1 /*******************************************************************************
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *******************************************************************************/
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
53 #include <asm/tsi108.h>
55 #include "tsi108_eth.h"
57 #define MII_READ_DELAY 10000 /* max link wait time in msec */
59 #define TSI108_RXRING_LEN 256
61 /* NOTE: The driver currently does not support receiving packets
62 * larger than the buffer size, so don't decrease this (unless you
63 * want to add such support).
65 #define TSI108_RXBUF_SIZE 1536
67 #define TSI108_TXRING_LEN 256
69 #define TSI108_TX_INT_FREQ 64
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
74 static int tsi108_init_one(struct platform_device
*pdev
);
75 static int tsi108_ether_remove(struct platform_device
*pdev
);
77 struct tsi108_prv_data
{
78 void __iomem
*regs
; /* Base of normal regs */
79 void __iomem
*phyregs
; /* Base of register bank used for PHY access */
81 struct net_device
*dev
;
82 struct napi_struct napi
;
84 unsigned int phy
; /* Index of PHY for this interface */
87 unsigned int phy_type
;
89 struct timer_list timer
;/* Timer that triggers the check phy function */
90 unsigned int rxtail
; /* Next entry in rxring to read */
91 unsigned int rxhead
; /* Next entry in rxring to give a new buffer */
92 unsigned int rxfree
; /* Number of free, allocated RX buffers */
94 unsigned int rxpending
; /* Non-zero if there are still descriptors
95 * to be processed from a previous descriptor
96 * interrupt condition that has been cleared */
98 unsigned int txtail
; /* Next TX descriptor to check status on */
99 unsigned int txhead
; /* Next TX descriptor to use */
101 /* Number of free TX descriptors. This could be calculated from
102 * rxhead and rxtail if one descriptor were left unused to disambiguate
103 * full and empty conditions, but it's simpler to just keep track
108 unsigned int phy_ok
; /* The PHY is currently powered on. */
110 /* PHY status (duplex is 1 for half, 2 for full,
111 * so that the default 0 indicates that neither has
112 * yet been configured). */
114 unsigned int link_up
;
120 struct sk_buff
*txskbs
[TSI108_TXRING_LEN
];
121 struct sk_buff
*rxskbs
[TSI108_RXRING_LEN
];
123 dma_addr_t txdma
, rxdma
;
125 /* txlock nests in misclock and phy_lock */
127 spinlock_t txlock
, misclock
;
129 /* stats is used to hold the upper bits of each hardware counter,
130 * and tmpstats is used to hold the full values for returning
131 * to the caller of get_stats(). They must be separate in case
132 * an overflow interrupt occurs before the stats are consumed.
135 struct net_device_stats stats
;
136 struct net_device_stats tmpstats
;
138 /* These stats are kept separate in hardware, thus require individual
139 * fields for handling carry. They are combined in get_stats.
142 unsigned long rx_fcs
; /* Add to rx_frame_errors */
143 unsigned long rx_short_fcs
; /* Add to rx_frame_errors */
144 unsigned long rx_long_fcs
; /* Add to rx_frame_errors */
145 unsigned long rx_underruns
; /* Add to rx_length_errors */
146 unsigned long rx_overruns
; /* Add to rx_length_errors */
148 unsigned long tx_coll_abort
; /* Add to tx_aborted_errors/collisions */
149 unsigned long tx_pause_drop
; /* Add to tx_aborted_errors */
151 unsigned long mc_hash
[16];
152 u32 msg_enable
; /* debug message level */
153 struct mii_if_info mii_if
;
154 unsigned int init_media
;
157 /* Structure for a device driver */
159 static struct platform_driver tsi_eth_driver
= {
160 .probe
= tsi108_init_one
,
161 .remove
= tsi108_ether_remove
,
163 .name
= "tsi-ethernet",
167 static void tsi108_timed_checker(unsigned long dev_ptr
);
169 static void dump_eth_one(struct net_device
*dev
)
171 struct tsi108_prv_data
*data
= netdev_priv(dev
);
173 printk("Dumping %s...\n", dev
->name
);
174 printk("intstat %x intmask %x phy_ok %d"
175 " link %d speed %d duplex %d\n",
176 TSI_READ(TSI108_EC_INTSTAT
),
177 TSI_READ(TSI108_EC_INTMASK
), data
->phy_ok
,
178 data
->link_up
, data
->speed
, data
->duplex
);
180 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
181 data
->txhead
, data
->txtail
, data
->txfree
,
182 TSI_READ(TSI108_EC_TXSTAT
),
183 TSI_READ(TSI108_EC_TXESTAT
),
184 TSI_READ(TSI108_EC_TXERR
));
186 printk("RX: head %d, tail %d, free %d, stat %x,"
187 " estat %x, err %x, pending %d\n\n",
188 data
->rxhead
, data
->rxtail
, data
->rxfree
,
189 TSI_READ(TSI108_EC_RXSTAT
),
190 TSI_READ(TSI108_EC_RXESTAT
),
191 TSI_READ(TSI108_EC_RXERR
), data
->rxpending
);
194 /* Synchronization is needed between the thread and up/down events.
195 * Note that the PHY is accessed through the same registers for both
196 * interfaces, so this can't be made interface-specific.
199 static DEFINE_SPINLOCK(phy_lock
);
201 static int tsi108_read_mii(struct tsi108_prv_data
*data
, int reg
)
205 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
206 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
207 (reg
<< TSI108_MAC_MII_ADDR_REG
));
208 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, 0);
209 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, TSI108_MAC_MII_CMD_READ
);
210 for (i
= 0; i
< 100; i
++) {
211 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
212 (TSI108_MAC_MII_IND_NOTVALID
| TSI108_MAC_MII_IND_BUSY
)))
220 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN
);
223 static void tsi108_write_mii(struct tsi108_prv_data
*data
,
227 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
228 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
229 (reg
<< TSI108_MAC_MII_ADDR_REG
));
230 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT
, val
);
232 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
233 TSI108_MAC_MII_IND_BUSY
))
239 static int tsi108_mdio_read(struct net_device
*dev
, int addr
, int reg
)
241 struct tsi108_prv_data
*data
= netdev_priv(dev
);
242 return tsi108_read_mii(data
, reg
);
245 static void tsi108_mdio_write(struct net_device
*dev
, int addr
, int reg
, int val
)
247 struct tsi108_prv_data
*data
= netdev_priv(dev
);
248 tsi108_write_mii(data
, reg
, val
);
251 static inline void tsi108_write_tbi(struct tsi108_prv_data
*data
,
255 TSI_WRITE(TSI108_MAC_MII_ADDR
,
256 (0x1e << TSI108_MAC_MII_ADDR_PHY
)
257 | (reg
<< TSI108_MAC_MII_ADDR_REG
));
258 TSI_WRITE(TSI108_MAC_MII_DATAOUT
, val
);
260 if(!(TSI_READ(TSI108_MAC_MII_IND
) & TSI108_MAC_MII_IND_BUSY
))
264 printk(KERN_ERR
"%s function time out\n", __func__
);
267 static int mii_speed(struct mii_if_info
*mii
)
269 int advert
, lpa
, val
, media
;
273 if (!mii_link_ok(mii
))
276 val
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_BMSR
);
277 if ((val
& BMSR_ANEGCOMPLETE
) == 0)
280 advert
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_ADVERTISE
);
281 lpa
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_LPA
);
282 media
= mii_nway_result(advert
& lpa
);
284 if (mii
->supports_gmii
)
285 lpa2
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_STAT1000
);
287 speed
= lpa2
& (LPA_1000FULL
| LPA_1000HALF
) ? 1000 :
288 (media
& (ADVERTISE_100FULL
| ADVERTISE_100HALF
) ? 100 : 10);
292 static void tsi108_check_phy(struct net_device
*dev
)
294 struct tsi108_prv_data
*data
= netdev_priv(dev
);
295 u32 mac_cfg2_reg
, portctrl_reg
;
300 spin_lock_irqsave(&phy_lock
, flags
);
305 duplex
= mii_check_media(&data
->mii_if
, netif_msg_link(data
), data
->init_media
);
306 data
->init_media
= 0;
308 if (netif_carrier_ok(dev
)) {
310 speed
= mii_speed(&data
->mii_if
);
312 if ((speed
!= data
->speed
) || duplex
) {
314 mac_cfg2_reg
= TSI_READ(TSI108_MAC_CFG2
);
315 portctrl_reg
= TSI_READ(TSI108_EC_PORTCTRL
);
317 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_IFACE_MASK
;
320 mac_cfg2_reg
|= TSI108_MAC_CFG2_GIG
;
321 portctrl_reg
&= ~TSI108_EC_PORTCTRL_NOGIG
;
323 mac_cfg2_reg
|= TSI108_MAC_CFG2_NOGIG
;
324 portctrl_reg
|= TSI108_EC_PORTCTRL_NOGIG
;
329 if (data
->mii_if
.full_duplex
) {
330 mac_cfg2_reg
|= TSI108_MAC_CFG2_FULLDUPLEX
;
331 portctrl_reg
&= ~TSI108_EC_PORTCTRL_HALFDUPLEX
;
334 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_FULLDUPLEX
;
335 portctrl_reg
|= TSI108_EC_PORTCTRL_HALFDUPLEX
;
339 TSI_WRITE(TSI108_MAC_CFG2
, mac_cfg2_reg
);
340 TSI_WRITE(TSI108_EC_PORTCTRL
, portctrl_reg
);
343 if (data
->link_up
== 0) {
344 /* The manual says it can take 3-4 usecs for the speed change
349 spin_lock(&data
->txlock
);
350 if (is_valid_ether_addr(dev
->dev_addr
) && data
->txfree
)
351 netif_wake_queue(dev
);
354 spin_unlock(&data
->txlock
);
357 if (data
->link_up
== 1) {
358 netif_stop_queue(dev
);
360 printk(KERN_NOTICE
"%s : link is down\n", dev
->name
);
368 spin_unlock_irqrestore(&phy_lock
, flags
);
372 tsi108_stat_carry_one(int carry
, int carry_bit
, int carry_shift
,
373 unsigned long *upper
)
375 if (carry
& carry_bit
)
376 *upper
+= carry_shift
;
379 static void tsi108_stat_carry(struct net_device
*dev
)
381 struct tsi108_prv_data
*data
= netdev_priv(dev
);
384 spin_lock_irq(&data
->misclock
);
386 carry1
= TSI_READ(TSI108_STAT_CARRY1
);
387 carry2
= TSI_READ(TSI108_STAT_CARRY2
);
389 TSI_WRITE(TSI108_STAT_CARRY1
, carry1
);
390 TSI_WRITE(TSI108_STAT_CARRY2
, carry2
);
392 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXBYTES
,
393 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
395 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXPKTS
,
396 TSI108_STAT_RXPKTS_CARRY
,
397 &data
->stats
.rx_packets
);
399 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFCS
,
400 TSI108_STAT_RXFCS_CARRY
, &data
->rx_fcs
);
402 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXMCAST
,
403 TSI108_STAT_RXMCAST_CARRY
,
404 &data
->stats
.multicast
);
406 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXALIGN
,
407 TSI108_STAT_RXALIGN_CARRY
,
408 &data
->stats
.rx_frame_errors
);
410 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXLENGTH
,
411 TSI108_STAT_RXLENGTH_CARRY
,
412 &data
->stats
.rx_length_errors
);
414 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXRUNT
,
415 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
417 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJUMBO
,
418 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
420 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFRAG
,
421 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
423 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJABBER
,
424 TSI108_STAT_RXJABBER_CARRY
, &data
->rx_long_fcs
);
426 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXDROP
,
427 TSI108_STAT_RXDROP_CARRY
,
428 &data
->stats
.rx_missed_errors
);
430 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXBYTES
,
431 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
433 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPKTS
,
434 TSI108_STAT_TXPKTS_CARRY
,
435 &data
->stats
.tx_packets
);
437 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXDEF
,
438 TSI108_STAT_TXEXDEF_CARRY
,
439 &data
->stats
.tx_aborted_errors
);
441 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXCOL
,
442 TSI108_STAT_TXEXCOL_CARRY
, &data
->tx_coll_abort
);
444 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXTCOL
,
445 TSI108_STAT_TXTCOL_CARRY
,
446 &data
->stats
.collisions
);
448 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPAUSE
,
449 TSI108_STAT_TXPAUSEDROP_CARRY
,
450 &data
->tx_pause_drop
);
452 spin_unlock_irq(&data
->misclock
);
455 /* Read a stat counter atomically with respect to carries.
456 * data->misclock must be held.
458 static inline unsigned long
459 tsi108_read_stat(struct tsi108_prv_data
* data
, int reg
, int carry_bit
,
460 int carry_shift
, unsigned long *upper
)
466 carryreg
= TSI108_STAT_CARRY1
;
468 carryreg
= TSI108_STAT_CARRY2
;
471 val
= TSI_READ(reg
) | *upper
;
473 /* Check to see if it overflowed, but the interrupt hasn't
474 * been serviced yet. If so, handle the carry here, and
478 if (unlikely(TSI_READ(carryreg
) & carry_bit
)) {
479 *upper
+= carry_shift
;
480 TSI_WRITE(carryreg
, carry_bit
);
487 static struct net_device_stats
*tsi108_get_stats(struct net_device
*dev
)
491 struct tsi108_prv_data
*data
= netdev_priv(dev
);
492 spin_lock_irq(&data
->misclock
);
494 data
->tmpstats
.rx_packets
=
495 tsi108_read_stat(data
, TSI108_STAT_RXPKTS
,
496 TSI108_STAT_CARRY1_RXPKTS
,
497 TSI108_STAT_RXPKTS_CARRY
, &data
->stats
.rx_packets
);
499 data
->tmpstats
.tx_packets
=
500 tsi108_read_stat(data
, TSI108_STAT_TXPKTS
,
501 TSI108_STAT_CARRY2_TXPKTS
,
502 TSI108_STAT_TXPKTS_CARRY
, &data
->stats
.tx_packets
);
504 data
->tmpstats
.rx_bytes
=
505 tsi108_read_stat(data
, TSI108_STAT_RXBYTES
,
506 TSI108_STAT_CARRY1_RXBYTES
,
507 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
509 data
->tmpstats
.tx_bytes
=
510 tsi108_read_stat(data
, TSI108_STAT_TXBYTES
,
511 TSI108_STAT_CARRY2_TXBYTES
,
512 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
514 data
->tmpstats
.multicast
=
515 tsi108_read_stat(data
, TSI108_STAT_RXMCAST
,
516 TSI108_STAT_CARRY1_RXMCAST
,
517 TSI108_STAT_RXMCAST_CARRY
, &data
->stats
.multicast
);
519 excol
= tsi108_read_stat(data
, TSI108_STAT_TXEXCOL
,
520 TSI108_STAT_CARRY2_TXEXCOL
,
521 TSI108_STAT_TXEXCOL_CARRY
,
522 &data
->tx_coll_abort
);
524 data
->tmpstats
.collisions
=
525 tsi108_read_stat(data
, TSI108_STAT_TXTCOL
,
526 TSI108_STAT_CARRY2_TXTCOL
,
527 TSI108_STAT_TXTCOL_CARRY
, &data
->stats
.collisions
);
529 data
->tmpstats
.collisions
+= excol
;
531 data
->tmpstats
.rx_length_errors
=
532 tsi108_read_stat(data
, TSI108_STAT_RXLENGTH
,
533 TSI108_STAT_CARRY1_RXLENGTH
,
534 TSI108_STAT_RXLENGTH_CARRY
,
535 &data
->stats
.rx_length_errors
);
537 data
->tmpstats
.rx_length_errors
+=
538 tsi108_read_stat(data
, TSI108_STAT_RXRUNT
,
539 TSI108_STAT_CARRY1_RXRUNT
,
540 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
542 data
->tmpstats
.rx_length_errors
+=
543 tsi108_read_stat(data
, TSI108_STAT_RXJUMBO
,
544 TSI108_STAT_CARRY1_RXJUMBO
,
545 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
547 data
->tmpstats
.rx_frame_errors
=
548 tsi108_read_stat(data
, TSI108_STAT_RXALIGN
,
549 TSI108_STAT_CARRY1_RXALIGN
,
550 TSI108_STAT_RXALIGN_CARRY
,
551 &data
->stats
.rx_frame_errors
);
553 data
->tmpstats
.rx_frame_errors
+=
554 tsi108_read_stat(data
, TSI108_STAT_RXFCS
,
555 TSI108_STAT_CARRY1_RXFCS
, TSI108_STAT_RXFCS_CARRY
,
558 data
->tmpstats
.rx_frame_errors
+=
559 tsi108_read_stat(data
, TSI108_STAT_RXFRAG
,
560 TSI108_STAT_CARRY1_RXFRAG
,
561 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
563 data
->tmpstats
.rx_missed_errors
=
564 tsi108_read_stat(data
, TSI108_STAT_RXDROP
,
565 TSI108_STAT_CARRY1_RXDROP
,
566 TSI108_STAT_RXDROP_CARRY
,
567 &data
->stats
.rx_missed_errors
);
569 /* These three are maintained by software. */
570 data
->tmpstats
.rx_fifo_errors
= data
->stats
.rx_fifo_errors
;
571 data
->tmpstats
.rx_crc_errors
= data
->stats
.rx_crc_errors
;
573 data
->tmpstats
.tx_aborted_errors
=
574 tsi108_read_stat(data
, TSI108_STAT_TXEXDEF
,
575 TSI108_STAT_CARRY2_TXEXDEF
,
576 TSI108_STAT_TXEXDEF_CARRY
,
577 &data
->stats
.tx_aborted_errors
);
579 data
->tmpstats
.tx_aborted_errors
+=
580 tsi108_read_stat(data
, TSI108_STAT_TXPAUSEDROP
,
581 TSI108_STAT_CARRY2_TXPAUSE
,
582 TSI108_STAT_TXPAUSEDROP_CARRY
,
583 &data
->tx_pause_drop
);
585 data
->tmpstats
.tx_aborted_errors
+= excol
;
587 data
->tmpstats
.tx_errors
= data
->tmpstats
.tx_aborted_errors
;
588 data
->tmpstats
.rx_errors
= data
->tmpstats
.rx_length_errors
+
589 data
->tmpstats
.rx_crc_errors
+
590 data
->tmpstats
.rx_frame_errors
+
591 data
->tmpstats
.rx_fifo_errors
+ data
->tmpstats
.rx_missed_errors
;
593 spin_unlock_irq(&data
->misclock
);
594 return &data
->tmpstats
;
597 static void tsi108_restart_rx(struct tsi108_prv_data
* data
, struct net_device
*dev
)
599 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH
,
600 TSI108_EC_RXQ_PTRHIGH_VALID
);
602 TSI_WRITE(TSI108_EC_RXCTRL
, TSI108_EC_RXCTRL_GO
603 | TSI108_EC_RXCTRL_QUEUE0
);
606 static void tsi108_restart_tx(struct tsi108_prv_data
* data
)
608 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH
,
609 TSI108_EC_TXQ_PTRHIGH_VALID
);
611 TSI_WRITE(TSI108_EC_TXCTRL
, TSI108_EC_TXCTRL_IDLEINT
|
612 TSI108_EC_TXCTRL_GO
| TSI108_EC_TXCTRL_QUEUE0
);
615 /* txlock must be held by caller, with IRQs disabled, and
616 * with permission to re-enable them when the lock is dropped.
618 static void tsi108_complete_tx(struct net_device
*dev
)
620 struct tsi108_prv_data
*data
= netdev_priv(dev
);
625 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
628 if (data
->txring
[tx
].misc
& TSI108_TX_OWN
)
631 skb
= data
->txskbs
[tx
];
633 if (!(data
->txring
[tx
].misc
& TSI108_TX_OK
))
634 printk("%s: bad tx packet, misc %x\n",
635 dev
->name
, data
->txring
[tx
].misc
);
637 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
640 if (data
->txring
[tx
].misc
& TSI108_TX_EOF
) {
641 dev_kfree_skb_any(skb
);
647 if (is_valid_ether_addr(dev
->dev_addr
) && data
->link_up
)
648 netif_wake_queue(dev
);
652 static int tsi108_send_packet(struct sk_buff
* skb
, struct net_device
*dev
)
654 struct tsi108_prv_data
*data
= netdev_priv(dev
);
655 int frags
= skb_shinfo(skb
)->nr_frags
+ 1;
658 if (!data
->phy_ok
&& net_ratelimit())
659 printk(KERN_ERR
"%s: Transmit while PHY is down!\n", dev
->name
);
661 if (!data
->link_up
) {
662 printk(KERN_ERR
"%s: Transmit while link is down!\n",
664 netif_stop_queue(dev
);
665 return NETDEV_TX_BUSY
;
668 if (data
->txfree
< MAX_SKB_FRAGS
+ 1) {
669 netif_stop_queue(dev
);
672 printk(KERN_ERR
"%s: Transmit with full tx ring!\n",
674 return NETDEV_TX_BUSY
;
677 if (data
->txfree
- frags
< MAX_SKB_FRAGS
+ 1) {
678 netif_stop_queue(dev
);
681 spin_lock_irq(&data
->txlock
);
683 for (i
= 0; i
< frags
; i
++) {
685 int tx
= data
->txhead
;
687 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
688 * the interrupt bit. TX descriptor-complete interrupts are
689 * enabled when the queue fills up, and masked when there is
690 * still free space. This way, when saturating the outbound
691 * link, the tx interrupts are kept to a reasonable level.
692 * When the queue is not full, reclamation of skbs still occurs
693 * as new packets are transmitted, or on a queue-empty
697 if ((tx
% TSI108_TX_INT_FREQ
== 0) &&
698 ((TSI108_TXRING_LEN
- data
->txfree
) >= TSI108_TX_INT_FREQ
))
699 misc
= TSI108_TX_INT
;
701 data
->txskbs
[tx
] = skb
;
704 data
->txring
[tx
].buf0
= dma_map_single(NULL
, skb
->data
,
705 skb_headlen(skb
), DMA_TO_DEVICE
);
706 data
->txring
[tx
].len
= skb_headlen(skb
);
707 misc
|= TSI108_TX_SOF
;
709 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
711 data
->txring
[tx
].buf0
= skb_frag_dma_map(NULL
, frag
,
715 data
->txring
[tx
].len
= skb_frag_size(frag
);
719 misc
|= TSI108_TX_EOF
;
721 if (netif_msg_pktdata(data
)) {
723 printk("%s: Tx Frame contents (%d)\n", dev
->name
,
725 for (i
= 0; i
< skb
->len
; i
++)
726 printk(" %2.2x", skb
->data
[i
]);
729 data
->txring
[tx
].misc
= misc
| TSI108_TX_OWN
;
731 data
->txhead
= (data
->txhead
+ 1) % TSI108_TXRING_LEN
;
735 tsi108_complete_tx(dev
);
737 /* This must be done after the check for completed tx descriptors,
738 * so that the tail pointer is correct.
741 if (!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_QUEUE0
))
742 tsi108_restart_tx(data
);
744 spin_unlock_irq(&data
->txlock
);
748 static int tsi108_complete_rx(struct net_device
*dev
, int budget
)
750 struct tsi108_prv_data
*data
= netdev_priv(dev
);
753 while (data
->rxfree
&& done
!= budget
) {
754 int rx
= data
->rxtail
;
757 if (data
->rxring
[rx
].misc
& TSI108_RX_OWN
)
760 skb
= data
->rxskbs
[rx
];
761 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
765 if (data
->rxring
[rx
].misc
& TSI108_RX_BAD
) {
766 spin_lock_irq(&data
->misclock
);
768 if (data
->rxring
[rx
].misc
& TSI108_RX_CRC
)
769 data
->stats
.rx_crc_errors
++;
770 if (data
->rxring
[rx
].misc
& TSI108_RX_OVER
)
771 data
->stats
.rx_fifo_errors
++;
773 spin_unlock_irq(&data
->misclock
);
775 dev_kfree_skb_any(skb
);
778 if (netif_msg_pktdata(data
)) {
780 printk("%s: Rx Frame contents (%d)\n",
781 dev
->name
, data
->rxring
[rx
].len
);
782 for (i
= 0; i
< data
->rxring
[rx
].len
; i
++)
783 printk(" %2.2x", skb
->data
[i
]);
787 skb_put(skb
, data
->rxring
[rx
].len
);
788 skb
->protocol
= eth_type_trans(skb
, dev
);
789 netif_receive_skb(skb
);
795 static int tsi108_refill_rx(struct net_device
*dev
, int budget
)
797 struct tsi108_prv_data
*data
= netdev_priv(dev
);
800 while (data
->rxfree
!= TSI108_RXRING_LEN
&& done
!= budget
) {
801 int rx
= data
->rxhead
;
804 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
805 data
->rxskbs
[rx
] = skb
;
809 data
->rxring
[rx
].buf0
= dma_map_single(NULL
, skb
->data
,
813 /* Sometimes the hardware sets blen to zero after packet
814 * reception, even though the manual says that it's only ever
815 * modified by the driver.
818 data
->rxring
[rx
].blen
= TSI108_RX_SKB_SIZE
;
819 data
->rxring
[rx
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
821 data
->rxhead
= (data
->rxhead
+ 1) % TSI108_RXRING_LEN
;
826 if (done
!= 0 && !(TSI_READ(TSI108_EC_RXSTAT
) &
827 TSI108_EC_RXSTAT_QUEUE0
))
828 tsi108_restart_rx(data
, dev
);
833 static int tsi108_poll(struct napi_struct
*napi
, int budget
)
835 struct tsi108_prv_data
*data
= container_of(napi
, struct tsi108_prv_data
, napi
);
836 struct net_device
*dev
= data
->dev
;
837 u32 estat
= TSI_READ(TSI108_EC_RXESTAT
);
838 u32 intstat
= TSI_READ(TSI108_EC_INTSTAT
);
839 int num_received
= 0, num_filled
= 0;
841 intstat
&= TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
842 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
| TSI108_INT_RXWAIT
;
844 TSI_WRITE(TSI108_EC_RXESTAT
, estat
);
845 TSI_WRITE(TSI108_EC_INTSTAT
, intstat
);
847 if (data
->rxpending
|| (estat
& TSI108_EC_RXESTAT_Q0_DESCINT
))
848 num_received
= tsi108_complete_rx(dev
, budget
);
850 /* This should normally fill no more slots than the number of
851 * packets received in tsi108_complete_rx(). The exception
852 * is when we previously ran out of memory for RX SKBs. In that
853 * case, it's helpful to obey the budget, not only so that the
854 * CPU isn't hogged, but so that memory (which may still be low)
855 * is not hogged by one device.
857 * A work unit is considered to be two SKBs to allow us to catch
858 * up when the ring has shrunk due to out-of-memory but we're
859 * still removing the full budget's worth of packets each time.
862 if (data
->rxfree
< TSI108_RXRING_LEN
)
863 num_filled
= tsi108_refill_rx(dev
, budget
* 2);
865 if (intstat
& TSI108_INT_RXERROR
) {
866 u32 err
= TSI_READ(TSI108_EC_RXERR
);
867 TSI_WRITE(TSI108_EC_RXERR
, err
);
871 printk(KERN_DEBUG
"%s: RX error %x\n",
874 if (!(TSI_READ(TSI108_EC_RXSTAT
) &
875 TSI108_EC_RXSTAT_QUEUE0
))
876 tsi108_restart_rx(data
, dev
);
880 if (intstat
& TSI108_INT_RXOVERRUN
) {
881 spin_lock_irq(&data
->misclock
);
882 data
->stats
.rx_fifo_errors
++;
883 spin_unlock_irq(&data
->misclock
);
886 if (num_received
< budget
) {
890 TSI_WRITE(TSI108_EC_INTMASK
,
891 TSI_READ(TSI108_EC_INTMASK
)
892 & ~(TSI108_INT_RXQUEUE0
893 | TSI108_INT_RXTHRESH
|
894 TSI108_INT_RXOVERRUN
|
904 static void tsi108_rx_int(struct net_device
*dev
)
906 struct tsi108_prv_data
*data
= netdev_priv(dev
);
908 /* A race could cause dev to already be scheduled, so it's not an
909 * error if that happens (and interrupts shouldn't be re-masked,
910 * because that can cause harmful races, if poll has already
911 * unmasked them but not cleared LINK_STATE_SCHED).
913 * This can happen if this code races with tsi108_poll(), which masks
914 * the interrupts after tsi108_irq_one() read the mask, but before
915 * napi_schedule is called. It could also happen due to calls
916 * from tsi108_check_rxring().
919 if (napi_schedule_prep(&data
->napi
)) {
920 /* Mask, rather than ack, the receive interrupts. The ack
921 * will happen in tsi108_poll().
924 TSI_WRITE(TSI108_EC_INTMASK
,
925 TSI_READ(TSI108_EC_INTMASK
) |
927 | TSI108_INT_RXTHRESH
|
928 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
|
930 __napi_schedule(&data
->napi
);
932 if (!netif_running(dev
)) {
933 /* This can happen if an interrupt occurs while the
934 * interface is being brought down, as the START
935 * bit is cleared before the stop function is called.
937 * In this case, the interrupts must be masked, or
938 * they will continue indefinitely.
940 * There's a race here if the interface is brought down
941 * and then up in rapid succession, as the device could
942 * be made running after the above check and before
943 * the masking below. This will only happen if the IRQ
944 * thread has a lower priority than the task brining
945 * up the interface. Fixing this race would likely
946 * require changes in generic code.
949 TSI_WRITE(TSI108_EC_INTMASK
,
951 (TSI108_EC_INTMASK
) |
952 TSI108_INT_RXQUEUE0
|
953 TSI108_INT_RXTHRESH
|
954 TSI108_INT_RXOVERRUN
|
961 /* If the RX ring has run out of memory, try periodically
962 * to allocate some more, as otherwise poll would never
963 * get called (apart from the initial end-of-queue condition).
965 * This is called once per second (by default) from the thread.
968 static void tsi108_check_rxring(struct net_device
*dev
)
970 struct tsi108_prv_data
*data
= netdev_priv(dev
);
972 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
973 * directly, so as to keep the receive path single-threaded
974 * (and thus not needing a lock).
977 if (netif_running(dev
) && data
->rxfree
< TSI108_RXRING_LEN
/ 4)
981 static void tsi108_tx_int(struct net_device
*dev
)
983 struct tsi108_prv_data
*data
= netdev_priv(dev
);
984 u32 estat
= TSI_READ(TSI108_EC_TXESTAT
);
986 TSI_WRITE(TSI108_EC_TXESTAT
, estat
);
987 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_TXQUEUE0
|
988 TSI108_INT_TXIDLE
| TSI108_INT_TXERROR
);
989 if (estat
& TSI108_EC_TXESTAT_Q0_ERR
) {
990 u32 err
= TSI_READ(TSI108_EC_TXERR
);
991 TSI_WRITE(TSI108_EC_TXERR
, err
);
993 if (err
&& net_ratelimit())
994 printk(KERN_ERR
"%s: TX error %x\n", dev
->name
, err
);
997 if (estat
& (TSI108_EC_TXESTAT_Q0_DESCINT
| TSI108_EC_TXESTAT_Q0_EOQ
)) {
998 spin_lock(&data
->txlock
);
999 tsi108_complete_tx(dev
);
1000 spin_unlock(&data
->txlock
);
1005 static irqreturn_t
tsi108_irq(int irq
, void *dev_id
)
1007 struct net_device
*dev
= dev_id
;
1008 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1009 u32 stat
= TSI_READ(TSI108_EC_INTSTAT
);
1011 if (!(stat
& TSI108_INT_ANY
))
1012 return IRQ_NONE
; /* Not our interrupt */
1014 stat
&= ~TSI_READ(TSI108_EC_INTMASK
);
1016 if (stat
& (TSI108_INT_TXQUEUE0
| TSI108_INT_TXIDLE
|
1017 TSI108_INT_TXERROR
))
1019 if (stat
& (TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
1020 TSI108_INT_RXWAIT
| TSI108_INT_RXOVERRUN
|
1021 TSI108_INT_RXERROR
))
1024 if (stat
& TSI108_INT_SFN
) {
1025 if (net_ratelimit())
1026 printk(KERN_DEBUG
"%s: SFN error\n", dev
->name
);
1027 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_SFN
);
1030 if (stat
& TSI108_INT_STATCARRY
) {
1031 tsi108_stat_carry(dev
);
1032 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_STATCARRY
);
1038 static void tsi108_stop_ethernet(struct net_device
*dev
)
1040 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1042 /* Disable all TX and RX queues ... */
1043 TSI_WRITE(TSI108_EC_TXCTRL
, 0);
1044 TSI_WRITE(TSI108_EC_RXCTRL
, 0);
1046 /* ...and wait for them to become idle */
1048 if(!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_ACTIVE
))
1054 if(!(TSI_READ(TSI108_EC_RXSTAT
) & TSI108_EC_RXSTAT_ACTIVE
))
1058 printk(KERN_ERR
"%s function time out\n", __func__
);
1061 static void tsi108_reset_ether(struct tsi108_prv_data
* data
)
1063 TSI_WRITE(TSI108_MAC_CFG1
, TSI108_MAC_CFG1_SOFTRST
);
1065 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1067 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATRST
);
1069 TSI_WRITE(TSI108_EC_PORTCTRL
,
1070 TSI_READ(TSI108_EC_PORTCTRL
) &
1071 ~TSI108_EC_PORTCTRL_STATRST
);
1073 TSI_WRITE(TSI108_EC_TXCFG
, TSI108_EC_TXCFG_RST
);
1075 TSI_WRITE(TSI108_EC_TXCFG
,
1076 TSI_READ(TSI108_EC_TXCFG
) &
1077 ~TSI108_EC_TXCFG_RST
);
1079 TSI_WRITE(TSI108_EC_RXCFG
, TSI108_EC_RXCFG_RST
);
1081 TSI_WRITE(TSI108_EC_RXCFG
,
1082 TSI_READ(TSI108_EC_RXCFG
) &
1083 ~TSI108_EC_RXCFG_RST
);
1085 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1086 TSI_READ(TSI108_MAC_MII_MGMT_CFG
) |
1087 TSI108_MAC_MII_MGMT_RST
);
1089 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1090 (TSI_READ(TSI108_MAC_MII_MGMT_CFG
) &
1091 ~(TSI108_MAC_MII_MGMT_RST
|
1092 TSI108_MAC_MII_MGMT_CLK
)) | 0x07);
1095 static int tsi108_get_mac(struct net_device
*dev
)
1097 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1098 u32 word1
= TSI_READ(TSI108_MAC_ADDR1
);
1099 u32 word2
= TSI_READ(TSI108_MAC_ADDR2
);
1101 /* Note that the octets are reversed from what the manual says,
1102 * producing an even weirder ordering...
1104 if (word2
== 0 && word1
== 0) {
1105 dev
->dev_addr
[0] = 0x00;
1106 dev
->dev_addr
[1] = 0x06;
1107 dev
->dev_addr
[2] = 0xd2;
1108 dev
->dev_addr
[3] = 0x00;
1109 dev
->dev_addr
[4] = 0x00;
1110 if (0x8 == data
->phy
)
1111 dev
->dev_addr
[5] = 0x01;
1113 dev
->dev_addr
[5] = 0x02;
1115 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1117 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1118 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1120 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1121 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1123 dev
->dev_addr
[0] = (word2
>> 16) & 0xff;
1124 dev
->dev_addr
[1] = (word2
>> 24) & 0xff;
1125 dev
->dev_addr
[2] = (word1
>> 0) & 0xff;
1126 dev
->dev_addr
[3] = (word1
>> 8) & 0xff;
1127 dev
->dev_addr
[4] = (word1
>> 16) & 0xff;
1128 dev
->dev_addr
[5] = (word1
>> 24) & 0xff;
1131 if (!is_valid_ether_addr(dev
->dev_addr
)) {
1133 "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1134 dev
->name
, word1
, word2
);
1141 static int tsi108_set_mac(struct net_device
*dev
, void *addr
)
1143 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1147 if (!is_valid_ether_addr(addr
))
1148 return -EADDRNOTAVAIL
;
1150 for (i
= 0; i
< 6; i
++)
1151 /* +2 is for the offset of the HW addr type */
1152 dev
->dev_addr
[i
] = ((unsigned char *)addr
)[i
+ 2];
1154 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1156 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1157 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1159 spin_lock_irq(&data
->misclock
);
1160 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1161 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1162 spin_lock(&data
->txlock
);
1164 if (data
->txfree
&& data
->link_up
)
1165 netif_wake_queue(dev
);
1167 spin_unlock(&data
->txlock
);
1168 spin_unlock_irq(&data
->misclock
);
1172 /* Protected by dev->xmit_lock. */
1173 static void tsi108_set_rx_mode(struct net_device
*dev
)
1175 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1176 u32 rxcfg
= TSI_READ(TSI108_EC_RXCFG
);
1178 if (dev
->flags
& IFF_PROMISC
) {
1179 rxcfg
&= ~(TSI108_EC_RXCFG_UC_HASH
| TSI108_EC_RXCFG_MC_HASH
);
1180 rxcfg
|= TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
;
1184 rxcfg
&= ~(TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
);
1186 if (dev
->flags
& IFF_ALLMULTI
|| !netdev_mc_empty(dev
)) {
1188 struct netdev_hw_addr
*ha
;
1189 rxcfg
|= TSI108_EC_RXCFG_MFE
| TSI108_EC_RXCFG_MC_HASH
;
1191 memset(data
->mc_hash
, 0, sizeof(data
->mc_hash
));
1193 netdev_for_each_mc_addr(ha
, dev
) {
1196 crc
= ether_crc(6, ha
->addr
);
1198 __set_bit(hash
, &data
->mc_hash
[0]);
1201 TSI_WRITE(TSI108_EC_HASHADDR
,
1202 TSI108_EC_HASHADDR_AUTOINC
|
1203 TSI108_EC_HASHADDR_MCAST
);
1205 for (i
= 0; i
< 16; i
++) {
1206 /* The manual says that the hardware may drop
1207 * back-to-back writes to the data register.
1210 TSI_WRITE(TSI108_EC_HASHDATA
,
1216 TSI_WRITE(TSI108_EC_RXCFG
, rxcfg
);
1219 static void tsi108_init_phy(struct net_device
*dev
)
1221 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1224 unsigned long flags
;
1226 spin_lock_irqsave(&phy_lock
, flags
);
1228 tsi108_write_mii(data
, MII_BMCR
, BMCR_RESET
);
1230 if(!(tsi108_read_mii(data
, MII_BMCR
) & BMCR_RESET
))
1235 printk(KERN_ERR
"%s function time out\n", __func__
);
1237 if (data
->phy_type
== TSI108_PHY_BCM54XX
) {
1238 tsi108_write_mii(data
, 0x09, 0x0300);
1239 tsi108_write_mii(data
, 0x10, 0x1020);
1240 tsi108_write_mii(data
, 0x1c, 0x8c00);
1243 tsi108_write_mii(data
,
1245 BMCR_ANENABLE
| BMCR_ANRESTART
);
1246 while (tsi108_read_mii(data
, MII_BMCR
) & BMCR_ANRESTART
)
1249 /* Set G/MII mode and receive clock select in TBI control #2. The
1250 * second port won't work if this isn't done, even though we don't
1254 tsi108_write_tbi(data
, 0x11, 0x30);
1256 /* FIXME: It seems to take more than 2 back-to-back reads to the
1257 * PHY_STAT register before the link up status bit is set.
1262 while (!((phyval
= tsi108_read_mii(data
, MII_BMSR
)) &
1264 if (i
++ > (MII_READ_DELAY
/ 10)) {
1267 spin_unlock_irqrestore(&phy_lock
, flags
);
1269 spin_lock_irqsave(&phy_lock
, flags
);
1272 data
->mii_if
.supports_gmii
= mii_check_gmii_support(&data
->mii_if
);
1273 printk(KERN_DEBUG
"PHY_STAT reg contains %08x\n", phyval
);
1275 data
->init_media
= 1;
1276 spin_unlock_irqrestore(&phy_lock
, flags
);
1279 static void tsi108_kill_phy(struct net_device
*dev
)
1281 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1282 unsigned long flags
;
1284 spin_lock_irqsave(&phy_lock
, flags
);
1285 tsi108_write_mii(data
, MII_BMCR
, BMCR_PDOWN
);
1287 spin_unlock_irqrestore(&phy_lock
, flags
);
1290 static int tsi108_open(struct net_device
*dev
)
1293 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1294 unsigned int rxring_size
= TSI108_RXRING_LEN
* sizeof(rx_desc
);
1295 unsigned int txring_size
= TSI108_TXRING_LEN
* sizeof(tx_desc
);
1297 i
= request_irq(data
->irq_num
, tsi108_irq
, 0, dev
->name
, dev
);
1299 printk(KERN_ERR
"tsi108_eth%d: Could not allocate IRQ%d.\n",
1300 data
->id
, data
->irq_num
);
1303 dev
->irq
= data
->irq_num
;
1305 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1306 data
->id
, dev
->irq
, dev
->name
);
1309 data
->rxring
= dma_zalloc_coherent(NULL
, rxring_size
, &data
->rxdma
,
1314 data
->txring
= dma_zalloc_coherent(NULL
, txring_size
, &data
->txdma
,
1316 if (!data
->txring
) {
1317 pci_free_consistent(0, rxring_size
, data
->rxring
, data
->rxdma
);
1321 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1322 data
->rxring
[i
].next0
= data
->rxdma
+ (i
+ 1) * sizeof(rx_desc
);
1323 data
->rxring
[i
].blen
= TSI108_RXBUF_SIZE
;
1324 data
->rxring
[i
].vlan
= 0;
1327 data
->rxring
[TSI108_RXRING_LEN
- 1].next0
= data
->rxdma
;
1332 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1333 struct sk_buff
*skb
;
1335 skb
= netdev_alloc_skb_ip_align(dev
, TSI108_RXBUF_SIZE
);
1337 /* Bah. No memory for now, but maybe we'll get
1339 * For now, we'll live with the smaller ring.
1342 "%s: Could only allocate %d receive skb(s).\n",
1348 data
->rxskbs
[i
] = skb
;
1349 data
->rxring
[i
].buf0
= virt_to_phys(data
->rxskbs
[i
]->data
);
1350 data
->rxring
[i
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
1354 TSI_WRITE(TSI108_EC_RXQ_PTRLOW
, data
->rxdma
);
1356 for (i
= 0; i
< TSI108_TXRING_LEN
; i
++) {
1357 data
->txring
[i
].next0
= data
->txdma
+ (i
+ 1) * sizeof(tx_desc
);
1358 data
->txring
[i
].misc
= 0;
1361 data
->txring
[TSI108_TXRING_LEN
- 1].next0
= data
->txdma
;
1364 data
->txfree
= TSI108_TXRING_LEN
;
1365 TSI_WRITE(TSI108_EC_TXQ_PTRLOW
, data
->txdma
);
1366 tsi108_init_phy(dev
);
1368 napi_enable(&data
->napi
);
1370 setup_timer(&data
->timer
, tsi108_timed_checker
, (unsigned long)dev
);
1371 mod_timer(&data
->timer
, jiffies
+ 1);
1373 tsi108_restart_rx(data
, dev
);
1375 TSI_WRITE(TSI108_EC_INTSTAT
, ~0);
1377 TSI_WRITE(TSI108_EC_INTMASK
,
1378 ~(TSI108_INT_TXQUEUE0
| TSI108_INT_RXERROR
|
1379 TSI108_INT_RXTHRESH
| TSI108_INT_RXQUEUE0
|
1380 TSI108_INT_RXOVERRUN
| TSI108_INT_RXWAIT
|
1381 TSI108_INT_SFN
| TSI108_INT_STATCARRY
));
1383 TSI_WRITE(TSI108_MAC_CFG1
,
1384 TSI108_MAC_CFG1_RXEN
| TSI108_MAC_CFG1_TXEN
);
1385 netif_start_queue(dev
);
1389 static int tsi108_close(struct net_device
*dev
)
1391 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1393 netif_stop_queue(dev
);
1394 napi_disable(&data
->napi
);
1396 del_timer_sync(&data
->timer
);
1398 tsi108_stop_ethernet(dev
);
1399 tsi108_kill_phy(dev
);
1400 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1401 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1403 /* Check for any pending TX packets, and drop them. */
1405 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
1406 int tx
= data
->txtail
;
1407 struct sk_buff
*skb
;
1408 skb
= data
->txskbs
[tx
];
1409 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
1414 free_irq(data
->irq_num
, dev
);
1416 /* Discard the RX ring. */
1418 while (data
->rxfree
) {
1419 int rx
= data
->rxtail
;
1420 struct sk_buff
*skb
;
1422 skb
= data
->rxskbs
[rx
];
1423 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
1428 dma_free_coherent(0,
1429 TSI108_RXRING_LEN
* sizeof(rx_desc
),
1430 data
->rxring
, data
->rxdma
);
1431 dma_free_coherent(0,
1432 TSI108_TXRING_LEN
* sizeof(tx_desc
),
1433 data
->txring
, data
->txdma
);
1438 static void tsi108_init_mac(struct net_device
*dev
)
1440 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1442 TSI_WRITE(TSI108_MAC_CFG2
, TSI108_MAC_CFG2_DFLT_PREAMBLE
|
1443 TSI108_MAC_CFG2_PADCRC
);
1445 TSI_WRITE(TSI108_EC_TXTHRESH
,
1446 (192 << TSI108_EC_TXTHRESH_STARTFILL
) |
1447 (192 << TSI108_EC_TXTHRESH_STOPFILL
));
1449 TSI_WRITE(TSI108_STAT_CARRYMASK1
,
1450 ~(TSI108_STAT_CARRY1_RXBYTES
|
1451 TSI108_STAT_CARRY1_RXPKTS
|
1452 TSI108_STAT_CARRY1_RXFCS
|
1453 TSI108_STAT_CARRY1_RXMCAST
|
1454 TSI108_STAT_CARRY1_RXALIGN
|
1455 TSI108_STAT_CARRY1_RXLENGTH
|
1456 TSI108_STAT_CARRY1_RXRUNT
|
1457 TSI108_STAT_CARRY1_RXJUMBO
|
1458 TSI108_STAT_CARRY1_RXFRAG
|
1459 TSI108_STAT_CARRY1_RXJABBER
|
1460 TSI108_STAT_CARRY1_RXDROP
));
1462 TSI_WRITE(TSI108_STAT_CARRYMASK2
,
1463 ~(TSI108_STAT_CARRY2_TXBYTES
|
1464 TSI108_STAT_CARRY2_TXPKTS
|
1465 TSI108_STAT_CARRY2_TXEXDEF
|
1466 TSI108_STAT_CARRY2_TXEXCOL
|
1467 TSI108_STAT_CARRY2_TXTCOL
|
1468 TSI108_STAT_CARRY2_TXPAUSE
));
1470 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATEN
);
1471 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1473 TSI_WRITE(TSI108_EC_RXCFG
,
1474 TSI108_EC_RXCFG_SE
| TSI108_EC_RXCFG_BFE
);
1476 TSI_WRITE(TSI108_EC_TXQ_CFG
, TSI108_EC_TXQ_CFG_DESC_INT
|
1477 TSI108_EC_TXQ_CFG_EOQ_OWN_INT
|
1478 TSI108_EC_TXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1479 TSI108_EC_TXQ_CFG_SFNPORT
));
1481 TSI_WRITE(TSI108_EC_RXQ_CFG
, TSI108_EC_RXQ_CFG_DESC_INT
|
1482 TSI108_EC_RXQ_CFG_EOQ_OWN_INT
|
1483 TSI108_EC_RXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1484 TSI108_EC_RXQ_CFG_SFNPORT
));
1486 TSI_WRITE(TSI108_EC_TXQ_BUFCFG
,
1487 TSI108_EC_TXQ_BUFCFG_BURST256
|
1488 TSI108_EC_TXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1489 TSI108_EC_TXQ_BUFCFG_SFNPORT
));
1491 TSI_WRITE(TSI108_EC_RXQ_BUFCFG
,
1492 TSI108_EC_RXQ_BUFCFG_BURST256
|
1493 TSI108_EC_RXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1494 TSI108_EC_RXQ_BUFCFG_SFNPORT
));
1496 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1499 static int tsi108_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1501 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1502 unsigned long flags
;
1505 spin_lock_irqsave(&data
->txlock
, flags
);
1506 rc
= mii_ethtool_gset(&data
->mii_if
, cmd
);
1507 spin_unlock_irqrestore(&data
->txlock
, flags
);
1512 static int tsi108_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1514 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1515 unsigned long flags
;
1518 spin_lock_irqsave(&data
->txlock
, flags
);
1519 rc
= mii_ethtool_sset(&data
->mii_if
, cmd
);
1520 spin_unlock_irqrestore(&data
->txlock
, flags
);
1525 static int tsi108_do_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1527 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1528 if (!netif_running(dev
))
1530 return generic_mii_ioctl(&data
->mii_if
, if_mii(rq
), cmd
, NULL
);
1533 static const struct ethtool_ops tsi108_ethtool_ops
= {
1534 .get_link
= ethtool_op_get_link
,
1535 .get_settings
= tsi108_get_settings
,
1536 .set_settings
= tsi108_set_settings
,
1539 static const struct net_device_ops tsi108_netdev_ops
= {
1540 .ndo_open
= tsi108_open
,
1541 .ndo_stop
= tsi108_close
,
1542 .ndo_start_xmit
= tsi108_send_packet
,
1543 .ndo_set_rx_mode
= tsi108_set_rx_mode
,
1544 .ndo_get_stats
= tsi108_get_stats
,
1545 .ndo_do_ioctl
= tsi108_do_ioctl
,
1546 .ndo_set_mac_address
= tsi108_set_mac
,
1547 .ndo_validate_addr
= eth_validate_addr
,
1548 .ndo_change_mtu
= eth_change_mtu
,
1552 tsi108_init_one(struct platform_device
*pdev
)
1554 struct net_device
*dev
= NULL
;
1555 struct tsi108_prv_data
*data
= NULL
;
1559 einfo
= dev_get_platdata(&pdev
->dev
);
1561 if (NULL
== einfo
) {
1562 printk(KERN_ERR
"tsi-eth %d: Missing additional data!\n",
1567 /* Create an ethernet device instance */
1569 dev
= alloc_etherdev(sizeof(struct tsi108_prv_data
));
1573 printk("tsi108_eth%d: probe...\n", pdev
->id
);
1574 data
= netdev_priv(dev
);
1577 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1578 pdev
->id
, einfo
->regs
, einfo
->phyregs
,
1579 einfo
->phy
, einfo
->irq_num
);
1581 data
->regs
= ioremap(einfo
->regs
, 0x400);
1582 if (NULL
== data
->regs
) {
1587 data
->phyregs
= ioremap(einfo
->phyregs
, 0x400);
1588 if (NULL
== data
->phyregs
) {
1593 data
->mii_if
.dev
= dev
;
1594 data
->mii_if
.mdio_read
= tsi108_mdio_read
;
1595 data
->mii_if
.mdio_write
= tsi108_mdio_write
;
1596 data
->mii_if
.phy_id
= einfo
->phy
;
1597 data
->mii_if
.phy_id_mask
= 0x1f;
1598 data
->mii_if
.reg_num_mask
= 0x1f;
1600 data
->phy
= einfo
->phy
;
1601 data
->phy_type
= einfo
->phy_type
;
1602 data
->irq_num
= einfo
->irq_num
;
1603 data
->id
= pdev
->id
;
1604 netif_napi_add(dev
, &data
->napi
, tsi108_poll
, 64);
1605 dev
->netdev_ops
= &tsi108_netdev_ops
;
1606 dev
->ethtool_ops
= &tsi108_ethtool_ops
;
1608 /* Apparently, the Linux networking code won't use scatter-gather
1609 * if the hardware doesn't do checksums. However, it's faster
1610 * to checksum in place and use SG, as (among other reasons)
1611 * the cache won't be dirtied (which then has to be flushed
1612 * before DMA). The checksumming is done by the driver (via
1613 * a new function skb_csum_dev() in net/core/skbuff.c).
1616 dev
->features
= NETIF_F_HIGHDMA
;
1618 spin_lock_init(&data
->txlock
);
1619 spin_lock_init(&data
->misclock
);
1621 tsi108_reset_ether(data
);
1622 tsi108_kill_phy(dev
);
1624 if ((err
= tsi108_get_mac(dev
)) != 0) {
1625 printk(KERN_ERR
"%s: Invalid MAC address. Please correct.\n",
1630 tsi108_init_mac(dev
);
1631 err
= register_netdev(dev
);
1633 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1638 platform_set_drvdata(pdev
, dev
);
1639 printk(KERN_INFO
"%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1640 dev
->name
, dev
->dev_addr
);
1642 data
->msg_enable
= DEBUG
;
1649 iounmap(data
->phyregs
);
1652 iounmap(data
->regs
);
1659 /* There's no way to either get interrupts from the PHY when
1660 * something changes, or to have the Tsi108 automatically communicate
1661 * with the PHY to reconfigure itself.
1663 * Thus, we have to do it using a timer.
1666 static void tsi108_timed_checker(unsigned long dev_ptr
)
1668 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1669 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1671 tsi108_check_phy(dev
);
1672 tsi108_check_rxring(dev
);
1673 mod_timer(&data
->timer
, jiffies
+ CHECK_PHY_INTERVAL
);
1676 static int tsi108_ether_remove(struct platform_device
*pdev
)
1678 struct net_device
*dev
= platform_get_drvdata(pdev
);
1679 struct tsi108_prv_data
*priv
= netdev_priv(dev
);
1681 unregister_netdev(dev
);
1682 tsi108_stop_ethernet(dev
);
1683 iounmap(priv
->regs
);
1684 iounmap(priv
->phyregs
);
1689 module_platform_driver(tsi_eth_driver
);
1691 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1692 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1693 MODULE_LICENSE("GPL");
1694 MODULE_ALIAS("platform:tsi-ethernet");