2 * Parisc performance counters
3 * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
5 * This code is derived, with permission, from HP/UX sources.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 * Edited comment from original sources:
25 * This driver programs the PCX-U/PCX-W performance counters
26 * on the PA-RISC 2.0 chips. The driver keeps all images now
27 * internally to the kernel to hopefully eliminate the possibility
28 * of a bad image halting the CPU. Also, there are different
29 * images for the PCX-W and later chips vs the PCX-U chips.
31 * Only 1 process is allowed to access the driver at any time,
32 * so the only protection that is needed is at open and close.
33 * A variable "perf_enabled" is used to hold the state of the
34 * driver. The spinlock "perf_lock" is used to protect the
35 * modification of the state during open/close operations so
36 * multiple processes don't get into the driver simultaneously.
38 * This driver accesses the processor directly vs going through
39 * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
40 * in various PDC revisions. The code is much more maintainable
41 * and reliable this way vs having to debug on every version of PDC
45 #include <linux/capability.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/miscdevice.h>
49 #include <linux/spinlock.h>
51 #include <asm/uaccess.h>
53 #include <asm/parisc-device.h>
54 #include <asm/processor.h>
55 #include <asm/runway.h>
56 #include <asm/io.h> /* for __raw_read() */
58 #include "perf_images.h"
60 #define MAX_RDR_WORDS 24
61 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
63 /* definition of RDR regs */
67 uint8_t write_control
;
70 static int perf_processor_interface __read_mostly
= UNKNOWN_INTF
;
71 static int perf_enabled __read_mostly
;
72 static spinlock_t perf_lock
;
73 struct parisc_device
*cpu_device __read_mostly
;
75 /* RDRs to write for PCX-W */
76 static const int perf_rdrs_W
[] =
77 { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
79 /* RDRs to write for PCX-U */
80 static const int perf_rdrs_U
[] =
81 { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
83 /* RDR register descriptions for PCX-W */
84 static const struct rdr_tbl_ent perf_rdr_tbl_W
[] = {
85 { 19, 1, 8 }, /* RDR 0 */
86 { 16, 1, 16 }, /* RDR 1 */
87 { 72, 2, 0 }, /* RDR 2 */
88 { 81, 2, 0 }, /* RDR 3 */
89 { 328, 6, 0 }, /* RDR 4 */
90 { 160, 3, 0 }, /* RDR 5 */
91 { 336, 6, 0 }, /* RDR 6 */
92 { 164, 3, 0 }, /* RDR 7 */
93 { 0, 0, 0 }, /* RDR 8 */
94 { 35, 1, 0 }, /* RDR 9 */
95 { 6, 1, 0 }, /* RDR 10 */
96 { 18, 1, 0 }, /* RDR 11 */
97 { 13, 1, 0 }, /* RDR 12 */
98 { 8, 1, 0 }, /* RDR 13 */
99 { 8, 1, 0 }, /* RDR 14 */
100 { 8, 1, 0 }, /* RDR 15 */
101 { 1530, 24, 0 }, /* RDR 16 */
102 { 16, 1, 0 }, /* RDR 17 */
103 { 4, 1, 0 }, /* RDR 18 */
104 { 0, 0, 0 }, /* RDR 19 */
105 { 152, 3, 24 }, /* RDR 20 */
106 { 152, 3, 24 }, /* RDR 21 */
107 { 233, 4, 48 }, /* RDR 22 */
108 { 233, 4, 48 }, /* RDR 23 */
109 { 71, 2, 0 }, /* RDR 24 */
110 { 71, 2, 0 }, /* RDR 25 */
111 { 11, 1, 0 }, /* RDR 26 */
112 { 18, 1, 0 }, /* RDR 27 */
113 { 128, 2, 0 }, /* RDR 28 */
114 { 0, 0, 0 }, /* RDR 29 */
115 { 16, 1, 0 }, /* RDR 30 */
116 { 16, 1, 0 }, /* RDR 31 */
119 /* RDR register descriptions for PCX-U */
120 static const struct rdr_tbl_ent perf_rdr_tbl_U
[] = {
121 { 19, 1, 8 }, /* RDR 0 */
122 { 32, 1, 16 }, /* RDR 1 */
123 { 20, 1, 0 }, /* RDR 2 */
124 { 0, 0, 0 }, /* RDR 3 */
125 { 344, 6, 0 }, /* RDR 4 */
126 { 176, 3, 0 }, /* RDR 5 */
127 { 336, 6, 0 }, /* RDR 6 */
128 { 0, 0, 0 }, /* RDR 7 */
129 { 0, 0, 0 }, /* RDR 8 */
130 { 0, 0, 0 }, /* RDR 9 */
131 { 28, 1, 0 }, /* RDR 10 */
132 { 33, 1, 0 }, /* RDR 11 */
133 { 0, 0, 0 }, /* RDR 12 */
134 { 230, 4, 0 }, /* RDR 13 */
135 { 32, 1, 0 }, /* RDR 14 */
136 { 128, 2, 0 }, /* RDR 15 */
137 { 1494, 24, 0 }, /* RDR 16 */
138 { 18, 1, 0 }, /* RDR 17 */
139 { 4, 1, 0 }, /* RDR 18 */
140 { 0, 0, 0 }, /* RDR 19 */
141 { 158, 3, 24 }, /* RDR 20 */
142 { 158, 3, 24 }, /* RDR 21 */
143 { 194, 4, 48 }, /* RDR 22 */
144 { 194, 4, 48 }, /* RDR 23 */
145 { 71, 2, 0 }, /* RDR 24 */
146 { 71, 2, 0 }, /* RDR 25 */
147 { 28, 1, 0 }, /* RDR 26 */
148 { 33, 1, 0 }, /* RDR 27 */
149 { 88, 2, 0 }, /* RDR 28 */
150 { 32, 1, 0 }, /* RDR 29 */
151 { 24, 1, 0 }, /* RDR 30 */
152 { 16, 1, 0 }, /* RDR 31 */
156 * A non-zero write_control in the above tables is a byte offset into
159 static const uint64_t perf_bitmasks
[] = {
160 0x0000000000000000ul
, /* first dbl word must be zero */
161 0xfdffe00000000000ul
, /* RDR0 bitmask */
162 0x003f000000000000ul
, /* RDR1 bitmask */
163 0x00fffffffffffffful
, /* RDR20-RDR21 bitmask (152 bits) */
164 0xfffffffffffffffful
,
165 0xfffffffc00000000ul
,
166 0xfffffffffffffffful
, /* RDR22-RDR23 bitmask (233 bits) */
167 0xfffffffffffffffful
,
168 0xfffffffffffffffcul
,
173 * Write control bitmasks for Pa-8700 processor given
174 * some things have changed slightly.
176 static const uint64_t perf_bitmasks_piranha
[] = {
177 0x0000000000000000ul
, /* first dbl word must be zero */
178 0xfdffe00000000000ul
, /* RDR0 bitmask */
179 0x003f000000000000ul
, /* RDR1 bitmask */
180 0x00fffffffffffffful
, /* RDR20-RDR21 bitmask (158 bits) */
181 0xfffffffffffffffful
,
182 0xfffffffc00000000ul
,
183 0xfffffffffffffffful
, /* RDR22-RDR23 bitmask (210 bits) */
184 0xfffffffffffffffful
,
185 0xfffffffffffffffful
,
189 static const uint64_t *bitmask_array
; /* array of bitmasks to use */
191 /******************************************************************************
192 * Function Prototypes
193 *****************************************************************************/
194 static int perf_config(uint32_t *image_ptr
);
195 static int perf_release(struct inode
*inode
, struct file
*file
);
196 static int perf_open(struct inode
*inode
, struct file
*file
);
197 static ssize_t
perf_read(struct file
*file
, char __user
*buf
, size_t cnt
, loff_t
*ppos
);
198 static ssize_t
perf_write(struct file
*file
, const char __user
*buf
, size_t count
,
200 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
201 static void perf_start_counters(void);
202 static int perf_stop_counters(uint32_t *raddr
);
203 static const struct rdr_tbl_ent
* perf_rdr_get_entry(uint32_t rdr_num
);
204 static int perf_rdr_read_ubuf(uint32_t rdr_num
, uint64_t *buffer
);
205 static int perf_rdr_clear(uint32_t rdr_num
);
206 static int perf_write_image(uint64_t *memaddr
);
207 static void perf_rdr_write(uint32_t rdr_num
, uint64_t *buffer
);
209 /* External Assembly Routines */
210 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num
, uint16_t width
);
211 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num
, uint16_t width
);
212 extern void perf_rdr_shift_out_W (uint32_t rdr_num
, uint64_t buffer
);
213 extern void perf_rdr_shift_out_U (uint32_t rdr_num
, uint64_t buffer
);
214 extern void perf_intrigue_enable_perf_counters (void);
215 extern void perf_intrigue_disable_perf_counters (void);
217 /******************************************************************************
218 * Function Definitions
219 *****************************************************************************/
225 * Configure the cpu with a given data image. First turn off the counters,
226 * then download the image, then turn the counters back on.
228 static int perf_config(uint32_t *image_ptr
)
233 /* Stop the counters*/
234 error
= perf_stop_counters(raddr
);
236 printk("perf_config: perf_stop_counters = %ld\n", error
);
240 printk("Preparing to write image\n");
241 /* Write the image to the chip */
242 error
= perf_write_image((uint64_t *)image_ptr
);
244 printk("perf_config: DOWNLOAD = %ld\n", error
);
248 printk("Preparing to start counters\n");
250 /* Start the counters */
251 perf_start_counters();
253 return sizeof(uint32_t);
257 * Open the device and initialize all of its memory. The device is only
258 * opened once, but can be "queried" by multiple processes that know its
261 static int perf_open(struct inode
*inode
, struct file
*file
)
263 spin_lock(&perf_lock
);
265 spin_unlock(&perf_lock
);
269 spin_unlock(&perf_lock
);
277 static int perf_release(struct inode
*inode
, struct file
*file
)
279 spin_lock(&perf_lock
);
281 spin_unlock(&perf_lock
);
287 * Read does nothing for this driver
289 static ssize_t
perf_read(struct file
*file
, char __user
*buf
, size_t cnt
, loff_t
*ppos
)
297 * This routine downloads the image to the chip. It must be
298 * called on the processor that the download should happen
301 static ssize_t
perf_write(struct file
*file
, const char __user
*buf
, size_t count
,
307 uint32_t interface_type
;
310 if (perf_processor_interface
== ONYX_INTF
)
311 image_size
= PCXU_IMAGE_SIZE
;
312 else if (perf_processor_interface
== CUDA_INTF
)
313 image_size
= PCXW_IMAGE_SIZE
;
317 if (!capable(CAP_SYS_ADMIN
))
320 if (count
!= sizeof(uint32_t))
323 if ((err
= copy_from_user(&image_type
, buf
, sizeof(uint32_t))) != 0)
326 /* Get the interface type and test type */
327 interface_type
= (image_type
>> 16) & 0xffff;
328 test
= (image_type
& 0xffff);
330 /* Make sure everything makes sense */
332 /* First check the machine type is correct for
333 the requested image */
334 if (((perf_processor_interface
== CUDA_INTF
) &&
335 (interface_type
!= CUDA_INTF
)) ||
336 ((perf_processor_interface
== ONYX_INTF
) &&
337 (interface_type
!= ONYX_INTF
)))
340 /* Next check to make sure the requested image
342 if (((interface_type
== CUDA_INTF
) &&
343 (test
>= MAX_CUDA_IMAGES
)) ||
344 ((interface_type
== ONYX_INTF
) &&
345 (test
>= MAX_ONYX_IMAGES
)))
348 /* Copy the image into the processor */
349 if (interface_type
== CUDA_INTF
)
350 return perf_config(cuda_images
[test
]);
352 return perf_config(onyx_images
[test
]);
358 * Patch the images that need to know the IVA addresses.
360 static void perf_patch_images(void)
364 * NOTE: this routine is VERY specific to the current TLB image.
365 * If the image is changed, this routine might also need to be changed.
367 extern void $
i_itlb_miss_2_0();
368 extern void $
i_dtlb_miss_2_0();
369 extern void PA2_0_iva();
372 * We can only use the lower 32-bits, the upper 32-bits should be 0
373 * anyway given this is in the kernel
375 uint32_t itlb_addr
= (uint32_t)&($i_itlb_miss_2_0
);
376 uint32_t dtlb_addr
= (uint32_t)&($i_dtlb_miss_2_0
);
377 uint32_t IVAaddress
= (uint32_t)&PA2_0_iva
;
379 if (perf_processor_interface
== ONYX_INTF
) {
380 /* clear last 2 bytes */
381 onyx_images
[TLBMISS
][15] &= 0xffffff00;
383 onyx_images
[TLBMISS
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
384 onyx_images
[TLBMISS
][16] = (dtlb_addr
<< 8)&0xffffff00;
385 onyx_images
[TLBMISS
][17] = itlb_addr
;
387 /* clear last 2 bytes */
388 onyx_images
[TLBHANDMISS
][15] &= 0xffffff00;
390 onyx_images
[TLBHANDMISS
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
391 onyx_images
[TLBHANDMISS
][16] = (dtlb_addr
<< 8)&0xffffff00;
392 onyx_images
[TLBHANDMISS
][17] = itlb_addr
;
394 /* clear last 2 bytes */
395 onyx_images
[BIG_CPI
][15] &= 0xffffff00;
397 onyx_images
[BIG_CPI
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
398 onyx_images
[BIG_CPI
][16] = (dtlb_addr
<< 8)&0xffffff00;
399 onyx_images
[BIG_CPI
][17] = itlb_addr
;
401 onyx_images
[PANIC
][15] &= 0xffffff00; /* clear last 2 bytes */
402 onyx_images
[PANIC
][15] |= (0x000000ff&((IVAaddress
) >> 24)); /* set 2 bytes */
403 onyx_images
[PANIC
][16] = (IVAaddress
<< 8)&0xffffff00;
406 } else if (perf_processor_interface
== CUDA_INTF
) {
408 cuda_images
[TLBMISS
][16] =
409 (cuda_images
[TLBMISS
][16]&0xffff0000) |
410 ((dtlb_addr
>> 8)&0x0000ffff);
411 cuda_images
[TLBMISS
][17] =
412 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
413 cuda_images
[TLBMISS
][18] = (itlb_addr
<< 16)&0xffff0000;
415 cuda_images
[TLBHANDMISS
][16] =
416 (cuda_images
[TLBHANDMISS
][16]&0xffff0000) |
417 ((dtlb_addr
>> 8)&0x0000ffff);
418 cuda_images
[TLBHANDMISS
][17] =
419 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
420 cuda_images
[TLBHANDMISS
][18] = (itlb_addr
<< 16)&0xffff0000;
422 cuda_images
[BIG_CPI
][16] =
423 (cuda_images
[BIG_CPI
][16]&0xffff0000) |
424 ((dtlb_addr
>> 8)&0x0000ffff);
425 cuda_images
[BIG_CPI
][17] =
426 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
427 cuda_images
[BIG_CPI
][18] = (itlb_addr
<< 16)&0xffff0000;
437 * All routines effect the processor that they are executed on. Thus you
438 * must be running on the processor that you wish to change.
441 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
450 /* Start the counters */
451 perf_start_counters();
455 error_start
= perf_stop_counters(raddr
);
456 if (error_start
!= 0) {
457 printk(KERN_ERR
"perf_off: perf_stop_counters = %ld\n", error_start
);
462 /* copy out the Counters */
463 if (copy_to_user((void __user
*)arg
, raddr
,
464 sizeof (raddr
)) != 0) {
470 case PA_PERF_VERSION
:
471 /* Return the version # */
472 error
= put_user(PERF_VERSION
, (int *)arg
);
482 static const struct file_operations perf_fops
= {
486 .unlocked_ioctl
= perf_ioctl
,
487 .compat_ioctl
= perf_ioctl
,
489 .release
= perf_release
492 static struct miscdevice perf_dev
= {
499 * Initialize the module
501 static int __init
perf_init(void)
505 /* Determine correct processor interface to use */
506 bitmask_array
= perf_bitmasks
;
508 if (boot_cpu_data
.cpu_type
== pcxu
||
509 boot_cpu_data
.cpu_type
== pcxu_
) {
510 perf_processor_interface
= ONYX_INTF
;
511 } else if (boot_cpu_data
.cpu_type
== pcxw
||
512 boot_cpu_data
.cpu_type
== pcxw_
||
513 boot_cpu_data
.cpu_type
== pcxw2
||
514 boot_cpu_data
.cpu_type
== mako
||
515 boot_cpu_data
.cpu_type
== mako2
) {
516 perf_processor_interface
= CUDA_INTF
;
517 if (boot_cpu_data
.cpu_type
== pcxw2
||
518 boot_cpu_data
.cpu_type
== mako
||
519 boot_cpu_data
.cpu_type
== mako2
)
520 bitmask_array
= perf_bitmasks_piranha
;
522 perf_processor_interface
= UNKNOWN_INTF
;
523 printk("Performance monitoring counters not supported on this processor\n");
527 ret
= misc_register(&perf_dev
);
529 printk(KERN_ERR
"Performance monitoring counters: "
530 "cannot register misc device.\n");
534 /* Patch the images to match the system */
537 spin_lock_init(&perf_lock
);
539 /* TODO: this only lets us access the first cpu.. what to do for SMP? */
540 cpu_device
= per_cpu(cpu_data
, 0).dev
;
541 printk("Performance monitoring counters enabled for %s\n",
542 per_cpu(cpu_data
, 0).dev
->name
);
546 device_initcall(perf_init
);
549 * perf_start_counters(void)
551 * Start the counters.
553 static void perf_start_counters(void)
555 /* Enable performance monitor counters */
556 perf_intrigue_enable_perf_counters();
562 * Stop the performance counters and save counts
563 * in a per_processor array.
565 static int perf_stop_counters(uint32_t *raddr
)
567 uint64_t userbuf
[MAX_RDR_WORDS
];
569 /* Disable performance counters */
570 perf_intrigue_disable_perf_counters();
572 if (perf_processor_interface
== ONYX_INTF
) {
577 if (!perf_rdr_read_ubuf(16, userbuf
))
580 /* Counter0 is bits 1398 to 1429 */
581 tmp64
= (userbuf
[21] << 22) & 0x00000000ffc00000;
582 tmp64
|= (userbuf
[22] >> 42) & 0x00000000003fffff;
583 /* OR sticky0 (bit 1430) to counter0 bit 32 */
584 tmp64
|= (userbuf
[22] >> 10) & 0x0000000080000000;
585 raddr
[0] = (uint32_t)tmp64
;
587 /* Counter1 is bits 1431 to 1462 */
588 tmp64
= (userbuf
[22] >> 9) & 0x00000000ffffffff;
589 /* OR sticky1 (bit 1463) to counter1 bit 32 */
590 tmp64
|= (userbuf
[22] << 23) & 0x0000000080000000;
591 raddr
[1] = (uint32_t)tmp64
;
593 /* Counter2 is bits 1464 to 1495 */
594 tmp64
= (userbuf
[22] << 24) & 0x00000000ff000000;
595 tmp64
|= (userbuf
[23] >> 40) & 0x0000000000ffffff;
596 /* OR sticky2 (bit 1496) to counter2 bit 32 */
597 tmp64
|= (userbuf
[23] >> 8) & 0x0000000080000000;
598 raddr
[2] = (uint32_t)tmp64
;
600 /* Counter3 is bits 1497 to 1528 */
601 tmp64
= (userbuf
[23] >> 7) & 0x00000000ffffffff;
602 /* OR sticky3 (bit 1529) to counter3 bit 32 */
603 tmp64
|= (userbuf
[23] << 25) & 0x0000000080000000;
604 raddr
[3] = (uint32_t)tmp64
;
607 * Zero out the counters
611 * The counters and sticky-bits comprise the last 132 bits
612 * (1398 - 1529) of RDR16 on a U chip. We'll zero these
613 * out the easy way: zero out last 10 bits of dword 21,
614 * all of dword 22 and 58 bits (plus 6 don't care bits) of
617 userbuf
[21] &= 0xfffffffffffffc00ul
; /* 0 to last 10 bits */
622 * Write back the zeroed bytes + the image given
623 * the read was destructive.
625 perf_rdr_write(16, userbuf
);
629 * Read RDR-15 which contains the counters and sticky bits
631 if (!perf_rdr_read_ubuf(15, userbuf
)) {
636 * Clear out the counters
643 raddr
[0] = (uint32_t)((userbuf
[0] >> 32) & 0x00000000ffffffffUL
);
644 raddr
[1] = (uint32_t)(userbuf
[0] & 0x00000000ffffffffUL
);
645 raddr
[2] = (uint32_t)((userbuf
[1] >> 32) & 0x00000000ffffffffUL
);
646 raddr
[3] = (uint32_t)(userbuf
[1] & 0x00000000ffffffffUL
);
655 * Retrieve a pointer to the description of what this
658 static const struct rdr_tbl_ent
* perf_rdr_get_entry(uint32_t rdr_num
)
660 if (perf_processor_interface
== ONYX_INTF
) {
661 return &perf_rdr_tbl_U
[rdr_num
];
663 return &perf_rdr_tbl_W
[rdr_num
];
670 * Read the RDR value into the buffer specified.
672 static int perf_rdr_read_ubuf(uint32_t rdr_num
, uint64_t *buffer
)
674 uint64_t data
, data_mask
= 0;
675 uint32_t width
, xbits
, i
;
676 const struct rdr_tbl_ent
*tentry
;
678 tentry
= perf_rdr_get_entry(rdr_num
);
679 if ((width
= tentry
->width
) == 0)
682 /* Clear out buffer */
683 i
= tentry
->num_words
;
688 /* Check for bits an even number of 64 */
689 if ((xbits
= width
& 0x03f) != 0) {
691 data_mask
<<= (64 - xbits
);
695 /* Grab all of the data */
696 i
= tentry
->num_words
;
699 if (perf_processor_interface
== ONYX_INTF
) {
700 data
= perf_rdr_shift_in_U(rdr_num
, width
);
702 data
= perf_rdr_shift_in_W(rdr_num
, width
);
705 buffer
[i
] |= (data
<< (64 - xbits
));
707 buffer
[i
-1] |= ((data
>> xbits
) & data_mask
);
720 * Zero out the given RDR register
722 static int perf_rdr_clear(uint32_t rdr_num
)
724 const struct rdr_tbl_ent
*tentry
;
727 tentry
= perf_rdr_get_entry(rdr_num
);
729 if (tentry
->width
== 0) {
733 i
= tentry
->num_words
;
735 if (perf_processor_interface
== ONYX_INTF
) {
736 perf_rdr_shift_out_U(rdr_num
, 0UL);
738 perf_rdr_shift_out_W(rdr_num
, 0UL);
749 * Write the given image out to the processor
751 static int perf_write_image(uint64_t *memaddr
)
753 uint64_t buffer
[MAX_RDR_WORDS
];
756 const uint32_t *intrigue_rdr
;
757 const uint64_t *intrigue_bitmask
;
759 void __iomem
*runway
;
760 const struct rdr_tbl_ent
*tentry
;
763 /* Clear out counters */
764 if (perf_processor_interface
== ONYX_INTF
) {
768 /* Toggle performance monitor */
769 perf_intrigue_enable_perf_counters();
770 perf_intrigue_disable_perf_counters();
772 intrigue_rdr
= perf_rdrs_U
;
775 intrigue_rdr
= perf_rdrs_W
;
779 while (*intrigue_rdr
!= -1) {
780 tentry
= perf_rdr_get_entry(*intrigue_rdr
);
781 perf_rdr_read_ubuf(*intrigue_rdr
, buffer
);
783 dwords
= tentry
->num_words
;
784 if (tentry
->write_control
) {
785 intrigue_bitmask
= &bitmask_array
[tentry
->write_control
>> 3];
787 tmp64
= *intrigue_bitmask
& *memaddr
++;
788 tmp64
|= (~(*intrigue_bitmask
++)) & *bptr
;
793 *bptr
++ = *memaddr
++;
797 perf_rdr_write(*intrigue_rdr
, buffer
);
802 * Now copy out the Runway stuff which is not in RDRs
805 if (cpu_device
== NULL
)
807 printk(KERN_ERR
"write_image: cpu_device not yet initialized!\n");
811 runway
= ioremap_nocache(cpu_device
->hpa
.start
, 4096);
813 /* Merge intrigue bits into Runway STATUS 0 */
814 tmp64
= __raw_readq(runway
+ RUNWAY_STATUS
) & 0xffecfffffffffffful
;
815 __raw_writeq(tmp64
| (*memaddr
++ & 0x0013000000000000ul
),
816 runway
+ RUNWAY_STATUS
);
818 /* Write RUNWAY DEBUG registers */
819 for (i
= 0; i
< 8; i
++) {
820 __raw_writeq(*memaddr
++, runway
+ RUNWAY_DEBUG
);
829 * Write the given RDR register with the contents
830 * of the given buffer.
832 static void perf_rdr_write(uint32_t rdr_num
, uint64_t *buffer
)
834 const struct rdr_tbl_ent
*tentry
;
837 printk("perf_rdr_write\n");
838 tentry
= perf_rdr_get_entry(rdr_num
);
839 if (tentry
->width
== 0) { return; }
841 i
= tentry
->num_words
;
843 if (perf_processor_interface
== ONYX_INTF
) {
844 perf_rdr_shift_out_U(rdr_num
, buffer
[i
]);
846 perf_rdr_shift_out_W(rdr_num
, buffer
[i
]);
849 printk("perf_rdr_write done\n");