of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
blobfb37290a57b410eaede72333dceff3f677ace967
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu-hash64.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
41 #include "trace_hv.h"
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER 18
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 long pte_index, unsigned long pteh,
48 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
53 unsigned long hpt = 0;
54 struct revmap_entry *rev;
55 struct page *page = NULL;
56 long order = KVM_DEFAULT_HPT_ORDER;
58 if (htab_orderp) {
59 order = *htab_orderp;
60 if (order < PPC_MIN_HPT_ORDER)
61 order = PPC_MIN_HPT_ORDER;
64 kvm->arch.hpt_cma_alloc = 0;
65 page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 if (page) {
67 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68 memset((void *)hpt, 0, (1ul << order));
69 kvm->arch.hpt_cma_alloc = 1;
72 /* Lastly try successively smaller sizes from the page allocator */
73 /* Only do this if userspace didn't specify a size via ioctl */
74 while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
75 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
76 __GFP_NOWARN, order - PAGE_SHIFT);
77 if (!hpt)
78 --order;
81 if (!hpt)
82 return -ENOMEM;
84 kvm->arch.hpt_virt = hpt;
85 kvm->arch.hpt_order = order;
86 /* HPTEs are 2**4 bytes long */
87 kvm->arch.hpt_npte = 1ul << (order - 4);
88 /* 128 (2**7) bytes in each HPTEG */
89 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
91 /* Allocate reverse map array */
92 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
93 if (!rev) {
94 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
95 goto out_freehpt;
97 kvm->arch.revmap = rev;
98 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
100 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
101 hpt, order, kvm->arch.lpid);
103 if (htab_orderp)
104 *htab_orderp = order;
105 return 0;
107 out_freehpt:
108 if (kvm->arch.hpt_cma_alloc)
109 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
110 else
111 free_pages(hpt, order - PAGE_SHIFT);
112 return -ENOMEM;
115 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
117 long err = -EBUSY;
118 long order;
120 mutex_lock(&kvm->lock);
121 if (kvm->arch.hpte_setup_done) {
122 kvm->arch.hpte_setup_done = 0;
123 /* order hpte_setup_done vs. vcpus_running */
124 smp_mb();
125 if (atomic_read(&kvm->arch.vcpus_running)) {
126 kvm->arch.hpte_setup_done = 1;
127 goto out;
130 if (kvm->arch.hpt_virt) {
131 order = kvm->arch.hpt_order;
132 /* Set the entire HPT to 0, i.e. invalid HPTEs */
133 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
135 * Reset all the reverse-mapping chains for all memslots
137 kvmppc_rmap_reset(kvm);
138 /* Ensure that each vcpu will flush its TLB on next entry. */
139 cpumask_setall(&kvm->arch.need_tlb_flush);
140 *htab_orderp = order;
141 err = 0;
142 } else {
143 err = kvmppc_alloc_hpt(kvm, htab_orderp);
144 order = *htab_orderp;
146 out:
147 mutex_unlock(&kvm->lock);
148 return err;
151 void kvmppc_free_hpt(struct kvm *kvm)
153 kvmppc_free_lpid(kvm->arch.lpid);
154 vfree(kvm->arch.revmap);
155 if (kvm->arch.hpt_cma_alloc)
156 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
157 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
158 else
159 free_pages(kvm->arch.hpt_virt,
160 kvm->arch.hpt_order - PAGE_SHIFT);
163 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
164 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
166 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
169 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
170 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
172 return (pgsize == 0x10000) ? 0x1000 : 0;
175 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
176 unsigned long porder)
178 unsigned long i;
179 unsigned long npages;
180 unsigned long hp_v, hp_r;
181 unsigned long addr, hash;
182 unsigned long psize;
183 unsigned long hp0, hp1;
184 unsigned long idx_ret;
185 long ret;
186 struct kvm *kvm = vcpu->kvm;
188 psize = 1ul << porder;
189 npages = memslot->npages >> (porder - PAGE_SHIFT);
191 /* VRMA can't be > 1TB */
192 if (npages > 1ul << (40 - porder))
193 npages = 1ul << (40 - porder);
194 /* Can't use more than 1 HPTE per HPTEG */
195 if (npages > kvm->arch.hpt_mask + 1)
196 npages = kvm->arch.hpt_mask + 1;
198 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
199 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
200 hp1 = hpte1_pgsize_encoding(psize) |
201 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
203 for (i = 0; i < npages; ++i) {
204 addr = i << porder;
205 /* can't use hpt_hash since va > 64 bits */
206 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
208 * We assume that the hash table is empty and no
209 * vcpus are using it at this stage. Since we create
210 * at most one HPTE per HPTEG, we just assume entry 7
211 * is available and use it.
213 hash = (hash << 3) + 7;
214 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
215 hp_r = hp1 | addr;
216 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
217 &idx_ret);
218 if (ret != H_SUCCESS) {
219 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
220 addr, ret);
221 break;
226 int kvmppc_mmu_hv_init(void)
228 unsigned long host_lpid, rsvd_lpid;
230 if (!cpu_has_feature(CPU_FTR_HVMODE))
231 return -EINVAL;
233 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
234 host_lpid = mfspr(SPRN_LPID);
235 rsvd_lpid = LPID_RSVD;
237 kvmppc_init_lpid(rsvd_lpid + 1);
239 kvmppc_claim_lpid(host_lpid);
240 /* rsvd_lpid is reserved for use in partition switching */
241 kvmppc_claim_lpid(rsvd_lpid);
243 return 0;
246 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
248 unsigned long msr = vcpu->arch.intr_msr;
250 /* If transactional, change to suspend mode on IRQ delivery */
251 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
252 msr |= MSR_TS_S;
253 else
254 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
255 kvmppc_set_msr(vcpu, msr);
258 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
259 long pte_index, unsigned long pteh,
260 unsigned long ptel, unsigned long *pte_idx_ret)
262 long ret;
264 /* Protect linux PTE lookup from page table destruction */
265 rcu_read_lock_sched(); /* this disables preemption too */
266 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
267 current->mm->pgd, false, pte_idx_ret);
268 rcu_read_unlock_sched();
269 if (ret == H_TOO_HARD) {
270 /* this can't happen */
271 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
272 ret = H_RESOURCE; /* or something */
274 return ret;
278 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
279 gva_t eaddr)
281 u64 mask;
282 int i;
284 for (i = 0; i < vcpu->arch.slb_nr; i++) {
285 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
286 continue;
288 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
289 mask = ESID_MASK_1T;
290 else
291 mask = ESID_MASK;
293 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
294 return &vcpu->arch.slb[i];
296 return NULL;
299 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
300 unsigned long ea)
302 unsigned long ra_mask;
304 ra_mask = hpte_page_size(v, r) - 1;
305 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
308 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
309 struct kvmppc_pte *gpte, bool data, bool iswrite)
311 struct kvm *kvm = vcpu->kvm;
312 struct kvmppc_slb *slbe;
313 unsigned long slb_v;
314 unsigned long pp, key;
315 unsigned long v, gr;
316 __be64 *hptep;
317 int index;
318 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
320 /* Get SLB entry */
321 if (virtmode) {
322 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
323 if (!slbe)
324 return -EINVAL;
325 slb_v = slbe->origv;
326 } else {
327 /* real mode access */
328 slb_v = vcpu->kvm->arch.vrma_slb_v;
331 preempt_disable();
332 /* Find the HPTE in the hash table */
333 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
334 HPTE_V_VALID | HPTE_V_ABSENT);
335 if (index < 0) {
336 preempt_enable();
337 return -ENOENT;
339 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
340 v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
341 gr = kvm->arch.revmap[index].guest_rpte;
343 unlock_hpte(hptep, v);
344 preempt_enable();
346 gpte->eaddr = eaddr;
347 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
349 /* Get PP bits and key for permission check */
350 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
351 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
352 key &= slb_v;
354 /* Calculate permissions */
355 gpte->may_read = hpte_read_permission(pp, key);
356 gpte->may_write = hpte_write_permission(pp, key);
357 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
359 /* Storage key permission check for POWER7 */
360 if (data && virtmode) {
361 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
362 if (amrfield & 1)
363 gpte->may_read = 0;
364 if (amrfield & 2)
365 gpte->may_write = 0;
368 /* Get the guest physical address */
369 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
370 return 0;
374 * Quick test for whether an instruction is a load or a store.
375 * If the instruction is a load or a store, then this will indicate
376 * which it is, at least on server processors. (Embedded processors
377 * have some external PID instructions that don't follow the rule
378 * embodied here.) If the instruction isn't a load or store, then
379 * this doesn't return anything useful.
381 static int instruction_is_store(unsigned int instr)
383 unsigned int mask;
385 mask = 0x10000000;
386 if ((instr & 0xfc000000) == 0x7c000000)
387 mask = 0x100; /* major opcode 31 */
388 return (instr & mask) != 0;
391 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
392 unsigned long gpa, gva_t ea, int is_store)
394 u32 last_inst;
397 * If we fail, we just return to the guest and try executing it again.
399 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
400 EMULATE_DONE)
401 return RESUME_GUEST;
404 * WARNING: We do not know for sure whether the instruction we just
405 * read from memory is the same that caused the fault in the first
406 * place. If the instruction we read is neither an load or a store,
407 * then it can't access memory, so we don't need to worry about
408 * enforcing access permissions. So, assuming it is a load or
409 * store, we just check that its direction (load or store) is
410 * consistent with the original fault, since that's what we
411 * checked the access permissions against. If there is a mismatch
412 * we just return and retry the instruction.
415 if (instruction_is_store(last_inst) != !!is_store)
416 return RESUME_GUEST;
419 * Emulated accesses are emulated by looking at the hash for
420 * translation once, then performing the access later. The
421 * translation could be invalidated in the meantime in which
422 * point performing the subsequent memory access on the old
423 * physical address could possibly be a security hole for the
424 * guest (but not the host).
426 * This is less of an issue for MMIO stores since they aren't
427 * globally visible. It could be an issue for MMIO loads to
428 * a certain extent but we'll ignore it for now.
431 vcpu->arch.paddr_accessed = gpa;
432 vcpu->arch.vaddr_accessed = ea;
433 return kvmppc_emulate_mmio(run, vcpu);
436 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
437 unsigned long ea, unsigned long dsisr)
439 struct kvm *kvm = vcpu->kvm;
440 unsigned long hpte[3], r;
441 __be64 *hptep;
442 unsigned long mmu_seq, psize, pte_size;
443 unsigned long gpa_base, gfn_base;
444 unsigned long gpa, gfn, hva, pfn;
445 struct kvm_memory_slot *memslot;
446 unsigned long *rmap;
447 struct revmap_entry *rev;
448 struct page *page, *pages[1];
449 long index, ret, npages;
450 unsigned long is_io;
451 unsigned int writing, write_ok;
452 struct vm_area_struct *vma;
453 unsigned long rcbits;
456 * Real-mode code has already searched the HPT and found the
457 * entry we're interested in. Lock the entry and check that
458 * it hasn't changed. If it has, just return and re-execute the
459 * instruction.
461 if (ea != vcpu->arch.pgfault_addr)
462 return RESUME_GUEST;
463 index = vcpu->arch.pgfault_index;
464 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
465 rev = &kvm->arch.revmap[index];
466 preempt_disable();
467 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
468 cpu_relax();
469 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
470 hpte[1] = be64_to_cpu(hptep[1]);
471 hpte[2] = r = rev->guest_rpte;
472 unlock_hpte(hptep, hpte[0]);
473 preempt_enable();
475 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
476 hpte[1] != vcpu->arch.pgfault_hpte[1])
477 return RESUME_GUEST;
479 /* Translate the logical address and get the page */
480 psize = hpte_page_size(hpte[0], r);
481 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
482 gfn_base = gpa_base >> PAGE_SHIFT;
483 gpa = gpa_base | (ea & (psize - 1));
484 gfn = gpa >> PAGE_SHIFT;
485 memslot = gfn_to_memslot(kvm, gfn);
487 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
489 /* No memslot means it's an emulated MMIO region */
490 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
491 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
492 dsisr & DSISR_ISSTORE);
495 * This should never happen, because of the slot_is_aligned()
496 * check in kvmppc_do_h_enter().
498 if (gfn_base < memslot->base_gfn)
499 return -EFAULT;
501 /* used to check for invalidations in progress */
502 mmu_seq = kvm->mmu_notifier_seq;
503 smp_rmb();
505 ret = -EFAULT;
506 is_io = 0;
507 pfn = 0;
508 page = NULL;
509 pte_size = PAGE_SIZE;
510 writing = (dsisr & DSISR_ISSTORE) != 0;
511 /* If writing != 0, then the HPTE must allow writing, if we get here */
512 write_ok = writing;
513 hva = gfn_to_hva_memslot(memslot, gfn);
514 npages = get_user_pages_fast(hva, 1, writing, pages);
515 if (npages < 1) {
516 /* Check if it's an I/O mapping */
517 down_read(&current->mm->mmap_sem);
518 vma = find_vma(current->mm, hva);
519 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
520 (vma->vm_flags & VM_PFNMAP)) {
521 pfn = vma->vm_pgoff +
522 ((hva - vma->vm_start) >> PAGE_SHIFT);
523 pte_size = psize;
524 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
525 write_ok = vma->vm_flags & VM_WRITE;
527 up_read(&current->mm->mmap_sem);
528 if (!pfn)
529 goto out_put;
530 } else {
531 page = pages[0];
532 pfn = page_to_pfn(page);
533 if (PageHuge(page)) {
534 page = compound_head(page);
535 pte_size <<= compound_order(page);
537 /* if the guest wants write access, see if that is OK */
538 if (!writing && hpte_is_writable(r)) {
539 pte_t *ptep, pte;
540 unsigned long flags;
542 * We need to protect against page table destruction
543 * hugepage split and collapse.
545 local_irq_save(flags);
546 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
547 hva, NULL, NULL);
548 if (ptep) {
549 pte = kvmppc_read_update_linux_pte(ptep, 1);
550 if (pte_write(pte))
551 write_ok = 1;
553 local_irq_restore(flags);
557 if (psize > pte_size)
558 goto out_put;
560 /* Check WIMG vs. the actual page we're accessing */
561 if (!hpte_cache_flags_ok(r, is_io)) {
562 if (is_io)
563 goto out_put;
566 * Allow guest to map emulated device memory as
567 * uncacheable, but actually make it cacheable.
569 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
573 * Set the HPTE to point to pfn.
574 * Since the pfn is at PAGE_SIZE granularity, make sure we
575 * don't mask out lower-order bits if psize < PAGE_SIZE.
577 if (psize < PAGE_SIZE)
578 psize = PAGE_SIZE;
579 r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
580 if (hpte_is_writable(r) && !write_ok)
581 r = hpte_make_readonly(r);
582 ret = RESUME_GUEST;
583 preempt_disable();
584 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
585 cpu_relax();
586 if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
587 be64_to_cpu(hptep[1]) != hpte[1] ||
588 rev->guest_rpte != hpte[2])
589 /* HPTE has been changed under us; let the guest retry */
590 goto out_unlock;
591 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
593 /* Always put the HPTE in the rmap chain for the page base address */
594 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
595 lock_rmap(rmap);
597 /* Check if we might have been invalidated; let the guest retry if so */
598 ret = RESUME_GUEST;
599 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
600 unlock_rmap(rmap);
601 goto out_unlock;
604 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
605 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
606 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
608 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
609 /* HPTE was previously valid, so we need to invalidate it */
610 unlock_rmap(rmap);
611 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
612 kvmppc_invalidate_hpte(kvm, hptep, index);
613 /* don't lose previous R and C bits */
614 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
615 } else {
616 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
619 hptep[1] = cpu_to_be64(r);
620 eieio();
621 __unlock_hpte(hptep, hpte[0]);
622 asm volatile("ptesync" : : : "memory");
623 preempt_enable();
624 if (page && hpte_is_writable(r))
625 SetPageDirty(page);
627 out_put:
628 trace_kvm_page_fault_exit(vcpu, hpte, ret);
630 if (page) {
632 * We drop pages[0] here, not page because page might
633 * have been set to the head page of a compound, but
634 * we have to drop the reference on the correct tail
635 * page to match the get inside gup()
637 put_page(pages[0]);
639 return ret;
641 out_unlock:
642 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
643 preempt_enable();
644 goto out_put;
647 static void kvmppc_rmap_reset(struct kvm *kvm)
649 struct kvm_memslots *slots;
650 struct kvm_memory_slot *memslot;
651 int srcu_idx;
653 srcu_idx = srcu_read_lock(&kvm->srcu);
654 slots = kvm_memslots(kvm);
655 kvm_for_each_memslot(memslot, slots) {
657 * This assumes it is acceptable to lose reference and
658 * change bits across a reset.
660 memset(memslot->arch.rmap, 0,
661 memslot->npages * sizeof(*memslot->arch.rmap));
663 srcu_read_unlock(&kvm->srcu, srcu_idx);
666 static int kvm_handle_hva_range(struct kvm *kvm,
667 unsigned long start,
668 unsigned long end,
669 int (*handler)(struct kvm *kvm,
670 unsigned long *rmapp,
671 unsigned long gfn))
673 int ret;
674 int retval = 0;
675 struct kvm_memslots *slots;
676 struct kvm_memory_slot *memslot;
678 slots = kvm_memslots(kvm);
679 kvm_for_each_memslot(memslot, slots) {
680 unsigned long hva_start, hva_end;
681 gfn_t gfn, gfn_end;
683 hva_start = max(start, memslot->userspace_addr);
684 hva_end = min(end, memslot->userspace_addr +
685 (memslot->npages << PAGE_SHIFT));
686 if (hva_start >= hva_end)
687 continue;
689 * {gfn(page) | page intersects with [hva_start, hva_end)} =
690 * {gfn, gfn+1, ..., gfn_end-1}.
692 gfn = hva_to_gfn_memslot(hva_start, memslot);
693 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
695 for (; gfn < gfn_end; ++gfn) {
696 gfn_t gfn_offset = gfn - memslot->base_gfn;
698 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
699 retval |= ret;
703 return retval;
706 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
707 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
708 unsigned long gfn))
710 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
713 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
714 unsigned long gfn)
716 struct revmap_entry *rev = kvm->arch.revmap;
717 unsigned long h, i, j;
718 __be64 *hptep;
719 unsigned long ptel, psize, rcbits;
721 for (;;) {
722 lock_rmap(rmapp);
723 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
724 unlock_rmap(rmapp);
725 break;
729 * To avoid an ABBA deadlock with the HPTE lock bit,
730 * we can't spin on the HPTE lock while holding the
731 * rmap chain lock.
733 i = *rmapp & KVMPPC_RMAP_INDEX;
734 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
735 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
736 /* unlock rmap before spinning on the HPTE lock */
737 unlock_rmap(rmapp);
738 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
739 cpu_relax();
740 continue;
742 j = rev[i].forw;
743 if (j == i) {
744 /* chain is now empty */
745 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
746 } else {
747 /* remove i from chain */
748 h = rev[i].back;
749 rev[h].forw = j;
750 rev[j].back = h;
751 rev[i].forw = rev[i].back = i;
752 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
755 /* Now check and modify the HPTE */
756 ptel = rev[i].guest_rpte;
757 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
758 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
759 hpte_rpn(ptel, psize) == gfn) {
760 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
761 kvmppc_invalidate_hpte(kvm, hptep, i);
762 /* Harvest R and C */
763 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
764 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
765 if (rcbits & HPTE_R_C)
766 kvmppc_update_rmap_change(rmapp, psize);
767 if (rcbits & ~rev[i].guest_rpte) {
768 rev[i].guest_rpte = ptel | rcbits;
769 note_hpte_modification(kvm, &rev[i]);
772 unlock_rmap(rmapp);
773 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
775 return 0;
778 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
780 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
781 return 0;
784 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
786 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
787 return 0;
790 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
791 struct kvm_memory_slot *memslot)
793 unsigned long *rmapp;
794 unsigned long gfn;
795 unsigned long n;
797 rmapp = memslot->arch.rmap;
798 gfn = memslot->base_gfn;
799 for (n = memslot->npages; n; --n) {
801 * Testing the present bit without locking is OK because
802 * the memslot has been marked invalid already, and hence
803 * no new HPTEs referencing this page can be created,
804 * thus the present bit can't go from 0 to 1.
806 if (*rmapp & KVMPPC_RMAP_PRESENT)
807 kvm_unmap_rmapp(kvm, rmapp, gfn);
808 ++rmapp;
809 ++gfn;
813 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
814 unsigned long gfn)
816 struct revmap_entry *rev = kvm->arch.revmap;
817 unsigned long head, i, j;
818 __be64 *hptep;
819 int ret = 0;
821 retry:
822 lock_rmap(rmapp);
823 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
824 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
825 ret = 1;
827 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
828 unlock_rmap(rmapp);
829 return ret;
832 i = head = *rmapp & KVMPPC_RMAP_INDEX;
833 do {
834 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
835 j = rev[i].forw;
837 /* If this HPTE isn't referenced, ignore it */
838 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
839 continue;
841 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
842 /* unlock rmap before spinning on the HPTE lock */
843 unlock_rmap(rmapp);
844 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
845 cpu_relax();
846 goto retry;
849 /* Now check and modify the HPTE */
850 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
851 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
852 kvmppc_clear_ref_hpte(kvm, hptep, i);
853 if (!(rev[i].guest_rpte & HPTE_R_R)) {
854 rev[i].guest_rpte |= HPTE_R_R;
855 note_hpte_modification(kvm, &rev[i]);
857 ret = 1;
859 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
860 } while ((i = j) != head);
862 unlock_rmap(rmapp);
863 return ret;
866 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
868 return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
871 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
872 unsigned long gfn)
874 struct revmap_entry *rev = kvm->arch.revmap;
875 unsigned long head, i, j;
876 unsigned long *hp;
877 int ret = 1;
879 if (*rmapp & KVMPPC_RMAP_REFERENCED)
880 return 1;
882 lock_rmap(rmapp);
883 if (*rmapp & KVMPPC_RMAP_REFERENCED)
884 goto out;
886 if (*rmapp & KVMPPC_RMAP_PRESENT) {
887 i = head = *rmapp & KVMPPC_RMAP_INDEX;
888 do {
889 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
890 j = rev[i].forw;
891 if (be64_to_cpu(hp[1]) & HPTE_R_R)
892 goto out;
893 } while ((i = j) != head);
895 ret = 0;
897 out:
898 unlock_rmap(rmapp);
899 return ret;
902 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
904 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
907 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
909 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
912 static int vcpus_running(struct kvm *kvm)
914 return atomic_read(&kvm->arch.vcpus_running) != 0;
918 * Returns the number of system pages that are dirty.
919 * This can be more than 1 if we find a huge-page HPTE.
921 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
923 struct revmap_entry *rev = kvm->arch.revmap;
924 unsigned long head, i, j;
925 unsigned long n;
926 unsigned long v, r;
927 __be64 *hptep;
928 int npages_dirty = 0;
930 retry:
931 lock_rmap(rmapp);
932 if (*rmapp & KVMPPC_RMAP_CHANGED) {
933 long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
934 >> KVMPPC_RMAP_CHG_SHIFT;
935 *rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
936 npages_dirty = 1;
937 if (change_order > PAGE_SHIFT)
938 npages_dirty = 1ul << (change_order - PAGE_SHIFT);
940 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
941 unlock_rmap(rmapp);
942 return npages_dirty;
945 i = head = *rmapp & KVMPPC_RMAP_INDEX;
946 do {
947 unsigned long hptep1;
948 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
949 j = rev[i].forw;
952 * Checking the C (changed) bit here is racy since there
953 * is no guarantee about when the hardware writes it back.
954 * If the HPTE is not writable then it is stable since the
955 * page can't be written to, and we would have done a tlbie
956 * (which forces the hardware to complete any writeback)
957 * when making the HPTE read-only.
958 * If vcpus are running then this call is racy anyway
959 * since the page could get dirtied subsequently, so we
960 * expect there to be a further call which would pick up
961 * any delayed C bit writeback.
962 * Otherwise we need to do the tlbie even if C==0 in
963 * order to pick up any delayed writeback of C.
965 hptep1 = be64_to_cpu(hptep[1]);
966 if (!(hptep1 & HPTE_R_C) &&
967 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
968 continue;
970 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
971 /* unlock rmap before spinning on the HPTE lock */
972 unlock_rmap(rmapp);
973 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
974 cpu_relax();
975 goto retry;
978 /* Now check and modify the HPTE */
979 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
980 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
981 continue;
984 /* need to make it temporarily absent so C is stable */
985 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
986 kvmppc_invalidate_hpte(kvm, hptep, i);
987 v = be64_to_cpu(hptep[0]);
988 r = be64_to_cpu(hptep[1]);
989 if (r & HPTE_R_C) {
990 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
991 if (!(rev[i].guest_rpte & HPTE_R_C)) {
992 rev[i].guest_rpte |= HPTE_R_C;
993 note_hpte_modification(kvm, &rev[i]);
995 n = hpte_page_size(v, r);
996 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
997 if (n > npages_dirty)
998 npages_dirty = n;
999 eieio();
1001 v &= ~HPTE_V_ABSENT;
1002 v |= HPTE_V_VALID;
1003 __unlock_hpte(hptep, v);
1004 } while ((i = j) != head);
1006 unlock_rmap(rmapp);
1007 return npages_dirty;
1010 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1011 struct kvm_memory_slot *memslot,
1012 unsigned long *map)
1014 unsigned long gfn;
1016 if (!vpa->dirty || !vpa->pinned_addr)
1017 return;
1018 gfn = vpa->gpa >> PAGE_SHIFT;
1019 if (gfn < memslot->base_gfn ||
1020 gfn >= memslot->base_gfn + memslot->npages)
1021 return;
1023 vpa->dirty = false;
1024 if (map)
1025 __set_bit_le(gfn - memslot->base_gfn, map);
1028 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1029 unsigned long *map)
1031 unsigned long i, j;
1032 unsigned long *rmapp;
1033 struct kvm_vcpu *vcpu;
1035 preempt_disable();
1036 rmapp = memslot->arch.rmap;
1037 for (i = 0; i < memslot->npages; ++i) {
1038 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1040 * Note that if npages > 0 then i must be a multiple of npages,
1041 * since we always put huge-page HPTEs in the rmap chain
1042 * corresponding to their page base address.
1044 if (npages && map)
1045 for (j = i; npages; ++j, --npages)
1046 __set_bit_le(j, map);
1047 ++rmapp;
1050 /* Harvest dirty bits from VPA and DTL updates */
1051 /* Note: we never modify the SLB shadow buffer areas */
1052 kvm_for_each_vcpu(i, vcpu, kvm) {
1053 spin_lock(&vcpu->arch.vpa_update_lock);
1054 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1055 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1056 spin_unlock(&vcpu->arch.vpa_update_lock);
1058 preempt_enable();
1059 return 0;
1062 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1063 unsigned long *nb_ret)
1065 struct kvm_memory_slot *memslot;
1066 unsigned long gfn = gpa >> PAGE_SHIFT;
1067 struct page *page, *pages[1];
1068 int npages;
1069 unsigned long hva, offset;
1070 int srcu_idx;
1072 srcu_idx = srcu_read_lock(&kvm->srcu);
1073 memslot = gfn_to_memslot(kvm, gfn);
1074 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1075 goto err;
1076 hva = gfn_to_hva_memslot(memslot, gfn);
1077 npages = get_user_pages_fast(hva, 1, 1, pages);
1078 if (npages < 1)
1079 goto err;
1080 page = pages[0];
1081 srcu_read_unlock(&kvm->srcu, srcu_idx);
1083 offset = gpa & (PAGE_SIZE - 1);
1084 if (nb_ret)
1085 *nb_ret = PAGE_SIZE - offset;
1086 return page_address(page) + offset;
1088 err:
1089 srcu_read_unlock(&kvm->srcu, srcu_idx);
1090 return NULL;
1093 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1094 bool dirty)
1096 struct page *page = virt_to_page(va);
1097 struct kvm_memory_slot *memslot;
1098 unsigned long gfn;
1099 unsigned long *rmap;
1100 int srcu_idx;
1102 put_page(page);
1104 if (!dirty)
1105 return;
1107 /* We need to mark this page dirty in the rmap chain */
1108 gfn = gpa >> PAGE_SHIFT;
1109 srcu_idx = srcu_read_lock(&kvm->srcu);
1110 memslot = gfn_to_memslot(kvm, gfn);
1111 if (memslot) {
1112 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1113 lock_rmap(rmap);
1114 *rmap |= KVMPPC_RMAP_CHANGED;
1115 unlock_rmap(rmap);
1117 srcu_read_unlock(&kvm->srcu, srcu_idx);
1121 * Functions for reading and writing the hash table via reads and
1122 * writes on a file descriptor.
1124 * Reads return the guest view of the hash table, which has to be
1125 * pieced together from the real hash table and the guest_rpte
1126 * values in the revmap array.
1128 * On writes, each HPTE written is considered in turn, and if it
1129 * is valid, it is written to the HPT as if an H_ENTER with the
1130 * exact flag set was done. When the invalid count is non-zero
1131 * in the header written to the stream, the kernel will make
1132 * sure that that many HPTEs are invalid, and invalidate them
1133 * if not.
1136 struct kvm_htab_ctx {
1137 unsigned long index;
1138 unsigned long flags;
1139 struct kvm *kvm;
1140 int first_pass;
1143 #define HPTE_SIZE (2 * sizeof(unsigned long))
1146 * Returns 1 if this HPT entry has been modified or has pending
1147 * R/C bit changes.
1149 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1151 unsigned long rcbits_unset;
1153 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1154 return 1;
1156 /* Also need to consider changes in reference and changed bits */
1157 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1158 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1159 (be64_to_cpu(hptp[1]) & rcbits_unset))
1160 return 1;
1162 return 0;
1165 static long record_hpte(unsigned long flags, __be64 *hptp,
1166 unsigned long *hpte, struct revmap_entry *revp,
1167 int want_valid, int first_pass)
1169 unsigned long v, r;
1170 unsigned long rcbits_unset;
1171 int ok = 1;
1172 int valid, dirty;
1174 /* Unmodified entries are uninteresting except on the first pass */
1175 dirty = hpte_dirty(revp, hptp);
1176 if (!first_pass && !dirty)
1177 return 0;
1179 valid = 0;
1180 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1181 valid = 1;
1182 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1183 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1184 valid = 0;
1186 if (valid != want_valid)
1187 return 0;
1189 v = r = 0;
1190 if (valid || dirty) {
1191 /* lock the HPTE so it's stable and read it */
1192 preempt_disable();
1193 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1194 cpu_relax();
1195 v = be64_to_cpu(hptp[0]);
1197 /* re-evaluate valid and dirty from synchronized HPTE value */
1198 valid = !!(v & HPTE_V_VALID);
1199 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1201 /* Harvest R and C into guest view if necessary */
1202 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1203 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1204 revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1205 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1206 dirty = 1;
1209 if (v & HPTE_V_ABSENT) {
1210 v &= ~HPTE_V_ABSENT;
1211 v |= HPTE_V_VALID;
1212 valid = 1;
1214 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1215 valid = 0;
1217 r = revp->guest_rpte;
1218 /* only clear modified if this is the right sort of entry */
1219 if (valid == want_valid && dirty) {
1220 r &= ~HPTE_GR_MODIFIED;
1221 revp->guest_rpte = r;
1223 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1224 preempt_enable();
1225 if (!(valid == want_valid && (first_pass || dirty)))
1226 ok = 0;
1228 hpte[0] = cpu_to_be64(v);
1229 hpte[1] = cpu_to_be64(r);
1230 return ok;
1233 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1234 size_t count, loff_t *ppos)
1236 struct kvm_htab_ctx *ctx = file->private_data;
1237 struct kvm *kvm = ctx->kvm;
1238 struct kvm_get_htab_header hdr;
1239 __be64 *hptp;
1240 struct revmap_entry *revp;
1241 unsigned long i, nb, nw;
1242 unsigned long __user *lbuf;
1243 struct kvm_get_htab_header __user *hptr;
1244 unsigned long flags;
1245 int first_pass;
1246 unsigned long hpte[2];
1248 if (!access_ok(VERIFY_WRITE, buf, count))
1249 return -EFAULT;
1251 first_pass = ctx->first_pass;
1252 flags = ctx->flags;
1254 i = ctx->index;
1255 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1256 revp = kvm->arch.revmap + i;
1257 lbuf = (unsigned long __user *)buf;
1259 nb = 0;
1260 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1261 /* Initialize header */
1262 hptr = (struct kvm_get_htab_header __user *)buf;
1263 hdr.n_valid = 0;
1264 hdr.n_invalid = 0;
1265 nw = nb;
1266 nb += sizeof(hdr);
1267 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1269 /* Skip uninteresting entries, i.e. clean on not-first pass */
1270 if (!first_pass) {
1271 while (i < kvm->arch.hpt_npte &&
1272 !hpte_dirty(revp, hptp)) {
1273 ++i;
1274 hptp += 2;
1275 ++revp;
1278 hdr.index = i;
1280 /* Grab a series of valid entries */
1281 while (i < kvm->arch.hpt_npte &&
1282 hdr.n_valid < 0xffff &&
1283 nb + HPTE_SIZE < count &&
1284 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1285 /* valid entry, write it out */
1286 ++hdr.n_valid;
1287 if (__put_user(hpte[0], lbuf) ||
1288 __put_user(hpte[1], lbuf + 1))
1289 return -EFAULT;
1290 nb += HPTE_SIZE;
1291 lbuf += 2;
1292 ++i;
1293 hptp += 2;
1294 ++revp;
1296 /* Now skip invalid entries while we can */
1297 while (i < kvm->arch.hpt_npte &&
1298 hdr.n_invalid < 0xffff &&
1299 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1300 /* found an invalid entry */
1301 ++hdr.n_invalid;
1302 ++i;
1303 hptp += 2;
1304 ++revp;
1307 if (hdr.n_valid || hdr.n_invalid) {
1308 /* write back the header */
1309 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1310 return -EFAULT;
1311 nw = nb;
1312 buf = (char __user *)lbuf;
1313 } else {
1314 nb = nw;
1317 /* Check if we've wrapped around the hash table */
1318 if (i >= kvm->arch.hpt_npte) {
1319 i = 0;
1320 ctx->first_pass = 0;
1321 break;
1325 ctx->index = i;
1327 return nb;
1330 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1331 size_t count, loff_t *ppos)
1333 struct kvm_htab_ctx *ctx = file->private_data;
1334 struct kvm *kvm = ctx->kvm;
1335 struct kvm_get_htab_header hdr;
1336 unsigned long i, j;
1337 unsigned long v, r;
1338 unsigned long __user *lbuf;
1339 __be64 *hptp;
1340 unsigned long tmp[2];
1341 ssize_t nb;
1342 long int err, ret;
1343 int hpte_setup;
1345 if (!access_ok(VERIFY_READ, buf, count))
1346 return -EFAULT;
1348 /* lock out vcpus from running while we're doing this */
1349 mutex_lock(&kvm->lock);
1350 hpte_setup = kvm->arch.hpte_setup_done;
1351 if (hpte_setup) {
1352 kvm->arch.hpte_setup_done = 0; /* temporarily */
1353 /* order hpte_setup_done vs. vcpus_running */
1354 smp_mb();
1355 if (atomic_read(&kvm->arch.vcpus_running)) {
1356 kvm->arch.hpte_setup_done = 1;
1357 mutex_unlock(&kvm->lock);
1358 return -EBUSY;
1362 err = 0;
1363 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1364 err = -EFAULT;
1365 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1366 break;
1368 err = 0;
1369 if (nb + hdr.n_valid * HPTE_SIZE > count)
1370 break;
1372 nb += sizeof(hdr);
1373 buf += sizeof(hdr);
1375 err = -EINVAL;
1376 i = hdr.index;
1377 if (i >= kvm->arch.hpt_npte ||
1378 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1379 break;
1381 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1382 lbuf = (unsigned long __user *)buf;
1383 for (j = 0; j < hdr.n_valid; ++j) {
1384 __be64 hpte_v;
1385 __be64 hpte_r;
1387 err = -EFAULT;
1388 if (__get_user(hpte_v, lbuf) ||
1389 __get_user(hpte_r, lbuf + 1))
1390 goto out;
1391 v = be64_to_cpu(hpte_v);
1392 r = be64_to_cpu(hpte_r);
1393 err = -EINVAL;
1394 if (!(v & HPTE_V_VALID))
1395 goto out;
1396 lbuf += 2;
1397 nb += HPTE_SIZE;
1399 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1400 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1401 err = -EIO;
1402 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1403 tmp);
1404 if (ret != H_SUCCESS) {
1405 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1406 "r=%lx\n", ret, i, v, r);
1407 goto out;
1409 if (!hpte_setup && is_vrma_hpte(v)) {
1410 unsigned long psize = hpte_base_page_size(v, r);
1411 unsigned long senc = slb_pgsize_encoding(psize);
1412 unsigned long lpcr;
1414 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1415 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1416 lpcr = senc << (LPCR_VRMASD_SH - 4);
1417 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1418 hpte_setup = 1;
1420 ++i;
1421 hptp += 2;
1424 for (j = 0; j < hdr.n_invalid; ++j) {
1425 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1426 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1427 ++i;
1428 hptp += 2;
1430 err = 0;
1433 out:
1434 /* Order HPTE updates vs. hpte_setup_done */
1435 smp_wmb();
1436 kvm->arch.hpte_setup_done = hpte_setup;
1437 mutex_unlock(&kvm->lock);
1439 if (err)
1440 return err;
1441 return nb;
1444 static int kvm_htab_release(struct inode *inode, struct file *filp)
1446 struct kvm_htab_ctx *ctx = filp->private_data;
1448 filp->private_data = NULL;
1449 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1450 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1451 kvm_put_kvm(ctx->kvm);
1452 kfree(ctx);
1453 return 0;
1456 static const struct file_operations kvm_htab_fops = {
1457 .read = kvm_htab_read,
1458 .write = kvm_htab_write,
1459 .llseek = default_llseek,
1460 .release = kvm_htab_release,
1463 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1465 int ret;
1466 struct kvm_htab_ctx *ctx;
1467 int rwflag;
1469 /* reject flags we don't recognize */
1470 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1471 return -EINVAL;
1472 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1473 if (!ctx)
1474 return -ENOMEM;
1475 kvm_get_kvm(kvm);
1476 ctx->kvm = kvm;
1477 ctx->index = ghf->start_index;
1478 ctx->flags = ghf->flags;
1479 ctx->first_pass = 1;
1481 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1482 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1483 if (ret < 0) {
1484 kvm_put_kvm(kvm);
1485 return ret;
1488 if (rwflag == O_RDONLY) {
1489 mutex_lock(&kvm->slots_lock);
1490 atomic_inc(&kvm->arch.hpte_mod_interest);
1491 /* make sure kvmppc_do_h_enter etc. see the increment */
1492 synchronize_srcu_expedited(&kvm->srcu);
1493 mutex_unlock(&kvm->slots_lock);
1496 return ret;
1499 struct debugfs_htab_state {
1500 struct kvm *kvm;
1501 struct mutex mutex;
1502 unsigned long hpt_index;
1503 int chars_left;
1504 int buf_index;
1505 char buf[64];
1508 static int debugfs_htab_open(struct inode *inode, struct file *file)
1510 struct kvm *kvm = inode->i_private;
1511 struct debugfs_htab_state *p;
1513 p = kzalloc(sizeof(*p), GFP_KERNEL);
1514 if (!p)
1515 return -ENOMEM;
1517 kvm_get_kvm(kvm);
1518 p->kvm = kvm;
1519 mutex_init(&p->mutex);
1520 file->private_data = p;
1522 return nonseekable_open(inode, file);
1525 static int debugfs_htab_release(struct inode *inode, struct file *file)
1527 struct debugfs_htab_state *p = file->private_data;
1529 kvm_put_kvm(p->kvm);
1530 kfree(p);
1531 return 0;
1534 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1535 size_t len, loff_t *ppos)
1537 struct debugfs_htab_state *p = file->private_data;
1538 ssize_t ret, r;
1539 unsigned long i, n;
1540 unsigned long v, hr, gr;
1541 struct kvm *kvm;
1542 __be64 *hptp;
1544 ret = mutex_lock_interruptible(&p->mutex);
1545 if (ret)
1546 return ret;
1548 if (p->chars_left) {
1549 n = p->chars_left;
1550 if (n > len)
1551 n = len;
1552 r = copy_to_user(buf, p->buf + p->buf_index, n);
1553 n -= r;
1554 p->chars_left -= n;
1555 p->buf_index += n;
1556 buf += n;
1557 len -= n;
1558 ret = n;
1559 if (r) {
1560 if (!n)
1561 ret = -EFAULT;
1562 goto out;
1566 kvm = p->kvm;
1567 i = p->hpt_index;
1568 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1569 for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
1570 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
1571 continue;
1573 /* lock the HPTE so it's stable and read it */
1574 preempt_disable();
1575 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1576 cpu_relax();
1577 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
1578 hr = be64_to_cpu(hptp[1]);
1579 gr = kvm->arch.revmap[i].guest_rpte;
1580 unlock_hpte(hptp, v);
1581 preempt_enable();
1583 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
1584 continue;
1586 n = scnprintf(p->buf, sizeof(p->buf),
1587 "%6lx %.16lx %.16lx %.16lx\n",
1588 i, v, hr, gr);
1589 p->chars_left = n;
1590 if (n > len)
1591 n = len;
1592 r = copy_to_user(buf, p->buf, n);
1593 n -= r;
1594 p->chars_left -= n;
1595 p->buf_index = n;
1596 buf += n;
1597 len -= n;
1598 ret += n;
1599 if (r) {
1600 if (!ret)
1601 ret = -EFAULT;
1602 goto out;
1605 p->hpt_index = i;
1607 out:
1608 mutex_unlock(&p->mutex);
1609 return ret;
1612 ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1613 size_t len, loff_t *ppos)
1615 return -EACCES;
1618 static const struct file_operations debugfs_htab_fops = {
1619 .owner = THIS_MODULE,
1620 .open = debugfs_htab_open,
1621 .release = debugfs_htab_release,
1622 .read = debugfs_htab_read,
1623 .write = debugfs_htab_write,
1624 .llseek = generic_file_llseek,
1627 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
1629 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
1630 kvm->arch.debugfs_dir, kvm,
1631 &debugfs_htab_fops);
1634 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1636 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1638 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
1640 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1641 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1643 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;