x86/ldt: Further fix FPU emulation
[linux/fpc-iii.git] / drivers / net / ethernet / neterion / s2io.c
blobc28111749e1f9ba95c8b49231da95f97278f31e8
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <linux/prefetch.h>
82 #include <net/tcp.h>
83 #include <net/checksum.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.28"
94 /* S2io Driver name & version. */
95 static const char s2io_driver_name[] = "Neterion";
96 static const char s2io_driver_version[] = DRV_VERSION;
98 static const int rxd_size[2] = {32, 48};
99 static const int rxd_count[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 int ret;
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108 return ret;
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
360 * Constants to be programmed into the Xena's registers, to configure
361 * the XAUI.
364 #define END_SIGN 0x0
365 static const u64 herc_act_dtx_cfg[] = {
366 /* Set address */
367 0x8000051536750000ULL, 0x80000515367500E0ULL,
368 /* Write data */
369 0x8000051536750004ULL, 0x80000515367500E4ULL,
370 /* Set address */
371 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
372 /* Write data */
373 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
374 /* Set address */
375 0x801205150D440000ULL, 0x801205150D4400E0ULL,
376 /* Write data */
377 0x801205150D440004ULL, 0x801205150D4400E4ULL,
378 /* Set address */
379 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
380 /* Write data */
381 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
382 /* Done */
383 END_SIGN
386 static const u64 xena_dtx_cfg[] = {
387 /* Set address */
388 0x8000051500000000ULL, 0x80000515000000E0ULL,
389 /* Write data */
390 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
391 /* Set address */
392 0x8001051500000000ULL, 0x80010515000000E0ULL,
393 /* Write data */
394 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
395 /* Set address */
396 0x8002051500000000ULL, 0x80020515000000E0ULL,
397 /* Write data */
398 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
399 END_SIGN
403 * Constants for Fixing the MacAddress problem seen mostly on
404 * Alpha machines.
406 static const u64 fix_mac[] = {
407 0x0060000000000000ULL, 0x0060600000000000ULL,
408 0x0040600000000000ULL, 0x0000600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0060600000000000ULL,
415 0x0020600000000000ULL, 0x0060600000000000ULL,
416 0x0020600000000000ULL, 0x0060600000000000ULL,
417 0x0020600000000000ULL, 0x0060600000000000ULL,
418 0x0020600000000000ULL, 0x0060600000000000ULL,
419 0x0020600000000000ULL, 0x0000600000000000ULL,
420 0x0040600000000000ULL, 0x0060600000000000ULL,
421 END_SIGN
424 MODULE_LICENSE("GPL");
425 MODULE_VERSION(DRV_VERSION);
428 /* Module Loadable parameters. */
429 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
430 S2IO_PARM_INT(rx_ring_num, 1);
431 S2IO_PARM_INT(multiq, 0);
432 S2IO_PARM_INT(rx_ring_mode, 1);
433 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
434 S2IO_PARM_INT(rmac_pause_time, 0x100);
435 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
436 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
437 S2IO_PARM_INT(shared_splits, 0);
438 S2IO_PARM_INT(tmac_util_period, 5);
439 S2IO_PARM_INT(rmac_util_period, 5);
440 S2IO_PARM_INT(l3l4hdr_size, 128);
441 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
442 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
443 /* Frequency of Rx desc syncs expressed as power of 2 */
444 S2IO_PARM_INT(rxsync_frequency, 3);
445 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
446 S2IO_PARM_INT(intr_type, 2);
447 /* Large receive offload feature */
449 /* Max pkts to be aggregated by LRO at one time. If not specified,
450 * aggregation happens until we hit max IP pkt size(64K)
452 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
453 S2IO_PARM_INT(indicate_max_pkts, 0);
455 S2IO_PARM_INT(napi, 1);
456 S2IO_PARM_INT(ufo, 0);
457 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
459 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
460 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
461 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
462 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
463 static unsigned int rts_frm_len[MAX_RX_RINGS] =
464 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
466 module_param_array(tx_fifo_len, uint, NULL, 0);
467 module_param_array(rx_ring_sz, uint, NULL, 0);
468 module_param_array(rts_frm_len, uint, NULL, 0);
471 * S2IO device table.
472 * This table lists all the devices that this driver supports.
474 static const struct pci_device_id s2io_tbl[] = {
475 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
476 PCI_ANY_ID, PCI_ANY_ID},
477 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
478 PCI_ANY_ID, PCI_ANY_ID},
479 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
480 PCI_ANY_ID, PCI_ANY_ID},
481 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
482 PCI_ANY_ID, PCI_ANY_ID},
483 {0,}
486 MODULE_DEVICE_TABLE(pci, s2io_tbl);
488 static const struct pci_error_handlers s2io_err_handler = {
489 .error_detected = s2io_io_error_detected,
490 .slot_reset = s2io_io_slot_reset,
491 .resume = s2io_io_resume,
494 static struct pci_driver s2io_driver = {
495 .name = "S2IO",
496 .id_table = s2io_tbl,
497 .probe = s2io_init_nic,
498 .remove = s2io_rem_nic,
499 .err_handler = &s2io_err_handler,
502 /* A simplifier macro used both by init and free shared_mem Fns(). */
503 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
505 /* netqueue manipulation helper functions */
506 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
508 if (!sp->config.multiq) {
509 int i;
511 for (i = 0; i < sp->config.tx_fifo_num; i++)
512 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
514 netif_tx_stop_all_queues(sp->dev);
517 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
519 if (!sp->config.multiq)
520 sp->mac_control.fifos[fifo_no].queue_state =
521 FIFO_QUEUE_STOP;
523 netif_tx_stop_all_queues(sp->dev);
526 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
528 if (!sp->config.multiq) {
529 int i;
531 for (i = 0; i < sp->config.tx_fifo_num; i++)
532 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
534 netif_tx_start_all_queues(sp->dev);
537 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
539 if (!sp->config.multiq) {
540 int i;
542 for (i = 0; i < sp->config.tx_fifo_num; i++)
543 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
545 netif_tx_wake_all_queues(sp->dev);
548 static inline void s2io_wake_tx_queue(
549 struct fifo_info *fifo, int cnt, u8 multiq)
552 if (multiq) {
553 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
554 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
555 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
556 if (netif_queue_stopped(fifo->dev)) {
557 fifo->queue_state = FIFO_QUEUE_START;
558 netif_wake_queue(fifo->dev);
564 * init_shared_mem - Allocation and Initialization of Memory
565 * @nic: Device private variable.
566 * Description: The function allocates all the memory areas shared
567 * between the NIC and the driver. This includes Tx descriptors,
568 * Rx descriptors and the statistics block.
571 static int init_shared_mem(struct s2io_nic *nic)
573 u32 size;
574 void *tmp_v_addr, *tmp_v_addr_next;
575 dma_addr_t tmp_p_addr, tmp_p_addr_next;
576 struct RxD_block *pre_rxd_blk = NULL;
577 int i, j, blk_cnt;
578 int lst_size, lst_per_page;
579 struct net_device *dev = nic->dev;
580 unsigned long tmp;
581 struct buffAdd *ba;
582 struct config_param *config = &nic->config;
583 struct mac_info *mac_control = &nic->mac_control;
584 unsigned long long mem_allocated = 0;
586 /* Allocation and initialization of TXDLs in FIFOs */
587 size = 0;
588 for (i = 0; i < config->tx_fifo_num; i++) {
589 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
591 size += tx_cfg->fifo_len;
593 if (size > MAX_AVAILABLE_TXDS) {
594 DBG_PRINT(ERR_DBG,
595 "Too many TxDs requested: %d, max supported: %d\n",
596 size, MAX_AVAILABLE_TXDS);
597 return -EINVAL;
600 size = 0;
601 for (i = 0; i < config->tx_fifo_num; i++) {
602 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
604 size = tx_cfg->fifo_len;
606 * Legal values are from 2 to 8192
608 if (size < 2) {
609 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
610 "Valid lengths are 2 through 8192\n",
611 i, size);
612 return -EINVAL;
616 lst_size = (sizeof(struct TxD) * config->max_txds);
617 lst_per_page = PAGE_SIZE / lst_size;
619 for (i = 0; i < config->tx_fifo_num; i++) {
620 struct fifo_info *fifo = &mac_control->fifos[i];
621 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
622 int fifo_len = tx_cfg->fifo_len;
623 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
625 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
626 if (!fifo->list_info) {
627 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
628 return -ENOMEM;
630 mem_allocated += list_holder_size;
632 for (i = 0; i < config->tx_fifo_num; i++) {
633 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
634 lst_per_page);
635 struct fifo_info *fifo = &mac_control->fifos[i];
636 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
638 fifo->tx_curr_put_info.offset = 0;
639 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
640 fifo->tx_curr_get_info.offset = 0;
641 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
642 fifo->fifo_no = i;
643 fifo->nic = nic;
644 fifo->max_txds = MAX_SKB_FRAGS + 2;
645 fifo->dev = dev;
647 for (j = 0; j < page_num; j++) {
648 int k = 0;
649 dma_addr_t tmp_p;
650 void *tmp_v;
651 tmp_v = pci_alloc_consistent(nic->pdev,
652 PAGE_SIZE, &tmp_p);
653 if (!tmp_v) {
654 DBG_PRINT(INFO_DBG,
655 "pci_alloc_consistent failed for TxDL\n");
656 return -ENOMEM;
658 /* If we got a zero DMA address(can happen on
659 * certain platforms like PPC), reallocate.
660 * Store virtual address of page we don't want,
661 * to be freed later.
663 if (!tmp_p) {
664 mac_control->zerodma_virt_addr = tmp_v;
665 DBG_PRINT(INIT_DBG,
666 "%s: Zero DMA address for TxDL. "
667 "Virtual address %p\n",
668 dev->name, tmp_v);
669 tmp_v = pci_alloc_consistent(nic->pdev,
670 PAGE_SIZE, &tmp_p);
671 if (!tmp_v) {
672 DBG_PRINT(INFO_DBG,
673 "pci_alloc_consistent failed for TxDL\n");
674 return -ENOMEM;
676 mem_allocated += PAGE_SIZE;
678 while (k < lst_per_page) {
679 int l = (j * lst_per_page) + k;
680 if (l == tx_cfg->fifo_len)
681 break;
682 fifo->list_info[l].list_virt_addr =
683 tmp_v + (k * lst_size);
684 fifo->list_info[l].list_phy_addr =
685 tmp_p + (k * lst_size);
686 k++;
691 for (i = 0; i < config->tx_fifo_num; i++) {
692 struct fifo_info *fifo = &mac_control->fifos[i];
693 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
695 size = tx_cfg->fifo_len;
696 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
697 if (!fifo->ufo_in_band_v)
698 return -ENOMEM;
699 mem_allocated += (size * sizeof(u64));
702 /* Allocation and initialization of RXDs in Rings */
703 size = 0;
704 for (i = 0; i < config->rx_ring_num; i++) {
705 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
706 struct ring_info *ring = &mac_control->rings[i];
708 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
709 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
710 "multiple of RxDs per Block\n",
711 dev->name, i);
712 return FAILURE;
714 size += rx_cfg->num_rxd;
715 ring->block_count = rx_cfg->num_rxd /
716 (rxd_count[nic->rxd_mode] + 1);
717 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
719 if (nic->rxd_mode == RXD_MODE_1)
720 size = (size * (sizeof(struct RxD1)));
721 else
722 size = (size * (sizeof(struct RxD3)));
724 for (i = 0; i < config->rx_ring_num; i++) {
725 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
726 struct ring_info *ring = &mac_control->rings[i];
728 ring->rx_curr_get_info.block_index = 0;
729 ring->rx_curr_get_info.offset = 0;
730 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
731 ring->rx_curr_put_info.block_index = 0;
732 ring->rx_curr_put_info.offset = 0;
733 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
734 ring->nic = nic;
735 ring->ring_no = i;
737 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
738 /* Allocating all the Rx blocks */
739 for (j = 0; j < blk_cnt; j++) {
740 struct rx_block_info *rx_blocks;
741 int l;
743 rx_blocks = &ring->rx_blocks[j];
744 size = SIZE_OF_BLOCK; /* size is always page size */
745 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
746 &tmp_p_addr);
747 if (tmp_v_addr == NULL) {
749 * In case of failure, free_shared_mem()
750 * is called, which should free any
751 * memory that was alloced till the
752 * failure happened.
754 rx_blocks->block_virt_addr = tmp_v_addr;
755 return -ENOMEM;
757 mem_allocated += size;
758 memset(tmp_v_addr, 0, size);
760 size = sizeof(struct rxd_info) *
761 rxd_count[nic->rxd_mode];
762 rx_blocks->block_virt_addr = tmp_v_addr;
763 rx_blocks->block_dma_addr = tmp_p_addr;
764 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
765 if (!rx_blocks->rxds)
766 return -ENOMEM;
767 mem_allocated += size;
768 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
769 rx_blocks->rxds[l].virt_addr =
770 rx_blocks->block_virt_addr +
771 (rxd_size[nic->rxd_mode] * l);
772 rx_blocks->rxds[l].dma_addr =
773 rx_blocks->block_dma_addr +
774 (rxd_size[nic->rxd_mode] * l);
777 /* Interlinking all Rx Blocks */
778 for (j = 0; j < blk_cnt; j++) {
779 int next = (j + 1) % blk_cnt;
780 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
781 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
782 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
783 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
785 pre_rxd_blk = tmp_v_addr;
786 pre_rxd_blk->reserved_2_pNext_RxD_block =
787 (unsigned long)tmp_v_addr_next;
788 pre_rxd_blk->pNext_RxD_Blk_physical =
789 (u64)tmp_p_addr_next;
792 if (nic->rxd_mode == RXD_MODE_3B) {
794 * Allocation of Storages for buffer addresses in 2BUFF mode
795 * and the buffers as well.
797 for (i = 0; i < config->rx_ring_num; i++) {
798 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
799 struct ring_info *ring = &mac_control->rings[i];
801 blk_cnt = rx_cfg->num_rxd /
802 (rxd_count[nic->rxd_mode] + 1);
803 size = sizeof(struct buffAdd *) * blk_cnt;
804 ring->ba = kmalloc(size, GFP_KERNEL);
805 if (!ring->ba)
806 return -ENOMEM;
807 mem_allocated += size;
808 for (j = 0; j < blk_cnt; j++) {
809 int k = 0;
811 size = sizeof(struct buffAdd) *
812 (rxd_count[nic->rxd_mode] + 1);
813 ring->ba[j] = kmalloc(size, GFP_KERNEL);
814 if (!ring->ba[j])
815 return -ENOMEM;
816 mem_allocated += size;
817 while (k != rxd_count[nic->rxd_mode]) {
818 ba = &ring->ba[j][k];
819 size = BUF0_LEN + ALIGN_SIZE;
820 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
821 if (!ba->ba_0_org)
822 return -ENOMEM;
823 mem_allocated += size;
824 tmp = (unsigned long)ba->ba_0_org;
825 tmp += ALIGN_SIZE;
826 tmp &= ~((unsigned long)ALIGN_SIZE);
827 ba->ba_0 = (void *)tmp;
829 size = BUF1_LEN + ALIGN_SIZE;
830 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
831 if (!ba->ba_1_org)
832 return -ENOMEM;
833 mem_allocated += size;
834 tmp = (unsigned long)ba->ba_1_org;
835 tmp += ALIGN_SIZE;
836 tmp &= ~((unsigned long)ALIGN_SIZE);
837 ba->ba_1 = (void *)tmp;
838 k++;
844 /* Allocation and initialization of Statistics block */
845 size = sizeof(struct stat_block);
846 mac_control->stats_mem =
847 pci_alloc_consistent(nic->pdev, size,
848 &mac_control->stats_mem_phy);
850 if (!mac_control->stats_mem) {
852 * In case of failure, free_shared_mem() is called, which
853 * should free any memory that was alloced till the
854 * failure happened.
856 return -ENOMEM;
858 mem_allocated += size;
859 mac_control->stats_mem_sz = size;
861 tmp_v_addr = mac_control->stats_mem;
862 mac_control->stats_info = tmp_v_addr;
863 memset(tmp_v_addr, 0, size);
864 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
865 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
866 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
867 return SUCCESS;
871 * free_shared_mem - Free the allocated Memory
872 * @nic: Device private variable.
873 * Description: This function is to free all memory locations allocated by
874 * the init_shared_mem() function and return it to the kernel.
877 static void free_shared_mem(struct s2io_nic *nic)
879 int i, j, blk_cnt, size;
880 void *tmp_v_addr;
881 dma_addr_t tmp_p_addr;
882 int lst_size, lst_per_page;
883 struct net_device *dev;
884 int page_num = 0;
885 struct config_param *config;
886 struct mac_info *mac_control;
887 struct stat_block *stats;
888 struct swStat *swstats;
890 if (!nic)
891 return;
893 dev = nic->dev;
895 config = &nic->config;
896 mac_control = &nic->mac_control;
897 stats = mac_control->stats_info;
898 swstats = &stats->sw_stat;
900 lst_size = sizeof(struct TxD) * config->max_txds;
901 lst_per_page = PAGE_SIZE / lst_size;
903 for (i = 0; i < config->tx_fifo_num; i++) {
904 struct fifo_info *fifo = &mac_control->fifos[i];
905 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
907 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
908 for (j = 0; j < page_num; j++) {
909 int mem_blks = (j * lst_per_page);
910 struct list_info_hold *fli;
912 if (!fifo->list_info)
913 return;
915 fli = &fifo->list_info[mem_blks];
916 if (!fli->list_virt_addr)
917 break;
918 pci_free_consistent(nic->pdev, PAGE_SIZE,
919 fli->list_virt_addr,
920 fli->list_phy_addr);
921 swstats->mem_freed += PAGE_SIZE;
923 /* If we got a zero DMA address during allocation,
924 * free the page now
926 if (mac_control->zerodma_virt_addr) {
927 pci_free_consistent(nic->pdev, PAGE_SIZE,
928 mac_control->zerodma_virt_addr,
929 (dma_addr_t)0);
930 DBG_PRINT(INIT_DBG,
931 "%s: Freeing TxDL with zero DMA address. "
932 "Virtual address %p\n",
933 dev->name, mac_control->zerodma_virt_addr);
934 swstats->mem_freed += PAGE_SIZE;
936 kfree(fifo->list_info);
937 swstats->mem_freed += tx_cfg->fifo_len *
938 sizeof(struct list_info_hold);
941 size = SIZE_OF_BLOCK;
942 for (i = 0; i < config->rx_ring_num; i++) {
943 struct ring_info *ring = &mac_control->rings[i];
945 blk_cnt = ring->block_count;
946 for (j = 0; j < blk_cnt; j++) {
947 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
948 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
949 if (tmp_v_addr == NULL)
950 break;
951 pci_free_consistent(nic->pdev, size,
952 tmp_v_addr, tmp_p_addr);
953 swstats->mem_freed += size;
954 kfree(ring->rx_blocks[j].rxds);
955 swstats->mem_freed += sizeof(struct rxd_info) *
956 rxd_count[nic->rxd_mode];
960 if (nic->rxd_mode == RXD_MODE_3B) {
961 /* Freeing buffer storage addresses in 2BUFF mode. */
962 for (i = 0; i < config->rx_ring_num; i++) {
963 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
964 struct ring_info *ring = &mac_control->rings[i];
966 blk_cnt = rx_cfg->num_rxd /
967 (rxd_count[nic->rxd_mode] + 1);
968 for (j = 0; j < blk_cnt; j++) {
969 int k = 0;
970 if (!ring->ba[j])
971 continue;
972 while (k != rxd_count[nic->rxd_mode]) {
973 struct buffAdd *ba = &ring->ba[j][k];
974 kfree(ba->ba_0_org);
975 swstats->mem_freed +=
976 BUF0_LEN + ALIGN_SIZE;
977 kfree(ba->ba_1_org);
978 swstats->mem_freed +=
979 BUF1_LEN + ALIGN_SIZE;
980 k++;
982 kfree(ring->ba[j]);
983 swstats->mem_freed += sizeof(struct buffAdd) *
984 (rxd_count[nic->rxd_mode] + 1);
986 kfree(ring->ba);
987 swstats->mem_freed += sizeof(struct buffAdd *) *
988 blk_cnt;
992 for (i = 0; i < nic->config.tx_fifo_num; i++) {
993 struct fifo_info *fifo = &mac_control->fifos[i];
994 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
996 if (fifo->ufo_in_band_v) {
997 swstats->mem_freed += tx_cfg->fifo_len *
998 sizeof(u64);
999 kfree(fifo->ufo_in_band_v);
1003 if (mac_control->stats_mem) {
1004 swstats->mem_freed += mac_control->stats_mem_sz;
1005 pci_free_consistent(nic->pdev,
1006 mac_control->stats_mem_sz,
1007 mac_control->stats_mem,
1008 mac_control->stats_mem_phy);
1013 * s2io_verify_pci_mode -
1016 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1018 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1019 register u64 val64 = 0;
1020 int mode;
1022 val64 = readq(&bar0->pci_mode);
1023 mode = (u8)GET_PCI_MODE(val64);
1025 if (val64 & PCI_MODE_UNKNOWN_MODE)
1026 return -1; /* Unknown PCI mode */
1027 return mode;
1030 #define NEC_VENID 0x1033
1031 #define NEC_DEVID 0x0125
1032 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1034 struct pci_dev *tdev = NULL;
1035 for_each_pci_dev(tdev) {
1036 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1037 if (tdev->bus == s2io_pdev->bus->parent) {
1038 pci_dev_put(tdev);
1039 return 1;
1043 return 0;
1046 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1048 * s2io_print_pci_mode -
1050 static int s2io_print_pci_mode(struct s2io_nic *nic)
1052 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1053 register u64 val64 = 0;
1054 int mode;
1055 struct config_param *config = &nic->config;
1056 const char *pcimode;
1058 val64 = readq(&bar0->pci_mode);
1059 mode = (u8)GET_PCI_MODE(val64);
1061 if (val64 & PCI_MODE_UNKNOWN_MODE)
1062 return -1; /* Unknown PCI mode */
1064 config->bus_speed = bus_speed[mode];
1066 if (s2io_on_nec_bridge(nic->pdev)) {
1067 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1068 nic->dev->name);
1069 return mode;
1072 switch (mode) {
1073 case PCI_MODE_PCI_33:
1074 pcimode = "33MHz PCI bus";
1075 break;
1076 case PCI_MODE_PCI_66:
1077 pcimode = "66MHz PCI bus";
1078 break;
1079 case PCI_MODE_PCIX_M1_66:
1080 pcimode = "66MHz PCIX(M1) bus";
1081 break;
1082 case PCI_MODE_PCIX_M1_100:
1083 pcimode = "100MHz PCIX(M1) bus";
1084 break;
1085 case PCI_MODE_PCIX_M1_133:
1086 pcimode = "133MHz PCIX(M1) bus";
1087 break;
1088 case PCI_MODE_PCIX_M2_66:
1089 pcimode = "133MHz PCIX(M2) bus";
1090 break;
1091 case PCI_MODE_PCIX_M2_100:
1092 pcimode = "200MHz PCIX(M2) bus";
1093 break;
1094 case PCI_MODE_PCIX_M2_133:
1095 pcimode = "266MHz PCIX(M2) bus";
1096 break;
1097 default:
1098 pcimode = "unsupported bus!";
1099 mode = -1;
1102 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1103 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1105 return mode;
1109 * init_tti - Initialization transmit traffic interrupt scheme
1110 * @nic: device private variable
1111 * @link: link status (UP/DOWN) used to enable/disable continuous
1112 * transmit interrupts
1113 * Description: The function configures transmit traffic interrupts
1114 * Return Value: SUCCESS on success and
1115 * '-1' on failure
1118 static int init_tti(struct s2io_nic *nic, int link)
1120 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1121 register u64 val64 = 0;
1122 int i;
1123 struct config_param *config = &nic->config;
1125 for (i = 0; i < config->tx_fifo_num; i++) {
1127 * TTI Initialization. Default Tx timer gets us about
1128 * 250 interrupts per sec. Continuous interrupts are enabled
1129 * by default.
1131 if (nic->device_type == XFRAME_II_DEVICE) {
1132 int count = (nic->config.bus_speed * 125)/2;
1133 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1134 } else
1135 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1137 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1138 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1139 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1140 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1141 if (i == 0)
1142 if (use_continuous_tx_intrs && (link == LINK_UP))
1143 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1144 writeq(val64, &bar0->tti_data1_mem);
1146 if (nic->config.intr_type == MSI_X) {
1147 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1148 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1149 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1150 TTI_DATA2_MEM_TX_UFC_D(0x300);
1151 } else {
1152 if ((nic->config.tx_steering_type ==
1153 TX_DEFAULT_STEERING) &&
1154 (config->tx_fifo_num > 1) &&
1155 (i >= nic->udp_fifo_idx) &&
1156 (i < (nic->udp_fifo_idx +
1157 nic->total_udp_fifos)))
1158 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1159 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1160 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1161 TTI_DATA2_MEM_TX_UFC_D(0x120);
1162 else
1163 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1164 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1165 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1166 TTI_DATA2_MEM_TX_UFC_D(0x80);
1169 writeq(val64, &bar0->tti_data2_mem);
1171 val64 = TTI_CMD_MEM_WE |
1172 TTI_CMD_MEM_STROBE_NEW_CMD |
1173 TTI_CMD_MEM_OFFSET(i);
1174 writeq(val64, &bar0->tti_command_mem);
1176 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1177 TTI_CMD_MEM_STROBE_NEW_CMD,
1178 S2IO_BIT_RESET) != SUCCESS)
1179 return FAILURE;
1182 return SUCCESS;
1186 * init_nic - Initialization of hardware
1187 * @nic: device private variable
1188 * Description: The function sequentially configures every block
1189 * of the H/W from their reset values.
1190 * Return Value: SUCCESS on success and
1191 * '-1' on failure (endian settings incorrect).
1194 static int init_nic(struct s2io_nic *nic)
1196 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1197 struct net_device *dev = nic->dev;
1198 register u64 val64 = 0;
1199 void __iomem *add;
1200 u32 time;
1201 int i, j;
1202 int dtx_cnt = 0;
1203 unsigned long long mem_share;
1204 int mem_size;
1205 struct config_param *config = &nic->config;
1206 struct mac_info *mac_control = &nic->mac_control;
1208 /* to set the swapper controle on the card */
1209 if (s2io_set_swapper(nic)) {
1210 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1211 return -EIO;
1215 * Herc requires EOI to be removed from reset before XGXS, so..
1217 if (nic->device_type & XFRAME_II_DEVICE) {
1218 val64 = 0xA500000000ULL;
1219 writeq(val64, &bar0->sw_reset);
1220 msleep(500);
1221 val64 = readq(&bar0->sw_reset);
1224 /* Remove XGXS from reset state */
1225 val64 = 0;
1226 writeq(val64, &bar0->sw_reset);
1227 msleep(500);
1228 val64 = readq(&bar0->sw_reset);
1230 /* Ensure that it's safe to access registers by checking
1231 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1233 if (nic->device_type == XFRAME_II_DEVICE) {
1234 for (i = 0; i < 50; i++) {
1235 val64 = readq(&bar0->adapter_status);
1236 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1237 break;
1238 msleep(10);
1240 if (i == 50)
1241 return -ENODEV;
1244 /* Enable Receiving broadcasts */
1245 add = &bar0->mac_cfg;
1246 val64 = readq(&bar0->mac_cfg);
1247 val64 |= MAC_RMAC_BCAST_ENABLE;
1248 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1249 writel((u32)val64, add);
1250 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1251 writel((u32) (val64 >> 32), (add + 4));
1253 /* Read registers in all blocks */
1254 val64 = readq(&bar0->mac_int_mask);
1255 val64 = readq(&bar0->mc_int_mask);
1256 val64 = readq(&bar0->xgxs_int_mask);
1258 /* Set MTU */
1259 val64 = dev->mtu;
1260 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1262 if (nic->device_type & XFRAME_II_DEVICE) {
1263 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1264 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1265 &bar0->dtx_control, UF);
1266 if (dtx_cnt & 0x1)
1267 msleep(1); /* Necessary!! */
1268 dtx_cnt++;
1270 } else {
1271 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1272 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1273 &bar0->dtx_control, UF);
1274 val64 = readq(&bar0->dtx_control);
1275 dtx_cnt++;
1279 /* Tx DMA Initialization */
1280 val64 = 0;
1281 writeq(val64, &bar0->tx_fifo_partition_0);
1282 writeq(val64, &bar0->tx_fifo_partition_1);
1283 writeq(val64, &bar0->tx_fifo_partition_2);
1284 writeq(val64, &bar0->tx_fifo_partition_3);
1286 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1287 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1289 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1290 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1292 if (i == (config->tx_fifo_num - 1)) {
1293 if (i % 2 == 0)
1294 i++;
1297 switch (i) {
1298 case 1:
1299 writeq(val64, &bar0->tx_fifo_partition_0);
1300 val64 = 0;
1301 j = 0;
1302 break;
1303 case 3:
1304 writeq(val64, &bar0->tx_fifo_partition_1);
1305 val64 = 0;
1306 j = 0;
1307 break;
1308 case 5:
1309 writeq(val64, &bar0->tx_fifo_partition_2);
1310 val64 = 0;
1311 j = 0;
1312 break;
1313 case 7:
1314 writeq(val64, &bar0->tx_fifo_partition_3);
1315 val64 = 0;
1316 j = 0;
1317 break;
1318 default:
1319 j++;
1320 break;
1325 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1326 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1328 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1329 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1331 val64 = readq(&bar0->tx_fifo_partition_0);
1332 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1333 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1336 * Initialization of Tx_PA_CONFIG register to ignore packet
1337 * integrity checking.
1339 val64 = readq(&bar0->tx_pa_cfg);
1340 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1341 TX_PA_CFG_IGNORE_SNAP_OUI |
1342 TX_PA_CFG_IGNORE_LLC_CTRL |
1343 TX_PA_CFG_IGNORE_L2_ERR;
1344 writeq(val64, &bar0->tx_pa_cfg);
1346 /* Rx DMA initialization. */
1347 val64 = 0;
1348 for (i = 0; i < config->rx_ring_num; i++) {
1349 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1351 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1353 writeq(val64, &bar0->rx_queue_priority);
1356 * Allocating equal share of memory to all the
1357 * configured Rings.
1359 val64 = 0;
1360 if (nic->device_type & XFRAME_II_DEVICE)
1361 mem_size = 32;
1362 else
1363 mem_size = 64;
1365 for (i = 0; i < config->rx_ring_num; i++) {
1366 switch (i) {
1367 case 0:
1368 mem_share = (mem_size / config->rx_ring_num +
1369 mem_size % config->rx_ring_num);
1370 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1371 continue;
1372 case 1:
1373 mem_share = (mem_size / config->rx_ring_num);
1374 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1375 continue;
1376 case 2:
1377 mem_share = (mem_size / config->rx_ring_num);
1378 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1379 continue;
1380 case 3:
1381 mem_share = (mem_size / config->rx_ring_num);
1382 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1383 continue;
1384 case 4:
1385 mem_share = (mem_size / config->rx_ring_num);
1386 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1387 continue;
1388 case 5:
1389 mem_share = (mem_size / config->rx_ring_num);
1390 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1391 continue;
1392 case 6:
1393 mem_share = (mem_size / config->rx_ring_num);
1394 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1395 continue;
1396 case 7:
1397 mem_share = (mem_size / config->rx_ring_num);
1398 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1399 continue;
1402 writeq(val64, &bar0->rx_queue_cfg);
1405 * Filling Tx round robin registers
1406 * as per the number of FIFOs for equal scheduling priority
1408 switch (config->tx_fifo_num) {
1409 case 1:
1410 val64 = 0x0;
1411 writeq(val64, &bar0->tx_w_round_robin_0);
1412 writeq(val64, &bar0->tx_w_round_robin_1);
1413 writeq(val64, &bar0->tx_w_round_robin_2);
1414 writeq(val64, &bar0->tx_w_round_robin_3);
1415 writeq(val64, &bar0->tx_w_round_robin_4);
1416 break;
1417 case 2:
1418 val64 = 0x0001000100010001ULL;
1419 writeq(val64, &bar0->tx_w_round_robin_0);
1420 writeq(val64, &bar0->tx_w_round_robin_1);
1421 writeq(val64, &bar0->tx_w_round_robin_2);
1422 writeq(val64, &bar0->tx_w_round_robin_3);
1423 val64 = 0x0001000100000000ULL;
1424 writeq(val64, &bar0->tx_w_round_robin_4);
1425 break;
1426 case 3:
1427 val64 = 0x0001020001020001ULL;
1428 writeq(val64, &bar0->tx_w_round_robin_0);
1429 val64 = 0x0200010200010200ULL;
1430 writeq(val64, &bar0->tx_w_round_robin_1);
1431 val64 = 0x0102000102000102ULL;
1432 writeq(val64, &bar0->tx_w_round_robin_2);
1433 val64 = 0x0001020001020001ULL;
1434 writeq(val64, &bar0->tx_w_round_robin_3);
1435 val64 = 0x0200010200000000ULL;
1436 writeq(val64, &bar0->tx_w_round_robin_4);
1437 break;
1438 case 4:
1439 val64 = 0x0001020300010203ULL;
1440 writeq(val64, &bar0->tx_w_round_robin_0);
1441 writeq(val64, &bar0->tx_w_round_robin_1);
1442 writeq(val64, &bar0->tx_w_round_robin_2);
1443 writeq(val64, &bar0->tx_w_round_robin_3);
1444 val64 = 0x0001020300000000ULL;
1445 writeq(val64, &bar0->tx_w_round_robin_4);
1446 break;
1447 case 5:
1448 val64 = 0x0001020304000102ULL;
1449 writeq(val64, &bar0->tx_w_round_robin_0);
1450 val64 = 0x0304000102030400ULL;
1451 writeq(val64, &bar0->tx_w_round_robin_1);
1452 val64 = 0x0102030400010203ULL;
1453 writeq(val64, &bar0->tx_w_round_robin_2);
1454 val64 = 0x0400010203040001ULL;
1455 writeq(val64, &bar0->tx_w_round_robin_3);
1456 val64 = 0x0203040000000000ULL;
1457 writeq(val64, &bar0->tx_w_round_robin_4);
1458 break;
1459 case 6:
1460 val64 = 0x0001020304050001ULL;
1461 writeq(val64, &bar0->tx_w_round_robin_0);
1462 val64 = 0x0203040500010203ULL;
1463 writeq(val64, &bar0->tx_w_round_robin_1);
1464 val64 = 0x0405000102030405ULL;
1465 writeq(val64, &bar0->tx_w_round_robin_2);
1466 val64 = 0x0001020304050001ULL;
1467 writeq(val64, &bar0->tx_w_round_robin_3);
1468 val64 = 0x0203040500000000ULL;
1469 writeq(val64, &bar0->tx_w_round_robin_4);
1470 break;
1471 case 7:
1472 val64 = 0x0001020304050600ULL;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 val64 = 0x0102030405060001ULL;
1475 writeq(val64, &bar0->tx_w_round_robin_1);
1476 val64 = 0x0203040506000102ULL;
1477 writeq(val64, &bar0->tx_w_round_robin_2);
1478 val64 = 0x0304050600010203ULL;
1479 writeq(val64, &bar0->tx_w_round_robin_3);
1480 val64 = 0x0405060000000000ULL;
1481 writeq(val64, &bar0->tx_w_round_robin_4);
1482 break;
1483 case 8:
1484 val64 = 0x0001020304050607ULL;
1485 writeq(val64, &bar0->tx_w_round_robin_0);
1486 writeq(val64, &bar0->tx_w_round_robin_1);
1487 writeq(val64, &bar0->tx_w_round_robin_2);
1488 writeq(val64, &bar0->tx_w_round_robin_3);
1489 val64 = 0x0001020300000000ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1494 /* Enable all configured Tx FIFO partitions */
1495 val64 = readq(&bar0->tx_fifo_partition_0);
1496 val64 |= (TX_FIFO_PARTITION_EN);
1497 writeq(val64, &bar0->tx_fifo_partition_0);
1499 /* Filling the Rx round robin registers as per the
1500 * number of Rings and steering based on QoS with
1501 * equal priority.
1503 switch (config->rx_ring_num) {
1504 case 1:
1505 val64 = 0x0;
1506 writeq(val64, &bar0->rx_w_round_robin_0);
1507 writeq(val64, &bar0->rx_w_round_robin_1);
1508 writeq(val64, &bar0->rx_w_round_robin_2);
1509 writeq(val64, &bar0->rx_w_round_robin_3);
1510 writeq(val64, &bar0->rx_w_round_robin_4);
1512 val64 = 0x8080808080808080ULL;
1513 writeq(val64, &bar0->rts_qos_steering);
1514 break;
1515 case 2:
1516 val64 = 0x0001000100010001ULL;
1517 writeq(val64, &bar0->rx_w_round_robin_0);
1518 writeq(val64, &bar0->rx_w_round_robin_1);
1519 writeq(val64, &bar0->rx_w_round_robin_2);
1520 writeq(val64, &bar0->rx_w_round_robin_3);
1521 val64 = 0x0001000100000000ULL;
1522 writeq(val64, &bar0->rx_w_round_robin_4);
1524 val64 = 0x8080808040404040ULL;
1525 writeq(val64, &bar0->rts_qos_steering);
1526 break;
1527 case 3:
1528 val64 = 0x0001020001020001ULL;
1529 writeq(val64, &bar0->rx_w_round_robin_0);
1530 val64 = 0x0200010200010200ULL;
1531 writeq(val64, &bar0->rx_w_round_robin_1);
1532 val64 = 0x0102000102000102ULL;
1533 writeq(val64, &bar0->rx_w_round_robin_2);
1534 val64 = 0x0001020001020001ULL;
1535 writeq(val64, &bar0->rx_w_round_robin_3);
1536 val64 = 0x0200010200000000ULL;
1537 writeq(val64, &bar0->rx_w_round_robin_4);
1539 val64 = 0x8080804040402020ULL;
1540 writeq(val64, &bar0->rts_qos_steering);
1541 break;
1542 case 4:
1543 val64 = 0x0001020300010203ULL;
1544 writeq(val64, &bar0->rx_w_round_robin_0);
1545 writeq(val64, &bar0->rx_w_round_robin_1);
1546 writeq(val64, &bar0->rx_w_round_robin_2);
1547 writeq(val64, &bar0->rx_w_round_robin_3);
1548 val64 = 0x0001020300000000ULL;
1549 writeq(val64, &bar0->rx_w_round_robin_4);
1551 val64 = 0x8080404020201010ULL;
1552 writeq(val64, &bar0->rts_qos_steering);
1553 break;
1554 case 5:
1555 val64 = 0x0001020304000102ULL;
1556 writeq(val64, &bar0->rx_w_round_robin_0);
1557 val64 = 0x0304000102030400ULL;
1558 writeq(val64, &bar0->rx_w_round_robin_1);
1559 val64 = 0x0102030400010203ULL;
1560 writeq(val64, &bar0->rx_w_round_robin_2);
1561 val64 = 0x0400010203040001ULL;
1562 writeq(val64, &bar0->rx_w_round_robin_3);
1563 val64 = 0x0203040000000000ULL;
1564 writeq(val64, &bar0->rx_w_round_robin_4);
1566 val64 = 0x8080404020201008ULL;
1567 writeq(val64, &bar0->rts_qos_steering);
1568 break;
1569 case 6:
1570 val64 = 0x0001020304050001ULL;
1571 writeq(val64, &bar0->rx_w_round_robin_0);
1572 val64 = 0x0203040500010203ULL;
1573 writeq(val64, &bar0->rx_w_round_robin_1);
1574 val64 = 0x0405000102030405ULL;
1575 writeq(val64, &bar0->rx_w_round_robin_2);
1576 val64 = 0x0001020304050001ULL;
1577 writeq(val64, &bar0->rx_w_round_robin_3);
1578 val64 = 0x0203040500000000ULL;
1579 writeq(val64, &bar0->rx_w_round_robin_4);
1581 val64 = 0x8080404020100804ULL;
1582 writeq(val64, &bar0->rts_qos_steering);
1583 break;
1584 case 7:
1585 val64 = 0x0001020304050600ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_0);
1587 val64 = 0x0102030405060001ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_1);
1589 val64 = 0x0203040506000102ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_2);
1591 val64 = 0x0304050600010203ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 val64 = 0x0405060000000000ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_4);
1596 val64 = 0x8080402010080402ULL;
1597 writeq(val64, &bar0->rts_qos_steering);
1598 break;
1599 case 8:
1600 val64 = 0x0001020304050607ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_0);
1602 writeq(val64, &bar0->rx_w_round_robin_1);
1603 writeq(val64, &bar0->rx_w_round_robin_2);
1604 writeq(val64, &bar0->rx_w_round_robin_3);
1605 val64 = 0x0001020300000000ULL;
1606 writeq(val64, &bar0->rx_w_round_robin_4);
1608 val64 = 0x8040201008040201ULL;
1609 writeq(val64, &bar0->rts_qos_steering);
1610 break;
1613 /* UDP Fix */
1614 val64 = 0;
1615 for (i = 0; i < 8; i++)
1616 writeq(val64, &bar0->rts_frm_len_n[i]);
1618 /* Set the default rts frame length for the rings configured */
1619 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1620 for (i = 0 ; i < config->rx_ring_num ; i++)
1621 writeq(val64, &bar0->rts_frm_len_n[i]);
1623 /* Set the frame length for the configured rings
1624 * desired by the user
1626 for (i = 0; i < config->rx_ring_num; i++) {
1627 /* If rts_frm_len[i] == 0 then it is assumed that user not
1628 * specified frame length steering.
1629 * If the user provides the frame length then program
1630 * the rts_frm_len register for those values or else
1631 * leave it as it is.
1633 if (rts_frm_len[i] != 0) {
1634 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1635 &bar0->rts_frm_len_n[i]);
1639 /* Disable differentiated services steering logic */
1640 for (i = 0; i < 64; i++) {
1641 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1642 DBG_PRINT(ERR_DBG,
1643 "%s: rts_ds_steer failed on codepoint %d\n",
1644 dev->name, i);
1645 return -ENODEV;
1649 /* Program statistics memory */
1650 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1652 if (nic->device_type == XFRAME_II_DEVICE) {
1653 val64 = STAT_BC(0x320);
1654 writeq(val64, &bar0->stat_byte_cnt);
1658 * Initializing the sampling rate for the device to calculate the
1659 * bandwidth utilization.
1661 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1662 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1663 writeq(val64, &bar0->mac_link_util);
1666 * Initializing the Transmit and Receive Traffic Interrupt
1667 * Scheme.
1670 /* Initialize TTI */
1671 if (SUCCESS != init_tti(nic, nic->last_link_state))
1672 return -ENODEV;
1674 /* RTI Initialization */
1675 if (nic->device_type == XFRAME_II_DEVICE) {
1677 * Programmed to generate Apprx 500 Intrs per
1678 * second
1680 int count = (nic->config.bus_speed * 125)/4;
1681 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1682 } else
1683 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1684 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1685 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1686 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1687 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1689 writeq(val64, &bar0->rti_data1_mem);
1691 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1692 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1693 if (nic->config.intr_type == MSI_X)
1694 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1695 RTI_DATA2_MEM_RX_UFC_D(0x40));
1696 else
1697 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1698 RTI_DATA2_MEM_RX_UFC_D(0x80));
1699 writeq(val64, &bar0->rti_data2_mem);
1701 for (i = 0; i < config->rx_ring_num; i++) {
1702 val64 = RTI_CMD_MEM_WE |
1703 RTI_CMD_MEM_STROBE_NEW_CMD |
1704 RTI_CMD_MEM_OFFSET(i);
1705 writeq(val64, &bar0->rti_command_mem);
1708 * Once the operation completes, the Strobe bit of the
1709 * command register will be reset. We poll for this
1710 * particular condition. We wait for a maximum of 500ms
1711 * for the operation to complete, if it's not complete
1712 * by then we return error.
1714 time = 0;
1715 while (true) {
1716 val64 = readq(&bar0->rti_command_mem);
1717 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1718 break;
1720 if (time > 10) {
1721 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1722 dev->name);
1723 return -ENODEV;
1725 time++;
1726 msleep(50);
1731 * Initializing proper values as Pause threshold into all
1732 * the 8 Queues on Rx side.
1734 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1735 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1737 /* Disable RMAC PAD STRIPPING */
1738 add = &bar0->mac_cfg;
1739 val64 = readq(&bar0->mac_cfg);
1740 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1741 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1742 writel((u32) (val64), add);
1743 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1744 writel((u32) (val64 >> 32), (add + 4));
1745 val64 = readq(&bar0->mac_cfg);
1747 /* Enable FCS stripping by adapter */
1748 add = &bar0->mac_cfg;
1749 val64 = readq(&bar0->mac_cfg);
1750 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1751 if (nic->device_type == XFRAME_II_DEVICE)
1752 writeq(val64, &bar0->mac_cfg);
1753 else {
1754 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1755 writel((u32) (val64), add);
1756 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1757 writel((u32) (val64 >> 32), (add + 4));
1761 * Set the time value to be inserted in the pause frame
1762 * generated by xena.
1764 val64 = readq(&bar0->rmac_pause_cfg);
1765 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1766 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1767 writeq(val64, &bar0->rmac_pause_cfg);
1770 * Set the Threshold Limit for Generating the pause frame
1771 * If the amount of data in any Queue exceeds ratio of
1772 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1773 * pause frame is generated
1775 val64 = 0;
1776 for (i = 0; i < 4; i++) {
1777 val64 |= (((u64)0xFF00 |
1778 nic->mac_control.mc_pause_threshold_q0q3)
1779 << (i * 2 * 8));
1781 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1783 val64 = 0;
1784 for (i = 0; i < 4; i++) {
1785 val64 |= (((u64)0xFF00 |
1786 nic->mac_control.mc_pause_threshold_q4q7)
1787 << (i * 2 * 8));
1789 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1792 * TxDMA will stop Read request if the number of read split has
1793 * exceeded the limit pointed by shared_splits
1795 val64 = readq(&bar0->pic_control);
1796 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1797 writeq(val64, &bar0->pic_control);
1799 if (nic->config.bus_speed == 266) {
1800 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1801 writeq(0x0, &bar0->read_retry_delay);
1802 writeq(0x0, &bar0->write_retry_delay);
1806 * Programming the Herc to split every write transaction
1807 * that does not start on an ADB to reduce disconnects.
1809 if (nic->device_type == XFRAME_II_DEVICE) {
1810 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1811 MISC_LINK_STABILITY_PRD(3);
1812 writeq(val64, &bar0->misc_control);
1813 val64 = readq(&bar0->pic_control2);
1814 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1815 writeq(val64, &bar0->pic_control2);
1817 if (strstr(nic->product_name, "CX4")) {
1818 val64 = TMAC_AVG_IPG(0x17);
1819 writeq(val64, &bar0->tmac_avg_ipg);
1822 return SUCCESS;
1824 #define LINK_UP_DOWN_INTERRUPT 1
1825 #define MAC_RMAC_ERR_TIMER 2
1827 static int s2io_link_fault_indication(struct s2io_nic *nic)
1829 if (nic->device_type == XFRAME_II_DEVICE)
1830 return LINK_UP_DOWN_INTERRUPT;
1831 else
1832 return MAC_RMAC_ERR_TIMER;
1836 * do_s2io_write_bits - update alarm bits in alarm register
1837 * @value: alarm bits
1838 * @flag: interrupt status
1839 * @addr: address value
1840 * Description: update alarm bits in alarm register
1841 * Return Value:
1842 * NONE.
1844 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1846 u64 temp64;
1848 temp64 = readq(addr);
1850 if (flag == ENABLE_INTRS)
1851 temp64 &= ~((u64)value);
1852 else
1853 temp64 |= ((u64)value);
1854 writeq(temp64, addr);
1857 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1859 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1860 register u64 gen_int_mask = 0;
1861 u64 interruptible;
1863 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1864 if (mask & TX_DMA_INTR) {
1865 gen_int_mask |= TXDMA_INT_M;
1867 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1868 TXDMA_PCC_INT | TXDMA_TTI_INT |
1869 TXDMA_LSO_INT | TXDMA_TPA_INT |
1870 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1872 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1873 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1874 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1875 &bar0->pfc_err_mask);
1877 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1878 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1879 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1881 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1882 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1883 PCC_N_SERR | PCC_6_COF_OV_ERR |
1884 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1885 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1886 PCC_TXB_ECC_SG_ERR,
1887 flag, &bar0->pcc_err_mask);
1889 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1890 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1892 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1893 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1894 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1895 flag, &bar0->lso_err_mask);
1897 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1898 flag, &bar0->tpa_err_mask);
1900 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1903 if (mask & TX_MAC_INTR) {
1904 gen_int_mask |= TXMAC_INT_M;
1905 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1906 &bar0->mac_int_mask);
1907 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1908 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1909 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1910 flag, &bar0->mac_tmac_err_mask);
1913 if (mask & TX_XGXS_INTR) {
1914 gen_int_mask |= TXXGXS_INT_M;
1915 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1916 &bar0->xgxs_int_mask);
1917 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1918 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1919 flag, &bar0->xgxs_txgxs_err_mask);
1922 if (mask & RX_DMA_INTR) {
1923 gen_int_mask |= RXDMA_INT_M;
1924 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1925 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1926 flag, &bar0->rxdma_int_mask);
1927 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1928 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1929 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1930 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1931 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1932 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1933 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1934 &bar0->prc_pcix_err_mask);
1935 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1936 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1937 &bar0->rpa_err_mask);
1938 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1939 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1940 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1941 RDA_FRM_ECC_SG_ERR |
1942 RDA_MISC_ERR|RDA_PCIX_ERR,
1943 flag, &bar0->rda_err_mask);
1944 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1945 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1946 flag, &bar0->rti_err_mask);
1949 if (mask & RX_MAC_INTR) {
1950 gen_int_mask |= RXMAC_INT_M;
1951 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1952 &bar0->mac_int_mask);
1953 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1954 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1955 RMAC_DOUBLE_ECC_ERR);
1956 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1957 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1958 do_s2io_write_bits(interruptible,
1959 flag, &bar0->mac_rmac_err_mask);
1962 if (mask & RX_XGXS_INTR) {
1963 gen_int_mask |= RXXGXS_INT_M;
1964 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1965 &bar0->xgxs_int_mask);
1966 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1967 &bar0->xgxs_rxgxs_err_mask);
1970 if (mask & MC_INTR) {
1971 gen_int_mask |= MC_INT_M;
1972 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1973 flag, &bar0->mc_int_mask);
1974 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1975 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1976 &bar0->mc_err_mask);
1978 nic->general_int_mask = gen_int_mask;
1980 /* Remove this line when alarm interrupts are enabled */
1981 nic->general_int_mask = 0;
1985 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1986 * @nic: device private variable,
1987 * @mask: A mask indicating which Intr block must be modified and,
1988 * @flag: A flag indicating whether to enable or disable the Intrs.
1989 * Description: This function will either disable or enable the interrupts
1990 * depending on the flag argument. The mask argument can be used to
1991 * enable/disable any Intr block.
1992 * Return Value: NONE.
1995 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1997 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1998 register u64 temp64 = 0, intr_mask = 0;
2000 intr_mask = nic->general_int_mask;
2002 /* Top level interrupt classification */
2003 /* PIC Interrupts */
2004 if (mask & TX_PIC_INTR) {
2005 /* Enable PIC Intrs in the general intr mask register */
2006 intr_mask |= TXPIC_INT_M;
2007 if (flag == ENABLE_INTRS) {
2009 * If Hercules adapter enable GPIO otherwise
2010 * disable all PCIX, Flash, MDIO, IIC and GPIO
2011 * interrupts for now.
2012 * TODO
2014 if (s2io_link_fault_indication(nic) ==
2015 LINK_UP_DOWN_INTERRUPT) {
2016 do_s2io_write_bits(PIC_INT_GPIO, flag,
2017 &bar0->pic_int_mask);
2018 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2019 &bar0->gpio_int_mask);
2020 } else
2021 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2022 } else if (flag == DISABLE_INTRS) {
2024 * Disable PIC Intrs in the general
2025 * intr mask register
2027 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031 /* Tx traffic interrupts */
2032 if (mask & TX_TRAFFIC_INTR) {
2033 intr_mask |= TXTRAFFIC_INT_M;
2034 if (flag == ENABLE_INTRS) {
2036 * Enable all the Tx side interrupts
2037 * writing 0 Enables all 64 TX interrupt levels
2039 writeq(0x0, &bar0->tx_traffic_mask);
2040 } else if (flag == DISABLE_INTRS) {
2042 * Disable Tx Traffic Intrs in the general intr mask
2043 * register.
2045 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2049 /* Rx traffic interrupts */
2050 if (mask & RX_TRAFFIC_INTR) {
2051 intr_mask |= RXTRAFFIC_INT_M;
2052 if (flag == ENABLE_INTRS) {
2053 /* writing 0 Enables all 8 RX interrupt levels */
2054 writeq(0x0, &bar0->rx_traffic_mask);
2055 } else if (flag == DISABLE_INTRS) {
2057 * Disable Rx Traffic Intrs in the general intr mask
2058 * register.
2060 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2064 temp64 = readq(&bar0->general_int_mask);
2065 if (flag == ENABLE_INTRS)
2066 temp64 &= ~((u64)intr_mask);
2067 else
2068 temp64 = DISABLE_ALL_INTRS;
2069 writeq(temp64, &bar0->general_int_mask);
2071 nic->general_int_mask = readq(&bar0->general_int_mask);
2075 * verify_pcc_quiescent- Checks for PCC quiescent state
2076 * Return: 1 If PCC is quiescence
2077 * 0 If PCC is not quiescence
2079 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2081 int ret = 0, herc;
2082 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2083 u64 val64 = readq(&bar0->adapter_status);
2085 herc = (sp->device_type == XFRAME_II_DEVICE);
2087 if (flag == false) {
2088 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2089 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2090 ret = 1;
2091 } else {
2092 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2093 ret = 1;
2095 } else {
2096 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2097 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2098 ADAPTER_STATUS_RMAC_PCC_IDLE))
2099 ret = 1;
2100 } else {
2101 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2102 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2103 ret = 1;
2107 return ret;
2110 * verify_xena_quiescence - Checks whether the H/W is ready
2111 * Description: Returns whether the H/W is ready to go or not. Depending
2112 * on whether adapter enable bit was written or not the comparison
2113 * differs and the calling function passes the input argument flag to
2114 * indicate this.
2115 * Return: 1 If xena is quiescence
2116 * 0 If Xena is not quiescence
2119 static int verify_xena_quiescence(struct s2io_nic *sp)
2121 int mode;
2122 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2123 u64 val64 = readq(&bar0->adapter_status);
2124 mode = s2io_verify_pci_mode(sp);
2126 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2127 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2128 return 0;
2130 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2131 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2132 return 0;
2134 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2135 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2136 return 0;
2138 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2139 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2140 return 0;
2142 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2143 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2144 return 0;
2146 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2147 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2148 return 0;
2150 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2151 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2152 return 0;
2154 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2155 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2156 return 0;
2160 * In PCI 33 mode, the P_PLL is not used, and therefore,
2161 * the the P_PLL_LOCK bit in the adapter_status register will
2162 * not be asserted.
2164 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2165 sp->device_type == XFRAME_II_DEVICE &&
2166 mode != PCI_MODE_PCI_33) {
2167 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2168 return 0;
2170 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2171 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2172 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2173 return 0;
2175 return 1;
2179 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2180 * @sp: Pointer to device specifc structure
2181 * Description :
2182 * New procedure to clear mac address reading problems on Alpha platforms
2186 static void fix_mac_address(struct s2io_nic *sp)
2188 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2189 int i = 0;
2191 while (fix_mac[i] != END_SIGN) {
2192 writeq(fix_mac[i++], &bar0->gpio_control);
2193 udelay(10);
2194 (void) readq(&bar0->gpio_control);
2199 * start_nic - Turns the device on
2200 * @nic : device private variable.
2201 * Description:
2202 * This function actually turns the device on. Before this function is
2203 * called,all Registers are configured from their reset states
2204 * and shared memory is allocated but the NIC is still quiescent. On
2205 * calling this function, the device interrupts are cleared and the NIC is
2206 * literally switched on by writing into the adapter control register.
2207 * Return Value:
2208 * SUCCESS on success and -1 on failure.
2211 static int start_nic(struct s2io_nic *nic)
2213 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2214 struct net_device *dev = nic->dev;
2215 register u64 val64 = 0;
2216 u16 subid, i;
2217 struct config_param *config = &nic->config;
2218 struct mac_info *mac_control = &nic->mac_control;
2220 /* PRC Initialization and configuration */
2221 for (i = 0; i < config->rx_ring_num; i++) {
2222 struct ring_info *ring = &mac_control->rings[i];
2224 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2225 &bar0->prc_rxd0_n[i]);
2227 val64 = readq(&bar0->prc_ctrl_n[i]);
2228 if (nic->rxd_mode == RXD_MODE_1)
2229 val64 |= PRC_CTRL_RC_ENABLED;
2230 else
2231 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2232 if (nic->device_type == XFRAME_II_DEVICE)
2233 val64 |= PRC_CTRL_GROUP_READS;
2234 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2235 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2236 writeq(val64, &bar0->prc_ctrl_n[i]);
2239 if (nic->rxd_mode == RXD_MODE_3B) {
2240 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2241 val64 = readq(&bar0->rx_pa_cfg);
2242 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2243 writeq(val64, &bar0->rx_pa_cfg);
2246 if (vlan_tag_strip == 0) {
2247 val64 = readq(&bar0->rx_pa_cfg);
2248 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2249 writeq(val64, &bar0->rx_pa_cfg);
2250 nic->vlan_strip_flag = 0;
2254 * Enabling MC-RLDRAM. After enabling the device, we timeout
2255 * for around 100ms, which is approximately the time required
2256 * for the device to be ready for operation.
2258 val64 = readq(&bar0->mc_rldram_mrs);
2259 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2260 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2261 val64 = readq(&bar0->mc_rldram_mrs);
2263 msleep(100); /* Delay by around 100 ms. */
2265 /* Enabling ECC Protection. */
2266 val64 = readq(&bar0->adapter_control);
2267 val64 &= ~ADAPTER_ECC_EN;
2268 writeq(val64, &bar0->adapter_control);
2271 * Verify if the device is ready to be enabled, if so enable
2272 * it.
2274 val64 = readq(&bar0->adapter_status);
2275 if (!verify_xena_quiescence(nic)) {
2276 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2277 "Adapter status reads: 0x%llx\n",
2278 dev->name, (unsigned long long)val64);
2279 return FAILURE;
2283 * With some switches, link might be already up at this point.
2284 * Because of this weird behavior, when we enable laser,
2285 * we may not get link. We need to handle this. We cannot
2286 * figure out which switch is misbehaving. So we are forced to
2287 * make a global change.
2290 /* Enabling Laser. */
2291 val64 = readq(&bar0->adapter_control);
2292 val64 |= ADAPTER_EOI_TX_ON;
2293 writeq(val64, &bar0->adapter_control);
2295 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2297 * Dont see link state interrupts initially on some switches,
2298 * so directly scheduling the link state task here.
2300 schedule_work(&nic->set_link_task);
2302 /* SXE-002: Initialize link and activity LED */
2303 subid = nic->pdev->subsystem_device;
2304 if (((subid & 0xFF) >= 0x07) &&
2305 (nic->device_type == XFRAME_I_DEVICE)) {
2306 val64 = readq(&bar0->gpio_control);
2307 val64 |= 0x0000800000000000ULL;
2308 writeq(val64, &bar0->gpio_control);
2309 val64 = 0x0411040400000000ULL;
2310 writeq(val64, (void __iomem *)bar0 + 0x2700);
2313 return SUCCESS;
2316 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2318 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2319 struct TxD *txdlp, int get_off)
2321 struct s2io_nic *nic = fifo_data->nic;
2322 struct sk_buff *skb;
2323 struct TxD *txds;
2324 u16 j, frg_cnt;
2326 txds = txdlp;
2327 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2328 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2329 sizeof(u64), PCI_DMA_TODEVICE);
2330 txds++;
2333 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2334 if (!skb) {
2335 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2336 return NULL;
2338 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2339 skb_headlen(skb), PCI_DMA_TODEVICE);
2340 frg_cnt = skb_shinfo(skb)->nr_frags;
2341 if (frg_cnt) {
2342 txds++;
2343 for (j = 0; j < frg_cnt; j++, txds++) {
2344 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2345 if (!txds->Buffer_Pointer)
2346 break;
2347 pci_unmap_page(nic->pdev,
2348 (dma_addr_t)txds->Buffer_Pointer,
2349 skb_frag_size(frag), PCI_DMA_TODEVICE);
2352 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2353 return skb;
2357 * free_tx_buffers - Free all queued Tx buffers
2358 * @nic : device private variable.
2359 * Description:
2360 * Free all queued Tx buffers.
2361 * Return Value: void
2364 static void free_tx_buffers(struct s2io_nic *nic)
2366 struct net_device *dev = nic->dev;
2367 struct sk_buff *skb;
2368 struct TxD *txdp;
2369 int i, j;
2370 int cnt = 0;
2371 struct config_param *config = &nic->config;
2372 struct mac_info *mac_control = &nic->mac_control;
2373 struct stat_block *stats = mac_control->stats_info;
2374 struct swStat *swstats = &stats->sw_stat;
2376 for (i = 0; i < config->tx_fifo_num; i++) {
2377 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2378 struct fifo_info *fifo = &mac_control->fifos[i];
2379 unsigned long flags;
2381 spin_lock_irqsave(&fifo->tx_lock, flags);
2382 for (j = 0; j < tx_cfg->fifo_len; j++) {
2383 txdp = fifo->list_info[j].list_virt_addr;
2384 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2385 if (skb) {
2386 swstats->mem_freed += skb->truesize;
2387 dev_kfree_skb(skb);
2388 cnt++;
2391 DBG_PRINT(INTR_DBG,
2392 "%s: forcibly freeing %d skbs on FIFO%d\n",
2393 dev->name, cnt, i);
2394 fifo->tx_curr_get_info.offset = 0;
2395 fifo->tx_curr_put_info.offset = 0;
2396 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2401 * stop_nic - To stop the nic
2402 * @nic ; device private variable.
2403 * Description:
2404 * This function does exactly the opposite of what the start_nic()
2405 * function does. This function is called to stop the device.
2406 * Return Value:
2407 * void.
2410 static void stop_nic(struct s2io_nic *nic)
2412 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2413 register u64 val64 = 0;
2414 u16 interruptible;
2416 /* Disable all interrupts */
2417 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2418 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2419 interruptible |= TX_PIC_INTR;
2420 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2422 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2423 val64 = readq(&bar0->adapter_control);
2424 val64 &= ~(ADAPTER_CNTL_EN);
2425 writeq(val64, &bar0->adapter_control);
2429 * fill_rx_buffers - Allocates the Rx side skbs
2430 * @ring_info: per ring structure
2431 * @from_card_up: If this is true, we will map the buffer to get
2432 * the dma address for buf0 and buf1 to give it to the card.
2433 * Else we will sync the already mapped buffer to give it to the card.
2434 * Description:
2435 * The function allocates Rx side skbs and puts the physical
2436 * address of these buffers into the RxD buffer pointers, so that the NIC
2437 * can DMA the received frame into these locations.
2438 * The NIC supports 3 receive modes, viz
2439 * 1. single buffer,
2440 * 2. three buffer and
2441 * 3. Five buffer modes.
2442 * Each mode defines how many fragments the received frame will be split
2443 * up into by the NIC. The frame is split into L3 header, L4 Header,
2444 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2445 * is split into 3 fragments. As of now only single buffer mode is
2446 * supported.
2447 * Return Value:
2448 * SUCCESS on success or an appropriate -ve value on failure.
2450 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2451 int from_card_up)
2453 struct sk_buff *skb;
2454 struct RxD_t *rxdp;
2455 int off, size, block_no, block_no1;
2456 u32 alloc_tab = 0;
2457 u32 alloc_cnt;
2458 u64 tmp;
2459 struct buffAdd *ba;
2460 struct RxD_t *first_rxdp = NULL;
2461 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2462 int rxd_index = 0;
2463 struct RxD1 *rxdp1;
2464 struct RxD3 *rxdp3;
2465 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2467 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2469 block_no1 = ring->rx_curr_get_info.block_index;
2470 while (alloc_tab < alloc_cnt) {
2471 block_no = ring->rx_curr_put_info.block_index;
2473 off = ring->rx_curr_put_info.offset;
2475 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2477 rxd_index = off + 1;
2478 if (block_no)
2479 rxd_index += (block_no * ring->rxd_count);
2481 if ((block_no == block_no1) &&
2482 (off == ring->rx_curr_get_info.offset) &&
2483 (rxdp->Host_Control)) {
2484 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2485 ring->dev->name);
2486 goto end;
2488 if (off && (off == ring->rxd_count)) {
2489 ring->rx_curr_put_info.block_index++;
2490 if (ring->rx_curr_put_info.block_index ==
2491 ring->block_count)
2492 ring->rx_curr_put_info.block_index = 0;
2493 block_no = ring->rx_curr_put_info.block_index;
2494 off = 0;
2495 ring->rx_curr_put_info.offset = off;
2496 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2497 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2498 ring->dev->name, rxdp);
2502 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2503 ((ring->rxd_mode == RXD_MODE_3B) &&
2504 (rxdp->Control_2 & s2BIT(0)))) {
2505 ring->rx_curr_put_info.offset = off;
2506 goto end;
2508 /* calculate size of skb based on ring mode */
2509 size = ring->mtu +
2510 HEADER_ETHERNET_II_802_3_SIZE +
2511 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2512 if (ring->rxd_mode == RXD_MODE_1)
2513 size += NET_IP_ALIGN;
2514 else
2515 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2517 /* allocate skb */
2518 skb = netdev_alloc_skb(nic->dev, size);
2519 if (!skb) {
2520 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2521 ring->dev->name);
2522 if (first_rxdp) {
2523 dma_wmb();
2524 first_rxdp->Control_1 |= RXD_OWN_XENA;
2526 swstats->mem_alloc_fail_cnt++;
2528 return -ENOMEM ;
2530 swstats->mem_allocated += skb->truesize;
2532 if (ring->rxd_mode == RXD_MODE_1) {
2533 /* 1 buffer mode - normal operation mode */
2534 rxdp1 = (struct RxD1 *)rxdp;
2535 memset(rxdp, 0, sizeof(struct RxD1));
2536 skb_reserve(skb, NET_IP_ALIGN);
2537 rxdp1->Buffer0_ptr =
2538 pci_map_single(ring->pdev, skb->data,
2539 size - NET_IP_ALIGN,
2540 PCI_DMA_FROMDEVICE);
2541 if (pci_dma_mapping_error(nic->pdev,
2542 rxdp1->Buffer0_ptr))
2543 goto pci_map_failed;
2545 rxdp->Control_2 =
2546 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2547 rxdp->Host_Control = (unsigned long)skb;
2548 } else if (ring->rxd_mode == RXD_MODE_3B) {
2550 * 2 buffer mode -
2551 * 2 buffer mode provides 128
2552 * byte aligned receive buffers.
2555 rxdp3 = (struct RxD3 *)rxdp;
2556 /* save buffer pointers to avoid frequent dma mapping */
2557 Buffer0_ptr = rxdp3->Buffer0_ptr;
2558 Buffer1_ptr = rxdp3->Buffer1_ptr;
2559 memset(rxdp, 0, sizeof(struct RxD3));
2560 /* restore the buffer pointers for dma sync*/
2561 rxdp3->Buffer0_ptr = Buffer0_ptr;
2562 rxdp3->Buffer1_ptr = Buffer1_ptr;
2564 ba = &ring->ba[block_no][off];
2565 skb_reserve(skb, BUF0_LEN);
2566 tmp = (u64)(unsigned long)skb->data;
2567 tmp += ALIGN_SIZE;
2568 tmp &= ~ALIGN_SIZE;
2569 skb->data = (void *) (unsigned long)tmp;
2570 skb_reset_tail_pointer(skb);
2572 if (from_card_up) {
2573 rxdp3->Buffer0_ptr =
2574 pci_map_single(ring->pdev, ba->ba_0,
2575 BUF0_LEN,
2576 PCI_DMA_FROMDEVICE);
2577 if (pci_dma_mapping_error(nic->pdev,
2578 rxdp3->Buffer0_ptr))
2579 goto pci_map_failed;
2580 } else
2581 pci_dma_sync_single_for_device(ring->pdev,
2582 (dma_addr_t)rxdp3->Buffer0_ptr,
2583 BUF0_LEN,
2584 PCI_DMA_FROMDEVICE);
2586 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2587 if (ring->rxd_mode == RXD_MODE_3B) {
2588 /* Two buffer mode */
2591 * Buffer2 will have L3/L4 header plus
2592 * L4 payload
2594 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2595 skb->data,
2596 ring->mtu + 4,
2597 PCI_DMA_FROMDEVICE);
2599 if (pci_dma_mapping_error(nic->pdev,
2600 rxdp3->Buffer2_ptr))
2601 goto pci_map_failed;
2603 if (from_card_up) {
2604 rxdp3->Buffer1_ptr =
2605 pci_map_single(ring->pdev,
2606 ba->ba_1,
2607 BUF1_LEN,
2608 PCI_DMA_FROMDEVICE);
2610 if (pci_dma_mapping_error(nic->pdev,
2611 rxdp3->Buffer1_ptr)) {
2612 pci_unmap_single(ring->pdev,
2613 (dma_addr_t)(unsigned long)
2614 skb->data,
2615 ring->mtu + 4,
2616 PCI_DMA_FROMDEVICE);
2617 goto pci_map_failed;
2620 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2621 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2622 (ring->mtu + 4);
2624 rxdp->Control_2 |= s2BIT(0);
2625 rxdp->Host_Control = (unsigned long) (skb);
2627 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2628 rxdp->Control_1 |= RXD_OWN_XENA;
2629 off++;
2630 if (off == (ring->rxd_count + 1))
2631 off = 0;
2632 ring->rx_curr_put_info.offset = off;
2634 rxdp->Control_2 |= SET_RXD_MARKER;
2635 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2636 if (first_rxdp) {
2637 dma_wmb();
2638 first_rxdp->Control_1 |= RXD_OWN_XENA;
2640 first_rxdp = rxdp;
2642 ring->rx_bufs_left += 1;
2643 alloc_tab++;
2646 end:
2647 /* Transfer ownership of first descriptor to adapter just before
2648 * exiting. Before that, use memory barrier so that ownership
2649 * and other fields are seen by adapter correctly.
2651 if (first_rxdp) {
2652 dma_wmb();
2653 first_rxdp->Control_1 |= RXD_OWN_XENA;
2656 return SUCCESS;
2658 pci_map_failed:
2659 swstats->pci_map_fail_cnt++;
2660 swstats->mem_freed += skb->truesize;
2661 dev_kfree_skb_irq(skb);
2662 return -ENOMEM;
2665 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2667 struct net_device *dev = sp->dev;
2668 int j;
2669 struct sk_buff *skb;
2670 struct RxD_t *rxdp;
2671 struct RxD1 *rxdp1;
2672 struct RxD3 *rxdp3;
2673 struct mac_info *mac_control = &sp->mac_control;
2674 struct stat_block *stats = mac_control->stats_info;
2675 struct swStat *swstats = &stats->sw_stat;
2677 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2678 rxdp = mac_control->rings[ring_no].
2679 rx_blocks[blk].rxds[j].virt_addr;
2680 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2681 if (!skb)
2682 continue;
2683 if (sp->rxd_mode == RXD_MODE_1) {
2684 rxdp1 = (struct RxD1 *)rxdp;
2685 pci_unmap_single(sp->pdev,
2686 (dma_addr_t)rxdp1->Buffer0_ptr,
2687 dev->mtu +
2688 HEADER_ETHERNET_II_802_3_SIZE +
2689 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2690 PCI_DMA_FROMDEVICE);
2691 memset(rxdp, 0, sizeof(struct RxD1));
2692 } else if (sp->rxd_mode == RXD_MODE_3B) {
2693 rxdp3 = (struct RxD3 *)rxdp;
2694 pci_unmap_single(sp->pdev,
2695 (dma_addr_t)rxdp3->Buffer0_ptr,
2696 BUF0_LEN,
2697 PCI_DMA_FROMDEVICE);
2698 pci_unmap_single(sp->pdev,
2699 (dma_addr_t)rxdp3->Buffer1_ptr,
2700 BUF1_LEN,
2701 PCI_DMA_FROMDEVICE);
2702 pci_unmap_single(sp->pdev,
2703 (dma_addr_t)rxdp3->Buffer2_ptr,
2704 dev->mtu + 4,
2705 PCI_DMA_FROMDEVICE);
2706 memset(rxdp, 0, sizeof(struct RxD3));
2708 swstats->mem_freed += skb->truesize;
2709 dev_kfree_skb(skb);
2710 mac_control->rings[ring_no].rx_bufs_left -= 1;
2715 * free_rx_buffers - Frees all Rx buffers
2716 * @sp: device private variable.
2717 * Description:
2718 * This function will free all Rx buffers allocated by host.
2719 * Return Value:
2720 * NONE.
2723 static void free_rx_buffers(struct s2io_nic *sp)
2725 struct net_device *dev = sp->dev;
2726 int i, blk = 0, buf_cnt = 0;
2727 struct config_param *config = &sp->config;
2728 struct mac_info *mac_control = &sp->mac_control;
2730 for (i = 0; i < config->rx_ring_num; i++) {
2731 struct ring_info *ring = &mac_control->rings[i];
2733 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2734 free_rxd_blk(sp, i, blk);
2736 ring->rx_curr_put_info.block_index = 0;
2737 ring->rx_curr_get_info.block_index = 0;
2738 ring->rx_curr_put_info.offset = 0;
2739 ring->rx_curr_get_info.offset = 0;
2740 ring->rx_bufs_left = 0;
2741 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2742 dev->name, buf_cnt, i);
2746 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2748 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2749 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2750 ring->dev->name);
2752 return 0;
2756 * s2io_poll - Rx interrupt handler for NAPI support
2757 * @napi : pointer to the napi structure.
2758 * @budget : The number of packets that were budgeted to be processed
2759 * during one pass through the 'Poll" function.
2760 * Description:
2761 * Comes into picture only if NAPI support has been incorporated. It does
2762 * the same thing that rx_intr_handler does, but not in a interrupt context
2763 * also It will process only a given number of packets.
2764 * Return value:
2765 * 0 on success and 1 if there are No Rx packets to be processed.
2768 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2770 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2771 struct net_device *dev = ring->dev;
2772 int pkts_processed = 0;
2773 u8 __iomem *addr = NULL;
2774 u8 val8 = 0;
2775 struct s2io_nic *nic = netdev_priv(dev);
2776 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2777 int budget_org = budget;
2779 if (unlikely(!is_s2io_card_up(nic)))
2780 return 0;
2782 pkts_processed = rx_intr_handler(ring, budget);
2783 s2io_chk_rx_buffers(nic, ring);
2785 if (pkts_processed < budget_org) {
2786 napi_complete(napi);
2787 /*Re Enable MSI-Rx Vector*/
2788 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2789 addr += 7 - ring->ring_no;
2790 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2791 writeb(val8, addr);
2792 val8 = readb(addr);
2794 return pkts_processed;
2797 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2799 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2800 int pkts_processed = 0;
2801 int ring_pkts_processed, i;
2802 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2803 int budget_org = budget;
2804 struct config_param *config = &nic->config;
2805 struct mac_info *mac_control = &nic->mac_control;
2807 if (unlikely(!is_s2io_card_up(nic)))
2808 return 0;
2810 for (i = 0; i < config->rx_ring_num; i++) {
2811 struct ring_info *ring = &mac_control->rings[i];
2812 ring_pkts_processed = rx_intr_handler(ring, budget);
2813 s2io_chk_rx_buffers(nic, ring);
2814 pkts_processed += ring_pkts_processed;
2815 budget -= ring_pkts_processed;
2816 if (budget <= 0)
2817 break;
2819 if (pkts_processed < budget_org) {
2820 napi_complete(napi);
2821 /* Re enable the Rx interrupts for the ring */
2822 writeq(0, &bar0->rx_traffic_mask);
2823 readl(&bar0->rx_traffic_mask);
2825 return pkts_processed;
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2830 * s2io_netpoll - netpoll event handler entry point
2831 * @dev : pointer to the device structure.
2832 * Description:
2833 * This function will be called by upper layer to check for events on the
2834 * interface in situations where interrupts are disabled. It is used for
2835 * specific in-kernel networking tasks, such as remote consoles and kernel
2836 * debugging over the network (example netdump in RedHat).
2838 static void s2io_netpoll(struct net_device *dev)
2840 struct s2io_nic *nic = netdev_priv(dev);
2841 const int irq = nic->pdev->irq;
2842 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2844 int i;
2845 struct config_param *config = &nic->config;
2846 struct mac_info *mac_control = &nic->mac_control;
2848 if (pci_channel_offline(nic->pdev))
2849 return;
2851 disable_irq(irq);
2853 writeq(val64, &bar0->rx_traffic_int);
2854 writeq(val64, &bar0->tx_traffic_int);
2856 /* we need to free up the transmitted skbufs or else netpoll will
2857 * run out of skbs and will fail and eventually netpoll application such
2858 * as netdump will fail.
2860 for (i = 0; i < config->tx_fifo_num; i++)
2861 tx_intr_handler(&mac_control->fifos[i]);
2863 /* check for received packet and indicate up to network */
2864 for (i = 0; i < config->rx_ring_num; i++) {
2865 struct ring_info *ring = &mac_control->rings[i];
2867 rx_intr_handler(ring, 0);
2870 for (i = 0; i < config->rx_ring_num; i++) {
2871 struct ring_info *ring = &mac_control->rings[i];
2873 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2874 DBG_PRINT(INFO_DBG,
2875 "%s: Out of memory in Rx Netpoll!!\n",
2876 dev->name);
2877 break;
2880 enable_irq(irq);
2882 #endif
2885 * rx_intr_handler - Rx interrupt handler
2886 * @ring_info: per ring structure.
2887 * @budget: budget for napi processing.
2888 * Description:
2889 * If the interrupt is because of a received frame or if the
2890 * receive ring contains fresh as yet un-processed frames,this function is
2891 * called. It picks out the RxD at which place the last Rx processing had
2892 * stopped and sends the skb to the OSM's Rx handler and then increments
2893 * the offset.
2894 * Return Value:
2895 * No. of napi packets processed.
2897 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2899 int get_block, put_block;
2900 struct rx_curr_get_info get_info, put_info;
2901 struct RxD_t *rxdp;
2902 struct sk_buff *skb;
2903 int pkt_cnt = 0, napi_pkts = 0;
2904 int i;
2905 struct RxD1 *rxdp1;
2906 struct RxD3 *rxdp3;
2908 if (budget <= 0)
2909 return napi_pkts;
2911 get_info = ring_data->rx_curr_get_info;
2912 get_block = get_info.block_index;
2913 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2914 put_block = put_info.block_index;
2915 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2917 while (RXD_IS_UP2DT(rxdp)) {
2919 * If your are next to put index then it's
2920 * FIFO full condition
2922 if ((get_block == put_block) &&
2923 (get_info.offset + 1) == put_info.offset) {
2924 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2925 ring_data->dev->name);
2926 break;
2928 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2929 if (skb == NULL) {
2930 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2931 ring_data->dev->name);
2932 return 0;
2934 if (ring_data->rxd_mode == RXD_MODE_1) {
2935 rxdp1 = (struct RxD1 *)rxdp;
2936 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2937 rxdp1->Buffer0_ptr,
2938 ring_data->mtu +
2939 HEADER_ETHERNET_II_802_3_SIZE +
2940 HEADER_802_2_SIZE +
2941 HEADER_SNAP_SIZE,
2942 PCI_DMA_FROMDEVICE);
2943 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2944 rxdp3 = (struct RxD3 *)rxdp;
2945 pci_dma_sync_single_for_cpu(ring_data->pdev,
2946 (dma_addr_t)rxdp3->Buffer0_ptr,
2947 BUF0_LEN,
2948 PCI_DMA_FROMDEVICE);
2949 pci_unmap_single(ring_data->pdev,
2950 (dma_addr_t)rxdp3->Buffer2_ptr,
2951 ring_data->mtu + 4,
2952 PCI_DMA_FROMDEVICE);
2954 prefetch(skb->data);
2955 rx_osm_handler(ring_data, rxdp);
2956 get_info.offset++;
2957 ring_data->rx_curr_get_info.offset = get_info.offset;
2958 rxdp = ring_data->rx_blocks[get_block].
2959 rxds[get_info.offset].virt_addr;
2960 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2961 get_info.offset = 0;
2962 ring_data->rx_curr_get_info.offset = get_info.offset;
2963 get_block++;
2964 if (get_block == ring_data->block_count)
2965 get_block = 0;
2966 ring_data->rx_curr_get_info.block_index = get_block;
2967 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2970 if (ring_data->nic->config.napi) {
2971 budget--;
2972 napi_pkts++;
2973 if (!budget)
2974 break;
2976 pkt_cnt++;
2977 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2978 break;
2980 if (ring_data->lro) {
2981 /* Clear all LRO sessions before exiting */
2982 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2983 struct lro *lro = &ring_data->lro0_n[i];
2984 if (lro->in_use) {
2985 update_L3L4_header(ring_data->nic, lro);
2986 queue_rx_frame(lro->parent, lro->vlan_tag);
2987 clear_lro_session(lro);
2991 return napi_pkts;
2995 * tx_intr_handler - Transmit interrupt handler
2996 * @nic : device private variable
2997 * Description:
2998 * If an interrupt was raised to indicate DMA complete of the
2999 * Tx packet, this function is called. It identifies the last TxD
3000 * whose buffer was freed and frees all skbs whose data have already
3001 * DMA'ed into the NICs internal memory.
3002 * Return Value:
3003 * NONE
3006 static void tx_intr_handler(struct fifo_info *fifo_data)
3008 struct s2io_nic *nic = fifo_data->nic;
3009 struct tx_curr_get_info get_info, put_info;
3010 struct sk_buff *skb = NULL;
3011 struct TxD *txdlp;
3012 int pkt_cnt = 0;
3013 unsigned long flags = 0;
3014 u8 err_mask;
3015 struct stat_block *stats = nic->mac_control.stats_info;
3016 struct swStat *swstats = &stats->sw_stat;
3018 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3019 return;
3021 get_info = fifo_data->tx_curr_get_info;
3022 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3023 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3024 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3025 (get_info.offset != put_info.offset) &&
3026 (txdlp->Host_Control)) {
3027 /* Check for TxD errors */
3028 if (txdlp->Control_1 & TXD_T_CODE) {
3029 unsigned long long err;
3030 err = txdlp->Control_1 & TXD_T_CODE;
3031 if (err & 0x1) {
3032 swstats->parity_err_cnt++;
3035 /* update t_code statistics */
3036 err_mask = err >> 48;
3037 switch (err_mask) {
3038 case 2:
3039 swstats->tx_buf_abort_cnt++;
3040 break;
3042 case 3:
3043 swstats->tx_desc_abort_cnt++;
3044 break;
3046 case 7:
3047 swstats->tx_parity_err_cnt++;
3048 break;
3050 case 10:
3051 swstats->tx_link_loss_cnt++;
3052 break;
3054 case 15:
3055 swstats->tx_list_proc_err_cnt++;
3056 break;
3060 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3061 if (skb == NULL) {
3062 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3063 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3064 __func__);
3065 return;
3067 pkt_cnt++;
3069 /* Updating the statistics block */
3070 swstats->mem_freed += skb->truesize;
3071 dev_kfree_skb_irq(skb);
3073 get_info.offset++;
3074 if (get_info.offset == get_info.fifo_len + 1)
3075 get_info.offset = 0;
3076 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3077 fifo_data->tx_curr_get_info.offset = get_info.offset;
3080 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3082 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3086 * s2io_mdio_write - Function to write in to MDIO registers
3087 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3088 * @addr : address value
3089 * @value : data value
3090 * @dev : pointer to net_device structure
3091 * Description:
3092 * This function is used to write values to the MDIO registers
3093 * NONE
3095 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3096 struct net_device *dev)
3098 u64 val64;
3099 struct s2io_nic *sp = netdev_priv(dev);
3100 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3102 /* address transaction */
3103 val64 = MDIO_MMD_INDX_ADDR(addr) |
3104 MDIO_MMD_DEV_ADDR(mmd_type) |
3105 MDIO_MMS_PRT_ADDR(0x0);
3106 writeq(val64, &bar0->mdio_control);
3107 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3108 writeq(val64, &bar0->mdio_control);
3109 udelay(100);
3111 /* Data transaction */
3112 val64 = MDIO_MMD_INDX_ADDR(addr) |
3113 MDIO_MMD_DEV_ADDR(mmd_type) |
3114 MDIO_MMS_PRT_ADDR(0x0) |
3115 MDIO_MDIO_DATA(value) |
3116 MDIO_OP(MDIO_OP_WRITE_TRANS);
3117 writeq(val64, &bar0->mdio_control);
3118 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3119 writeq(val64, &bar0->mdio_control);
3120 udelay(100);
3122 val64 = MDIO_MMD_INDX_ADDR(addr) |
3123 MDIO_MMD_DEV_ADDR(mmd_type) |
3124 MDIO_MMS_PRT_ADDR(0x0) |
3125 MDIO_OP(MDIO_OP_READ_TRANS);
3126 writeq(val64, &bar0->mdio_control);
3127 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3128 writeq(val64, &bar0->mdio_control);
3129 udelay(100);
3133 * s2io_mdio_read - Function to write in to MDIO registers
3134 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3135 * @addr : address value
3136 * @dev : pointer to net_device structure
3137 * Description:
3138 * This function is used to read values to the MDIO registers
3139 * NONE
3141 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3143 u64 val64 = 0x0;
3144 u64 rval64 = 0x0;
3145 struct s2io_nic *sp = netdev_priv(dev);
3146 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3148 /* address transaction */
3149 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3150 | MDIO_MMD_DEV_ADDR(mmd_type)
3151 | MDIO_MMS_PRT_ADDR(0x0));
3152 writeq(val64, &bar0->mdio_control);
3153 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3154 writeq(val64, &bar0->mdio_control);
3155 udelay(100);
3157 /* Data transaction */
3158 val64 = MDIO_MMD_INDX_ADDR(addr) |
3159 MDIO_MMD_DEV_ADDR(mmd_type) |
3160 MDIO_MMS_PRT_ADDR(0x0) |
3161 MDIO_OP(MDIO_OP_READ_TRANS);
3162 writeq(val64, &bar0->mdio_control);
3163 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3164 writeq(val64, &bar0->mdio_control);
3165 udelay(100);
3167 /* Read the value from regs */
3168 rval64 = readq(&bar0->mdio_control);
3169 rval64 = rval64 & 0xFFFF0000;
3170 rval64 = rval64 >> 16;
3171 return rval64;
3175 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3176 * @counter : counter value to be updated
3177 * @flag : flag to indicate the status
3178 * @type : counter type
3179 * Description:
3180 * This function is to check the status of the xpak counters value
3181 * NONE
3184 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3185 u16 flag, u16 type)
3187 u64 mask = 0x3;
3188 u64 val64;
3189 int i;
3190 for (i = 0; i < index; i++)
3191 mask = mask << 0x2;
3193 if (flag > 0) {
3194 *counter = *counter + 1;
3195 val64 = *regs_stat & mask;
3196 val64 = val64 >> (index * 0x2);
3197 val64 = val64 + 1;
3198 if (val64 == 3) {
3199 switch (type) {
3200 case 1:
3201 DBG_PRINT(ERR_DBG,
3202 "Take Xframe NIC out of service.\n");
3203 DBG_PRINT(ERR_DBG,
3204 "Excessive temperatures may result in premature transceiver failure.\n");
3205 break;
3206 case 2:
3207 DBG_PRINT(ERR_DBG,
3208 "Take Xframe NIC out of service.\n");
3209 DBG_PRINT(ERR_DBG,
3210 "Excessive bias currents may indicate imminent laser diode failure.\n");
3211 break;
3212 case 3:
3213 DBG_PRINT(ERR_DBG,
3214 "Take Xframe NIC out of service.\n");
3215 DBG_PRINT(ERR_DBG,
3216 "Excessive laser output power may saturate far-end receiver.\n");
3217 break;
3218 default:
3219 DBG_PRINT(ERR_DBG,
3220 "Incorrect XPAK Alarm type\n");
3222 val64 = 0x0;
3224 val64 = val64 << (index * 0x2);
3225 *regs_stat = (*regs_stat & (~mask)) | (val64);
3227 } else {
3228 *regs_stat = *regs_stat & (~mask);
3233 * s2io_updt_xpak_counter - Function to update the xpak counters
3234 * @dev : pointer to net_device struct
3235 * Description:
3236 * This function is to upate the status of the xpak counters value
3237 * NONE
3239 static void s2io_updt_xpak_counter(struct net_device *dev)
3241 u16 flag = 0x0;
3242 u16 type = 0x0;
3243 u16 val16 = 0x0;
3244 u64 val64 = 0x0;
3245 u64 addr = 0x0;
3247 struct s2io_nic *sp = netdev_priv(dev);
3248 struct stat_block *stats = sp->mac_control.stats_info;
3249 struct xpakStat *xstats = &stats->xpak_stat;
3251 /* Check the communication with the MDIO slave */
3252 addr = MDIO_CTRL1;
3253 val64 = 0x0;
3254 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3255 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3256 DBG_PRINT(ERR_DBG,
3257 "ERR: MDIO slave access failed - Returned %llx\n",
3258 (unsigned long long)val64);
3259 return;
3262 /* Check for the expected value of control reg 1 */
3263 if (val64 != MDIO_CTRL1_SPEED10G) {
3264 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3265 "Returned: %llx- Expected: 0x%x\n",
3266 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3267 return;
3270 /* Loading the DOM register to MDIO register */
3271 addr = 0xA100;
3272 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3273 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3275 /* Reading the Alarm flags */
3276 addr = 0xA070;
3277 val64 = 0x0;
3278 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3280 flag = CHECKBIT(val64, 0x7);
3281 type = 1;
3282 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3283 &xstats->xpak_regs_stat,
3284 0x0, flag, type);
3286 if (CHECKBIT(val64, 0x6))
3287 xstats->alarm_transceiver_temp_low++;
3289 flag = CHECKBIT(val64, 0x3);
3290 type = 2;
3291 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3292 &xstats->xpak_regs_stat,
3293 0x2, flag, type);
3295 if (CHECKBIT(val64, 0x2))
3296 xstats->alarm_laser_bias_current_low++;
3298 flag = CHECKBIT(val64, 0x1);
3299 type = 3;
3300 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3301 &xstats->xpak_regs_stat,
3302 0x4, flag, type);
3304 if (CHECKBIT(val64, 0x0))
3305 xstats->alarm_laser_output_power_low++;
3307 /* Reading the Warning flags */
3308 addr = 0xA074;
3309 val64 = 0x0;
3310 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3312 if (CHECKBIT(val64, 0x7))
3313 xstats->warn_transceiver_temp_high++;
3315 if (CHECKBIT(val64, 0x6))
3316 xstats->warn_transceiver_temp_low++;
3318 if (CHECKBIT(val64, 0x3))
3319 xstats->warn_laser_bias_current_high++;
3321 if (CHECKBIT(val64, 0x2))
3322 xstats->warn_laser_bias_current_low++;
3324 if (CHECKBIT(val64, 0x1))
3325 xstats->warn_laser_output_power_high++;
3327 if (CHECKBIT(val64, 0x0))
3328 xstats->warn_laser_output_power_low++;
3332 * wait_for_cmd_complete - waits for a command to complete.
3333 * @sp : private member of the device structure, which is a pointer to the
3334 * s2io_nic structure.
3335 * Description: Function that waits for a command to Write into RMAC
3336 * ADDR DATA registers to be completed and returns either success or
3337 * error depending on whether the command was complete or not.
3338 * Return value:
3339 * SUCCESS on success and FAILURE on failure.
3342 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3343 int bit_state)
3345 int ret = FAILURE, cnt = 0, delay = 1;
3346 u64 val64;
3348 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3349 return FAILURE;
3351 do {
3352 val64 = readq(addr);
3353 if (bit_state == S2IO_BIT_RESET) {
3354 if (!(val64 & busy_bit)) {
3355 ret = SUCCESS;
3356 break;
3358 } else {
3359 if (val64 & busy_bit) {
3360 ret = SUCCESS;
3361 break;
3365 if (in_interrupt())
3366 mdelay(delay);
3367 else
3368 msleep(delay);
3370 if (++cnt >= 10)
3371 delay = 50;
3372 } while (cnt < 20);
3373 return ret;
3376 * check_pci_device_id - Checks if the device id is supported
3377 * @id : device id
3378 * Description: Function to check if the pci device id is supported by driver.
3379 * Return value: Actual device id if supported else PCI_ANY_ID
3381 static u16 check_pci_device_id(u16 id)
3383 switch (id) {
3384 case PCI_DEVICE_ID_HERC_WIN:
3385 case PCI_DEVICE_ID_HERC_UNI:
3386 return XFRAME_II_DEVICE;
3387 case PCI_DEVICE_ID_S2IO_UNI:
3388 case PCI_DEVICE_ID_S2IO_WIN:
3389 return XFRAME_I_DEVICE;
3390 default:
3391 return PCI_ANY_ID;
3396 * s2io_reset - Resets the card.
3397 * @sp : private member of the device structure.
3398 * Description: Function to Reset the card. This function then also
3399 * restores the previously saved PCI configuration space registers as
3400 * the card reset also resets the configuration space.
3401 * Return value:
3402 * void.
3405 static void s2io_reset(struct s2io_nic *sp)
3407 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3408 u64 val64;
3409 u16 subid, pci_cmd;
3410 int i;
3411 u16 val16;
3412 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3413 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3414 struct stat_block *stats;
3415 struct swStat *swstats;
3417 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3418 __func__, pci_name(sp->pdev));
3420 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3421 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3423 val64 = SW_RESET_ALL;
3424 writeq(val64, &bar0->sw_reset);
3425 if (strstr(sp->product_name, "CX4"))
3426 msleep(750);
3427 msleep(250);
3428 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3430 /* Restore the PCI state saved during initialization. */
3431 pci_restore_state(sp->pdev);
3432 pci_save_state(sp->pdev);
3433 pci_read_config_word(sp->pdev, 0x2, &val16);
3434 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3435 break;
3436 msleep(200);
3439 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3440 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3442 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3444 s2io_init_pci(sp);
3446 /* Set swapper to enable I/O register access */
3447 s2io_set_swapper(sp);
3449 /* restore mac_addr entries */
3450 do_s2io_restore_unicast_mc(sp);
3452 /* Restore the MSIX table entries from local variables */
3453 restore_xmsi_data(sp);
3455 /* Clear certain PCI/PCI-X fields after reset */
3456 if (sp->device_type == XFRAME_II_DEVICE) {
3457 /* Clear "detected parity error" bit */
3458 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3460 /* Clearing PCIX Ecc status register */
3461 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3463 /* Clearing PCI_STATUS error reflected here */
3464 writeq(s2BIT(62), &bar0->txpic_int_reg);
3467 /* Reset device statistics maintained by OS */
3468 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3470 stats = sp->mac_control.stats_info;
3471 swstats = &stats->sw_stat;
3473 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3474 up_cnt = swstats->link_up_cnt;
3475 down_cnt = swstats->link_down_cnt;
3476 up_time = swstats->link_up_time;
3477 down_time = swstats->link_down_time;
3478 reset_cnt = swstats->soft_reset_cnt;
3479 mem_alloc_cnt = swstats->mem_allocated;
3480 mem_free_cnt = swstats->mem_freed;
3481 watchdog_cnt = swstats->watchdog_timer_cnt;
3483 memset(stats, 0, sizeof(struct stat_block));
3485 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3486 swstats->link_up_cnt = up_cnt;
3487 swstats->link_down_cnt = down_cnt;
3488 swstats->link_up_time = up_time;
3489 swstats->link_down_time = down_time;
3490 swstats->soft_reset_cnt = reset_cnt;
3491 swstats->mem_allocated = mem_alloc_cnt;
3492 swstats->mem_freed = mem_free_cnt;
3493 swstats->watchdog_timer_cnt = watchdog_cnt;
3495 /* SXE-002: Configure link and activity LED to turn it off */
3496 subid = sp->pdev->subsystem_device;
3497 if (((subid & 0xFF) >= 0x07) &&
3498 (sp->device_type == XFRAME_I_DEVICE)) {
3499 val64 = readq(&bar0->gpio_control);
3500 val64 |= 0x0000800000000000ULL;
3501 writeq(val64, &bar0->gpio_control);
3502 val64 = 0x0411040400000000ULL;
3503 writeq(val64, (void __iomem *)bar0 + 0x2700);
3507 * Clear spurious ECC interrupts that would have occurred on
3508 * XFRAME II cards after reset.
3510 if (sp->device_type == XFRAME_II_DEVICE) {
3511 val64 = readq(&bar0->pcc_err_reg);
3512 writeq(val64, &bar0->pcc_err_reg);
3515 sp->device_enabled_once = false;
3519 * s2io_set_swapper - to set the swapper controle on the card
3520 * @sp : private member of the device structure,
3521 * pointer to the s2io_nic structure.
3522 * Description: Function to set the swapper control on the card
3523 * correctly depending on the 'endianness' of the system.
3524 * Return value:
3525 * SUCCESS on success and FAILURE on failure.
3528 static int s2io_set_swapper(struct s2io_nic *sp)
3530 struct net_device *dev = sp->dev;
3531 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3532 u64 val64, valt, valr;
3535 * Set proper endian settings and verify the same by reading
3536 * the PIF Feed-back register.
3539 val64 = readq(&bar0->pif_rd_swapper_fb);
3540 if (val64 != 0x0123456789ABCDEFULL) {
3541 int i = 0;
3542 static const u64 value[] = {
3543 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3544 0x8100008181000081ULL, /* FE=1, SE=0 */
3545 0x4200004242000042ULL, /* FE=0, SE=1 */
3546 0 /* FE=0, SE=0 */
3549 while (i < 4) {
3550 writeq(value[i], &bar0->swapper_ctrl);
3551 val64 = readq(&bar0->pif_rd_swapper_fb);
3552 if (val64 == 0x0123456789ABCDEFULL)
3553 break;
3554 i++;
3556 if (i == 4) {
3557 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3558 "feedback read %llx\n",
3559 dev->name, (unsigned long long)val64);
3560 return FAILURE;
3562 valr = value[i];
3563 } else {
3564 valr = readq(&bar0->swapper_ctrl);
3567 valt = 0x0123456789ABCDEFULL;
3568 writeq(valt, &bar0->xmsi_address);
3569 val64 = readq(&bar0->xmsi_address);
3571 if (val64 != valt) {
3572 int i = 0;
3573 static const u64 value[] = {
3574 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3575 0x0081810000818100ULL, /* FE=1, SE=0 */
3576 0x0042420000424200ULL, /* FE=0, SE=1 */
3577 0 /* FE=0, SE=0 */
3580 while (i < 4) {
3581 writeq((value[i] | valr), &bar0->swapper_ctrl);
3582 writeq(valt, &bar0->xmsi_address);
3583 val64 = readq(&bar0->xmsi_address);
3584 if (val64 == valt)
3585 break;
3586 i++;
3588 if (i == 4) {
3589 unsigned long long x = val64;
3590 DBG_PRINT(ERR_DBG,
3591 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3592 return FAILURE;
3595 val64 = readq(&bar0->swapper_ctrl);
3596 val64 &= 0xFFFF000000000000ULL;
3598 #ifdef __BIG_ENDIAN
3600 * The device by default set to a big endian format, so a
3601 * big endian driver need not set anything.
3603 val64 |= (SWAPPER_CTRL_TXP_FE |
3604 SWAPPER_CTRL_TXP_SE |
3605 SWAPPER_CTRL_TXD_R_FE |
3606 SWAPPER_CTRL_TXD_W_FE |
3607 SWAPPER_CTRL_TXF_R_FE |
3608 SWAPPER_CTRL_RXD_R_FE |
3609 SWAPPER_CTRL_RXD_W_FE |
3610 SWAPPER_CTRL_RXF_W_FE |
3611 SWAPPER_CTRL_XMSI_FE |
3612 SWAPPER_CTRL_STATS_FE |
3613 SWAPPER_CTRL_STATS_SE);
3614 if (sp->config.intr_type == INTA)
3615 val64 |= SWAPPER_CTRL_XMSI_SE;
3616 writeq(val64, &bar0->swapper_ctrl);
3617 #else
3619 * Initially we enable all bits to make it accessible by the
3620 * driver, then we selectively enable only those bits that
3621 * we want to set.
3623 val64 |= (SWAPPER_CTRL_TXP_FE |
3624 SWAPPER_CTRL_TXP_SE |
3625 SWAPPER_CTRL_TXD_R_FE |
3626 SWAPPER_CTRL_TXD_R_SE |
3627 SWAPPER_CTRL_TXD_W_FE |
3628 SWAPPER_CTRL_TXD_W_SE |
3629 SWAPPER_CTRL_TXF_R_FE |
3630 SWAPPER_CTRL_RXD_R_FE |
3631 SWAPPER_CTRL_RXD_R_SE |
3632 SWAPPER_CTRL_RXD_W_FE |
3633 SWAPPER_CTRL_RXD_W_SE |
3634 SWAPPER_CTRL_RXF_W_FE |
3635 SWAPPER_CTRL_XMSI_FE |
3636 SWAPPER_CTRL_STATS_FE |
3637 SWAPPER_CTRL_STATS_SE);
3638 if (sp->config.intr_type == INTA)
3639 val64 |= SWAPPER_CTRL_XMSI_SE;
3640 writeq(val64, &bar0->swapper_ctrl);
3641 #endif
3642 val64 = readq(&bar0->swapper_ctrl);
3645 * Verifying if endian settings are accurate by reading a
3646 * feedback register.
3648 val64 = readq(&bar0->pif_rd_swapper_fb);
3649 if (val64 != 0x0123456789ABCDEFULL) {
3650 /* Endian settings are incorrect, calls for another dekko. */
3651 DBG_PRINT(ERR_DBG,
3652 "%s: Endian settings are wrong, feedback read %llx\n",
3653 dev->name, (unsigned long long)val64);
3654 return FAILURE;
3657 return SUCCESS;
3660 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3662 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3663 u64 val64;
3664 int ret = 0, cnt = 0;
3666 do {
3667 val64 = readq(&bar0->xmsi_access);
3668 if (!(val64 & s2BIT(15)))
3669 break;
3670 mdelay(1);
3671 cnt++;
3672 } while (cnt < 5);
3673 if (cnt == 5) {
3674 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3675 ret = 1;
3678 return ret;
3681 static void restore_xmsi_data(struct s2io_nic *nic)
3683 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3684 u64 val64;
3685 int i, msix_index;
3687 if (nic->device_type == XFRAME_I_DEVICE)
3688 return;
3690 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3691 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3692 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3693 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3694 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3695 writeq(val64, &bar0->xmsi_access);
3696 if (wait_for_msix_trans(nic, msix_index)) {
3697 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3698 __func__, msix_index);
3699 continue;
3704 static void store_xmsi_data(struct s2io_nic *nic)
3706 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3707 u64 val64, addr, data;
3708 int i, msix_index;
3710 if (nic->device_type == XFRAME_I_DEVICE)
3711 return;
3713 /* Store and display */
3714 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3715 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3716 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3717 writeq(val64, &bar0->xmsi_access);
3718 if (wait_for_msix_trans(nic, msix_index)) {
3719 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3720 __func__, msix_index);
3721 continue;
3723 addr = readq(&bar0->xmsi_address);
3724 data = readq(&bar0->xmsi_data);
3725 if (addr && data) {
3726 nic->msix_info[i].addr = addr;
3727 nic->msix_info[i].data = data;
3732 static int s2io_enable_msi_x(struct s2io_nic *nic)
3734 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735 u64 rx_mat;
3736 u16 msi_control; /* Temp variable */
3737 int ret, i, j, msix_indx = 1;
3738 int size;
3739 struct stat_block *stats = nic->mac_control.stats_info;
3740 struct swStat *swstats = &stats->sw_stat;
3742 size = nic->num_entries * sizeof(struct msix_entry);
3743 nic->entries = kzalloc(size, GFP_KERNEL);
3744 if (!nic->entries) {
3745 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3746 __func__);
3747 swstats->mem_alloc_fail_cnt++;
3748 return -ENOMEM;
3750 swstats->mem_allocated += size;
3752 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3753 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3754 if (!nic->s2io_entries) {
3755 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3756 __func__);
3757 swstats->mem_alloc_fail_cnt++;
3758 kfree(nic->entries);
3759 swstats->mem_freed
3760 += (nic->num_entries * sizeof(struct msix_entry));
3761 return -ENOMEM;
3763 swstats->mem_allocated += size;
3765 nic->entries[0].entry = 0;
3766 nic->s2io_entries[0].entry = 0;
3767 nic->s2io_entries[0].in_use = MSIX_FLG;
3768 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3769 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3771 for (i = 1; i < nic->num_entries; i++) {
3772 nic->entries[i].entry = ((i - 1) * 8) + 1;
3773 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3774 nic->s2io_entries[i].arg = NULL;
3775 nic->s2io_entries[i].in_use = 0;
3778 rx_mat = readq(&bar0->rx_mat);
3779 for (j = 0; j < nic->config.rx_ring_num; j++) {
3780 rx_mat |= RX_MAT_SET(j, msix_indx);
3781 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3782 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3783 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3784 msix_indx += 8;
3786 writeq(rx_mat, &bar0->rx_mat);
3787 readq(&bar0->rx_mat);
3789 ret = pci_enable_msix_range(nic->pdev, nic->entries,
3790 nic->num_entries, nic->num_entries);
3791 /* We fail init if error or we get less vectors than min required */
3792 if (ret < 0) {
3793 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3794 kfree(nic->entries);
3795 swstats->mem_freed += nic->num_entries *
3796 sizeof(struct msix_entry);
3797 kfree(nic->s2io_entries);
3798 swstats->mem_freed += nic->num_entries *
3799 sizeof(struct s2io_msix_entry);
3800 nic->entries = NULL;
3801 nic->s2io_entries = NULL;
3802 return -ENOMEM;
3806 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3807 * in the herc NIC. (Temp change, needs to be removed later)
3809 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3810 msi_control |= 0x1; /* Enable MSI */
3811 pci_write_config_word(nic->pdev, 0x42, msi_control);
3813 return 0;
3816 /* Handle software interrupt used during MSI(X) test */
3817 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3819 struct s2io_nic *sp = dev_id;
3821 sp->msi_detected = 1;
3822 wake_up(&sp->msi_wait);
3824 return IRQ_HANDLED;
3827 /* Test interrupt path by forcing a a software IRQ */
3828 static int s2io_test_msi(struct s2io_nic *sp)
3830 struct pci_dev *pdev = sp->pdev;
3831 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3832 int err;
3833 u64 val64, saved64;
3835 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3836 sp->name, sp);
3837 if (err) {
3838 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3839 sp->dev->name, pci_name(pdev), pdev->irq);
3840 return err;
3843 init_waitqueue_head(&sp->msi_wait);
3844 sp->msi_detected = 0;
3846 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3847 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3848 val64 |= SCHED_INT_CTRL_TIMER_EN;
3849 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3850 writeq(val64, &bar0->scheduled_int_ctrl);
3852 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3854 if (!sp->msi_detected) {
3855 /* MSI(X) test failed, go back to INTx mode */
3856 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3857 "using MSI(X) during test\n",
3858 sp->dev->name, pci_name(pdev));
3860 err = -EOPNOTSUPP;
3863 free_irq(sp->entries[1].vector, sp);
3865 writeq(saved64, &bar0->scheduled_int_ctrl);
3867 return err;
3870 static void remove_msix_isr(struct s2io_nic *sp)
3872 int i;
3873 u16 msi_control;
3875 for (i = 0; i < sp->num_entries; i++) {
3876 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3877 int vector = sp->entries[i].vector;
3878 void *arg = sp->s2io_entries[i].arg;
3879 free_irq(vector, arg);
3883 kfree(sp->entries);
3884 kfree(sp->s2io_entries);
3885 sp->entries = NULL;
3886 sp->s2io_entries = NULL;
3888 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3889 msi_control &= 0xFFFE; /* Disable MSI */
3890 pci_write_config_word(sp->pdev, 0x42, msi_control);
3892 pci_disable_msix(sp->pdev);
3895 static void remove_inta_isr(struct s2io_nic *sp)
3897 free_irq(sp->pdev->irq, sp->dev);
3900 /* ********************************************************* *
3901 * Functions defined below concern the OS part of the driver *
3902 * ********************************************************* */
3905 * s2io_open - open entry point of the driver
3906 * @dev : pointer to the device structure.
3907 * Description:
3908 * This function is the open entry point of the driver. It mainly calls a
3909 * function to allocate Rx buffers and inserts them into the buffer
3910 * descriptors and then enables the Rx part of the NIC.
3911 * Return value:
3912 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3913 * file on failure.
3916 static int s2io_open(struct net_device *dev)
3918 struct s2io_nic *sp = netdev_priv(dev);
3919 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3920 int err = 0;
3923 * Make sure you have link off by default every time
3924 * Nic is initialized
3926 netif_carrier_off(dev);
3927 sp->last_link_state = 0;
3929 /* Initialize H/W and enable interrupts */
3930 err = s2io_card_up(sp);
3931 if (err) {
3932 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3933 dev->name);
3934 goto hw_init_failed;
3937 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3938 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3939 s2io_card_down(sp);
3940 err = -ENODEV;
3941 goto hw_init_failed;
3943 s2io_start_all_tx_queue(sp);
3944 return 0;
3946 hw_init_failed:
3947 if (sp->config.intr_type == MSI_X) {
3948 if (sp->entries) {
3949 kfree(sp->entries);
3950 swstats->mem_freed += sp->num_entries *
3951 sizeof(struct msix_entry);
3953 if (sp->s2io_entries) {
3954 kfree(sp->s2io_entries);
3955 swstats->mem_freed += sp->num_entries *
3956 sizeof(struct s2io_msix_entry);
3959 return err;
3963 * s2io_close -close entry point of the driver
3964 * @dev : device pointer.
3965 * Description:
3966 * This is the stop entry point of the driver. It needs to undo exactly
3967 * whatever was done by the open entry point,thus it's usually referred to
3968 * as the close function.Among other things this function mainly stops the
3969 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3970 * Return value:
3971 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3972 * file on failure.
3975 static int s2io_close(struct net_device *dev)
3977 struct s2io_nic *sp = netdev_priv(dev);
3978 struct config_param *config = &sp->config;
3979 u64 tmp64;
3980 int offset;
3982 /* Return if the device is already closed *
3983 * Can happen when s2io_card_up failed in change_mtu *
3985 if (!is_s2io_card_up(sp))
3986 return 0;
3988 s2io_stop_all_tx_queue(sp);
3989 /* delete all populated mac entries */
3990 for (offset = 1; offset < config->max_mc_addr; offset++) {
3991 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3992 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3993 do_s2io_delete_unicast_mc(sp, tmp64);
3996 s2io_card_down(sp);
3998 return 0;
4002 * s2io_xmit - Tx entry point of te driver
4003 * @skb : the socket buffer containing the Tx data.
4004 * @dev : device pointer.
4005 * Description :
4006 * This function is the Tx entry point of the driver. S2IO NIC supports
4007 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4008 * NOTE: when device can't queue the pkt,just the trans_start variable will
4009 * not be upadted.
4010 * Return value:
4011 * 0 on success & 1 on failure.
4014 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4016 struct s2io_nic *sp = netdev_priv(dev);
4017 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4018 register u64 val64;
4019 struct TxD *txdp;
4020 struct TxFIFO_element __iomem *tx_fifo;
4021 unsigned long flags = 0;
4022 u16 vlan_tag = 0;
4023 struct fifo_info *fifo = NULL;
4024 int do_spin_lock = 1;
4025 int offload_type;
4026 int enable_per_list_interrupt = 0;
4027 struct config_param *config = &sp->config;
4028 struct mac_info *mac_control = &sp->mac_control;
4029 struct stat_block *stats = mac_control->stats_info;
4030 struct swStat *swstats = &stats->sw_stat;
4032 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4034 if (unlikely(skb->len <= 0)) {
4035 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4036 dev_kfree_skb_any(skb);
4037 return NETDEV_TX_OK;
4040 if (!is_s2io_card_up(sp)) {
4041 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4042 dev->name);
4043 dev_kfree_skb_any(skb);
4044 return NETDEV_TX_OK;
4047 queue = 0;
4048 if (skb_vlan_tag_present(skb))
4049 vlan_tag = skb_vlan_tag_get(skb);
4050 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4051 if (skb->protocol == htons(ETH_P_IP)) {
4052 struct iphdr *ip;
4053 struct tcphdr *th;
4054 ip = ip_hdr(skb);
4056 if (!ip_is_fragment(ip)) {
4057 th = (struct tcphdr *)(((unsigned char *)ip) +
4058 ip->ihl*4);
4060 if (ip->protocol == IPPROTO_TCP) {
4061 queue_len = sp->total_tcp_fifos;
4062 queue = (ntohs(th->source) +
4063 ntohs(th->dest)) &
4064 sp->fifo_selector[queue_len - 1];
4065 if (queue >= queue_len)
4066 queue = queue_len - 1;
4067 } else if (ip->protocol == IPPROTO_UDP) {
4068 queue_len = sp->total_udp_fifos;
4069 queue = (ntohs(th->source) +
4070 ntohs(th->dest)) &
4071 sp->fifo_selector[queue_len - 1];
4072 if (queue >= queue_len)
4073 queue = queue_len - 1;
4074 queue += sp->udp_fifo_idx;
4075 if (skb->len > 1024)
4076 enable_per_list_interrupt = 1;
4077 do_spin_lock = 0;
4081 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4082 /* get fifo number based on skb->priority value */
4083 queue = config->fifo_mapping
4084 [skb->priority & (MAX_TX_FIFOS - 1)];
4085 fifo = &mac_control->fifos[queue];
4087 if (do_spin_lock)
4088 spin_lock_irqsave(&fifo->tx_lock, flags);
4089 else {
4090 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4091 return NETDEV_TX_LOCKED;
4094 if (sp->config.multiq) {
4095 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4096 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4097 return NETDEV_TX_BUSY;
4099 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4100 if (netif_queue_stopped(dev)) {
4101 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4102 return NETDEV_TX_BUSY;
4106 put_off = (u16)fifo->tx_curr_put_info.offset;
4107 get_off = (u16)fifo->tx_curr_get_info.offset;
4108 txdp = fifo->list_info[put_off].list_virt_addr;
4110 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4111 /* Avoid "put" pointer going beyond "get" pointer */
4112 if (txdp->Host_Control ||
4113 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4114 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4115 s2io_stop_tx_queue(sp, fifo->fifo_no);
4116 dev_kfree_skb_any(skb);
4117 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4118 return NETDEV_TX_OK;
4121 offload_type = s2io_offload_type(skb);
4122 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4123 txdp->Control_1 |= TXD_TCP_LSO_EN;
4124 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4126 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4127 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4128 TXD_TX_CKO_TCP_EN |
4129 TXD_TX_CKO_UDP_EN);
4131 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4132 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4133 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4134 if (enable_per_list_interrupt)
4135 if (put_off & (queue_len >> 5))
4136 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4137 if (vlan_tag) {
4138 txdp->Control_2 |= TXD_VLAN_ENABLE;
4139 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4142 frg_len = skb_headlen(skb);
4143 if (offload_type == SKB_GSO_UDP) {
4144 int ufo_size;
4146 ufo_size = s2io_udp_mss(skb);
4147 ufo_size &= ~7;
4148 txdp->Control_1 |= TXD_UFO_EN;
4149 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4150 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4151 #ifdef __BIG_ENDIAN
4152 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4153 fifo->ufo_in_band_v[put_off] =
4154 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4155 #else
4156 fifo->ufo_in_band_v[put_off] =
4157 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4158 #endif
4159 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4160 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4161 fifo->ufo_in_band_v,
4162 sizeof(u64),
4163 PCI_DMA_TODEVICE);
4164 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4165 goto pci_map_failed;
4166 txdp++;
4169 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4170 frg_len, PCI_DMA_TODEVICE);
4171 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4172 goto pci_map_failed;
4174 txdp->Host_Control = (unsigned long)skb;
4175 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4176 if (offload_type == SKB_GSO_UDP)
4177 txdp->Control_1 |= TXD_UFO_EN;
4179 frg_cnt = skb_shinfo(skb)->nr_frags;
4180 /* For fragmented SKB. */
4181 for (i = 0; i < frg_cnt; i++) {
4182 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4183 /* A '0' length fragment will be ignored */
4184 if (!skb_frag_size(frag))
4185 continue;
4186 txdp++;
4187 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4188 frag, 0,
4189 skb_frag_size(frag),
4190 DMA_TO_DEVICE);
4191 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
4192 if (offload_type == SKB_GSO_UDP)
4193 txdp->Control_1 |= TXD_UFO_EN;
4195 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4197 if (offload_type == SKB_GSO_UDP)
4198 frg_cnt++; /* as Txd0 was used for inband header */
4200 tx_fifo = mac_control->tx_FIFO_start[queue];
4201 val64 = fifo->list_info[put_off].list_phy_addr;
4202 writeq(val64, &tx_fifo->TxDL_Pointer);
4204 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4205 TX_FIFO_LAST_LIST);
4206 if (offload_type)
4207 val64 |= TX_FIFO_SPECIAL_FUNC;
4209 writeq(val64, &tx_fifo->List_Control);
4211 mmiowb();
4213 put_off++;
4214 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4215 put_off = 0;
4216 fifo->tx_curr_put_info.offset = put_off;
4218 /* Avoid "put" pointer going beyond "get" pointer */
4219 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4220 swstats->fifo_full_cnt++;
4221 DBG_PRINT(TX_DBG,
4222 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4223 put_off, get_off);
4224 s2io_stop_tx_queue(sp, fifo->fifo_no);
4226 swstats->mem_allocated += skb->truesize;
4227 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4229 if (sp->config.intr_type == MSI_X)
4230 tx_intr_handler(fifo);
4232 return NETDEV_TX_OK;
4234 pci_map_failed:
4235 swstats->pci_map_fail_cnt++;
4236 s2io_stop_tx_queue(sp, fifo->fifo_no);
4237 swstats->mem_freed += skb->truesize;
4238 dev_kfree_skb_any(skb);
4239 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4240 return NETDEV_TX_OK;
4243 static void
4244 s2io_alarm_handle(unsigned long data)
4246 struct s2io_nic *sp = (struct s2io_nic *)data;
4247 struct net_device *dev = sp->dev;
4249 s2io_handle_errors(dev);
4250 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4253 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4255 struct ring_info *ring = (struct ring_info *)dev_id;
4256 struct s2io_nic *sp = ring->nic;
4257 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4259 if (unlikely(!is_s2io_card_up(sp)))
4260 return IRQ_HANDLED;
4262 if (sp->config.napi) {
4263 u8 __iomem *addr = NULL;
4264 u8 val8 = 0;
4266 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4267 addr += (7 - ring->ring_no);
4268 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4269 writeb(val8, addr);
4270 val8 = readb(addr);
4271 napi_schedule(&ring->napi);
4272 } else {
4273 rx_intr_handler(ring, 0);
4274 s2io_chk_rx_buffers(sp, ring);
4277 return IRQ_HANDLED;
4280 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4282 int i;
4283 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4284 struct s2io_nic *sp = fifos->nic;
4285 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4286 struct config_param *config = &sp->config;
4287 u64 reason;
4289 if (unlikely(!is_s2io_card_up(sp)))
4290 return IRQ_NONE;
4292 reason = readq(&bar0->general_int_status);
4293 if (unlikely(reason == S2IO_MINUS_ONE))
4294 /* Nothing much can be done. Get out */
4295 return IRQ_HANDLED;
4297 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4298 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4300 if (reason & GEN_INTR_TXPIC)
4301 s2io_txpic_intr_handle(sp);
4303 if (reason & GEN_INTR_TXTRAFFIC)
4304 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4306 for (i = 0; i < config->tx_fifo_num; i++)
4307 tx_intr_handler(&fifos[i]);
4309 writeq(sp->general_int_mask, &bar0->general_int_mask);
4310 readl(&bar0->general_int_status);
4311 return IRQ_HANDLED;
4313 /* The interrupt was not raised by us */
4314 return IRQ_NONE;
4317 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4319 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4320 u64 val64;
4322 val64 = readq(&bar0->pic_int_status);
4323 if (val64 & PIC_INT_GPIO) {
4324 val64 = readq(&bar0->gpio_int_reg);
4325 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4326 (val64 & GPIO_INT_REG_LINK_UP)) {
4328 * This is unstable state so clear both up/down
4329 * interrupt and adapter to re-evaluate the link state.
4331 val64 |= GPIO_INT_REG_LINK_DOWN;
4332 val64 |= GPIO_INT_REG_LINK_UP;
4333 writeq(val64, &bar0->gpio_int_reg);
4334 val64 = readq(&bar0->gpio_int_mask);
4335 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4336 GPIO_INT_MASK_LINK_DOWN);
4337 writeq(val64, &bar0->gpio_int_mask);
4338 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4339 val64 = readq(&bar0->adapter_status);
4340 /* Enable Adapter */
4341 val64 = readq(&bar0->adapter_control);
4342 val64 |= ADAPTER_CNTL_EN;
4343 writeq(val64, &bar0->adapter_control);
4344 val64 |= ADAPTER_LED_ON;
4345 writeq(val64, &bar0->adapter_control);
4346 if (!sp->device_enabled_once)
4347 sp->device_enabled_once = 1;
4349 s2io_link(sp, LINK_UP);
4351 * unmask link down interrupt and mask link-up
4352 * intr
4354 val64 = readq(&bar0->gpio_int_mask);
4355 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4356 val64 |= GPIO_INT_MASK_LINK_UP;
4357 writeq(val64, &bar0->gpio_int_mask);
4359 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4360 val64 = readq(&bar0->adapter_status);
4361 s2io_link(sp, LINK_DOWN);
4362 /* Link is down so unmaks link up interrupt */
4363 val64 = readq(&bar0->gpio_int_mask);
4364 val64 &= ~GPIO_INT_MASK_LINK_UP;
4365 val64 |= GPIO_INT_MASK_LINK_DOWN;
4366 writeq(val64, &bar0->gpio_int_mask);
4368 /* turn off LED */
4369 val64 = readq(&bar0->adapter_control);
4370 val64 = val64 & (~ADAPTER_LED_ON);
4371 writeq(val64, &bar0->adapter_control);
4374 val64 = readq(&bar0->gpio_int_mask);
4378 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4379 * @value: alarm bits
4380 * @addr: address value
4381 * @cnt: counter variable
4382 * Description: Check for alarm and increment the counter
4383 * Return Value:
4384 * 1 - if alarm bit set
4385 * 0 - if alarm bit is not set
4387 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4388 unsigned long long *cnt)
4390 u64 val64;
4391 val64 = readq(addr);
4392 if (val64 & value) {
4393 writeq(val64, addr);
4394 (*cnt)++;
4395 return 1;
4397 return 0;
4402 * s2io_handle_errors - Xframe error indication handler
4403 * @nic: device private variable
4404 * Description: Handle alarms such as loss of link, single or
4405 * double ECC errors, critical and serious errors.
4406 * Return Value:
4407 * NONE
4409 static void s2io_handle_errors(void *dev_id)
4411 struct net_device *dev = (struct net_device *)dev_id;
4412 struct s2io_nic *sp = netdev_priv(dev);
4413 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4414 u64 temp64 = 0, val64 = 0;
4415 int i = 0;
4417 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4418 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4420 if (!is_s2io_card_up(sp))
4421 return;
4423 if (pci_channel_offline(sp->pdev))
4424 return;
4426 memset(&sw_stat->ring_full_cnt, 0,
4427 sizeof(sw_stat->ring_full_cnt));
4429 /* Handling the XPAK counters update */
4430 if (stats->xpak_timer_count < 72000) {
4431 /* waiting for an hour */
4432 stats->xpak_timer_count++;
4433 } else {
4434 s2io_updt_xpak_counter(dev);
4435 /* reset the count to zero */
4436 stats->xpak_timer_count = 0;
4439 /* Handling link status change error Intr */
4440 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4441 val64 = readq(&bar0->mac_rmac_err_reg);
4442 writeq(val64, &bar0->mac_rmac_err_reg);
4443 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4444 schedule_work(&sp->set_link_task);
4447 /* In case of a serious error, the device will be Reset. */
4448 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4449 &sw_stat->serious_err_cnt))
4450 goto reset;
4452 /* Check for data parity error */
4453 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4454 &sw_stat->parity_err_cnt))
4455 goto reset;
4457 /* Check for ring full counter */
4458 if (sp->device_type == XFRAME_II_DEVICE) {
4459 val64 = readq(&bar0->ring_bump_counter1);
4460 for (i = 0; i < 4; i++) {
4461 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4462 temp64 >>= 64 - ((i+1)*16);
4463 sw_stat->ring_full_cnt[i] += temp64;
4466 val64 = readq(&bar0->ring_bump_counter2);
4467 for (i = 0; i < 4; i++) {
4468 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4469 temp64 >>= 64 - ((i+1)*16);
4470 sw_stat->ring_full_cnt[i+4] += temp64;
4474 val64 = readq(&bar0->txdma_int_status);
4475 /*check for pfc_err*/
4476 if (val64 & TXDMA_PFC_INT) {
4477 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4478 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4479 PFC_PCIX_ERR,
4480 &bar0->pfc_err_reg,
4481 &sw_stat->pfc_err_cnt))
4482 goto reset;
4483 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4484 &bar0->pfc_err_reg,
4485 &sw_stat->pfc_err_cnt);
4488 /*check for tda_err*/
4489 if (val64 & TXDMA_TDA_INT) {
4490 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4491 TDA_SM0_ERR_ALARM |
4492 TDA_SM1_ERR_ALARM,
4493 &bar0->tda_err_reg,
4494 &sw_stat->tda_err_cnt))
4495 goto reset;
4496 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4497 &bar0->tda_err_reg,
4498 &sw_stat->tda_err_cnt);
4500 /*check for pcc_err*/
4501 if (val64 & TXDMA_PCC_INT) {
4502 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4503 PCC_N_SERR | PCC_6_COF_OV_ERR |
4504 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4505 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4506 PCC_TXB_ECC_DB_ERR,
4507 &bar0->pcc_err_reg,
4508 &sw_stat->pcc_err_cnt))
4509 goto reset;
4510 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4511 &bar0->pcc_err_reg,
4512 &sw_stat->pcc_err_cnt);
4515 /*check for tti_err*/
4516 if (val64 & TXDMA_TTI_INT) {
4517 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4518 &bar0->tti_err_reg,
4519 &sw_stat->tti_err_cnt))
4520 goto reset;
4521 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4522 &bar0->tti_err_reg,
4523 &sw_stat->tti_err_cnt);
4526 /*check for lso_err*/
4527 if (val64 & TXDMA_LSO_INT) {
4528 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4529 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4530 &bar0->lso_err_reg,
4531 &sw_stat->lso_err_cnt))
4532 goto reset;
4533 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4534 &bar0->lso_err_reg,
4535 &sw_stat->lso_err_cnt);
4538 /*check for tpa_err*/
4539 if (val64 & TXDMA_TPA_INT) {
4540 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4541 &bar0->tpa_err_reg,
4542 &sw_stat->tpa_err_cnt))
4543 goto reset;
4544 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4545 &bar0->tpa_err_reg,
4546 &sw_stat->tpa_err_cnt);
4549 /*check for sm_err*/
4550 if (val64 & TXDMA_SM_INT) {
4551 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4552 &bar0->sm_err_reg,
4553 &sw_stat->sm_err_cnt))
4554 goto reset;
4557 val64 = readq(&bar0->mac_int_status);
4558 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4559 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4560 &bar0->mac_tmac_err_reg,
4561 &sw_stat->mac_tmac_err_cnt))
4562 goto reset;
4563 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4564 TMAC_DESC_ECC_SG_ERR |
4565 TMAC_DESC_ECC_DB_ERR,
4566 &bar0->mac_tmac_err_reg,
4567 &sw_stat->mac_tmac_err_cnt);
4570 val64 = readq(&bar0->xgxs_int_status);
4571 if (val64 & XGXS_INT_STATUS_TXGXS) {
4572 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4573 &bar0->xgxs_txgxs_err_reg,
4574 &sw_stat->xgxs_txgxs_err_cnt))
4575 goto reset;
4576 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4577 &bar0->xgxs_txgxs_err_reg,
4578 &sw_stat->xgxs_txgxs_err_cnt);
4581 val64 = readq(&bar0->rxdma_int_status);
4582 if (val64 & RXDMA_INT_RC_INT_M) {
4583 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4584 RC_FTC_ECC_DB_ERR |
4585 RC_PRCn_SM_ERR_ALARM |
4586 RC_FTC_SM_ERR_ALARM,
4587 &bar0->rc_err_reg,
4588 &sw_stat->rc_err_cnt))
4589 goto reset;
4590 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4591 RC_FTC_ECC_SG_ERR |
4592 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4593 &sw_stat->rc_err_cnt);
4594 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4595 PRC_PCI_AB_WR_Rn |
4596 PRC_PCI_AB_F_WR_Rn,
4597 &bar0->prc_pcix_err_reg,
4598 &sw_stat->prc_pcix_err_cnt))
4599 goto reset;
4600 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4601 PRC_PCI_DP_WR_Rn |
4602 PRC_PCI_DP_F_WR_Rn,
4603 &bar0->prc_pcix_err_reg,
4604 &sw_stat->prc_pcix_err_cnt);
4607 if (val64 & RXDMA_INT_RPA_INT_M) {
4608 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4609 &bar0->rpa_err_reg,
4610 &sw_stat->rpa_err_cnt))
4611 goto reset;
4612 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4613 &bar0->rpa_err_reg,
4614 &sw_stat->rpa_err_cnt);
4617 if (val64 & RXDMA_INT_RDA_INT_M) {
4618 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4619 RDA_FRM_ECC_DB_N_AERR |
4620 RDA_SM1_ERR_ALARM |
4621 RDA_SM0_ERR_ALARM |
4622 RDA_RXD_ECC_DB_SERR,
4623 &bar0->rda_err_reg,
4624 &sw_stat->rda_err_cnt))
4625 goto reset;
4626 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4627 RDA_FRM_ECC_SG_ERR |
4628 RDA_MISC_ERR |
4629 RDA_PCIX_ERR,
4630 &bar0->rda_err_reg,
4631 &sw_stat->rda_err_cnt);
4634 if (val64 & RXDMA_INT_RTI_INT_M) {
4635 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4636 &bar0->rti_err_reg,
4637 &sw_stat->rti_err_cnt))
4638 goto reset;
4639 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4640 &bar0->rti_err_reg,
4641 &sw_stat->rti_err_cnt);
4644 val64 = readq(&bar0->mac_int_status);
4645 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4646 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4647 &bar0->mac_rmac_err_reg,
4648 &sw_stat->mac_rmac_err_cnt))
4649 goto reset;
4650 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4651 RMAC_SINGLE_ECC_ERR |
4652 RMAC_DOUBLE_ECC_ERR,
4653 &bar0->mac_rmac_err_reg,
4654 &sw_stat->mac_rmac_err_cnt);
4657 val64 = readq(&bar0->xgxs_int_status);
4658 if (val64 & XGXS_INT_STATUS_RXGXS) {
4659 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4660 &bar0->xgxs_rxgxs_err_reg,
4661 &sw_stat->xgxs_rxgxs_err_cnt))
4662 goto reset;
4665 val64 = readq(&bar0->mc_int_status);
4666 if (val64 & MC_INT_STATUS_MC_INT) {
4667 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4668 &bar0->mc_err_reg,
4669 &sw_stat->mc_err_cnt))
4670 goto reset;
4672 /* Handling Ecc errors */
4673 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4674 writeq(val64, &bar0->mc_err_reg);
4675 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4676 sw_stat->double_ecc_errs++;
4677 if (sp->device_type != XFRAME_II_DEVICE) {
4679 * Reset XframeI only if critical error
4681 if (val64 &
4682 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4683 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4684 goto reset;
4686 } else
4687 sw_stat->single_ecc_errs++;
4690 return;
4692 reset:
4693 s2io_stop_all_tx_queue(sp);
4694 schedule_work(&sp->rst_timer_task);
4695 sw_stat->soft_reset_cnt++;
4699 * s2io_isr - ISR handler of the device .
4700 * @irq: the irq of the device.
4701 * @dev_id: a void pointer to the dev structure of the NIC.
4702 * Description: This function is the ISR handler of the device. It
4703 * identifies the reason for the interrupt and calls the relevant
4704 * service routines. As a contongency measure, this ISR allocates the
4705 * recv buffers, if their numbers are below the panic value which is
4706 * presently set to 25% of the original number of rcv buffers allocated.
4707 * Return value:
4708 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4709 * IRQ_NONE: will be returned if interrupt is not from our device
4711 static irqreturn_t s2io_isr(int irq, void *dev_id)
4713 struct net_device *dev = (struct net_device *)dev_id;
4714 struct s2io_nic *sp = netdev_priv(dev);
4715 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4716 int i;
4717 u64 reason = 0;
4718 struct mac_info *mac_control;
4719 struct config_param *config;
4721 /* Pretend we handled any irq's from a disconnected card */
4722 if (pci_channel_offline(sp->pdev))
4723 return IRQ_NONE;
4725 if (!is_s2io_card_up(sp))
4726 return IRQ_NONE;
4728 config = &sp->config;
4729 mac_control = &sp->mac_control;
4732 * Identify the cause for interrupt and call the appropriate
4733 * interrupt handler. Causes for the interrupt could be;
4734 * 1. Rx of packet.
4735 * 2. Tx complete.
4736 * 3. Link down.
4738 reason = readq(&bar0->general_int_status);
4740 if (unlikely(reason == S2IO_MINUS_ONE))
4741 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4743 if (reason &
4744 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4745 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4747 if (config->napi) {
4748 if (reason & GEN_INTR_RXTRAFFIC) {
4749 napi_schedule(&sp->napi);
4750 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4751 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4752 readl(&bar0->rx_traffic_int);
4754 } else {
4756 * rx_traffic_int reg is an R1 register, writing all 1's
4757 * will ensure that the actual interrupt causing bit
4758 * get's cleared and hence a read can be avoided.
4760 if (reason & GEN_INTR_RXTRAFFIC)
4761 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4763 for (i = 0; i < config->rx_ring_num; i++) {
4764 struct ring_info *ring = &mac_control->rings[i];
4766 rx_intr_handler(ring, 0);
4771 * tx_traffic_int reg is an R1 register, writing all 1's
4772 * will ensure that the actual interrupt causing bit get's
4773 * cleared and hence a read can be avoided.
4775 if (reason & GEN_INTR_TXTRAFFIC)
4776 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4778 for (i = 0; i < config->tx_fifo_num; i++)
4779 tx_intr_handler(&mac_control->fifos[i]);
4781 if (reason & GEN_INTR_TXPIC)
4782 s2io_txpic_intr_handle(sp);
4785 * Reallocate the buffers from the interrupt handler itself.
4787 if (!config->napi) {
4788 for (i = 0; i < config->rx_ring_num; i++) {
4789 struct ring_info *ring = &mac_control->rings[i];
4791 s2io_chk_rx_buffers(sp, ring);
4794 writeq(sp->general_int_mask, &bar0->general_int_mask);
4795 readl(&bar0->general_int_status);
4797 return IRQ_HANDLED;
4799 } else if (!reason) {
4800 /* The interrupt was not raised by us */
4801 return IRQ_NONE;
4804 return IRQ_HANDLED;
4808 * s2io_updt_stats -
4810 static void s2io_updt_stats(struct s2io_nic *sp)
4812 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4813 u64 val64;
4814 int cnt = 0;
4816 if (is_s2io_card_up(sp)) {
4817 /* Apprx 30us on a 133 MHz bus */
4818 val64 = SET_UPDT_CLICKS(10) |
4819 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4820 writeq(val64, &bar0->stat_cfg);
4821 do {
4822 udelay(100);
4823 val64 = readq(&bar0->stat_cfg);
4824 if (!(val64 & s2BIT(0)))
4825 break;
4826 cnt++;
4827 if (cnt == 5)
4828 break; /* Updt failed */
4829 } while (1);
4834 * s2io_get_stats - Updates the device statistics structure.
4835 * @dev : pointer to the device structure.
4836 * Description:
4837 * This function updates the device statistics structure in the s2io_nic
4838 * structure and returns a pointer to the same.
4839 * Return value:
4840 * pointer to the updated net_device_stats structure.
4842 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4844 struct s2io_nic *sp = netdev_priv(dev);
4845 struct mac_info *mac_control = &sp->mac_control;
4846 struct stat_block *stats = mac_control->stats_info;
4847 u64 delta;
4849 /* Configure Stats for immediate updt */
4850 s2io_updt_stats(sp);
4852 /* A device reset will cause the on-adapter statistics to be zero'ed.
4853 * This can be done while running by changing the MTU. To prevent the
4854 * system from having the stats zero'ed, the driver keeps a copy of the
4855 * last update to the system (which is also zero'ed on reset). This
4856 * enables the driver to accurately know the delta between the last
4857 * update and the current update.
4859 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4860 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4861 sp->stats.rx_packets += delta;
4862 dev->stats.rx_packets += delta;
4864 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4865 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4866 sp->stats.tx_packets += delta;
4867 dev->stats.tx_packets += delta;
4869 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4870 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4871 sp->stats.rx_bytes += delta;
4872 dev->stats.rx_bytes += delta;
4874 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4875 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4876 sp->stats.tx_bytes += delta;
4877 dev->stats.tx_bytes += delta;
4879 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4880 sp->stats.rx_errors += delta;
4881 dev->stats.rx_errors += delta;
4883 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4884 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4885 sp->stats.tx_errors += delta;
4886 dev->stats.tx_errors += delta;
4888 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4889 sp->stats.rx_dropped += delta;
4890 dev->stats.rx_dropped += delta;
4892 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4893 sp->stats.tx_dropped += delta;
4894 dev->stats.tx_dropped += delta;
4896 /* The adapter MAC interprets pause frames as multicast packets, but
4897 * does not pass them up. This erroneously increases the multicast
4898 * packet count and needs to be deducted when the multicast frame count
4899 * is queried.
4901 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4902 le32_to_cpu(stats->rmac_vld_mcst_frms);
4903 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4904 delta -= sp->stats.multicast;
4905 sp->stats.multicast += delta;
4906 dev->stats.multicast += delta;
4908 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4909 le32_to_cpu(stats->rmac_usized_frms)) +
4910 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4911 sp->stats.rx_length_errors += delta;
4912 dev->stats.rx_length_errors += delta;
4914 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4915 sp->stats.rx_crc_errors += delta;
4916 dev->stats.rx_crc_errors += delta;
4918 return &dev->stats;
4922 * s2io_set_multicast - entry point for multicast address enable/disable.
4923 * @dev : pointer to the device structure
4924 * Description:
4925 * This function is a driver entry point which gets called by the kernel
4926 * whenever multicast addresses must be enabled/disabled. This also gets
4927 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4928 * determine, if multicast address must be enabled or if promiscuous mode
4929 * is to be disabled etc.
4930 * Return value:
4931 * void.
4934 static void s2io_set_multicast(struct net_device *dev)
4936 int i, j, prev_cnt;
4937 struct netdev_hw_addr *ha;
4938 struct s2io_nic *sp = netdev_priv(dev);
4939 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4940 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4941 0xfeffffffffffULL;
4942 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4943 void __iomem *add;
4944 struct config_param *config = &sp->config;
4946 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4947 /* Enable all Multicast addresses */
4948 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4949 &bar0->rmac_addr_data0_mem);
4950 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4951 &bar0->rmac_addr_data1_mem);
4952 val64 = RMAC_ADDR_CMD_MEM_WE |
4953 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4954 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4955 writeq(val64, &bar0->rmac_addr_cmd_mem);
4956 /* Wait till command completes */
4957 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4958 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4959 S2IO_BIT_RESET);
4961 sp->m_cast_flg = 1;
4962 sp->all_multi_pos = config->max_mc_addr - 1;
4963 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4964 /* Disable all Multicast addresses */
4965 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4966 &bar0->rmac_addr_data0_mem);
4967 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4968 &bar0->rmac_addr_data1_mem);
4969 val64 = RMAC_ADDR_CMD_MEM_WE |
4970 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4971 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4972 writeq(val64, &bar0->rmac_addr_cmd_mem);
4973 /* Wait till command completes */
4974 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4975 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4976 S2IO_BIT_RESET);
4978 sp->m_cast_flg = 0;
4979 sp->all_multi_pos = 0;
4982 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4983 /* Put the NIC into promiscuous mode */
4984 add = &bar0->mac_cfg;
4985 val64 = readq(&bar0->mac_cfg);
4986 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4988 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4989 writel((u32)val64, add);
4990 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4991 writel((u32) (val64 >> 32), (add + 4));
4993 if (vlan_tag_strip != 1) {
4994 val64 = readq(&bar0->rx_pa_cfg);
4995 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4996 writeq(val64, &bar0->rx_pa_cfg);
4997 sp->vlan_strip_flag = 0;
5000 val64 = readq(&bar0->mac_cfg);
5001 sp->promisc_flg = 1;
5002 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5003 dev->name);
5004 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5005 /* Remove the NIC from promiscuous mode */
5006 add = &bar0->mac_cfg;
5007 val64 = readq(&bar0->mac_cfg);
5008 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5010 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5011 writel((u32)val64, add);
5012 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5013 writel((u32) (val64 >> 32), (add + 4));
5015 if (vlan_tag_strip != 0) {
5016 val64 = readq(&bar0->rx_pa_cfg);
5017 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5018 writeq(val64, &bar0->rx_pa_cfg);
5019 sp->vlan_strip_flag = 1;
5022 val64 = readq(&bar0->mac_cfg);
5023 sp->promisc_flg = 0;
5024 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5027 /* Update individual M_CAST address list */
5028 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5029 if (netdev_mc_count(dev) >
5030 (config->max_mc_addr - config->max_mac_addr)) {
5031 DBG_PRINT(ERR_DBG,
5032 "%s: No more Rx filters can be added - "
5033 "please enable ALL_MULTI instead\n",
5034 dev->name);
5035 return;
5038 prev_cnt = sp->mc_addr_count;
5039 sp->mc_addr_count = netdev_mc_count(dev);
5041 /* Clear out the previous list of Mc in the H/W. */
5042 for (i = 0; i < prev_cnt; i++) {
5043 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5044 &bar0->rmac_addr_data0_mem);
5045 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5046 &bar0->rmac_addr_data1_mem);
5047 val64 = RMAC_ADDR_CMD_MEM_WE |
5048 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5049 RMAC_ADDR_CMD_MEM_OFFSET
5050 (config->mc_start_offset + i);
5051 writeq(val64, &bar0->rmac_addr_cmd_mem);
5053 /* Wait for command completes */
5054 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5055 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5056 S2IO_BIT_RESET)) {
5057 DBG_PRINT(ERR_DBG,
5058 "%s: Adding Multicasts failed\n",
5059 dev->name);
5060 return;
5064 /* Create the new Rx filter list and update the same in H/W. */
5065 i = 0;
5066 netdev_for_each_mc_addr(ha, dev) {
5067 mac_addr = 0;
5068 for (j = 0; j < ETH_ALEN; j++) {
5069 mac_addr |= ha->addr[j];
5070 mac_addr <<= 8;
5072 mac_addr >>= 8;
5073 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5074 &bar0->rmac_addr_data0_mem);
5075 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5076 &bar0->rmac_addr_data1_mem);
5077 val64 = RMAC_ADDR_CMD_MEM_WE |
5078 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5079 RMAC_ADDR_CMD_MEM_OFFSET
5080 (i + config->mc_start_offset);
5081 writeq(val64, &bar0->rmac_addr_cmd_mem);
5083 /* Wait for command completes */
5084 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5085 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5086 S2IO_BIT_RESET)) {
5087 DBG_PRINT(ERR_DBG,
5088 "%s: Adding Multicasts failed\n",
5089 dev->name);
5090 return;
5092 i++;
5097 /* read from CAM unicast & multicast addresses and store it in
5098 * def_mac_addr structure
5100 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5102 int offset;
5103 u64 mac_addr = 0x0;
5104 struct config_param *config = &sp->config;
5106 /* store unicast & multicast mac addresses */
5107 for (offset = 0; offset < config->max_mc_addr; offset++) {
5108 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5109 /* if read fails disable the entry */
5110 if (mac_addr == FAILURE)
5111 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5112 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5116 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5117 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5119 int offset;
5120 struct config_param *config = &sp->config;
5121 /* restore unicast mac address */
5122 for (offset = 0; offset < config->max_mac_addr; offset++)
5123 do_s2io_prog_unicast(sp->dev,
5124 sp->def_mac_addr[offset].mac_addr);
5126 /* restore multicast mac address */
5127 for (offset = config->mc_start_offset;
5128 offset < config->max_mc_addr; offset++)
5129 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5132 /* add a multicast MAC address to CAM */
5133 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5135 int i;
5136 u64 mac_addr = 0;
5137 struct config_param *config = &sp->config;
5139 for (i = 0; i < ETH_ALEN; i++) {
5140 mac_addr <<= 8;
5141 mac_addr |= addr[i];
5143 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5144 return SUCCESS;
5146 /* check if the multicast mac already preset in CAM */
5147 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5148 u64 tmp64;
5149 tmp64 = do_s2io_read_unicast_mc(sp, i);
5150 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5151 break;
5153 if (tmp64 == mac_addr)
5154 return SUCCESS;
5156 if (i == config->max_mc_addr) {
5157 DBG_PRINT(ERR_DBG,
5158 "CAM full no space left for multicast MAC\n");
5159 return FAILURE;
5161 /* Update the internal structure with this new mac address */
5162 do_s2io_copy_mac_addr(sp, i, mac_addr);
5164 return do_s2io_add_mac(sp, mac_addr, i);
5167 /* add MAC address to CAM */
5168 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5170 u64 val64;
5171 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5173 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5174 &bar0->rmac_addr_data0_mem);
5176 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5177 RMAC_ADDR_CMD_MEM_OFFSET(off);
5178 writeq(val64, &bar0->rmac_addr_cmd_mem);
5180 /* Wait till command completes */
5181 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5182 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5183 S2IO_BIT_RESET)) {
5184 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5185 return FAILURE;
5187 return SUCCESS;
5189 /* deletes a specified unicast/multicast mac entry from CAM */
5190 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5192 int offset;
5193 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5194 struct config_param *config = &sp->config;
5196 for (offset = 1;
5197 offset < config->max_mc_addr; offset++) {
5198 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5199 if (tmp64 == addr) {
5200 /* disable the entry by writing 0xffffffffffffULL */
5201 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5202 return FAILURE;
5203 /* store the new mac list from CAM */
5204 do_s2io_store_unicast_mc(sp);
5205 return SUCCESS;
5208 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5209 (unsigned long long)addr);
5210 return FAILURE;
5213 /* read mac entries from CAM */
5214 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5216 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5217 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5219 /* read mac addr */
5220 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5221 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5222 writeq(val64, &bar0->rmac_addr_cmd_mem);
5224 /* Wait till command completes */
5225 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5226 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5227 S2IO_BIT_RESET)) {
5228 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5229 return FAILURE;
5231 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5233 return tmp64 >> 16;
5237 * s2io_set_mac_addr - driver entry point
5240 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5242 struct sockaddr *addr = p;
5244 if (!is_valid_ether_addr(addr->sa_data))
5245 return -EADDRNOTAVAIL;
5247 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5249 /* store the MAC address in CAM */
5250 return do_s2io_prog_unicast(dev, dev->dev_addr);
5253 * do_s2io_prog_unicast - Programs the Xframe mac address
5254 * @dev : pointer to the device structure.
5255 * @addr: a uchar pointer to the new mac address which is to be set.
5256 * Description : This procedure will program the Xframe to receive
5257 * frames with new Mac Address
5258 * Return value: SUCCESS on success and an appropriate (-)ve integer
5259 * as defined in errno.h file on failure.
5262 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5264 struct s2io_nic *sp = netdev_priv(dev);
5265 register u64 mac_addr = 0, perm_addr = 0;
5266 int i;
5267 u64 tmp64;
5268 struct config_param *config = &sp->config;
5271 * Set the new MAC address as the new unicast filter and reflect this
5272 * change on the device address registered with the OS. It will be
5273 * at offset 0.
5275 for (i = 0; i < ETH_ALEN; i++) {
5276 mac_addr <<= 8;
5277 mac_addr |= addr[i];
5278 perm_addr <<= 8;
5279 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5282 /* check if the dev_addr is different than perm_addr */
5283 if (mac_addr == perm_addr)
5284 return SUCCESS;
5286 /* check if the mac already preset in CAM */
5287 for (i = 1; i < config->max_mac_addr; i++) {
5288 tmp64 = do_s2io_read_unicast_mc(sp, i);
5289 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5290 break;
5292 if (tmp64 == mac_addr) {
5293 DBG_PRINT(INFO_DBG,
5294 "MAC addr:0x%llx already present in CAM\n",
5295 (unsigned long long)mac_addr);
5296 return SUCCESS;
5299 if (i == config->max_mac_addr) {
5300 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5301 return FAILURE;
5303 /* Update the internal structure with this new mac address */
5304 do_s2io_copy_mac_addr(sp, i, mac_addr);
5306 return do_s2io_add_mac(sp, mac_addr, i);
5310 * s2io_ethtool_sset - Sets different link parameters.
5311 * @sp : private member of the device structure, which is a pointer to the
5312 * s2io_nic structure.
5313 * @info: pointer to the structure with parameters given by ethtool to set
5314 * link information.
5315 * Description:
5316 * The function sets different link parameters provided by the user onto
5317 * the NIC.
5318 * Return value:
5319 * 0 on success.
5322 static int s2io_ethtool_sset(struct net_device *dev,
5323 struct ethtool_cmd *info)
5325 struct s2io_nic *sp = netdev_priv(dev);
5326 if ((info->autoneg == AUTONEG_ENABLE) ||
5327 (ethtool_cmd_speed(info) != SPEED_10000) ||
5328 (info->duplex != DUPLEX_FULL))
5329 return -EINVAL;
5330 else {
5331 s2io_close(sp->dev);
5332 s2io_open(sp->dev);
5335 return 0;
5339 * s2io_ethtol_gset - Return link specific information.
5340 * @sp : private member of the device structure, pointer to the
5341 * s2io_nic structure.
5342 * @info : pointer to the structure with parameters given by ethtool
5343 * to return link information.
5344 * Description:
5345 * Returns link specific information like speed, duplex etc.. to ethtool.
5346 * Return value :
5347 * return 0 on success.
5350 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5352 struct s2io_nic *sp = netdev_priv(dev);
5353 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5354 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5355 info->port = PORT_FIBRE;
5357 /* info->transceiver */
5358 info->transceiver = XCVR_EXTERNAL;
5360 if (netif_carrier_ok(sp->dev)) {
5361 ethtool_cmd_speed_set(info, SPEED_10000);
5362 info->duplex = DUPLEX_FULL;
5363 } else {
5364 ethtool_cmd_speed_set(info, SPEED_UNKNOWN);
5365 info->duplex = DUPLEX_UNKNOWN;
5368 info->autoneg = AUTONEG_DISABLE;
5369 return 0;
5373 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5374 * @sp : private member of the device structure, which is a pointer to the
5375 * s2io_nic structure.
5376 * @info : pointer to the structure with parameters given by ethtool to
5377 * return driver information.
5378 * Description:
5379 * Returns driver specefic information like name, version etc.. to ethtool.
5380 * Return value:
5381 * void
5384 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5385 struct ethtool_drvinfo *info)
5387 struct s2io_nic *sp = netdev_priv(dev);
5389 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5390 strlcpy(info->version, s2io_driver_version, sizeof(info->version));
5391 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5392 info->regdump_len = XENA_REG_SPACE;
5393 info->eedump_len = XENA_EEPROM_SPACE;
5397 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5398 * @sp: private member of the device structure, which is a pointer to the
5399 * s2io_nic structure.
5400 * @regs : pointer to the structure with parameters given by ethtool for
5401 * dumping the registers.
5402 * @reg_space: The input argumnet into which all the registers are dumped.
5403 * Description:
5404 * Dumps the entire register space of xFrame NIC into the user given
5405 * buffer area.
5406 * Return value :
5407 * void .
5410 static void s2io_ethtool_gregs(struct net_device *dev,
5411 struct ethtool_regs *regs, void *space)
5413 int i;
5414 u64 reg;
5415 u8 *reg_space = (u8 *)space;
5416 struct s2io_nic *sp = netdev_priv(dev);
5418 regs->len = XENA_REG_SPACE;
5419 regs->version = sp->pdev->subsystem_device;
5421 for (i = 0; i < regs->len; i += 8) {
5422 reg = readq(sp->bar0 + i);
5423 memcpy((reg_space + i), &reg, 8);
5428 * s2io_set_led - control NIC led
5430 static void s2io_set_led(struct s2io_nic *sp, bool on)
5432 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5433 u16 subid = sp->pdev->subsystem_device;
5434 u64 val64;
5436 if ((sp->device_type == XFRAME_II_DEVICE) ||
5437 ((subid & 0xFF) >= 0x07)) {
5438 val64 = readq(&bar0->gpio_control);
5439 if (on)
5440 val64 |= GPIO_CTRL_GPIO_0;
5441 else
5442 val64 &= ~GPIO_CTRL_GPIO_0;
5444 writeq(val64, &bar0->gpio_control);
5445 } else {
5446 val64 = readq(&bar0->adapter_control);
5447 if (on)
5448 val64 |= ADAPTER_LED_ON;
5449 else
5450 val64 &= ~ADAPTER_LED_ON;
5452 writeq(val64, &bar0->adapter_control);
5458 * s2io_ethtool_set_led - To physically identify the nic on the system.
5459 * @dev : network device
5460 * @state: led setting
5462 * Description: Used to physically identify the NIC on the system.
5463 * The Link LED will blink for a time specified by the user for
5464 * identification.
5465 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5466 * identification is possible only if it's link is up.
5469 static int s2io_ethtool_set_led(struct net_device *dev,
5470 enum ethtool_phys_id_state state)
5472 struct s2io_nic *sp = netdev_priv(dev);
5473 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5474 u16 subid = sp->pdev->subsystem_device;
5476 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5477 u64 val64 = readq(&bar0->adapter_control);
5478 if (!(val64 & ADAPTER_CNTL_EN)) {
5479 pr_err("Adapter Link down, cannot blink LED\n");
5480 return -EAGAIN;
5484 switch (state) {
5485 case ETHTOOL_ID_ACTIVE:
5486 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5487 return 1; /* cycle on/off once per second */
5489 case ETHTOOL_ID_ON:
5490 s2io_set_led(sp, true);
5491 break;
5493 case ETHTOOL_ID_OFF:
5494 s2io_set_led(sp, false);
5495 break;
5497 case ETHTOOL_ID_INACTIVE:
5498 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5499 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5502 return 0;
5505 static void s2io_ethtool_gringparam(struct net_device *dev,
5506 struct ethtool_ringparam *ering)
5508 struct s2io_nic *sp = netdev_priv(dev);
5509 int i, tx_desc_count = 0, rx_desc_count = 0;
5511 if (sp->rxd_mode == RXD_MODE_1) {
5512 ering->rx_max_pending = MAX_RX_DESC_1;
5513 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5514 } else {
5515 ering->rx_max_pending = MAX_RX_DESC_2;
5516 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5519 ering->tx_max_pending = MAX_TX_DESC;
5521 for (i = 0; i < sp->config.rx_ring_num; i++)
5522 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5523 ering->rx_pending = rx_desc_count;
5524 ering->rx_jumbo_pending = rx_desc_count;
5526 for (i = 0; i < sp->config.tx_fifo_num; i++)
5527 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5528 ering->tx_pending = tx_desc_count;
5529 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5533 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5534 * @sp : private member of the device structure, which is a pointer to the
5535 * s2io_nic structure.
5536 * @ep : pointer to the structure with pause parameters given by ethtool.
5537 * Description:
5538 * Returns the Pause frame generation and reception capability of the NIC.
5539 * Return value:
5540 * void
5542 static void s2io_ethtool_getpause_data(struct net_device *dev,
5543 struct ethtool_pauseparam *ep)
5545 u64 val64;
5546 struct s2io_nic *sp = netdev_priv(dev);
5547 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5549 val64 = readq(&bar0->rmac_pause_cfg);
5550 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5551 ep->tx_pause = true;
5552 if (val64 & RMAC_PAUSE_RX_ENABLE)
5553 ep->rx_pause = true;
5554 ep->autoneg = false;
5558 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5559 * @sp : private member of the device structure, which is a pointer to the
5560 * s2io_nic structure.
5561 * @ep : pointer to the structure with pause parameters given by ethtool.
5562 * Description:
5563 * It can be used to set or reset Pause frame generation or reception
5564 * support of the NIC.
5565 * Return value:
5566 * int, returns 0 on Success
5569 static int s2io_ethtool_setpause_data(struct net_device *dev,
5570 struct ethtool_pauseparam *ep)
5572 u64 val64;
5573 struct s2io_nic *sp = netdev_priv(dev);
5574 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5576 val64 = readq(&bar0->rmac_pause_cfg);
5577 if (ep->tx_pause)
5578 val64 |= RMAC_PAUSE_GEN_ENABLE;
5579 else
5580 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5581 if (ep->rx_pause)
5582 val64 |= RMAC_PAUSE_RX_ENABLE;
5583 else
5584 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5585 writeq(val64, &bar0->rmac_pause_cfg);
5586 return 0;
5590 * read_eeprom - reads 4 bytes of data from user given offset.
5591 * @sp : private member of the device structure, which is a pointer to the
5592 * s2io_nic structure.
5593 * @off : offset at which the data must be written
5594 * @data : Its an output parameter where the data read at the given
5595 * offset is stored.
5596 * Description:
5597 * Will read 4 bytes of data from the user given offset and return the
5598 * read data.
5599 * NOTE: Will allow to read only part of the EEPROM visible through the
5600 * I2C bus.
5601 * Return value:
5602 * -1 on failure and 0 on success.
5605 #define S2IO_DEV_ID 5
5606 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5608 int ret = -1;
5609 u32 exit_cnt = 0;
5610 u64 val64;
5611 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5613 if (sp->device_type == XFRAME_I_DEVICE) {
5614 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5615 I2C_CONTROL_ADDR(off) |
5616 I2C_CONTROL_BYTE_CNT(0x3) |
5617 I2C_CONTROL_READ |
5618 I2C_CONTROL_CNTL_START;
5619 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5621 while (exit_cnt < 5) {
5622 val64 = readq(&bar0->i2c_control);
5623 if (I2C_CONTROL_CNTL_END(val64)) {
5624 *data = I2C_CONTROL_GET_DATA(val64);
5625 ret = 0;
5626 break;
5628 msleep(50);
5629 exit_cnt++;
5633 if (sp->device_type == XFRAME_II_DEVICE) {
5634 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5635 SPI_CONTROL_BYTECNT(0x3) |
5636 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5637 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5638 val64 |= SPI_CONTROL_REQ;
5639 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5640 while (exit_cnt < 5) {
5641 val64 = readq(&bar0->spi_control);
5642 if (val64 & SPI_CONTROL_NACK) {
5643 ret = 1;
5644 break;
5645 } else if (val64 & SPI_CONTROL_DONE) {
5646 *data = readq(&bar0->spi_data);
5647 *data &= 0xffffff;
5648 ret = 0;
5649 break;
5651 msleep(50);
5652 exit_cnt++;
5655 return ret;
5659 * write_eeprom - actually writes the relevant part of the data value.
5660 * @sp : private member of the device structure, which is a pointer to the
5661 * s2io_nic structure.
5662 * @off : offset at which the data must be written
5663 * @data : The data that is to be written
5664 * @cnt : Number of bytes of the data that are actually to be written into
5665 * the Eeprom. (max of 3)
5666 * Description:
5667 * Actually writes the relevant part of the data value into the Eeprom
5668 * through the I2C bus.
5669 * Return value:
5670 * 0 on success, -1 on failure.
5673 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5675 int exit_cnt = 0, ret = -1;
5676 u64 val64;
5677 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5679 if (sp->device_type == XFRAME_I_DEVICE) {
5680 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5681 I2C_CONTROL_ADDR(off) |
5682 I2C_CONTROL_BYTE_CNT(cnt) |
5683 I2C_CONTROL_SET_DATA((u32)data) |
5684 I2C_CONTROL_CNTL_START;
5685 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5687 while (exit_cnt < 5) {
5688 val64 = readq(&bar0->i2c_control);
5689 if (I2C_CONTROL_CNTL_END(val64)) {
5690 if (!(val64 & I2C_CONTROL_NACK))
5691 ret = 0;
5692 break;
5694 msleep(50);
5695 exit_cnt++;
5699 if (sp->device_type == XFRAME_II_DEVICE) {
5700 int write_cnt = (cnt == 8) ? 0 : cnt;
5701 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5703 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5704 SPI_CONTROL_BYTECNT(write_cnt) |
5705 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5706 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5707 val64 |= SPI_CONTROL_REQ;
5708 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5709 while (exit_cnt < 5) {
5710 val64 = readq(&bar0->spi_control);
5711 if (val64 & SPI_CONTROL_NACK) {
5712 ret = 1;
5713 break;
5714 } else if (val64 & SPI_CONTROL_DONE) {
5715 ret = 0;
5716 break;
5718 msleep(50);
5719 exit_cnt++;
5722 return ret;
5724 static void s2io_vpd_read(struct s2io_nic *nic)
5726 u8 *vpd_data;
5727 u8 data;
5728 int i = 0, cnt, len, fail = 0;
5729 int vpd_addr = 0x80;
5730 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5732 if (nic->device_type == XFRAME_II_DEVICE) {
5733 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5734 vpd_addr = 0x80;
5735 } else {
5736 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5737 vpd_addr = 0x50;
5739 strcpy(nic->serial_num, "NOT AVAILABLE");
5741 vpd_data = kmalloc(256, GFP_KERNEL);
5742 if (!vpd_data) {
5743 swstats->mem_alloc_fail_cnt++;
5744 return;
5746 swstats->mem_allocated += 256;
5748 for (i = 0; i < 256; i += 4) {
5749 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5750 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5751 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5752 for (cnt = 0; cnt < 5; cnt++) {
5753 msleep(2);
5754 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5755 if (data == 0x80)
5756 break;
5758 if (cnt >= 5) {
5759 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5760 fail = 1;
5761 break;
5763 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5764 (u32 *)&vpd_data[i]);
5767 if (!fail) {
5768 /* read serial number of adapter */
5769 for (cnt = 0; cnt < 252; cnt++) {
5770 if ((vpd_data[cnt] == 'S') &&
5771 (vpd_data[cnt+1] == 'N')) {
5772 len = vpd_data[cnt+2];
5773 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5774 memcpy(nic->serial_num,
5775 &vpd_data[cnt + 3],
5776 len);
5777 memset(nic->serial_num+len,
5779 VPD_STRING_LEN-len);
5780 break;
5786 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5787 len = vpd_data[1];
5788 memcpy(nic->product_name, &vpd_data[3], len);
5789 nic->product_name[len] = 0;
5791 kfree(vpd_data);
5792 swstats->mem_freed += 256;
5796 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5797 * @sp : private member of the device structure, which is a pointer to the
5798 * s2io_nic structure.
5799 * @eeprom : pointer to the user level structure provided by ethtool,
5800 * containing all relevant information.
5801 * @data_buf : user defined value to be written into Eeprom.
5802 * Description: Reads the values stored in the Eeprom at given offset
5803 * for a given length. Stores these values int the input argument data
5804 * buffer 'data_buf' and returns these to the caller (ethtool.)
5805 * Return value:
5806 * int 0 on success
5809 static int s2io_ethtool_geeprom(struct net_device *dev,
5810 struct ethtool_eeprom *eeprom, u8 * data_buf)
5812 u32 i, valid;
5813 u64 data;
5814 struct s2io_nic *sp = netdev_priv(dev);
5816 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5818 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5819 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5821 for (i = 0; i < eeprom->len; i += 4) {
5822 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5823 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5824 return -EFAULT;
5826 valid = INV(data);
5827 memcpy((data_buf + i), &valid, 4);
5829 return 0;
5833 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5834 * @sp : private member of the device structure, which is a pointer to the
5835 * s2io_nic structure.
5836 * @eeprom : pointer to the user level structure provided by ethtool,
5837 * containing all relevant information.
5838 * @data_buf ; user defined value to be written into Eeprom.
5839 * Description:
5840 * Tries to write the user provided value in the Eeprom, at the offset
5841 * given by the user.
5842 * Return value:
5843 * 0 on success, -EFAULT on failure.
5846 static int s2io_ethtool_seeprom(struct net_device *dev,
5847 struct ethtool_eeprom *eeprom,
5848 u8 *data_buf)
5850 int len = eeprom->len, cnt = 0;
5851 u64 valid = 0, data;
5852 struct s2io_nic *sp = netdev_priv(dev);
5854 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5855 DBG_PRINT(ERR_DBG,
5856 "ETHTOOL_WRITE_EEPROM Err: "
5857 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5858 (sp->pdev->vendor | (sp->pdev->device << 16)),
5859 eeprom->magic);
5860 return -EFAULT;
5863 while (len) {
5864 data = (u32)data_buf[cnt] & 0x000000FF;
5865 if (data)
5866 valid = (u32)(data << 24);
5867 else
5868 valid = data;
5870 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5871 DBG_PRINT(ERR_DBG,
5872 "ETHTOOL_WRITE_EEPROM Err: "
5873 "Cannot write into the specified offset\n");
5874 return -EFAULT;
5876 cnt++;
5877 len--;
5880 return 0;
5884 * s2io_register_test - reads and writes into all clock domains.
5885 * @sp : private member of the device structure, which is a pointer to the
5886 * s2io_nic structure.
5887 * @data : variable that returns the result of each of the test conducted b
5888 * by the driver.
5889 * Description:
5890 * Read and write into all clock domains. The NIC has 3 clock domains,
5891 * see that registers in all the three regions are accessible.
5892 * Return value:
5893 * 0 on success.
5896 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5898 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5899 u64 val64 = 0, exp_val;
5900 int fail = 0;
5902 val64 = readq(&bar0->pif_rd_swapper_fb);
5903 if (val64 != 0x123456789abcdefULL) {
5904 fail = 1;
5905 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5908 val64 = readq(&bar0->rmac_pause_cfg);
5909 if (val64 != 0xc000ffff00000000ULL) {
5910 fail = 1;
5911 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5914 val64 = readq(&bar0->rx_queue_cfg);
5915 if (sp->device_type == XFRAME_II_DEVICE)
5916 exp_val = 0x0404040404040404ULL;
5917 else
5918 exp_val = 0x0808080808080808ULL;
5919 if (val64 != exp_val) {
5920 fail = 1;
5921 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5924 val64 = readq(&bar0->xgxs_efifo_cfg);
5925 if (val64 != 0x000000001923141EULL) {
5926 fail = 1;
5927 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5930 val64 = 0x5A5A5A5A5A5A5A5AULL;
5931 writeq(val64, &bar0->xmsi_data);
5932 val64 = readq(&bar0->xmsi_data);
5933 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5934 fail = 1;
5935 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5938 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5939 writeq(val64, &bar0->xmsi_data);
5940 val64 = readq(&bar0->xmsi_data);
5941 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5942 fail = 1;
5943 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5946 *data = fail;
5947 return fail;
5951 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5952 * @sp : private member of the device structure, which is a pointer to the
5953 * s2io_nic structure.
5954 * @data:variable that returns the result of each of the test conducted by
5955 * the driver.
5956 * Description:
5957 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5958 * register.
5959 * Return value:
5960 * 0 on success.
5963 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5965 int fail = 0;
5966 u64 ret_data, org_4F0, org_7F0;
5967 u8 saved_4F0 = 0, saved_7F0 = 0;
5968 struct net_device *dev = sp->dev;
5970 /* Test Write Error at offset 0 */
5971 /* Note that SPI interface allows write access to all areas
5972 * of EEPROM. Hence doing all negative testing only for Xframe I.
5974 if (sp->device_type == XFRAME_I_DEVICE)
5975 if (!write_eeprom(sp, 0, 0, 3))
5976 fail = 1;
5978 /* Save current values at offsets 0x4F0 and 0x7F0 */
5979 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5980 saved_4F0 = 1;
5981 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5982 saved_7F0 = 1;
5984 /* Test Write at offset 4f0 */
5985 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5986 fail = 1;
5987 if (read_eeprom(sp, 0x4F0, &ret_data))
5988 fail = 1;
5990 if (ret_data != 0x012345) {
5991 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5992 "Data written %llx Data read %llx\n",
5993 dev->name, (unsigned long long)0x12345,
5994 (unsigned long long)ret_data);
5995 fail = 1;
5998 /* Reset the EEPROM data go FFFF */
5999 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6001 /* Test Write Request Error at offset 0x7c */
6002 if (sp->device_type == XFRAME_I_DEVICE)
6003 if (!write_eeprom(sp, 0x07C, 0, 3))
6004 fail = 1;
6006 /* Test Write Request at offset 0x7f0 */
6007 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6008 fail = 1;
6009 if (read_eeprom(sp, 0x7F0, &ret_data))
6010 fail = 1;
6012 if (ret_data != 0x012345) {
6013 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6014 "Data written %llx Data read %llx\n",
6015 dev->name, (unsigned long long)0x12345,
6016 (unsigned long long)ret_data);
6017 fail = 1;
6020 /* Reset the EEPROM data go FFFF */
6021 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6023 if (sp->device_type == XFRAME_I_DEVICE) {
6024 /* Test Write Error at offset 0x80 */
6025 if (!write_eeprom(sp, 0x080, 0, 3))
6026 fail = 1;
6028 /* Test Write Error at offset 0xfc */
6029 if (!write_eeprom(sp, 0x0FC, 0, 3))
6030 fail = 1;
6032 /* Test Write Error at offset 0x100 */
6033 if (!write_eeprom(sp, 0x100, 0, 3))
6034 fail = 1;
6036 /* Test Write Error at offset 4ec */
6037 if (!write_eeprom(sp, 0x4EC, 0, 3))
6038 fail = 1;
6041 /* Restore values at offsets 0x4F0 and 0x7F0 */
6042 if (saved_4F0)
6043 write_eeprom(sp, 0x4F0, org_4F0, 3);
6044 if (saved_7F0)
6045 write_eeprom(sp, 0x7F0, org_7F0, 3);
6047 *data = fail;
6048 return fail;
6052 * s2io_bist_test - invokes the MemBist test of the card .
6053 * @sp : private member of the device structure, which is a pointer to the
6054 * s2io_nic structure.
6055 * @data:variable that returns the result of each of the test conducted by
6056 * the driver.
6057 * Description:
6058 * This invokes the MemBist test of the card. We give around
6059 * 2 secs time for the Test to complete. If it's still not complete
6060 * within this peiod, we consider that the test failed.
6061 * Return value:
6062 * 0 on success and -1 on failure.
6065 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6067 u8 bist = 0;
6068 int cnt = 0, ret = -1;
6070 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6071 bist |= PCI_BIST_START;
6072 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6074 while (cnt < 20) {
6075 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6076 if (!(bist & PCI_BIST_START)) {
6077 *data = (bist & PCI_BIST_CODE_MASK);
6078 ret = 0;
6079 break;
6081 msleep(100);
6082 cnt++;
6085 return ret;
6089 * s2io_link_test - verifies the link state of the nic
6090 * @sp ; private member of the device structure, which is a pointer to the
6091 * s2io_nic structure.
6092 * @data: variable that returns the result of each of the test conducted by
6093 * the driver.
6094 * Description:
6095 * The function verifies the link state of the NIC and updates the input
6096 * argument 'data' appropriately.
6097 * Return value:
6098 * 0 on success.
6101 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6104 u64 val64;
6106 val64 = readq(&bar0->adapter_status);
6107 if (!(LINK_IS_UP(val64)))
6108 *data = 1;
6109 else
6110 *data = 0;
6112 return *data;
6116 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6117 * @sp: private member of the device structure, which is a pointer to the
6118 * s2io_nic structure.
6119 * @data: variable that returns the result of each of the test
6120 * conducted by the driver.
6121 * Description:
6122 * This is one of the offline test that tests the read and write
6123 * access to the RldRam chip on the NIC.
6124 * Return value:
6125 * 0 on success.
6128 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6130 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6131 u64 val64;
6132 int cnt, iteration = 0, test_fail = 0;
6134 val64 = readq(&bar0->adapter_control);
6135 val64 &= ~ADAPTER_ECC_EN;
6136 writeq(val64, &bar0->adapter_control);
6138 val64 = readq(&bar0->mc_rldram_test_ctrl);
6139 val64 |= MC_RLDRAM_TEST_MODE;
6140 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6142 val64 = readq(&bar0->mc_rldram_mrs);
6143 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6144 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6146 val64 |= MC_RLDRAM_MRS_ENABLE;
6147 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6149 while (iteration < 2) {
6150 val64 = 0x55555555aaaa0000ULL;
6151 if (iteration == 1)
6152 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6153 writeq(val64, &bar0->mc_rldram_test_d0);
6155 val64 = 0xaaaa5a5555550000ULL;
6156 if (iteration == 1)
6157 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6158 writeq(val64, &bar0->mc_rldram_test_d1);
6160 val64 = 0x55aaaaaaaa5a0000ULL;
6161 if (iteration == 1)
6162 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6163 writeq(val64, &bar0->mc_rldram_test_d2);
6165 val64 = (u64) (0x0000003ffffe0100ULL);
6166 writeq(val64, &bar0->mc_rldram_test_add);
6168 val64 = MC_RLDRAM_TEST_MODE |
6169 MC_RLDRAM_TEST_WRITE |
6170 MC_RLDRAM_TEST_GO;
6171 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6173 for (cnt = 0; cnt < 5; cnt++) {
6174 val64 = readq(&bar0->mc_rldram_test_ctrl);
6175 if (val64 & MC_RLDRAM_TEST_DONE)
6176 break;
6177 msleep(200);
6180 if (cnt == 5)
6181 break;
6183 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6184 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6186 for (cnt = 0; cnt < 5; cnt++) {
6187 val64 = readq(&bar0->mc_rldram_test_ctrl);
6188 if (val64 & MC_RLDRAM_TEST_DONE)
6189 break;
6190 msleep(500);
6193 if (cnt == 5)
6194 break;
6196 val64 = readq(&bar0->mc_rldram_test_ctrl);
6197 if (!(val64 & MC_RLDRAM_TEST_PASS))
6198 test_fail = 1;
6200 iteration++;
6203 *data = test_fail;
6205 /* Bring the adapter out of test mode */
6206 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6208 return test_fail;
6212 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6213 * @sp : private member of the device structure, which is a pointer to the
6214 * s2io_nic structure.
6215 * @ethtest : pointer to a ethtool command specific structure that will be
6216 * returned to the user.
6217 * @data : variable that returns the result of each of the test
6218 * conducted by the driver.
6219 * Description:
6220 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6221 * the health of the card.
6222 * Return value:
6223 * void
6226 static void s2io_ethtool_test(struct net_device *dev,
6227 struct ethtool_test *ethtest,
6228 uint64_t *data)
6230 struct s2io_nic *sp = netdev_priv(dev);
6231 int orig_state = netif_running(sp->dev);
6233 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6234 /* Offline Tests. */
6235 if (orig_state)
6236 s2io_close(sp->dev);
6238 if (s2io_register_test(sp, &data[0]))
6239 ethtest->flags |= ETH_TEST_FL_FAILED;
6241 s2io_reset(sp);
6243 if (s2io_rldram_test(sp, &data[3]))
6244 ethtest->flags |= ETH_TEST_FL_FAILED;
6246 s2io_reset(sp);
6248 if (s2io_eeprom_test(sp, &data[1]))
6249 ethtest->flags |= ETH_TEST_FL_FAILED;
6251 if (s2io_bist_test(sp, &data[4]))
6252 ethtest->flags |= ETH_TEST_FL_FAILED;
6254 if (orig_state)
6255 s2io_open(sp->dev);
6257 data[2] = 0;
6258 } else {
6259 /* Online Tests. */
6260 if (!orig_state) {
6261 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6262 dev->name);
6263 data[0] = -1;
6264 data[1] = -1;
6265 data[2] = -1;
6266 data[3] = -1;
6267 data[4] = -1;
6270 if (s2io_link_test(sp, &data[2]))
6271 ethtest->flags |= ETH_TEST_FL_FAILED;
6273 data[0] = 0;
6274 data[1] = 0;
6275 data[3] = 0;
6276 data[4] = 0;
6280 static void s2io_get_ethtool_stats(struct net_device *dev,
6281 struct ethtool_stats *estats,
6282 u64 *tmp_stats)
6284 int i = 0, k;
6285 struct s2io_nic *sp = netdev_priv(dev);
6286 struct stat_block *stats = sp->mac_control.stats_info;
6287 struct swStat *swstats = &stats->sw_stat;
6288 struct xpakStat *xstats = &stats->xpak_stat;
6290 s2io_updt_stats(sp);
6291 tmp_stats[i++] =
6292 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6293 le32_to_cpu(stats->tmac_frms);
6294 tmp_stats[i++] =
6295 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6296 le32_to_cpu(stats->tmac_data_octets);
6297 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6298 tmp_stats[i++] =
6299 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6300 le32_to_cpu(stats->tmac_mcst_frms);
6301 tmp_stats[i++] =
6302 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6303 le32_to_cpu(stats->tmac_bcst_frms);
6304 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6305 tmp_stats[i++] =
6306 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6307 le32_to_cpu(stats->tmac_ttl_octets);
6308 tmp_stats[i++] =
6309 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6310 le32_to_cpu(stats->tmac_ucst_frms);
6311 tmp_stats[i++] =
6312 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6313 le32_to_cpu(stats->tmac_nucst_frms);
6314 tmp_stats[i++] =
6315 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6316 le32_to_cpu(stats->tmac_any_err_frms);
6317 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6318 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6319 tmp_stats[i++] =
6320 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6321 le32_to_cpu(stats->tmac_vld_ip);
6322 tmp_stats[i++] =
6323 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6324 le32_to_cpu(stats->tmac_drop_ip);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6327 le32_to_cpu(stats->tmac_icmp);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6330 le32_to_cpu(stats->tmac_rst_tcp);
6331 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6332 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6333 le32_to_cpu(stats->tmac_udp);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6336 le32_to_cpu(stats->rmac_vld_frms);
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6339 le32_to_cpu(stats->rmac_data_octets);
6340 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6341 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6344 le32_to_cpu(stats->rmac_vld_mcst_frms);
6345 tmp_stats[i++] =
6346 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6347 le32_to_cpu(stats->rmac_vld_bcst_frms);
6348 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6349 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6350 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6351 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6352 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6353 tmp_stats[i++] =
6354 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6355 le32_to_cpu(stats->rmac_ttl_octets);
6356 tmp_stats[i++] =
6357 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6358 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6359 tmp_stats[i++] =
6360 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6361 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6362 tmp_stats[i++] =
6363 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6364 le32_to_cpu(stats->rmac_discarded_frms);
6365 tmp_stats[i++] =
6366 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6367 << 32 | le32_to_cpu(stats->rmac_drop_events);
6368 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6369 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6372 le32_to_cpu(stats->rmac_usized_frms);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6375 le32_to_cpu(stats->rmac_osized_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6378 le32_to_cpu(stats->rmac_frag_frms);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6381 le32_to_cpu(stats->rmac_jabber_frms);
6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6383 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6390 le32_to_cpu(stats->rmac_ip);
6391 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6392 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6395 le32_to_cpu(stats->rmac_drop_ip);
6396 tmp_stats[i++] =
6397 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6398 le32_to_cpu(stats->rmac_icmp);
6399 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6400 tmp_stats[i++] =
6401 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6402 le32_to_cpu(stats->rmac_udp);
6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6405 le32_to_cpu(stats->rmac_err_drp_udp);
6406 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6407 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6408 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6415 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6416 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6417 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6418 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6425 le32_to_cpu(stats->rmac_pause_cnt);
6426 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6427 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6428 tmp_stats[i++] =
6429 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6430 le32_to_cpu(stats->rmac_accepted_ip);
6431 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6432 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6433 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6434 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6435 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6436 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6451 /* Enhanced statistics exist only for Hercules */
6452 if (sp->device_type == XFRAME_II_DEVICE) {
6453 tmp_stats[i++] =
6454 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6455 tmp_stats[i++] =
6456 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6457 tmp_stats[i++] =
6458 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6459 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6460 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6461 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6462 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6464 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6465 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6466 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6467 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6471 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6474 tmp_stats[i++] = 0;
6475 tmp_stats[i++] = swstats->single_ecc_errs;
6476 tmp_stats[i++] = swstats->double_ecc_errs;
6477 tmp_stats[i++] = swstats->parity_err_cnt;
6478 tmp_stats[i++] = swstats->serious_err_cnt;
6479 tmp_stats[i++] = swstats->soft_reset_cnt;
6480 tmp_stats[i++] = swstats->fifo_full_cnt;
6481 for (k = 0; k < MAX_RX_RINGS; k++)
6482 tmp_stats[i++] = swstats->ring_full_cnt[k];
6483 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6484 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6485 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6486 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6487 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6488 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6489 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6490 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6491 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6492 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6493 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6494 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6495 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6496 tmp_stats[i++] = swstats->sending_both;
6497 tmp_stats[i++] = swstats->outof_sequence_pkts;
6498 tmp_stats[i++] = swstats->flush_max_pkts;
6499 if (swstats->num_aggregations) {
6500 u64 tmp = swstats->sum_avg_pkts_aggregated;
6501 int count = 0;
6503 * Since 64-bit divide does not work on all platforms,
6504 * do repeated subtraction.
6506 while (tmp >= swstats->num_aggregations) {
6507 tmp -= swstats->num_aggregations;
6508 count++;
6510 tmp_stats[i++] = count;
6511 } else
6512 tmp_stats[i++] = 0;
6513 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6514 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6515 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6516 tmp_stats[i++] = swstats->mem_allocated;
6517 tmp_stats[i++] = swstats->mem_freed;
6518 tmp_stats[i++] = swstats->link_up_cnt;
6519 tmp_stats[i++] = swstats->link_down_cnt;
6520 tmp_stats[i++] = swstats->link_up_time;
6521 tmp_stats[i++] = swstats->link_down_time;
6523 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6524 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6525 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6526 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6527 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6529 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6530 tmp_stats[i++] = swstats->rx_abort_cnt;
6531 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6532 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6533 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6534 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6535 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6536 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6537 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6538 tmp_stats[i++] = swstats->tda_err_cnt;
6539 tmp_stats[i++] = swstats->pfc_err_cnt;
6540 tmp_stats[i++] = swstats->pcc_err_cnt;
6541 tmp_stats[i++] = swstats->tti_err_cnt;
6542 tmp_stats[i++] = swstats->tpa_err_cnt;
6543 tmp_stats[i++] = swstats->sm_err_cnt;
6544 tmp_stats[i++] = swstats->lso_err_cnt;
6545 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6546 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6547 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6548 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6549 tmp_stats[i++] = swstats->rc_err_cnt;
6550 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6551 tmp_stats[i++] = swstats->rpa_err_cnt;
6552 tmp_stats[i++] = swstats->rda_err_cnt;
6553 tmp_stats[i++] = swstats->rti_err_cnt;
6554 tmp_stats[i++] = swstats->mc_err_cnt;
6557 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6559 return XENA_REG_SPACE;
6563 static int s2io_get_eeprom_len(struct net_device *dev)
6565 return XENA_EEPROM_SPACE;
6568 static int s2io_get_sset_count(struct net_device *dev, int sset)
6570 struct s2io_nic *sp = netdev_priv(dev);
6572 switch (sset) {
6573 case ETH_SS_TEST:
6574 return S2IO_TEST_LEN;
6575 case ETH_SS_STATS:
6576 switch (sp->device_type) {
6577 case XFRAME_I_DEVICE:
6578 return XFRAME_I_STAT_LEN;
6579 case XFRAME_II_DEVICE:
6580 return XFRAME_II_STAT_LEN;
6581 default:
6582 return 0;
6584 default:
6585 return -EOPNOTSUPP;
6589 static void s2io_ethtool_get_strings(struct net_device *dev,
6590 u32 stringset, u8 *data)
6592 int stat_size = 0;
6593 struct s2io_nic *sp = netdev_priv(dev);
6595 switch (stringset) {
6596 case ETH_SS_TEST:
6597 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6598 break;
6599 case ETH_SS_STATS:
6600 stat_size = sizeof(ethtool_xena_stats_keys);
6601 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6602 if (sp->device_type == XFRAME_II_DEVICE) {
6603 memcpy(data + stat_size,
6604 &ethtool_enhanced_stats_keys,
6605 sizeof(ethtool_enhanced_stats_keys));
6606 stat_size += sizeof(ethtool_enhanced_stats_keys);
6609 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6610 sizeof(ethtool_driver_stats_keys));
6614 static int s2io_set_features(struct net_device *dev, netdev_features_t features)
6616 struct s2io_nic *sp = netdev_priv(dev);
6617 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
6619 if (changed && netif_running(dev)) {
6620 int rc;
6622 s2io_stop_all_tx_queue(sp);
6623 s2io_card_down(sp);
6624 dev->features = features;
6625 rc = s2io_card_up(sp);
6626 if (rc)
6627 s2io_reset(sp);
6628 else
6629 s2io_start_all_tx_queue(sp);
6631 return rc ? rc : 1;
6634 return 0;
6637 static const struct ethtool_ops netdev_ethtool_ops = {
6638 .get_settings = s2io_ethtool_gset,
6639 .set_settings = s2io_ethtool_sset,
6640 .get_drvinfo = s2io_ethtool_gdrvinfo,
6641 .get_regs_len = s2io_ethtool_get_regs_len,
6642 .get_regs = s2io_ethtool_gregs,
6643 .get_link = ethtool_op_get_link,
6644 .get_eeprom_len = s2io_get_eeprom_len,
6645 .get_eeprom = s2io_ethtool_geeprom,
6646 .set_eeprom = s2io_ethtool_seeprom,
6647 .get_ringparam = s2io_ethtool_gringparam,
6648 .get_pauseparam = s2io_ethtool_getpause_data,
6649 .set_pauseparam = s2io_ethtool_setpause_data,
6650 .self_test = s2io_ethtool_test,
6651 .get_strings = s2io_ethtool_get_strings,
6652 .set_phys_id = s2io_ethtool_set_led,
6653 .get_ethtool_stats = s2io_get_ethtool_stats,
6654 .get_sset_count = s2io_get_sset_count,
6658 * s2io_ioctl - Entry point for the Ioctl
6659 * @dev : Device pointer.
6660 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6661 * a proprietary structure used to pass information to the driver.
6662 * @cmd : This is used to distinguish between the different commands that
6663 * can be passed to the IOCTL functions.
6664 * Description:
6665 * Currently there are no special functionality supported in IOCTL, hence
6666 * function always return EOPNOTSUPPORTED
6669 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6671 return -EOPNOTSUPP;
6675 * s2io_change_mtu - entry point to change MTU size for the device.
6676 * @dev : device pointer.
6677 * @new_mtu : the new MTU size for the device.
6678 * Description: A driver entry point to change MTU size for the device.
6679 * Before changing the MTU the device must be stopped.
6680 * Return value:
6681 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6682 * file on failure.
6685 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6687 struct s2io_nic *sp = netdev_priv(dev);
6688 int ret = 0;
6690 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6691 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6692 return -EPERM;
6695 dev->mtu = new_mtu;
6696 if (netif_running(dev)) {
6697 s2io_stop_all_tx_queue(sp);
6698 s2io_card_down(sp);
6699 ret = s2io_card_up(sp);
6700 if (ret) {
6701 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6702 __func__);
6703 return ret;
6705 s2io_wake_all_tx_queue(sp);
6706 } else { /* Device is down */
6707 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6708 u64 val64 = new_mtu;
6710 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6713 return ret;
6717 * s2io_set_link - Set the LInk status
6718 * @data: long pointer to device private structue
6719 * Description: Sets the link status for the adapter
6722 static void s2io_set_link(struct work_struct *work)
6724 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6725 set_link_task);
6726 struct net_device *dev = nic->dev;
6727 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6728 register u64 val64;
6729 u16 subid;
6731 rtnl_lock();
6733 if (!netif_running(dev))
6734 goto out_unlock;
6736 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6737 /* The card is being reset, no point doing anything */
6738 goto out_unlock;
6741 subid = nic->pdev->subsystem_device;
6742 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6744 * Allow a small delay for the NICs self initiated
6745 * cleanup to complete.
6747 msleep(100);
6750 val64 = readq(&bar0->adapter_status);
6751 if (LINK_IS_UP(val64)) {
6752 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6753 if (verify_xena_quiescence(nic)) {
6754 val64 = readq(&bar0->adapter_control);
6755 val64 |= ADAPTER_CNTL_EN;
6756 writeq(val64, &bar0->adapter_control);
6757 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6758 nic->device_type, subid)) {
6759 val64 = readq(&bar0->gpio_control);
6760 val64 |= GPIO_CTRL_GPIO_0;
6761 writeq(val64, &bar0->gpio_control);
6762 val64 = readq(&bar0->gpio_control);
6763 } else {
6764 val64 |= ADAPTER_LED_ON;
6765 writeq(val64, &bar0->adapter_control);
6767 nic->device_enabled_once = true;
6768 } else {
6769 DBG_PRINT(ERR_DBG,
6770 "%s: Error: device is not Quiescent\n",
6771 dev->name);
6772 s2io_stop_all_tx_queue(nic);
6775 val64 = readq(&bar0->adapter_control);
6776 val64 |= ADAPTER_LED_ON;
6777 writeq(val64, &bar0->adapter_control);
6778 s2io_link(nic, LINK_UP);
6779 } else {
6780 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6781 subid)) {
6782 val64 = readq(&bar0->gpio_control);
6783 val64 &= ~GPIO_CTRL_GPIO_0;
6784 writeq(val64, &bar0->gpio_control);
6785 val64 = readq(&bar0->gpio_control);
6787 /* turn off LED */
6788 val64 = readq(&bar0->adapter_control);
6789 val64 = val64 & (~ADAPTER_LED_ON);
6790 writeq(val64, &bar0->adapter_control);
6791 s2io_link(nic, LINK_DOWN);
6793 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6795 out_unlock:
6796 rtnl_unlock();
6799 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6800 struct buffAdd *ba,
6801 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6802 u64 *temp2, int size)
6804 struct net_device *dev = sp->dev;
6805 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6807 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6808 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6809 /* allocate skb */
6810 if (*skb) {
6811 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6813 * As Rx frame are not going to be processed,
6814 * using same mapped address for the Rxd
6815 * buffer pointer
6817 rxdp1->Buffer0_ptr = *temp0;
6818 } else {
6819 *skb = netdev_alloc_skb(dev, size);
6820 if (!(*skb)) {
6821 DBG_PRINT(INFO_DBG,
6822 "%s: Out of memory to allocate %s\n",
6823 dev->name, "1 buf mode SKBs");
6824 stats->mem_alloc_fail_cnt++;
6825 return -ENOMEM ;
6827 stats->mem_allocated += (*skb)->truesize;
6828 /* storing the mapped addr in a temp variable
6829 * such it will be used for next rxd whose
6830 * Host Control is NULL
6832 rxdp1->Buffer0_ptr = *temp0 =
6833 pci_map_single(sp->pdev, (*skb)->data,
6834 size - NET_IP_ALIGN,
6835 PCI_DMA_FROMDEVICE);
6836 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6837 goto memalloc_failed;
6838 rxdp->Host_Control = (unsigned long) (*skb);
6840 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6841 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6842 /* Two buffer Mode */
6843 if (*skb) {
6844 rxdp3->Buffer2_ptr = *temp2;
6845 rxdp3->Buffer0_ptr = *temp0;
6846 rxdp3->Buffer1_ptr = *temp1;
6847 } else {
6848 *skb = netdev_alloc_skb(dev, size);
6849 if (!(*skb)) {
6850 DBG_PRINT(INFO_DBG,
6851 "%s: Out of memory to allocate %s\n",
6852 dev->name,
6853 "2 buf mode SKBs");
6854 stats->mem_alloc_fail_cnt++;
6855 return -ENOMEM;
6857 stats->mem_allocated += (*skb)->truesize;
6858 rxdp3->Buffer2_ptr = *temp2 =
6859 pci_map_single(sp->pdev, (*skb)->data,
6860 dev->mtu + 4,
6861 PCI_DMA_FROMDEVICE);
6862 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6863 goto memalloc_failed;
6864 rxdp3->Buffer0_ptr = *temp0 =
6865 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6866 PCI_DMA_FROMDEVICE);
6867 if (pci_dma_mapping_error(sp->pdev,
6868 rxdp3->Buffer0_ptr)) {
6869 pci_unmap_single(sp->pdev,
6870 (dma_addr_t)rxdp3->Buffer2_ptr,
6871 dev->mtu + 4,
6872 PCI_DMA_FROMDEVICE);
6873 goto memalloc_failed;
6875 rxdp->Host_Control = (unsigned long) (*skb);
6877 /* Buffer-1 will be dummy buffer not used */
6878 rxdp3->Buffer1_ptr = *temp1 =
6879 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6880 PCI_DMA_FROMDEVICE);
6881 if (pci_dma_mapping_error(sp->pdev,
6882 rxdp3->Buffer1_ptr)) {
6883 pci_unmap_single(sp->pdev,
6884 (dma_addr_t)rxdp3->Buffer0_ptr,
6885 BUF0_LEN, PCI_DMA_FROMDEVICE);
6886 pci_unmap_single(sp->pdev,
6887 (dma_addr_t)rxdp3->Buffer2_ptr,
6888 dev->mtu + 4,
6889 PCI_DMA_FROMDEVICE);
6890 goto memalloc_failed;
6894 return 0;
6896 memalloc_failed:
6897 stats->pci_map_fail_cnt++;
6898 stats->mem_freed += (*skb)->truesize;
6899 dev_kfree_skb(*skb);
6900 return -ENOMEM;
6903 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6904 int size)
6906 struct net_device *dev = sp->dev;
6907 if (sp->rxd_mode == RXD_MODE_1) {
6908 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6909 } else if (sp->rxd_mode == RXD_MODE_3B) {
6910 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6911 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6912 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6916 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6918 int i, j, k, blk_cnt = 0, size;
6919 struct config_param *config = &sp->config;
6920 struct mac_info *mac_control = &sp->mac_control;
6921 struct net_device *dev = sp->dev;
6922 struct RxD_t *rxdp = NULL;
6923 struct sk_buff *skb = NULL;
6924 struct buffAdd *ba = NULL;
6925 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6927 /* Calculate the size based on ring mode */
6928 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6929 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6930 if (sp->rxd_mode == RXD_MODE_1)
6931 size += NET_IP_ALIGN;
6932 else if (sp->rxd_mode == RXD_MODE_3B)
6933 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6935 for (i = 0; i < config->rx_ring_num; i++) {
6936 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6937 struct ring_info *ring = &mac_control->rings[i];
6939 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6941 for (j = 0; j < blk_cnt; j++) {
6942 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6943 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6944 if (sp->rxd_mode == RXD_MODE_3B)
6945 ba = &ring->ba[j][k];
6946 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6947 &temp0_64,
6948 &temp1_64,
6949 &temp2_64,
6950 size) == -ENOMEM) {
6951 return 0;
6954 set_rxd_buffer_size(sp, rxdp, size);
6955 dma_wmb();
6956 /* flip the Ownership bit to Hardware */
6957 rxdp->Control_1 |= RXD_OWN_XENA;
6961 return 0;
6965 static int s2io_add_isr(struct s2io_nic *sp)
6967 int ret = 0;
6968 struct net_device *dev = sp->dev;
6969 int err = 0;
6971 if (sp->config.intr_type == MSI_X)
6972 ret = s2io_enable_msi_x(sp);
6973 if (ret) {
6974 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6975 sp->config.intr_type = INTA;
6979 * Store the values of the MSIX table in
6980 * the struct s2io_nic structure
6982 store_xmsi_data(sp);
6984 /* After proper initialization of H/W, register ISR */
6985 if (sp->config.intr_type == MSI_X) {
6986 int i, msix_rx_cnt = 0;
6988 for (i = 0; i < sp->num_entries; i++) {
6989 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6990 if (sp->s2io_entries[i].type ==
6991 MSIX_RING_TYPE) {
6992 snprintf(sp->desc[i],
6993 sizeof(sp->desc[i]),
6994 "%s:MSI-X-%d-RX",
6995 dev->name, i);
6996 err = request_irq(sp->entries[i].vector,
6997 s2io_msix_ring_handle,
6999 sp->desc[i],
7000 sp->s2io_entries[i].arg);
7001 } else if (sp->s2io_entries[i].type ==
7002 MSIX_ALARM_TYPE) {
7003 snprintf(sp->desc[i],
7004 sizeof(sp->desc[i]),
7005 "%s:MSI-X-%d-TX",
7006 dev->name, i);
7007 err = request_irq(sp->entries[i].vector,
7008 s2io_msix_fifo_handle,
7010 sp->desc[i],
7011 sp->s2io_entries[i].arg);
7014 /* if either data or addr is zero print it. */
7015 if (!(sp->msix_info[i].addr &&
7016 sp->msix_info[i].data)) {
7017 DBG_PRINT(ERR_DBG,
7018 "%s @Addr:0x%llx Data:0x%llx\n",
7019 sp->desc[i],
7020 (unsigned long long)
7021 sp->msix_info[i].addr,
7022 (unsigned long long)
7023 ntohl(sp->msix_info[i].data));
7024 } else
7025 msix_rx_cnt++;
7026 if (err) {
7027 remove_msix_isr(sp);
7029 DBG_PRINT(ERR_DBG,
7030 "%s:MSI-X-%d registration "
7031 "failed\n", dev->name, i);
7033 DBG_PRINT(ERR_DBG,
7034 "%s: Defaulting to INTA\n",
7035 dev->name);
7036 sp->config.intr_type = INTA;
7037 break;
7039 sp->s2io_entries[i].in_use =
7040 MSIX_REGISTERED_SUCCESS;
7043 if (!err) {
7044 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7045 DBG_PRINT(INFO_DBG,
7046 "MSI-X-TX entries enabled through alarm vector\n");
7049 if (sp->config.intr_type == INTA) {
7050 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
7051 sp->name, dev);
7052 if (err) {
7053 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7054 dev->name);
7055 return -1;
7058 return 0;
7061 static void s2io_rem_isr(struct s2io_nic *sp)
7063 if (sp->config.intr_type == MSI_X)
7064 remove_msix_isr(sp);
7065 else
7066 remove_inta_isr(sp);
7069 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7071 int cnt = 0;
7072 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7073 register u64 val64 = 0;
7074 struct config_param *config;
7075 config = &sp->config;
7077 if (!is_s2io_card_up(sp))
7078 return;
7080 del_timer_sync(&sp->alarm_timer);
7081 /* If s2io_set_link task is executing, wait till it completes. */
7082 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7083 msleep(50);
7084 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7086 /* Disable napi */
7087 if (sp->config.napi) {
7088 int off = 0;
7089 if (config->intr_type == MSI_X) {
7090 for (; off < sp->config.rx_ring_num; off++)
7091 napi_disable(&sp->mac_control.rings[off].napi);
7093 else
7094 napi_disable(&sp->napi);
7097 /* disable Tx and Rx traffic on the NIC */
7098 if (do_io)
7099 stop_nic(sp);
7101 s2io_rem_isr(sp);
7103 /* stop the tx queue, indicate link down */
7104 s2io_link(sp, LINK_DOWN);
7106 /* Check if the device is Quiescent and then Reset the NIC */
7107 while (do_io) {
7108 /* As per the HW requirement we need to replenish the
7109 * receive buffer to avoid the ring bump. Since there is
7110 * no intention of processing the Rx frame at this pointwe are
7111 * just setting the ownership bit of rxd in Each Rx
7112 * ring to HW and set the appropriate buffer size
7113 * based on the ring mode
7115 rxd_owner_bit_reset(sp);
7117 val64 = readq(&bar0->adapter_status);
7118 if (verify_xena_quiescence(sp)) {
7119 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7120 break;
7123 msleep(50);
7124 cnt++;
7125 if (cnt == 10) {
7126 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7127 "adapter status reads 0x%llx\n",
7128 (unsigned long long)val64);
7129 break;
7132 if (do_io)
7133 s2io_reset(sp);
7135 /* Free all Tx buffers */
7136 free_tx_buffers(sp);
7138 /* Free all Rx buffers */
7139 free_rx_buffers(sp);
7141 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7144 static void s2io_card_down(struct s2io_nic *sp)
7146 do_s2io_card_down(sp, 1);
7149 static int s2io_card_up(struct s2io_nic *sp)
7151 int i, ret = 0;
7152 struct config_param *config;
7153 struct mac_info *mac_control;
7154 struct net_device *dev = sp->dev;
7155 u16 interruptible;
7157 /* Initialize the H/W I/O registers */
7158 ret = init_nic(sp);
7159 if (ret != 0) {
7160 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7161 dev->name);
7162 if (ret != -EIO)
7163 s2io_reset(sp);
7164 return ret;
7168 * Initializing the Rx buffers. For now we are considering only 1
7169 * Rx ring and initializing buffers into 30 Rx blocks
7171 config = &sp->config;
7172 mac_control = &sp->mac_control;
7174 for (i = 0; i < config->rx_ring_num; i++) {
7175 struct ring_info *ring = &mac_control->rings[i];
7177 ring->mtu = dev->mtu;
7178 ring->lro = !!(dev->features & NETIF_F_LRO);
7179 ret = fill_rx_buffers(sp, ring, 1);
7180 if (ret) {
7181 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7182 dev->name);
7183 s2io_reset(sp);
7184 free_rx_buffers(sp);
7185 return -ENOMEM;
7187 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7188 ring->rx_bufs_left);
7191 /* Initialise napi */
7192 if (config->napi) {
7193 if (config->intr_type == MSI_X) {
7194 for (i = 0; i < sp->config.rx_ring_num; i++)
7195 napi_enable(&sp->mac_control.rings[i].napi);
7196 } else {
7197 napi_enable(&sp->napi);
7201 /* Maintain the state prior to the open */
7202 if (sp->promisc_flg)
7203 sp->promisc_flg = 0;
7204 if (sp->m_cast_flg) {
7205 sp->m_cast_flg = 0;
7206 sp->all_multi_pos = 0;
7209 /* Setting its receive mode */
7210 s2io_set_multicast(dev);
7212 if (dev->features & NETIF_F_LRO) {
7213 /* Initialize max aggregatable pkts per session based on MTU */
7214 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7215 /* Check if we can use (if specified) user provided value */
7216 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7217 sp->lro_max_aggr_per_sess = lro_max_pkts;
7220 /* Enable Rx Traffic and interrupts on the NIC */
7221 if (start_nic(sp)) {
7222 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7223 s2io_reset(sp);
7224 free_rx_buffers(sp);
7225 return -ENODEV;
7228 /* Add interrupt service routine */
7229 if (s2io_add_isr(sp) != 0) {
7230 if (sp->config.intr_type == MSI_X)
7231 s2io_rem_isr(sp);
7232 s2io_reset(sp);
7233 free_rx_buffers(sp);
7234 return -ENODEV;
7237 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7239 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7241 /* Enable select interrupts */
7242 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7243 if (sp->config.intr_type != INTA) {
7244 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7245 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7246 } else {
7247 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7248 interruptible |= TX_PIC_INTR;
7249 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7252 return 0;
7256 * s2io_restart_nic - Resets the NIC.
7257 * @data : long pointer to the device private structure
7258 * Description:
7259 * This function is scheduled to be run by the s2io_tx_watchdog
7260 * function after 0.5 secs to reset the NIC. The idea is to reduce
7261 * the run time of the watch dog routine which is run holding a
7262 * spin lock.
7265 static void s2io_restart_nic(struct work_struct *work)
7267 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7268 struct net_device *dev = sp->dev;
7270 rtnl_lock();
7272 if (!netif_running(dev))
7273 goto out_unlock;
7275 s2io_card_down(sp);
7276 if (s2io_card_up(sp)) {
7277 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7279 s2io_wake_all_tx_queue(sp);
7280 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7281 out_unlock:
7282 rtnl_unlock();
7286 * s2io_tx_watchdog - Watchdog for transmit side.
7287 * @dev : Pointer to net device structure
7288 * Description:
7289 * This function is triggered if the Tx Queue is stopped
7290 * for a pre-defined amount of time when the Interface is still up.
7291 * If the Interface is jammed in such a situation, the hardware is
7292 * reset (by s2io_close) and restarted again (by s2io_open) to
7293 * overcome any problem that might have been caused in the hardware.
7294 * Return value:
7295 * void
7298 static void s2io_tx_watchdog(struct net_device *dev)
7300 struct s2io_nic *sp = netdev_priv(dev);
7301 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7303 if (netif_carrier_ok(dev)) {
7304 swstats->watchdog_timer_cnt++;
7305 schedule_work(&sp->rst_timer_task);
7306 swstats->soft_reset_cnt++;
7311 * rx_osm_handler - To perform some OS related operations on SKB.
7312 * @sp: private member of the device structure,pointer to s2io_nic structure.
7313 * @skb : the socket buffer pointer.
7314 * @len : length of the packet
7315 * @cksum : FCS checksum of the frame.
7316 * @ring_no : the ring from which this RxD was extracted.
7317 * Description:
7318 * This function is called by the Rx interrupt serivce routine to perform
7319 * some OS related operations on the SKB before passing it to the upper
7320 * layers. It mainly checks if the checksum is OK, if so adds it to the
7321 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7322 * to the upper layer. If the checksum is wrong, it increments the Rx
7323 * packet error count, frees the SKB and returns error.
7324 * Return value:
7325 * SUCCESS on success and -1 on failure.
7327 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7329 struct s2io_nic *sp = ring_data->nic;
7330 struct net_device *dev = ring_data->dev;
7331 struct sk_buff *skb = (struct sk_buff *)
7332 ((unsigned long)rxdp->Host_Control);
7333 int ring_no = ring_data->ring_no;
7334 u16 l3_csum, l4_csum;
7335 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7336 struct lro *uninitialized_var(lro);
7337 u8 err_mask;
7338 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7340 skb->dev = dev;
7342 if (err) {
7343 /* Check for parity error */
7344 if (err & 0x1)
7345 swstats->parity_err_cnt++;
7347 err_mask = err >> 48;
7348 switch (err_mask) {
7349 case 1:
7350 swstats->rx_parity_err_cnt++;
7351 break;
7353 case 2:
7354 swstats->rx_abort_cnt++;
7355 break;
7357 case 3:
7358 swstats->rx_parity_abort_cnt++;
7359 break;
7361 case 4:
7362 swstats->rx_rda_fail_cnt++;
7363 break;
7365 case 5:
7366 swstats->rx_unkn_prot_cnt++;
7367 break;
7369 case 6:
7370 swstats->rx_fcs_err_cnt++;
7371 break;
7373 case 7:
7374 swstats->rx_buf_size_err_cnt++;
7375 break;
7377 case 8:
7378 swstats->rx_rxd_corrupt_cnt++;
7379 break;
7381 case 15:
7382 swstats->rx_unkn_err_cnt++;
7383 break;
7386 * Drop the packet if bad transfer code. Exception being
7387 * 0x5, which could be due to unsupported IPv6 extension header.
7388 * In this case, we let stack handle the packet.
7389 * Note that in this case, since checksum will be incorrect,
7390 * stack will validate the same.
7392 if (err_mask != 0x5) {
7393 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7394 dev->name, err_mask);
7395 dev->stats.rx_crc_errors++;
7396 swstats->mem_freed
7397 += skb->truesize;
7398 dev_kfree_skb(skb);
7399 ring_data->rx_bufs_left -= 1;
7400 rxdp->Host_Control = 0;
7401 return 0;
7405 rxdp->Host_Control = 0;
7406 if (sp->rxd_mode == RXD_MODE_1) {
7407 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7409 skb_put(skb, len);
7410 } else if (sp->rxd_mode == RXD_MODE_3B) {
7411 int get_block = ring_data->rx_curr_get_info.block_index;
7412 int get_off = ring_data->rx_curr_get_info.offset;
7413 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7414 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7415 unsigned char *buff = skb_push(skb, buf0_len);
7417 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7418 memcpy(buff, ba->ba_0, buf0_len);
7419 skb_put(skb, buf2_len);
7422 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7423 ((!ring_data->lro) ||
7424 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7425 (dev->features & NETIF_F_RXCSUM)) {
7426 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7427 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7428 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7430 * NIC verifies if the Checksum of the received
7431 * frame is Ok or not and accordingly returns
7432 * a flag in the RxD.
7434 skb->ip_summed = CHECKSUM_UNNECESSARY;
7435 if (ring_data->lro) {
7436 u32 tcp_len = 0;
7437 u8 *tcp;
7438 int ret = 0;
7440 ret = s2io_club_tcp_session(ring_data,
7441 skb->data, &tcp,
7442 &tcp_len, &lro,
7443 rxdp, sp);
7444 switch (ret) {
7445 case 3: /* Begin anew */
7446 lro->parent = skb;
7447 goto aggregate;
7448 case 1: /* Aggregate */
7449 lro_append_pkt(sp, lro, skb, tcp_len);
7450 goto aggregate;
7451 case 4: /* Flush session */
7452 lro_append_pkt(sp, lro, skb, tcp_len);
7453 queue_rx_frame(lro->parent,
7454 lro->vlan_tag);
7455 clear_lro_session(lro);
7456 swstats->flush_max_pkts++;
7457 goto aggregate;
7458 case 2: /* Flush both */
7459 lro->parent->data_len = lro->frags_len;
7460 swstats->sending_both++;
7461 queue_rx_frame(lro->parent,
7462 lro->vlan_tag);
7463 clear_lro_session(lro);
7464 goto send_up;
7465 case 0: /* sessions exceeded */
7466 case -1: /* non-TCP or not L2 aggregatable */
7467 case 5: /*
7468 * First pkt in session not
7469 * L3/L4 aggregatable
7471 break;
7472 default:
7473 DBG_PRINT(ERR_DBG,
7474 "%s: Samadhana!!\n",
7475 __func__);
7476 BUG();
7479 } else {
7481 * Packet with erroneous checksum, let the
7482 * upper layers deal with it.
7484 skb_checksum_none_assert(skb);
7486 } else
7487 skb_checksum_none_assert(skb);
7489 swstats->mem_freed += skb->truesize;
7490 send_up:
7491 skb_record_rx_queue(skb, ring_no);
7492 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7493 aggregate:
7494 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7495 return SUCCESS;
7499 * s2io_link - stops/starts the Tx queue.
7500 * @sp : private member of the device structure, which is a pointer to the
7501 * s2io_nic structure.
7502 * @link : inidicates whether link is UP/DOWN.
7503 * Description:
7504 * This function stops/starts the Tx queue depending on whether the link
7505 * status of the NIC is is down or up. This is called by the Alarm
7506 * interrupt handler whenever a link change interrupt comes up.
7507 * Return value:
7508 * void.
7511 static void s2io_link(struct s2io_nic *sp, int link)
7513 struct net_device *dev = sp->dev;
7514 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7516 if (link != sp->last_link_state) {
7517 init_tti(sp, link);
7518 if (link == LINK_DOWN) {
7519 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7520 s2io_stop_all_tx_queue(sp);
7521 netif_carrier_off(dev);
7522 if (swstats->link_up_cnt)
7523 swstats->link_up_time =
7524 jiffies - sp->start_time;
7525 swstats->link_down_cnt++;
7526 } else {
7527 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7528 if (swstats->link_down_cnt)
7529 swstats->link_down_time =
7530 jiffies - sp->start_time;
7531 swstats->link_up_cnt++;
7532 netif_carrier_on(dev);
7533 s2io_wake_all_tx_queue(sp);
7536 sp->last_link_state = link;
7537 sp->start_time = jiffies;
7541 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7542 * @sp : private member of the device structure, which is a pointer to the
7543 * s2io_nic structure.
7544 * Description:
7545 * This function initializes a few of the PCI and PCI-X configuration registers
7546 * with recommended values.
7547 * Return value:
7548 * void
7551 static void s2io_init_pci(struct s2io_nic *sp)
7553 u16 pci_cmd = 0, pcix_cmd = 0;
7555 /* Enable Data Parity Error Recovery in PCI-X command register. */
7556 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7557 &(pcix_cmd));
7558 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7559 (pcix_cmd | 1));
7560 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7561 &(pcix_cmd));
7563 /* Set the PErr Response bit in PCI command register. */
7564 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7565 pci_write_config_word(sp->pdev, PCI_COMMAND,
7566 (pci_cmd | PCI_COMMAND_PARITY));
7567 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7570 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7571 u8 *dev_multiq)
7573 int i;
7575 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7576 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7577 "(%d) not supported\n", tx_fifo_num);
7579 if (tx_fifo_num < 1)
7580 tx_fifo_num = 1;
7581 else
7582 tx_fifo_num = MAX_TX_FIFOS;
7584 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7587 if (multiq)
7588 *dev_multiq = multiq;
7590 if (tx_steering_type && (1 == tx_fifo_num)) {
7591 if (tx_steering_type != TX_DEFAULT_STEERING)
7592 DBG_PRINT(ERR_DBG,
7593 "Tx steering is not supported with "
7594 "one fifo. Disabling Tx steering.\n");
7595 tx_steering_type = NO_STEERING;
7598 if ((tx_steering_type < NO_STEERING) ||
7599 (tx_steering_type > TX_DEFAULT_STEERING)) {
7600 DBG_PRINT(ERR_DBG,
7601 "Requested transmit steering not supported\n");
7602 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7603 tx_steering_type = NO_STEERING;
7606 if (rx_ring_num > MAX_RX_RINGS) {
7607 DBG_PRINT(ERR_DBG,
7608 "Requested number of rx rings not supported\n");
7609 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7610 MAX_RX_RINGS);
7611 rx_ring_num = MAX_RX_RINGS;
7614 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7615 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7616 "Defaulting to INTA\n");
7617 *dev_intr_type = INTA;
7620 if ((*dev_intr_type == MSI_X) &&
7621 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7622 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7623 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7624 "Defaulting to INTA\n");
7625 *dev_intr_type = INTA;
7628 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7629 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7630 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7631 rx_ring_mode = 1;
7634 for (i = 0; i < MAX_RX_RINGS; i++)
7635 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7636 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7637 "supported\nDefaulting to %d\n",
7638 MAX_RX_BLOCKS_PER_RING);
7639 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7642 return SUCCESS;
7646 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7647 * or Traffic class respectively.
7648 * @nic: device private variable
7649 * Description: The function configures the receive steering to
7650 * desired receive ring.
7651 * Return Value: SUCCESS on success and
7652 * '-1' on failure (endian settings incorrect).
7654 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7656 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7657 register u64 val64 = 0;
7659 if (ds_codepoint > 63)
7660 return FAILURE;
7662 val64 = RTS_DS_MEM_DATA(ring);
7663 writeq(val64, &bar0->rts_ds_mem_data);
7665 val64 = RTS_DS_MEM_CTRL_WE |
7666 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7667 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7669 writeq(val64, &bar0->rts_ds_mem_ctrl);
7671 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7672 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7673 S2IO_BIT_RESET);
7676 static const struct net_device_ops s2io_netdev_ops = {
7677 .ndo_open = s2io_open,
7678 .ndo_stop = s2io_close,
7679 .ndo_get_stats = s2io_get_stats,
7680 .ndo_start_xmit = s2io_xmit,
7681 .ndo_validate_addr = eth_validate_addr,
7682 .ndo_set_rx_mode = s2io_set_multicast,
7683 .ndo_do_ioctl = s2io_ioctl,
7684 .ndo_set_mac_address = s2io_set_mac_addr,
7685 .ndo_change_mtu = s2io_change_mtu,
7686 .ndo_set_features = s2io_set_features,
7687 .ndo_tx_timeout = s2io_tx_watchdog,
7688 #ifdef CONFIG_NET_POLL_CONTROLLER
7689 .ndo_poll_controller = s2io_netpoll,
7690 #endif
7694 * s2io_init_nic - Initialization of the adapter .
7695 * @pdev : structure containing the PCI related information of the device.
7696 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7697 * Description:
7698 * The function initializes an adapter identified by the pci_dec structure.
7699 * All OS related initialization including memory and device structure and
7700 * initlaization of the device private variable is done. Also the swapper
7701 * control register is initialized to enable read and write into the I/O
7702 * registers of the device.
7703 * Return value:
7704 * returns 0 on success and negative on failure.
7707 static int
7708 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7710 struct s2io_nic *sp;
7711 struct net_device *dev;
7712 int i, j, ret;
7713 int dma_flag = false;
7714 u32 mac_up, mac_down;
7715 u64 val64 = 0, tmp64 = 0;
7716 struct XENA_dev_config __iomem *bar0 = NULL;
7717 u16 subid;
7718 struct config_param *config;
7719 struct mac_info *mac_control;
7720 int mode;
7721 u8 dev_intr_type = intr_type;
7722 u8 dev_multiq = 0;
7724 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7725 if (ret)
7726 return ret;
7728 ret = pci_enable_device(pdev);
7729 if (ret) {
7730 DBG_PRINT(ERR_DBG,
7731 "%s: pci_enable_device failed\n", __func__);
7732 return ret;
7735 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7736 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7737 dma_flag = true;
7738 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7739 DBG_PRINT(ERR_DBG,
7740 "Unable to obtain 64bit DMA "
7741 "for consistent allocations\n");
7742 pci_disable_device(pdev);
7743 return -ENOMEM;
7745 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7746 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7747 } else {
7748 pci_disable_device(pdev);
7749 return -ENOMEM;
7751 ret = pci_request_regions(pdev, s2io_driver_name);
7752 if (ret) {
7753 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7754 __func__, ret);
7755 pci_disable_device(pdev);
7756 return -ENODEV;
7758 if (dev_multiq)
7759 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7760 else
7761 dev = alloc_etherdev(sizeof(struct s2io_nic));
7762 if (dev == NULL) {
7763 pci_disable_device(pdev);
7764 pci_release_regions(pdev);
7765 return -ENODEV;
7768 pci_set_master(pdev);
7769 pci_set_drvdata(pdev, dev);
7770 SET_NETDEV_DEV(dev, &pdev->dev);
7772 /* Private member variable initialized to s2io NIC structure */
7773 sp = netdev_priv(dev);
7774 sp->dev = dev;
7775 sp->pdev = pdev;
7776 sp->high_dma_flag = dma_flag;
7777 sp->device_enabled_once = false;
7778 if (rx_ring_mode == 1)
7779 sp->rxd_mode = RXD_MODE_1;
7780 if (rx_ring_mode == 2)
7781 sp->rxd_mode = RXD_MODE_3B;
7783 sp->config.intr_type = dev_intr_type;
7785 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7786 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7787 sp->device_type = XFRAME_II_DEVICE;
7788 else
7789 sp->device_type = XFRAME_I_DEVICE;
7792 /* Initialize some PCI/PCI-X fields of the NIC. */
7793 s2io_init_pci(sp);
7796 * Setting the device configuration parameters.
7797 * Most of these parameters can be specified by the user during
7798 * module insertion as they are module loadable parameters. If
7799 * these parameters are not not specified during load time, they
7800 * are initialized with default values.
7802 config = &sp->config;
7803 mac_control = &sp->mac_control;
7805 config->napi = napi;
7806 config->tx_steering_type = tx_steering_type;
7808 /* Tx side parameters. */
7809 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7810 config->tx_fifo_num = MAX_TX_FIFOS;
7811 else
7812 config->tx_fifo_num = tx_fifo_num;
7814 /* Initialize the fifos used for tx steering */
7815 if (config->tx_fifo_num < 5) {
7816 if (config->tx_fifo_num == 1)
7817 sp->total_tcp_fifos = 1;
7818 else
7819 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7820 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7821 sp->total_udp_fifos = 1;
7822 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7823 } else {
7824 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7825 FIFO_OTHER_MAX_NUM);
7826 sp->udp_fifo_idx = sp->total_tcp_fifos;
7827 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7828 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7831 config->multiq = dev_multiq;
7832 for (i = 0; i < config->tx_fifo_num; i++) {
7833 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7835 tx_cfg->fifo_len = tx_fifo_len[i];
7836 tx_cfg->fifo_priority = i;
7839 /* mapping the QoS priority to the configured fifos */
7840 for (i = 0; i < MAX_TX_FIFOS; i++)
7841 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7843 /* map the hashing selector table to the configured fifos */
7844 for (i = 0; i < config->tx_fifo_num; i++)
7845 sp->fifo_selector[i] = fifo_selector[i];
7848 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7849 for (i = 0; i < config->tx_fifo_num; i++) {
7850 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7852 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7853 if (tx_cfg->fifo_len < 65) {
7854 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7855 break;
7858 /* + 2 because one Txd for skb->data and one Txd for UFO */
7859 config->max_txds = MAX_SKB_FRAGS + 2;
7861 /* Rx side parameters. */
7862 config->rx_ring_num = rx_ring_num;
7863 for (i = 0; i < config->rx_ring_num; i++) {
7864 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7865 struct ring_info *ring = &mac_control->rings[i];
7867 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7868 rx_cfg->ring_priority = i;
7869 ring->rx_bufs_left = 0;
7870 ring->rxd_mode = sp->rxd_mode;
7871 ring->rxd_count = rxd_count[sp->rxd_mode];
7872 ring->pdev = sp->pdev;
7873 ring->dev = sp->dev;
7876 for (i = 0; i < rx_ring_num; i++) {
7877 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7879 rx_cfg->ring_org = RING_ORG_BUFF1;
7880 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7883 /* Setting Mac Control parameters */
7884 mac_control->rmac_pause_time = rmac_pause_time;
7885 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7886 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7889 /* initialize the shared memory used by the NIC and the host */
7890 if (init_shared_mem(sp)) {
7891 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7892 ret = -ENOMEM;
7893 goto mem_alloc_failed;
7896 sp->bar0 = pci_ioremap_bar(pdev, 0);
7897 if (!sp->bar0) {
7898 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7899 dev->name);
7900 ret = -ENOMEM;
7901 goto bar0_remap_failed;
7904 sp->bar1 = pci_ioremap_bar(pdev, 2);
7905 if (!sp->bar1) {
7906 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7907 dev->name);
7908 ret = -ENOMEM;
7909 goto bar1_remap_failed;
7912 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7913 for (j = 0; j < MAX_TX_FIFOS; j++) {
7914 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7917 /* Driver entry points */
7918 dev->netdev_ops = &s2io_netdev_ops;
7919 dev->ethtool_ops = &netdev_ethtool_ops;
7920 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7921 NETIF_F_TSO | NETIF_F_TSO6 |
7922 NETIF_F_RXCSUM | NETIF_F_LRO;
7923 dev->features |= dev->hw_features |
7924 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
7925 if (sp->device_type & XFRAME_II_DEVICE) {
7926 dev->hw_features |= NETIF_F_UFO;
7927 if (ufo)
7928 dev->features |= NETIF_F_UFO;
7930 if (sp->high_dma_flag == true)
7931 dev->features |= NETIF_F_HIGHDMA;
7932 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7933 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7934 INIT_WORK(&sp->set_link_task, s2io_set_link);
7936 pci_save_state(sp->pdev);
7938 /* Setting swapper control on the NIC, for proper reset operation */
7939 if (s2io_set_swapper(sp)) {
7940 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7941 dev->name);
7942 ret = -EAGAIN;
7943 goto set_swap_failed;
7946 /* Verify if the Herc works on the slot its placed into */
7947 if (sp->device_type & XFRAME_II_DEVICE) {
7948 mode = s2io_verify_pci_mode(sp);
7949 if (mode < 0) {
7950 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7951 __func__);
7952 ret = -EBADSLT;
7953 goto set_swap_failed;
7957 if (sp->config.intr_type == MSI_X) {
7958 sp->num_entries = config->rx_ring_num + 1;
7959 ret = s2io_enable_msi_x(sp);
7961 if (!ret) {
7962 ret = s2io_test_msi(sp);
7963 /* rollback MSI-X, will re-enable during add_isr() */
7964 remove_msix_isr(sp);
7966 if (ret) {
7968 DBG_PRINT(ERR_DBG,
7969 "MSI-X requested but failed to enable\n");
7970 sp->config.intr_type = INTA;
7974 if (config->intr_type == MSI_X) {
7975 for (i = 0; i < config->rx_ring_num ; i++) {
7976 struct ring_info *ring = &mac_control->rings[i];
7978 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7980 } else {
7981 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7984 /* Not needed for Herc */
7985 if (sp->device_type & XFRAME_I_DEVICE) {
7987 * Fix for all "FFs" MAC address problems observed on
7988 * Alpha platforms
7990 fix_mac_address(sp);
7991 s2io_reset(sp);
7995 * MAC address initialization.
7996 * For now only one mac address will be read and used.
7998 bar0 = sp->bar0;
7999 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8000 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8001 writeq(val64, &bar0->rmac_addr_cmd_mem);
8002 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8003 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8004 S2IO_BIT_RESET);
8005 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8006 mac_down = (u32)tmp64;
8007 mac_up = (u32) (tmp64 >> 32);
8009 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8010 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8011 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8012 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8013 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8014 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8016 /* Set the factory defined MAC address initially */
8017 dev->addr_len = ETH_ALEN;
8018 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8020 /* initialize number of multicast & unicast MAC entries variables */
8021 if (sp->device_type == XFRAME_I_DEVICE) {
8022 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8023 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8024 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8025 } else if (sp->device_type == XFRAME_II_DEVICE) {
8026 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8027 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8028 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8031 /* store mac addresses from CAM to s2io_nic structure */
8032 do_s2io_store_unicast_mc(sp);
8034 /* Configure MSIX vector for number of rings configured plus one */
8035 if ((sp->device_type == XFRAME_II_DEVICE) &&
8036 (config->intr_type == MSI_X))
8037 sp->num_entries = config->rx_ring_num + 1;
8039 /* Store the values of the MSIX table in the s2io_nic structure */
8040 store_xmsi_data(sp);
8041 /* reset Nic and bring it to known state */
8042 s2io_reset(sp);
8045 * Initialize link state flags
8046 * and the card state parameter
8048 sp->state = 0;
8050 /* Initialize spinlocks */
8051 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8052 struct fifo_info *fifo = &mac_control->fifos[i];
8054 spin_lock_init(&fifo->tx_lock);
8058 * SXE-002: Configure link and activity LED to init state
8059 * on driver load.
8061 subid = sp->pdev->subsystem_device;
8062 if ((subid & 0xFF) >= 0x07) {
8063 val64 = readq(&bar0->gpio_control);
8064 val64 |= 0x0000800000000000ULL;
8065 writeq(val64, &bar0->gpio_control);
8066 val64 = 0x0411040400000000ULL;
8067 writeq(val64, (void __iomem *)bar0 + 0x2700);
8068 val64 = readq(&bar0->gpio_control);
8071 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8073 if (register_netdev(dev)) {
8074 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8075 ret = -ENODEV;
8076 goto register_failed;
8078 s2io_vpd_read(sp);
8079 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8080 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8081 sp->product_name, pdev->revision);
8082 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8083 s2io_driver_version);
8084 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8085 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8086 if (sp->device_type & XFRAME_II_DEVICE) {
8087 mode = s2io_print_pci_mode(sp);
8088 if (mode < 0) {
8089 ret = -EBADSLT;
8090 unregister_netdev(dev);
8091 goto set_swap_failed;
8094 switch (sp->rxd_mode) {
8095 case RXD_MODE_1:
8096 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8097 dev->name);
8098 break;
8099 case RXD_MODE_3B:
8100 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8101 dev->name);
8102 break;
8105 switch (sp->config.napi) {
8106 case 0:
8107 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8108 break;
8109 case 1:
8110 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8111 break;
8114 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8115 sp->config.tx_fifo_num);
8117 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8118 sp->config.rx_ring_num);
8120 switch (sp->config.intr_type) {
8121 case INTA:
8122 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8123 break;
8124 case MSI_X:
8125 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8126 break;
8128 if (sp->config.multiq) {
8129 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8130 struct fifo_info *fifo = &mac_control->fifos[i];
8132 fifo->multiq = config->multiq;
8134 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8135 dev->name);
8136 } else
8137 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8138 dev->name);
8140 switch (sp->config.tx_steering_type) {
8141 case NO_STEERING:
8142 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8143 dev->name);
8144 break;
8145 case TX_PRIORITY_STEERING:
8146 DBG_PRINT(ERR_DBG,
8147 "%s: Priority steering enabled for transmit\n",
8148 dev->name);
8149 break;
8150 case TX_DEFAULT_STEERING:
8151 DBG_PRINT(ERR_DBG,
8152 "%s: Default steering enabled for transmit\n",
8153 dev->name);
8156 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8157 dev->name);
8158 if (ufo)
8159 DBG_PRINT(ERR_DBG,
8160 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8161 dev->name);
8162 /* Initialize device name */
8163 snprintf(sp->name, sizeof(sp->name), "%s Neterion %s", dev->name,
8164 sp->product_name);
8166 if (vlan_tag_strip)
8167 sp->vlan_strip_flag = 1;
8168 else
8169 sp->vlan_strip_flag = 0;
8172 * Make Link state as off at this point, when the Link change
8173 * interrupt comes the state will be automatically changed to
8174 * the right state.
8176 netif_carrier_off(dev);
8178 return 0;
8180 register_failed:
8181 set_swap_failed:
8182 iounmap(sp->bar1);
8183 bar1_remap_failed:
8184 iounmap(sp->bar0);
8185 bar0_remap_failed:
8186 mem_alloc_failed:
8187 free_shared_mem(sp);
8188 pci_disable_device(pdev);
8189 pci_release_regions(pdev);
8190 free_netdev(dev);
8192 return ret;
8196 * s2io_rem_nic - Free the PCI device
8197 * @pdev: structure containing the PCI related information of the device.
8198 * Description: This function is called by the Pci subsystem to release a
8199 * PCI device and free up all resource held up by the device. This could
8200 * be in response to a Hot plug event or when the driver is to be removed
8201 * from memory.
8204 static void s2io_rem_nic(struct pci_dev *pdev)
8206 struct net_device *dev = pci_get_drvdata(pdev);
8207 struct s2io_nic *sp;
8209 if (dev == NULL) {
8210 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8211 return;
8214 sp = netdev_priv(dev);
8216 cancel_work_sync(&sp->rst_timer_task);
8217 cancel_work_sync(&sp->set_link_task);
8219 unregister_netdev(dev);
8221 free_shared_mem(sp);
8222 iounmap(sp->bar0);
8223 iounmap(sp->bar1);
8224 pci_release_regions(pdev);
8225 free_netdev(dev);
8226 pci_disable_device(pdev);
8230 * s2io_starter - Entry point for the driver
8231 * Description: This function is the entry point for the driver. It verifies
8232 * the module loadable parameters and initializes PCI configuration space.
8235 static int __init s2io_starter(void)
8237 return pci_register_driver(&s2io_driver);
8241 * s2io_closer - Cleanup routine for the driver
8242 * Description: This function is the cleanup routine for the driver. It
8243 * unregisters the driver.
8246 static __exit void s2io_closer(void)
8248 pci_unregister_driver(&s2io_driver);
8249 DBG_PRINT(INIT_DBG, "cleanup done\n");
8252 module_init(s2io_starter);
8253 module_exit(s2io_closer);
8255 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8256 struct tcphdr **tcp, struct RxD_t *rxdp,
8257 struct s2io_nic *sp)
8259 int ip_off;
8260 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8262 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8263 DBG_PRINT(INIT_DBG,
8264 "%s: Non-TCP frames not supported for LRO\n",
8265 __func__);
8266 return -1;
8269 /* Checking for DIX type or DIX type with VLAN */
8270 if ((l2_type == 0) || (l2_type == 4)) {
8271 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8273 * If vlan stripping is disabled and the frame is VLAN tagged,
8274 * shift the offset by the VLAN header size bytes.
8276 if ((!sp->vlan_strip_flag) &&
8277 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8278 ip_off += HEADER_VLAN_SIZE;
8279 } else {
8280 /* LLC, SNAP etc are considered non-mergeable */
8281 return -1;
8284 *ip = (struct iphdr *)(buffer + ip_off);
8285 ip_len = (u8)((*ip)->ihl);
8286 ip_len <<= 2;
8287 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8289 return 0;
8292 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8293 struct tcphdr *tcp)
8295 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8296 if ((lro->iph->saddr != ip->saddr) ||
8297 (lro->iph->daddr != ip->daddr) ||
8298 (lro->tcph->source != tcp->source) ||
8299 (lro->tcph->dest != tcp->dest))
8300 return -1;
8301 return 0;
8304 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8306 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8309 static void initiate_new_session(struct lro *lro, u8 *l2h,
8310 struct iphdr *ip, struct tcphdr *tcp,
8311 u32 tcp_pyld_len, u16 vlan_tag)
8313 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8314 lro->l2h = l2h;
8315 lro->iph = ip;
8316 lro->tcph = tcp;
8317 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8318 lro->tcp_ack = tcp->ack_seq;
8319 lro->sg_num = 1;
8320 lro->total_len = ntohs(ip->tot_len);
8321 lro->frags_len = 0;
8322 lro->vlan_tag = vlan_tag;
8324 * Check if we saw TCP timestamp.
8325 * Other consistency checks have already been done.
8327 if (tcp->doff == 8) {
8328 __be32 *ptr;
8329 ptr = (__be32 *)(tcp+1);
8330 lro->saw_ts = 1;
8331 lro->cur_tsval = ntohl(*(ptr+1));
8332 lro->cur_tsecr = *(ptr+2);
8334 lro->in_use = 1;
8337 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8339 struct iphdr *ip = lro->iph;
8340 struct tcphdr *tcp = lro->tcph;
8341 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8343 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8345 /* Update L3 header */
8346 csum_replace2(&ip->check, ip->tot_len, htons(lro->total_len));
8347 ip->tot_len = htons(lro->total_len);
8349 /* Update L4 header */
8350 tcp->ack_seq = lro->tcp_ack;
8351 tcp->window = lro->window;
8353 /* Update tsecr field if this session has timestamps enabled */
8354 if (lro->saw_ts) {
8355 __be32 *ptr = (__be32 *)(tcp + 1);
8356 *(ptr+2) = lro->cur_tsecr;
8359 /* Update counters required for calculation of
8360 * average no. of packets aggregated.
8362 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8363 swstats->num_aggregations++;
8366 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8367 struct tcphdr *tcp, u32 l4_pyld)
8369 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8370 lro->total_len += l4_pyld;
8371 lro->frags_len += l4_pyld;
8372 lro->tcp_next_seq += l4_pyld;
8373 lro->sg_num++;
8375 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8376 lro->tcp_ack = tcp->ack_seq;
8377 lro->window = tcp->window;
8379 if (lro->saw_ts) {
8380 __be32 *ptr;
8381 /* Update tsecr and tsval from this packet */
8382 ptr = (__be32 *)(tcp+1);
8383 lro->cur_tsval = ntohl(*(ptr+1));
8384 lro->cur_tsecr = *(ptr + 2);
8388 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8389 struct tcphdr *tcp, u32 tcp_pyld_len)
8391 u8 *ptr;
8393 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8395 if (!tcp_pyld_len) {
8396 /* Runt frame or a pure ack */
8397 return -1;
8400 if (ip->ihl != 5) /* IP has options */
8401 return -1;
8403 /* If we see CE codepoint in IP header, packet is not mergeable */
8404 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8405 return -1;
8407 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8408 if (tcp->urg || tcp->psh || tcp->rst ||
8409 tcp->syn || tcp->fin ||
8410 tcp->ece || tcp->cwr || !tcp->ack) {
8412 * Currently recognize only the ack control word and
8413 * any other control field being set would result in
8414 * flushing the LRO session
8416 return -1;
8420 * Allow only one TCP timestamp option. Don't aggregate if
8421 * any other options are detected.
8423 if (tcp->doff != 5 && tcp->doff != 8)
8424 return -1;
8426 if (tcp->doff == 8) {
8427 ptr = (u8 *)(tcp + 1);
8428 while (*ptr == TCPOPT_NOP)
8429 ptr++;
8430 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8431 return -1;
8433 /* Ensure timestamp value increases monotonically */
8434 if (l_lro)
8435 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8436 return -1;
8438 /* timestamp echo reply should be non-zero */
8439 if (*((__be32 *)(ptr+6)) == 0)
8440 return -1;
8443 return 0;
8446 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8447 u8 **tcp, u32 *tcp_len, struct lro **lro,
8448 struct RxD_t *rxdp, struct s2io_nic *sp)
8450 struct iphdr *ip;
8451 struct tcphdr *tcph;
8452 int ret = 0, i;
8453 u16 vlan_tag = 0;
8454 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8456 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8457 rxdp, sp);
8458 if (ret)
8459 return ret;
8461 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8463 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8464 tcph = (struct tcphdr *)*tcp;
8465 *tcp_len = get_l4_pyld_length(ip, tcph);
8466 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8467 struct lro *l_lro = &ring_data->lro0_n[i];
8468 if (l_lro->in_use) {
8469 if (check_for_socket_match(l_lro, ip, tcph))
8470 continue;
8471 /* Sock pair matched */
8472 *lro = l_lro;
8474 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8475 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8476 "expected 0x%x, actual 0x%x\n",
8477 __func__,
8478 (*lro)->tcp_next_seq,
8479 ntohl(tcph->seq));
8481 swstats->outof_sequence_pkts++;
8482 ret = 2;
8483 break;
8486 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8487 *tcp_len))
8488 ret = 1; /* Aggregate */
8489 else
8490 ret = 2; /* Flush both */
8491 break;
8495 if (ret == 0) {
8496 /* Before searching for available LRO objects,
8497 * check if the pkt is L3/L4 aggregatable. If not
8498 * don't create new LRO session. Just send this
8499 * packet up.
8501 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8502 return 5;
8504 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8505 struct lro *l_lro = &ring_data->lro0_n[i];
8506 if (!(l_lro->in_use)) {
8507 *lro = l_lro;
8508 ret = 3; /* Begin anew */
8509 break;
8514 if (ret == 0) { /* sessions exceeded */
8515 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8516 __func__);
8517 *lro = NULL;
8518 return ret;
8521 switch (ret) {
8522 case 3:
8523 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8524 vlan_tag);
8525 break;
8526 case 2:
8527 update_L3L4_header(sp, *lro);
8528 break;
8529 case 1:
8530 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8531 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8532 update_L3L4_header(sp, *lro);
8533 ret = 4; /* Flush the LRO */
8535 break;
8536 default:
8537 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8538 break;
8541 return ret;
8544 static void clear_lro_session(struct lro *lro)
8546 static u16 lro_struct_size = sizeof(struct lro);
8548 memset(lro, 0, lro_struct_size);
8551 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8553 struct net_device *dev = skb->dev;
8554 struct s2io_nic *sp = netdev_priv(dev);
8556 skb->protocol = eth_type_trans(skb, dev);
8557 if (vlan_tag && sp->vlan_strip_flag)
8558 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
8559 if (sp->config.napi)
8560 netif_receive_skb(skb);
8561 else
8562 netif_rx(skb);
8565 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8566 struct sk_buff *skb, u32 tcp_len)
8568 struct sk_buff *first = lro->parent;
8569 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8571 first->len += tcp_len;
8572 first->data_len = lro->frags_len;
8573 skb_pull(skb, (skb->len - tcp_len));
8574 if (skb_shinfo(first)->frag_list)
8575 lro->last_frag->next = skb;
8576 else
8577 skb_shinfo(first)->frag_list = skb;
8578 first->truesize += skb->truesize;
8579 lro->last_frag = skb;
8580 swstats->clubbed_frms_cnt++;
8584 * s2io_io_error_detected - called when PCI error is detected
8585 * @pdev: Pointer to PCI device
8586 * @state: The current pci connection state
8588 * This function is called after a PCI bus error affecting
8589 * this device has been detected.
8591 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8592 pci_channel_state_t state)
8594 struct net_device *netdev = pci_get_drvdata(pdev);
8595 struct s2io_nic *sp = netdev_priv(netdev);
8597 netif_device_detach(netdev);
8599 if (state == pci_channel_io_perm_failure)
8600 return PCI_ERS_RESULT_DISCONNECT;
8602 if (netif_running(netdev)) {
8603 /* Bring down the card, while avoiding PCI I/O */
8604 do_s2io_card_down(sp, 0);
8606 pci_disable_device(pdev);
8608 return PCI_ERS_RESULT_NEED_RESET;
8612 * s2io_io_slot_reset - called after the pci bus has been reset.
8613 * @pdev: Pointer to PCI device
8615 * Restart the card from scratch, as if from a cold-boot.
8616 * At this point, the card has exprienced a hard reset,
8617 * followed by fixups by BIOS, and has its config space
8618 * set up identically to what it was at cold boot.
8620 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8622 struct net_device *netdev = pci_get_drvdata(pdev);
8623 struct s2io_nic *sp = netdev_priv(netdev);
8625 if (pci_enable_device(pdev)) {
8626 pr_err("Cannot re-enable PCI device after reset.\n");
8627 return PCI_ERS_RESULT_DISCONNECT;
8630 pci_set_master(pdev);
8631 s2io_reset(sp);
8633 return PCI_ERS_RESULT_RECOVERED;
8637 * s2io_io_resume - called when traffic can start flowing again.
8638 * @pdev: Pointer to PCI device
8640 * This callback is called when the error recovery driver tells
8641 * us that its OK to resume normal operation.
8643 static void s2io_io_resume(struct pci_dev *pdev)
8645 struct net_device *netdev = pci_get_drvdata(pdev);
8646 struct s2io_nic *sp = netdev_priv(netdev);
8648 if (netif_running(netdev)) {
8649 if (s2io_card_up(sp)) {
8650 pr_err("Can't bring device back up after reset.\n");
8651 return;
8654 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8655 s2io_card_down(sp);
8656 pr_err("Can't restore mac addr after reset.\n");
8657 return;
8661 netif_device_attach(netdev);
8662 netif_tx_wake_all_queues(netdev);