2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/proc_fs.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
36 * cpuhp_cpu_state - Per cpu hotplug state storage
37 * @state: The current cpu state
38 * @target: The target state
39 * @thread: Pointer to the hotplug thread
40 * @should_run: Thread should execute
41 * @rollback: Perform a rollback
42 * @single: Single callback invocation
43 * @bringup: Single callback bringup or teardown selector
44 * @cb_state: The state for a single callback (install/uninstall)
45 * @result: Result of the operation
46 * @done: Signal completion to the issuer of the task
48 struct cpuhp_cpu_state
{
49 enum cpuhp_state state
;
50 enum cpuhp_state target
;
52 struct task_struct
*thread
;
57 struct hlist_node
*node
;
58 enum cpuhp_state cb_state
;
60 struct completion done
;
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
);
67 * cpuhp_step - Hotplug state machine step
68 * @name: Name of the step
69 * @startup: Startup function of the step
70 * @teardown: Teardown function of the step
71 * @skip_onerr: Do not invoke the functions on error rollback
72 * Will go away once the notifiers are gone
73 * @cant_stop: Bringup/teardown can't be stopped at this step
78 int (*single
)(unsigned int cpu
);
79 int (*multi
)(unsigned int cpu
,
80 struct hlist_node
*node
);
83 int (*single
)(unsigned int cpu
);
84 int (*multi
)(unsigned int cpu
,
85 struct hlist_node
*node
);
87 struct hlist_head list
;
93 static DEFINE_MUTEX(cpuhp_state_mutex
);
94 static struct cpuhp_step cpuhp_bp_states
[];
95 static struct cpuhp_step cpuhp_ap_states
[];
97 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
100 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
101 * purposes as that state is handled explicitly in cpu_down.
103 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
106 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
108 struct cpuhp_step
*sp
;
110 sp
= cpuhp_is_ap_state(state
) ? cpuhp_ap_states
: cpuhp_bp_states
;
115 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
116 * @cpu: The cpu for which the callback should be invoked
117 * @step: The step in the state machine
118 * @bringup: True if the bringup callback should be invoked
120 * Called from cpu hotplug and from the state register machinery.
122 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
123 bool bringup
, struct hlist_node
*node
)
125 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
126 struct cpuhp_step
*step
= cpuhp_get_step(state
);
127 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
128 int (*cb
)(unsigned int cpu
);
131 if (!step
->multi_instance
) {
132 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
135 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
137 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
140 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
144 /* Single invocation for instance add/remove */
146 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
147 ret
= cbm(cpu
, node
);
148 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
152 /* State transition. Invoke on all instances */
154 hlist_for_each(node
, &step
->list
) {
155 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
156 ret
= cbm(cpu
, node
);
157 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
164 /* Rollback the instances if one failed */
165 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
169 hlist_for_each(node
, &step
->list
) {
178 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
179 static DEFINE_MUTEX(cpu_add_remove_lock
);
180 bool cpuhp_tasks_frozen
;
181 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
184 * The following two APIs (cpu_maps_update_begin/done) must be used when
185 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
187 void cpu_maps_update_begin(void)
189 mutex_lock(&cpu_add_remove_lock
);
192 void cpu_maps_update_done(void)
194 mutex_unlock(&cpu_add_remove_lock
);
197 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
198 * Should always be manipulated under cpu_add_remove_lock
200 static int cpu_hotplug_disabled
;
202 #ifdef CONFIG_HOTPLUG_CPU
205 struct task_struct
*active_writer
;
206 /* wait queue to wake up the active_writer */
207 wait_queue_head_t wq
;
208 /* verifies that no writer will get active while readers are active */
211 * Also blocks the new readers during
212 * an ongoing cpu hotplug operation.
216 #ifdef CONFIG_DEBUG_LOCK_ALLOC
217 struct lockdep_map dep_map
;
220 .active_writer
= NULL
,
221 .wq
= __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug
.wq
),
222 .lock
= __MUTEX_INITIALIZER(cpu_hotplug
.lock
),
223 #ifdef CONFIG_DEBUG_LOCK_ALLOC
224 .dep_map
= STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug
.dep_map
),
228 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
229 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
230 #define cpuhp_lock_acquire_tryread() \
231 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
233 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
236 void get_online_cpus(void)
239 if (cpu_hotplug
.active_writer
== current
)
241 cpuhp_lock_acquire_read();
242 mutex_lock(&cpu_hotplug
.lock
);
243 atomic_inc(&cpu_hotplug
.refcount
);
244 mutex_unlock(&cpu_hotplug
.lock
);
246 EXPORT_SYMBOL_GPL(get_online_cpus
);
248 void put_online_cpus(void)
252 if (cpu_hotplug
.active_writer
== current
)
255 refcount
= atomic_dec_return(&cpu_hotplug
.refcount
);
256 if (WARN_ON(refcount
< 0)) /* try to fix things up */
257 atomic_inc(&cpu_hotplug
.refcount
);
259 if (refcount
<= 0 && waitqueue_active(&cpu_hotplug
.wq
))
260 wake_up(&cpu_hotplug
.wq
);
262 cpuhp_lock_release();
265 EXPORT_SYMBOL_GPL(put_online_cpus
);
268 * This ensures that the hotplug operation can begin only when the
269 * refcount goes to zero.
271 * Note that during a cpu-hotplug operation, the new readers, if any,
272 * will be blocked by the cpu_hotplug.lock
274 * Since cpu_hotplug_begin() is always called after invoking
275 * cpu_maps_update_begin(), we can be sure that only one writer is active.
277 * Note that theoretically, there is a possibility of a livelock:
278 * - Refcount goes to zero, last reader wakes up the sleeping
280 * - Last reader unlocks the cpu_hotplug.lock.
281 * - A new reader arrives at this moment, bumps up the refcount.
282 * - The writer acquires the cpu_hotplug.lock finds the refcount
283 * non zero and goes to sleep again.
285 * However, this is very difficult to achieve in practice since
286 * get_online_cpus() not an api which is called all that often.
289 void cpu_hotplug_begin(void)
293 cpu_hotplug
.active_writer
= current
;
294 cpuhp_lock_acquire();
297 mutex_lock(&cpu_hotplug
.lock
);
298 prepare_to_wait(&cpu_hotplug
.wq
, &wait
, TASK_UNINTERRUPTIBLE
);
299 if (likely(!atomic_read(&cpu_hotplug
.refcount
)))
301 mutex_unlock(&cpu_hotplug
.lock
);
304 finish_wait(&cpu_hotplug
.wq
, &wait
);
307 void cpu_hotplug_done(void)
309 cpu_hotplug
.active_writer
= NULL
;
310 mutex_unlock(&cpu_hotplug
.lock
);
311 cpuhp_lock_release();
315 * Wait for currently running CPU hotplug operations to complete (if any) and
316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
318 * hotplug path before performing hotplug operations. So acquiring that lock
319 * guarantees mutual exclusion from any currently running hotplug operations.
321 void cpu_hotplug_disable(void)
323 cpu_maps_update_begin();
324 cpu_hotplug_disabled
++;
325 cpu_maps_update_done();
327 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
329 static void __cpu_hotplug_enable(void)
331 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
333 cpu_hotplug_disabled
--;
336 void cpu_hotplug_enable(void)
338 cpu_maps_update_begin();
339 __cpu_hotplug_enable();
340 cpu_maps_update_done();
342 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
343 #endif /* CONFIG_HOTPLUG_CPU */
345 /* Notifier wrappers for transitioning to state machine */
347 static int bringup_wait_for_ap(unsigned int cpu
)
349 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
351 wait_for_completion(&st
->done
);
355 static int bringup_cpu(unsigned int cpu
)
357 struct task_struct
*idle
= idle_thread_get(cpu
);
361 * Some architectures have to walk the irq descriptors to
362 * setup the vector space for the cpu which comes online.
363 * Prevent irq alloc/free across the bringup.
367 /* Arch-specific enabling code. */
368 ret
= __cpu_up(cpu
, idle
);
372 ret
= bringup_wait_for_ap(cpu
);
373 BUG_ON(!cpu_online(cpu
));
378 * Hotplug state machine related functions
380 static void undo_cpu_down(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
382 for (st
->state
++; st
->state
< st
->target
; st
->state
++) {
383 struct cpuhp_step
*step
= cpuhp_get_step(st
->state
);
385 if (!step
->skip_onerr
)
386 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
);
390 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
391 enum cpuhp_state target
)
393 enum cpuhp_state prev_state
= st
->state
;
396 for (; st
->state
> target
; st
->state
--) {
397 ret
= cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
);
399 st
->target
= prev_state
;
400 undo_cpu_down(cpu
, st
);
407 static void undo_cpu_up(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
409 for (st
->state
--; st
->state
> st
->target
; st
->state
--) {
410 struct cpuhp_step
*step
= cpuhp_get_step(st
->state
);
412 if (!step
->skip_onerr
)
413 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
);
417 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
418 enum cpuhp_state target
)
420 enum cpuhp_state prev_state
= st
->state
;
423 while (st
->state
< target
) {
425 ret
= cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
);
427 st
->target
= prev_state
;
428 undo_cpu_up(cpu
, st
);
436 * The cpu hotplug threads manage the bringup and teardown of the cpus
438 static void cpuhp_create(unsigned int cpu
)
440 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
442 init_completion(&st
->done
);
445 static int cpuhp_should_run(unsigned int cpu
)
447 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
449 return st
->should_run
;
452 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
453 static int cpuhp_ap_offline(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
455 enum cpuhp_state target
= max((int)st
->target
, CPUHP_TEARDOWN_CPU
);
457 return cpuhp_down_callbacks(cpu
, st
, target
);
460 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
461 static int cpuhp_ap_online(unsigned int cpu
, struct cpuhp_cpu_state
*st
)
463 return cpuhp_up_callbacks(cpu
, st
, st
->target
);
467 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
468 * callbacks when a state gets [un]installed at runtime.
470 static void cpuhp_thread_fun(unsigned int cpu
)
472 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
476 * Paired with the mb() in cpuhp_kick_ap_work and
477 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
483 st
->should_run
= false;
485 /* Single callback invocation for [un]install ? */
487 if (st
->cb_state
< CPUHP_AP_ONLINE
) {
489 ret
= cpuhp_invoke_callback(cpu
, st
->cb_state
,
490 st
->bringup
, st
->node
);
493 ret
= cpuhp_invoke_callback(cpu
, st
->cb_state
,
494 st
->bringup
, st
->node
);
496 } else if (st
->rollback
) {
497 BUG_ON(st
->state
< CPUHP_AP_ONLINE_IDLE
);
499 undo_cpu_down(cpu
, st
);
500 st
->rollback
= false;
502 /* Cannot happen .... */
503 BUG_ON(st
->state
< CPUHP_AP_ONLINE_IDLE
);
505 /* Regular hotplug work */
506 if (st
->state
< st
->target
)
507 ret
= cpuhp_ap_online(cpu
, st
);
508 else if (st
->state
> st
->target
)
509 ret
= cpuhp_ap_offline(cpu
, st
);
515 /* Invoke a single callback on a remote cpu */
517 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
518 struct hlist_node
*node
)
520 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
522 if (!cpu_online(cpu
))
526 * If we are up and running, use the hotplug thread. For early calls
527 * we invoke the thread function directly.
530 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
);
532 st
->cb_state
= state
;
534 st
->bringup
= bringup
;
538 * Make sure the above stores are visible before should_run becomes
539 * true. Paired with the mb() above in cpuhp_thread_fun()
542 st
->should_run
= true;
543 wake_up_process(st
->thread
);
544 wait_for_completion(&st
->done
);
548 /* Regular hotplug invocation of the AP hotplug thread */
549 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state
*st
)
554 * Make sure the above stores are visible before should_run becomes
555 * true. Paired with the mb() above in cpuhp_thread_fun()
558 st
->should_run
= true;
559 wake_up_process(st
->thread
);
562 static int cpuhp_kick_ap_work(unsigned int cpu
)
564 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
565 enum cpuhp_state state
= st
->state
;
567 trace_cpuhp_enter(cpu
, st
->target
, state
, cpuhp_kick_ap_work
);
568 __cpuhp_kick_ap_work(st
);
569 wait_for_completion(&st
->done
);
570 trace_cpuhp_exit(cpu
, st
->state
, state
, st
->result
);
574 static struct smp_hotplug_thread cpuhp_threads
= {
575 .store
= &cpuhp_state
.thread
,
576 .create
= &cpuhp_create
,
577 .thread_should_run
= cpuhp_should_run
,
578 .thread_fn
= cpuhp_thread_fun
,
579 .thread_comm
= "cpuhp/%u",
583 void __init
cpuhp_threads_init(void)
585 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
586 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
589 #ifdef CONFIG_HOTPLUG_CPU
591 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
594 * This function walks all processes, finds a valid mm struct for each one and
595 * then clears a corresponding bit in mm's cpumask. While this all sounds
596 * trivial, there are various non-obvious corner cases, which this function
597 * tries to solve in a safe manner.
599 * Also note that the function uses a somewhat relaxed locking scheme, so it may
600 * be called only for an already offlined CPU.
602 void clear_tasks_mm_cpumask(int cpu
)
604 struct task_struct
*p
;
607 * This function is called after the cpu is taken down and marked
608 * offline, so its not like new tasks will ever get this cpu set in
609 * their mm mask. -- Peter Zijlstra
610 * Thus, we may use rcu_read_lock() here, instead of grabbing
611 * full-fledged tasklist_lock.
613 WARN_ON(cpu_online(cpu
));
615 for_each_process(p
) {
616 struct task_struct
*t
;
619 * Main thread might exit, but other threads may still have
620 * a valid mm. Find one.
622 t
= find_lock_task_mm(p
);
625 cpumask_clear_cpu(cpu
, mm_cpumask(t
->mm
));
631 static inline void check_for_tasks(int dead_cpu
)
633 struct task_struct
*g
, *p
;
635 read_lock(&tasklist_lock
);
636 for_each_process_thread(g
, p
) {
640 * We do the check with unlocked task_rq(p)->lock.
641 * Order the reading to do not warn about a task,
642 * which was running on this cpu in the past, and
643 * it's just been woken on another cpu.
646 if (task_cpu(p
) != dead_cpu
)
649 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
650 p
->comm
, task_pid_nr(p
), dead_cpu
, p
->state
, p
->flags
);
652 read_unlock(&tasklist_lock
);
655 /* Take this CPU down. */
656 static int take_cpu_down(void *_param
)
658 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
659 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
660 int err
, cpu
= smp_processor_id();
662 /* Ensure this CPU doesn't handle any more interrupts. */
663 err
= __cpu_disable();
668 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
669 * do this step again.
671 WARN_ON(st
->state
!= CPUHP_TEARDOWN_CPU
);
673 /* Invoke the former CPU_DYING callbacks */
674 for (; st
->state
> target
; st
->state
--)
675 cpuhp_invoke_callback(cpu
, st
->state
, false, NULL
);
677 /* Give up timekeeping duties */
678 tick_handover_do_timer();
679 /* Park the stopper thread */
680 stop_machine_park(cpu
);
684 static int takedown_cpu(unsigned int cpu
)
686 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
689 /* Park the smpboot threads */
690 kthread_park(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
691 smpboot_park_threads(cpu
);
694 * Prevent irq alloc/free while the dying cpu reorganizes the
695 * interrupt affinities.
700 * So now all preempt/rcu users must observe !cpu_active().
702 err
= stop_machine(take_cpu_down
, NULL
, cpumask_of(cpu
));
704 /* CPU refused to die */
706 /* Unpark the hotplug thread so we can rollback there */
707 kthread_unpark(per_cpu_ptr(&cpuhp_state
, cpu
)->thread
);
710 BUG_ON(cpu_online(cpu
));
713 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
714 * runnable tasks from the cpu, there's only the idle task left now
715 * that the migration thread is done doing the stop_machine thing.
717 * Wait for the stop thread to go away.
719 wait_for_completion(&st
->done
);
720 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
722 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
725 hotplug_cpu__broadcast_tick_pull(cpu
);
726 /* This actually kills the CPU. */
729 tick_cleanup_dead_cpu(cpu
);
733 static void cpuhp_complete_idle_dead(void *arg
)
735 struct cpuhp_cpu_state
*st
= arg
;
740 void cpuhp_report_idle_dead(void)
742 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
744 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
745 rcu_report_dead(smp_processor_id());
746 st
->state
= CPUHP_AP_IDLE_DEAD
;
748 * We cannot call complete after rcu_report_dead() so we delegate it
751 smp_call_function_single(cpumask_first(cpu_online_mask
),
752 cpuhp_complete_idle_dead
, st
, 0);
756 #define takedown_cpu NULL
759 #ifdef CONFIG_HOTPLUG_CPU
761 /* Requires cpu_add_remove_lock to be held */
762 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
763 enum cpuhp_state target
)
765 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
766 int prev_state
, ret
= 0;
768 if (num_online_cpus() == 1)
771 if (!cpu_present(cpu
))
776 cpuhp_tasks_frozen
= tasks_frozen
;
778 prev_state
= st
->state
;
781 * If the current CPU state is in the range of the AP hotplug thread,
782 * then we need to kick the thread.
784 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
785 ret
= cpuhp_kick_ap_work(cpu
);
787 * The AP side has done the error rollback already. Just
788 * return the error code..
794 * We might have stopped still in the range of the AP hotplug
795 * thread. Nothing to do anymore.
797 if (st
->state
> CPUHP_TEARDOWN_CPU
)
801 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
802 * to do the further cleanups.
804 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
805 if (ret
&& st
->state
> CPUHP_TEARDOWN_CPU
&& st
->state
< prev_state
) {
806 st
->target
= prev_state
;
808 cpuhp_kick_ap_work(cpu
);
816 static int do_cpu_down(unsigned int cpu
, enum cpuhp_state target
)
820 cpu_maps_update_begin();
822 if (cpu_hotplug_disabled
) {
827 err
= _cpu_down(cpu
, 0, target
);
830 cpu_maps_update_done();
833 int cpu_down(unsigned int cpu
)
835 return do_cpu_down(cpu
, CPUHP_OFFLINE
);
837 EXPORT_SYMBOL(cpu_down
);
838 #endif /*CONFIG_HOTPLUG_CPU*/
841 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
842 * @cpu: cpu that just started
844 * It must be called by the arch code on the new cpu, before the new cpu
845 * enables interrupts and before the "boot" cpu returns from __cpu_up().
847 void notify_cpu_starting(unsigned int cpu
)
849 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
850 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
852 rcu_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
853 while (st
->state
< target
) {
855 cpuhp_invoke_callback(cpu
, st
->state
, true, NULL
);
860 * Called from the idle task. We need to set active here, so we can kick off
861 * the stopper thread and unpark the smpboot threads. If the target state is
862 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865 void cpuhp_online_idle(enum cpuhp_state state
)
867 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
868 unsigned int cpu
= smp_processor_id();
870 /* Happens for the boot cpu */
871 if (state
!= CPUHP_AP_ONLINE_IDLE
)
874 st
->state
= CPUHP_AP_ONLINE_IDLE
;
876 /* Unpark the stopper thread and the hotplug thread of this cpu */
877 stop_machine_unpark(cpu
);
878 kthread_unpark(st
->thread
);
880 /* Should we go further up ? */
881 if (st
->target
> CPUHP_AP_ONLINE_IDLE
)
882 __cpuhp_kick_ap_work(st
);
887 /* Requires cpu_add_remove_lock to be held */
888 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
890 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
891 struct task_struct
*idle
;
896 if (!cpu_present(cpu
)) {
902 * The caller of do_cpu_up might have raced with another
903 * caller. Ignore it for now.
905 if (st
->state
>= target
)
908 if (st
->state
== CPUHP_OFFLINE
) {
909 /* Let it fail before we try to bring the cpu up */
910 idle
= idle_thread_get(cpu
);
917 cpuhp_tasks_frozen
= tasks_frozen
;
921 * If the current CPU state is in the range of the AP hotplug thread,
922 * then we need to kick the thread once more.
924 if (st
->state
> CPUHP_BRINGUP_CPU
) {
925 ret
= cpuhp_kick_ap_work(cpu
);
927 * The AP side has done the error rollback already. Just
928 * return the error code..
935 * Try to reach the target state. We max out on the BP at
936 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
937 * responsible for bringing it up to the target state.
939 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
940 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
946 static int do_cpu_up(unsigned int cpu
, enum cpuhp_state target
)
950 if (!cpu_possible(cpu
)) {
951 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
953 #if defined(CONFIG_IA64)
954 pr_err("please check additional_cpus= boot parameter\n");
959 err
= try_online_node(cpu_to_node(cpu
));
963 cpu_maps_update_begin();
965 if (cpu_hotplug_disabled
) {
970 err
= _cpu_up(cpu
, 0, target
);
972 cpu_maps_update_done();
976 int cpu_up(unsigned int cpu
)
978 return do_cpu_up(cpu
, CPUHP_ONLINE
);
980 EXPORT_SYMBOL_GPL(cpu_up
);
982 #ifdef CONFIG_PM_SLEEP_SMP
983 static cpumask_var_t frozen_cpus
;
985 int freeze_secondary_cpus(int primary
)
989 cpu_maps_update_begin();
990 if (!cpu_online(primary
))
991 primary
= cpumask_first(cpu_online_mask
);
993 * We take down all of the non-boot CPUs in one shot to avoid races
994 * with the userspace trying to use the CPU hotplug at the same time
996 cpumask_clear(frozen_cpus
);
998 pr_info("Disabling non-boot CPUs ...\n");
999 for_each_online_cpu(cpu
) {
1002 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1003 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1004 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1006 cpumask_set_cpu(cpu
, frozen_cpus
);
1008 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1014 BUG_ON(num_online_cpus() > 1);
1016 pr_err("Non-boot CPUs are not disabled\n");
1019 * Make sure the CPUs won't be enabled by someone else. We need to do
1020 * this even in case of failure as all disable_nonboot_cpus() users are
1021 * supposed to do enable_nonboot_cpus() on the failure path.
1023 cpu_hotplug_disabled
++;
1025 cpu_maps_update_done();
1029 void __weak
arch_enable_nonboot_cpus_begin(void)
1033 void __weak
arch_enable_nonboot_cpus_end(void)
1037 void enable_nonboot_cpus(void)
1041 /* Allow everyone to use the CPU hotplug again */
1042 cpu_maps_update_begin();
1043 __cpu_hotplug_enable();
1044 if (cpumask_empty(frozen_cpus
))
1047 pr_info("Enabling non-boot CPUs ...\n");
1049 arch_enable_nonboot_cpus_begin();
1051 for_each_cpu(cpu
, frozen_cpus
) {
1052 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1053 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1054 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1056 pr_info("CPU%d is up\n", cpu
);
1059 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1062 arch_enable_nonboot_cpus_end();
1064 cpumask_clear(frozen_cpus
);
1066 cpu_maps_update_done();
1069 static int __init
alloc_frozen_cpus(void)
1071 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
1075 core_initcall(alloc_frozen_cpus
);
1078 * When callbacks for CPU hotplug notifications are being executed, we must
1079 * ensure that the state of the system with respect to the tasks being frozen
1080 * or not, as reported by the notification, remains unchanged *throughout the
1081 * duration* of the execution of the callbacks.
1082 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1084 * This synchronization is implemented by mutually excluding regular CPU
1085 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1086 * Hibernate notifications.
1089 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
1090 unsigned long action
, void *ptr
)
1094 case PM_SUSPEND_PREPARE
:
1095 case PM_HIBERNATION_PREPARE
:
1096 cpu_hotplug_disable();
1099 case PM_POST_SUSPEND
:
1100 case PM_POST_HIBERNATION
:
1101 cpu_hotplug_enable();
1112 static int __init
cpu_hotplug_pm_sync_init(void)
1115 * cpu_hotplug_pm_callback has higher priority than x86
1116 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1117 * to disable cpu hotplug to avoid cpu hotplug race.
1119 pm_notifier(cpu_hotplug_pm_callback
, 0);
1122 core_initcall(cpu_hotplug_pm_sync_init
);
1124 #endif /* CONFIG_PM_SLEEP_SMP */
1126 #endif /* CONFIG_SMP */
1128 /* Boot processor state steps */
1129 static struct cpuhp_step cpuhp_bp_states
[] = {
1132 .startup
.single
= NULL
,
1133 .teardown
.single
= NULL
,
1136 [CPUHP_CREATE_THREADS
]= {
1137 .name
= "threads:prepare",
1138 .startup
.single
= smpboot_create_threads
,
1139 .teardown
.single
= NULL
,
1142 [CPUHP_PERF_PREPARE
] = {
1143 .name
= "perf:prepare",
1144 .startup
.single
= perf_event_init_cpu
,
1145 .teardown
.single
= perf_event_exit_cpu
,
1147 [CPUHP_WORKQUEUE_PREP
] = {
1148 .name
= "workqueue:prepare",
1149 .startup
.single
= workqueue_prepare_cpu
,
1150 .teardown
.single
= NULL
,
1152 [CPUHP_HRTIMERS_PREPARE
] = {
1153 .name
= "hrtimers:prepare",
1154 .startup
.single
= hrtimers_prepare_cpu
,
1155 .teardown
.single
= hrtimers_dead_cpu
,
1157 [CPUHP_SMPCFD_PREPARE
] = {
1158 .name
= "smpcfd:prepare",
1159 .startup
.single
= smpcfd_prepare_cpu
,
1160 .teardown
.single
= smpcfd_dead_cpu
,
1162 [CPUHP_RELAY_PREPARE
] = {
1163 .name
= "relay:prepare",
1164 .startup
.single
= relay_prepare_cpu
,
1165 .teardown
.single
= NULL
,
1167 [CPUHP_SLAB_PREPARE
] = {
1168 .name
= "slab:prepare",
1169 .startup
.single
= slab_prepare_cpu
,
1170 .teardown
.single
= slab_dead_cpu
,
1172 [CPUHP_RCUTREE_PREP
] = {
1173 .name
= "RCU/tree:prepare",
1174 .startup
.single
= rcutree_prepare_cpu
,
1175 .teardown
.single
= rcutree_dead_cpu
,
1178 * On the tear-down path, timers_dead_cpu() must be invoked
1179 * before blk_mq_queue_reinit_notify() from notify_dead(),
1180 * otherwise a RCU stall occurs.
1182 [CPUHP_TIMERS_DEAD
] = {
1183 .name
= "timers:dead",
1184 .startup
.single
= NULL
,
1185 .teardown
.single
= timers_dead_cpu
,
1187 /* Kicks the plugged cpu into life */
1188 [CPUHP_BRINGUP_CPU
] = {
1189 .name
= "cpu:bringup",
1190 .startup
.single
= bringup_cpu
,
1191 .teardown
.single
= NULL
,
1194 [CPUHP_AP_SMPCFD_DYING
] = {
1195 .name
= "smpcfd:dying",
1196 .startup
.single
= NULL
,
1197 .teardown
.single
= smpcfd_dying_cpu
,
1200 * Handled on controll processor until the plugged processor manages
1203 [CPUHP_TEARDOWN_CPU
] = {
1204 .name
= "cpu:teardown",
1205 .startup
.single
= NULL
,
1206 .teardown
.single
= takedown_cpu
,
1210 [CPUHP_BRINGUP_CPU
] = { },
1214 /* Application processor state steps */
1215 static struct cpuhp_step cpuhp_ap_states
[] = {
1217 /* Final state before CPU kills itself */
1218 [CPUHP_AP_IDLE_DEAD
] = {
1219 .name
= "idle:dead",
1222 * Last state before CPU enters the idle loop to die. Transient state
1223 * for synchronization.
1225 [CPUHP_AP_OFFLINE
] = {
1226 .name
= "ap:offline",
1229 /* First state is scheduler control. Interrupts are disabled */
1230 [CPUHP_AP_SCHED_STARTING
] = {
1231 .name
= "sched:starting",
1232 .startup
.single
= sched_cpu_starting
,
1233 .teardown
.single
= sched_cpu_dying
,
1235 [CPUHP_AP_RCUTREE_DYING
] = {
1236 .name
= "RCU/tree:dying",
1237 .startup
.single
= NULL
,
1238 .teardown
.single
= rcutree_dying_cpu
,
1240 /* Entry state on starting. Interrupts enabled from here on. Transient
1241 * state for synchronsization */
1242 [CPUHP_AP_ONLINE
] = {
1243 .name
= "ap:online",
1245 /* Handle smpboot threads park/unpark */
1246 [CPUHP_AP_SMPBOOT_THREADS
] = {
1247 .name
= "smpboot/threads:online",
1248 .startup
.single
= smpboot_unpark_threads
,
1249 .teardown
.single
= NULL
,
1251 [CPUHP_AP_PERF_ONLINE
] = {
1252 .name
= "perf:online",
1253 .startup
.single
= perf_event_init_cpu
,
1254 .teardown
.single
= perf_event_exit_cpu
,
1256 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
1257 .name
= "workqueue:online",
1258 .startup
.single
= workqueue_online_cpu
,
1259 .teardown
.single
= workqueue_offline_cpu
,
1261 [CPUHP_AP_RCUTREE_ONLINE
] = {
1262 .name
= "RCU/tree:online",
1263 .startup
.single
= rcutree_online_cpu
,
1264 .teardown
.single
= rcutree_offline_cpu
,
1268 * The dynamically registered state space is here
1272 /* Last state is scheduler control setting the cpu active */
1273 [CPUHP_AP_ACTIVE
] = {
1274 .name
= "sched:active",
1275 .startup
.single
= sched_cpu_activate
,
1276 .teardown
.single
= sched_cpu_deactivate
,
1280 /* CPU is fully up and running. */
1283 .startup
.single
= NULL
,
1284 .teardown
.single
= NULL
,
1288 /* Sanity check for callbacks */
1289 static int cpuhp_cb_check(enum cpuhp_state state
)
1291 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
1297 * Returns a free for dynamic slot assignment of the Online state. The states
1298 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1299 * by having no name assigned.
1301 static int cpuhp_reserve_state(enum cpuhp_state state
)
1303 enum cpuhp_state i
, end
;
1304 struct cpuhp_step
*step
;
1307 case CPUHP_AP_ONLINE_DYN
:
1308 step
= cpuhp_ap_states
+ CPUHP_AP_ONLINE_DYN
;
1309 end
= CPUHP_AP_ONLINE_DYN_END
;
1311 case CPUHP_BP_PREPARE_DYN
:
1312 step
= cpuhp_bp_states
+ CPUHP_BP_PREPARE_DYN
;
1313 end
= CPUHP_BP_PREPARE_DYN_END
;
1319 for (i
= state
; i
<= end
; i
++, step
++) {
1323 WARN(1, "No more dynamic states available for CPU hotplug\n");
1327 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
1328 int (*startup
)(unsigned int cpu
),
1329 int (*teardown
)(unsigned int cpu
),
1330 bool multi_instance
)
1332 /* (Un)Install the callbacks for further cpu hotplug operations */
1333 struct cpuhp_step
*sp
;
1336 mutex_lock(&cpuhp_state_mutex
);
1338 if (state
== CPUHP_AP_ONLINE_DYN
|| state
== CPUHP_BP_PREPARE_DYN
) {
1339 ret
= cpuhp_reserve_state(state
);
1344 sp
= cpuhp_get_step(state
);
1345 if (name
&& sp
->name
) {
1349 sp
->startup
.single
= startup
;
1350 sp
->teardown
.single
= teardown
;
1352 sp
->multi_instance
= multi_instance
;
1353 INIT_HLIST_HEAD(&sp
->list
);
1355 mutex_unlock(&cpuhp_state_mutex
);
1359 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
1361 return cpuhp_get_step(state
)->teardown
.single
;
1365 * Call the startup/teardown function for a step either on the AP or
1366 * on the current CPU.
1368 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
1369 struct hlist_node
*node
)
1371 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1374 if ((bringup
&& !sp
->startup
.single
) ||
1375 (!bringup
&& !sp
->teardown
.single
))
1378 * The non AP bound callbacks can fail on bringup. On teardown
1379 * e.g. module removal we crash for now.
1382 if (cpuhp_is_ap_state(state
))
1383 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
1385 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
);
1387 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
);
1389 BUG_ON(ret
&& !bringup
);
1394 * Called from __cpuhp_setup_state on a recoverable failure.
1396 * Note: The teardown callbacks for rollback are not allowed to fail!
1398 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
1399 struct hlist_node
*node
)
1403 /* Roll back the already executed steps on the other cpus */
1404 for_each_present_cpu(cpu
) {
1405 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1406 int cpustate
= st
->state
;
1408 if (cpu
>= failedcpu
)
1411 /* Did we invoke the startup call on that cpu ? */
1412 if (cpustate
>= state
)
1413 cpuhp_issue_call(cpu
, state
, false, node
);
1417 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
1420 struct cpuhp_step
*sp
;
1424 sp
= cpuhp_get_step(state
);
1425 if (sp
->multi_instance
== false)
1430 if (!invoke
|| !sp
->startup
.multi
)
1434 * Try to call the startup callback for each present cpu
1435 * depending on the hotplug state of the cpu.
1437 for_each_present_cpu(cpu
) {
1438 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1439 int cpustate
= st
->state
;
1441 if (cpustate
< state
)
1444 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
1446 if (sp
->teardown
.multi
)
1447 cpuhp_rollback_install(cpu
, state
, node
);
1453 mutex_lock(&cpuhp_state_mutex
);
1454 hlist_add_head(node
, &sp
->list
);
1455 mutex_unlock(&cpuhp_state_mutex
);
1461 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
1464 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1465 * @state: The state to setup
1466 * @invoke: If true, the startup function is invoked for cpus where
1467 * cpu state >= @state
1468 * @startup: startup callback function
1469 * @teardown: teardown callback function
1470 * @multi_instance: State is set up for multiple instances which get
1475 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1476 * 0 for all other states
1477 * On failure: proper (negative) error code
1479 int __cpuhp_setup_state(enum cpuhp_state state
,
1480 const char *name
, bool invoke
,
1481 int (*startup
)(unsigned int cpu
),
1482 int (*teardown
)(unsigned int cpu
),
1483 bool multi_instance
)
1488 if (cpuhp_cb_check(state
) || !name
)
1493 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
1496 dynstate
= state
== CPUHP_AP_ONLINE_DYN
;
1497 if (ret
> 0 && dynstate
) {
1502 if (ret
|| !invoke
|| !startup
)
1506 * Try to call the startup callback for each present cpu
1507 * depending on the hotplug state of the cpu.
1509 for_each_present_cpu(cpu
) {
1510 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1511 int cpustate
= st
->state
;
1513 if (cpustate
< state
)
1516 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
1519 cpuhp_rollback_install(cpu
, state
, NULL
);
1520 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1527 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1528 * dynamically allocated state in case of success.
1530 if (!ret
&& dynstate
)
1534 EXPORT_SYMBOL(__cpuhp_setup_state
);
1536 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
1537 struct hlist_node
*node
, bool invoke
)
1539 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1542 BUG_ON(cpuhp_cb_check(state
));
1544 if (!sp
->multi_instance
)
1548 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1551 * Call the teardown callback for each present cpu depending
1552 * on the hotplug state of the cpu. This function is not
1553 * allowed to fail currently!
1555 for_each_present_cpu(cpu
) {
1556 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1557 int cpustate
= st
->state
;
1559 if (cpustate
>= state
)
1560 cpuhp_issue_call(cpu
, state
, false, node
);
1564 mutex_lock(&cpuhp_state_mutex
);
1566 mutex_unlock(&cpuhp_state_mutex
);
1571 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
1573 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1574 * @state: The state to remove
1575 * @invoke: If true, the teardown function is invoked for cpus where
1576 * cpu state >= @state
1578 * The teardown callback is currently not allowed to fail. Think
1579 * about module removal!
1581 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
1583 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
1586 BUG_ON(cpuhp_cb_check(state
));
1590 if (sp
->multi_instance
) {
1591 WARN(!hlist_empty(&sp
->list
),
1592 "Error: Removing state %d which has instances left.\n",
1597 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
1601 * Call the teardown callback for each present cpu depending
1602 * on the hotplug state of the cpu. This function is not
1603 * allowed to fail currently!
1605 for_each_present_cpu(cpu
) {
1606 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1607 int cpustate
= st
->state
;
1609 if (cpustate
>= state
)
1610 cpuhp_issue_call(cpu
, state
, false, NULL
);
1613 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
1616 EXPORT_SYMBOL(__cpuhp_remove_state
);
1618 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1619 static ssize_t
show_cpuhp_state(struct device
*dev
,
1620 struct device_attribute
*attr
, char *buf
)
1622 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1624 return sprintf(buf
, "%d\n", st
->state
);
1626 static DEVICE_ATTR(state
, 0444, show_cpuhp_state
, NULL
);
1628 static ssize_t
write_cpuhp_target(struct device
*dev
,
1629 struct device_attribute
*attr
,
1630 const char *buf
, size_t count
)
1632 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1633 struct cpuhp_step
*sp
;
1636 ret
= kstrtoint(buf
, 10, &target
);
1640 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1641 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
1644 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
1648 ret
= lock_device_hotplug_sysfs();
1652 mutex_lock(&cpuhp_state_mutex
);
1653 sp
= cpuhp_get_step(target
);
1654 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
1655 mutex_unlock(&cpuhp_state_mutex
);
1659 if (st
->state
< target
)
1660 ret
= do_cpu_up(dev
->id
, target
);
1662 ret
= do_cpu_down(dev
->id
, target
);
1664 unlock_device_hotplug();
1665 return ret
? ret
: count
;
1668 static ssize_t
show_cpuhp_target(struct device
*dev
,
1669 struct device_attribute
*attr
, char *buf
)
1671 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
1673 return sprintf(buf
, "%d\n", st
->target
);
1675 static DEVICE_ATTR(target
, 0644, show_cpuhp_target
, write_cpuhp_target
);
1677 static struct attribute
*cpuhp_cpu_attrs
[] = {
1678 &dev_attr_state
.attr
,
1679 &dev_attr_target
.attr
,
1683 static struct attribute_group cpuhp_cpu_attr_group
= {
1684 .attrs
= cpuhp_cpu_attrs
,
1689 static ssize_t
show_cpuhp_states(struct device
*dev
,
1690 struct device_attribute
*attr
, char *buf
)
1692 ssize_t cur
, res
= 0;
1695 mutex_lock(&cpuhp_state_mutex
);
1696 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
1697 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
1700 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
1705 mutex_unlock(&cpuhp_state_mutex
);
1708 static DEVICE_ATTR(states
, 0444, show_cpuhp_states
, NULL
);
1710 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
1711 &dev_attr_states
.attr
,
1715 static struct attribute_group cpuhp_cpu_root_attr_group
= {
1716 .attrs
= cpuhp_cpu_root_attrs
,
1721 static int __init
cpuhp_sysfs_init(void)
1725 ret
= sysfs_create_group(&cpu_subsys
.dev_root
->kobj
,
1726 &cpuhp_cpu_root_attr_group
);
1730 for_each_possible_cpu(cpu
) {
1731 struct device
*dev
= get_cpu_device(cpu
);
1735 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
1741 device_initcall(cpuhp_sysfs_init
);
1745 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1746 * represents all NR_CPUS bits binary values of 1<<nr.
1748 * It is used by cpumask_of() to get a constant address to a CPU
1749 * mask value that has a single bit set only.
1752 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1753 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1754 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1755 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1756 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1758 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
1760 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1761 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1762 #if BITS_PER_LONG > 32
1763 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1764 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1767 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
1769 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
1770 EXPORT_SYMBOL(cpu_all_bits
);
1772 #ifdef CONFIG_INIT_ALL_POSSIBLE
1773 struct cpumask __cpu_possible_mask __read_mostly
1776 struct cpumask __cpu_possible_mask __read_mostly
;
1778 EXPORT_SYMBOL(__cpu_possible_mask
);
1780 struct cpumask __cpu_online_mask __read_mostly
;
1781 EXPORT_SYMBOL(__cpu_online_mask
);
1783 struct cpumask __cpu_present_mask __read_mostly
;
1784 EXPORT_SYMBOL(__cpu_present_mask
);
1786 struct cpumask __cpu_active_mask __read_mostly
;
1787 EXPORT_SYMBOL(__cpu_active_mask
);
1789 void init_cpu_present(const struct cpumask
*src
)
1791 cpumask_copy(&__cpu_present_mask
, src
);
1794 void init_cpu_possible(const struct cpumask
*src
)
1796 cpumask_copy(&__cpu_possible_mask
, src
);
1799 void init_cpu_online(const struct cpumask
*src
)
1801 cpumask_copy(&__cpu_online_mask
, src
);
1805 * Activate the first processor.
1807 void __init
boot_cpu_init(void)
1809 int cpu
= smp_processor_id();
1811 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1812 set_cpu_online(cpu
, true);
1813 set_cpu_active(cpu
, true);
1814 set_cpu_present(cpu
, true);
1815 set_cpu_possible(cpu
, true);
1819 * Must be called _AFTER_ setting up the per_cpu areas
1821 void __init
boot_cpu_state_init(void)
1823 per_cpu_ptr(&cpuhp_state
, smp_processor_id())->state
= CPUHP_ONLINE
;