2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
62 #define CREATE_TRACE_POINTS
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL (~(u64)0)
75 static DECLARE_BITMAP(default_enabled_hcalls
, MAX_HCALL_OPCODE
/4 + 1);
77 static int dynamic_mt_modes
= 6;
78 module_param(dynamic_mt_modes
, int, S_IRUGO
| S_IWUSR
);
79 MODULE_PARM_DESC(dynamic_mt_modes
, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode
;
81 module_param(target_smt_mode
, int, S_IRUGO
| S_IWUSR
);
82 MODULE_PARM_DESC(target_smt_mode
, "Target threads per core (0 = max)");
84 static void kvmppc_end_cede(struct kvm_vcpu
*vcpu
);
85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu
*vcpu
);
87 static bool kvmppc_ipi_thread(int cpu
)
89 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
90 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
92 if (cpu_first_thread_sibling(cpu
) ==
93 cpu_first_thread_sibling(smp_processor_id())) {
94 unsigned long msg
= PPC_DBELL_TYPE(PPC_DBELL_SERVER
);
95 msg
|= cpu_thread_in_core(cpu
);
97 __asm__
__volatile__ (PPC_MSGSND(%0) : : "r" (msg
));
104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
105 if (cpu
>= 0 && cpu
< nr_cpu_ids
&& paca
[cpu
].kvm_hstate
.xics_phys
) {
114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu
*vcpu
)
117 wait_queue_head_t
*wqp
;
119 wqp
= kvm_arch_vcpu_wq(vcpu
);
120 if (waitqueue_active(wqp
)) {
121 wake_up_interruptible(wqp
);
122 ++vcpu
->stat
.halt_wakeup
;
125 if (kvmppc_ipi_thread(vcpu
->arch
.thread_cpu
))
128 /* CPU points to the first thread of the core */
130 if (cpu
>= 0 && cpu
< nr_cpu_ids
&& cpu_online(cpu
))
131 smp_send_reschedule(cpu
);
135 * We use the vcpu_load/put functions to measure stolen time.
136 * Stolen time is counted as time when either the vcpu is able to
137 * run as part of a virtual core, but the task running the vcore
138 * is preempted or sleeping, or when the vcpu needs something done
139 * in the kernel by the task running the vcpu, but that task is
140 * preempted or sleeping. Those two things have to be counted
141 * separately, since one of the vcpu tasks will take on the job
142 * of running the core, and the other vcpu tasks in the vcore will
143 * sleep waiting for it to do that, but that sleep shouldn't count
146 * Hence we accumulate stolen time when the vcpu can run as part of
147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148 * needs its task to do other things in the kernel (for example,
149 * service a page fault) in busy_stolen. We don't accumulate
150 * stolen time for a vcore when it is inactive, or for a vcpu
151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
152 * a misnomer; it means that the vcpu task is not executing in
153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154 * the kernel. We don't have any way of dividing up that time
155 * between time that the vcpu is genuinely stopped, time that
156 * the task is actively working on behalf of the vcpu, and time
157 * that the task is preempted, so we don't count any of it as
160 * Updates to busy_stolen are protected by arch.tbacct_lock;
161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162 * lock. The stolen times are measured in units of timebase ticks.
163 * (Note that the != TB_NIL checks below are purely defensive;
164 * they should never fail.)
167 static void kvmppc_core_start_stolen(struct kvmppc_vcore
*vc
)
171 spin_lock_irqsave(&vc
->stoltb_lock
, flags
);
172 vc
->preempt_tb
= mftb();
173 spin_unlock_irqrestore(&vc
->stoltb_lock
, flags
);
176 static void kvmppc_core_end_stolen(struct kvmppc_vcore
*vc
)
180 spin_lock_irqsave(&vc
->stoltb_lock
, flags
);
181 if (vc
->preempt_tb
!= TB_NIL
) {
182 vc
->stolen_tb
+= mftb() - vc
->preempt_tb
;
183 vc
->preempt_tb
= TB_NIL
;
185 spin_unlock_irqrestore(&vc
->stoltb_lock
, flags
);
188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu
*vcpu
, int cpu
)
190 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
194 * We can test vc->runner without taking the vcore lock,
195 * because only this task ever sets vc->runner to this
196 * vcpu, and once it is set to this vcpu, only this task
197 * ever sets it to NULL.
199 if (vc
->runner
== vcpu
&& vc
->vcore_state
>= VCORE_SLEEPING
)
200 kvmppc_core_end_stolen(vc
);
202 spin_lock_irqsave(&vcpu
->arch
.tbacct_lock
, flags
);
203 if (vcpu
->arch
.state
== KVMPPC_VCPU_BUSY_IN_HOST
&&
204 vcpu
->arch
.busy_preempt
!= TB_NIL
) {
205 vcpu
->arch
.busy_stolen
+= mftb() - vcpu
->arch
.busy_preempt
;
206 vcpu
->arch
.busy_preempt
= TB_NIL
;
208 spin_unlock_irqrestore(&vcpu
->arch
.tbacct_lock
, flags
);
211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu
*vcpu
)
213 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
216 if (vc
->runner
== vcpu
&& vc
->vcore_state
>= VCORE_SLEEPING
)
217 kvmppc_core_start_stolen(vc
);
219 spin_lock_irqsave(&vcpu
->arch
.tbacct_lock
, flags
);
220 if (vcpu
->arch
.state
== KVMPPC_VCPU_BUSY_IN_HOST
)
221 vcpu
->arch
.busy_preempt
= mftb();
222 spin_unlock_irqrestore(&vcpu
->arch
.tbacct_lock
, flags
);
225 static void kvmppc_set_msr_hv(struct kvm_vcpu
*vcpu
, u64 msr
)
228 * Check for illegal transactional state bit combination
229 * and if we find it, force the TS field to a safe state.
231 if ((msr
& MSR_TS_MASK
) == MSR_TS_MASK
)
233 vcpu
->arch
.shregs
.msr
= msr
;
234 kvmppc_end_cede(vcpu
);
237 static void kvmppc_set_pvr_hv(struct kvm_vcpu
*vcpu
, u32 pvr
)
239 vcpu
->arch
.pvr
= pvr
;
242 static int kvmppc_set_arch_compat(struct kvm_vcpu
*vcpu
, u32 arch_compat
)
244 unsigned long pcr
= 0;
245 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
248 switch (arch_compat
) {
251 * If an arch bit is set in PCR, all the defined
252 * higher-order arch bits also have to be set.
254 pcr
= PCR_ARCH_206
| PCR_ARCH_205
;
266 if (!cpu_has_feature(CPU_FTR_ARCH_207S
)) {
267 /* POWER7 can't emulate POWER8 */
268 if (!(pcr
& PCR_ARCH_206
))
270 pcr
&= ~PCR_ARCH_206
;
274 spin_lock(&vc
->lock
);
275 vc
->arch_compat
= arch_compat
;
277 spin_unlock(&vc
->lock
);
282 static void kvmppc_dump_regs(struct kvm_vcpu
*vcpu
)
286 pr_err("vcpu %p (%d):\n", vcpu
, vcpu
->vcpu_id
);
287 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
288 vcpu
->arch
.pc
, vcpu
->arch
.shregs
.msr
, vcpu
->arch
.trap
);
289 for (r
= 0; r
< 16; ++r
)
290 pr_err("r%2d = %.16lx r%d = %.16lx\n",
291 r
, kvmppc_get_gpr(vcpu
, r
),
292 r
+16, kvmppc_get_gpr(vcpu
, r
+16));
293 pr_err("ctr = %.16lx lr = %.16lx\n",
294 vcpu
->arch
.ctr
, vcpu
->arch
.lr
);
295 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
296 vcpu
->arch
.shregs
.srr0
, vcpu
->arch
.shregs
.srr1
);
297 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
298 vcpu
->arch
.shregs
.sprg0
, vcpu
->arch
.shregs
.sprg1
);
299 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
300 vcpu
->arch
.shregs
.sprg2
, vcpu
->arch
.shregs
.sprg3
);
301 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
302 vcpu
->arch
.cr
, vcpu
->arch
.xer
, vcpu
->arch
.shregs
.dsisr
);
303 pr_err("dar = %.16llx\n", vcpu
->arch
.shregs
.dar
);
304 pr_err("fault dar = %.16lx dsisr = %.8x\n",
305 vcpu
->arch
.fault_dar
, vcpu
->arch
.fault_dsisr
);
306 pr_err("SLB (%d entries):\n", vcpu
->arch
.slb_max
);
307 for (r
= 0; r
< vcpu
->arch
.slb_max
; ++r
)
308 pr_err(" ESID = %.16llx VSID = %.16llx\n",
309 vcpu
->arch
.slb
[r
].orige
, vcpu
->arch
.slb
[r
].origv
);
310 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
311 vcpu
->arch
.vcore
->lpcr
, vcpu
->kvm
->arch
.sdr1
,
312 vcpu
->arch
.last_inst
);
315 static struct kvm_vcpu
*kvmppc_find_vcpu(struct kvm
*kvm
, int id
)
318 struct kvm_vcpu
*v
, *ret
= NULL
;
320 mutex_lock(&kvm
->lock
);
321 kvm_for_each_vcpu(r
, v
, kvm
) {
322 if (v
->vcpu_id
== id
) {
327 mutex_unlock(&kvm
->lock
);
331 static void init_vpa(struct kvm_vcpu
*vcpu
, struct lppaca
*vpa
)
333 vpa
->__old_status
|= LPPACA_OLD_SHARED_PROC
;
334 vpa
->yield_count
= cpu_to_be32(1);
337 static int set_vpa(struct kvm_vcpu
*vcpu
, struct kvmppc_vpa
*v
,
338 unsigned long addr
, unsigned long len
)
340 /* check address is cacheline aligned */
341 if (addr
& (L1_CACHE_BYTES
- 1))
343 spin_lock(&vcpu
->arch
.vpa_update_lock
);
344 if (v
->next_gpa
!= addr
|| v
->len
!= len
) {
346 v
->len
= addr
? len
: 0;
347 v
->update_pending
= 1;
349 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
353 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
362 static int vpa_is_registered(struct kvmppc_vpa
*vpap
)
364 if (vpap
->update_pending
)
365 return vpap
->next_gpa
!= 0;
366 return vpap
->pinned_addr
!= NULL
;
369 static unsigned long do_h_register_vpa(struct kvm_vcpu
*vcpu
,
371 unsigned long vcpuid
, unsigned long vpa
)
373 struct kvm
*kvm
= vcpu
->kvm
;
374 unsigned long len
, nb
;
376 struct kvm_vcpu
*tvcpu
;
379 struct kvmppc_vpa
*vpap
;
381 tvcpu
= kvmppc_find_vcpu(kvm
, vcpuid
);
385 subfunc
= (flags
>> H_VPA_FUNC_SHIFT
) & H_VPA_FUNC_MASK
;
386 if (subfunc
== H_VPA_REG_VPA
|| subfunc
== H_VPA_REG_DTL
||
387 subfunc
== H_VPA_REG_SLB
) {
388 /* Registering new area - address must be cache-line aligned */
389 if ((vpa
& (L1_CACHE_BYTES
- 1)) || !vpa
)
392 /* convert logical addr to kernel addr and read length */
393 va
= kvmppc_pin_guest_page(kvm
, vpa
, &nb
);
396 if (subfunc
== H_VPA_REG_VPA
)
397 len
= be16_to_cpu(((struct reg_vpa
*)va
)->length
.hword
);
399 len
= be32_to_cpu(((struct reg_vpa
*)va
)->length
.word
);
400 kvmppc_unpin_guest_page(kvm
, va
, vpa
, false);
403 if (len
> nb
|| len
< sizeof(struct reg_vpa
))
412 spin_lock(&tvcpu
->arch
.vpa_update_lock
);
415 case H_VPA_REG_VPA
: /* register VPA */
416 if (len
< sizeof(struct lppaca
))
418 vpap
= &tvcpu
->arch
.vpa
;
422 case H_VPA_REG_DTL
: /* register DTL */
423 if (len
< sizeof(struct dtl_entry
))
425 len
-= len
% sizeof(struct dtl_entry
);
427 /* Check that they have previously registered a VPA */
429 if (!vpa_is_registered(&tvcpu
->arch
.vpa
))
432 vpap
= &tvcpu
->arch
.dtl
;
436 case H_VPA_REG_SLB
: /* register SLB shadow buffer */
437 /* Check that they have previously registered a VPA */
439 if (!vpa_is_registered(&tvcpu
->arch
.vpa
))
442 vpap
= &tvcpu
->arch
.slb_shadow
;
446 case H_VPA_DEREG_VPA
: /* deregister VPA */
447 /* Check they don't still have a DTL or SLB buf registered */
449 if (vpa_is_registered(&tvcpu
->arch
.dtl
) ||
450 vpa_is_registered(&tvcpu
->arch
.slb_shadow
))
453 vpap
= &tvcpu
->arch
.vpa
;
457 case H_VPA_DEREG_DTL
: /* deregister DTL */
458 vpap
= &tvcpu
->arch
.dtl
;
462 case H_VPA_DEREG_SLB
: /* deregister SLB shadow buffer */
463 vpap
= &tvcpu
->arch
.slb_shadow
;
469 vpap
->next_gpa
= vpa
;
471 vpap
->update_pending
= 1;
474 spin_unlock(&tvcpu
->arch
.vpa_update_lock
);
479 static void kvmppc_update_vpa(struct kvm_vcpu
*vcpu
, struct kvmppc_vpa
*vpap
)
481 struct kvm
*kvm
= vcpu
->kvm
;
487 * We need to pin the page pointed to by vpap->next_gpa,
488 * but we can't call kvmppc_pin_guest_page under the lock
489 * as it does get_user_pages() and down_read(). So we
490 * have to drop the lock, pin the page, then get the lock
491 * again and check that a new area didn't get registered
495 gpa
= vpap
->next_gpa
;
496 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
500 va
= kvmppc_pin_guest_page(kvm
, gpa
, &nb
);
501 spin_lock(&vcpu
->arch
.vpa_update_lock
);
502 if (gpa
== vpap
->next_gpa
)
504 /* sigh... unpin that one and try again */
506 kvmppc_unpin_guest_page(kvm
, va
, gpa
, false);
509 vpap
->update_pending
= 0;
510 if (va
&& nb
< vpap
->len
) {
512 * If it's now too short, it must be that userspace
513 * has changed the mappings underlying guest memory,
514 * so unregister the region.
516 kvmppc_unpin_guest_page(kvm
, va
, gpa
, false);
519 if (vpap
->pinned_addr
)
520 kvmppc_unpin_guest_page(kvm
, vpap
->pinned_addr
, vpap
->gpa
,
523 vpap
->pinned_addr
= va
;
526 vpap
->pinned_end
= va
+ vpap
->len
;
529 static void kvmppc_update_vpas(struct kvm_vcpu
*vcpu
)
531 if (!(vcpu
->arch
.vpa
.update_pending
||
532 vcpu
->arch
.slb_shadow
.update_pending
||
533 vcpu
->arch
.dtl
.update_pending
))
536 spin_lock(&vcpu
->arch
.vpa_update_lock
);
537 if (vcpu
->arch
.vpa
.update_pending
) {
538 kvmppc_update_vpa(vcpu
, &vcpu
->arch
.vpa
);
539 if (vcpu
->arch
.vpa
.pinned_addr
)
540 init_vpa(vcpu
, vcpu
->arch
.vpa
.pinned_addr
);
542 if (vcpu
->arch
.dtl
.update_pending
) {
543 kvmppc_update_vpa(vcpu
, &vcpu
->arch
.dtl
);
544 vcpu
->arch
.dtl_ptr
= vcpu
->arch
.dtl
.pinned_addr
;
545 vcpu
->arch
.dtl_index
= 0;
547 if (vcpu
->arch
.slb_shadow
.update_pending
)
548 kvmppc_update_vpa(vcpu
, &vcpu
->arch
.slb_shadow
);
549 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
553 * Return the accumulated stolen time for the vcore up until `now'.
554 * The caller should hold the vcore lock.
556 static u64
vcore_stolen_time(struct kvmppc_vcore
*vc
, u64 now
)
561 spin_lock_irqsave(&vc
->stoltb_lock
, flags
);
563 if (vc
->vcore_state
!= VCORE_INACTIVE
&&
564 vc
->preempt_tb
!= TB_NIL
)
565 p
+= now
- vc
->preempt_tb
;
566 spin_unlock_irqrestore(&vc
->stoltb_lock
, flags
);
570 static void kvmppc_create_dtl_entry(struct kvm_vcpu
*vcpu
,
571 struct kvmppc_vcore
*vc
)
573 struct dtl_entry
*dt
;
575 unsigned long stolen
;
576 unsigned long core_stolen
;
579 dt
= vcpu
->arch
.dtl_ptr
;
580 vpa
= vcpu
->arch
.vpa
.pinned_addr
;
582 core_stolen
= vcore_stolen_time(vc
, now
);
583 stolen
= core_stolen
- vcpu
->arch
.stolen_logged
;
584 vcpu
->arch
.stolen_logged
= core_stolen
;
585 spin_lock_irq(&vcpu
->arch
.tbacct_lock
);
586 stolen
+= vcpu
->arch
.busy_stolen
;
587 vcpu
->arch
.busy_stolen
= 0;
588 spin_unlock_irq(&vcpu
->arch
.tbacct_lock
);
591 memset(dt
, 0, sizeof(struct dtl_entry
));
592 dt
->dispatch_reason
= 7;
593 dt
->processor_id
= cpu_to_be16(vc
->pcpu
+ vcpu
->arch
.ptid
);
594 dt
->timebase
= cpu_to_be64(now
+ vc
->tb_offset
);
595 dt
->enqueue_to_dispatch_time
= cpu_to_be32(stolen
);
596 dt
->srr0
= cpu_to_be64(kvmppc_get_pc(vcpu
));
597 dt
->srr1
= cpu_to_be64(vcpu
->arch
.shregs
.msr
);
599 if (dt
== vcpu
->arch
.dtl
.pinned_end
)
600 dt
= vcpu
->arch
.dtl
.pinned_addr
;
601 vcpu
->arch
.dtl_ptr
= dt
;
602 /* order writing *dt vs. writing vpa->dtl_idx */
604 vpa
->dtl_idx
= cpu_to_be64(++vcpu
->arch
.dtl_index
);
605 vcpu
->arch
.dtl
.dirty
= true;
608 static bool kvmppc_power8_compatible(struct kvm_vcpu
*vcpu
)
610 if (vcpu
->arch
.vcore
->arch_compat
>= PVR_ARCH_207
)
612 if ((!vcpu
->arch
.vcore
->arch_compat
) &&
613 cpu_has_feature(CPU_FTR_ARCH_207S
))
618 static int kvmppc_h_set_mode(struct kvm_vcpu
*vcpu
, unsigned long mflags
,
619 unsigned long resource
, unsigned long value1
,
620 unsigned long value2
)
623 case H_SET_MODE_RESOURCE_SET_CIABR
:
624 if (!kvmppc_power8_compatible(vcpu
))
629 return H_UNSUPPORTED_FLAG_START
;
630 /* Guests can't breakpoint the hypervisor */
631 if ((value1
& CIABR_PRIV
) == CIABR_PRIV_HYPER
)
633 vcpu
->arch
.ciabr
= value1
;
635 case H_SET_MODE_RESOURCE_SET_DAWR
:
636 if (!kvmppc_power8_compatible(vcpu
))
639 return H_UNSUPPORTED_FLAG_START
;
640 if (value2
& DABRX_HYP
)
642 vcpu
->arch
.dawr
= value1
;
643 vcpu
->arch
.dawrx
= value2
;
650 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu
*target
)
652 struct kvmppc_vcore
*vcore
= target
->arch
.vcore
;
655 * We expect to have been called by the real mode handler
656 * (kvmppc_rm_h_confer()) which would have directly returned
657 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
658 * have useful work to do and should not confer) so we don't
662 spin_lock(&vcore
->lock
);
663 if (target
->arch
.state
== KVMPPC_VCPU_RUNNABLE
&&
664 vcore
->vcore_state
!= VCORE_INACTIVE
&&
666 target
= vcore
->runner
;
667 spin_unlock(&vcore
->lock
);
669 return kvm_vcpu_yield_to(target
);
672 static int kvmppc_get_yield_count(struct kvm_vcpu
*vcpu
)
675 struct lppaca
*lppaca
;
677 spin_lock(&vcpu
->arch
.vpa_update_lock
);
678 lppaca
= (struct lppaca
*)vcpu
->arch
.vpa
.pinned_addr
;
680 yield_count
= be32_to_cpu(lppaca
->yield_count
);
681 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
685 int kvmppc_pseries_do_hcall(struct kvm_vcpu
*vcpu
)
687 unsigned long req
= kvmppc_get_gpr(vcpu
, 3);
688 unsigned long target
, ret
= H_SUCCESS
;
690 struct kvm_vcpu
*tvcpu
;
693 if (req
<= MAX_HCALL_OPCODE
&&
694 !test_bit(req
/4, vcpu
->kvm
->arch
.enabled_hcalls
))
701 target
= kvmppc_get_gpr(vcpu
, 4);
702 tvcpu
= kvmppc_find_vcpu(vcpu
->kvm
, target
);
707 tvcpu
->arch
.prodded
= 1;
709 if (vcpu
->arch
.ceded
) {
710 if (waitqueue_active(&vcpu
->wq
)) {
711 wake_up_interruptible(&vcpu
->wq
);
712 vcpu
->stat
.halt_wakeup
++;
717 target
= kvmppc_get_gpr(vcpu
, 4);
720 tvcpu
= kvmppc_find_vcpu(vcpu
->kvm
, target
);
725 yield_count
= kvmppc_get_gpr(vcpu
, 5);
726 if (kvmppc_get_yield_count(tvcpu
) != yield_count
)
728 kvm_arch_vcpu_yield_to(tvcpu
);
731 ret
= do_h_register_vpa(vcpu
, kvmppc_get_gpr(vcpu
, 4),
732 kvmppc_get_gpr(vcpu
, 5),
733 kvmppc_get_gpr(vcpu
, 6));
736 if (list_empty(&vcpu
->kvm
->arch
.rtas_tokens
))
739 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
740 rc
= kvmppc_rtas_hcall(vcpu
);
741 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
748 /* Send the error out to userspace via KVM_RUN */
750 case H_LOGICAL_CI_LOAD
:
751 ret
= kvmppc_h_logical_ci_load(vcpu
);
752 if (ret
== H_TOO_HARD
)
755 case H_LOGICAL_CI_STORE
:
756 ret
= kvmppc_h_logical_ci_store(vcpu
);
757 if (ret
== H_TOO_HARD
)
761 ret
= kvmppc_h_set_mode(vcpu
, kvmppc_get_gpr(vcpu
, 4),
762 kvmppc_get_gpr(vcpu
, 5),
763 kvmppc_get_gpr(vcpu
, 6),
764 kvmppc_get_gpr(vcpu
, 7));
765 if (ret
== H_TOO_HARD
)
774 if (kvmppc_xics_enabled(vcpu
)) {
775 ret
= kvmppc_xics_hcall(vcpu
, req
);
781 kvmppc_set_gpr(vcpu
, 3, ret
);
782 vcpu
->arch
.hcall_needed
= 0;
786 static int kvmppc_hcall_impl_hv(unsigned long cmd
)
794 case H_LOGICAL_CI_LOAD
:
795 case H_LOGICAL_CI_STORE
:
796 #ifdef CONFIG_KVM_XICS
807 /* See if it's in the real-mode table */
808 return kvmppc_hcall_impl_hv_realmode(cmd
);
811 static int kvmppc_emulate_debug_inst(struct kvm_run
*run
,
812 struct kvm_vcpu
*vcpu
)
816 if (kvmppc_get_last_inst(vcpu
, INST_GENERIC
, &last_inst
) !=
819 * Fetch failed, so return to guest and
820 * try executing it again.
825 if (last_inst
== KVMPPC_INST_SW_BREAKPOINT
) {
826 run
->exit_reason
= KVM_EXIT_DEBUG
;
827 run
->debug
.arch
.address
= kvmppc_get_pc(vcpu
);
830 kvmppc_core_queue_program(vcpu
, SRR1_PROGILL
);
835 static int kvmppc_handle_exit_hv(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
836 struct task_struct
*tsk
)
840 vcpu
->stat
.sum_exits
++;
842 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
843 run
->ready_for_interrupt_injection
= 1;
844 switch (vcpu
->arch
.trap
) {
845 /* We're good on these - the host merely wanted to get our attention */
846 case BOOK3S_INTERRUPT_HV_DECREMENTER
:
847 vcpu
->stat
.dec_exits
++;
850 case BOOK3S_INTERRUPT_EXTERNAL
:
851 case BOOK3S_INTERRUPT_H_DOORBELL
:
852 vcpu
->stat
.ext_intr_exits
++;
855 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
856 case BOOK3S_INTERRUPT_HMI
:
857 case BOOK3S_INTERRUPT_PERFMON
:
860 case BOOK3S_INTERRUPT_MACHINE_CHECK
:
862 * Deliver a machine check interrupt to the guest.
863 * We have to do this, even if the host has handled the
864 * machine check, because machine checks use SRR0/1 and
865 * the interrupt might have trashed guest state in them.
867 kvmppc_book3s_queue_irqprio(vcpu
,
868 BOOK3S_INTERRUPT_MACHINE_CHECK
);
871 case BOOK3S_INTERRUPT_PROGRAM
:
875 * Normally program interrupts are delivered directly
876 * to the guest by the hardware, but we can get here
877 * as a result of a hypervisor emulation interrupt
878 * (e40) getting turned into a 700 by BML RTAS.
880 flags
= vcpu
->arch
.shregs
.msr
& 0x1f0000ull
;
881 kvmppc_core_queue_program(vcpu
, flags
);
885 case BOOK3S_INTERRUPT_SYSCALL
:
887 /* hcall - punt to userspace */
890 /* hypercall with MSR_PR has already been handled in rmode,
891 * and never reaches here.
894 run
->papr_hcall
.nr
= kvmppc_get_gpr(vcpu
, 3);
895 for (i
= 0; i
< 9; ++i
)
896 run
->papr_hcall
.args
[i
] = kvmppc_get_gpr(vcpu
, 4 + i
);
897 run
->exit_reason
= KVM_EXIT_PAPR_HCALL
;
898 vcpu
->arch
.hcall_needed
= 1;
903 * We get these next two if the guest accesses a page which it thinks
904 * it has mapped but which is not actually present, either because
905 * it is for an emulated I/O device or because the corresonding
906 * host page has been paged out. Any other HDSI/HISI interrupts
907 * have been handled already.
909 case BOOK3S_INTERRUPT_H_DATA_STORAGE
:
910 r
= RESUME_PAGE_FAULT
;
912 case BOOK3S_INTERRUPT_H_INST_STORAGE
:
913 vcpu
->arch
.fault_dar
= kvmppc_get_pc(vcpu
);
914 vcpu
->arch
.fault_dsisr
= 0;
915 r
= RESUME_PAGE_FAULT
;
918 * This occurs if the guest executes an illegal instruction.
919 * If the guest debug is disabled, generate a program interrupt
920 * to the guest. If guest debug is enabled, we need to check
921 * whether the instruction is a software breakpoint instruction.
922 * Accordingly return to Guest or Host.
924 case BOOK3S_INTERRUPT_H_EMUL_ASSIST
:
925 if (vcpu
->arch
.emul_inst
!= KVM_INST_FETCH_FAILED
)
926 vcpu
->arch
.last_inst
= kvmppc_need_byteswap(vcpu
) ?
927 swab32(vcpu
->arch
.emul_inst
) :
928 vcpu
->arch
.emul_inst
;
929 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
) {
930 r
= kvmppc_emulate_debug_inst(run
, vcpu
);
932 kvmppc_core_queue_program(vcpu
, SRR1_PROGILL
);
937 * This occurs if the guest (kernel or userspace), does something that
938 * is prohibited by HFSCR. We just generate a program interrupt to
941 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL
:
942 kvmppc_core_queue_program(vcpu
, SRR1_PROGILL
);
946 kvmppc_dump_regs(vcpu
);
947 printk(KERN_EMERG
"trap=0x%x | pc=0x%lx | msr=0x%llx\n",
948 vcpu
->arch
.trap
, kvmppc_get_pc(vcpu
),
949 vcpu
->arch
.shregs
.msr
);
950 run
->hw
.hardware_exit_reason
= vcpu
->arch
.trap
;
958 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu
*vcpu
,
959 struct kvm_sregs
*sregs
)
963 memset(sregs
, 0, sizeof(struct kvm_sregs
));
964 sregs
->pvr
= vcpu
->arch
.pvr
;
965 for (i
= 0; i
< vcpu
->arch
.slb_max
; i
++) {
966 sregs
->u
.s
.ppc64
.slb
[i
].slbe
= vcpu
->arch
.slb
[i
].orige
;
967 sregs
->u
.s
.ppc64
.slb
[i
].slbv
= vcpu
->arch
.slb
[i
].origv
;
973 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu
*vcpu
,
974 struct kvm_sregs
*sregs
)
978 /* Only accept the same PVR as the host's, since we can't spoof it */
979 if (sregs
->pvr
!= vcpu
->arch
.pvr
)
983 for (i
= 0; i
< vcpu
->arch
.slb_nr
; i
++) {
984 if (sregs
->u
.s
.ppc64
.slb
[i
].slbe
& SLB_ESID_V
) {
985 vcpu
->arch
.slb
[j
].orige
= sregs
->u
.s
.ppc64
.slb
[i
].slbe
;
986 vcpu
->arch
.slb
[j
].origv
= sregs
->u
.s
.ppc64
.slb
[i
].slbv
;
990 vcpu
->arch
.slb_max
= j
;
995 static void kvmppc_set_lpcr(struct kvm_vcpu
*vcpu
, u64 new_lpcr
,
998 struct kvm
*kvm
= vcpu
->kvm
;
999 struct kvmppc_vcore
*vc
= vcpu
->arch
.vcore
;
1002 mutex_lock(&kvm
->lock
);
1003 spin_lock(&vc
->lock
);
1005 * If ILE (interrupt little-endian) has changed, update the
1006 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1008 if ((new_lpcr
& LPCR_ILE
) != (vc
->lpcr
& LPCR_ILE
)) {
1009 struct kvm_vcpu
*vcpu
;
1012 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1013 if (vcpu
->arch
.vcore
!= vc
)
1015 if (new_lpcr
& LPCR_ILE
)
1016 vcpu
->arch
.intr_msr
|= MSR_LE
;
1018 vcpu
->arch
.intr_msr
&= ~MSR_LE
;
1023 * Userspace can only modify DPFD (default prefetch depth),
1024 * ILE (interrupt little-endian) and TC (translation control).
1025 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1027 mask
= LPCR_DPFD
| LPCR_ILE
| LPCR_TC
;
1028 if (cpu_has_feature(CPU_FTR_ARCH_207S
))
1031 /* Broken 32-bit version of LPCR must not clear top bits */
1034 vc
->lpcr
= (vc
->lpcr
& ~mask
) | (new_lpcr
& mask
);
1035 spin_unlock(&vc
->lock
);
1036 mutex_unlock(&kvm
->lock
);
1039 static int kvmppc_get_one_reg_hv(struct kvm_vcpu
*vcpu
, u64 id
,
1040 union kvmppc_one_reg
*val
)
1046 case KVM_REG_PPC_DEBUG_INST
:
1047 *val
= get_reg_val(id
, KVMPPC_INST_SW_BREAKPOINT
);
1049 case KVM_REG_PPC_HIOR
:
1050 *val
= get_reg_val(id
, 0);
1052 case KVM_REG_PPC_DABR
:
1053 *val
= get_reg_val(id
, vcpu
->arch
.dabr
);
1055 case KVM_REG_PPC_DABRX
:
1056 *val
= get_reg_val(id
, vcpu
->arch
.dabrx
);
1058 case KVM_REG_PPC_DSCR
:
1059 *val
= get_reg_val(id
, vcpu
->arch
.dscr
);
1061 case KVM_REG_PPC_PURR
:
1062 *val
= get_reg_val(id
, vcpu
->arch
.purr
);
1064 case KVM_REG_PPC_SPURR
:
1065 *val
= get_reg_val(id
, vcpu
->arch
.spurr
);
1067 case KVM_REG_PPC_AMR
:
1068 *val
= get_reg_val(id
, vcpu
->arch
.amr
);
1070 case KVM_REG_PPC_UAMOR
:
1071 *val
= get_reg_val(id
, vcpu
->arch
.uamor
);
1073 case KVM_REG_PPC_MMCR0
... KVM_REG_PPC_MMCRS
:
1074 i
= id
- KVM_REG_PPC_MMCR0
;
1075 *val
= get_reg_val(id
, vcpu
->arch
.mmcr
[i
]);
1077 case KVM_REG_PPC_PMC1
... KVM_REG_PPC_PMC8
:
1078 i
= id
- KVM_REG_PPC_PMC1
;
1079 *val
= get_reg_val(id
, vcpu
->arch
.pmc
[i
]);
1081 case KVM_REG_PPC_SPMC1
... KVM_REG_PPC_SPMC2
:
1082 i
= id
- KVM_REG_PPC_SPMC1
;
1083 *val
= get_reg_val(id
, vcpu
->arch
.spmc
[i
]);
1085 case KVM_REG_PPC_SIAR
:
1086 *val
= get_reg_val(id
, vcpu
->arch
.siar
);
1088 case KVM_REG_PPC_SDAR
:
1089 *val
= get_reg_val(id
, vcpu
->arch
.sdar
);
1091 case KVM_REG_PPC_SIER
:
1092 *val
= get_reg_val(id
, vcpu
->arch
.sier
);
1094 case KVM_REG_PPC_IAMR
:
1095 *val
= get_reg_val(id
, vcpu
->arch
.iamr
);
1097 case KVM_REG_PPC_PSPB
:
1098 *val
= get_reg_val(id
, vcpu
->arch
.pspb
);
1100 case KVM_REG_PPC_DPDES
:
1101 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->dpdes
);
1103 case KVM_REG_PPC_DAWR
:
1104 *val
= get_reg_val(id
, vcpu
->arch
.dawr
);
1106 case KVM_REG_PPC_DAWRX
:
1107 *val
= get_reg_val(id
, vcpu
->arch
.dawrx
);
1109 case KVM_REG_PPC_CIABR
:
1110 *val
= get_reg_val(id
, vcpu
->arch
.ciabr
);
1112 case KVM_REG_PPC_CSIGR
:
1113 *val
= get_reg_val(id
, vcpu
->arch
.csigr
);
1115 case KVM_REG_PPC_TACR
:
1116 *val
= get_reg_val(id
, vcpu
->arch
.tacr
);
1118 case KVM_REG_PPC_TCSCR
:
1119 *val
= get_reg_val(id
, vcpu
->arch
.tcscr
);
1121 case KVM_REG_PPC_PID
:
1122 *val
= get_reg_val(id
, vcpu
->arch
.pid
);
1124 case KVM_REG_PPC_ACOP
:
1125 *val
= get_reg_val(id
, vcpu
->arch
.acop
);
1127 case KVM_REG_PPC_WORT
:
1128 *val
= get_reg_val(id
, vcpu
->arch
.wort
);
1130 case KVM_REG_PPC_VPA_ADDR
:
1131 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1132 *val
= get_reg_val(id
, vcpu
->arch
.vpa
.next_gpa
);
1133 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1135 case KVM_REG_PPC_VPA_SLB
:
1136 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1137 val
->vpaval
.addr
= vcpu
->arch
.slb_shadow
.next_gpa
;
1138 val
->vpaval
.length
= vcpu
->arch
.slb_shadow
.len
;
1139 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1141 case KVM_REG_PPC_VPA_DTL
:
1142 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1143 val
->vpaval
.addr
= vcpu
->arch
.dtl
.next_gpa
;
1144 val
->vpaval
.length
= vcpu
->arch
.dtl
.len
;
1145 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1147 case KVM_REG_PPC_TB_OFFSET
:
1148 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->tb_offset
);
1150 case KVM_REG_PPC_LPCR
:
1151 case KVM_REG_PPC_LPCR_64
:
1152 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->lpcr
);
1154 case KVM_REG_PPC_PPR
:
1155 *val
= get_reg_val(id
, vcpu
->arch
.ppr
);
1157 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1158 case KVM_REG_PPC_TFHAR
:
1159 *val
= get_reg_val(id
, vcpu
->arch
.tfhar
);
1161 case KVM_REG_PPC_TFIAR
:
1162 *val
= get_reg_val(id
, vcpu
->arch
.tfiar
);
1164 case KVM_REG_PPC_TEXASR
:
1165 *val
= get_reg_val(id
, vcpu
->arch
.texasr
);
1167 case KVM_REG_PPC_TM_GPR0
... KVM_REG_PPC_TM_GPR31
:
1168 i
= id
- KVM_REG_PPC_TM_GPR0
;
1169 *val
= get_reg_val(id
, vcpu
->arch
.gpr_tm
[i
]);
1171 case KVM_REG_PPC_TM_VSR0
... KVM_REG_PPC_TM_VSR63
:
1174 i
= id
- KVM_REG_PPC_TM_VSR0
;
1176 for (j
= 0; j
< TS_FPRWIDTH
; j
++)
1177 val
->vsxval
[j
] = vcpu
->arch
.fp_tm
.fpr
[i
][j
];
1179 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1180 val
->vval
= vcpu
->arch
.vr_tm
.vr
[i
-32];
1186 case KVM_REG_PPC_TM_CR
:
1187 *val
= get_reg_val(id
, vcpu
->arch
.cr_tm
);
1189 case KVM_REG_PPC_TM_LR
:
1190 *val
= get_reg_val(id
, vcpu
->arch
.lr_tm
);
1192 case KVM_REG_PPC_TM_CTR
:
1193 *val
= get_reg_val(id
, vcpu
->arch
.ctr_tm
);
1195 case KVM_REG_PPC_TM_FPSCR
:
1196 *val
= get_reg_val(id
, vcpu
->arch
.fp_tm
.fpscr
);
1198 case KVM_REG_PPC_TM_AMR
:
1199 *val
= get_reg_val(id
, vcpu
->arch
.amr_tm
);
1201 case KVM_REG_PPC_TM_PPR
:
1202 *val
= get_reg_val(id
, vcpu
->arch
.ppr_tm
);
1204 case KVM_REG_PPC_TM_VRSAVE
:
1205 *val
= get_reg_val(id
, vcpu
->arch
.vrsave_tm
);
1207 case KVM_REG_PPC_TM_VSCR
:
1208 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1209 *val
= get_reg_val(id
, vcpu
->arch
.vr_tm
.vscr
.u
[3]);
1213 case KVM_REG_PPC_TM_DSCR
:
1214 *val
= get_reg_val(id
, vcpu
->arch
.dscr_tm
);
1216 case KVM_REG_PPC_TM_TAR
:
1217 *val
= get_reg_val(id
, vcpu
->arch
.tar_tm
);
1220 case KVM_REG_PPC_ARCH_COMPAT
:
1221 *val
= get_reg_val(id
, vcpu
->arch
.vcore
->arch_compat
);
1231 static int kvmppc_set_one_reg_hv(struct kvm_vcpu
*vcpu
, u64 id
,
1232 union kvmppc_one_reg
*val
)
1236 unsigned long addr
, len
;
1239 case KVM_REG_PPC_HIOR
:
1240 /* Only allow this to be set to zero */
1241 if (set_reg_val(id
, *val
))
1244 case KVM_REG_PPC_DABR
:
1245 vcpu
->arch
.dabr
= set_reg_val(id
, *val
);
1247 case KVM_REG_PPC_DABRX
:
1248 vcpu
->arch
.dabrx
= set_reg_val(id
, *val
) & ~DABRX_HYP
;
1250 case KVM_REG_PPC_DSCR
:
1251 vcpu
->arch
.dscr
= set_reg_val(id
, *val
);
1253 case KVM_REG_PPC_PURR
:
1254 vcpu
->arch
.purr
= set_reg_val(id
, *val
);
1256 case KVM_REG_PPC_SPURR
:
1257 vcpu
->arch
.spurr
= set_reg_val(id
, *val
);
1259 case KVM_REG_PPC_AMR
:
1260 vcpu
->arch
.amr
= set_reg_val(id
, *val
);
1262 case KVM_REG_PPC_UAMOR
:
1263 vcpu
->arch
.uamor
= set_reg_val(id
, *val
);
1265 case KVM_REG_PPC_MMCR0
... KVM_REG_PPC_MMCRS
:
1266 i
= id
- KVM_REG_PPC_MMCR0
;
1267 vcpu
->arch
.mmcr
[i
] = set_reg_val(id
, *val
);
1269 case KVM_REG_PPC_PMC1
... KVM_REG_PPC_PMC8
:
1270 i
= id
- KVM_REG_PPC_PMC1
;
1271 vcpu
->arch
.pmc
[i
] = set_reg_val(id
, *val
);
1273 case KVM_REG_PPC_SPMC1
... KVM_REG_PPC_SPMC2
:
1274 i
= id
- KVM_REG_PPC_SPMC1
;
1275 vcpu
->arch
.spmc
[i
] = set_reg_val(id
, *val
);
1277 case KVM_REG_PPC_SIAR
:
1278 vcpu
->arch
.siar
= set_reg_val(id
, *val
);
1280 case KVM_REG_PPC_SDAR
:
1281 vcpu
->arch
.sdar
= set_reg_val(id
, *val
);
1283 case KVM_REG_PPC_SIER
:
1284 vcpu
->arch
.sier
= set_reg_val(id
, *val
);
1286 case KVM_REG_PPC_IAMR
:
1287 vcpu
->arch
.iamr
= set_reg_val(id
, *val
);
1289 case KVM_REG_PPC_PSPB
:
1290 vcpu
->arch
.pspb
= set_reg_val(id
, *val
);
1292 case KVM_REG_PPC_DPDES
:
1293 vcpu
->arch
.vcore
->dpdes
= set_reg_val(id
, *val
);
1295 case KVM_REG_PPC_DAWR
:
1296 vcpu
->arch
.dawr
= set_reg_val(id
, *val
);
1298 case KVM_REG_PPC_DAWRX
:
1299 vcpu
->arch
.dawrx
= set_reg_val(id
, *val
) & ~DAWRX_HYP
;
1301 case KVM_REG_PPC_CIABR
:
1302 vcpu
->arch
.ciabr
= set_reg_val(id
, *val
);
1303 /* Don't allow setting breakpoints in hypervisor code */
1304 if ((vcpu
->arch
.ciabr
& CIABR_PRIV
) == CIABR_PRIV_HYPER
)
1305 vcpu
->arch
.ciabr
&= ~CIABR_PRIV
; /* disable */
1307 case KVM_REG_PPC_CSIGR
:
1308 vcpu
->arch
.csigr
= set_reg_val(id
, *val
);
1310 case KVM_REG_PPC_TACR
:
1311 vcpu
->arch
.tacr
= set_reg_val(id
, *val
);
1313 case KVM_REG_PPC_TCSCR
:
1314 vcpu
->arch
.tcscr
= set_reg_val(id
, *val
);
1316 case KVM_REG_PPC_PID
:
1317 vcpu
->arch
.pid
= set_reg_val(id
, *val
);
1319 case KVM_REG_PPC_ACOP
:
1320 vcpu
->arch
.acop
= set_reg_val(id
, *val
);
1322 case KVM_REG_PPC_WORT
:
1323 vcpu
->arch
.wort
= set_reg_val(id
, *val
);
1325 case KVM_REG_PPC_VPA_ADDR
:
1326 addr
= set_reg_val(id
, *val
);
1328 if (!addr
&& (vcpu
->arch
.slb_shadow
.next_gpa
||
1329 vcpu
->arch
.dtl
.next_gpa
))
1331 r
= set_vpa(vcpu
, &vcpu
->arch
.vpa
, addr
, sizeof(struct lppaca
));
1333 case KVM_REG_PPC_VPA_SLB
:
1334 addr
= val
->vpaval
.addr
;
1335 len
= val
->vpaval
.length
;
1337 if (addr
&& !vcpu
->arch
.vpa
.next_gpa
)
1339 r
= set_vpa(vcpu
, &vcpu
->arch
.slb_shadow
, addr
, len
);
1341 case KVM_REG_PPC_VPA_DTL
:
1342 addr
= val
->vpaval
.addr
;
1343 len
= val
->vpaval
.length
;
1345 if (addr
&& (len
< sizeof(struct dtl_entry
) ||
1346 !vcpu
->arch
.vpa
.next_gpa
))
1348 len
-= len
% sizeof(struct dtl_entry
);
1349 r
= set_vpa(vcpu
, &vcpu
->arch
.dtl
, addr
, len
);
1351 case KVM_REG_PPC_TB_OFFSET
:
1352 /* round up to multiple of 2^24 */
1353 vcpu
->arch
.vcore
->tb_offset
=
1354 ALIGN(set_reg_val(id
, *val
), 1UL << 24);
1356 case KVM_REG_PPC_LPCR
:
1357 kvmppc_set_lpcr(vcpu
, set_reg_val(id
, *val
), true);
1359 case KVM_REG_PPC_LPCR_64
:
1360 kvmppc_set_lpcr(vcpu
, set_reg_val(id
, *val
), false);
1362 case KVM_REG_PPC_PPR
:
1363 vcpu
->arch
.ppr
= set_reg_val(id
, *val
);
1365 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1366 case KVM_REG_PPC_TFHAR
:
1367 vcpu
->arch
.tfhar
= set_reg_val(id
, *val
);
1369 case KVM_REG_PPC_TFIAR
:
1370 vcpu
->arch
.tfiar
= set_reg_val(id
, *val
);
1372 case KVM_REG_PPC_TEXASR
:
1373 vcpu
->arch
.texasr
= set_reg_val(id
, *val
);
1375 case KVM_REG_PPC_TM_GPR0
... KVM_REG_PPC_TM_GPR31
:
1376 i
= id
- KVM_REG_PPC_TM_GPR0
;
1377 vcpu
->arch
.gpr_tm
[i
] = set_reg_val(id
, *val
);
1379 case KVM_REG_PPC_TM_VSR0
... KVM_REG_PPC_TM_VSR63
:
1382 i
= id
- KVM_REG_PPC_TM_VSR0
;
1384 for (j
= 0; j
< TS_FPRWIDTH
; j
++)
1385 vcpu
->arch
.fp_tm
.fpr
[i
][j
] = val
->vsxval
[j
];
1387 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1388 vcpu
->arch
.vr_tm
.vr
[i
-32] = val
->vval
;
1393 case KVM_REG_PPC_TM_CR
:
1394 vcpu
->arch
.cr_tm
= set_reg_val(id
, *val
);
1396 case KVM_REG_PPC_TM_LR
:
1397 vcpu
->arch
.lr_tm
= set_reg_val(id
, *val
);
1399 case KVM_REG_PPC_TM_CTR
:
1400 vcpu
->arch
.ctr_tm
= set_reg_val(id
, *val
);
1402 case KVM_REG_PPC_TM_FPSCR
:
1403 vcpu
->arch
.fp_tm
.fpscr
= set_reg_val(id
, *val
);
1405 case KVM_REG_PPC_TM_AMR
:
1406 vcpu
->arch
.amr_tm
= set_reg_val(id
, *val
);
1408 case KVM_REG_PPC_TM_PPR
:
1409 vcpu
->arch
.ppr_tm
= set_reg_val(id
, *val
);
1411 case KVM_REG_PPC_TM_VRSAVE
:
1412 vcpu
->arch
.vrsave_tm
= set_reg_val(id
, *val
);
1414 case KVM_REG_PPC_TM_VSCR
:
1415 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1416 vcpu
->arch
.vr
.vscr
.u
[3] = set_reg_val(id
, *val
);
1420 case KVM_REG_PPC_TM_DSCR
:
1421 vcpu
->arch
.dscr_tm
= set_reg_val(id
, *val
);
1423 case KVM_REG_PPC_TM_TAR
:
1424 vcpu
->arch
.tar_tm
= set_reg_val(id
, *val
);
1427 case KVM_REG_PPC_ARCH_COMPAT
:
1428 r
= kvmppc_set_arch_compat(vcpu
, set_reg_val(id
, *val
));
1438 static struct kvmppc_vcore
*kvmppc_vcore_create(struct kvm
*kvm
, int core
)
1440 struct kvmppc_vcore
*vcore
;
1442 vcore
= kzalloc(sizeof(struct kvmppc_vcore
), GFP_KERNEL
);
1447 INIT_LIST_HEAD(&vcore
->runnable_threads
);
1448 spin_lock_init(&vcore
->lock
);
1449 spin_lock_init(&vcore
->stoltb_lock
);
1450 init_waitqueue_head(&vcore
->wq
);
1451 vcore
->preempt_tb
= TB_NIL
;
1452 vcore
->lpcr
= kvm
->arch
.lpcr
;
1453 vcore
->first_vcpuid
= core
* threads_per_subcore
;
1455 INIT_LIST_HEAD(&vcore
->preempt_list
);
1460 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1461 static struct debugfs_timings_element
{
1465 {"rm_entry", offsetof(struct kvm_vcpu
, arch
.rm_entry
)},
1466 {"rm_intr", offsetof(struct kvm_vcpu
, arch
.rm_intr
)},
1467 {"rm_exit", offsetof(struct kvm_vcpu
, arch
.rm_exit
)},
1468 {"guest", offsetof(struct kvm_vcpu
, arch
.guest_time
)},
1469 {"cede", offsetof(struct kvm_vcpu
, arch
.cede_time
)},
1472 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1474 struct debugfs_timings_state
{
1475 struct kvm_vcpu
*vcpu
;
1476 unsigned int buflen
;
1477 char buf
[N_TIMINGS
* 100];
1480 static int debugfs_timings_open(struct inode
*inode
, struct file
*file
)
1482 struct kvm_vcpu
*vcpu
= inode
->i_private
;
1483 struct debugfs_timings_state
*p
;
1485 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1489 kvm_get_kvm(vcpu
->kvm
);
1491 file
->private_data
= p
;
1493 return nonseekable_open(inode
, file
);
1496 static int debugfs_timings_release(struct inode
*inode
, struct file
*file
)
1498 struct debugfs_timings_state
*p
= file
->private_data
;
1500 kvm_put_kvm(p
->vcpu
->kvm
);
1505 static ssize_t
debugfs_timings_read(struct file
*file
, char __user
*buf
,
1506 size_t len
, loff_t
*ppos
)
1508 struct debugfs_timings_state
*p
= file
->private_data
;
1509 struct kvm_vcpu
*vcpu
= p
->vcpu
;
1511 struct kvmhv_tb_accumulator tb
;
1520 buf_end
= s
+ sizeof(p
->buf
);
1521 for (i
= 0; i
< N_TIMINGS
; ++i
) {
1522 struct kvmhv_tb_accumulator
*acc
;
1524 acc
= (struct kvmhv_tb_accumulator
*)
1525 ((unsigned long)vcpu
+ timings
[i
].offset
);
1527 for (loops
= 0; loops
< 1000; ++loops
) {
1528 count
= acc
->seqcount
;
1533 if (count
== acc
->seqcount
) {
1541 snprintf(s
, buf_end
- s
, "%s: stuck\n",
1544 snprintf(s
, buf_end
- s
,
1545 "%s: %llu %llu %llu %llu\n",
1546 timings
[i
].name
, count
/ 2,
1547 tb_to_ns(tb
.tb_total
),
1548 tb_to_ns(tb
.tb_min
),
1549 tb_to_ns(tb
.tb_max
));
1552 p
->buflen
= s
- p
->buf
;
1556 if (pos
>= p
->buflen
)
1558 if (len
> p
->buflen
- pos
)
1559 len
= p
->buflen
- pos
;
1560 n
= copy_to_user(buf
, p
->buf
+ pos
, len
);
1570 static ssize_t
debugfs_timings_write(struct file
*file
, const char __user
*buf
,
1571 size_t len
, loff_t
*ppos
)
1576 static const struct file_operations debugfs_timings_ops
= {
1577 .owner
= THIS_MODULE
,
1578 .open
= debugfs_timings_open
,
1579 .release
= debugfs_timings_release
,
1580 .read
= debugfs_timings_read
,
1581 .write
= debugfs_timings_write
,
1582 .llseek
= generic_file_llseek
,
1585 /* Create a debugfs directory for the vcpu */
1586 static void debugfs_vcpu_init(struct kvm_vcpu
*vcpu
, unsigned int id
)
1589 struct kvm
*kvm
= vcpu
->kvm
;
1591 snprintf(buf
, sizeof(buf
), "vcpu%u", id
);
1592 if (IS_ERR_OR_NULL(kvm
->arch
.debugfs_dir
))
1594 vcpu
->arch
.debugfs_dir
= debugfs_create_dir(buf
, kvm
->arch
.debugfs_dir
);
1595 if (IS_ERR_OR_NULL(vcpu
->arch
.debugfs_dir
))
1597 vcpu
->arch
.debugfs_timings
=
1598 debugfs_create_file("timings", 0444, vcpu
->arch
.debugfs_dir
,
1599 vcpu
, &debugfs_timings_ops
);
1602 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1603 static void debugfs_vcpu_init(struct kvm_vcpu
*vcpu
, unsigned int id
)
1606 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1608 static struct kvm_vcpu
*kvmppc_core_vcpu_create_hv(struct kvm
*kvm
,
1611 struct kvm_vcpu
*vcpu
;
1614 struct kvmppc_vcore
*vcore
;
1616 core
= id
/ threads_per_subcore
;
1617 if (core
>= KVM_MAX_VCORES
)
1621 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1625 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
1629 vcpu
->arch
.shared
= &vcpu
->arch
.shregs
;
1630 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1632 * The shared struct is never shared on HV,
1633 * so we can always use host endianness
1635 #ifdef __BIG_ENDIAN__
1636 vcpu
->arch
.shared_big_endian
= true;
1638 vcpu
->arch
.shared_big_endian
= false;
1641 vcpu
->arch
.mmcr
[0] = MMCR0_FC
;
1642 vcpu
->arch
.ctrl
= CTRL_RUNLATCH
;
1643 /* default to host PVR, since we can't spoof it */
1644 kvmppc_set_pvr_hv(vcpu
, mfspr(SPRN_PVR
));
1645 spin_lock_init(&vcpu
->arch
.vpa_update_lock
);
1646 spin_lock_init(&vcpu
->arch
.tbacct_lock
);
1647 vcpu
->arch
.busy_preempt
= TB_NIL
;
1648 vcpu
->arch
.intr_msr
= MSR_SF
| MSR_ME
;
1650 kvmppc_mmu_book3s_hv_init(vcpu
);
1652 vcpu
->arch
.state
= KVMPPC_VCPU_NOTREADY
;
1654 init_waitqueue_head(&vcpu
->arch
.cpu_run
);
1656 mutex_lock(&kvm
->lock
);
1657 vcore
= kvm
->arch
.vcores
[core
];
1659 vcore
= kvmppc_vcore_create(kvm
, core
);
1660 kvm
->arch
.vcores
[core
] = vcore
;
1661 kvm
->arch
.online_vcores
++;
1663 mutex_unlock(&kvm
->lock
);
1668 spin_lock(&vcore
->lock
);
1669 ++vcore
->num_threads
;
1670 spin_unlock(&vcore
->lock
);
1671 vcpu
->arch
.vcore
= vcore
;
1672 vcpu
->arch
.ptid
= vcpu
->vcpu_id
- vcore
->first_vcpuid
;
1673 vcpu
->arch
.thread_cpu
= -1;
1675 vcpu
->arch
.cpu_type
= KVM_CPU_3S_64
;
1676 kvmppc_sanity_check(vcpu
);
1678 debugfs_vcpu_init(vcpu
, id
);
1683 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
1685 return ERR_PTR(err
);
1688 static void unpin_vpa(struct kvm
*kvm
, struct kvmppc_vpa
*vpa
)
1690 if (vpa
->pinned_addr
)
1691 kvmppc_unpin_guest_page(kvm
, vpa
->pinned_addr
, vpa
->gpa
,
1695 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu
*vcpu
)
1697 spin_lock(&vcpu
->arch
.vpa_update_lock
);
1698 unpin_vpa(vcpu
->kvm
, &vcpu
->arch
.dtl
);
1699 unpin_vpa(vcpu
->kvm
, &vcpu
->arch
.slb_shadow
);
1700 unpin_vpa(vcpu
->kvm
, &vcpu
->arch
.vpa
);
1701 spin_unlock(&vcpu
->arch
.vpa_update_lock
);
1702 kvm_vcpu_uninit(vcpu
);
1703 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
1706 static int kvmppc_core_check_requests_hv(struct kvm_vcpu
*vcpu
)
1708 /* Indicate we want to get back into the guest */
1712 static void kvmppc_set_timer(struct kvm_vcpu
*vcpu
)
1714 unsigned long dec_nsec
, now
;
1717 if (now
> vcpu
->arch
.dec_expires
) {
1718 /* decrementer has already gone negative */
1719 kvmppc_core_queue_dec(vcpu
);
1720 kvmppc_core_prepare_to_enter(vcpu
);
1723 dec_nsec
= (vcpu
->arch
.dec_expires
- now
) * NSEC_PER_SEC
1725 hrtimer_start(&vcpu
->arch
.dec_timer
, ktime_set(0, dec_nsec
),
1727 vcpu
->arch
.timer_running
= 1;
1730 static void kvmppc_end_cede(struct kvm_vcpu
*vcpu
)
1732 vcpu
->arch
.ceded
= 0;
1733 if (vcpu
->arch
.timer_running
) {
1734 hrtimer_try_to_cancel(&vcpu
->arch
.dec_timer
);
1735 vcpu
->arch
.timer_running
= 0;
1739 extern void __kvmppc_vcore_entry(void);
1741 static void kvmppc_remove_runnable(struct kvmppc_vcore
*vc
,
1742 struct kvm_vcpu
*vcpu
)
1746 if (vcpu
->arch
.state
!= KVMPPC_VCPU_RUNNABLE
)
1748 spin_lock_irq(&vcpu
->arch
.tbacct_lock
);
1750 vcpu
->arch
.busy_stolen
+= vcore_stolen_time(vc
, now
) -
1751 vcpu
->arch
.stolen_logged
;
1752 vcpu
->arch
.busy_preempt
= now
;
1753 vcpu
->arch
.state
= KVMPPC_VCPU_BUSY_IN_HOST
;
1754 spin_unlock_irq(&vcpu
->arch
.tbacct_lock
);
1756 list_del(&vcpu
->arch
.run_list
);
1759 static int kvmppc_grab_hwthread(int cpu
)
1761 struct paca_struct
*tpaca
;
1762 long timeout
= 10000;
1766 /* Ensure the thread won't go into the kernel if it wakes */
1767 tpaca
->kvm_hstate
.kvm_vcpu
= NULL
;
1768 tpaca
->kvm_hstate
.kvm_vcore
= NULL
;
1769 tpaca
->kvm_hstate
.napping
= 0;
1771 tpaca
->kvm_hstate
.hwthread_req
= 1;
1774 * If the thread is already executing in the kernel (e.g. handling
1775 * a stray interrupt), wait for it to get back to nap mode.
1776 * The smp_mb() is to ensure that our setting of hwthread_req
1777 * is visible before we look at hwthread_state, so if this
1778 * races with the code at system_reset_pSeries and the thread
1779 * misses our setting of hwthread_req, we are sure to see its
1780 * setting of hwthread_state, and vice versa.
1783 while (tpaca
->kvm_hstate
.hwthread_state
== KVM_HWTHREAD_IN_KERNEL
) {
1784 if (--timeout
<= 0) {
1785 pr_err("KVM: couldn't grab cpu %d\n", cpu
);
1793 static void kvmppc_release_hwthread(int cpu
)
1795 struct paca_struct
*tpaca
;
1798 tpaca
->kvm_hstate
.hwthread_req
= 0;
1799 tpaca
->kvm_hstate
.kvm_vcpu
= NULL
;
1800 tpaca
->kvm_hstate
.kvm_vcore
= NULL
;
1801 tpaca
->kvm_hstate
.kvm_split_mode
= NULL
;
1804 static void kvmppc_start_thread(struct kvm_vcpu
*vcpu
, struct kvmppc_vcore
*vc
)
1807 struct paca_struct
*tpaca
;
1808 struct kvmppc_vcore
*mvc
= vc
->master_vcore
;
1812 if (vcpu
->arch
.timer_running
) {
1813 hrtimer_try_to_cancel(&vcpu
->arch
.dec_timer
);
1814 vcpu
->arch
.timer_running
= 0;
1816 cpu
+= vcpu
->arch
.ptid
;
1817 vcpu
->cpu
= mvc
->pcpu
;
1818 vcpu
->arch
.thread_cpu
= cpu
;
1821 tpaca
->kvm_hstate
.kvm_vcpu
= vcpu
;
1822 tpaca
->kvm_hstate
.ptid
= cpu
- mvc
->pcpu
;
1823 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1825 tpaca
->kvm_hstate
.kvm_vcore
= mvc
;
1826 if (cpu
!= smp_processor_id())
1827 kvmppc_ipi_thread(cpu
);
1830 static void kvmppc_wait_for_nap(void)
1832 int cpu
= smp_processor_id();
1835 for (loops
= 0; loops
< 1000000; ++loops
) {
1837 * Check if all threads are finished.
1838 * We set the vcore pointer when starting a thread
1839 * and the thread clears it when finished, so we look
1840 * for any threads that still have a non-NULL vcore ptr.
1842 for (i
= 1; i
< threads_per_subcore
; ++i
)
1843 if (paca
[cpu
+ i
].kvm_hstate
.kvm_vcore
)
1845 if (i
== threads_per_subcore
) {
1852 for (i
= 1; i
< threads_per_subcore
; ++i
)
1853 if (paca
[cpu
+ i
].kvm_hstate
.kvm_vcore
)
1854 pr_err("KVM: CPU %d seems to be stuck\n", cpu
+ i
);
1858 * Check that we are on thread 0 and that any other threads in
1859 * this core are off-line. Then grab the threads so they can't
1862 static int on_primary_thread(void)
1864 int cpu
= smp_processor_id();
1867 /* Are we on a primary subcore? */
1868 if (cpu_thread_in_subcore(cpu
))
1872 while (++thr
< threads_per_subcore
)
1873 if (cpu_online(cpu
+ thr
))
1876 /* Grab all hw threads so they can't go into the kernel */
1877 for (thr
= 1; thr
< threads_per_subcore
; ++thr
) {
1878 if (kvmppc_grab_hwthread(cpu
+ thr
)) {
1879 /* Couldn't grab one; let the others go */
1881 kvmppc_release_hwthread(cpu
+ thr
);
1882 } while (--thr
> 0);
1890 * A list of virtual cores for each physical CPU.
1891 * These are vcores that could run but their runner VCPU tasks are
1892 * (or may be) preempted.
1894 struct preempted_vcore_list
{
1895 struct list_head list
;
1899 static DEFINE_PER_CPU(struct preempted_vcore_list
, preempted_vcores
);
1901 static void init_vcore_lists(void)
1905 for_each_possible_cpu(cpu
) {
1906 struct preempted_vcore_list
*lp
= &per_cpu(preempted_vcores
, cpu
);
1907 spin_lock_init(&lp
->lock
);
1908 INIT_LIST_HEAD(&lp
->list
);
1912 static void kvmppc_vcore_preempt(struct kvmppc_vcore
*vc
)
1914 struct preempted_vcore_list
*lp
= this_cpu_ptr(&preempted_vcores
);
1916 vc
->vcore_state
= VCORE_PREEMPT
;
1917 vc
->pcpu
= smp_processor_id();
1918 if (vc
->num_threads
< threads_per_subcore
) {
1919 spin_lock(&lp
->lock
);
1920 list_add_tail(&vc
->preempt_list
, &lp
->list
);
1921 spin_unlock(&lp
->lock
);
1924 /* Start accumulating stolen time */
1925 kvmppc_core_start_stolen(vc
);
1928 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore
*vc
)
1930 struct preempted_vcore_list
*lp
;
1932 kvmppc_core_end_stolen(vc
);
1933 if (!list_empty(&vc
->preempt_list
)) {
1934 lp
= &per_cpu(preempted_vcores
, vc
->pcpu
);
1935 spin_lock(&lp
->lock
);
1936 list_del_init(&vc
->preempt_list
);
1937 spin_unlock(&lp
->lock
);
1939 vc
->vcore_state
= VCORE_INACTIVE
;
1943 * This stores information about the virtual cores currently
1944 * assigned to a physical core.
1948 int max_subcore_threads
;
1950 int subcore_threads
[MAX_SUBCORES
];
1951 struct kvm
*subcore_vm
[MAX_SUBCORES
];
1952 struct list_head vcs
[MAX_SUBCORES
];
1956 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1957 * respectively in 2-way micro-threading (split-core) mode.
1959 static int subcore_thread_map
[MAX_SUBCORES
] = { 0, 4, 2, 6 };
1961 static void init_core_info(struct core_info
*cip
, struct kvmppc_vcore
*vc
)
1965 memset(cip
, 0, sizeof(*cip
));
1966 cip
->n_subcores
= 1;
1967 cip
->max_subcore_threads
= vc
->num_threads
;
1968 cip
->total_threads
= vc
->num_threads
;
1969 cip
->subcore_threads
[0] = vc
->num_threads
;
1970 cip
->subcore_vm
[0] = vc
->kvm
;
1971 for (sub
= 0; sub
< MAX_SUBCORES
; ++sub
)
1972 INIT_LIST_HEAD(&cip
->vcs
[sub
]);
1973 list_add_tail(&vc
->preempt_list
, &cip
->vcs
[0]);
1976 static bool subcore_config_ok(int n_subcores
, int n_threads
)
1978 /* Can only dynamically split if unsplit to begin with */
1979 if (n_subcores
> 1 && threads_per_subcore
< MAX_SMT_THREADS
)
1981 if (n_subcores
> MAX_SUBCORES
)
1983 if (n_subcores
> 1) {
1984 if (!(dynamic_mt_modes
& 2))
1986 if (n_subcores
> 2 && !(dynamic_mt_modes
& 4))
1990 return n_subcores
* roundup_pow_of_two(n_threads
) <= MAX_SMT_THREADS
;
1993 static void init_master_vcore(struct kvmppc_vcore
*vc
)
1995 vc
->master_vcore
= vc
;
1996 vc
->entry_exit_map
= 0;
1998 vc
->napping_threads
= 0;
1999 vc
->conferring_threads
= 0;
2003 * See if the existing subcores can be split into 3 (or fewer) subcores
2004 * of at most two threads each, so we can fit in another vcore. This
2005 * assumes there are at most two subcores and at most 6 threads in total.
2007 static bool can_split_piggybacked_subcores(struct core_info
*cip
)
2012 int n_subcores
= cip
->n_subcores
;
2013 struct kvmppc_vcore
*vc
, *vcnext
;
2014 struct kvmppc_vcore
*master_vc
= NULL
;
2016 for (sub
= 0; sub
< cip
->n_subcores
; ++sub
) {
2017 if (cip
->subcore_threads
[sub
] <= 2)
2022 vc
= list_first_entry(&cip
->vcs
[sub
], struct kvmppc_vcore
,
2024 if (vc
->num_threads
> 2)
2026 n_subcores
+= (cip
->subcore_threads
[sub
] - 1) >> 1;
2028 if (large_sub
< 0 || !subcore_config_ok(n_subcores
+ 1, 2))
2032 * Seems feasible, so go through and move vcores to new subcores.
2033 * Note that when we have two or more vcores in one subcore,
2034 * all those vcores must have only one thread each.
2036 new_sub
= cip
->n_subcores
;
2039 list_for_each_entry_safe(vc
, vcnext
, &cip
->vcs
[sub
], preempt_list
) {
2041 list_del(&vc
->preempt_list
);
2042 list_add_tail(&vc
->preempt_list
, &cip
->vcs
[new_sub
]);
2043 /* vc->num_threads must be 1 */
2044 if (++cip
->subcore_threads
[new_sub
] == 1) {
2045 cip
->subcore_vm
[new_sub
] = vc
->kvm
;
2046 init_master_vcore(vc
);
2050 vc
->master_vcore
= master_vc
;
2054 thr
+= vc
->num_threads
;
2056 cip
->subcore_threads
[large_sub
] = 2;
2057 cip
->max_subcore_threads
= 2;
2062 static bool can_dynamic_split(struct kvmppc_vcore
*vc
, struct core_info
*cip
)
2064 int n_threads
= vc
->num_threads
;
2067 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
2070 if (n_threads
< cip
->max_subcore_threads
)
2071 n_threads
= cip
->max_subcore_threads
;
2072 if (subcore_config_ok(cip
->n_subcores
+ 1, n_threads
)) {
2073 cip
->max_subcore_threads
= n_threads
;
2074 } else if (cip
->n_subcores
<= 2 && cip
->total_threads
<= 6 &&
2075 vc
->num_threads
<= 2) {
2077 * We may be able to fit another subcore in by
2078 * splitting an existing subcore with 3 or 4
2079 * threads into two 2-thread subcores, or one
2080 * with 5 or 6 threads into three subcores.
2081 * We can only do this if those subcores have
2082 * piggybacked virtual cores.
2084 if (!can_split_piggybacked_subcores(cip
))
2090 sub
= cip
->n_subcores
;
2092 cip
->total_threads
+= vc
->num_threads
;
2093 cip
->subcore_threads
[sub
] = vc
->num_threads
;
2094 cip
->subcore_vm
[sub
] = vc
->kvm
;
2095 init_master_vcore(vc
);
2096 list_del(&vc
->preempt_list
);
2097 list_add_tail(&vc
->preempt_list
, &cip
->vcs
[sub
]);
2102 static bool can_piggyback_subcore(struct kvmppc_vcore
*pvc
,
2103 struct core_info
*cip
, int sub
)
2105 struct kvmppc_vcore
*vc
;
2108 vc
= list_first_entry(&cip
->vcs
[sub
], struct kvmppc_vcore
,
2111 /* require same VM and same per-core reg values */
2112 if (pvc
->kvm
!= vc
->kvm
||
2113 pvc
->tb_offset
!= vc
->tb_offset
||
2114 pvc
->pcr
!= vc
->pcr
||
2115 pvc
->lpcr
!= vc
->lpcr
)
2118 /* P8 guest with > 1 thread per core would see wrong TIR value */
2119 if (cpu_has_feature(CPU_FTR_ARCH_207S
) &&
2120 (vc
->num_threads
> 1 || pvc
->num_threads
> 1))
2123 n_thr
= cip
->subcore_threads
[sub
] + pvc
->num_threads
;
2124 if (n_thr
> cip
->max_subcore_threads
) {
2125 if (!subcore_config_ok(cip
->n_subcores
, n_thr
))
2127 cip
->max_subcore_threads
= n_thr
;
2130 cip
->total_threads
+= pvc
->num_threads
;
2131 cip
->subcore_threads
[sub
] = n_thr
;
2132 pvc
->master_vcore
= vc
;
2133 list_del(&pvc
->preempt_list
);
2134 list_add_tail(&pvc
->preempt_list
, &cip
->vcs
[sub
]);
2140 * Work out whether it is possible to piggyback the execution of
2141 * vcore *pvc onto the execution of the other vcores described in *cip.
2143 static bool can_piggyback(struct kvmppc_vcore
*pvc
, struct core_info
*cip
,
2148 if (cip
->total_threads
+ pvc
->num_threads
> target_threads
)
2150 for (sub
= 0; sub
< cip
->n_subcores
; ++sub
)
2151 if (cip
->subcore_threads
[sub
] &&
2152 can_piggyback_subcore(pvc
, cip
, sub
))
2155 if (can_dynamic_split(pvc
, cip
))
2161 static void prepare_threads(struct kvmppc_vcore
*vc
)
2163 struct kvm_vcpu
*vcpu
, *vnext
;
2165 list_for_each_entry_safe(vcpu
, vnext
, &vc
->runnable_threads
,
2167 if (signal_pending(vcpu
->arch
.run_task
))
2168 vcpu
->arch
.ret
= -EINTR
;
2169 else if (vcpu
->arch
.vpa
.update_pending
||
2170 vcpu
->arch
.slb_shadow
.update_pending
||
2171 vcpu
->arch
.dtl
.update_pending
)
2172 vcpu
->arch
.ret
= RESUME_GUEST
;
2175 kvmppc_remove_runnable(vc
, vcpu
);
2176 wake_up(&vcpu
->arch
.cpu_run
);
2180 static void collect_piggybacks(struct core_info
*cip
, int target_threads
)
2182 struct preempted_vcore_list
*lp
= this_cpu_ptr(&preempted_vcores
);
2183 struct kvmppc_vcore
*pvc
, *vcnext
;
2185 spin_lock(&lp
->lock
);
2186 list_for_each_entry_safe(pvc
, vcnext
, &lp
->list
, preempt_list
) {
2187 if (!spin_trylock(&pvc
->lock
))
2189 prepare_threads(pvc
);
2190 if (!pvc
->n_runnable
) {
2191 list_del_init(&pvc
->preempt_list
);
2192 if (pvc
->runner
== NULL
) {
2193 pvc
->vcore_state
= VCORE_INACTIVE
;
2194 kvmppc_core_end_stolen(pvc
);
2196 spin_unlock(&pvc
->lock
);
2199 if (!can_piggyback(pvc
, cip
, target_threads
)) {
2200 spin_unlock(&pvc
->lock
);
2203 kvmppc_core_end_stolen(pvc
);
2204 pvc
->vcore_state
= VCORE_PIGGYBACK
;
2205 if (cip
->total_threads
>= target_threads
)
2208 spin_unlock(&lp
->lock
);
2211 static void post_guest_process(struct kvmppc_vcore
*vc
, bool is_master
)
2213 int still_running
= 0;
2216 struct kvm_vcpu
*vcpu
, *vnext
;
2218 spin_lock(&vc
->lock
);
2220 list_for_each_entry_safe(vcpu
, vnext
, &vc
->runnable_threads
,
2222 /* cancel pending dec exception if dec is positive */
2223 if (now
< vcpu
->arch
.dec_expires
&&
2224 kvmppc_core_pending_dec(vcpu
))
2225 kvmppc_core_dequeue_dec(vcpu
);
2227 trace_kvm_guest_exit(vcpu
);
2230 if (vcpu
->arch
.trap
)
2231 ret
= kvmppc_handle_exit_hv(vcpu
->arch
.kvm_run
, vcpu
,
2232 vcpu
->arch
.run_task
);
2234 vcpu
->arch
.ret
= ret
;
2235 vcpu
->arch
.trap
= 0;
2237 if (is_kvmppc_resume_guest(vcpu
->arch
.ret
)) {
2238 if (vcpu
->arch
.pending_exceptions
)
2239 kvmppc_core_prepare_to_enter(vcpu
);
2240 if (vcpu
->arch
.ceded
)
2241 kvmppc_set_timer(vcpu
);
2245 kvmppc_remove_runnable(vc
, vcpu
);
2246 wake_up(&vcpu
->arch
.cpu_run
);
2249 list_del_init(&vc
->preempt_list
);
2251 if (still_running
> 0) {
2252 kvmppc_vcore_preempt(vc
);
2253 } else if (vc
->runner
) {
2254 vc
->vcore_state
= VCORE_PREEMPT
;
2255 kvmppc_core_start_stolen(vc
);
2257 vc
->vcore_state
= VCORE_INACTIVE
;
2259 if (vc
->n_runnable
> 0 && vc
->runner
== NULL
) {
2260 /* make sure there's a candidate runner awake */
2261 vcpu
= list_first_entry(&vc
->runnable_threads
,
2262 struct kvm_vcpu
, arch
.run_list
);
2263 wake_up(&vcpu
->arch
.cpu_run
);
2266 spin_unlock(&vc
->lock
);
2270 * Run a set of guest threads on a physical core.
2271 * Called with vc->lock held.
2273 static noinline
void kvmppc_run_core(struct kvmppc_vcore
*vc
)
2275 struct kvm_vcpu
*vcpu
, *vnext
;
2278 struct core_info core_info
;
2279 struct kvmppc_vcore
*pvc
, *vcnext
;
2280 struct kvm_split_mode split_info
, *sip
;
2281 int split
, subcore_size
, active
;
2284 unsigned long cmd_bit
, stat_bit
;
2289 * Remove from the list any threads that have a signal pending
2290 * or need a VPA update done
2292 prepare_threads(vc
);
2294 /* if the runner is no longer runnable, let the caller pick a new one */
2295 if (vc
->runner
->arch
.state
!= KVMPPC_VCPU_RUNNABLE
)
2301 init_master_vcore(vc
);
2302 vc
->preempt_tb
= TB_NIL
;
2305 * Make sure we are running on primary threads, and that secondary
2306 * threads are offline. Also check if the number of threads in this
2307 * guest are greater than the current system threads per guest.
2309 if ((threads_per_core
> 1) &&
2310 ((vc
->num_threads
> threads_per_subcore
) || !on_primary_thread())) {
2311 list_for_each_entry_safe(vcpu
, vnext
, &vc
->runnable_threads
,
2313 vcpu
->arch
.ret
= -EBUSY
;
2314 kvmppc_remove_runnable(vc
, vcpu
);
2315 wake_up(&vcpu
->arch
.cpu_run
);
2321 * See if we could run any other vcores on the physical core
2322 * along with this one.
2324 init_core_info(&core_info
, vc
);
2325 pcpu
= smp_processor_id();
2326 target_threads
= threads_per_subcore
;
2327 if (target_smt_mode
&& target_smt_mode
< target_threads
)
2328 target_threads
= target_smt_mode
;
2329 if (vc
->num_threads
< target_threads
)
2330 collect_piggybacks(&core_info
, target_threads
);
2332 /* Decide on micro-threading (split-core) mode */
2333 subcore_size
= threads_per_subcore
;
2334 cmd_bit
= stat_bit
= 0;
2335 split
= core_info
.n_subcores
;
2338 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2339 if (split
== 2 && (dynamic_mt_modes
& 2)) {
2340 cmd_bit
= HID0_POWER8_1TO2LPAR
;
2341 stat_bit
= HID0_POWER8_2LPARMODE
;
2344 cmd_bit
= HID0_POWER8_1TO4LPAR
;
2345 stat_bit
= HID0_POWER8_4LPARMODE
;
2347 subcore_size
= MAX_SMT_THREADS
/ split
;
2349 memset(&split_info
, 0, sizeof(split_info
));
2350 split_info
.rpr
= mfspr(SPRN_RPR
);
2351 split_info
.pmmar
= mfspr(SPRN_PMMAR
);
2352 split_info
.ldbar
= mfspr(SPRN_LDBAR
);
2353 split_info
.subcore_size
= subcore_size
;
2354 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
)
2355 split_info
.master_vcs
[sub
] =
2356 list_first_entry(&core_info
.vcs
[sub
],
2357 struct kvmppc_vcore
, preempt_list
);
2358 /* order writes to split_info before kvm_split_mode pointer */
2361 pcpu
= smp_processor_id();
2362 for (thr
= 0; thr
< threads_per_subcore
; ++thr
)
2363 paca
[pcpu
+ thr
].kvm_hstate
.kvm_split_mode
= sip
;
2365 /* Initiate micro-threading (split-core) if required */
2367 unsigned long hid0
= mfspr(SPRN_HID0
);
2369 hid0
|= cmd_bit
| HID0_POWER8_DYNLPARDIS
;
2371 mtspr(SPRN_HID0
, hid0
);
2374 hid0
= mfspr(SPRN_HID0
);
2375 if (hid0
& stat_bit
)
2381 /* Start all the threads */
2383 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
) {
2384 thr
= subcore_thread_map
[sub
];
2387 list_for_each_entry(pvc
, &core_info
.vcs
[sub
], preempt_list
) {
2388 pvc
->pcpu
= pcpu
+ thr
;
2389 list_for_each_entry(vcpu
, &pvc
->runnable_threads
,
2391 kvmppc_start_thread(vcpu
, pvc
);
2392 kvmppc_create_dtl_entry(vcpu
, pvc
);
2393 trace_kvm_guest_enter(vcpu
);
2394 if (!vcpu
->arch
.ptid
)
2396 active
|= 1 << (thr
+ vcpu
->arch
.ptid
);
2399 * We need to start the first thread of each subcore
2400 * even if it doesn't have a vcpu.
2402 if (pvc
->master_vcore
== pvc
&& !thr0_done
)
2403 kvmppc_start_thread(NULL
, pvc
);
2404 thr
+= pvc
->num_threads
;
2409 * Ensure that split_info.do_nap is set after setting
2410 * the vcore pointer in the PACA of the secondaries.
2414 split_info
.do_nap
= 1; /* ask secondaries to nap when done */
2417 * When doing micro-threading, poke the inactive threads as well.
2418 * This gets them to the nap instruction after kvm_do_nap,
2419 * which reduces the time taken to unsplit later.
2422 for (thr
= 1; thr
< threads_per_subcore
; ++thr
)
2423 if (!(active
& (1 << thr
)))
2424 kvmppc_ipi_thread(pcpu
+ thr
);
2426 vc
->vcore_state
= VCORE_RUNNING
;
2429 trace_kvmppc_run_core(vc
, 0);
2431 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
)
2432 list_for_each_entry(pvc
, &core_info
.vcs
[sub
], preempt_list
)
2433 spin_unlock(&pvc
->lock
);
2437 srcu_idx
= srcu_read_lock(&vc
->kvm
->srcu
);
2439 __kvmppc_vcore_entry();
2441 srcu_read_unlock(&vc
->kvm
->srcu
, srcu_idx
);
2443 spin_lock(&vc
->lock
);
2444 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2445 vc
->vcore_state
= VCORE_EXITING
;
2447 /* wait for secondary threads to finish writing their state to memory */
2448 kvmppc_wait_for_nap();
2450 /* Return to whole-core mode if we split the core earlier */
2452 unsigned long hid0
= mfspr(SPRN_HID0
);
2453 unsigned long loops
= 0;
2455 hid0
&= ~HID0_POWER8_DYNLPARDIS
;
2456 stat_bit
= HID0_POWER8_2LPARMODE
| HID0_POWER8_4LPARMODE
;
2458 mtspr(SPRN_HID0
, hid0
);
2461 hid0
= mfspr(SPRN_HID0
);
2462 if (!(hid0
& stat_bit
))
2467 split_info
.do_nap
= 0;
2470 /* Let secondaries go back to the offline loop */
2471 for (i
= 0; i
< threads_per_subcore
; ++i
) {
2472 kvmppc_release_hwthread(pcpu
+ i
);
2473 if (sip
&& sip
->napped
[i
])
2474 kvmppc_ipi_thread(pcpu
+ i
);
2477 spin_unlock(&vc
->lock
);
2479 /* make sure updates to secondary vcpu structs are visible now */
2483 for (sub
= 0; sub
< core_info
.n_subcores
; ++sub
)
2484 list_for_each_entry_safe(pvc
, vcnext
, &core_info
.vcs
[sub
],
2486 post_guest_process(pvc
, pvc
== vc
);
2488 spin_lock(&vc
->lock
);
2492 vc
->vcore_state
= VCORE_INACTIVE
;
2493 trace_kvmppc_run_core(vc
, 1);
2497 * Wait for some other vcpu thread to execute us, and
2498 * wake us up when we need to handle something in the host.
2500 static void kvmppc_wait_for_exec(struct kvmppc_vcore
*vc
,
2501 struct kvm_vcpu
*vcpu
, int wait_state
)
2505 prepare_to_wait(&vcpu
->arch
.cpu_run
, &wait
, wait_state
);
2506 if (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
) {
2507 spin_unlock(&vc
->lock
);
2509 spin_lock(&vc
->lock
);
2511 finish_wait(&vcpu
->arch
.cpu_run
, &wait
);
2515 * All the vcpus in this vcore are idle, so wait for a decrementer
2516 * or external interrupt to one of the vcpus. vc->lock is held.
2518 static void kvmppc_vcore_blocked(struct kvmppc_vcore
*vc
)
2520 struct kvm_vcpu
*vcpu
;
2525 prepare_to_wait(&vc
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2528 * Check one last time for pending exceptions and ceded state after
2529 * we put ourselves on the wait queue
2531 list_for_each_entry(vcpu
, &vc
->runnable_threads
, arch
.run_list
) {
2532 if (vcpu
->arch
.pending_exceptions
|| !vcpu
->arch
.ceded
) {
2539 finish_wait(&vc
->wq
, &wait
);
2543 vc
->vcore_state
= VCORE_SLEEPING
;
2544 trace_kvmppc_vcore_blocked(vc
, 0);
2545 spin_unlock(&vc
->lock
);
2547 finish_wait(&vc
->wq
, &wait
);
2548 spin_lock(&vc
->lock
);
2549 vc
->vcore_state
= VCORE_INACTIVE
;
2550 trace_kvmppc_vcore_blocked(vc
, 1);
2553 static int kvmppc_run_vcpu(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2556 struct kvmppc_vcore
*vc
;
2557 struct kvm_vcpu
*v
, *vn
;
2559 trace_kvmppc_run_vcpu_enter(vcpu
);
2561 kvm_run
->exit_reason
= 0;
2562 vcpu
->arch
.ret
= RESUME_GUEST
;
2563 vcpu
->arch
.trap
= 0;
2564 kvmppc_update_vpas(vcpu
);
2567 * Synchronize with other threads in this virtual core
2569 vc
= vcpu
->arch
.vcore
;
2570 spin_lock(&vc
->lock
);
2571 vcpu
->arch
.ceded
= 0;
2572 vcpu
->arch
.run_task
= current
;
2573 vcpu
->arch
.kvm_run
= kvm_run
;
2574 vcpu
->arch
.stolen_logged
= vcore_stolen_time(vc
, mftb());
2575 vcpu
->arch
.state
= KVMPPC_VCPU_RUNNABLE
;
2576 vcpu
->arch
.busy_preempt
= TB_NIL
;
2577 list_add_tail(&vcpu
->arch
.run_list
, &vc
->runnable_threads
);
2581 * This happens the first time this is called for a vcpu.
2582 * If the vcore is already running, we may be able to start
2583 * this thread straight away and have it join in.
2585 if (!signal_pending(current
)) {
2586 if (vc
->vcore_state
== VCORE_PIGGYBACK
) {
2587 struct kvmppc_vcore
*mvc
= vc
->master_vcore
;
2588 if (spin_trylock(&mvc
->lock
)) {
2589 if (mvc
->vcore_state
== VCORE_RUNNING
&&
2590 !VCORE_IS_EXITING(mvc
)) {
2591 kvmppc_create_dtl_entry(vcpu
, vc
);
2592 kvmppc_start_thread(vcpu
, vc
);
2593 trace_kvm_guest_enter(vcpu
);
2595 spin_unlock(&mvc
->lock
);
2597 } else if (vc
->vcore_state
== VCORE_RUNNING
&&
2598 !VCORE_IS_EXITING(vc
)) {
2599 kvmppc_create_dtl_entry(vcpu
, vc
);
2600 kvmppc_start_thread(vcpu
, vc
);
2601 trace_kvm_guest_enter(vcpu
);
2602 } else if (vc
->vcore_state
== VCORE_SLEEPING
) {
2608 while (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
&&
2609 !signal_pending(current
)) {
2610 if (vc
->vcore_state
== VCORE_PREEMPT
&& vc
->runner
== NULL
)
2611 kvmppc_vcore_end_preempt(vc
);
2613 if (vc
->vcore_state
!= VCORE_INACTIVE
) {
2614 kvmppc_wait_for_exec(vc
, vcpu
, TASK_INTERRUPTIBLE
);
2617 list_for_each_entry_safe(v
, vn
, &vc
->runnable_threads
,
2619 kvmppc_core_prepare_to_enter(v
);
2620 if (signal_pending(v
->arch
.run_task
)) {
2621 kvmppc_remove_runnable(vc
, v
);
2622 v
->stat
.signal_exits
++;
2623 v
->arch
.kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2624 v
->arch
.ret
= -EINTR
;
2625 wake_up(&v
->arch
.cpu_run
);
2628 if (!vc
->n_runnable
|| vcpu
->arch
.state
!= KVMPPC_VCPU_RUNNABLE
)
2631 list_for_each_entry(v
, &vc
->runnable_threads
, arch
.run_list
) {
2632 if (!v
->arch
.pending_exceptions
)
2633 n_ceded
+= v
->arch
.ceded
;
2638 if (n_ceded
== vc
->n_runnable
) {
2639 kvmppc_vcore_blocked(vc
);
2640 } else if (need_resched()) {
2641 kvmppc_vcore_preempt(vc
);
2642 /* Let something else run */
2643 cond_resched_lock(&vc
->lock
);
2644 if (vc
->vcore_state
== VCORE_PREEMPT
)
2645 kvmppc_vcore_end_preempt(vc
);
2647 kvmppc_run_core(vc
);
2652 while (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
&&
2653 (vc
->vcore_state
== VCORE_RUNNING
||
2654 vc
->vcore_state
== VCORE_EXITING
||
2655 vc
->vcore_state
== VCORE_PIGGYBACK
))
2656 kvmppc_wait_for_exec(vc
, vcpu
, TASK_UNINTERRUPTIBLE
);
2658 if (vc
->vcore_state
== VCORE_PREEMPT
&& vc
->runner
== NULL
)
2659 kvmppc_vcore_end_preempt(vc
);
2661 if (vcpu
->arch
.state
== KVMPPC_VCPU_RUNNABLE
) {
2662 kvmppc_remove_runnable(vc
, vcpu
);
2663 vcpu
->stat
.signal_exits
++;
2664 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2665 vcpu
->arch
.ret
= -EINTR
;
2668 if (vc
->n_runnable
&& vc
->vcore_state
== VCORE_INACTIVE
) {
2669 /* Wake up some vcpu to run the core */
2670 v
= list_first_entry(&vc
->runnable_threads
,
2671 struct kvm_vcpu
, arch
.run_list
);
2672 wake_up(&v
->arch
.cpu_run
);
2675 trace_kvmppc_run_vcpu_exit(vcpu
, kvm_run
);
2676 spin_unlock(&vc
->lock
);
2677 return vcpu
->arch
.ret
;
2680 static int kvmppc_vcpu_run_hv(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
)
2685 if (!vcpu
->arch
.sane
) {
2686 run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2690 kvmppc_core_prepare_to_enter(vcpu
);
2692 /* No need to go into the guest when all we'll do is come back out */
2693 if (signal_pending(current
)) {
2694 run
->exit_reason
= KVM_EXIT_INTR
;
2698 atomic_inc(&vcpu
->kvm
->arch
.vcpus_running
);
2699 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2702 /* On the first time here, set up HTAB and VRMA */
2703 if (!vcpu
->kvm
->arch
.hpte_setup_done
) {
2704 r
= kvmppc_hv_setup_htab_rma(vcpu
);
2709 flush_fp_to_thread(current
);
2710 flush_altivec_to_thread(current
);
2711 flush_vsx_to_thread(current
);
2712 vcpu
->arch
.wqp
= &vcpu
->arch
.vcore
->wq
;
2713 vcpu
->arch
.pgdir
= current
->mm
->pgd
;
2714 vcpu
->arch
.state
= KVMPPC_VCPU_BUSY_IN_HOST
;
2717 r
= kvmppc_run_vcpu(run
, vcpu
);
2719 if (run
->exit_reason
== KVM_EXIT_PAPR_HCALL
&&
2720 !(vcpu
->arch
.shregs
.msr
& MSR_PR
)) {
2721 trace_kvm_hcall_enter(vcpu
);
2722 r
= kvmppc_pseries_do_hcall(vcpu
);
2723 trace_kvm_hcall_exit(vcpu
, r
);
2724 kvmppc_core_prepare_to_enter(vcpu
);
2725 } else if (r
== RESUME_PAGE_FAULT
) {
2726 srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2727 r
= kvmppc_book3s_hv_page_fault(run
, vcpu
,
2728 vcpu
->arch
.fault_dar
, vcpu
->arch
.fault_dsisr
);
2729 srcu_read_unlock(&vcpu
->kvm
->srcu
, srcu_idx
);
2731 } while (is_kvmppc_resume_guest(r
));
2734 vcpu
->arch
.state
= KVMPPC_VCPU_NOTREADY
;
2735 atomic_dec(&vcpu
->kvm
->arch
.vcpus_running
);
2739 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size
**sps
,
2742 struct mmu_psize_def
*def
= &mmu_psize_defs
[linux_psize
];
2746 (*sps
)->page_shift
= def
->shift
;
2747 (*sps
)->slb_enc
= def
->sllp
;
2748 (*sps
)->enc
[0].page_shift
= def
->shift
;
2749 (*sps
)->enc
[0].pte_enc
= def
->penc
[linux_psize
];
2751 * Add 16MB MPSS support if host supports it
2753 if (linux_psize
!= MMU_PAGE_16M
&& def
->penc
[MMU_PAGE_16M
] != -1) {
2754 (*sps
)->enc
[1].page_shift
= 24;
2755 (*sps
)->enc
[1].pte_enc
= def
->penc
[MMU_PAGE_16M
];
2760 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm
*kvm
,
2761 struct kvm_ppc_smmu_info
*info
)
2763 struct kvm_ppc_one_seg_page_size
*sps
;
2765 info
->flags
= KVM_PPC_PAGE_SIZES_REAL
;
2766 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
2767 info
->flags
|= KVM_PPC_1T_SEGMENTS
;
2768 info
->slb_size
= mmu_slb_size
;
2770 /* We only support these sizes for now, and no muti-size segments */
2771 sps
= &info
->sps
[0];
2772 kvmppc_add_seg_page_size(&sps
, MMU_PAGE_4K
);
2773 kvmppc_add_seg_page_size(&sps
, MMU_PAGE_64K
);
2774 kvmppc_add_seg_page_size(&sps
, MMU_PAGE_16M
);
2780 * Get (and clear) the dirty memory log for a memory slot.
2782 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm
*kvm
,
2783 struct kvm_dirty_log
*log
)
2785 struct kvm_memslots
*slots
;
2786 struct kvm_memory_slot
*memslot
;
2790 mutex_lock(&kvm
->slots_lock
);
2793 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
2796 slots
= kvm_memslots(kvm
);
2797 memslot
= id_to_memslot(slots
, log
->slot
);
2799 if (!memslot
->dirty_bitmap
)
2802 n
= kvm_dirty_bitmap_bytes(memslot
);
2803 memset(memslot
->dirty_bitmap
, 0, n
);
2805 r
= kvmppc_hv_get_dirty_log(kvm
, memslot
, memslot
->dirty_bitmap
);
2810 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
2815 mutex_unlock(&kvm
->slots_lock
);
2819 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot
*free
,
2820 struct kvm_memory_slot
*dont
)
2822 if (!dont
|| free
->arch
.rmap
!= dont
->arch
.rmap
) {
2823 vfree(free
->arch
.rmap
);
2824 free
->arch
.rmap
= NULL
;
2828 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot
*slot
,
2829 unsigned long npages
)
2831 slot
->arch
.rmap
= vzalloc(npages
* sizeof(*slot
->arch
.rmap
));
2832 if (!slot
->arch
.rmap
)
2838 static int kvmppc_core_prepare_memory_region_hv(struct kvm
*kvm
,
2839 struct kvm_memory_slot
*memslot
,
2840 const struct kvm_userspace_memory_region
*mem
)
2845 static void kvmppc_core_commit_memory_region_hv(struct kvm
*kvm
,
2846 const struct kvm_userspace_memory_region
*mem
,
2847 const struct kvm_memory_slot
*old
,
2848 const struct kvm_memory_slot
*new)
2850 unsigned long npages
= mem
->memory_size
>> PAGE_SHIFT
;
2851 struct kvm_memslots
*slots
;
2852 struct kvm_memory_slot
*memslot
;
2854 if (npages
&& old
->npages
) {
2856 * If modifying a memslot, reset all the rmap dirty bits.
2857 * If this is a new memslot, we don't need to do anything
2858 * since the rmap array starts out as all zeroes,
2859 * i.e. no pages are dirty.
2861 slots
= kvm_memslots(kvm
);
2862 memslot
= id_to_memslot(slots
, mem
->slot
);
2863 kvmppc_hv_get_dirty_log(kvm
, memslot
, NULL
);
2868 * Update LPCR values in kvm->arch and in vcores.
2869 * Caller must hold kvm->lock.
2871 void kvmppc_update_lpcr(struct kvm
*kvm
, unsigned long lpcr
, unsigned long mask
)
2876 if ((kvm
->arch
.lpcr
& mask
) == lpcr
)
2879 kvm
->arch
.lpcr
= (kvm
->arch
.lpcr
& ~mask
) | lpcr
;
2881 for (i
= 0; i
< KVM_MAX_VCORES
; ++i
) {
2882 struct kvmppc_vcore
*vc
= kvm
->arch
.vcores
[i
];
2885 spin_lock(&vc
->lock
);
2886 vc
->lpcr
= (vc
->lpcr
& ~mask
) | lpcr
;
2887 spin_unlock(&vc
->lock
);
2888 if (++cores_done
>= kvm
->arch
.online_vcores
)
2893 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu
*vcpu
)
2898 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu
*vcpu
)
2901 struct kvm
*kvm
= vcpu
->kvm
;
2903 struct kvm_memory_slot
*memslot
;
2904 struct vm_area_struct
*vma
;
2905 unsigned long lpcr
= 0, senc
;
2906 unsigned long psize
, porder
;
2909 mutex_lock(&kvm
->lock
);
2910 if (kvm
->arch
.hpte_setup_done
)
2911 goto out
; /* another vcpu beat us to it */
2913 /* Allocate hashed page table (if not done already) and reset it */
2914 if (!kvm
->arch
.hpt_virt
) {
2915 err
= kvmppc_alloc_hpt(kvm
, NULL
);
2917 pr_err("KVM: Couldn't alloc HPT\n");
2922 /* Look up the memslot for guest physical address 0 */
2923 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
2924 memslot
= gfn_to_memslot(kvm
, 0);
2926 /* We must have some memory at 0 by now */
2928 if (!memslot
|| (memslot
->flags
& KVM_MEMSLOT_INVALID
))
2931 /* Look up the VMA for the start of this memory slot */
2932 hva
= memslot
->userspace_addr
;
2933 down_read(¤t
->mm
->mmap_sem
);
2934 vma
= find_vma(current
->mm
, hva
);
2935 if (!vma
|| vma
->vm_start
> hva
|| (vma
->vm_flags
& VM_IO
))
2938 psize
= vma_kernel_pagesize(vma
);
2939 porder
= __ilog2(psize
);
2941 up_read(¤t
->mm
->mmap_sem
);
2943 /* We can handle 4k, 64k or 16M pages in the VRMA */
2945 if (!(psize
== 0x1000 || psize
== 0x10000 ||
2946 psize
== 0x1000000))
2949 /* Update VRMASD field in the LPCR */
2950 senc
= slb_pgsize_encoding(psize
);
2951 kvm
->arch
.vrma_slb_v
= senc
| SLB_VSID_B_1T
|
2952 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
2953 /* the -4 is to account for senc values starting at 0x10 */
2954 lpcr
= senc
<< (LPCR_VRMASD_SH
- 4);
2956 /* Create HPTEs in the hash page table for the VRMA */
2957 kvmppc_map_vrma(vcpu
, memslot
, porder
);
2959 kvmppc_update_lpcr(kvm
, lpcr
, LPCR_VRMASD
);
2961 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2963 kvm
->arch
.hpte_setup_done
= 1;
2966 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
2968 mutex_unlock(&kvm
->lock
);
2972 up_read(¤t
->mm
->mmap_sem
);
2976 static int kvmppc_core_init_vm_hv(struct kvm
*kvm
)
2978 unsigned long lpcr
, lpid
;
2981 /* Allocate the guest's logical partition ID */
2983 lpid
= kvmppc_alloc_lpid();
2986 kvm
->arch
.lpid
= lpid
;
2989 * Since we don't flush the TLB when tearing down a VM,
2990 * and this lpid might have previously been used,
2991 * make sure we flush on each core before running the new VM.
2993 cpumask_setall(&kvm
->arch
.need_tlb_flush
);
2995 /* Start out with the default set of hcalls enabled */
2996 memcpy(kvm
->arch
.enabled_hcalls
, default_enabled_hcalls
,
2997 sizeof(kvm
->arch
.enabled_hcalls
));
2999 kvm
->arch
.host_sdr1
= mfspr(SPRN_SDR1
);
3001 /* Init LPCR for virtual RMA mode */
3002 kvm
->arch
.host_lpid
= mfspr(SPRN_LPID
);
3003 kvm
->arch
.host_lpcr
= lpcr
= mfspr(SPRN_LPCR
);
3004 lpcr
&= LPCR_PECE
| LPCR_LPES
;
3005 lpcr
|= (4UL << LPCR_DPFD_SH
) | LPCR_HDICE
|
3006 LPCR_VPM0
| LPCR_VPM1
;
3007 kvm
->arch
.vrma_slb_v
= SLB_VSID_B_1T
|
3008 (VRMA_VSID
<< SLB_VSID_SHIFT_1T
);
3009 /* On POWER8 turn on online bit to enable PURR/SPURR */
3010 if (cpu_has_feature(CPU_FTR_ARCH_207S
))
3012 kvm
->arch
.lpcr
= lpcr
;
3015 * Track that we now have a HV mode VM active. This blocks secondary
3016 * CPU threads from coming online.
3018 kvm_hv_vm_activated();
3021 * Create a debugfs directory for the VM
3023 snprintf(buf
, sizeof(buf
), "vm%d", current
->pid
);
3024 kvm
->arch
.debugfs_dir
= debugfs_create_dir(buf
, kvm_debugfs_dir
);
3025 if (!IS_ERR_OR_NULL(kvm
->arch
.debugfs_dir
))
3026 kvmppc_mmu_debugfs_init(kvm
);
3031 static void kvmppc_free_vcores(struct kvm
*kvm
)
3035 for (i
= 0; i
< KVM_MAX_VCORES
; ++i
)
3036 kfree(kvm
->arch
.vcores
[i
]);
3037 kvm
->arch
.online_vcores
= 0;
3040 static void kvmppc_core_destroy_vm_hv(struct kvm
*kvm
)
3042 debugfs_remove_recursive(kvm
->arch
.debugfs_dir
);
3044 kvm_hv_vm_deactivated();
3046 kvmppc_free_vcores(kvm
);
3048 kvmppc_free_hpt(kvm
);
3051 /* We don't need to emulate any privileged instructions or dcbz */
3052 static int kvmppc_core_emulate_op_hv(struct kvm_run
*run
, struct kvm_vcpu
*vcpu
,
3053 unsigned int inst
, int *advance
)
3055 return EMULATE_FAIL
;
3058 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu
*vcpu
, int sprn
,
3061 return EMULATE_FAIL
;
3064 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu
*vcpu
, int sprn
,
3067 return EMULATE_FAIL
;
3070 static int kvmppc_core_check_processor_compat_hv(void)
3072 if (!cpu_has_feature(CPU_FTR_HVMODE
) ||
3073 !cpu_has_feature(CPU_FTR_ARCH_206
))
3078 static long kvm_arch_vm_ioctl_hv(struct file
*filp
,
3079 unsigned int ioctl
, unsigned long arg
)
3081 struct kvm
*kvm __maybe_unused
= filp
->private_data
;
3082 void __user
*argp
= (void __user
*)arg
;
3087 case KVM_PPC_ALLOCATE_HTAB
: {
3091 if (get_user(htab_order
, (u32 __user
*)argp
))
3093 r
= kvmppc_alloc_reset_hpt(kvm
, &htab_order
);
3097 if (put_user(htab_order
, (u32 __user
*)argp
))
3103 case KVM_PPC_GET_HTAB_FD
: {
3104 struct kvm_get_htab_fd ghf
;
3107 if (copy_from_user(&ghf
, argp
, sizeof(ghf
)))
3109 r
= kvm_vm_ioctl_get_htab_fd(kvm
, &ghf
);
3121 * List of hcall numbers to enable by default.
3122 * For compatibility with old userspace, we enable by default
3123 * all hcalls that were implemented before the hcall-enabling
3124 * facility was added. Note this list should not include H_RTAS.
3126 static unsigned int default_hcall_list
[] = {
3140 #ifdef CONFIG_KVM_XICS
3151 static void init_default_hcalls(void)
3156 for (i
= 0; default_hcall_list
[i
]; ++i
) {
3157 hcall
= default_hcall_list
[i
];
3158 WARN_ON(!kvmppc_hcall_impl_hv(hcall
));
3159 __set_bit(hcall
/ 4, default_enabled_hcalls
);
3163 static struct kvmppc_ops kvm_ops_hv
= {
3164 .get_sregs
= kvm_arch_vcpu_ioctl_get_sregs_hv
,
3165 .set_sregs
= kvm_arch_vcpu_ioctl_set_sregs_hv
,
3166 .get_one_reg
= kvmppc_get_one_reg_hv
,
3167 .set_one_reg
= kvmppc_set_one_reg_hv
,
3168 .vcpu_load
= kvmppc_core_vcpu_load_hv
,
3169 .vcpu_put
= kvmppc_core_vcpu_put_hv
,
3170 .set_msr
= kvmppc_set_msr_hv
,
3171 .vcpu_run
= kvmppc_vcpu_run_hv
,
3172 .vcpu_create
= kvmppc_core_vcpu_create_hv
,
3173 .vcpu_free
= kvmppc_core_vcpu_free_hv
,
3174 .check_requests
= kvmppc_core_check_requests_hv
,
3175 .get_dirty_log
= kvm_vm_ioctl_get_dirty_log_hv
,
3176 .flush_memslot
= kvmppc_core_flush_memslot_hv
,
3177 .prepare_memory_region
= kvmppc_core_prepare_memory_region_hv
,
3178 .commit_memory_region
= kvmppc_core_commit_memory_region_hv
,
3179 .unmap_hva
= kvm_unmap_hva_hv
,
3180 .unmap_hva_range
= kvm_unmap_hva_range_hv
,
3181 .age_hva
= kvm_age_hva_hv
,
3182 .test_age_hva
= kvm_test_age_hva_hv
,
3183 .set_spte_hva
= kvm_set_spte_hva_hv
,
3184 .mmu_destroy
= kvmppc_mmu_destroy_hv
,
3185 .free_memslot
= kvmppc_core_free_memslot_hv
,
3186 .create_memslot
= kvmppc_core_create_memslot_hv
,
3187 .init_vm
= kvmppc_core_init_vm_hv
,
3188 .destroy_vm
= kvmppc_core_destroy_vm_hv
,
3189 .get_smmu_info
= kvm_vm_ioctl_get_smmu_info_hv
,
3190 .emulate_op
= kvmppc_core_emulate_op_hv
,
3191 .emulate_mtspr
= kvmppc_core_emulate_mtspr_hv
,
3192 .emulate_mfspr
= kvmppc_core_emulate_mfspr_hv
,
3193 .fast_vcpu_kick
= kvmppc_fast_vcpu_kick_hv
,
3194 .arch_vm_ioctl
= kvm_arch_vm_ioctl_hv
,
3195 .hcall_implemented
= kvmppc_hcall_impl_hv
,
3198 static int kvmppc_book3s_init_hv(void)
3202 * FIXME!! Do we need to check on all cpus ?
3204 r
= kvmppc_core_check_processor_compat_hv();
3208 kvm_ops_hv
.owner
= THIS_MODULE
;
3209 kvmppc_hv_ops
= &kvm_ops_hv
;
3211 init_default_hcalls();
3215 r
= kvmppc_mmu_hv_init();
3219 static void kvmppc_book3s_exit_hv(void)
3221 kvmppc_hv_ops
= NULL
;
3224 module_init(kvmppc_book3s_init_hv
);
3225 module_exit(kvmppc_book3s_exit_hv
);
3226 MODULE_LICENSE("GPL");
3227 MODULE_ALIAS_MISCDEV(KVM_MINOR
);
3228 MODULE_ALIAS("devname:kvm");