of: MSI: Simplify irqdomain lookup
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_hv.c
bloba7352b59e6f9b5c74f37556e6858c9ac9c5bb30b
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
60 #include "book3s.h"
62 #define CREATE_TRACE_POINTS
63 #include "trace_hv.h"
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL (~(u64)0)
75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
77 static int dynamic_mt_modes = 6;
78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode;
81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
87 static bool kvmppc_ipi_thread(int cpu)
89 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
90 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
91 preempt_disable();
92 if (cpu_first_thread_sibling(cpu) ==
93 cpu_first_thread_sibling(smp_processor_id())) {
94 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
95 msg |= cpu_thread_in_core(cpu);
96 smp_mb();
97 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
98 preempt_enable();
99 return true;
101 preempt_enable();
104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
105 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
106 xics_wake_cpu(cpu);
107 return true;
109 #endif
111 return false;
114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
116 int cpu;
117 wait_queue_head_t *wqp;
119 wqp = kvm_arch_vcpu_wq(vcpu);
120 if (waitqueue_active(wqp)) {
121 wake_up_interruptible(wqp);
122 ++vcpu->stat.halt_wakeup;
125 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
126 return;
128 /* CPU points to the first thread of the core */
129 cpu = vcpu->cpu;
130 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131 smp_send_reschedule(cpu);
135 * We use the vcpu_load/put functions to measure stolen time.
136 * Stolen time is counted as time when either the vcpu is able to
137 * run as part of a virtual core, but the task running the vcore
138 * is preempted or sleeping, or when the vcpu needs something done
139 * in the kernel by the task running the vcpu, but that task is
140 * preempted or sleeping. Those two things have to be counted
141 * separately, since one of the vcpu tasks will take on the job
142 * of running the core, and the other vcpu tasks in the vcore will
143 * sleep waiting for it to do that, but that sleep shouldn't count
144 * as stolen time.
146 * Hence we accumulate stolen time when the vcpu can run as part of
147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148 * needs its task to do other things in the kernel (for example,
149 * service a page fault) in busy_stolen. We don't accumulate
150 * stolen time for a vcore when it is inactive, or for a vcpu
151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
152 * a misnomer; it means that the vcpu task is not executing in
153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154 * the kernel. We don't have any way of dividing up that time
155 * between time that the vcpu is genuinely stopped, time that
156 * the task is actively working on behalf of the vcpu, and time
157 * that the task is preempted, so we don't count any of it as
158 * stolen.
160 * Updates to busy_stolen are protected by arch.tbacct_lock;
161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162 * lock. The stolen times are measured in units of timebase ticks.
163 * (Note that the != TB_NIL checks below are purely defensive;
164 * they should never fail.)
167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
169 unsigned long flags;
171 spin_lock_irqsave(&vc->stoltb_lock, flags);
172 vc->preempt_tb = mftb();
173 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
178 unsigned long flags;
180 spin_lock_irqsave(&vc->stoltb_lock, flags);
181 if (vc->preempt_tb != TB_NIL) {
182 vc->stolen_tb += mftb() - vc->preempt_tb;
183 vc->preempt_tb = TB_NIL;
185 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
190 struct kvmppc_vcore *vc = vcpu->arch.vcore;
191 unsigned long flags;
194 * We can test vc->runner without taking the vcore lock,
195 * because only this task ever sets vc->runner to this
196 * vcpu, and once it is set to this vcpu, only this task
197 * ever sets it to NULL.
199 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
200 kvmppc_core_end_stolen(vc);
202 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
203 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
204 vcpu->arch.busy_preempt != TB_NIL) {
205 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
206 vcpu->arch.busy_preempt = TB_NIL;
208 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
213 struct kvmppc_vcore *vc = vcpu->arch.vcore;
214 unsigned long flags;
216 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
217 kvmppc_core_start_stolen(vc);
219 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
220 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
221 vcpu->arch.busy_preempt = mftb();
222 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
228 * Check for illegal transactional state bit combination
229 * and if we find it, force the TS field to a safe state.
231 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
232 msr &= ~MSR_TS_MASK;
233 vcpu->arch.shregs.msr = msr;
234 kvmppc_end_cede(vcpu);
237 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
239 vcpu->arch.pvr = pvr;
242 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
244 unsigned long pcr = 0;
245 struct kvmppc_vcore *vc = vcpu->arch.vcore;
247 if (arch_compat) {
248 switch (arch_compat) {
249 case PVR_ARCH_205:
251 * If an arch bit is set in PCR, all the defined
252 * higher-order arch bits also have to be set.
254 pcr = PCR_ARCH_206 | PCR_ARCH_205;
255 break;
256 case PVR_ARCH_206:
257 case PVR_ARCH_206p:
258 pcr = PCR_ARCH_206;
259 break;
260 case PVR_ARCH_207:
261 break;
262 default:
263 return -EINVAL;
266 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
267 /* POWER7 can't emulate POWER8 */
268 if (!(pcr & PCR_ARCH_206))
269 return -EINVAL;
270 pcr &= ~PCR_ARCH_206;
274 spin_lock(&vc->lock);
275 vc->arch_compat = arch_compat;
276 vc->pcr = pcr;
277 spin_unlock(&vc->lock);
279 return 0;
282 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
284 int r;
286 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
287 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
288 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
289 for (r = 0; r < 16; ++r)
290 pr_err("r%2d = %.16lx r%d = %.16lx\n",
291 r, kvmppc_get_gpr(vcpu, r),
292 r+16, kvmppc_get_gpr(vcpu, r+16));
293 pr_err("ctr = %.16lx lr = %.16lx\n",
294 vcpu->arch.ctr, vcpu->arch.lr);
295 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
296 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
297 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
298 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
299 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
300 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
301 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
302 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
303 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
304 pr_err("fault dar = %.16lx dsisr = %.8x\n",
305 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
306 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
307 for (r = 0; r < vcpu->arch.slb_max; ++r)
308 pr_err(" ESID = %.16llx VSID = %.16llx\n",
309 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
310 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
311 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
312 vcpu->arch.last_inst);
315 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
317 int r;
318 struct kvm_vcpu *v, *ret = NULL;
320 mutex_lock(&kvm->lock);
321 kvm_for_each_vcpu(r, v, kvm) {
322 if (v->vcpu_id == id) {
323 ret = v;
324 break;
327 mutex_unlock(&kvm->lock);
328 return ret;
331 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
333 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
334 vpa->yield_count = cpu_to_be32(1);
337 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
338 unsigned long addr, unsigned long len)
340 /* check address is cacheline aligned */
341 if (addr & (L1_CACHE_BYTES - 1))
342 return -EINVAL;
343 spin_lock(&vcpu->arch.vpa_update_lock);
344 if (v->next_gpa != addr || v->len != len) {
345 v->next_gpa = addr;
346 v->len = addr ? len : 0;
347 v->update_pending = 1;
349 spin_unlock(&vcpu->arch.vpa_update_lock);
350 return 0;
353 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
354 struct reg_vpa {
355 u32 dummy;
356 union {
357 __be16 hword;
358 __be32 word;
359 } length;
362 static int vpa_is_registered(struct kvmppc_vpa *vpap)
364 if (vpap->update_pending)
365 return vpap->next_gpa != 0;
366 return vpap->pinned_addr != NULL;
369 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
370 unsigned long flags,
371 unsigned long vcpuid, unsigned long vpa)
373 struct kvm *kvm = vcpu->kvm;
374 unsigned long len, nb;
375 void *va;
376 struct kvm_vcpu *tvcpu;
377 int err;
378 int subfunc;
379 struct kvmppc_vpa *vpap;
381 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
382 if (!tvcpu)
383 return H_PARAMETER;
385 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
386 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
387 subfunc == H_VPA_REG_SLB) {
388 /* Registering new area - address must be cache-line aligned */
389 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
390 return H_PARAMETER;
392 /* convert logical addr to kernel addr and read length */
393 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
394 if (va == NULL)
395 return H_PARAMETER;
396 if (subfunc == H_VPA_REG_VPA)
397 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
398 else
399 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
400 kvmppc_unpin_guest_page(kvm, va, vpa, false);
402 /* Check length */
403 if (len > nb || len < sizeof(struct reg_vpa))
404 return H_PARAMETER;
405 } else {
406 vpa = 0;
407 len = 0;
410 err = H_PARAMETER;
411 vpap = NULL;
412 spin_lock(&tvcpu->arch.vpa_update_lock);
414 switch (subfunc) {
415 case H_VPA_REG_VPA: /* register VPA */
416 if (len < sizeof(struct lppaca))
417 break;
418 vpap = &tvcpu->arch.vpa;
419 err = 0;
420 break;
422 case H_VPA_REG_DTL: /* register DTL */
423 if (len < sizeof(struct dtl_entry))
424 break;
425 len -= len % sizeof(struct dtl_entry);
427 /* Check that they have previously registered a VPA */
428 err = H_RESOURCE;
429 if (!vpa_is_registered(&tvcpu->arch.vpa))
430 break;
432 vpap = &tvcpu->arch.dtl;
433 err = 0;
434 break;
436 case H_VPA_REG_SLB: /* register SLB shadow buffer */
437 /* Check that they have previously registered a VPA */
438 err = H_RESOURCE;
439 if (!vpa_is_registered(&tvcpu->arch.vpa))
440 break;
442 vpap = &tvcpu->arch.slb_shadow;
443 err = 0;
444 break;
446 case H_VPA_DEREG_VPA: /* deregister VPA */
447 /* Check they don't still have a DTL or SLB buf registered */
448 err = H_RESOURCE;
449 if (vpa_is_registered(&tvcpu->arch.dtl) ||
450 vpa_is_registered(&tvcpu->arch.slb_shadow))
451 break;
453 vpap = &tvcpu->arch.vpa;
454 err = 0;
455 break;
457 case H_VPA_DEREG_DTL: /* deregister DTL */
458 vpap = &tvcpu->arch.dtl;
459 err = 0;
460 break;
462 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
463 vpap = &tvcpu->arch.slb_shadow;
464 err = 0;
465 break;
468 if (vpap) {
469 vpap->next_gpa = vpa;
470 vpap->len = len;
471 vpap->update_pending = 1;
474 spin_unlock(&tvcpu->arch.vpa_update_lock);
476 return err;
479 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
481 struct kvm *kvm = vcpu->kvm;
482 void *va;
483 unsigned long nb;
484 unsigned long gpa;
487 * We need to pin the page pointed to by vpap->next_gpa,
488 * but we can't call kvmppc_pin_guest_page under the lock
489 * as it does get_user_pages() and down_read(). So we
490 * have to drop the lock, pin the page, then get the lock
491 * again and check that a new area didn't get registered
492 * in the meantime.
494 for (;;) {
495 gpa = vpap->next_gpa;
496 spin_unlock(&vcpu->arch.vpa_update_lock);
497 va = NULL;
498 nb = 0;
499 if (gpa)
500 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
501 spin_lock(&vcpu->arch.vpa_update_lock);
502 if (gpa == vpap->next_gpa)
503 break;
504 /* sigh... unpin that one and try again */
505 if (va)
506 kvmppc_unpin_guest_page(kvm, va, gpa, false);
509 vpap->update_pending = 0;
510 if (va && nb < vpap->len) {
512 * If it's now too short, it must be that userspace
513 * has changed the mappings underlying guest memory,
514 * so unregister the region.
516 kvmppc_unpin_guest_page(kvm, va, gpa, false);
517 va = NULL;
519 if (vpap->pinned_addr)
520 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
521 vpap->dirty);
522 vpap->gpa = gpa;
523 vpap->pinned_addr = va;
524 vpap->dirty = false;
525 if (va)
526 vpap->pinned_end = va + vpap->len;
529 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
531 if (!(vcpu->arch.vpa.update_pending ||
532 vcpu->arch.slb_shadow.update_pending ||
533 vcpu->arch.dtl.update_pending))
534 return;
536 spin_lock(&vcpu->arch.vpa_update_lock);
537 if (vcpu->arch.vpa.update_pending) {
538 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
539 if (vcpu->arch.vpa.pinned_addr)
540 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
542 if (vcpu->arch.dtl.update_pending) {
543 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
544 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
545 vcpu->arch.dtl_index = 0;
547 if (vcpu->arch.slb_shadow.update_pending)
548 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
549 spin_unlock(&vcpu->arch.vpa_update_lock);
553 * Return the accumulated stolen time for the vcore up until `now'.
554 * The caller should hold the vcore lock.
556 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
558 u64 p;
559 unsigned long flags;
561 spin_lock_irqsave(&vc->stoltb_lock, flags);
562 p = vc->stolen_tb;
563 if (vc->vcore_state != VCORE_INACTIVE &&
564 vc->preempt_tb != TB_NIL)
565 p += now - vc->preempt_tb;
566 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
567 return p;
570 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
571 struct kvmppc_vcore *vc)
573 struct dtl_entry *dt;
574 struct lppaca *vpa;
575 unsigned long stolen;
576 unsigned long core_stolen;
577 u64 now;
579 dt = vcpu->arch.dtl_ptr;
580 vpa = vcpu->arch.vpa.pinned_addr;
581 now = mftb();
582 core_stolen = vcore_stolen_time(vc, now);
583 stolen = core_stolen - vcpu->arch.stolen_logged;
584 vcpu->arch.stolen_logged = core_stolen;
585 spin_lock_irq(&vcpu->arch.tbacct_lock);
586 stolen += vcpu->arch.busy_stolen;
587 vcpu->arch.busy_stolen = 0;
588 spin_unlock_irq(&vcpu->arch.tbacct_lock);
589 if (!dt || !vpa)
590 return;
591 memset(dt, 0, sizeof(struct dtl_entry));
592 dt->dispatch_reason = 7;
593 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
594 dt->timebase = cpu_to_be64(now + vc->tb_offset);
595 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
596 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
597 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
598 ++dt;
599 if (dt == vcpu->arch.dtl.pinned_end)
600 dt = vcpu->arch.dtl.pinned_addr;
601 vcpu->arch.dtl_ptr = dt;
602 /* order writing *dt vs. writing vpa->dtl_idx */
603 smp_wmb();
604 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
605 vcpu->arch.dtl.dirty = true;
608 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
610 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
611 return true;
612 if ((!vcpu->arch.vcore->arch_compat) &&
613 cpu_has_feature(CPU_FTR_ARCH_207S))
614 return true;
615 return false;
618 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
619 unsigned long resource, unsigned long value1,
620 unsigned long value2)
622 switch (resource) {
623 case H_SET_MODE_RESOURCE_SET_CIABR:
624 if (!kvmppc_power8_compatible(vcpu))
625 return H_P2;
626 if (value2)
627 return H_P4;
628 if (mflags)
629 return H_UNSUPPORTED_FLAG_START;
630 /* Guests can't breakpoint the hypervisor */
631 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
632 return H_P3;
633 vcpu->arch.ciabr = value1;
634 return H_SUCCESS;
635 case H_SET_MODE_RESOURCE_SET_DAWR:
636 if (!kvmppc_power8_compatible(vcpu))
637 return H_P2;
638 if (mflags)
639 return H_UNSUPPORTED_FLAG_START;
640 if (value2 & DABRX_HYP)
641 return H_P4;
642 vcpu->arch.dawr = value1;
643 vcpu->arch.dawrx = value2;
644 return H_SUCCESS;
645 default:
646 return H_TOO_HARD;
650 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
652 struct kvmppc_vcore *vcore = target->arch.vcore;
655 * We expect to have been called by the real mode handler
656 * (kvmppc_rm_h_confer()) which would have directly returned
657 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
658 * have useful work to do and should not confer) so we don't
659 * recheck that here.
662 spin_lock(&vcore->lock);
663 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
664 vcore->vcore_state != VCORE_INACTIVE &&
665 vcore->runner)
666 target = vcore->runner;
667 spin_unlock(&vcore->lock);
669 return kvm_vcpu_yield_to(target);
672 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
674 int yield_count = 0;
675 struct lppaca *lppaca;
677 spin_lock(&vcpu->arch.vpa_update_lock);
678 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
679 if (lppaca)
680 yield_count = be32_to_cpu(lppaca->yield_count);
681 spin_unlock(&vcpu->arch.vpa_update_lock);
682 return yield_count;
685 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
687 unsigned long req = kvmppc_get_gpr(vcpu, 3);
688 unsigned long target, ret = H_SUCCESS;
689 int yield_count;
690 struct kvm_vcpu *tvcpu;
691 int idx, rc;
693 if (req <= MAX_HCALL_OPCODE &&
694 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
695 return RESUME_HOST;
697 switch (req) {
698 case H_CEDE:
699 break;
700 case H_PROD:
701 target = kvmppc_get_gpr(vcpu, 4);
702 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
703 if (!tvcpu) {
704 ret = H_PARAMETER;
705 break;
707 tvcpu->arch.prodded = 1;
708 smp_mb();
709 if (vcpu->arch.ceded) {
710 if (waitqueue_active(&vcpu->wq)) {
711 wake_up_interruptible(&vcpu->wq);
712 vcpu->stat.halt_wakeup++;
715 break;
716 case H_CONFER:
717 target = kvmppc_get_gpr(vcpu, 4);
718 if (target == -1)
719 break;
720 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
721 if (!tvcpu) {
722 ret = H_PARAMETER;
723 break;
725 yield_count = kvmppc_get_gpr(vcpu, 5);
726 if (kvmppc_get_yield_count(tvcpu) != yield_count)
727 break;
728 kvm_arch_vcpu_yield_to(tvcpu);
729 break;
730 case H_REGISTER_VPA:
731 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
732 kvmppc_get_gpr(vcpu, 5),
733 kvmppc_get_gpr(vcpu, 6));
734 break;
735 case H_RTAS:
736 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
737 return RESUME_HOST;
739 idx = srcu_read_lock(&vcpu->kvm->srcu);
740 rc = kvmppc_rtas_hcall(vcpu);
741 srcu_read_unlock(&vcpu->kvm->srcu, idx);
743 if (rc == -ENOENT)
744 return RESUME_HOST;
745 else if (rc == 0)
746 break;
748 /* Send the error out to userspace via KVM_RUN */
749 return rc;
750 case H_LOGICAL_CI_LOAD:
751 ret = kvmppc_h_logical_ci_load(vcpu);
752 if (ret == H_TOO_HARD)
753 return RESUME_HOST;
754 break;
755 case H_LOGICAL_CI_STORE:
756 ret = kvmppc_h_logical_ci_store(vcpu);
757 if (ret == H_TOO_HARD)
758 return RESUME_HOST;
759 break;
760 case H_SET_MODE:
761 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
762 kvmppc_get_gpr(vcpu, 5),
763 kvmppc_get_gpr(vcpu, 6),
764 kvmppc_get_gpr(vcpu, 7));
765 if (ret == H_TOO_HARD)
766 return RESUME_HOST;
767 break;
768 case H_XIRR:
769 case H_CPPR:
770 case H_EOI:
771 case H_IPI:
772 case H_IPOLL:
773 case H_XIRR_X:
774 if (kvmppc_xics_enabled(vcpu)) {
775 ret = kvmppc_xics_hcall(vcpu, req);
776 break;
777 } /* fallthrough */
778 default:
779 return RESUME_HOST;
781 kvmppc_set_gpr(vcpu, 3, ret);
782 vcpu->arch.hcall_needed = 0;
783 return RESUME_GUEST;
786 static int kvmppc_hcall_impl_hv(unsigned long cmd)
788 switch (cmd) {
789 case H_CEDE:
790 case H_PROD:
791 case H_CONFER:
792 case H_REGISTER_VPA:
793 case H_SET_MODE:
794 case H_LOGICAL_CI_LOAD:
795 case H_LOGICAL_CI_STORE:
796 #ifdef CONFIG_KVM_XICS
797 case H_XIRR:
798 case H_CPPR:
799 case H_EOI:
800 case H_IPI:
801 case H_IPOLL:
802 case H_XIRR_X:
803 #endif
804 return 1;
807 /* See if it's in the real-mode table */
808 return kvmppc_hcall_impl_hv_realmode(cmd);
811 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
812 struct kvm_vcpu *vcpu)
814 u32 last_inst;
816 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
817 EMULATE_DONE) {
819 * Fetch failed, so return to guest and
820 * try executing it again.
822 return RESUME_GUEST;
825 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
826 run->exit_reason = KVM_EXIT_DEBUG;
827 run->debug.arch.address = kvmppc_get_pc(vcpu);
828 return RESUME_HOST;
829 } else {
830 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
831 return RESUME_GUEST;
835 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
836 struct task_struct *tsk)
838 int r = RESUME_HOST;
840 vcpu->stat.sum_exits++;
842 run->exit_reason = KVM_EXIT_UNKNOWN;
843 run->ready_for_interrupt_injection = 1;
844 switch (vcpu->arch.trap) {
845 /* We're good on these - the host merely wanted to get our attention */
846 case BOOK3S_INTERRUPT_HV_DECREMENTER:
847 vcpu->stat.dec_exits++;
848 r = RESUME_GUEST;
849 break;
850 case BOOK3S_INTERRUPT_EXTERNAL:
851 case BOOK3S_INTERRUPT_H_DOORBELL:
852 vcpu->stat.ext_intr_exits++;
853 r = RESUME_GUEST;
854 break;
855 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
856 case BOOK3S_INTERRUPT_HMI:
857 case BOOK3S_INTERRUPT_PERFMON:
858 r = RESUME_GUEST;
859 break;
860 case BOOK3S_INTERRUPT_MACHINE_CHECK:
862 * Deliver a machine check interrupt to the guest.
863 * We have to do this, even if the host has handled the
864 * machine check, because machine checks use SRR0/1 and
865 * the interrupt might have trashed guest state in them.
867 kvmppc_book3s_queue_irqprio(vcpu,
868 BOOK3S_INTERRUPT_MACHINE_CHECK);
869 r = RESUME_GUEST;
870 break;
871 case BOOK3S_INTERRUPT_PROGRAM:
873 ulong flags;
875 * Normally program interrupts are delivered directly
876 * to the guest by the hardware, but we can get here
877 * as a result of a hypervisor emulation interrupt
878 * (e40) getting turned into a 700 by BML RTAS.
880 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
881 kvmppc_core_queue_program(vcpu, flags);
882 r = RESUME_GUEST;
883 break;
885 case BOOK3S_INTERRUPT_SYSCALL:
887 /* hcall - punt to userspace */
888 int i;
890 /* hypercall with MSR_PR has already been handled in rmode,
891 * and never reaches here.
894 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
895 for (i = 0; i < 9; ++i)
896 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
897 run->exit_reason = KVM_EXIT_PAPR_HCALL;
898 vcpu->arch.hcall_needed = 1;
899 r = RESUME_HOST;
900 break;
903 * We get these next two if the guest accesses a page which it thinks
904 * it has mapped but which is not actually present, either because
905 * it is for an emulated I/O device or because the corresonding
906 * host page has been paged out. Any other HDSI/HISI interrupts
907 * have been handled already.
909 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
910 r = RESUME_PAGE_FAULT;
911 break;
912 case BOOK3S_INTERRUPT_H_INST_STORAGE:
913 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
914 vcpu->arch.fault_dsisr = 0;
915 r = RESUME_PAGE_FAULT;
916 break;
918 * This occurs if the guest executes an illegal instruction.
919 * If the guest debug is disabled, generate a program interrupt
920 * to the guest. If guest debug is enabled, we need to check
921 * whether the instruction is a software breakpoint instruction.
922 * Accordingly return to Guest or Host.
924 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
925 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
926 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
927 swab32(vcpu->arch.emul_inst) :
928 vcpu->arch.emul_inst;
929 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
930 r = kvmppc_emulate_debug_inst(run, vcpu);
931 } else {
932 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
933 r = RESUME_GUEST;
935 break;
937 * This occurs if the guest (kernel or userspace), does something that
938 * is prohibited by HFSCR. We just generate a program interrupt to
939 * the guest.
941 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
942 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
943 r = RESUME_GUEST;
944 break;
945 default:
946 kvmppc_dump_regs(vcpu);
947 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
948 vcpu->arch.trap, kvmppc_get_pc(vcpu),
949 vcpu->arch.shregs.msr);
950 run->hw.hardware_exit_reason = vcpu->arch.trap;
951 r = RESUME_HOST;
952 break;
955 return r;
958 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
959 struct kvm_sregs *sregs)
961 int i;
963 memset(sregs, 0, sizeof(struct kvm_sregs));
964 sregs->pvr = vcpu->arch.pvr;
965 for (i = 0; i < vcpu->arch.slb_max; i++) {
966 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
967 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
970 return 0;
973 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
974 struct kvm_sregs *sregs)
976 int i, j;
978 /* Only accept the same PVR as the host's, since we can't spoof it */
979 if (sregs->pvr != vcpu->arch.pvr)
980 return -EINVAL;
982 j = 0;
983 for (i = 0; i < vcpu->arch.slb_nr; i++) {
984 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
985 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
986 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
987 ++j;
990 vcpu->arch.slb_max = j;
992 return 0;
995 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
996 bool preserve_top32)
998 struct kvm *kvm = vcpu->kvm;
999 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1000 u64 mask;
1002 mutex_lock(&kvm->lock);
1003 spin_lock(&vc->lock);
1005 * If ILE (interrupt little-endian) has changed, update the
1006 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1008 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1009 struct kvm_vcpu *vcpu;
1010 int i;
1012 kvm_for_each_vcpu(i, vcpu, kvm) {
1013 if (vcpu->arch.vcore != vc)
1014 continue;
1015 if (new_lpcr & LPCR_ILE)
1016 vcpu->arch.intr_msr |= MSR_LE;
1017 else
1018 vcpu->arch.intr_msr &= ~MSR_LE;
1023 * Userspace can only modify DPFD (default prefetch depth),
1024 * ILE (interrupt little-endian) and TC (translation control).
1025 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1027 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1028 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1029 mask |= LPCR_AIL;
1031 /* Broken 32-bit version of LPCR must not clear top bits */
1032 if (preserve_top32)
1033 mask &= 0xFFFFFFFF;
1034 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1035 spin_unlock(&vc->lock);
1036 mutex_unlock(&kvm->lock);
1039 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1040 union kvmppc_one_reg *val)
1042 int r = 0;
1043 long int i;
1045 switch (id) {
1046 case KVM_REG_PPC_DEBUG_INST:
1047 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1048 break;
1049 case KVM_REG_PPC_HIOR:
1050 *val = get_reg_val(id, 0);
1051 break;
1052 case KVM_REG_PPC_DABR:
1053 *val = get_reg_val(id, vcpu->arch.dabr);
1054 break;
1055 case KVM_REG_PPC_DABRX:
1056 *val = get_reg_val(id, vcpu->arch.dabrx);
1057 break;
1058 case KVM_REG_PPC_DSCR:
1059 *val = get_reg_val(id, vcpu->arch.dscr);
1060 break;
1061 case KVM_REG_PPC_PURR:
1062 *val = get_reg_val(id, vcpu->arch.purr);
1063 break;
1064 case KVM_REG_PPC_SPURR:
1065 *val = get_reg_val(id, vcpu->arch.spurr);
1066 break;
1067 case KVM_REG_PPC_AMR:
1068 *val = get_reg_val(id, vcpu->arch.amr);
1069 break;
1070 case KVM_REG_PPC_UAMOR:
1071 *val = get_reg_val(id, vcpu->arch.uamor);
1072 break;
1073 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1074 i = id - KVM_REG_PPC_MMCR0;
1075 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1076 break;
1077 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1078 i = id - KVM_REG_PPC_PMC1;
1079 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1080 break;
1081 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1082 i = id - KVM_REG_PPC_SPMC1;
1083 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1084 break;
1085 case KVM_REG_PPC_SIAR:
1086 *val = get_reg_val(id, vcpu->arch.siar);
1087 break;
1088 case KVM_REG_PPC_SDAR:
1089 *val = get_reg_val(id, vcpu->arch.sdar);
1090 break;
1091 case KVM_REG_PPC_SIER:
1092 *val = get_reg_val(id, vcpu->arch.sier);
1093 break;
1094 case KVM_REG_PPC_IAMR:
1095 *val = get_reg_val(id, vcpu->arch.iamr);
1096 break;
1097 case KVM_REG_PPC_PSPB:
1098 *val = get_reg_val(id, vcpu->arch.pspb);
1099 break;
1100 case KVM_REG_PPC_DPDES:
1101 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1102 break;
1103 case KVM_REG_PPC_DAWR:
1104 *val = get_reg_val(id, vcpu->arch.dawr);
1105 break;
1106 case KVM_REG_PPC_DAWRX:
1107 *val = get_reg_val(id, vcpu->arch.dawrx);
1108 break;
1109 case KVM_REG_PPC_CIABR:
1110 *val = get_reg_val(id, vcpu->arch.ciabr);
1111 break;
1112 case KVM_REG_PPC_CSIGR:
1113 *val = get_reg_val(id, vcpu->arch.csigr);
1114 break;
1115 case KVM_REG_PPC_TACR:
1116 *val = get_reg_val(id, vcpu->arch.tacr);
1117 break;
1118 case KVM_REG_PPC_TCSCR:
1119 *val = get_reg_val(id, vcpu->arch.tcscr);
1120 break;
1121 case KVM_REG_PPC_PID:
1122 *val = get_reg_val(id, vcpu->arch.pid);
1123 break;
1124 case KVM_REG_PPC_ACOP:
1125 *val = get_reg_val(id, vcpu->arch.acop);
1126 break;
1127 case KVM_REG_PPC_WORT:
1128 *val = get_reg_val(id, vcpu->arch.wort);
1129 break;
1130 case KVM_REG_PPC_VPA_ADDR:
1131 spin_lock(&vcpu->arch.vpa_update_lock);
1132 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1133 spin_unlock(&vcpu->arch.vpa_update_lock);
1134 break;
1135 case KVM_REG_PPC_VPA_SLB:
1136 spin_lock(&vcpu->arch.vpa_update_lock);
1137 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1138 val->vpaval.length = vcpu->arch.slb_shadow.len;
1139 spin_unlock(&vcpu->arch.vpa_update_lock);
1140 break;
1141 case KVM_REG_PPC_VPA_DTL:
1142 spin_lock(&vcpu->arch.vpa_update_lock);
1143 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1144 val->vpaval.length = vcpu->arch.dtl.len;
1145 spin_unlock(&vcpu->arch.vpa_update_lock);
1146 break;
1147 case KVM_REG_PPC_TB_OFFSET:
1148 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1149 break;
1150 case KVM_REG_PPC_LPCR:
1151 case KVM_REG_PPC_LPCR_64:
1152 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1153 break;
1154 case KVM_REG_PPC_PPR:
1155 *val = get_reg_val(id, vcpu->arch.ppr);
1156 break;
1157 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1158 case KVM_REG_PPC_TFHAR:
1159 *val = get_reg_val(id, vcpu->arch.tfhar);
1160 break;
1161 case KVM_REG_PPC_TFIAR:
1162 *val = get_reg_val(id, vcpu->arch.tfiar);
1163 break;
1164 case KVM_REG_PPC_TEXASR:
1165 *val = get_reg_val(id, vcpu->arch.texasr);
1166 break;
1167 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1168 i = id - KVM_REG_PPC_TM_GPR0;
1169 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1170 break;
1171 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1173 int j;
1174 i = id - KVM_REG_PPC_TM_VSR0;
1175 if (i < 32)
1176 for (j = 0; j < TS_FPRWIDTH; j++)
1177 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1178 else {
1179 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1180 val->vval = vcpu->arch.vr_tm.vr[i-32];
1181 else
1182 r = -ENXIO;
1184 break;
1186 case KVM_REG_PPC_TM_CR:
1187 *val = get_reg_val(id, vcpu->arch.cr_tm);
1188 break;
1189 case KVM_REG_PPC_TM_LR:
1190 *val = get_reg_val(id, vcpu->arch.lr_tm);
1191 break;
1192 case KVM_REG_PPC_TM_CTR:
1193 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1194 break;
1195 case KVM_REG_PPC_TM_FPSCR:
1196 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1197 break;
1198 case KVM_REG_PPC_TM_AMR:
1199 *val = get_reg_val(id, vcpu->arch.amr_tm);
1200 break;
1201 case KVM_REG_PPC_TM_PPR:
1202 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1203 break;
1204 case KVM_REG_PPC_TM_VRSAVE:
1205 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1206 break;
1207 case KVM_REG_PPC_TM_VSCR:
1208 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1209 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1210 else
1211 r = -ENXIO;
1212 break;
1213 case KVM_REG_PPC_TM_DSCR:
1214 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1215 break;
1216 case KVM_REG_PPC_TM_TAR:
1217 *val = get_reg_val(id, vcpu->arch.tar_tm);
1218 break;
1219 #endif
1220 case KVM_REG_PPC_ARCH_COMPAT:
1221 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1222 break;
1223 default:
1224 r = -EINVAL;
1225 break;
1228 return r;
1231 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1232 union kvmppc_one_reg *val)
1234 int r = 0;
1235 long int i;
1236 unsigned long addr, len;
1238 switch (id) {
1239 case KVM_REG_PPC_HIOR:
1240 /* Only allow this to be set to zero */
1241 if (set_reg_val(id, *val))
1242 r = -EINVAL;
1243 break;
1244 case KVM_REG_PPC_DABR:
1245 vcpu->arch.dabr = set_reg_val(id, *val);
1246 break;
1247 case KVM_REG_PPC_DABRX:
1248 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1249 break;
1250 case KVM_REG_PPC_DSCR:
1251 vcpu->arch.dscr = set_reg_val(id, *val);
1252 break;
1253 case KVM_REG_PPC_PURR:
1254 vcpu->arch.purr = set_reg_val(id, *val);
1255 break;
1256 case KVM_REG_PPC_SPURR:
1257 vcpu->arch.spurr = set_reg_val(id, *val);
1258 break;
1259 case KVM_REG_PPC_AMR:
1260 vcpu->arch.amr = set_reg_val(id, *val);
1261 break;
1262 case KVM_REG_PPC_UAMOR:
1263 vcpu->arch.uamor = set_reg_val(id, *val);
1264 break;
1265 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1266 i = id - KVM_REG_PPC_MMCR0;
1267 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1268 break;
1269 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1270 i = id - KVM_REG_PPC_PMC1;
1271 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1272 break;
1273 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1274 i = id - KVM_REG_PPC_SPMC1;
1275 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1276 break;
1277 case KVM_REG_PPC_SIAR:
1278 vcpu->arch.siar = set_reg_val(id, *val);
1279 break;
1280 case KVM_REG_PPC_SDAR:
1281 vcpu->arch.sdar = set_reg_val(id, *val);
1282 break;
1283 case KVM_REG_PPC_SIER:
1284 vcpu->arch.sier = set_reg_val(id, *val);
1285 break;
1286 case KVM_REG_PPC_IAMR:
1287 vcpu->arch.iamr = set_reg_val(id, *val);
1288 break;
1289 case KVM_REG_PPC_PSPB:
1290 vcpu->arch.pspb = set_reg_val(id, *val);
1291 break;
1292 case KVM_REG_PPC_DPDES:
1293 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1294 break;
1295 case KVM_REG_PPC_DAWR:
1296 vcpu->arch.dawr = set_reg_val(id, *val);
1297 break;
1298 case KVM_REG_PPC_DAWRX:
1299 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1300 break;
1301 case KVM_REG_PPC_CIABR:
1302 vcpu->arch.ciabr = set_reg_val(id, *val);
1303 /* Don't allow setting breakpoints in hypervisor code */
1304 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1305 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1306 break;
1307 case KVM_REG_PPC_CSIGR:
1308 vcpu->arch.csigr = set_reg_val(id, *val);
1309 break;
1310 case KVM_REG_PPC_TACR:
1311 vcpu->arch.tacr = set_reg_val(id, *val);
1312 break;
1313 case KVM_REG_PPC_TCSCR:
1314 vcpu->arch.tcscr = set_reg_val(id, *val);
1315 break;
1316 case KVM_REG_PPC_PID:
1317 vcpu->arch.pid = set_reg_val(id, *val);
1318 break;
1319 case KVM_REG_PPC_ACOP:
1320 vcpu->arch.acop = set_reg_val(id, *val);
1321 break;
1322 case KVM_REG_PPC_WORT:
1323 vcpu->arch.wort = set_reg_val(id, *val);
1324 break;
1325 case KVM_REG_PPC_VPA_ADDR:
1326 addr = set_reg_val(id, *val);
1327 r = -EINVAL;
1328 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1329 vcpu->arch.dtl.next_gpa))
1330 break;
1331 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1332 break;
1333 case KVM_REG_PPC_VPA_SLB:
1334 addr = val->vpaval.addr;
1335 len = val->vpaval.length;
1336 r = -EINVAL;
1337 if (addr && !vcpu->arch.vpa.next_gpa)
1338 break;
1339 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1340 break;
1341 case KVM_REG_PPC_VPA_DTL:
1342 addr = val->vpaval.addr;
1343 len = val->vpaval.length;
1344 r = -EINVAL;
1345 if (addr && (len < sizeof(struct dtl_entry) ||
1346 !vcpu->arch.vpa.next_gpa))
1347 break;
1348 len -= len % sizeof(struct dtl_entry);
1349 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1350 break;
1351 case KVM_REG_PPC_TB_OFFSET:
1352 /* round up to multiple of 2^24 */
1353 vcpu->arch.vcore->tb_offset =
1354 ALIGN(set_reg_val(id, *val), 1UL << 24);
1355 break;
1356 case KVM_REG_PPC_LPCR:
1357 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1358 break;
1359 case KVM_REG_PPC_LPCR_64:
1360 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1361 break;
1362 case KVM_REG_PPC_PPR:
1363 vcpu->arch.ppr = set_reg_val(id, *val);
1364 break;
1365 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1366 case KVM_REG_PPC_TFHAR:
1367 vcpu->arch.tfhar = set_reg_val(id, *val);
1368 break;
1369 case KVM_REG_PPC_TFIAR:
1370 vcpu->arch.tfiar = set_reg_val(id, *val);
1371 break;
1372 case KVM_REG_PPC_TEXASR:
1373 vcpu->arch.texasr = set_reg_val(id, *val);
1374 break;
1375 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1376 i = id - KVM_REG_PPC_TM_GPR0;
1377 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1378 break;
1379 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1381 int j;
1382 i = id - KVM_REG_PPC_TM_VSR0;
1383 if (i < 32)
1384 for (j = 0; j < TS_FPRWIDTH; j++)
1385 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1386 else
1387 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1388 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1389 else
1390 r = -ENXIO;
1391 break;
1393 case KVM_REG_PPC_TM_CR:
1394 vcpu->arch.cr_tm = set_reg_val(id, *val);
1395 break;
1396 case KVM_REG_PPC_TM_LR:
1397 vcpu->arch.lr_tm = set_reg_val(id, *val);
1398 break;
1399 case KVM_REG_PPC_TM_CTR:
1400 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1401 break;
1402 case KVM_REG_PPC_TM_FPSCR:
1403 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1404 break;
1405 case KVM_REG_PPC_TM_AMR:
1406 vcpu->arch.amr_tm = set_reg_val(id, *val);
1407 break;
1408 case KVM_REG_PPC_TM_PPR:
1409 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1410 break;
1411 case KVM_REG_PPC_TM_VRSAVE:
1412 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1413 break;
1414 case KVM_REG_PPC_TM_VSCR:
1415 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1416 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1417 else
1418 r = - ENXIO;
1419 break;
1420 case KVM_REG_PPC_TM_DSCR:
1421 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1422 break;
1423 case KVM_REG_PPC_TM_TAR:
1424 vcpu->arch.tar_tm = set_reg_val(id, *val);
1425 break;
1426 #endif
1427 case KVM_REG_PPC_ARCH_COMPAT:
1428 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1429 break;
1430 default:
1431 r = -EINVAL;
1432 break;
1435 return r;
1438 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1440 struct kvmppc_vcore *vcore;
1442 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1444 if (vcore == NULL)
1445 return NULL;
1447 INIT_LIST_HEAD(&vcore->runnable_threads);
1448 spin_lock_init(&vcore->lock);
1449 spin_lock_init(&vcore->stoltb_lock);
1450 init_waitqueue_head(&vcore->wq);
1451 vcore->preempt_tb = TB_NIL;
1452 vcore->lpcr = kvm->arch.lpcr;
1453 vcore->first_vcpuid = core * threads_per_subcore;
1454 vcore->kvm = kvm;
1455 INIT_LIST_HEAD(&vcore->preempt_list);
1457 return vcore;
1460 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1461 static struct debugfs_timings_element {
1462 const char *name;
1463 size_t offset;
1464 } timings[] = {
1465 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1466 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1467 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1468 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1469 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1472 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1474 struct debugfs_timings_state {
1475 struct kvm_vcpu *vcpu;
1476 unsigned int buflen;
1477 char buf[N_TIMINGS * 100];
1480 static int debugfs_timings_open(struct inode *inode, struct file *file)
1482 struct kvm_vcpu *vcpu = inode->i_private;
1483 struct debugfs_timings_state *p;
1485 p = kzalloc(sizeof(*p), GFP_KERNEL);
1486 if (!p)
1487 return -ENOMEM;
1489 kvm_get_kvm(vcpu->kvm);
1490 p->vcpu = vcpu;
1491 file->private_data = p;
1493 return nonseekable_open(inode, file);
1496 static int debugfs_timings_release(struct inode *inode, struct file *file)
1498 struct debugfs_timings_state *p = file->private_data;
1500 kvm_put_kvm(p->vcpu->kvm);
1501 kfree(p);
1502 return 0;
1505 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1506 size_t len, loff_t *ppos)
1508 struct debugfs_timings_state *p = file->private_data;
1509 struct kvm_vcpu *vcpu = p->vcpu;
1510 char *s, *buf_end;
1511 struct kvmhv_tb_accumulator tb;
1512 u64 count;
1513 loff_t pos;
1514 ssize_t n;
1515 int i, loops;
1516 bool ok;
1518 if (!p->buflen) {
1519 s = p->buf;
1520 buf_end = s + sizeof(p->buf);
1521 for (i = 0; i < N_TIMINGS; ++i) {
1522 struct kvmhv_tb_accumulator *acc;
1524 acc = (struct kvmhv_tb_accumulator *)
1525 ((unsigned long)vcpu + timings[i].offset);
1526 ok = false;
1527 for (loops = 0; loops < 1000; ++loops) {
1528 count = acc->seqcount;
1529 if (!(count & 1)) {
1530 smp_rmb();
1531 tb = *acc;
1532 smp_rmb();
1533 if (count == acc->seqcount) {
1534 ok = true;
1535 break;
1538 udelay(1);
1540 if (!ok)
1541 snprintf(s, buf_end - s, "%s: stuck\n",
1542 timings[i].name);
1543 else
1544 snprintf(s, buf_end - s,
1545 "%s: %llu %llu %llu %llu\n",
1546 timings[i].name, count / 2,
1547 tb_to_ns(tb.tb_total),
1548 tb_to_ns(tb.tb_min),
1549 tb_to_ns(tb.tb_max));
1550 s += strlen(s);
1552 p->buflen = s - p->buf;
1555 pos = *ppos;
1556 if (pos >= p->buflen)
1557 return 0;
1558 if (len > p->buflen - pos)
1559 len = p->buflen - pos;
1560 n = copy_to_user(buf, p->buf + pos, len);
1561 if (n) {
1562 if (n == len)
1563 return -EFAULT;
1564 len -= n;
1566 *ppos = pos + len;
1567 return len;
1570 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1571 size_t len, loff_t *ppos)
1573 return -EACCES;
1576 static const struct file_operations debugfs_timings_ops = {
1577 .owner = THIS_MODULE,
1578 .open = debugfs_timings_open,
1579 .release = debugfs_timings_release,
1580 .read = debugfs_timings_read,
1581 .write = debugfs_timings_write,
1582 .llseek = generic_file_llseek,
1585 /* Create a debugfs directory for the vcpu */
1586 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1588 char buf[16];
1589 struct kvm *kvm = vcpu->kvm;
1591 snprintf(buf, sizeof(buf), "vcpu%u", id);
1592 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1593 return;
1594 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1595 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1596 return;
1597 vcpu->arch.debugfs_timings =
1598 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1599 vcpu, &debugfs_timings_ops);
1602 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1603 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1606 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1608 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1609 unsigned int id)
1611 struct kvm_vcpu *vcpu;
1612 int err = -EINVAL;
1613 int core;
1614 struct kvmppc_vcore *vcore;
1616 core = id / threads_per_subcore;
1617 if (core >= KVM_MAX_VCORES)
1618 goto out;
1620 err = -ENOMEM;
1621 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1622 if (!vcpu)
1623 goto out;
1625 err = kvm_vcpu_init(vcpu, kvm, id);
1626 if (err)
1627 goto free_vcpu;
1629 vcpu->arch.shared = &vcpu->arch.shregs;
1630 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1632 * The shared struct is never shared on HV,
1633 * so we can always use host endianness
1635 #ifdef __BIG_ENDIAN__
1636 vcpu->arch.shared_big_endian = true;
1637 #else
1638 vcpu->arch.shared_big_endian = false;
1639 #endif
1640 #endif
1641 vcpu->arch.mmcr[0] = MMCR0_FC;
1642 vcpu->arch.ctrl = CTRL_RUNLATCH;
1643 /* default to host PVR, since we can't spoof it */
1644 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1645 spin_lock_init(&vcpu->arch.vpa_update_lock);
1646 spin_lock_init(&vcpu->arch.tbacct_lock);
1647 vcpu->arch.busy_preempt = TB_NIL;
1648 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1650 kvmppc_mmu_book3s_hv_init(vcpu);
1652 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1654 init_waitqueue_head(&vcpu->arch.cpu_run);
1656 mutex_lock(&kvm->lock);
1657 vcore = kvm->arch.vcores[core];
1658 if (!vcore) {
1659 vcore = kvmppc_vcore_create(kvm, core);
1660 kvm->arch.vcores[core] = vcore;
1661 kvm->arch.online_vcores++;
1663 mutex_unlock(&kvm->lock);
1665 if (!vcore)
1666 goto free_vcpu;
1668 spin_lock(&vcore->lock);
1669 ++vcore->num_threads;
1670 spin_unlock(&vcore->lock);
1671 vcpu->arch.vcore = vcore;
1672 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1673 vcpu->arch.thread_cpu = -1;
1675 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1676 kvmppc_sanity_check(vcpu);
1678 debugfs_vcpu_init(vcpu, id);
1680 return vcpu;
1682 free_vcpu:
1683 kmem_cache_free(kvm_vcpu_cache, vcpu);
1684 out:
1685 return ERR_PTR(err);
1688 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1690 if (vpa->pinned_addr)
1691 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1692 vpa->dirty);
1695 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1697 spin_lock(&vcpu->arch.vpa_update_lock);
1698 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1699 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1700 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1701 spin_unlock(&vcpu->arch.vpa_update_lock);
1702 kvm_vcpu_uninit(vcpu);
1703 kmem_cache_free(kvm_vcpu_cache, vcpu);
1706 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1708 /* Indicate we want to get back into the guest */
1709 return 1;
1712 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1714 unsigned long dec_nsec, now;
1716 now = get_tb();
1717 if (now > vcpu->arch.dec_expires) {
1718 /* decrementer has already gone negative */
1719 kvmppc_core_queue_dec(vcpu);
1720 kvmppc_core_prepare_to_enter(vcpu);
1721 return;
1723 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1724 / tb_ticks_per_sec;
1725 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1726 HRTIMER_MODE_REL);
1727 vcpu->arch.timer_running = 1;
1730 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1732 vcpu->arch.ceded = 0;
1733 if (vcpu->arch.timer_running) {
1734 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1735 vcpu->arch.timer_running = 0;
1739 extern void __kvmppc_vcore_entry(void);
1741 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1742 struct kvm_vcpu *vcpu)
1744 u64 now;
1746 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1747 return;
1748 spin_lock_irq(&vcpu->arch.tbacct_lock);
1749 now = mftb();
1750 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1751 vcpu->arch.stolen_logged;
1752 vcpu->arch.busy_preempt = now;
1753 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1754 spin_unlock_irq(&vcpu->arch.tbacct_lock);
1755 --vc->n_runnable;
1756 list_del(&vcpu->arch.run_list);
1759 static int kvmppc_grab_hwthread(int cpu)
1761 struct paca_struct *tpaca;
1762 long timeout = 10000;
1764 tpaca = &paca[cpu];
1766 /* Ensure the thread won't go into the kernel if it wakes */
1767 tpaca->kvm_hstate.kvm_vcpu = NULL;
1768 tpaca->kvm_hstate.kvm_vcore = NULL;
1769 tpaca->kvm_hstate.napping = 0;
1770 smp_wmb();
1771 tpaca->kvm_hstate.hwthread_req = 1;
1774 * If the thread is already executing in the kernel (e.g. handling
1775 * a stray interrupt), wait for it to get back to nap mode.
1776 * The smp_mb() is to ensure that our setting of hwthread_req
1777 * is visible before we look at hwthread_state, so if this
1778 * races with the code at system_reset_pSeries and the thread
1779 * misses our setting of hwthread_req, we are sure to see its
1780 * setting of hwthread_state, and vice versa.
1782 smp_mb();
1783 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1784 if (--timeout <= 0) {
1785 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1786 return -EBUSY;
1788 udelay(1);
1790 return 0;
1793 static void kvmppc_release_hwthread(int cpu)
1795 struct paca_struct *tpaca;
1797 tpaca = &paca[cpu];
1798 tpaca->kvm_hstate.hwthread_req = 0;
1799 tpaca->kvm_hstate.kvm_vcpu = NULL;
1800 tpaca->kvm_hstate.kvm_vcore = NULL;
1801 tpaca->kvm_hstate.kvm_split_mode = NULL;
1804 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1806 int cpu;
1807 struct paca_struct *tpaca;
1808 struct kvmppc_vcore *mvc = vc->master_vcore;
1810 cpu = vc->pcpu;
1811 if (vcpu) {
1812 if (vcpu->arch.timer_running) {
1813 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1814 vcpu->arch.timer_running = 0;
1816 cpu += vcpu->arch.ptid;
1817 vcpu->cpu = mvc->pcpu;
1818 vcpu->arch.thread_cpu = cpu;
1820 tpaca = &paca[cpu];
1821 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1822 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1823 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1824 smp_wmb();
1825 tpaca->kvm_hstate.kvm_vcore = mvc;
1826 if (cpu != smp_processor_id())
1827 kvmppc_ipi_thread(cpu);
1830 static void kvmppc_wait_for_nap(void)
1832 int cpu = smp_processor_id();
1833 int i, loops;
1835 for (loops = 0; loops < 1000000; ++loops) {
1837 * Check if all threads are finished.
1838 * We set the vcore pointer when starting a thread
1839 * and the thread clears it when finished, so we look
1840 * for any threads that still have a non-NULL vcore ptr.
1842 for (i = 1; i < threads_per_subcore; ++i)
1843 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1844 break;
1845 if (i == threads_per_subcore) {
1846 HMT_medium();
1847 return;
1849 HMT_low();
1851 HMT_medium();
1852 for (i = 1; i < threads_per_subcore; ++i)
1853 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1854 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1858 * Check that we are on thread 0 and that any other threads in
1859 * this core are off-line. Then grab the threads so they can't
1860 * enter the kernel.
1862 static int on_primary_thread(void)
1864 int cpu = smp_processor_id();
1865 int thr;
1867 /* Are we on a primary subcore? */
1868 if (cpu_thread_in_subcore(cpu))
1869 return 0;
1871 thr = 0;
1872 while (++thr < threads_per_subcore)
1873 if (cpu_online(cpu + thr))
1874 return 0;
1876 /* Grab all hw threads so they can't go into the kernel */
1877 for (thr = 1; thr < threads_per_subcore; ++thr) {
1878 if (kvmppc_grab_hwthread(cpu + thr)) {
1879 /* Couldn't grab one; let the others go */
1880 do {
1881 kvmppc_release_hwthread(cpu + thr);
1882 } while (--thr > 0);
1883 return 0;
1886 return 1;
1890 * A list of virtual cores for each physical CPU.
1891 * These are vcores that could run but their runner VCPU tasks are
1892 * (or may be) preempted.
1894 struct preempted_vcore_list {
1895 struct list_head list;
1896 spinlock_t lock;
1899 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1901 static void init_vcore_lists(void)
1903 int cpu;
1905 for_each_possible_cpu(cpu) {
1906 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1907 spin_lock_init(&lp->lock);
1908 INIT_LIST_HEAD(&lp->list);
1912 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1914 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1916 vc->vcore_state = VCORE_PREEMPT;
1917 vc->pcpu = smp_processor_id();
1918 if (vc->num_threads < threads_per_subcore) {
1919 spin_lock(&lp->lock);
1920 list_add_tail(&vc->preempt_list, &lp->list);
1921 spin_unlock(&lp->lock);
1924 /* Start accumulating stolen time */
1925 kvmppc_core_start_stolen(vc);
1928 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1930 struct preempted_vcore_list *lp;
1932 kvmppc_core_end_stolen(vc);
1933 if (!list_empty(&vc->preempt_list)) {
1934 lp = &per_cpu(preempted_vcores, vc->pcpu);
1935 spin_lock(&lp->lock);
1936 list_del_init(&vc->preempt_list);
1937 spin_unlock(&lp->lock);
1939 vc->vcore_state = VCORE_INACTIVE;
1943 * This stores information about the virtual cores currently
1944 * assigned to a physical core.
1946 struct core_info {
1947 int n_subcores;
1948 int max_subcore_threads;
1949 int total_threads;
1950 int subcore_threads[MAX_SUBCORES];
1951 struct kvm *subcore_vm[MAX_SUBCORES];
1952 struct list_head vcs[MAX_SUBCORES];
1956 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1957 * respectively in 2-way micro-threading (split-core) mode.
1959 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1961 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1963 int sub;
1965 memset(cip, 0, sizeof(*cip));
1966 cip->n_subcores = 1;
1967 cip->max_subcore_threads = vc->num_threads;
1968 cip->total_threads = vc->num_threads;
1969 cip->subcore_threads[0] = vc->num_threads;
1970 cip->subcore_vm[0] = vc->kvm;
1971 for (sub = 0; sub < MAX_SUBCORES; ++sub)
1972 INIT_LIST_HEAD(&cip->vcs[sub]);
1973 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
1976 static bool subcore_config_ok(int n_subcores, int n_threads)
1978 /* Can only dynamically split if unsplit to begin with */
1979 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
1980 return false;
1981 if (n_subcores > MAX_SUBCORES)
1982 return false;
1983 if (n_subcores > 1) {
1984 if (!(dynamic_mt_modes & 2))
1985 n_subcores = 4;
1986 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
1987 return false;
1990 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
1993 static void init_master_vcore(struct kvmppc_vcore *vc)
1995 vc->master_vcore = vc;
1996 vc->entry_exit_map = 0;
1997 vc->in_guest = 0;
1998 vc->napping_threads = 0;
1999 vc->conferring_threads = 0;
2003 * See if the existing subcores can be split into 3 (or fewer) subcores
2004 * of at most two threads each, so we can fit in another vcore. This
2005 * assumes there are at most two subcores and at most 6 threads in total.
2007 static bool can_split_piggybacked_subcores(struct core_info *cip)
2009 int sub, new_sub;
2010 int large_sub = -1;
2011 int thr;
2012 int n_subcores = cip->n_subcores;
2013 struct kvmppc_vcore *vc, *vcnext;
2014 struct kvmppc_vcore *master_vc = NULL;
2016 for (sub = 0; sub < cip->n_subcores; ++sub) {
2017 if (cip->subcore_threads[sub] <= 2)
2018 continue;
2019 if (large_sub >= 0)
2020 return false;
2021 large_sub = sub;
2022 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2023 preempt_list);
2024 if (vc->num_threads > 2)
2025 return false;
2026 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2028 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2029 return false;
2032 * Seems feasible, so go through and move vcores to new subcores.
2033 * Note that when we have two or more vcores in one subcore,
2034 * all those vcores must have only one thread each.
2036 new_sub = cip->n_subcores;
2037 thr = 0;
2038 sub = large_sub;
2039 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2040 if (thr >= 2) {
2041 list_del(&vc->preempt_list);
2042 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2043 /* vc->num_threads must be 1 */
2044 if (++cip->subcore_threads[new_sub] == 1) {
2045 cip->subcore_vm[new_sub] = vc->kvm;
2046 init_master_vcore(vc);
2047 master_vc = vc;
2048 ++cip->n_subcores;
2049 } else {
2050 vc->master_vcore = master_vc;
2051 ++new_sub;
2054 thr += vc->num_threads;
2056 cip->subcore_threads[large_sub] = 2;
2057 cip->max_subcore_threads = 2;
2059 return true;
2062 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2064 int n_threads = vc->num_threads;
2065 int sub;
2067 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2068 return false;
2070 if (n_threads < cip->max_subcore_threads)
2071 n_threads = cip->max_subcore_threads;
2072 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2073 cip->max_subcore_threads = n_threads;
2074 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2075 vc->num_threads <= 2) {
2077 * We may be able to fit another subcore in by
2078 * splitting an existing subcore with 3 or 4
2079 * threads into two 2-thread subcores, or one
2080 * with 5 or 6 threads into three subcores.
2081 * We can only do this if those subcores have
2082 * piggybacked virtual cores.
2084 if (!can_split_piggybacked_subcores(cip))
2085 return false;
2086 } else {
2087 return false;
2090 sub = cip->n_subcores;
2091 ++cip->n_subcores;
2092 cip->total_threads += vc->num_threads;
2093 cip->subcore_threads[sub] = vc->num_threads;
2094 cip->subcore_vm[sub] = vc->kvm;
2095 init_master_vcore(vc);
2096 list_del(&vc->preempt_list);
2097 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2099 return true;
2102 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2103 struct core_info *cip, int sub)
2105 struct kvmppc_vcore *vc;
2106 int n_thr;
2108 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2109 preempt_list);
2111 /* require same VM and same per-core reg values */
2112 if (pvc->kvm != vc->kvm ||
2113 pvc->tb_offset != vc->tb_offset ||
2114 pvc->pcr != vc->pcr ||
2115 pvc->lpcr != vc->lpcr)
2116 return false;
2118 /* P8 guest with > 1 thread per core would see wrong TIR value */
2119 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2120 (vc->num_threads > 1 || pvc->num_threads > 1))
2121 return false;
2123 n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2124 if (n_thr > cip->max_subcore_threads) {
2125 if (!subcore_config_ok(cip->n_subcores, n_thr))
2126 return false;
2127 cip->max_subcore_threads = n_thr;
2130 cip->total_threads += pvc->num_threads;
2131 cip->subcore_threads[sub] = n_thr;
2132 pvc->master_vcore = vc;
2133 list_del(&pvc->preempt_list);
2134 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2136 return true;
2140 * Work out whether it is possible to piggyback the execution of
2141 * vcore *pvc onto the execution of the other vcores described in *cip.
2143 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2144 int target_threads)
2146 int sub;
2148 if (cip->total_threads + pvc->num_threads > target_threads)
2149 return false;
2150 for (sub = 0; sub < cip->n_subcores; ++sub)
2151 if (cip->subcore_threads[sub] &&
2152 can_piggyback_subcore(pvc, cip, sub))
2153 return true;
2155 if (can_dynamic_split(pvc, cip))
2156 return true;
2158 return false;
2161 static void prepare_threads(struct kvmppc_vcore *vc)
2163 struct kvm_vcpu *vcpu, *vnext;
2165 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2166 arch.run_list) {
2167 if (signal_pending(vcpu->arch.run_task))
2168 vcpu->arch.ret = -EINTR;
2169 else if (vcpu->arch.vpa.update_pending ||
2170 vcpu->arch.slb_shadow.update_pending ||
2171 vcpu->arch.dtl.update_pending)
2172 vcpu->arch.ret = RESUME_GUEST;
2173 else
2174 continue;
2175 kvmppc_remove_runnable(vc, vcpu);
2176 wake_up(&vcpu->arch.cpu_run);
2180 static void collect_piggybacks(struct core_info *cip, int target_threads)
2182 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2183 struct kvmppc_vcore *pvc, *vcnext;
2185 spin_lock(&lp->lock);
2186 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2187 if (!spin_trylock(&pvc->lock))
2188 continue;
2189 prepare_threads(pvc);
2190 if (!pvc->n_runnable) {
2191 list_del_init(&pvc->preempt_list);
2192 if (pvc->runner == NULL) {
2193 pvc->vcore_state = VCORE_INACTIVE;
2194 kvmppc_core_end_stolen(pvc);
2196 spin_unlock(&pvc->lock);
2197 continue;
2199 if (!can_piggyback(pvc, cip, target_threads)) {
2200 spin_unlock(&pvc->lock);
2201 continue;
2203 kvmppc_core_end_stolen(pvc);
2204 pvc->vcore_state = VCORE_PIGGYBACK;
2205 if (cip->total_threads >= target_threads)
2206 break;
2208 spin_unlock(&lp->lock);
2211 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2213 int still_running = 0;
2214 u64 now;
2215 long ret;
2216 struct kvm_vcpu *vcpu, *vnext;
2218 spin_lock(&vc->lock);
2219 now = get_tb();
2220 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2221 arch.run_list) {
2222 /* cancel pending dec exception if dec is positive */
2223 if (now < vcpu->arch.dec_expires &&
2224 kvmppc_core_pending_dec(vcpu))
2225 kvmppc_core_dequeue_dec(vcpu);
2227 trace_kvm_guest_exit(vcpu);
2229 ret = RESUME_GUEST;
2230 if (vcpu->arch.trap)
2231 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2232 vcpu->arch.run_task);
2234 vcpu->arch.ret = ret;
2235 vcpu->arch.trap = 0;
2237 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2238 if (vcpu->arch.pending_exceptions)
2239 kvmppc_core_prepare_to_enter(vcpu);
2240 if (vcpu->arch.ceded)
2241 kvmppc_set_timer(vcpu);
2242 else
2243 ++still_running;
2244 } else {
2245 kvmppc_remove_runnable(vc, vcpu);
2246 wake_up(&vcpu->arch.cpu_run);
2249 list_del_init(&vc->preempt_list);
2250 if (!is_master) {
2251 if (still_running > 0) {
2252 kvmppc_vcore_preempt(vc);
2253 } else if (vc->runner) {
2254 vc->vcore_state = VCORE_PREEMPT;
2255 kvmppc_core_start_stolen(vc);
2256 } else {
2257 vc->vcore_state = VCORE_INACTIVE;
2259 if (vc->n_runnable > 0 && vc->runner == NULL) {
2260 /* make sure there's a candidate runner awake */
2261 vcpu = list_first_entry(&vc->runnable_threads,
2262 struct kvm_vcpu, arch.run_list);
2263 wake_up(&vcpu->arch.cpu_run);
2266 spin_unlock(&vc->lock);
2270 * Run a set of guest threads on a physical core.
2271 * Called with vc->lock held.
2273 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2275 struct kvm_vcpu *vcpu, *vnext;
2276 int i;
2277 int srcu_idx;
2278 struct core_info core_info;
2279 struct kvmppc_vcore *pvc, *vcnext;
2280 struct kvm_split_mode split_info, *sip;
2281 int split, subcore_size, active;
2282 int sub;
2283 bool thr0_done;
2284 unsigned long cmd_bit, stat_bit;
2285 int pcpu, thr;
2286 int target_threads;
2289 * Remove from the list any threads that have a signal pending
2290 * or need a VPA update done
2292 prepare_threads(vc);
2294 /* if the runner is no longer runnable, let the caller pick a new one */
2295 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2296 return;
2299 * Initialize *vc.
2301 init_master_vcore(vc);
2302 vc->preempt_tb = TB_NIL;
2305 * Make sure we are running on primary threads, and that secondary
2306 * threads are offline. Also check if the number of threads in this
2307 * guest are greater than the current system threads per guest.
2309 if ((threads_per_core > 1) &&
2310 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2311 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2312 arch.run_list) {
2313 vcpu->arch.ret = -EBUSY;
2314 kvmppc_remove_runnable(vc, vcpu);
2315 wake_up(&vcpu->arch.cpu_run);
2317 goto out;
2321 * See if we could run any other vcores on the physical core
2322 * along with this one.
2324 init_core_info(&core_info, vc);
2325 pcpu = smp_processor_id();
2326 target_threads = threads_per_subcore;
2327 if (target_smt_mode && target_smt_mode < target_threads)
2328 target_threads = target_smt_mode;
2329 if (vc->num_threads < target_threads)
2330 collect_piggybacks(&core_info, target_threads);
2332 /* Decide on micro-threading (split-core) mode */
2333 subcore_size = threads_per_subcore;
2334 cmd_bit = stat_bit = 0;
2335 split = core_info.n_subcores;
2336 sip = NULL;
2337 if (split > 1) {
2338 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2339 if (split == 2 && (dynamic_mt_modes & 2)) {
2340 cmd_bit = HID0_POWER8_1TO2LPAR;
2341 stat_bit = HID0_POWER8_2LPARMODE;
2342 } else {
2343 split = 4;
2344 cmd_bit = HID0_POWER8_1TO4LPAR;
2345 stat_bit = HID0_POWER8_4LPARMODE;
2347 subcore_size = MAX_SMT_THREADS / split;
2348 sip = &split_info;
2349 memset(&split_info, 0, sizeof(split_info));
2350 split_info.rpr = mfspr(SPRN_RPR);
2351 split_info.pmmar = mfspr(SPRN_PMMAR);
2352 split_info.ldbar = mfspr(SPRN_LDBAR);
2353 split_info.subcore_size = subcore_size;
2354 for (sub = 0; sub < core_info.n_subcores; ++sub)
2355 split_info.master_vcs[sub] =
2356 list_first_entry(&core_info.vcs[sub],
2357 struct kvmppc_vcore, preempt_list);
2358 /* order writes to split_info before kvm_split_mode pointer */
2359 smp_wmb();
2361 pcpu = smp_processor_id();
2362 for (thr = 0; thr < threads_per_subcore; ++thr)
2363 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2365 /* Initiate micro-threading (split-core) if required */
2366 if (cmd_bit) {
2367 unsigned long hid0 = mfspr(SPRN_HID0);
2369 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2370 mb();
2371 mtspr(SPRN_HID0, hid0);
2372 isync();
2373 for (;;) {
2374 hid0 = mfspr(SPRN_HID0);
2375 if (hid0 & stat_bit)
2376 break;
2377 cpu_relax();
2381 /* Start all the threads */
2382 active = 0;
2383 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2384 thr = subcore_thread_map[sub];
2385 thr0_done = false;
2386 active |= 1 << thr;
2387 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2388 pvc->pcpu = pcpu + thr;
2389 list_for_each_entry(vcpu, &pvc->runnable_threads,
2390 arch.run_list) {
2391 kvmppc_start_thread(vcpu, pvc);
2392 kvmppc_create_dtl_entry(vcpu, pvc);
2393 trace_kvm_guest_enter(vcpu);
2394 if (!vcpu->arch.ptid)
2395 thr0_done = true;
2396 active |= 1 << (thr + vcpu->arch.ptid);
2399 * We need to start the first thread of each subcore
2400 * even if it doesn't have a vcpu.
2402 if (pvc->master_vcore == pvc && !thr0_done)
2403 kvmppc_start_thread(NULL, pvc);
2404 thr += pvc->num_threads;
2409 * Ensure that split_info.do_nap is set after setting
2410 * the vcore pointer in the PACA of the secondaries.
2412 smp_mb();
2413 if (cmd_bit)
2414 split_info.do_nap = 1; /* ask secondaries to nap when done */
2417 * When doing micro-threading, poke the inactive threads as well.
2418 * This gets them to the nap instruction after kvm_do_nap,
2419 * which reduces the time taken to unsplit later.
2421 if (split > 1)
2422 for (thr = 1; thr < threads_per_subcore; ++thr)
2423 if (!(active & (1 << thr)))
2424 kvmppc_ipi_thread(pcpu + thr);
2426 vc->vcore_state = VCORE_RUNNING;
2427 preempt_disable();
2429 trace_kvmppc_run_core(vc, 0);
2431 for (sub = 0; sub < core_info.n_subcores; ++sub)
2432 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2433 spin_unlock(&pvc->lock);
2435 kvm_guest_enter();
2437 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2439 __kvmppc_vcore_entry();
2441 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2443 spin_lock(&vc->lock);
2444 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2445 vc->vcore_state = VCORE_EXITING;
2447 /* wait for secondary threads to finish writing their state to memory */
2448 kvmppc_wait_for_nap();
2450 /* Return to whole-core mode if we split the core earlier */
2451 if (split > 1) {
2452 unsigned long hid0 = mfspr(SPRN_HID0);
2453 unsigned long loops = 0;
2455 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2456 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2457 mb();
2458 mtspr(SPRN_HID0, hid0);
2459 isync();
2460 for (;;) {
2461 hid0 = mfspr(SPRN_HID0);
2462 if (!(hid0 & stat_bit))
2463 break;
2464 cpu_relax();
2465 ++loops;
2467 split_info.do_nap = 0;
2470 /* Let secondaries go back to the offline loop */
2471 for (i = 0; i < threads_per_subcore; ++i) {
2472 kvmppc_release_hwthread(pcpu + i);
2473 if (sip && sip->napped[i])
2474 kvmppc_ipi_thread(pcpu + i);
2477 spin_unlock(&vc->lock);
2479 /* make sure updates to secondary vcpu structs are visible now */
2480 smp_mb();
2481 kvm_guest_exit();
2483 for (sub = 0; sub < core_info.n_subcores; ++sub)
2484 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2485 preempt_list)
2486 post_guest_process(pvc, pvc == vc);
2488 spin_lock(&vc->lock);
2489 preempt_enable();
2491 out:
2492 vc->vcore_state = VCORE_INACTIVE;
2493 trace_kvmppc_run_core(vc, 1);
2497 * Wait for some other vcpu thread to execute us, and
2498 * wake us up when we need to handle something in the host.
2500 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2501 struct kvm_vcpu *vcpu, int wait_state)
2503 DEFINE_WAIT(wait);
2505 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2506 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2507 spin_unlock(&vc->lock);
2508 schedule();
2509 spin_lock(&vc->lock);
2511 finish_wait(&vcpu->arch.cpu_run, &wait);
2515 * All the vcpus in this vcore are idle, so wait for a decrementer
2516 * or external interrupt to one of the vcpus. vc->lock is held.
2518 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2520 struct kvm_vcpu *vcpu;
2521 int do_sleep = 1;
2523 DEFINE_WAIT(wait);
2525 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2528 * Check one last time for pending exceptions and ceded state after
2529 * we put ourselves on the wait queue
2531 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2532 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2533 do_sleep = 0;
2534 break;
2538 if (!do_sleep) {
2539 finish_wait(&vc->wq, &wait);
2540 return;
2543 vc->vcore_state = VCORE_SLEEPING;
2544 trace_kvmppc_vcore_blocked(vc, 0);
2545 spin_unlock(&vc->lock);
2546 schedule();
2547 finish_wait(&vc->wq, &wait);
2548 spin_lock(&vc->lock);
2549 vc->vcore_state = VCORE_INACTIVE;
2550 trace_kvmppc_vcore_blocked(vc, 1);
2553 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2555 int n_ceded;
2556 struct kvmppc_vcore *vc;
2557 struct kvm_vcpu *v, *vn;
2559 trace_kvmppc_run_vcpu_enter(vcpu);
2561 kvm_run->exit_reason = 0;
2562 vcpu->arch.ret = RESUME_GUEST;
2563 vcpu->arch.trap = 0;
2564 kvmppc_update_vpas(vcpu);
2567 * Synchronize with other threads in this virtual core
2569 vc = vcpu->arch.vcore;
2570 spin_lock(&vc->lock);
2571 vcpu->arch.ceded = 0;
2572 vcpu->arch.run_task = current;
2573 vcpu->arch.kvm_run = kvm_run;
2574 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2575 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2576 vcpu->arch.busy_preempt = TB_NIL;
2577 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2578 ++vc->n_runnable;
2581 * This happens the first time this is called for a vcpu.
2582 * If the vcore is already running, we may be able to start
2583 * this thread straight away and have it join in.
2585 if (!signal_pending(current)) {
2586 if (vc->vcore_state == VCORE_PIGGYBACK) {
2587 struct kvmppc_vcore *mvc = vc->master_vcore;
2588 if (spin_trylock(&mvc->lock)) {
2589 if (mvc->vcore_state == VCORE_RUNNING &&
2590 !VCORE_IS_EXITING(mvc)) {
2591 kvmppc_create_dtl_entry(vcpu, vc);
2592 kvmppc_start_thread(vcpu, vc);
2593 trace_kvm_guest_enter(vcpu);
2595 spin_unlock(&mvc->lock);
2597 } else if (vc->vcore_state == VCORE_RUNNING &&
2598 !VCORE_IS_EXITING(vc)) {
2599 kvmppc_create_dtl_entry(vcpu, vc);
2600 kvmppc_start_thread(vcpu, vc);
2601 trace_kvm_guest_enter(vcpu);
2602 } else if (vc->vcore_state == VCORE_SLEEPING) {
2603 wake_up(&vc->wq);
2608 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2609 !signal_pending(current)) {
2610 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2611 kvmppc_vcore_end_preempt(vc);
2613 if (vc->vcore_state != VCORE_INACTIVE) {
2614 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2615 continue;
2617 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2618 arch.run_list) {
2619 kvmppc_core_prepare_to_enter(v);
2620 if (signal_pending(v->arch.run_task)) {
2621 kvmppc_remove_runnable(vc, v);
2622 v->stat.signal_exits++;
2623 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2624 v->arch.ret = -EINTR;
2625 wake_up(&v->arch.cpu_run);
2628 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2629 break;
2630 n_ceded = 0;
2631 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2632 if (!v->arch.pending_exceptions)
2633 n_ceded += v->arch.ceded;
2634 else
2635 v->arch.ceded = 0;
2637 vc->runner = vcpu;
2638 if (n_ceded == vc->n_runnable) {
2639 kvmppc_vcore_blocked(vc);
2640 } else if (need_resched()) {
2641 kvmppc_vcore_preempt(vc);
2642 /* Let something else run */
2643 cond_resched_lock(&vc->lock);
2644 if (vc->vcore_state == VCORE_PREEMPT)
2645 kvmppc_vcore_end_preempt(vc);
2646 } else {
2647 kvmppc_run_core(vc);
2649 vc->runner = NULL;
2652 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2653 (vc->vcore_state == VCORE_RUNNING ||
2654 vc->vcore_state == VCORE_EXITING ||
2655 vc->vcore_state == VCORE_PIGGYBACK))
2656 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2658 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2659 kvmppc_vcore_end_preempt(vc);
2661 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2662 kvmppc_remove_runnable(vc, vcpu);
2663 vcpu->stat.signal_exits++;
2664 kvm_run->exit_reason = KVM_EXIT_INTR;
2665 vcpu->arch.ret = -EINTR;
2668 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2669 /* Wake up some vcpu to run the core */
2670 v = list_first_entry(&vc->runnable_threads,
2671 struct kvm_vcpu, arch.run_list);
2672 wake_up(&v->arch.cpu_run);
2675 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2676 spin_unlock(&vc->lock);
2677 return vcpu->arch.ret;
2680 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2682 int r;
2683 int srcu_idx;
2685 if (!vcpu->arch.sane) {
2686 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2687 return -EINVAL;
2690 kvmppc_core_prepare_to_enter(vcpu);
2692 /* No need to go into the guest when all we'll do is come back out */
2693 if (signal_pending(current)) {
2694 run->exit_reason = KVM_EXIT_INTR;
2695 return -EINTR;
2698 atomic_inc(&vcpu->kvm->arch.vcpus_running);
2699 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2700 smp_mb();
2702 /* On the first time here, set up HTAB and VRMA */
2703 if (!vcpu->kvm->arch.hpte_setup_done) {
2704 r = kvmppc_hv_setup_htab_rma(vcpu);
2705 if (r)
2706 goto out;
2709 flush_fp_to_thread(current);
2710 flush_altivec_to_thread(current);
2711 flush_vsx_to_thread(current);
2712 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2713 vcpu->arch.pgdir = current->mm->pgd;
2714 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2716 do {
2717 r = kvmppc_run_vcpu(run, vcpu);
2719 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2720 !(vcpu->arch.shregs.msr & MSR_PR)) {
2721 trace_kvm_hcall_enter(vcpu);
2722 r = kvmppc_pseries_do_hcall(vcpu);
2723 trace_kvm_hcall_exit(vcpu, r);
2724 kvmppc_core_prepare_to_enter(vcpu);
2725 } else if (r == RESUME_PAGE_FAULT) {
2726 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2727 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2728 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2729 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2731 } while (is_kvmppc_resume_guest(r));
2733 out:
2734 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2735 atomic_dec(&vcpu->kvm->arch.vcpus_running);
2736 return r;
2739 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2740 int linux_psize)
2742 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2744 if (!def->shift)
2745 return;
2746 (*sps)->page_shift = def->shift;
2747 (*sps)->slb_enc = def->sllp;
2748 (*sps)->enc[0].page_shift = def->shift;
2749 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2751 * Add 16MB MPSS support if host supports it
2753 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2754 (*sps)->enc[1].page_shift = 24;
2755 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2757 (*sps)++;
2760 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2761 struct kvm_ppc_smmu_info *info)
2763 struct kvm_ppc_one_seg_page_size *sps;
2765 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2766 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2767 info->flags |= KVM_PPC_1T_SEGMENTS;
2768 info->slb_size = mmu_slb_size;
2770 /* We only support these sizes for now, and no muti-size segments */
2771 sps = &info->sps[0];
2772 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2773 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2774 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2776 return 0;
2780 * Get (and clear) the dirty memory log for a memory slot.
2782 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2783 struct kvm_dirty_log *log)
2785 struct kvm_memslots *slots;
2786 struct kvm_memory_slot *memslot;
2787 int r;
2788 unsigned long n;
2790 mutex_lock(&kvm->slots_lock);
2792 r = -EINVAL;
2793 if (log->slot >= KVM_USER_MEM_SLOTS)
2794 goto out;
2796 slots = kvm_memslots(kvm);
2797 memslot = id_to_memslot(slots, log->slot);
2798 r = -ENOENT;
2799 if (!memslot->dirty_bitmap)
2800 goto out;
2802 n = kvm_dirty_bitmap_bytes(memslot);
2803 memset(memslot->dirty_bitmap, 0, n);
2805 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2806 if (r)
2807 goto out;
2809 r = -EFAULT;
2810 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2811 goto out;
2813 r = 0;
2814 out:
2815 mutex_unlock(&kvm->slots_lock);
2816 return r;
2819 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2820 struct kvm_memory_slot *dont)
2822 if (!dont || free->arch.rmap != dont->arch.rmap) {
2823 vfree(free->arch.rmap);
2824 free->arch.rmap = NULL;
2828 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2829 unsigned long npages)
2831 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2832 if (!slot->arch.rmap)
2833 return -ENOMEM;
2835 return 0;
2838 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2839 struct kvm_memory_slot *memslot,
2840 const struct kvm_userspace_memory_region *mem)
2842 return 0;
2845 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2846 const struct kvm_userspace_memory_region *mem,
2847 const struct kvm_memory_slot *old,
2848 const struct kvm_memory_slot *new)
2850 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2851 struct kvm_memslots *slots;
2852 struct kvm_memory_slot *memslot;
2854 if (npages && old->npages) {
2856 * If modifying a memslot, reset all the rmap dirty bits.
2857 * If this is a new memslot, we don't need to do anything
2858 * since the rmap array starts out as all zeroes,
2859 * i.e. no pages are dirty.
2861 slots = kvm_memslots(kvm);
2862 memslot = id_to_memslot(slots, mem->slot);
2863 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2868 * Update LPCR values in kvm->arch and in vcores.
2869 * Caller must hold kvm->lock.
2871 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2873 long int i;
2874 u32 cores_done = 0;
2876 if ((kvm->arch.lpcr & mask) == lpcr)
2877 return;
2879 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2881 for (i = 0; i < KVM_MAX_VCORES; ++i) {
2882 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2883 if (!vc)
2884 continue;
2885 spin_lock(&vc->lock);
2886 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2887 spin_unlock(&vc->lock);
2888 if (++cores_done >= kvm->arch.online_vcores)
2889 break;
2893 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2895 return;
2898 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2900 int err = 0;
2901 struct kvm *kvm = vcpu->kvm;
2902 unsigned long hva;
2903 struct kvm_memory_slot *memslot;
2904 struct vm_area_struct *vma;
2905 unsigned long lpcr = 0, senc;
2906 unsigned long psize, porder;
2907 int srcu_idx;
2909 mutex_lock(&kvm->lock);
2910 if (kvm->arch.hpte_setup_done)
2911 goto out; /* another vcpu beat us to it */
2913 /* Allocate hashed page table (if not done already) and reset it */
2914 if (!kvm->arch.hpt_virt) {
2915 err = kvmppc_alloc_hpt(kvm, NULL);
2916 if (err) {
2917 pr_err("KVM: Couldn't alloc HPT\n");
2918 goto out;
2922 /* Look up the memslot for guest physical address 0 */
2923 srcu_idx = srcu_read_lock(&kvm->srcu);
2924 memslot = gfn_to_memslot(kvm, 0);
2926 /* We must have some memory at 0 by now */
2927 err = -EINVAL;
2928 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2929 goto out_srcu;
2931 /* Look up the VMA for the start of this memory slot */
2932 hva = memslot->userspace_addr;
2933 down_read(&current->mm->mmap_sem);
2934 vma = find_vma(current->mm, hva);
2935 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2936 goto up_out;
2938 psize = vma_kernel_pagesize(vma);
2939 porder = __ilog2(psize);
2941 up_read(&current->mm->mmap_sem);
2943 /* We can handle 4k, 64k or 16M pages in the VRMA */
2944 err = -EINVAL;
2945 if (!(psize == 0x1000 || psize == 0x10000 ||
2946 psize == 0x1000000))
2947 goto out_srcu;
2949 /* Update VRMASD field in the LPCR */
2950 senc = slb_pgsize_encoding(psize);
2951 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2952 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2953 /* the -4 is to account for senc values starting at 0x10 */
2954 lpcr = senc << (LPCR_VRMASD_SH - 4);
2956 /* Create HPTEs in the hash page table for the VRMA */
2957 kvmppc_map_vrma(vcpu, memslot, porder);
2959 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2961 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2962 smp_wmb();
2963 kvm->arch.hpte_setup_done = 1;
2964 err = 0;
2965 out_srcu:
2966 srcu_read_unlock(&kvm->srcu, srcu_idx);
2967 out:
2968 mutex_unlock(&kvm->lock);
2969 return err;
2971 up_out:
2972 up_read(&current->mm->mmap_sem);
2973 goto out_srcu;
2976 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2978 unsigned long lpcr, lpid;
2979 char buf[32];
2981 /* Allocate the guest's logical partition ID */
2983 lpid = kvmppc_alloc_lpid();
2984 if ((long)lpid < 0)
2985 return -ENOMEM;
2986 kvm->arch.lpid = lpid;
2989 * Since we don't flush the TLB when tearing down a VM,
2990 * and this lpid might have previously been used,
2991 * make sure we flush on each core before running the new VM.
2993 cpumask_setall(&kvm->arch.need_tlb_flush);
2995 /* Start out with the default set of hcalls enabled */
2996 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2997 sizeof(kvm->arch.enabled_hcalls));
2999 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3001 /* Init LPCR for virtual RMA mode */
3002 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3003 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3004 lpcr &= LPCR_PECE | LPCR_LPES;
3005 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3006 LPCR_VPM0 | LPCR_VPM1;
3007 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3008 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3009 /* On POWER8 turn on online bit to enable PURR/SPURR */
3010 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3011 lpcr |= LPCR_ONL;
3012 kvm->arch.lpcr = lpcr;
3015 * Track that we now have a HV mode VM active. This blocks secondary
3016 * CPU threads from coming online.
3018 kvm_hv_vm_activated();
3021 * Create a debugfs directory for the VM
3023 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3024 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3025 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3026 kvmppc_mmu_debugfs_init(kvm);
3028 return 0;
3031 static void kvmppc_free_vcores(struct kvm *kvm)
3033 long int i;
3035 for (i = 0; i < KVM_MAX_VCORES; ++i)
3036 kfree(kvm->arch.vcores[i]);
3037 kvm->arch.online_vcores = 0;
3040 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3042 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3044 kvm_hv_vm_deactivated();
3046 kvmppc_free_vcores(kvm);
3048 kvmppc_free_hpt(kvm);
3051 /* We don't need to emulate any privileged instructions or dcbz */
3052 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3053 unsigned int inst, int *advance)
3055 return EMULATE_FAIL;
3058 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3059 ulong spr_val)
3061 return EMULATE_FAIL;
3064 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3065 ulong *spr_val)
3067 return EMULATE_FAIL;
3070 static int kvmppc_core_check_processor_compat_hv(void)
3072 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3073 !cpu_has_feature(CPU_FTR_ARCH_206))
3074 return -EIO;
3075 return 0;
3078 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3079 unsigned int ioctl, unsigned long arg)
3081 struct kvm *kvm __maybe_unused = filp->private_data;
3082 void __user *argp = (void __user *)arg;
3083 long r;
3085 switch (ioctl) {
3087 case KVM_PPC_ALLOCATE_HTAB: {
3088 u32 htab_order;
3090 r = -EFAULT;
3091 if (get_user(htab_order, (u32 __user *)argp))
3092 break;
3093 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3094 if (r)
3095 break;
3096 r = -EFAULT;
3097 if (put_user(htab_order, (u32 __user *)argp))
3098 break;
3099 r = 0;
3100 break;
3103 case KVM_PPC_GET_HTAB_FD: {
3104 struct kvm_get_htab_fd ghf;
3106 r = -EFAULT;
3107 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3108 break;
3109 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3110 break;
3113 default:
3114 r = -ENOTTY;
3117 return r;
3121 * List of hcall numbers to enable by default.
3122 * For compatibility with old userspace, we enable by default
3123 * all hcalls that were implemented before the hcall-enabling
3124 * facility was added. Note this list should not include H_RTAS.
3126 static unsigned int default_hcall_list[] = {
3127 H_REMOVE,
3128 H_ENTER,
3129 H_READ,
3130 H_PROTECT,
3131 H_BULK_REMOVE,
3132 H_GET_TCE,
3133 H_PUT_TCE,
3134 H_SET_DABR,
3135 H_SET_XDABR,
3136 H_CEDE,
3137 H_PROD,
3138 H_CONFER,
3139 H_REGISTER_VPA,
3140 #ifdef CONFIG_KVM_XICS
3141 H_EOI,
3142 H_CPPR,
3143 H_IPI,
3144 H_IPOLL,
3145 H_XIRR,
3146 H_XIRR_X,
3147 #endif
3151 static void init_default_hcalls(void)
3153 int i;
3154 unsigned int hcall;
3156 for (i = 0; default_hcall_list[i]; ++i) {
3157 hcall = default_hcall_list[i];
3158 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3159 __set_bit(hcall / 4, default_enabled_hcalls);
3163 static struct kvmppc_ops kvm_ops_hv = {
3164 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3165 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3166 .get_one_reg = kvmppc_get_one_reg_hv,
3167 .set_one_reg = kvmppc_set_one_reg_hv,
3168 .vcpu_load = kvmppc_core_vcpu_load_hv,
3169 .vcpu_put = kvmppc_core_vcpu_put_hv,
3170 .set_msr = kvmppc_set_msr_hv,
3171 .vcpu_run = kvmppc_vcpu_run_hv,
3172 .vcpu_create = kvmppc_core_vcpu_create_hv,
3173 .vcpu_free = kvmppc_core_vcpu_free_hv,
3174 .check_requests = kvmppc_core_check_requests_hv,
3175 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3176 .flush_memslot = kvmppc_core_flush_memslot_hv,
3177 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3178 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3179 .unmap_hva = kvm_unmap_hva_hv,
3180 .unmap_hva_range = kvm_unmap_hva_range_hv,
3181 .age_hva = kvm_age_hva_hv,
3182 .test_age_hva = kvm_test_age_hva_hv,
3183 .set_spte_hva = kvm_set_spte_hva_hv,
3184 .mmu_destroy = kvmppc_mmu_destroy_hv,
3185 .free_memslot = kvmppc_core_free_memslot_hv,
3186 .create_memslot = kvmppc_core_create_memslot_hv,
3187 .init_vm = kvmppc_core_init_vm_hv,
3188 .destroy_vm = kvmppc_core_destroy_vm_hv,
3189 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3190 .emulate_op = kvmppc_core_emulate_op_hv,
3191 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3192 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3193 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3194 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
3195 .hcall_implemented = kvmppc_hcall_impl_hv,
3198 static int kvmppc_book3s_init_hv(void)
3200 int r;
3202 * FIXME!! Do we need to check on all cpus ?
3204 r = kvmppc_core_check_processor_compat_hv();
3205 if (r < 0)
3206 return -ENODEV;
3208 kvm_ops_hv.owner = THIS_MODULE;
3209 kvmppc_hv_ops = &kvm_ops_hv;
3211 init_default_hcalls();
3213 init_vcore_lists();
3215 r = kvmppc_mmu_hv_init();
3216 return r;
3219 static void kvmppc_book3s_exit_hv(void)
3221 kvmppc_hv_ops = NULL;
3224 module_init(kvmppc_book3s_init_hv);
3225 module_exit(kvmppc_book3s_exit_hv);
3226 MODULE_LICENSE("GPL");
3227 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3228 MODULE_ALIAS("devname:kvm");