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
5166 offset
= nc
->offset
- fragsz
;
5167 if (unlikely(offset
< 0)) {
5168 page
= virt_to_page(nc
->va
);
5170 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
5173 if (unlikely(nc
->pfmemalloc
)) {
5174 free_the_page(page
, compound_order(page
));
5178 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5179 /* if size can vary use size else just use PAGE_SIZE */
5182 /* OK, page count is 0, we can safely set it */
5183 set_page_count(page
, PAGE_FRAG_CACHE_MAX_SIZE
+ 1);
5185 /* reset page count bias and offset to start of new frag */
5186 nc
->pagecnt_bias
= PAGE_FRAG_CACHE_MAX_SIZE
+ 1;
5187 offset
= size
- fragsz
;
5191 nc
->offset
= offset
;
5193 return nc
->va
+ offset
;
5195 EXPORT_SYMBOL(page_frag_alloc
);
5198 * Frees a page fragment allocated out of either a compound or order 0 page.
5200 void page_frag_free(void *addr
)
5202 struct page
*page
= virt_to_head_page(addr
);
5204 if (unlikely(put_page_testzero(page
)))
5205 free_the_page(page
, compound_order(page
));
5207 EXPORT_SYMBOL(page_frag_free
);
5209 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
5213 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
5214 unsigned long used
= addr
+ PAGE_ALIGN(size
);
5216 split_page(virt_to_page((void *)addr
), order
);
5217 while (used
< alloc_end
) {
5222 return (void *)addr
;
5226 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5227 * @size: the number of bytes to allocate
5228 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5230 * This function is similar to alloc_pages(), except that it allocates the
5231 * minimum number of pages to satisfy the request. alloc_pages() can only
5232 * allocate memory in power-of-two pages.
5234 * This function is also limited by MAX_ORDER.
5236 * Memory allocated by this function must be released by free_pages_exact().
5238 * Return: pointer to the allocated area or %NULL in case of error.
5240 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
5242 unsigned int order
= get_order(size
);
5245 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5246 gfp_mask
&= ~__GFP_COMP
;
5248 addr
= __get_free_pages(gfp_mask
, order
);
5249 return make_alloc_exact(addr
, order
, size
);
5251 EXPORT_SYMBOL(alloc_pages_exact
);
5254 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5256 * @nid: the preferred node ID where memory should be allocated
5257 * @size: the number of bytes to allocate
5258 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5260 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5263 * Return: pointer to the allocated area or %NULL in case of error.
5265 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
5267 unsigned int order
= get_order(size
);
5270 if (WARN_ON_ONCE(gfp_mask
& __GFP_COMP
))
5271 gfp_mask
&= ~__GFP_COMP
;
5273 p
= alloc_pages_node(nid
, gfp_mask
, order
);
5276 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
5280 * free_pages_exact - release memory allocated via alloc_pages_exact()
5281 * @virt: the value returned by alloc_pages_exact.
5282 * @size: size of allocation, same value as passed to alloc_pages_exact().
5284 * Release the memory allocated by a previous call to alloc_pages_exact.
5286 void free_pages_exact(void *virt
, size_t size
)
5288 unsigned long addr
= (unsigned long)virt
;
5289 unsigned long end
= addr
+ PAGE_ALIGN(size
);
5291 while (addr
< end
) {
5296 EXPORT_SYMBOL(free_pages_exact
);
5299 * nr_free_zone_pages - count number of pages beyond high watermark
5300 * @offset: The zone index of the highest zone
5302 * nr_free_zone_pages() counts the number of pages which are beyond the
5303 * high watermark within all zones at or below a given zone index. For each
5304 * zone, the number of pages is calculated as:
5306 * nr_free_zone_pages = managed_pages - high_pages
5308 * Return: number of pages beyond high watermark.
5310 static unsigned long nr_free_zone_pages(int offset
)
5315 /* Just pick one node, since fallback list is circular */
5316 unsigned long sum
= 0;
5318 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
5320 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
5321 unsigned long size
= zone_managed_pages(zone
);
5322 unsigned long high
= high_wmark_pages(zone
);
5331 * nr_free_buffer_pages - count number of pages beyond high watermark
5333 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5334 * watermark within ZONE_DMA and ZONE_NORMAL.
5336 * Return: number of pages beyond high watermark within ZONE_DMA and
5339 unsigned long nr_free_buffer_pages(void)
5341 return nr_free_zone_pages(gfp_zone(GFP_USER
));
5343 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5345 static inline void show_node(struct zone
*zone
)
5347 if (IS_ENABLED(CONFIG_NUMA
))
5348 printk("Node %d ", zone_to_nid(zone
));
5351 long si_mem_available(void)
5354 unsigned long pagecache
;
5355 unsigned long wmark_low
= 0;
5356 unsigned long pages
[NR_LRU_LISTS
];
5357 unsigned long reclaimable
;
5361 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
5362 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
5365 wmark_low
+= low_wmark_pages(zone
);
5368 * Estimate the amount of memory available for userspace allocations,
5369 * without causing swapping.
5371 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
5374 * Not all the page cache can be freed, otherwise the system will
5375 * start swapping. Assume at least half of the page cache, or the
5376 * low watermark worth of cache, needs to stay.
5378 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
5379 pagecache
-= min(pagecache
/ 2, wmark_low
);
5380 available
+= pagecache
;
5383 * Part of the reclaimable slab and other kernel memory consists of
5384 * items that are in use, and cannot be freed. Cap this estimate at the
5387 reclaimable
= global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B
) +
5388 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE
);
5389 available
+= reclaimable
- min(reclaimable
/ 2, wmark_low
);
5395 EXPORT_SYMBOL_GPL(si_mem_available
);
5397 void si_meminfo(struct sysinfo
*val
)
5399 val
->totalram
= totalram_pages();
5400 val
->sharedram
= global_node_page_state(NR_SHMEM
);
5401 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
5402 val
->bufferram
= nr_blockdev_pages();
5403 val
->totalhigh
= totalhigh_pages();
5404 val
->freehigh
= nr_free_highpages();
5405 val
->mem_unit
= PAGE_SIZE
;
5408 EXPORT_SYMBOL(si_meminfo
);
5411 void si_meminfo_node(struct sysinfo
*val
, int nid
)
5413 int zone_type
; /* needs to be signed */
5414 unsigned long managed_pages
= 0;
5415 unsigned long managed_highpages
= 0;
5416 unsigned long free_highpages
= 0;
5417 pg_data_t
*pgdat
= NODE_DATA(nid
);
5419 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
5420 managed_pages
+= zone_managed_pages(&pgdat
->node_zones
[zone_type
]);
5421 val
->totalram
= managed_pages
;
5422 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
5423 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
5424 #ifdef CONFIG_HIGHMEM
5425 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
5426 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5428 if (is_highmem(zone
)) {
5429 managed_highpages
+= zone_managed_pages(zone
);
5430 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
5433 val
->totalhigh
= managed_highpages
;
5434 val
->freehigh
= free_highpages
;
5436 val
->totalhigh
= managed_highpages
;
5437 val
->freehigh
= free_highpages
;
5439 val
->mem_unit
= PAGE_SIZE
;
5444 * Determine whether the node should be displayed or not, depending on whether
5445 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5447 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
5449 if (!(flags
& SHOW_MEM_FILTER_NODES
))
5453 * no node mask - aka implicit memory numa policy. Do not bother with
5454 * the synchronization - read_mems_allowed_begin - because we do not
5455 * have to be precise here.
5458 nodemask
= &cpuset_current_mems_allowed
;
5460 return !node_isset(nid
, *nodemask
);
5463 #define K(x) ((x) << (PAGE_SHIFT-10))
5465 static void show_migration_types(unsigned char type
)
5467 static const char types
[MIGRATE_TYPES
] = {
5468 [MIGRATE_UNMOVABLE
] = 'U',
5469 [MIGRATE_MOVABLE
] = 'M',
5470 [MIGRATE_RECLAIMABLE
] = 'E',
5471 [MIGRATE_HIGHATOMIC
] = 'H',
5473 [MIGRATE_CMA
] = 'C',
5475 #ifdef CONFIG_MEMORY_ISOLATION
5476 [MIGRATE_ISOLATE
] = 'I',
5479 char tmp
[MIGRATE_TYPES
+ 1];
5483 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
5484 if (type
& (1 << i
))
5489 printk(KERN_CONT
"(%s) ", tmp
);
5493 * Show free area list (used inside shift_scroll-lock stuff)
5494 * We also calculate the percentage fragmentation. We do this by counting the
5495 * memory on each free list with the exception of the first item on the list.
5498 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5501 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
5503 unsigned long free_pcp
= 0;
5508 for_each_populated_zone(zone
) {
5509 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5512 for_each_online_cpu(cpu
)
5513 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5516 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5517 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5518 " unevictable:%lu dirty:%lu writeback:%lu\n"
5519 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5520 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5521 " free:%lu free_pcp:%lu free_cma:%lu\n",
5522 global_node_page_state(NR_ACTIVE_ANON
),
5523 global_node_page_state(NR_INACTIVE_ANON
),
5524 global_node_page_state(NR_ISOLATED_ANON
),
5525 global_node_page_state(NR_ACTIVE_FILE
),
5526 global_node_page_state(NR_INACTIVE_FILE
),
5527 global_node_page_state(NR_ISOLATED_FILE
),
5528 global_node_page_state(NR_UNEVICTABLE
),
5529 global_node_page_state(NR_FILE_DIRTY
),
5530 global_node_page_state(NR_WRITEBACK
),
5531 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B
),
5532 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B
),
5533 global_node_page_state(NR_FILE_MAPPED
),
5534 global_node_page_state(NR_SHMEM
),
5535 global_node_page_state(NR_PAGETABLE
),
5536 global_zone_page_state(NR_BOUNCE
),
5537 global_zone_page_state(NR_FREE_PAGES
),
5539 global_zone_page_state(NR_FREE_CMA_PAGES
));
5541 for_each_online_pgdat(pgdat
) {
5542 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
5546 " active_anon:%lukB"
5547 " inactive_anon:%lukB"
5548 " active_file:%lukB"
5549 " inactive_file:%lukB"
5550 " unevictable:%lukB"
5551 " isolated(anon):%lukB"
5552 " isolated(file):%lukB"
5557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5559 " shmem_pmdmapped: %lukB"
5562 " writeback_tmp:%lukB"
5563 " kernel_stack:%lukB"
5564 #ifdef CONFIG_SHADOW_CALL_STACK
5565 " shadow_call_stack:%lukB"
5568 " all_unreclaimable? %s"
5571 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
5572 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
5573 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
5574 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
5575 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
5576 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
5577 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
5578 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
5579 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
5580 K(node_page_state(pgdat
, NR_WRITEBACK
)),
5581 K(node_page_state(pgdat
, NR_SHMEM
)),
5582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5583 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
5584 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
5586 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
5588 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
5589 node_page_state(pgdat
, NR_KERNEL_STACK_KB
),
5590 #ifdef CONFIG_SHADOW_CALL_STACK
5591 node_page_state(pgdat
, NR_KERNEL_SCS_KB
),
5593 K(node_page_state(pgdat
, NR_PAGETABLE
)),
5594 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
5598 for_each_populated_zone(zone
) {
5601 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5605 for_each_online_cpu(cpu
)
5606 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
5615 " reserved_highatomic:%luKB"
5616 " active_anon:%lukB"
5617 " inactive_anon:%lukB"
5618 " active_file:%lukB"
5619 " inactive_file:%lukB"
5620 " unevictable:%lukB"
5621 " writepending:%lukB"
5631 K(zone_page_state(zone
, NR_FREE_PAGES
)),
5632 K(min_wmark_pages(zone
)),
5633 K(low_wmark_pages(zone
)),
5634 K(high_wmark_pages(zone
)),
5635 K(zone
->nr_reserved_highatomic
),
5636 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
5637 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
5638 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
5639 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
5640 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
5641 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
5642 K(zone
->present_pages
),
5643 K(zone_managed_pages(zone
)),
5644 K(zone_page_state(zone
, NR_MLOCK
)),
5645 K(zone_page_state(zone
, NR_BOUNCE
)),
5647 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
5648 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
5649 printk("lowmem_reserve[]:");
5650 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
5651 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
5652 printk(KERN_CONT
"\n");
5655 for_each_populated_zone(zone
) {
5657 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
5658 unsigned char types
[MAX_ORDER
];
5660 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
5663 printk(KERN_CONT
"%s: ", zone
->name
);
5665 spin_lock_irqsave(&zone
->lock
, flags
);
5666 for (order
= 0; order
< MAX_ORDER
; order
++) {
5667 struct free_area
*area
= &zone
->free_area
[order
];
5670 nr
[order
] = area
->nr_free
;
5671 total
+= nr
[order
] << order
;
5674 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
5675 if (!free_area_empty(area
, type
))
5676 types
[order
] |= 1 << type
;
5679 spin_unlock_irqrestore(&zone
->lock
, flags
);
5680 for (order
= 0; order
< MAX_ORDER
; order
++) {
5681 printk(KERN_CONT
"%lu*%lukB ",
5682 nr
[order
], K(1UL) << order
);
5684 show_migration_types(types
[order
]);
5686 printk(KERN_CONT
"= %lukB\n", K(total
));
5689 hugetlb_show_meminfo();
5691 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
5693 show_swap_cache_info();
5696 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5698 zoneref
->zone
= zone
;
5699 zoneref
->zone_idx
= zone_idx(zone
);
5703 * Builds allocation fallback zone lists.
5705 * Add all populated zones of a node to the zonelist.
5707 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5710 enum zone_type zone_type
= MAX_NR_ZONES
;
5715 zone
= pgdat
->node_zones
+ zone_type
;
5716 if (managed_zone(zone
)) {
5717 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5718 check_highest_zone(zone_type
);
5720 } while (zone_type
);
5727 static int __parse_numa_zonelist_order(char *s
)
5730 * We used to support different zonlists modes but they turned
5731 * out to be just not useful. Let's keep the warning in place
5732 * if somebody still use the cmd line parameter so that we do
5733 * not fail it silently
5735 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5736 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5742 char numa_zonelist_order
[] = "Node";
5745 * sysctl handler for numa_zonelist_order
5747 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
5748 void *buffer
, size_t *length
, loff_t
*ppos
)
5751 return __parse_numa_zonelist_order(buffer
);
5752 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5756 #define MAX_NODE_LOAD (nr_online_nodes)
5757 static int node_load
[MAX_NUMNODES
];
5760 * find_next_best_node - find the next node that should appear in a given node's fallback list
5761 * @node: node whose fallback list we're appending
5762 * @used_node_mask: nodemask_t of already used nodes
5764 * We use a number of factors to determine which is the next node that should
5765 * appear on a given node's fallback list. The node should not have appeared
5766 * already in @node's fallback list, and it should be the next closest node
5767 * according to the distance array (which contains arbitrary distance values
5768 * from each node to each node in the system), and should also prefer nodes
5769 * with no CPUs, since presumably they'll have very little allocation pressure
5770 * on them otherwise.
5772 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5774 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5777 int min_val
= INT_MAX
;
5778 int best_node
= NUMA_NO_NODE
;
5780 /* Use the local node if we haven't already */
5781 if (!node_isset(node
, *used_node_mask
)) {
5782 node_set(node
, *used_node_mask
);
5786 for_each_node_state(n
, N_MEMORY
) {
5788 /* Don't want a node to appear more than once */
5789 if (node_isset(n
, *used_node_mask
))
5792 /* Use the distance array to find the distance */
5793 val
= node_distance(node
, n
);
5795 /* Penalize nodes under us ("prefer the next node") */
5798 /* Give preference to headless and unused nodes */
5799 if (!cpumask_empty(cpumask_of_node(n
)))
5800 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5802 /* Slight preference for less loaded node */
5803 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5804 val
+= node_load
[n
];
5806 if (val
< min_val
) {
5813 node_set(best_node
, *used_node_mask
);
5820 * Build zonelists ordered by node and zones within node.
5821 * This results in maximum locality--normal zone overflows into local
5822 * DMA zone, if any--but risks exhausting DMA zone.
5824 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5827 struct zoneref
*zonerefs
;
5830 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5832 for (i
= 0; i
< nr_nodes
; i
++) {
5835 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5837 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5838 zonerefs
+= nr_zones
;
5840 zonerefs
->zone
= NULL
;
5841 zonerefs
->zone_idx
= 0;
5845 * Build gfp_thisnode zonelists
5847 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5849 struct zoneref
*zonerefs
;
5852 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5853 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5854 zonerefs
+= nr_zones
;
5855 zonerefs
->zone
= NULL
;
5856 zonerefs
->zone_idx
= 0;
5860 * Build zonelists ordered by zone and nodes within zones.
5861 * This results in conserving DMA zone[s] until all Normal memory is
5862 * exhausted, but results in overflowing to remote node while memory
5863 * may still exist in local DMA zone.
5866 static void build_zonelists(pg_data_t
*pgdat
)
5868 static int node_order
[MAX_NUMNODES
];
5869 int node
, load
, nr_nodes
= 0;
5870 nodemask_t used_mask
= NODE_MASK_NONE
;
5871 int local_node
, prev_node
;
5873 /* NUMA-aware ordering of nodes */
5874 local_node
= pgdat
->node_id
;
5875 load
= nr_online_nodes
;
5876 prev_node
= local_node
;
5878 memset(node_order
, 0, sizeof(node_order
));
5879 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5881 * We don't want to pressure a particular node.
5882 * So adding penalty to the first node in same
5883 * distance group to make it round-robin.
5885 if (node_distance(local_node
, node
) !=
5886 node_distance(local_node
, prev_node
))
5887 node_load
[node
] = load
;
5889 node_order
[nr_nodes
++] = node
;
5894 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5895 build_thisnode_zonelists(pgdat
);
5898 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5900 * Return node id of node used for "local" allocations.
5901 * I.e., first node id of first zone in arg node's generic zonelist.
5902 * Used for initializing percpu 'numa_mem', which is used primarily
5903 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5905 int local_memory_node(int node
)
5909 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5910 gfp_zone(GFP_KERNEL
),
5912 return zone_to_nid(z
->zone
);
5916 static void setup_min_unmapped_ratio(void);
5917 static void setup_min_slab_ratio(void);
5918 #else /* CONFIG_NUMA */
5920 static void build_zonelists(pg_data_t
*pgdat
)
5922 int node
, local_node
;
5923 struct zoneref
*zonerefs
;
5926 local_node
= pgdat
->node_id
;
5928 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5929 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5930 zonerefs
+= nr_zones
;
5933 * Now we build the zonelist so that it contains the zones
5934 * of all the other nodes.
5935 * We don't want to pressure a particular node, so when
5936 * building the zones for node N, we make sure that the
5937 * zones coming right after the local ones are those from
5938 * node N+1 (modulo N)
5940 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5941 if (!node_online(node
))
5943 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5944 zonerefs
+= nr_zones
;
5946 for (node
= 0; node
< local_node
; node
++) {
5947 if (!node_online(node
))
5949 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5950 zonerefs
+= nr_zones
;
5953 zonerefs
->zone
= NULL
;
5954 zonerefs
->zone_idx
= 0;
5957 #endif /* CONFIG_NUMA */
5960 * Boot pageset table. One per cpu which is going to be used for all
5961 * zones and all nodes. The parameters will be set in such a way
5962 * that an item put on a list will immediately be handed over to
5963 * the buddy list. This is safe since pageset manipulation is done
5964 * with interrupts disabled.
5966 * The boot_pagesets must be kept even after bootup is complete for
5967 * unused processors and/or zones. They do play a role for bootstrapping
5968 * hotplugged processors.
5970 * zoneinfo_show() and maybe other functions do
5971 * not check if the processor is online before following the pageset pointer.
5972 * Other parts of the kernel may not check if the zone is available.
5974 static void pageset_init(struct per_cpu_pageset
*p
);
5975 /* These effectively disable the pcplists in the boot pageset completely */
5976 #define BOOT_PAGESET_HIGH 0
5977 #define BOOT_PAGESET_BATCH 1
5978 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5979 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5981 static void __build_all_zonelists(void *data
)
5984 int __maybe_unused cpu
;
5985 pg_data_t
*self
= data
;
5986 static DEFINE_SPINLOCK(lock
);
5991 memset(node_load
, 0, sizeof(node_load
));
5995 * This node is hotadded and no memory is yet present. So just
5996 * building zonelists is fine - no need to touch other nodes.
5998 if (self
&& !node_online(self
->node_id
)) {
5999 build_zonelists(self
);
6001 for_each_online_node(nid
) {
6002 pg_data_t
*pgdat
= NODE_DATA(nid
);
6004 build_zonelists(pgdat
);
6007 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6009 * We now know the "local memory node" for each node--
6010 * i.e., the node of the first zone in the generic zonelist.
6011 * Set up numa_mem percpu variable for on-line cpus. During
6012 * boot, only the boot cpu should be on-line; we'll init the
6013 * secondary cpus' numa_mem as they come on-line. During
6014 * node/memory hotplug, we'll fixup all on-line cpus.
6016 for_each_online_cpu(cpu
)
6017 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
6024 static noinline
void __init
6025 build_all_zonelists_init(void)
6029 __build_all_zonelists(NULL
);
6032 * Initialize the boot_pagesets that are going to be used
6033 * for bootstrapping processors. The real pagesets for
6034 * each zone will be allocated later when the per cpu
6035 * allocator is available.
6037 * boot_pagesets are used also for bootstrapping offline
6038 * cpus if the system is already booted because the pagesets
6039 * are needed to initialize allocators on a specific cpu too.
6040 * F.e. the percpu allocator needs the page allocator which
6041 * needs the percpu allocator in order to allocate its pagesets
6042 * (a chicken-egg dilemma).
6044 for_each_possible_cpu(cpu
)
6045 pageset_init(&per_cpu(boot_pageset
, cpu
));
6047 mminit_verify_zonelist();
6048 cpuset_init_current_mems_allowed();
6052 * unless system_state == SYSTEM_BOOTING.
6054 * __ref due to call of __init annotated helper build_all_zonelists_init
6055 * [protected by SYSTEM_BOOTING].
6057 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
6059 unsigned long vm_total_pages
;
6061 if (system_state
== SYSTEM_BOOTING
) {
6062 build_all_zonelists_init();
6064 __build_all_zonelists(pgdat
);
6065 /* cpuset refresh routine should be here */
6067 /* Get the number of free pages beyond high watermark in all zones. */
6068 vm_total_pages
= nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
6070 * Disable grouping by mobility if the number of pages in the
6071 * system is too low to allow the mechanism to work. It would be
6072 * more accurate, but expensive to check per-zone. This check is
6073 * made on memory-hotadd so a system can start with mobility
6074 * disabled and enable it later
6076 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
6077 page_group_by_mobility_disabled
= 1;
6079 page_group_by_mobility_disabled
= 0;
6081 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6083 page_group_by_mobility_disabled
? "off" : "on",
6086 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
6090 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6091 static bool __meminit
6092 overlap_memmap_init(unsigned long zone
, unsigned long *pfn
)
6094 static struct memblock_region
*r
;
6096 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
6097 if (!r
|| *pfn
>= memblock_region_memory_end_pfn(r
)) {
6098 for_each_mem_region(r
) {
6099 if (*pfn
< memblock_region_memory_end_pfn(r
))
6103 if (*pfn
>= memblock_region_memory_base_pfn(r
) &&
6104 memblock_is_mirror(r
)) {
6105 *pfn
= memblock_region_memory_end_pfn(r
);
6113 * Initially all pages are reserved - free ones are freed
6114 * up by memblock_free_all() once the early boot process is
6115 * done. Non-atomic initialization, single-pass.
6117 * All aligned pageblocks are initialized to the specified migratetype
6118 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6119 * zone stats (e.g., nr_isolate_pageblock) are touched.
6121 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
6122 unsigned long start_pfn
, unsigned long zone_end_pfn
,
6123 enum meminit_context context
,
6124 struct vmem_altmap
*altmap
, int migratetype
)
6126 unsigned long pfn
, end_pfn
= start_pfn
+ size
;
6129 if (highest_memmap_pfn
< end_pfn
- 1)
6130 highest_memmap_pfn
= end_pfn
- 1;
6132 #ifdef CONFIG_ZONE_DEVICE
6134 * Honor reservation requested by the driver for this ZONE_DEVICE
6135 * memory. We limit the total number of pages to initialize to just
6136 * those that might contain the memory mapping. We will defer the
6137 * ZONE_DEVICE page initialization until after we have released
6140 if (zone
== ZONE_DEVICE
) {
6144 if (start_pfn
== altmap
->base_pfn
)
6145 start_pfn
+= altmap
->reserve
;
6146 end_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6150 for (pfn
= start_pfn
; pfn
< end_pfn
; ) {
6152 * There can be holes in boot-time mem_map[]s handed to this
6153 * function. They do not exist on hotplugged memory.
6155 if (context
== MEMINIT_EARLY
) {
6156 if (overlap_memmap_init(zone
, &pfn
))
6158 if (defer_init(nid
, pfn
, zone_end_pfn
))
6162 page
= pfn_to_page(pfn
);
6163 __init_single_page(page
, pfn
, zone
, nid
);
6164 if (context
== MEMINIT_HOTPLUG
)
6165 __SetPageReserved(page
);
6168 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6169 * such that unmovable allocations won't be scattered all
6170 * over the place during system boot.
6172 if (IS_ALIGNED(pfn
, pageblock_nr_pages
)) {
6173 set_pageblock_migratetype(page
, migratetype
);
6180 #ifdef CONFIG_ZONE_DEVICE
6181 void __ref
memmap_init_zone_device(struct zone
*zone
,
6182 unsigned long start_pfn
,
6183 unsigned long nr_pages
,
6184 struct dev_pagemap
*pgmap
)
6186 unsigned long pfn
, end_pfn
= start_pfn
+ nr_pages
;
6187 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6188 struct vmem_altmap
*altmap
= pgmap_altmap(pgmap
);
6189 unsigned long zone_idx
= zone_idx(zone
);
6190 unsigned long start
= jiffies
;
6191 int nid
= pgdat
->node_id
;
6193 if (WARN_ON_ONCE(!pgmap
|| zone_idx(zone
) != ZONE_DEVICE
))
6197 * The call to memmap_init_zone should have already taken care
6198 * of the pages reserved for the memmap, so we can just jump to
6199 * the end of that region and start processing the device pages.
6202 start_pfn
= altmap
->base_pfn
+ vmem_altmap_offset(altmap
);
6203 nr_pages
= end_pfn
- start_pfn
;
6206 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
6207 struct page
*page
= pfn_to_page(pfn
);
6209 __init_single_page(page
, pfn
, zone_idx
, nid
);
6212 * Mark page reserved as it will need to wait for onlining
6213 * phase for it to be fully associated with a zone.
6215 * We can use the non-atomic __set_bit operation for setting
6216 * the flag as we are still initializing the pages.
6218 __SetPageReserved(page
);
6221 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6222 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6223 * ever freed or placed on a driver-private list.
6225 page
->pgmap
= pgmap
;
6226 page
->zone_device_data
= NULL
;
6229 * Mark the block movable so that blocks are reserved for
6230 * movable at startup. This will force kernel allocations
6231 * to reserve their blocks rather than leaking throughout
6232 * the address space during boot when many long-lived
6233 * kernel allocations are made.
6235 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6236 * because this is done early in section_activate()
6238 if (IS_ALIGNED(pfn
, pageblock_nr_pages
)) {
6239 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
6244 pr_info("%s initialised %lu pages in %ums\n", __func__
,
6245 nr_pages
, jiffies_to_msecs(jiffies
- start
));
6249 static void __meminit
zone_init_free_lists(struct zone
*zone
)
6251 unsigned int order
, t
;
6252 for_each_migratetype_order(order
, t
) {
6253 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
6254 zone
->free_area
[order
].nr_free
= 0;
6258 void __meminit __weak
memmap_init(unsigned long size
, int nid
,
6260 unsigned long range_start_pfn
)
6262 unsigned long start_pfn
, end_pfn
;
6263 unsigned long range_end_pfn
= range_start_pfn
+ size
;
6266 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6267 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6268 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6270 if (end_pfn
> start_pfn
) {
6271 size
= end_pfn
- start_pfn
;
6272 memmap_init_zone(size
, nid
, zone
, start_pfn
, range_end_pfn
,
6273 MEMINIT_EARLY
, NULL
, MIGRATE_MOVABLE
);
6278 static int zone_batchsize(struct zone
*zone
)
6284 * The per-cpu-pages pools are set to around 1000th of the
6287 batch
= zone_managed_pages(zone
) / 1024;
6288 /* But no more than a meg. */
6289 if (batch
* PAGE_SIZE
> 1024 * 1024)
6290 batch
= (1024 * 1024) / PAGE_SIZE
;
6291 batch
/= 4; /* We effectively *= 4 below */
6296 * Clamp the batch to a 2^n - 1 value. Having a power
6297 * of 2 value was found to be more likely to have
6298 * suboptimal cache aliasing properties in some cases.
6300 * For example if 2 tasks are alternately allocating
6301 * batches of pages, one task can end up with a lot
6302 * of pages of one half of the possible page colors
6303 * and the other with pages of the other colors.
6305 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
6310 /* The deferral and batching of frees should be suppressed under NOMMU
6313 * The problem is that NOMMU needs to be able to allocate large chunks
6314 * of contiguous memory as there's no hardware page translation to
6315 * assemble apparent contiguous memory from discontiguous pages.
6317 * Queueing large contiguous runs of pages for batching, however,
6318 * causes the pages to actually be freed in smaller chunks. As there
6319 * can be a significant delay between the individual batches being
6320 * recycled, this leads to the once large chunks of space being
6321 * fragmented and becoming unavailable for high-order allocations.
6328 * pcp->high and pcp->batch values are related and generally batch is lower
6329 * than high. They are also related to pcp->count such that count is lower
6330 * than high, and as soon as it reaches high, the pcplist is flushed.
6332 * However, guaranteeing these relations at all times would require e.g. write
6333 * barriers here but also careful usage of read barriers at the read side, and
6334 * thus be prone to error and bad for performance. Thus the update only prevents
6335 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6336 * can cope with those fields changing asynchronously, and fully trust only the
6337 * pcp->count field on the local CPU with interrupts disabled.
6339 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6340 * outside of boot time (or some other assurance that no concurrent updaters
6343 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
6344 unsigned long batch
)
6346 WRITE_ONCE(pcp
->batch
, batch
);
6347 WRITE_ONCE(pcp
->high
, high
);
6350 static void pageset_init(struct per_cpu_pageset
*p
)
6352 struct per_cpu_pages
*pcp
;
6355 memset(p
, 0, sizeof(*p
));
6358 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
6359 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
6362 * Set batch and high values safe for a boot pageset. A true percpu
6363 * pageset's initialization will update them subsequently. Here we don't
6364 * need to be as careful as pageset_update() as nobody can access the
6367 pcp
->high
= BOOT_PAGESET_HIGH
;
6368 pcp
->batch
= BOOT_PAGESET_BATCH
;
6371 static void __zone_set_pageset_high_and_batch(struct zone
*zone
, unsigned long high
,
6372 unsigned long batch
)
6374 struct per_cpu_pageset
*p
;
6377 for_each_possible_cpu(cpu
) {
6378 p
= per_cpu_ptr(zone
->pageset
, cpu
);
6379 pageset_update(&p
->pcp
, high
, batch
);
6384 * Calculate and set new high and batch values for all per-cpu pagesets of a
6385 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6387 static void zone_set_pageset_high_and_batch(struct zone
*zone
)
6389 unsigned long new_high
, new_batch
;
6391 if (percpu_pagelist_fraction
) {
6392 new_high
= zone_managed_pages(zone
) / percpu_pagelist_fraction
;
6393 new_batch
= max(1UL, new_high
/ 4);
6394 if ((new_high
/ 4) > (PAGE_SHIFT
* 8))
6395 new_batch
= PAGE_SHIFT
* 8;
6397 new_batch
= zone_batchsize(zone
);
6398 new_high
= 6 * new_batch
;
6399 new_batch
= max(1UL, 1 * new_batch
);
6402 if (zone
->pageset_high
== new_high
&&
6403 zone
->pageset_batch
== new_batch
)
6406 zone
->pageset_high
= new_high
;
6407 zone
->pageset_batch
= new_batch
;
6409 __zone_set_pageset_high_and_batch(zone
, new_high
, new_batch
);
6412 void __meminit
setup_zone_pageset(struct zone
*zone
)
6414 struct per_cpu_pageset
*p
;
6417 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
6418 for_each_possible_cpu(cpu
) {
6419 p
= per_cpu_ptr(zone
->pageset
, cpu
);
6423 zone_set_pageset_high_and_batch(zone
);
6427 * Allocate per cpu pagesets and initialize them.
6428 * Before this call only boot pagesets were available.
6430 void __init
setup_per_cpu_pageset(void)
6432 struct pglist_data
*pgdat
;
6434 int __maybe_unused cpu
;
6436 for_each_populated_zone(zone
)
6437 setup_zone_pageset(zone
);
6441 * Unpopulated zones continue using the boot pagesets.
6442 * The numa stats for these pagesets need to be reset.
6443 * Otherwise, they will end up skewing the stats of
6444 * the nodes these zones are associated with.
6446 for_each_possible_cpu(cpu
) {
6447 struct per_cpu_pageset
*pcp
= &per_cpu(boot_pageset
, cpu
);
6448 memset(pcp
->vm_numa_stat_diff
, 0,
6449 sizeof(pcp
->vm_numa_stat_diff
));
6453 for_each_online_pgdat(pgdat
)
6454 pgdat
->per_cpu_nodestats
=
6455 alloc_percpu(struct per_cpu_nodestat
);
6458 static __meminit
void zone_pcp_init(struct zone
*zone
)
6461 * per cpu subsystem is not up at this point. The following code
6462 * relies on the ability of the linker to provide the
6463 * offset of a (static) per cpu variable into the per cpu area.
6465 zone
->pageset
= &boot_pageset
;
6466 zone
->pageset_high
= BOOT_PAGESET_HIGH
;
6467 zone
->pageset_batch
= BOOT_PAGESET_BATCH
;
6469 if (populated_zone(zone
))
6470 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
6471 zone
->name
, zone
->present_pages
,
6472 zone_batchsize(zone
));
6475 void __meminit
init_currently_empty_zone(struct zone
*zone
,
6476 unsigned long zone_start_pfn
,
6479 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
6480 int zone_idx
= zone_idx(zone
) + 1;
6482 if (zone_idx
> pgdat
->nr_zones
)
6483 pgdat
->nr_zones
= zone_idx
;
6485 zone
->zone_start_pfn
= zone_start_pfn
;
6487 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
6488 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6490 (unsigned long)zone_idx(zone
),
6491 zone_start_pfn
, (zone_start_pfn
+ size
));
6493 zone_init_free_lists(zone
);
6494 zone
->initialized
= 1;
6498 * get_pfn_range_for_nid - Return the start and end page frames for a node
6499 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6500 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6501 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6503 * It returns the start and end page frame of a node based on information
6504 * provided by memblock_set_node(). If called for a node
6505 * with no available memory, a warning is printed and the start and end
6508 void __init
get_pfn_range_for_nid(unsigned int nid
,
6509 unsigned long *start_pfn
, unsigned long *end_pfn
)
6511 unsigned long this_start_pfn
, this_end_pfn
;
6517 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
6518 *start_pfn
= min(*start_pfn
, this_start_pfn
);
6519 *end_pfn
= max(*end_pfn
, this_end_pfn
);
6522 if (*start_pfn
== -1UL)
6527 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6528 * assumption is made that zones within a node are ordered in monotonic
6529 * increasing memory addresses so that the "highest" populated zone is used
6531 static void __init
find_usable_zone_for_movable(void)
6534 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
6535 if (zone_index
== ZONE_MOVABLE
)
6538 if (arch_zone_highest_possible_pfn
[zone_index
] >
6539 arch_zone_lowest_possible_pfn
[zone_index
])
6543 VM_BUG_ON(zone_index
== -1);
6544 movable_zone
= zone_index
;
6548 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6549 * because it is sized independent of architecture. Unlike the other zones,
6550 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6551 * in each node depending on the size of each node and how evenly kernelcore
6552 * is distributed. This helper function adjusts the zone ranges
6553 * provided by the architecture for a given node by using the end of the
6554 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6555 * zones within a node are in order of monotonic increases memory addresses
6557 static void __init
adjust_zone_range_for_zone_movable(int nid
,
6558 unsigned long zone_type
,
6559 unsigned long node_start_pfn
,
6560 unsigned long node_end_pfn
,
6561 unsigned long *zone_start_pfn
,
6562 unsigned long *zone_end_pfn
)
6564 /* Only adjust if ZONE_MOVABLE is on this node */
6565 if (zone_movable_pfn
[nid
]) {
6566 /* Size ZONE_MOVABLE */
6567 if (zone_type
== ZONE_MOVABLE
) {
6568 *zone_start_pfn
= zone_movable_pfn
[nid
];
6569 *zone_end_pfn
= min(node_end_pfn
,
6570 arch_zone_highest_possible_pfn
[movable_zone
]);
6572 /* Adjust for ZONE_MOVABLE starting within this range */
6573 } else if (!mirrored_kernelcore
&&
6574 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
6575 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
6576 *zone_end_pfn
= zone_movable_pfn
[nid
];
6578 /* Check if this whole range is within ZONE_MOVABLE */
6579 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
6580 *zone_start_pfn
= *zone_end_pfn
;
6585 * Return the number of pages a zone spans in a node, including holes
6586 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6588 static unsigned long __init
zone_spanned_pages_in_node(int nid
,
6589 unsigned long zone_type
,
6590 unsigned long node_start_pfn
,
6591 unsigned long node_end_pfn
,
6592 unsigned long *zone_start_pfn
,
6593 unsigned long *zone_end_pfn
)
6595 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6596 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6597 /* When hotadd a new node from cpu_up(), the node should be empty */
6598 if (!node_start_pfn
&& !node_end_pfn
)
6601 /* Get the start and end of the zone */
6602 *zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6603 *zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6604 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6605 node_start_pfn
, node_end_pfn
,
6606 zone_start_pfn
, zone_end_pfn
);
6608 /* Check that this node has pages within the zone's required range */
6609 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
6612 /* Move the zone boundaries inside the node if necessary */
6613 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
6614 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
6616 /* Return the spanned pages */
6617 return *zone_end_pfn
- *zone_start_pfn
;
6621 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6622 * then all holes in the requested range will be accounted for.
6624 unsigned long __init
__absent_pages_in_range(int nid
,
6625 unsigned long range_start_pfn
,
6626 unsigned long range_end_pfn
)
6628 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
6629 unsigned long start_pfn
, end_pfn
;
6632 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6633 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
6634 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
6635 nr_absent
-= end_pfn
- start_pfn
;
6641 * absent_pages_in_range - Return number of page frames in holes within a range
6642 * @start_pfn: The start PFN to start searching for holes
6643 * @end_pfn: The end PFN to stop searching for holes
6645 * Return: the number of pages frames in memory holes within a range.
6647 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
6648 unsigned long end_pfn
)
6650 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
6653 /* Return the number of page frames in holes in a zone on a node */
6654 static unsigned long __init
zone_absent_pages_in_node(int nid
,
6655 unsigned long zone_type
,
6656 unsigned long node_start_pfn
,
6657 unsigned long node_end_pfn
)
6659 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
6660 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
6661 unsigned long zone_start_pfn
, zone_end_pfn
;
6662 unsigned long nr_absent
;
6664 /* When hotadd a new node from cpu_up(), the node should be empty */
6665 if (!node_start_pfn
&& !node_end_pfn
)
6668 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
6669 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
6671 adjust_zone_range_for_zone_movable(nid
, zone_type
,
6672 node_start_pfn
, node_end_pfn
,
6673 &zone_start_pfn
, &zone_end_pfn
);
6674 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
6677 * ZONE_MOVABLE handling.
6678 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6681 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
6682 unsigned long start_pfn
, end_pfn
;
6683 struct memblock_region
*r
;
6685 for_each_mem_region(r
) {
6686 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
6687 zone_start_pfn
, zone_end_pfn
);
6688 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
6689 zone_start_pfn
, zone_end_pfn
);
6691 if (zone_type
== ZONE_MOVABLE
&&
6692 memblock_is_mirror(r
))
6693 nr_absent
+= end_pfn
- start_pfn
;
6695 if (zone_type
== ZONE_NORMAL
&&
6696 !memblock_is_mirror(r
))
6697 nr_absent
+= end_pfn
- start_pfn
;
6704 static void __init
calculate_node_totalpages(struct pglist_data
*pgdat
,
6705 unsigned long node_start_pfn
,
6706 unsigned long node_end_pfn
)
6708 unsigned long realtotalpages
= 0, totalpages
= 0;
6711 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6712 struct zone
*zone
= pgdat
->node_zones
+ i
;
6713 unsigned long zone_start_pfn
, zone_end_pfn
;
6714 unsigned long spanned
, absent
;
6715 unsigned long size
, real_size
;
6717 spanned
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
6722 absent
= zone_absent_pages_in_node(pgdat
->node_id
, i
,
6727 real_size
= size
- absent
;
6730 zone
->zone_start_pfn
= zone_start_pfn
;
6732 zone
->zone_start_pfn
= 0;
6733 zone
->spanned_pages
= size
;
6734 zone
->present_pages
= real_size
;
6737 realtotalpages
+= real_size
;
6740 pgdat
->node_spanned_pages
= totalpages
;
6741 pgdat
->node_present_pages
= realtotalpages
;
6742 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
6746 #ifndef CONFIG_SPARSEMEM
6748 * Calculate the size of the zone->blockflags rounded to an unsigned long
6749 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6750 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6751 * round what is now in bits to nearest long in bits, then return it in
6754 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
6756 unsigned long usemapsize
;
6758 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
6759 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
6760 usemapsize
= usemapsize
>> pageblock_order
;
6761 usemapsize
*= NR_PAGEBLOCK_BITS
;
6762 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
6764 return usemapsize
/ 8;
6767 static void __ref
setup_usemap(struct pglist_data
*pgdat
,
6769 unsigned long zone_start_pfn
,
6770 unsigned long zonesize
)
6772 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6773 zone
->pageblock_flags
= NULL
;
6775 zone
->pageblock_flags
=
6776 memblock_alloc_node(usemapsize
, SMP_CACHE_BYTES
,
6778 if (!zone
->pageblock_flags
)
6779 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6780 usemapsize
, zone
->name
, pgdat
->node_id
);
6784 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6785 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6786 #endif /* CONFIG_SPARSEMEM */
6788 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6790 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6791 void __init
set_pageblock_order(void)
6795 /* Check that pageblock_nr_pages has not already been setup */
6796 if (pageblock_order
)
6799 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6800 order
= HUGETLB_PAGE_ORDER
;
6802 order
= MAX_ORDER
- 1;
6805 * Assume the largest contiguous order of interest is a huge page.
6806 * This value may be variable depending on boot parameters on IA64 and
6809 pageblock_order
= order
;
6811 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6814 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6815 * is unused as pageblock_order is set at compile-time. See
6816 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6819 void __init
set_pageblock_order(void)
6823 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6825 static unsigned long __init
calc_memmap_size(unsigned long spanned_pages
,
6826 unsigned long present_pages
)
6828 unsigned long pages
= spanned_pages
;
6831 * Provide a more accurate estimation if there are holes within
6832 * the zone and SPARSEMEM is in use. If there are holes within the
6833 * zone, each populated memory region may cost us one or two extra
6834 * memmap pages due to alignment because memmap pages for each
6835 * populated regions may not be naturally aligned on page boundary.
6836 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6838 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6839 IS_ENABLED(CONFIG_SPARSEMEM
))
6840 pages
= present_pages
;
6842 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6846 static void pgdat_init_split_queue(struct pglist_data
*pgdat
)
6848 struct deferred_split
*ds_queue
= &pgdat
->deferred_split_queue
;
6850 spin_lock_init(&ds_queue
->split_queue_lock
);
6851 INIT_LIST_HEAD(&ds_queue
->split_queue
);
6852 ds_queue
->split_queue_len
= 0;
6855 static void pgdat_init_split_queue(struct pglist_data
*pgdat
) {}
6858 #ifdef CONFIG_COMPACTION
6859 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
)
6861 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6864 static void pgdat_init_kcompactd(struct pglist_data
*pgdat
) {}
6867 static void __meminit
pgdat_init_internals(struct pglist_data
*pgdat
)
6869 pgdat_resize_init(pgdat
);
6871 pgdat_init_split_queue(pgdat
);
6872 pgdat_init_kcompactd(pgdat
);
6874 init_waitqueue_head(&pgdat
->kswapd_wait
);
6875 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6877 pgdat_page_ext_init(pgdat
);
6878 lruvec_init(&pgdat
->__lruvec
);
6881 static void __meminit
zone_init_internals(struct zone
*zone
, enum zone_type idx
, int nid
,
6882 unsigned long remaining_pages
)
6884 atomic_long_set(&zone
->managed_pages
, remaining_pages
);
6885 zone_set_nid(zone
, nid
);
6886 zone
->name
= zone_names
[idx
];
6887 zone
->zone_pgdat
= NODE_DATA(nid
);
6888 spin_lock_init(&zone
->lock
);
6889 zone_seqlock_init(zone
);
6890 zone_pcp_init(zone
);
6894 * Set up the zone data structures
6895 * - init pgdat internals
6896 * - init all zones belonging to this node
6898 * NOTE: this function is only called during memory hotplug
6900 #ifdef CONFIG_MEMORY_HOTPLUG
6901 void __ref
free_area_init_core_hotplug(int nid
)
6904 pg_data_t
*pgdat
= NODE_DATA(nid
);
6906 pgdat_init_internals(pgdat
);
6907 for (z
= 0; z
< MAX_NR_ZONES
; z
++)
6908 zone_init_internals(&pgdat
->node_zones
[z
], z
, nid
, 0);
6913 * Set up the zone data structures:
6914 * - mark all pages reserved
6915 * - mark all memory queues empty
6916 * - clear the memory bitmaps
6918 * NOTE: pgdat should get zeroed by caller.
6919 * NOTE: this function is only called during early init.
6921 static void __init
free_area_init_core(struct pglist_data
*pgdat
)
6924 int nid
= pgdat
->node_id
;
6926 pgdat_init_internals(pgdat
);
6927 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6929 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6930 struct zone
*zone
= pgdat
->node_zones
+ j
;
6931 unsigned long size
, freesize
, memmap_pages
;
6932 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6934 size
= zone
->spanned_pages
;
6935 freesize
= zone
->present_pages
;
6938 * Adjust freesize so that it accounts for how much memory
6939 * is used by this zone for memmap. This affects the watermark
6940 * and per-cpu initialisations
6942 memmap_pages
= calc_memmap_size(size
, freesize
);
6943 if (!is_highmem_idx(j
)) {
6944 if (freesize
>= memmap_pages
) {
6945 freesize
-= memmap_pages
;
6948 " %s zone: %lu pages used for memmap\n",
6949 zone_names
[j
], memmap_pages
);
6951 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6952 zone_names
[j
], memmap_pages
, freesize
);
6955 /* Account for reserved pages */
6956 if (j
== 0 && freesize
> dma_reserve
) {
6957 freesize
-= dma_reserve
;
6958 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6959 zone_names
[0], dma_reserve
);
6962 if (!is_highmem_idx(j
))
6963 nr_kernel_pages
+= freesize
;
6964 /* Charge for highmem memmap if there are enough kernel pages */
6965 else if (nr_kernel_pages
> memmap_pages
* 2)
6966 nr_kernel_pages
-= memmap_pages
;
6967 nr_all_pages
+= freesize
;
6970 * Set an approximate value for lowmem here, it will be adjusted
6971 * when the bootmem allocator frees pages into the buddy system.
6972 * And all highmem pages will be managed by the buddy system.
6974 zone_init_internals(zone
, j
, nid
, freesize
);
6979 set_pageblock_order();
6980 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6981 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6982 memmap_init(size
, nid
, j
, zone_start_pfn
);
6986 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6987 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6989 unsigned long __maybe_unused start
= 0;
6990 unsigned long __maybe_unused offset
= 0;
6992 /* Skip empty nodes */
6993 if (!pgdat
->node_spanned_pages
)
6996 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6997 offset
= pgdat
->node_start_pfn
- start
;
6998 /* ia64 gets its own node_mem_map, before this, without bootmem */
6999 if (!pgdat
->node_mem_map
) {
7000 unsigned long size
, end
;
7004 * The zone's endpoints aren't required to be MAX_ORDER
7005 * aligned but the node_mem_map endpoints must be in order
7006 * for the buddy allocator to function correctly.
7008 end
= pgdat_end_pfn(pgdat
);
7009 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
7010 size
= (end
- start
) * sizeof(struct page
);
7011 map
= memblock_alloc_node(size
, SMP_CACHE_BYTES
,
7014 panic("Failed to allocate %ld bytes for node %d memory map\n",
7015 size
, pgdat
->node_id
);
7016 pgdat
->node_mem_map
= map
+ offset
;
7018 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7019 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
7020 (unsigned long)pgdat
->node_mem_map
);
7021 #ifndef CONFIG_NEED_MULTIPLE_NODES
7023 * With no DISCONTIG, the global mem_map is just set as node 0's
7025 if (pgdat
== NODE_DATA(0)) {
7026 mem_map
= NODE_DATA(0)->node_mem_map
;
7027 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
7033 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
7034 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7036 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7037 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
)
7039 pgdat
->first_deferred_pfn
= ULONG_MAX
;
7042 static inline void pgdat_set_deferred_range(pg_data_t
*pgdat
) {}
7045 static void __init
free_area_init_node(int nid
)
7047 pg_data_t
*pgdat
= NODE_DATA(nid
);
7048 unsigned long start_pfn
= 0;
7049 unsigned long end_pfn
= 0;
7051 /* pg_data_t should be reset to zero when it's allocated */
7052 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_highest_zoneidx
);
7054 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
7056 pgdat
->node_id
= nid
;
7057 pgdat
->node_start_pfn
= start_pfn
;
7058 pgdat
->per_cpu_nodestats
= NULL
;
7060 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
7061 (u64
)start_pfn
<< PAGE_SHIFT
,
7062 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
7063 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
);
7065 alloc_node_mem_map(pgdat
);
7066 pgdat_set_deferred_range(pgdat
);
7068 free_area_init_core(pgdat
);
7071 void __init
free_area_init_memoryless_node(int nid
)
7073 free_area_init_node(nid
);
7076 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7078 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7079 * PageReserved(). Return the number of struct pages that were initialized.
7081 static u64 __init
init_unavailable_range(unsigned long spfn
, unsigned long epfn
)
7086 for (pfn
= spfn
; pfn
< epfn
; pfn
++) {
7087 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
))) {
7088 pfn
= ALIGN_DOWN(pfn
, pageblock_nr_pages
)
7089 + pageblock_nr_pages
- 1;
7093 * Use a fake node/zone (0) for now. Some of these pages
7094 * (in memblock.reserved but not in memblock.memory) will
7095 * get re-initialized via reserve_bootmem_region() later.
7097 __init_single_page(pfn_to_page(pfn
), pfn
, 0, 0);
7098 __SetPageReserved(pfn_to_page(pfn
));
7106 * Only struct pages that are backed by physical memory are zeroed and
7107 * initialized by going through __init_single_page(). But, there are some
7108 * struct pages which are reserved in memblock allocator and their fields
7109 * may be accessed (for example page_to_pfn() on some configuration accesses
7110 * flags). We must explicitly initialize those struct pages.
7112 * This function also addresses a similar issue where struct pages are left
7113 * uninitialized because the physical address range is not covered by
7114 * memblock.memory or memblock.reserved. That could happen when memblock
7115 * layout is manually configured via memmap=, or when the highest physical
7116 * address (max_pfn) does not end on a section boundary.
7118 static void __init
init_unavailable_mem(void)
7120 phys_addr_t start
, end
;
7122 phys_addr_t next
= 0;
7125 * Loop through unavailable ranges not covered by memblock.memory.
7128 for_each_mem_range(i
, &start
, &end
) {
7130 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7136 * Early sections always have a fully populated memmap for the whole
7137 * section - see pfn_valid(). If the last section has holes at the
7138 * end and that section is marked "online", the memmap will be
7139 * considered initialized. Make sure that memmap has a well defined
7142 pgcnt
+= init_unavailable_range(PFN_DOWN(next
),
7143 round_up(max_pfn
, PAGES_PER_SECTION
));
7146 * Struct pages that do not have backing memory. This could be because
7147 * firmware is using some of this memory, or for some other reasons.
7150 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt
);
7153 static inline void __init
init_unavailable_mem(void)
7156 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7158 #if MAX_NUMNODES > 1
7160 * Figure out the number of possible node ids.
7162 void __init
setup_nr_node_ids(void)
7164 unsigned int highest
;
7166 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
7167 nr_node_ids
= highest
+ 1;
7172 * node_map_pfn_alignment - determine the maximum internode alignment
7174 * This function should be called after node map is populated and sorted.
7175 * It calculates the maximum power of two alignment which can distinguish
7178 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7179 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7180 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7181 * shifted, 1GiB is enough and this function will indicate so.
7183 * This is used to test whether pfn -> nid mapping of the chosen memory
7184 * model has fine enough granularity to avoid incorrect mapping for the
7185 * populated node map.
7187 * Return: the determined alignment in pfn's. 0 if there is no alignment
7188 * requirement (single node).
7190 unsigned long __init
node_map_pfn_alignment(void)
7192 unsigned long accl_mask
= 0, last_end
= 0;
7193 unsigned long start
, end
, mask
;
7194 int last_nid
= NUMA_NO_NODE
;
7197 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
7198 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
7205 * Start with a mask granular enough to pin-point to the
7206 * start pfn and tick off bits one-by-one until it becomes
7207 * too coarse to separate the current node from the last.
7209 mask
= ~((1 << __ffs(start
)) - 1);
7210 while (mask
&& last_end
<= (start
& (mask
<< 1)))
7213 /* accumulate all internode masks */
7217 /* convert mask to number of pages */
7218 return ~accl_mask
+ 1;
7222 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7224 * Return: the minimum PFN based on information provided via
7225 * memblock_set_node().
7227 unsigned long __init
find_min_pfn_with_active_regions(void)
7229 return PHYS_PFN(memblock_start_of_DRAM());
7233 * early_calculate_totalpages()
7234 * Sum pages in active regions for movable zone.
7235 * Populate N_MEMORY for calculating usable_nodes.
7237 static unsigned long __init
early_calculate_totalpages(void)
7239 unsigned long totalpages
= 0;
7240 unsigned long start_pfn
, end_pfn
;
7243 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7244 unsigned long pages
= end_pfn
- start_pfn
;
7246 totalpages
+= pages
;
7248 node_set_state(nid
, N_MEMORY
);
7254 * Find the PFN the Movable zone begins in each node. Kernel memory
7255 * is spread evenly between nodes as long as the nodes have enough
7256 * memory. When they don't, some nodes will have more kernelcore than
7259 static void __init
find_zone_movable_pfns_for_nodes(void)
7262 unsigned long usable_startpfn
;
7263 unsigned long kernelcore_node
, kernelcore_remaining
;
7264 /* save the state before borrow the nodemask */
7265 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
7266 unsigned long totalpages
= early_calculate_totalpages();
7267 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
7268 struct memblock_region
*r
;
7270 /* Need to find movable_zone earlier when movable_node is specified. */
7271 find_usable_zone_for_movable();
7274 * If movable_node is specified, ignore kernelcore and movablecore
7277 if (movable_node_is_enabled()) {
7278 for_each_mem_region(r
) {
7279 if (!memblock_is_hotpluggable(r
))
7282 nid
= memblock_get_region_node(r
);
7284 usable_startpfn
= PFN_DOWN(r
->base
);
7285 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7286 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7294 * If kernelcore=mirror is specified, ignore movablecore option
7296 if (mirrored_kernelcore
) {
7297 bool mem_below_4gb_not_mirrored
= false;
7299 for_each_mem_region(r
) {
7300 if (memblock_is_mirror(r
))
7303 nid
= memblock_get_region_node(r
);
7305 usable_startpfn
= memblock_region_memory_base_pfn(r
);
7307 if (usable_startpfn
< 0x100000) {
7308 mem_below_4gb_not_mirrored
= true;
7312 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
7313 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
7317 if (mem_below_4gb_not_mirrored
)
7318 pr_warn("This configuration results in unmirrored kernel memory.\n");
7324 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7325 * amount of necessary memory.
7327 if (required_kernelcore_percent
)
7328 required_kernelcore
= (totalpages
* 100 * required_kernelcore_percent
) /
7330 if (required_movablecore_percent
)
7331 required_movablecore
= (totalpages
* 100 * required_movablecore_percent
) /
7335 * If movablecore= was specified, calculate what size of
7336 * kernelcore that corresponds so that memory usable for
7337 * any allocation type is evenly spread. If both kernelcore
7338 * and movablecore are specified, then the value of kernelcore
7339 * will be used for required_kernelcore if it's greater than
7340 * what movablecore would have allowed.
7342 if (required_movablecore
) {
7343 unsigned long corepages
;
7346 * Round-up so that ZONE_MOVABLE is at least as large as what
7347 * was requested by the user
7349 required_movablecore
=
7350 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
7351 required_movablecore
= min(totalpages
, required_movablecore
);
7352 corepages
= totalpages
- required_movablecore
;
7354 required_kernelcore
= max(required_kernelcore
, corepages
);
7358 * If kernelcore was not specified or kernelcore size is larger
7359 * than totalpages, there is no ZONE_MOVABLE.
7361 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
7364 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7365 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
7368 /* Spread kernelcore memory as evenly as possible throughout nodes */
7369 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7370 for_each_node_state(nid
, N_MEMORY
) {
7371 unsigned long start_pfn
, end_pfn
;
7374 * Recalculate kernelcore_node if the division per node
7375 * now exceeds what is necessary to satisfy the requested
7376 * amount of memory for the kernel
7378 if (required_kernelcore
< kernelcore_node
)
7379 kernelcore_node
= required_kernelcore
/ usable_nodes
;
7382 * As the map is walked, we track how much memory is usable
7383 * by the kernel using kernelcore_remaining. When it is
7384 * 0, the rest of the node is usable by ZONE_MOVABLE
7386 kernelcore_remaining
= kernelcore_node
;
7388 /* Go through each range of PFNs within this node */
7389 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
7390 unsigned long size_pages
;
7392 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
7393 if (start_pfn
>= end_pfn
)
7396 /* Account for what is only usable for kernelcore */
7397 if (start_pfn
< usable_startpfn
) {
7398 unsigned long kernel_pages
;
7399 kernel_pages
= min(end_pfn
, usable_startpfn
)
7402 kernelcore_remaining
-= min(kernel_pages
,
7403 kernelcore_remaining
);
7404 required_kernelcore
-= min(kernel_pages
,
7405 required_kernelcore
);
7407 /* Continue if range is now fully accounted */
7408 if (end_pfn
<= usable_startpfn
) {
7411 * Push zone_movable_pfn to the end so
7412 * that if we have to rebalance
7413 * kernelcore across nodes, we will
7414 * not double account here
7416 zone_movable_pfn
[nid
] = end_pfn
;
7419 start_pfn
= usable_startpfn
;
7423 * The usable PFN range for ZONE_MOVABLE is from
7424 * start_pfn->end_pfn. Calculate size_pages as the
7425 * number of pages used as kernelcore
7427 size_pages
= end_pfn
- start_pfn
;
7428 if (size_pages
> kernelcore_remaining
)
7429 size_pages
= kernelcore_remaining
;
7430 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
7433 * Some kernelcore has been met, update counts and
7434 * break if the kernelcore for this node has been
7437 required_kernelcore
-= min(required_kernelcore
,
7439 kernelcore_remaining
-= size_pages
;
7440 if (!kernelcore_remaining
)
7446 * If there is still required_kernelcore, we do another pass with one
7447 * less node in the count. This will push zone_movable_pfn[nid] further
7448 * along on the nodes that still have memory until kernelcore is
7452 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
7456 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7457 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
7458 zone_movable_pfn
[nid
] =
7459 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
7462 /* restore the node_state */
7463 node_states
[N_MEMORY
] = saved_node_state
;
7466 /* Any regular or high memory on that node ? */
7467 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
7469 enum zone_type zone_type
;
7471 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
7472 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
7473 if (populated_zone(zone
)) {
7474 if (IS_ENABLED(CONFIG_HIGHMEM
))
7475 node_set_state(nid
, N_HIGH_MEMORY
);
7476 if (zone_type
<= ZONE_NORMAL
)
7477 node_set_state(nid
, N_NORMAL_MEMORY
);
7484 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7485 * such cases we allow max_zone_pfn sorted in the descending order
7487 bool __weak
arch_has_descending_max_zone_pfns(void)
7493 * free_area_init - Initialise all pg_data_t and zone data
7494 * @max_zone_pfn: an array of max PFNs for each zone
7496 * This will call free_area_init_node() for each active node in the system.
7497 * Using the page ranges provided by memblock_set_node(), the size of each
7498 * zone in each node and their holes is calculated. If the maximum PFN
7499 * between two adjacent zones match, it is assumed that the zone is empty.
7500 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7501 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7502 * starts where the previous one ended. For example, ZONE_DMA32 starts
7503 * at arch_max_dma_pfn.
7505 void __init
free_area_init(unsigned long *max_zone_pfn
)
7507 unsigned long start_pfn
, end_pfn
;
7511 /* Record where the zone boundaries are */
7512 memset(arch_zone_lowest_possible_pfn
, 0,
7513 sizeof(arch_zone_lowest_possible_pfn
));
7514 memset(arch_zone_highest_possible_pfn
, 0,
7515 sizeof(arch_zone_highest_possible_pfn
));
7517 start_pfn
= find_min_pfn_with_active_regions();
7518 descending
= arch_has_descending_max_zone_pfns();
7520 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7522 zone
= MAX_NR_ZONES
- i
- 1;
7526 if (zone
== ZONE_MOVABLE
)
7529 end_pfn
= max(max_zone_pfn
[zone
], start_pfn
);
7530 arch_zone_lowest_possible_pfn
[zone
] = start_pfn
;
7531 arch_zone_highest_possible_pfn
[zone
] = end_pfn
;
7533 start_pfn
= end_pfn
;
7536 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7537 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
7538 find_zone_movable_pfns_for_nodes();
7540 /* Print out the zone ranges */
7541 pr_info("Zone ranges:\n");
7542 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7543 if (i
== ZONE_MOVABLE
)
7545 pr_info(" %-8s ", zone_names
[i
]);
7546 if (arch_zone_lowest_possible_pfn
[i
] ==
7547 arch_zone_highest_possible_pfn
[i
])
7550 pr_cont("[mem %#018Lx-%#018Lx]\n",
7551 (u64
)arch_zone_lowest_possible_pfn
[i
]
7553 ((u64
)arch_zone_highest_possible_pfn
[i
]
7554 << PAGE_SHIFT
) - 1);
7557 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7558 pr_info("Movable zone start for each node\n");
7559 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7560 if (zone_movable_pfn
[i
])
7561 pr_info(" Node %d: %#018Lx\n", i
,
7562 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
7566 * Print out the early node map, and initialize the
7567 * subsection-map relative to active online memory ranges to
7568 * enable future "sub-section" extensions of the memory map.
7570 pr_info("Early memory node ranges\n");
7571 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
7572 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
7573 (u64
)start_pfn
<< PAGE_SHIFT
,
7574 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
7575 subsection_map_init(start_pfn
, end_pfn
- start_pfn
);
7578 /* Initialise every node */
7579 mminit_verify_pageflags_layout();
7580 setup_nr_node_ids();
7581 init_unavailable_mem();
7582 for_each_online_node(nid
) {
7583 pg_data_t
*pgdat
= NODE_DATA(nid
);
7584 free_area_init_node(nid
);
7586 /* Any memory on that node */
7587 if (pgdat
->node_present_pages
)
7588 node_set_state(nid
, N_MEMORY
);
7589 check_for_memory(pgdat
, nid
);
7593 static int __init
cmdline_parse_core(char *p
, unsigned long *core
,
7594 unsigned long *percent
)
7596 unsigned long long coremem
;
7602 /* Value may be a percentage of total memory, otherwise bytes */
7603 coremem
= simple_strtoull(p
, &endptr
, 0);
7604 if (*endptr
== '%') {
7605 /* Paranoid check for percent values greater than 100 */
7606 WARN_ON(coremem
> 100);
7610 coremem
= memparse(p
, &p
);
7611 /* Paranoid check that UL is enough for the coremem value */
7612 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
7614 *core
= coremem
>> PAGE_SHIFT
;
7621 * kernelcore=size sets the amount of memory for use for allocations that
7622 * cannot be reclaimed or migrated.
7624 static int __init
cmdline_parse_kernelcore(char *p
)
7626 /* parse kernelcore=mirror */
7627 if (parse_option_str(p
, "mirror")) {
7628 mirrored_kernelcore
= true;
7632 return cmdline_parse_core(p
, &required_kernelcore
,
7633 &required_kernelcore_percent
);
7637 * movablecore=size sets the amount of memory for use for allocations that
7638 * can be reclaimed or migrated.
7640 static int __init
cmdline_parse_movablecore(char *p
)
7642 return cmdline_parse_core(p
, &required_movablecore
,
7643 &required_movablecore_percent
);
7646 early_param("kernelcore", cmdline_parse_kernelcore
);
7647 early_param("movablecore", cmdline_parse_movablecore
);
7649 void adjust_managed_page_count(struct page
*page
, long count
)
7651 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
7652 totalram_pages_add(count
);
7653 #ifdef CONFIG_HIGHMEM
7654 if (PageHighMem(page
))
7655 totalhigh_pages_add(count
);
7658 EXPORT_SYMBOL(adjust_managed_page_count
);
7660 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
7663 unsigned long pages
= 0;
7665 start
= (void *)PAGE_ALIGN((unsigned long)start
);
7666 end
= (void *)((unsigned long)end
& PAGE_MASK
);
7667 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
7668 struct page
*page
= virt_to_page(pos
);
7669 void *direct_map_addr
;
7672 * 'direct_map_addr' might be different from 'pos'
7673 * because some architectures' virt_to_page()
7674 * work with aliases. Getting the direct map
7675 * address ensures that we get a _writeable_
7676 * alias for the memset().
7678 direct_map_addr
= page_address(page
);
7680 * Perform a kasan-unchecked memset() since this memory
7681 * has not been initialized.
7683 direct_map_addr
= kasan_reset_tag(direct_map_addr
);
7684 if ((unsigned int)poison
<= 0xFF)
7685 memset(direct_map_addr
, poison
, PAGE_SIZE
);
7687 free_reserved_page(page
);
7691 pr_info("Freeing %s memory: %ldK\n",
7692 s
, pages
<< (PAGE_SHIFT
- 10));
7697 #ifdef CONFIG_HIGHMEM
7698 void free_highmem_page(struct page
*page
)
7700 __free_reserved_page(page
);
7701 totalram_pages_inc();
7702 atomic_long_inc(&page_zone(page
)->managed_pages
);
7703 totalhigh_pages_inc();
7708 void __init
mem_init_print_info(const char *str
)
7710 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
7711 unsigned long init_code_size
, init_data_size
;
7713 physpages
= get_num_physpages();
7714 codesize
= _etext
- _stext
;
7715 datasize
= _edata
- _sdata
;
7716 rosize
= __end_rodata
- __start_rodata
;
7717 bss_size
= __bss_stop
- __bss_start
;
7718 init_data_size
= __init_end
- __init_begin
;
7719 init_code_size
= _einittext
- _sinittext
;
7722 * Detect special cases and adjust section sizes accordingly:
7723 * 1) .init.* may be embedded into .data sections
7724 * 2) .init.text.* may be out of [__init_begin, __init_end],
7725 * please refer to arch/tile/kernel/vmlinux.lds.S.
7726 * 3) .rodata.* may be embedded into .text or .data sections.
7728 #define adj_init_size(start, end, size, pos, adj) \
7730 if (start <= pos && pos < end && size > adj) \
7734 adj_init_size(__init_begin
, __init_end
, init_data_size
,
7735 _sinittext
, init_code_size
);
7736 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
7737 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
7738 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
7739 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
7741 #undef adj_init_size
7743 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7744 #ifdef CONFIG_HIGHMEM
7748 nr_free_pages() << (PAGE_SHIFT
- 10),
7749 physpages
<< (PAGE_SHIFT
- 10),
7750 codesize
>> 10, datasize
>> 10, rosize
>> 10,
7751 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
7752 (physpages
- totalram_pages() - totalcma_pages
) << (PAGE_SHIFT
- 10),
7753 totalcma_pages
<< (PAGE_SHIFT
- 10),
7754 #ifdef CONFIG_HIGHMEM
7755 totalhigh_pages() << (PAGE_SHIFT
- 10),
7757 str
? ", " : "", str
? str
: "");
7761 * set_dma_reserve - set the specified number of pages reserved in the first zone
7762 * @new_dma_reserve: The number of pages to mark reserved
7764 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7765 * In the DMA zone, a significant percentage may be consumed by kernel image
7766 * and other unfreeable allocations which can skew the watermarks badly. This
7767 * function may optionally be used to account for unfreeable pages in the
7768 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7769 * smaller per-cpu batchsize.
7771 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
7773 dma_reserve
= new_dma_reserve
;
7776 static int page_alloc_cpu_dead(unsigned int cpu
)
7779 lru_add_drain_cpu(cpu
);
7783 * Spill the event counters of the dead processor
7784 * into the current processors event counters.
7785 * This artificially elevates the count of the current
7788 vm_events_fold_cpu(cpu
);
7791 * Zero the differential counters of the dead processor
7792 * so that the vm statistics are consistent.
7794 * This is only okay since the processor is dead and cannot
7795 * race with what we are doing.
7797 cpu_vm_stats_fold(cpu
);
7802 int hashdist
= HASHDIST_DEFAULT
;
7804 static int __init
set_hashdist(char *str
)
7808 hashdist
= simple_strtoul(str
, &str
, 0);
7811 __setup("hashdist=", set_hashdist
);
7814 void __init
page_alloc_init(void)
7819 if (num_node_state(N_MEMORY
) == 1)
7823 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
7824 "mm/page_alloc:dead", NULL
,
7825 page_alloc_cpu_dead
);
7830 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7831 * or min_free_kbytes changes.
7833 static void calculate_totalreserve_pages(void)
7835 struct pglist_data
*pgdat
;
7836 unsigned long reserve_pages
= 0;
7837 enum zone_type i
, j
;
7839 for_each_online_pgdat(pgdat
) {
7841 pgdat
->totalreserve_pages
= 0;
7843 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
7844 struct zone
*zone
= pgdat
->node_zones
+ i
;
7846 unsigned long managed_pages
= zone_managed_pages(zone
);
7848 /* Find valid and maximum lowmem_reserve in the zone */
7849 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
7850 if (zone
->lowmem_reserve
[j
] > max
)
7851 max
= zone
->lowmem_reserve
[j
];
7854 /* we treat the high watermark as reserved pages. */
7855 max
+= high_wmark_pages(zone
);
7857 if (max
> managed_pages
)
7858 max
= managed_pages
;
7860 pgdat
->totalreserve_pages
+= max
;
7862 reserve_pages
+= max
;
7865 totalreserve_pages
= reserve_pages
;
7869 * setup_per_zone_lowmem_reserve - called whenever
7870 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7871 * has a correct pages reserved value, so an adequate number of
7872 * pages are left in the zone after a successful __alloc_pages().
7874 static void setup_per_zone_lowmem_reserve(void)
7876 struct pglist_data
*pgdat
;
7877 enum zone_type i
, j
;
7879 for_each_online_pgdat(pgdat
) {
7880 for (i
= 0; i
< MAX_NR_ZONES
- 1; i
++) {
7881 struct zone
*zone
= &pgdat
->node_zones
[i
];
7882 int ratio
= sysctl_lowmem_reserve_ratio
[i
];
7883 bool clear
= !ratio
|| !zone_managed_pages(zone
);
7884 unsigned long managed_pages
= 0;
7886 for (j
= i
+ 1; j
< MAX_NR_ZONES
; j
++) {
7888 zone
->lowmem_reserve
[j
] = 0;
7890 struct zone
*upper_zone
= &pgdat
->node_zones
[j
];
7892 managed_pages
+= zone_managed_pages(upper_zone
);
7893 zone
->lowmem_reserve
[j
] = managed_pages
/ ratio
;
7899 /* update totalreserve_pages */
7900 calculate_totalreserve_pages();
7903 static void __setup_per_zone_wmarks(void)
7905 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
7906 unsigned long lowmem_pages
= 0;
7908 unsigned long flags
;
7910 /* Calculate total number of !ZONE_HIGHMEM pages */
7911 for_each_zone(zone
) {
7912 if (!is_highmem(zone
))
7913 lowmem_pages
+= zone_managed_pages(zone
);
7916 for_each_zone(zone
) {
7919 spin_lock_irqsave(&zone
->lock
, flags
);
7920 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
7921 do_div(tmp
, lowmem_pages
);
7922 if (is_highmem(zone
)) {
7924 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7925 * need highmem pages, so cap pages_min to a small
7928 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7929 * deltas control async page reclaim, and so should
7930 * not be capped for highmem.
7932 unsigned long min_pages
;
7934 min_pages
= zone_managed_pages(zone
) / 1024;
7935 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7936 zone
->_watermark
[WMARK_MIN
] = min_pages
;
7939 * If it's a lowmem zone, reserve a number of pages
7940 * proportionate to the zone's size.
7942 zone
->_watermark
[WMARK_MIN
] = tmp
;
7946 * Set the kswapd watermarks distance according to the
7947 * scale factor in proportion to available memory, but
7948 * ensure a minimum size on small systems.
7950 tmp
= max_t(u64
, tmp
>> 2,
7951 mult_frac(zone_managed_pages(zone
),
7952 watermark_scale_factor
, 10000));
7954 zone
->watermark_boost
= 0;
7955 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7956 zone
->_watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7958 spin_unlock_irqrestore(&zone
->lock
, flags
);
7961 /* update totalreserve_pages */
7962 calculate_totalreserve_pages();
7966 * setup_per_zone_wmarks - called when min_free_kbytes changes
7967 * or when memory is hot-{added|removed}
7969 * Ensures that the watermark[min,low,high] values for each zone are set
7970 * correctly with respect to min_free_kbytes.
7972 void setup_per_zone_wmarks(void)
7974 static DEFINE_SPINLOCK(lock
);
7977 __setup_per_zone_wmarks();
7982 * Initialise min_free_kbytes.
7984 * For small machines we want it small (128k min). For large machines
7985 * we want it large (256MB max). But it is not linear, because network
7986 * bandwidth does not increase linearly with machine size. We use
7988 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7989 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8005 int __meminit
init_per_zone_wmark_min(void)
8007 unsigned long lowmem_kbytes
;
8008 int new_min_free_kbytes
;
8010 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
8011 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
8013 if (new_min_free_kbytes
> user_min_free_kbytes
) {
8014 min_free_kbytes
= new_min_free_kbytes
;
8015 if (min_free_kbytes
< 128)
8016 min_free_kbytes
= 128;
8017 if (min_free_kbytes
> 262144)
8018 min_free_kbytes
= 262144;
8020 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8021 new_min_free_kbytes
, user_min_free_kbytes
);
8023 setup_per_zone_wmarks();
8024 refresh_zone_stat_thresholds();
8025 setup_per_zone_lowmem_reserve();
8028 setup_min_unmapped_ratio();
8029 setup_min_slab_ratio();
8032 khugepaged_min_free_kbytes_update();
8036 postcore_initcall(init_per_zone_wmark_min
)
8039 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8040 * that we can call two helper functions whenever min_free_kbytes
8043 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
8044 void *buffer
, size_t *length
, loff_t
*ppos
)
8048 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8053 user_min_free_kbytes
= min_free_kbytes
;
8054 setup_per_zone_wmarks();
8059 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
8060 void *buffer
, size_t *length
, loff_t
*ppos
)
8064 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8069 setup_per_zone_wmarks();
8075 static void setup_min_unmapped_ratio(void)
8080 for_each_online_pgdat(pgdat
)
8081 pgdat
->min_unmapped_pages
= 0;
8084 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
8085 sysctl_min_unmapped_ratio
) / 100;
8089 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8090 void *buffer
, size_t *length
, loff_t
*ppos
)
8094 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8098 setup_min_unmapped_ratio();
8103 static void setup_min_slab_ratio(void)
8108 for_each_online_pgdat(pgdat
)
8109 pgdat
->min_slab_pages
= 0;
8112 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
8113 sysctl_min_slab_ratio
) / 100;
8116 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8117 void *buffer
, size_t *length
, loff_t
*ppos
)
8121 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8125 setup_min_slab_ratio();
8132 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8133 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8134 * whenever sysctl_lowmem_reserve_ratio changes.
8136 * The reserve ratio obviously has absolutely no relation with the
8137 * minimum watermarks. The lowmem reserve ratio can only make sense
8138 * if in function of the boot time zone sizes.
8140 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
8141 void *buffer
, size_t *length
, loff_t
*ppos
)
8145 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8147 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
8148 if (sysctl_lowmem_reserve_ratio
[i
] < 1)
8149 sysctl_lowmem_reserve_ratio
[i
] = 0;
8152 setup_per_zone_lowmem_reserve();
8157 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8158 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8159 * pagelist can have before it gets flushed back to buddy allocator.
8161 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
8162 void *buffer
, size_t *length
, loff_t
*ppos
)
8165 int old_percpu_pagelist_fraction
;
8168 mutex_lock(&pcp_batch_high_lock
);
8169 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
8171 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
8172 if (!write
|| ret
< 0)
8175 /* Sanity checking to avoid pcp imbalance */
8176 if (percpu_pagelist_fraction
&&
8177 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
8178 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
8184 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
8187 for_each_populated_zone(zone
)
8188 zone_set_pageset_high_and_batch(zone
);
8190 mutex_unlock(&pcp_batch_high_lock
);
8194 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8196 * Returns the number of pages that arch has reserved but
8197 * is not known to alloc_large_system_hash().
8199 static unsigned long __init
arch_reserved_kernel_pages(void)
8206 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8207 * machines. As memory size is increased the scale is also increased but at
8208 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8209 * quadruples the scale is increased by one, which means the size of hash table
8210 * only doubles, instead of quadrupling as well.
8211 * Because 32-bit systems cannot have large physical memory, where this scaling
8212 * makes sense, it is disabled on such platforms.
8214 #if __BITS_PER_LONG > 32
8215 #define ADAPT_SCALE_BASE (64ul << 30)
8216 #define ADAPT_SCALE_SHIFT 2
8217 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8221 * allocate a large system hash table from bootmem
8222 * - it is assumed that the hash table must contain an exact power-of-2
8223 * quantity of entries
8224 * - limit is the number of hash buckets, not the total allocation size
8226 void *__init
alloc_large_system_hash(const char *tablename
,
8227 unsigned long bucketsize
,
8228 unsigned long numentries
,
8231 unsigned int *_hash_shift
,
8232 unsigned int *_hash_mask
,
8233 unsigned long low_limit
,
8234 unsigned long high_limit
)
8236 unsigned long long max
= high_limit
;
8237 unsigned long log2qty
, size
;
8242 /* allow the kernel cmdline to have a say */
8244 /* round applicable memory size up to nearest megabyte */
8245 numentries
= nr_kernel_pages
;
8246 numentries
-= arch_reserved_kernel_pages();
8248 /* It isn't necessary when PAGE_SIZE >= 1MB */
8249 if (PAGE_SHIFT
< 20)
8250 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
8252 #if __BITS_PER_LONG > 32
8254 unsigned long adapt
;
8256 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
8257 adapt
<<= ADAPT_SCALE_SHIFT
)
8262 /* limit to 1 bucket per 2^scale bytes of low memory */
8263 if (scale
> PAGE_SHIFT
)
8264 numentries
>>= (scale
- PAGE_SHIFT
);
8266 numentries
<<= (PAGE_SHIFT
- scale
);
8268 /* Make sure we've got at least a 0-order allocation.. */
8269 if (unlikely(flags
& HASH_SMALL
)) {
8270 /* Makes no sense without HASH_EARLY */
8271 WARN_ON(!(flags
& HASH_EARLY
));
8272 if (!(numentries
>> *_hash_shift
)) {
8273 numentries
= 1UL << *_hash_shift
;
8274 BUG_ON(!numentries
);
8276 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
8277 numentries
= PAGE_SIZE
/ bucketsize
;
8279 numentries
= roundup_pow_of_two(numentries
);
8281 /* limit allocation size to 1/16 total memory by default */
8283 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
8284 do_div(max
, bucketsize
);
8286 max
= min(max
, 0x80000000ULL
);
8288 if (numentries
< low_limit
)
8289 numentries
= low_limit
;
8290 if (numentries
> max
)
8293 log2qty
= ilog2(numentries
);
8295 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
8298 size
= bucketsize
<< log2qty
;
8299 if (flags
& HASH_EARLY
) {
8300 if (flags
& HASH_ZERO
)
8301 table
= memblock_alloc(size
, SMP_CACHE_BYTES
);
8303 table
= memblock_alloc_raw(size
,
8305 } else if (get_order(size
) >= MAX_ORDER
|| hashdist
) {
8306 table
= __vmalloc(size
, gfp_flags
);
8310 * If bucketsize is not a power-of-two, we may free
8311 * some pages at the end of hash table which
8312 * alloc_pages_exact() automatically does
8314 table
= alloc_pages_exact(size
, gfp_flags
);
8315 kmemleak_alloc(table
, size
, 1, gfp_flags
);
8317 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
8320 panic("Failed to allocate %s hash table\n", tablename
);
8322 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8323 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
,
8324 virt
? "vmalloc" : "linear");
8327 *_hash_shift
= log2qty
;
8329 *_hash_mask
= (1 << log2qty
) - 1;
8335 * This function checks whether pageblock includes unmovable pages or not.
8337 * PageLRU check without isolation or lru_lock could race so that
8338 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8339 * check without lock_page also may miss some movable non-lru pages at
8340 * race condition. So you can't expect this function should be exact.
8342 * Returns a page without holding a reference. If the caller wants to
8343 * dereference that page (e.g., dumping), it has to make sure that it
8344 * cannot get removed (e.g., via memory unplug) concurrently.
8347 struct page
*has_unmovable_pages(struct zone
*zone
, struct page
*page
,
8348 int migratetype
, int flags
)
8350 unsigned long iter
= 0;
8351 unsigned long pfn
= page_to_pfn(page
);
8352 unsigned long offset
= pfn
% pageblock_nr_pages
;
8354 if (is_migrate_cma_page(page
)) {
8356 * CMA allocations (alloc_contig_range) really need to mark
8357 * isolate CMA pageblocks even when they are not movable in fact
8358 * so consider them movable here.
8360 if (is_migrate_cma(migratetype
))
8366 for (; iter
< pageblock_nr_pages
- offset
; iter
++) {
8367 if (!pfn_valid_within(pfn
+ iter
))
8370 page
= pfn_to_page(pfn
+ iter
);
8373 * Both, bootmem allocations and memory holes are marked
8374 * PG_reserved and are unmovable. We can even have unmovable
8375 * allocations inside ZONE_MOVABLE, for example when
8376 * specifying "movablecore".
8378 if (PageReserved(page
))
8382 * If the zone is movable and we have ruled out all reserved
8383 * pages then it should be reasonably safe to assume the rest
8386 if (zone_idx(zone
) == ZONE_MOVABLE
)
8390 * Hugepages are not in LRU lists, but they're movable.
8391 * THPs are on the LRU, but need to be counted as #small pages.
8392 * We need not scan over tail pages because we don't
8393 * handle each tail page individually in migration.
8395 if (PageHuge(page
) || PageTransCompound(page
)) {
8396 struct page
*head
= compound_head(page
);
8397 unsigned int skip_pages
;
8399 if (PageHuge(page
)) {
8400 if (!hugepage_migration_supported(page_hstate(head
)))
8402 } else if (!PageLRU(head
) && !__PageMovable(head
)) {
8406 skip_pages
= compound_nr(head
) - (page
- head
);
8407 iter
+= skip_pages
- 1;
8412 * We can't use page_count without pin a page
8413 * because another CPU can free compound page.
8414 * This check already skips compound tails of THP
8415 * because their page->_refcount is zero at all time.
8417 if (!page_ref_count(page
)) {
8418 if (PageBuddy(page
))
8419 iter
+= (1 << buddy_order(page
)) - 1;
8424 * The HWPoisoned page may be not in buddy system, and
8425 * page_count() is not 0.
8427 if ((flags
& MEMORY_OFFLINE
) && PageHWPoison(page
))
8431 * We treat all PageOffline() pages as movable when offlining
8432 * to give drivers a chance to decrement their reference count
8433 * in MEM_GOING_OFFLINE in order to indicate that these pages
8434 * can be offlined as there are no direct references anymore.
8435 * For actually unmovable PageOffline() where the driver does
8436 * not support this, we will fail later when trying to actually
8437 * move these pages that still have a reference count > 0.
8438 * (false negatives in this function only)
8440 if ((flags
& MEMORY_OFFLINE
) && PageOffline(page
))
8443 if (__PageMovable(page
) || PageLRU(page
))
8447 * If there are RECLAIMABLE pages, we need to check
8448 * it. But now, memory offline itself doesn't call
8449 * shrink_node_slabs() and it still to be fixed.
8456 #ifdef CONFIG_CONTIG_ALLOC
8457 static unsigned long pfn_max_align_down(unsigned long pfn
)
8459 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8460 pageblock_nr_pages
) - 1);
8463 static unsigned long pfn_max_align_up(unsigned long pfn
)
8465 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
8466 pageblock_nr_pages
));
8469 /* [start, end) must belong to a single zone. */
8470 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
8471 unsigned long start
, unsigned long end
)
8473 /* This function is based on compact_zone() from compaction.c. */
8474 unsigned int nr_reclaimed
;
8475 unsigned long pfn
= start
;
8476 unsigned int tries
= 0;
8478 struct migration_target_control mtc
= {
8479 .nid
= zone_to_nid(cc
->zone
),
8480 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_RETRY_MAYFAIL
,
8485 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
8486 if (fatal_signal_pending(current
)) {
8491 if (list_empty(&cc
->migratepages
)) {
8492 cc
->nr_migratepages
= 0;
8493 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
8499 } else if (++tries
== 5) {
8500 ret
= ret
< 0 ? ret
: -EBUSY
;
8504 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
8506 cc
->nr_migratepages
-= nr_reclaimed
;
8508 ret
= migrate_pages(&cc
->migratepages
, alloc_migration_target
,
8509 NULL
, (unsigned long)&mtc
, cc
->mode
, MR_CONTIG_RANGE
);
8512 putback_movable_pages(&cc
->migratepages
);
8519 * alloc_contig_range() -- tries to allocate given range of pages
8520 * @start: start PFN to allocate
8521 * @end: one-past-the-last PFN to allocate
8522 * @migratetype: migratetype of the underlaying pageblocks (either
8523 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8524 * in range must have the same migratetype and it must
8525 * be either of the two.
8526 * @gfp_mask: GFP mask to use during compaction
8528 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8529 * aligned. The PFN range must belong to a single zone.
8531 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8532 * pageblocks in the range. Once isolated, the pageblocks should not
8533 * be modified by others.
8535 * Return: zero on success or negative error code. On success all
8536 * pages which PFN is in [start, end) are allocated for the caller and
8537 * need to be freed with free_contig_range().
8539 int alloc_contig_range(unsigned long start
, unsigned long end
,
8540 unsigned migratetype
, gfp_t gfp_mask
)
8542 unsigned long outer_start
, outer_end
;
8546 struct compact_control cc
= {
8547 .nr_migratepages
= 0,
8549 .zone
= page_zone(pfn_to_page(start
)),
8550 .mode
= MIGRATE_SYNC
,
8551 .ignore_skip_hint
= true,
8552 .no_set_skip_hint
= true,
8553 .gfp_mask
= current_gfp_context(gfp_mask
),
8554 .alloc_contig
= true,
8556 INIT_LIST_HEAD(&cc
.migratepages
);
8559 * What we do here is we mark all pageblocks in range as
8560 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8561 * have different sizes, and due to the way page allocator
8562 * work, we align the range to biggest of the two pages so
8563 * that page allocator won't try to merge buddies from
8564 * different pageblocks and change MIGRATE_ISOLATE to some
8565 * other migration type.
8567 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8568 * migrate the pages from an unaligned range (ie. pages that
8569 * we are interested in). This will put all the pages in
8570 * range back to page allocator as MIGRATE_ISOLATE.
8572 * When this is done, we take the pages in range from page
8573 * allocator removing them from the buddy system. This way
8574 * page allocator will never consider using them.
8576 * This lets us mark the pageblocks back as
8577 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8578 * aligned range but not in the unaligned, original range are
8579 * put back to page allocator so that buddy can use them.
8582 ret
= start_isolate_page_range(pfn_max_align_down(start
),
8583 pfn_max_align_up(end
), migratetype
, 0);
8587 drain_all_pages(cc
.zone
);
8590 * In case of -EBUSY, we'd like to know which page causes problem.
8591 * So, just fall through. test_pages_isolated() has a tracepoint
8592 * which will report the busy page.
8594 * It is possible that busy pages could become available before
8595 * the call to test_pages_isolated, and the range will actually be
8596 * allocated. So, if we fall through be sure to clear ret so that
8597 * -EBUSY is not accidentally used or returned to caller.
8599 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
8600 if (ret
&& ret
!= -EBUSY
)
8605 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8606 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8607 * more, all pages in [start, end) are free in page allocator.
8608 * What we are going to do is to allocate all pages from
8609 * [start, end) (that is remove them from page allocator).
8611 * The only problem is that pages at the beginning and at the
8612 * end of interesting range may be not aligned with pages that
8613 * page allocator holds, ie. they can be part of higher order
8614 * pages. Because of this, we reserve the bigger range and
8615 * once this is done free the pages we are not interested in.
8617 * We don't have to hold zone->lock here because the pages are
8618 * isolated thus they won't get removed from buddy.
8621 lru_add_drain_all();
8624 outer_start
= start
;
8625 while (!PageBuddy(pfn_to_page(outer_start
))) {
8626 if (++order
>= MAX_ORDER
) {
8627 outer_start
= start
;
8630 outer_start
&= ~0UL << order
;
8633 if (outer_start
!= start
) {
8634 order
= buddy_order(pfn_to_page(outer_start
));
8637 * outer_start page could be small order buddy page and
8638 * it doesn't include start page. Adjust outer_start
8639 * in this case to report failed page properly
8640 * on tracepoint in test_pages_isolated()
8642 if (outer_start
+ (1UL << order
) <= start
)
8643 outer_start
= start
;
8646 /* Make sure the range is really isolated. */
8647 if (test_pages_isolated(outer_start
, end
, 0)) {
8648 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8649 __func__
, outer_start
, end
);
8654 /* Grab isolated pages from freelists. */
8655 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
8661 /* Free head and tail (if any) */
8662 if (start
!= outer_start
)
8663 free_contig_range(outer_start
, start
- outer_start
);
8664 if (end
!= outer_end
)
8665 free_contig_range(end
, outer_end
- end
);
8668 undo_isolate_page_range(pfn_max_align_down(start
),
8669 pfn_max_align_up(end
), migratetype
);
8672 EXPORT_SYMBOL(alloc_contig_range
);
8674 static int __alloc_contig_pages(unsigned long start_pfn
,
8675 unsigned long nr_pages
, gfp_t gfp_mask
)
8677 unsigned long end_pfn
= start_pfn
+ nr_pages
;
8679 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
8683 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
8684 unsigned long nr_pages
)
8686 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
8689 for (i
= start_pfn
; i
< end_pfn
; i
++) {
8690 page
= pfn_to_online_page(i
);
8694 if (page_zone(page
) != z
)
8697 if (PageReserved(page
))
8700 if (page_count(page
) > 0)
8709 static bool zone_spans_last_pfn(const struct zone
*zone
,
8710 unsigned long start_pfn
, unsigned long nr_pages
)
8712 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
8714 return zone_spans_pfn(zone
, last_pfn
);
8718 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8719 * @nr_pages: Number of contiguous pages to allocate
8720 * @gfp_mask: GFP mask to limit search and used during compaction
8722 * @nodemask: Mask for other possible nodes
8724 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8725 * on an applicable zonelist to find a contiguous pfn range which can then be
8726 * tried for allocation with alloc_contig_range(). This routine is intended
8727 * for allocation requests which can not be fulfilled with the buddy allocator.
8729 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8730 * power of two then the alignment is guaranteed to be to the given nr_pages
8731 * (e.g. 1GB request would be aligned to 1GB).
8733 * Allocated pages can be freed with free_contig_range() or by manually calling
8734 * __free_page() on each allocated page.
8736 * Return: pointer to contiguous pages on success, or NULL if not successful.
8738 struct page
*alloc_contig_pages(unsigned long nr_pages
, gfp_t gfp_mask
,
8739 int nid
, nodemask_t
*nodemask
)
8741 unsigned long ret
, pfn
, flags
;
8742 struct zonelist
*zonelist
;
8746 zonelist
= node_zonelist(nid
, gfp_mask
);
8747 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
8748 gfp_zone(gfp_mask
), nodemask
) {
8749 spin_lock_irqsave(&zone
->lock
, flags
);
8751 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
8752 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
8753 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
8755 * We release the zone lock here because
8756 * alloc_contig_range() will also lock the zone
8757 * at some point. If there's an allocation
8758 * spinning on this lock, it may win the race
8759 * and cause alloc_contig_range() to fail...
8761 spin_unlock_irqrestore(&zone
->lock
, flags
);
8762 ret
= __alloc_contig_pages(pfn
, nr_pages
,
8765 return pfn_to_page(pfn
);
8766 spin_lock_irqsave(&zone
->lock
, flags
);
8770 spin_unlock_irqrestore(&zone
->lock
, flags
);
8774 #endif /* CONFIG_CONTIG_ALLOC */
8776 void free_contig_range(unsigned long pfn
, unsigned int nr_pages
)
8778 unsigned int count
= 0;
8780 for (; nr_pages
--; pfn
++) {
8781 struct page
*page
= pfn_to_page(pfn
);
8783 count
+= page_count(page
) != 1;
8786 WARN(count
!= 0, "%d pages are still in use!\n", count
);
8788 EXPORT_SYMBOL(free_contig_range
);
8791 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8792 * page high values need to be recalulated.
8794 void __meminit
zone_pcp_update(struct zone
*zone
)
8796 mutex_lock(&pcp_batch_high_lock
);
8797 zone_set_pageset_high_and_batch(zone
);
8798 mutex_unlock(&pcp_batch_high_lock
);
8802 * Effectively disable pcplists for the zone by setting the high limit to 0
8803 * and draining all cpus. A concurrent page freeing on another CPU that's about
8804 * to put the page on pcplist will either finish before the drain and the page
8805 * will be drained, or observe the new high limit and skip the pcplist.
8807 * Must be paired with a call to zone_pcp_enable().
8809 void zone_pcp_disable(struct zone
*zone
)
8811 mutex_lock(&pcp_batch_high_lock
);
8812 __zone_set_pageset_high_and_batch(zone
, 0, 1);
8813 __drain_all_pages(zone
, true);
8816 void zone_pcp_enable(struct zone
*zone
)
8818 __zone_set_pageset_high_and_batch(zone
, zone
->pageset_high
, zone
->pageset_batch
);
8819 mutex_unlock(&pcp_batch_high_lock
);
8822 void zone_pcp_reset(struct zone
*zone
)
8824 unsigned long flags
;
8826 struct per_cpu_pageset
*pset
;
8828 /* avoid races with drain_pages() */
8829 local_irq_save(flags
);
8830 if (zone
->pageset
!= &boot_pageset
) {
8831 for_each_online_cpu(cpu
) {
8832 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
8833 drain_zonestat(zone
, pset
);
8835 free_percpu(zone
->pageset
);
8836 zone
->pageset
= &boot_pageset
;
8838 local_irq_restore(flags
);
8841 #ifdef CONFIG_MEMORY_HOTREMOVE
8843 * All pages in the range must be in a single zone, must not contain holes,
8844 * must span full sections, and must be isolated before calling this function.
8846 void __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
8848 unsigned long pfn
= start_pfn
;
8852 unsigned long flags
;
8854 offline_mem_sections(pfn
, end_pfn
);
8855 zone
= page_zone(pfn_to_page(pfn
));
8856 spin_lock_irqsave(&zone
->lock
, flags
);
8857 while (pfn
< end_pfn
) {
8858 page
= pfn_to_page(pfn
);
8860 * The HWPoisoned page may be not in buddy system, and
8861 * page_count() is not 0.
8863 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
8868 * At this point all remaining PageOffline() pages have a
8869 * reference count of 0 and can simply be skipped.
8871 if (PageOffline(page
)) {
8872 BUG_ON(page_count(page
));
8873 BUG_ON(PageBuddy(page
));
8878 BUG_ON(page_count(page
));
8879 BUG_ON(!PageBuddy(page
));
8880 order
= buddy_order(page
);
8881 del_page_from_free_list(page
, zone
, order
);
8882 pfn
+= (1 << order
);
8884 spin_unlock_irqrestore(&zone
->lock
, flags
);
8888 bool is_free_buddy_page(struct page
*page
)
8890 struct zone
*zone
= page_zone(page
);
8891 unsigned long pfn
= page_to_pfn(page
);
8892 unsigned long flags
;
8895 spin_lock_irqsave(&zone
->lock
, flags
);
8896 for (order
= 0; order
< MAX_ORDER
; order
++) {
8897 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8899 if (PageBuddy(page_head
) && buddy_order(page_head
) >= order
)
8902 spin_unlock_irqrestore(&zone
->lock
, flags
);
8904 return order
< MAX_ORDER
;
8907 #ifdef CONFIG_MEMORY_FAILURE
8909 * Break down a higher-order page in sub-pages, and keep our target out of
8912 static void break_down_buddy_pages(struct zone
*zone
, struct page
*page
,
8913 struct page
*target
, int low
, int high
,
8916 unsigned long size
= 1 << high
;
8917 struct page
*current_buddy
, *next_page
;
8919 while (high
> low
) {
8923 if (target
>= &page
[size
]) {
8924 next_page
= page
+ size
;
8925 current_buddy
= page
;
8928 current_buddy
= page
+ size
;
8931 if (set_page_guard(zone
, current_buddy
, high
, migratetype
))
8934 if (current_buddy
!= target
) {
8935 add_to_free_list(current_buddy
, zone
, high
, migratetype
);
8936 set_buddy_order(current_buddy
, high
);
8943 * Take a page that will be marked as poisoned off the buddy allocator.
8945 bool take_page_off_buddy(struct page
*page
)
8947 struct zone
*zone
= page_zone(page
);
8948 unsigned long pfn
= page_to_pfn(page
);
8949 unsigned long flags
;
8953 spin_lock_irqsave(&zone
->lock
, flags
);
8954 for (order
= 0; order
< MAX_ORDER
; order
++) {
8955 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
8956 int page_order
= buddy_order(page_head
);
8958 if (PageBuddy(page_head
) && page_order
>= order
) {
8959 unsigned long pfn_head
= page_to_pfn(page_head
);
8960 int migratetype
= get_pfnblock_migratetype(page_head
,
8963 del_page_from_free_list(page_head
, zone
, page_order
);
8964 break_down_buddy_pages(zone
, page_head
, page
, 0,
8965 page_order
, migratetype
);
8969 if (page_count(page_head
) > 0)
8972 spin_unlock_irqrestore(&zone
->lock
, flags
);